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Abstract: In the present paper we study the multifractal spectrum of local entropies.
We obtain results, similar to those of the multifractal analysis of pointwise dimensions,
but under much weaker assumptions on the dynamical systems. We assume our dy-
namical system to be defined by an expansive homeomorphism with the specification
property. We establish the variational relation between the multifractal spectrum and
other thermodynamical characteristics of the dynamical system, including the spectrum
of correlation entropies.

1. Introduction

Recently in the series of papers [10,11,2] L. Barreira, Ya. B. Pesin, J. Schmeling, and
H. Weiss performed a complete multifractal analysis of local dimensions, entropies and
Lyapunov exponents for conformal expanding maps and surface Axiom A diffeomor-
phisms with Gibbs measures. The main goal of these papers was primarily the analysis
of the local (pointwise) dimensions. This is an extremely difficult problem and, for ex-
ample, similar results for hyperbolic systems in dimensions 3 and higher have not been
obtained.

In the present work we concentrate our attention on the multifractal analysis of the
local (pointwise) entropies. We are able to obtain results, which are similar to those men-
tioned above, for Gibbs measures of the expansive homeomorphisms with specification
property.

Note that such dynamical systems may not have Markov partitions, which is a crucial
condition in the previous works. However, due to the fact that less is known about
thermodynamical properties of these dynamical systems we were able to obtain only the
continuous differentiabilty of the multifractal spectrum of local entropies (compare: the
same spectra for the dynamical systems with Markov partitions are analytic). We believe
that the smoothness of the multifractal spectrum in our case can be improved.
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We have related the mutifractal spectrum of the local entropies to the spectrum of
correlation entropies. These correlation entropies serve as entopy-like analogues of the
Hentschel–Procaccia and Renyi spectra of generalized dimensions. This allows us to
complete the duality between the mutifractal analyses of local dimensions and entropies.

2. Expansiveness and Specification

The following definitions and fundametal results are taken from [6,8,17], for a compact
presentation see [9, Chap.20].

Throughout this paper we assume(X, d) to be a compact metric space.

Definition 2.1. A homeomorphismf : X → X is called expansive if there exists a
constantγ > 0 such that if

d(f n(x), f n(y)) < γ for all n ∈ Z then x = y. (2.1)

The maximalγ with such a property is called the expansivity constant.

Another important property is the following.

Definition 2.2 (Bowen [6]). We say thatf : X → X is a homeomorphism with the
specification property (abbreviated to “a homeomorphism with specification”) if for
eachδ > 0 there exists an integerp = p(δ) such that the following holds: if

a) I1, . . . , In are intervals of integers,Ij ⊆ [a, b] for somea, b ∈ Z and all j,
b) dist(Ii, Ij ) ≥ p(δ) for i 6= j , then for arbitraryx1, . . . , xn ∈ X there exists a point
x ∈ X such that
1) f b−a+p(δ)(x) = x,
2) d(f k(x), f k(xi)) < δ for k ∈ Ii .

The specification property guarantees good mixing properties off and a sufficient
number of periodic orbits. Homeomorphisms that are expansive and with specification,
form a general class of “strongly chaotic” dynamical systems. For example, the following
holds:

Theorem 2.3 ([9, Theorem 18.3.9]). Let3 be a topologically mixing compact locally
maximal hyperbolic set for a diffeomorphismf . Thenf |3 has the specification property.

Remark.A generalization of the notion of a space with a hyperbolic diffeomorpism is
the so-called Smale space [16]. Also for the Smale spaces mixing implies specification
as well.

3. Equilibrium States

For the multifractal analysis one needs an invariant probability measure. On an attractor
there is usually one physically relevant measure (density of a generic orbit) called the
SRB (Sinai-Ruelle-Bowen) measure, which often belongs to the class of equilibrum
states or Gibbs measures. We introduce the last notion now. Again, let(X, d) be a
compact space,f : X → X a continuous map andϕ : X → R a continuous function.
We shall use the following notation.
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Definition 3.1. For everyn ∈ N and anyx, y ∈ X define a new metric

dn(x, y) = max
i=0,... ,n−1

d(f i(x), f i(y)),

and letBn(x, ε) = {y ∈ X : dn(x, y) < ε} for ε > 0.
The setE ⊂ X is said to be(n, ε)-separated if for everyx, y ∈ E such thatx 6= y

we havedn(x, y) > ε.
We say that a setF ⊂ X is (n, ε)-spanning if for everyy ∈ X there existx ∈ F such

thatdn(x, y) < ε.
For any functionϕ : X → R andx ∈ X put

(Snϕ)(x) =
n−1∑
k=0

ϕ(f k(x)).

Now we introduce the topological pressure which will be defined on the spaceC(X)

of all continuous functions on(X, d).

Definition 3.2. For n ∈ N andε > 0 define

Zn(ϕ, ε) = sup
E

{∑
x∈E

exp
(
(Snϕ)(x)

)}
, (3.1)

where the supremum is taken over all(n, ε)-separated setsE. The pressure is then
defined as

P(ϕ) = lim
ε→0

lim sup
n→∞

1

n
logZn(ϕ, ε). (3.2)

The topological entropy off , denoted byhtop(f ), is by definition the topological
pressure ofϕ ≡ 0. The topological pressure admits other equivalent definitions, for this,
see [21]. In particular, the following statement is known as the Variational Principle.

Theorem 3.3. Denote byMf (X) the set of allf -invariant Borel probability measures
onX. Letϕ ∈ C(X). Then

P(ϕ) = sup
µ∈Mf (X)

(
hµ(f )+

∫
ϕdµ

)
.

This result inspires the following definition.

Definition 3.4. An elementµ of Mf (X) is called an equilibrium state for the potential
ϕ if

P(ϕ) = hµ(f )+
∫
ϕ dµ.

The equilibrium state forϕ ≡ 0 (if it exists) is called a measure of maximal entopy.
We recall some other basic properties of the topological pressure:

1. P : C(X) → R is continuous and monotonously increasing, i.e.,

ϕ ≤ ψ ⇒ P(ϕ) ≤ P(ψ).
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2. One of the following holds:

P(ϕ) = +∞ ∀ϕ ∈ C(X),
P (ϕ) < +∞ ∀ϕ ∈ C(X).

Expansive homeomorphisms, which we will consider in the next sections, always
have finite topological entropy and hence the pressure of every continuous function
is finite.

3. P : C(X) → R is convex, i.e.,∀λ ∈ [0,1],
P(λϕ + (1 − λ)ψ) ≤ λP (ϕ)+ (1 − λ)P (ψ).

4. For anyϕ ∈ C(X) andc ∈ R one hasP(ϕ + c) = P(ϕ)+ c.

We impose additional conditions on the class of potentials under consideration.
We say thatϕ ∈ Vf (X) if it is continuous and there existε > 0 andK > 0 such that

for all n ∈ N,

d(f k(x), f k(y)) < ε for k = 0, . . . , n− 1 ⇒ ∣∣(Snϕ)(x)− (Snϕ)(y)
∣∣ < K.

For example, for a hyperbolic diffeomorphismf , any Hölder continuous functionϕ is
in Vf (X) [9, Prop.20.2.6].

Theorem 3.5 ([6,16,9]). If f is an expansive homeomorphism with specification and
ϕ ∈ Vf (X) then there exists a unique measureµϕ such that

P(ϕ) = hµϕ (f )+
∫
ϕdµϕ.

Moreover,µϕ is ergodic, positive on open sets and mixing.

The equilibrium stateµϕ can be constructed from the measures concentrated on
periodic points in the following way. For everyn ≥ 1 define a probability measureµϕ,n
supported on the set of periodic pointsFix(f n) = {x ∈ X : f n(x) = x} as follows:

µϕ,n = 1

P(f, ϕ, n)

∑
x∈Fix(f n)

e(Snϕ)(x)δx, (3.3)

whereδx is a unit measure atx andP(f, ϕ, n) =
∑

x∈Fix(f n)
e(Snϕ)(x) is a normalizing

constant.

Theorem 3.6 ([6,9]). An equilibrium stateµϕ is a weak∗ limit of the sequence{µϕ,n},
i.e., for everyh ∈ C(X),∫

h(x)dµϕ,n →
∫
h(x)dµϕ as n → ∞.

For our purposes of analysis of local entropies the following result will play a key
role.
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Theorem 3.7 ([8, Proposition 2.1], [9, Theorem 20.3.4]). Letf be an expansive home-
omorphism with the specification property. Letϕ ∈ Vf (X) and denote its equilibrium
state byµϕ . Then for a sufficiently smallε > 0 there exist constantsAε,Bε > 0 such
that for all x ∈ X andn ≥ 0,

Aε ≤ µϕ
({y ∈ X : d(f k(x), f k(y)) < ε for k = 0, . . . , n− 1})

exp(−nP (ϕ)+ (Snϕ)(x))
≤ Bε. (3.4)

Remark.Actually, the result above states that for expansive homeomorphisms with
specification the equilibrium states are the so-called Gibbs measures (states) as well.
See [8] for detailed discussion.

We have seen that for everyϕ ∈ Vf (X) there exists a unique equilibrium state. Using
(3.3) and (3.4) we are able to give necessary and sufficient conditions for potentials
ϕ,ψ ∈ Vf (X) to have the same equilibrium statesµϕ = µψ .

Theorem 3.8. Let f be an expansive homeomorphism with specification. The equilib-
rium statesµϕ andµψ corresponding to the potentialsϕ,ψ ∈ Vf (X) coincide if and
only if there exists a constantc ∈ R such that

(Snϕ)(x) = (Snψ)(x)+ nc (3.5)

for all x ∈ Fix(f n) and alln.

Proof. If (3.5) holds for allx ∈ Fix(f n) andn, then by (3.3) one hasµϕ,n = µψ,n for
all n. Thusµϕ = µψ .

Suppose thatµϕ = µψ =: µ. Consider “adjusted” potentials̃ϕ = ϕ − P(ϕ) and
ψ̃ = ψ −P(ψ). Letx ∈ Fix(f n) for somen ∈ N, applying (3.4) for sufficiently small
ε > 0, we conclude that

Aϕε exp
(
(Snϕ̃)(x)

) ≤ µ(Bn(x, ε)) ≤ Bψε exp
(
(Snψ̃)(x)

)
.

This implies that(Snϕ̃)(x) ≤ (Snψ̃)(x)+C′ for some constantC′ independent ofx and
n. Sincex ∈ Fix(f kn) for all k ∈ N we have that

(Snϕ̃)(x) = lim
k→∞

(Sknϕ̃)(x)

k
≤ lim
k→∞

(Sknψ̃)(x)

k
= (Snψ̃)(x).

By symmetry we obtain the opposite inequality. Hence

(Snϕ̃)(x) = (Snψ̃)(x)

for all x ∈ Fix(f n) andn ∈ N. This implies (3.5) withc = P(ϕ)− P(ψ). ut

4. Thermodynamical Formalism for Expansive Homeomorphisms
with Specification

In this section we establish some technical results on the properties of the pressure for
expansive homeomorphisms which will be exploited later in the proof of the main result.
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Lemma 4.1. Supposef : X → X is an expansive homeomorphism with specification.
Let ϕ ∈ Vf (X). Then the functionP(qϕ), q ∈ R, is continuously differentiable with
respect toq and its derivative is given by

dP (qϕ)

dq
=

∫
ϕdµq,

whereµq is the equlibrium state corresponding to the potentialqϕ. Moreover,P(qϕ) is
a strictly convex function ofq provided the equilibrium stateµϕ for ϕ is not a measure
of maximal entropy.

If µϕ is the measure of maximal entropy thenP(qϕ)− qP (ϕ) = (1− q)htop(f ) for
all q ∈ R.

Proof. We shall use several results from [21] to show thatP(qϕ) is a differentiable
function ofq.

For a moment we are going to use the fact thatf : X → X is a continuous map
on a compact metric space(X, d) with finite topological entropy. Since the topological
pressure is a continuous and convex function onC(X), for everyϕ,ψ ∈ C(X), the
function

t → P(ϕ + tψ)− P(ϕ)

t

is non-increasing ast ↓ 0. Hence there exist right and left derivatives ofP(ϕ) in the
direction ofψ , i.e.,

d+P(ϕ)(ψ) = lim
t→0+

P(ϕ + tψ)− P(ϕ)

t
,

d−P(ϕ)(ψ) = lim
t→0−

P(ϕ + tψ)− P(ϕ)

t
.

We say that the pressureP is Gâteaux differentiable atϕ if for everyψ the following
holds

d+P(ϕ)(ψ) = d−P(ϕ)(ψ).

This turns out to be equivalent to the condition that the mapψ → d+P(ϕ)(ψ) is linear.
A linear functionalα onC(X) is called a tangent functional (subdifferential) toP(·)

atϕ if
P(ϕ + ψ)− P(ϕ) ≥ α(ψ)

for all ψ ∈ C(X). Applying the Riesz representation theorem we conclude that there
exist a finite signed measureν = ν(α) onX such that

α(ψ) =
∫
ψdν

for all ψ ∈ C(X). From now on we identify the tangent functionalα with the corre-
sponding measureν from the Riesz representation.

Denote bytϕ(P ) the set of all tangent functionals toP atϕ and byMϕ(X) the set of all
equilibrium states corresponding to the potentialϕ. Applying the Variational Principle
one concludes

Mϕ(X) ⊂ tϕ(P ).
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One can easily check that the pressureP is Gâteaux differentiable atϕ if and only if
there is a unique tangent functionalν to P atϕ [21, Corollary 2] and that

dP (ϕ)(ψ) =
∫
ψdν.

Combining the results of Theorems 8.2 and 9.15 from [21] one has that for expansive
homeomorphismf : X → X,

Mϕ(X) = tϕ(X)

for everyϕ ∈ C(X).
Since for everyϕ ∈ Vf (X) the setMϕ(X) consists of a single element (uniqueness

of equilibrium states), we have that the pressureP is Gâteaux differentiable at any
ϕ ∈ Vf (X) and

d

dt
P (ϕ + tψ)

∣∣∣
t=0

=
∫
ψdµϕ (4.1)

for all ψ ∈ C(X). This proves the differentiability of the pressure functionP(qϕ) at
q = 1. The result for all otherq follows in the same manner sinceqϕ ∈ Vf (X) for every
q ∈ R if ϕ ∈ Vf (X).

If a convex function is differentiable, then its derivative is continuous. Since we have
already established the differentiability ofP(qϕ) (and it is convex) we obtain the desired
result.

Now we are going to establish the strict convexity ofP(qϕ). Suppose,µϕ is not a
measure of maximal entropy. Then applying the result of Theorem 3.8 we conclude that
the equilibrium statesµq1 andµq2, corresponding to potentialsq1ϕ andq2ϕ respectively,
are not equal ifq1 6= q2. Indeed, assumeµq1 = µq2 for someq1 6= q2. Then by
Theorem 3.8 we conclude that for some constantc,

(Snq1ϕ)(x) = (Snq2ϕ)(x)+ nc

for all n andx ∈ Fix(f n). This implies that(Snϕ)(x) = nc̃ with c̃ = c/(q1 − q2).
Appying again Theorem 3.8 one has that the equilibrium stateµϕ and the equilibium
stateµ0, corresponding to potentialψ ≡ 0, are equal. It means thatµϕ is the measure
of maximal entropy. Hence we have arrived at a contradiction with the assumption.
Thereforeµq1 6= µq2 if q1 6= q2.

The functionh : R → R is called strictly convex if for everyq0 ∈ R there exists
λ(q0) ∈ R such that

h(q) > h(q0)+ λ(q0)(q − q0) for all q 6= q0.

Putλ(q0) = ∫
ϕdµq0 for anyq0 ∈ R. Sinceµq 6= µq0 for q 6= q0 andµq is the unique

equilibrium state forqϕ, one has

P(qϕ) = hµq (f )+
∫
qϕdµq

= sup
µ∈Mf (X)

(
hµ(f )+

∫
qϕdµ

)
> hµq0 (f )+

∫
qϕdµq0

= hµq0 (f )+
∫
q0ϕdµq0 + (q − q0)

∫
ϕdµq0

= P(q0ϕ)+ λ(q0)(q − q0).
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This means thatP(qϕ) is a strictly convex function.
If the equilibrium stateµϕ is indeed a measure of maximal entropy, thenµϕ =

µqϕ =: µ for all q ∈ R. This is a consequence of Theorems 3.5 and 3.8. Then applying
the Variational Principle toµϕ andµqϕ we conclude that

P(qϕ) = hµ(f )+ q

∫
ϕdµ,

P (ϕ) = hµ(f )+
∫
ϕdµ,

wherehµ(f ) = htop(f ) sinceµ is the measure of maximal entropy. The result follows
immediately. ut
Remark.Much stronger result on smoothness of the pressure are known. For example,
the analyticity of pressure has been established for Smale spaces [16], i.e., general-
izations of Axiom A diffeomorphisms. The key property which these systems inherit
from hyperbolic dynamical systems is the so-called local product structure, which in
turn guarantees the existence of Markov partitions. The known methods of establishing
the analyticity of pressure strongly rely on this Markov structure. Expansive homeo-
morphism with specification do not necessarily have Markov partitions. For expansive
homeomorpshism with specification we were able to prove only the continuous differ-
entiability of the pressure. However we believe that this result can be improved.

Definition 4.2. We say thatE is a maximal(n, ε)-separated set if it can not be enlarged
by adding new points preserving the separation condition.

It is easy to see that every maximal(n, ε)-separated setE is an(n, ε)-spanning set
as well.

The following estimates from [8] will be used later.

Lemma 4.3. Let f be an expansive homeomorphism andγ > 0 be its expansivity
constant. Letϕ ∈ Vf (X). For every finite setE put

Zn(ϕ,E) =
∑
x∈E

exp
(
(Snϕ)(x)

)
.

1. If ε, ε′ < γ/2 andE,E′ are the maximal(n, ε)- and(n, ε′)-separated sets respec-
tively then one has

Zn(ϕ,E) ≤ CZn(ϕ,E
′),

where the constantC = C(ε, ε′) is independent ofn. In particular,

P(ϕ) = lim
n→∞

1

n
logZn(ϕ,En), (4.2)

whereEn are the arbirary maximal(n, ε)-separated sets.
2. If furthermoref satisfies the specification property andε < γ/2, then there exists a

constantD = D(ϕ, ε) > 0 such that

| logZn(ϕ,En)− nP (ϕ)| < D (4.3)

for all n and all maximal(n, ε)-separated sets.



Multifractal Analysis of Local Entropies 601

5. Topological Entropy for Non-Compact Sets

The generalization of the topological entropy to non-compact or non-invariant sets goes
back to Bowen [5]. Later Pesin and Pitskel [13] generalized the notion of pressure to the
case of non-compact sets. Note that by definition topological entropy is the topological
pressure forϕ ≡ 0. Now we give the formal definition of the topological entropy of a
non-compact or non-invariant set.

Supposef : X → X is a continuous map on a compact metric space(X, d). Let
U = {U1, . . . , UM} be a finite open cover ofX. By defintion, a stringU is a sequence
Ui1 . . . Uin with ik ∈ {1, . . . ,M}, its lengthn is denoted byn(U). The collection of all
strings of lengthn is denoted byWn(U). For eachU ∈ Wn(U) define the open set

X(U) = U1 ∩ f−1U2 ∩ . . . ∩ f−n+1Un

= {x ∈ X : f k−1x ∈ Uk, k = 1, . . . , n}.
We say that a collection of strings0 covers a setZ ⊂ X if⋃

U∈0
X(U) ⊃ Z.

For every real numbers introduce

M(Z, s,U) = lim
N→∞ inf

0

∑
U∈0

exp(−n(U)s),

where the infinum is taken over all collections0 ⊆ ⋃
n≥N Wn(U) coveringZ. There

exists a unique values such thatM(Z, ·,U) jumps from+∞ to 0,

h(Z,U) := s = sup{s : M(Z, s,U) = +∞} = inf {s : M(Z, s,U) = 0}
Finally, one can show that the following limit exists:

htop(f |Z) := lim
diam(U)→0

h(Z,U).

Definition 5.1. The numberhtop(f |Z) is called the topological entropy off restricted
to the setZ, or, simply, the topological entropy ofZ.

This definition of the topological entropy is similar to the definition of the Hausdorff
dimension (the diameters of the covering open sets are substituted by exp(−n(U)),
which can be treated as a “dynamical diameter” ofX(U)). Indeed, these definitions are
particular cases of the so-called Carathéodory dimension characteristics [14].

Theorem 5.2 ([12] ). The topological entropy as defined above has the following prop-
erties:

1. htop(f |Z1) ≤ htop(f |Z2) for anyZ1 ⊂ Z2 ⊂ X;
2. htop(f |Z) = sup

i

htop(f |Zi ), whereZ = ∪∞
i=1Zi ⊂ X;

3. if µ is an invariant measure such thatµ(Z) = 1, thenhtop(f |Z) ≥ hµ(f ).
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6. Local Entropy

In this section we give the definition of local entropy. The fundamental result on its
existence and properties is the Brin–Katok formula below.

Using the notation from Sect. 3 we introduce the lower and upper local entropies at
x ∈ X as follows

hµ(f, x) := lim
ε→0

lim inf
n→∞ −1

n
logµ(Bn(x, ε)), (6.1)

hµ(f, x) := lim
ε→0

lim sup
n→∞

−1

n
logµ(Bn(x, ε)). (6.2)

Note that the limits inε exist due to the monotonicity.
We say that the local entropy exists atx if

hµ(f, x) = hµ(f, x). (6.3)

In this case the common value will be denoted byhµ(f, x).

Theorem 6.1 (Brin–Katok formula, [7]). Let f : X → X be a continuous map on a
compact metric space(X, d) preserving a non-atomic Borel measureµ, then

1. for µ-a.e.x ∈ X the local entropy exists, i.e.,

hµ(f, x) = hµ(f, x) = hµ(f, x);

2. hµ(f, x) is af –invariant function ofx, and∫
hµ(f, x) dµ = hµ(f ),

wherehµ(f ) is the measure–theoretic entropy off .

Remark.If µ is ergodic thenhµ(f, x) = hµ(f ) for µ-a.e.x ∈ X.

Lemma 6.2. Let f be an expansive homeomorphism with specification. Consider an
equilibrium stateµϕ for the potentialϕ ∈ Vf (X). For everyx ∈ X put

ϕ∗(x) = lim inf
n→∞

1

n

n−1∑
i=0

ϕ(f i(x)),

ϕ∗(x) = lim sup
n→∞

1

n

n−1∑
i=0

ϕ(f i(x)).

Then
hµ(f, x) = P(ϕ)− ϕ∗(x),
hµ(f, x) = P(ϕ)− ϕ∗(x),

for all x ∈ X. Therefore

hµ(f, x) = hµ(f, x) if and only if ϕ∗(x) = ϕ∗(x).
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Proof. Using the estimate from Theorem 3.7 we conclude that for every sufficiently
smallε > 0 and some constantsC1, C2 one has

C1

n
+ P(ϕ)− 1

n

n−1∑
i=0

ϕ(f i(x)) ≤ −1

n
logµ(Bn(x, ε))

≤ C2

n
+ P(ϕ)− 1

n

n−1∑
i=0

ϕ(f i(x))

for all n ≥ 1 and everyx ∈ X. The statement follows easily.

7. Multifractal Spectrum for Local Entropies

Following [2] we introduce a multifractal spectrum for (local) entropies. For everyα

consider a level set of local entropy

Kα = {x ∈ X : hµ(f, x) = α}, (7.1)

and the corresponding multifractal decomposition on level sets

X =
⋃
α

Kα
⋃

{x ∈ X : hµ(f, x) does not exist}. (7.2)

We use the topological entropy, defined in Sect. 5, to measure the “size” of sets{Kα}.
Namely, define a multifractal spectrum for local entropies as follows:

EE(α) = htop(f |Kα). (7.3)

This notation needs a brief explanation: two E’s stand for the topologicalEntropy of
level set of localEntropy. For other multifractal spectraDE, ED,DD, see [2].

From a general multifractal formalism one expectsEE(α) to be smooth and concave
on a certain interval ofα’s. We are able to establish this in the case of equilibrium states
for expansive homeomorphisms with specification. The crucial observation which we
exploit in the proof is the following. Letµ = µϕ be an equilibrium state for a potentialϕ.
Then applying the result of the previous section one gets that

x ∈ Kα ⇐⇒ hµ(f, x) = α ⇐⇒ lim
n→∞

1

n

n−1∑
k=0

ϕ(f i(x)) = P(ϕ)− α. (7.4)

Therefore, the level sets of local entropies are exactly the level sets of limits of ergodic
averages ofϕ. From the Ergodic Theorem one concludes that only one of these level sets
has full measure, while others are of measure 0. We adopt a technique of estimation of
the topological entropy of these level sets from [2]. The main idea is the following: we
introduce a 1-parameter family of measures such that for eachα with Kα 6= ∅ there is
exactly one measure in the family for whichKα has full measure. These measuresµq are
the equilibrium states for potentialsϕq = qϕ−P(qϕ). However, for the correspondence
between levels{Kα} and measures{µq} we need a parameterizationα(q) such that

µq(Kα̃) =
{

1, if α̃ = α(q),

0, if α̃ 6= α(q).
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The parameterization can be given as follows: first defineT (q) = P(qϕ)− qP (ϕ), and
α(q) = −T ′(q) (note thatT isC1 by Lemma 4.1). Below we will establish that

htop(f |Kα(q) ) = hµq (f ),

i.e.,µq is the measure with maximal metric entropy among all invariant measures{ν}
such thatν(Kα(q)) = 1. In order to complete the analysis we have to show thatKα = ∅

for everyα 6∈ [inf q α(q), supq α(q)].

8. Main Result

In this section we state our main result. It is exactly in the form of the corresponding
results from [2,10] for the multifractal analysis of local (pointwise) dimensions. We
are following the same notation and order of statements. The last statement of our
theorem is analogous to Remark 5 in [10]. It relates the multifractal spectra of the local
entropies to the spectrahµ(f, q) of the correlation entropies (analogue of the Hentschel–
Procaccia spectra for dimensionsHP(q)) andRµ(f, q) (analogue of the Renyi spectra
of dimensionsR(q)). Although it would be natural to callRµ(f, q) the Renyi spectra of
entropies, it might cause some confusion, since there exists a different notion called the
Renyi entropy of orderq [4,20].

Theorem 8.1. Let f be an expansive homeomorphism with the specification property
of a compact metric space(X, d). Letϕ ∈ Vf (X) andµ = µϕ be the corresponding
equilibrium state. Then

1. For µ-a.e.x ∈ X the local entropy atx exists and

hµ(f, x) = hµ(f ) = P(ϕ)−
∫
ϕ dµ.

2. For anyq ∈ R define the function

T (q) = P(qϕ)− qP (ϕ).

ThenT (q) is a convexC1 function ofq. Moreover,T (0) = htop(f ), T (1) = 0; for
everyq ∈ R one hasT ′(q) = ∫

ϕdµq − P(ϕ) ≤ 0, whereµq is the equilibrium
state forϕq = qϕ − P(qϕ).

3. Putα(q) = −T ′(q). Then

EE(α(q)) := htop(f |Kα(q) ) = T (q)+ qα(q).

Define

α = inf
q
α(q) = lim

q→+∞α(q),

α = sup
q
α(q) = lim

q→−∞α(q).

ThenKα = ∅ if α 6∈ [α, α]. It means that the domain of the multifractal spectrum
for local entropiesα → EE(α) is the range of the functionq → −T ′(q).
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4. If the equilibrium stateµ for the potentialϕ is not a measure of maximal entropy,
then the relation betweenEE andT (q) can be written in the following variational
form:

EE(α) = inf
q∈R

(T (q)+ qα) for α ∈ (α, α),
T (q) = sup

α∈(α,α)
(EE(α)− qα) for q ∈ R.

This implies thatEE is strictly concave and continuously differentiable on(α, α)with
the derivative given byE ′

E(α) = q, whereq ∈ R is such thatα = −T ′(q).
5. For everyq ∈ R, q 6= 1, the following limits exist:

hµ(f, q) = lim
ε→0

lim
n→∞ − 1

n(q − 1)
log

∫
µ(Bn(x, ε))

q−1dµ,

Rµ(f, q) = lim
ε→0

lim
n→∞ − 1

n(q − 1)
log

(
sup
E

∑
x∈E

µ(Bn(x, ε))
q
)
,

where the supremum is taken over all(n, ε)-separated setsE.
For q 6= 1 one has

hµ(f, q) = Rµ(f, q) = − T (q)

q − 1
.

The family of correlation entropieshµ(f, q) depends continuously onq and

hµ(f,0) = htop(f ),

hµ(f,1) := lim
q→1

hµ(f, q) = hµ(f ).

Proof. (1) The first statement is a consequence of the Brin-Katok formula for ergodic
dynamical systems (Theorem 6.1).

(2) The smoothness and convexity properties ofT follow directly from Lemma 4.1.
We calculate the derivative ofT with respect toq. Using the formula from Lemma 4.1
one gets

T ′(q) =
∫
ϕdµq − P(ϕ), (8.1)

whereµq is the equilibrium state for the potentialϕq = qϕ − P(qϕ). The inequality
T ′(q) ≤ 0 follows from the Variational Principle applied toϕ.

(3) This statement is taken from [2] where it has not been proved. For the sake of
completeness we give the proof here.

Let us first calculate the measure–theoretic entropy of the equilibrium stateµq . From
the Variational Principle forµq we have

hµq (f ) = P(ϕq)−
∫
ϕqdµq

= 0 + T (q)+ qP (ϕ)− q

∫
ϕdµq

= T (q)+ q
(
P(ϕ)−

∫
ϕdµq

)
= T (q)+ qα(q),

(8.2)
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whereα(q) = −T ′(q) and we use formula (8.1) for the derivative ofT (q).
As we have seen in Lemma 6.2 for anyα one has

hµ(f, x) = α if and only if lim
n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) = P(ϕ)− α.

Let us apply now Lemma 6.2 to the equilibrium stateµq corresponding to the potential
qϕ. Similarly one gets that for everyβ,

hµq (f, x) = β if and only if q lim
n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) = P(qϕ)− β.

Hence one concludes that

hµ(f, x) = α if and only if hµq (f, x) = P(qϕ)− qP (ϕ)+ qα.

Forα = α(q) we get

x ∈ Kα(q) if and only if hµq (f, x) = T (q)+ qα(q). (8.3)

Combining the results of (8.2) and (8.3) one gets

hµq (f ) = T (q)+ qα(q),

hµq (f, x) = T (q)+ qα(q) if and only if x ∈ Kα(q).
This means thathµq (f, x) = hµq (f ) if and only if x ∈ Kα(q). Sinceµq is ergodic, we
know from the Brin–Katok formula thathµq (f, x) = hµq (f ) for µq -a.e.x ∈ X. Hence
we conclude that

µq(Kαq ) = µq({x : hµq (f, x) = hµq (f )}) = 1.

Therefore we obtained the desired parametrization of the level sets.
We have to compute the topological entropy off restricted toKα(q),

EE(α(q)) := htop
(
f |Kα(q)

)
.

Using the properties of the topological entropy from Theorem 5.2 we conclude that

EE(α(q)) = htop
(
f |Kα(q)

) ≥ hµq (f ) = T (q)+ qα(q),

sinceµq(Kα(q)) = 1. We have to prove the oposite inequality. For this it would be
sufficient to show thathtop(f |Kα(q) ) ≤ λ for anyλ > T (q)+qα(q). Choose suchλ and
let δ = λ− T (q)− qα(q) > 0.

Rewriting the definition ofKα(q) in terms ofµq andϕq one has

Kα(q) = {
x ∈ X : hµq (f, x) = hµq (f ) = T (q)+ qα(q)

}
=

{
x ∈ X : lim

n→∞
1

n

n−1∑
i=0

ϕq(f
ix) = −T (q)− qα(q)

}
.
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For everyx ∈ Kα(q) there exists an integern(x) such that∣∣∣∣∣1

n

n−1∑
i=0

ϕq(f
ix)+ T (q)+ qα(q)

∣∣∣∣∣ ≤ δ

2
(8.4)

for all n ≥ n(x). For every integerN consider the set

Kα(q),N = {x ∈ Kα(q) : n(x) ≤ N}.
Obviously we have

Kα(q) =
⋃
N≥1

Kα(q),N , Kα(q),N ⊂ Kα(q),N+1.

Using the properties of the topological entropy from Theorem 5.2 we conclude that

htop(f |Kα(q) ) = lim
N→∞htop(f |Kα(q),N ).

We are going to show that for anyN ∈ N one hashtop(f |Kα(q),N ) ≤ λ; this in turn will
imply htop(f |Kα(q) ) ≤ λ.

Consider an arbitrary finite coverU = {
B(xi, ε/2)

}M
i=1 of X by open balls of radius

ε/2, with ε < γ/2, whereγ is the expansivity constant forf . Together withU we
considerŨ an open cover by balls with centers atxi and radiiε. Let E = {yj } be a
maximal (n, ε/2)-separated set inX. Define a subsetE′ of E by choosing thoseyj
which have a point fromKα(q),N close to them, namely

E′ = {yj ∈ E : Kα(q),N ∩ Bn(yj , ε/2) 6= ∅}.
This implies that

Kα(q),N ⊂
⋃
yj∈E′

Bn(yj , ε/2).

For everyyj ∈ E′ there exists at least one stringUi0,... ,in−1 from Wn(U) such that
yj ∈ X(Ui0,... ,in−1). It is easy to see that if

yj ∈ X(Ui0,... ,in−1) = Ui0 ∩ f−1Ui1 ∩ . . . f−n+1Uin−1,

then
Bn(yj , ε/2) ⊂ S(Ũi0,... ,in−1) = Ũi0 ∩ f−1Ũi1 ∩ . . . f−n+1Ũin−1.

In other words the collection of strings̃0 = {Ũi0,... ,in−1} coversKα(q),N . Therefore

m(Kα(q),N , λ, Ũ, n) = inf
0⊂∪k≥nWk(Ũ)
0 coversKα(q),N

∑
U∈0

exp(−m(U)λ)

≤
∑
Ũ∈0̃

exp(−m(Ũ)λ)

= e−nδ
∑
Ũ∈0̃

exp
( −n(T (q)+ qα(q))

)
= e−nδ

∑
yj∈E′

exp
(
−n(T (q)+ qα(q)

))
.

(8.5)
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Since the potentialϕ ∈ Vf (X), so isϕq , and

∣∣(Snϕq)(x)− (Snϕq)(y)
∣∣ =

∣∣∣∣∣
n−1∑
k=0

ϕq(f
k(x))−

n−1∑
k=0

ϕq(f
k(y))

∣∣∣∣∣ ≤ |q|K

for all x, y ∈ X with dn(x, y) < ε/2.
For anyyj ∈ E′ let xj be an arbitrary point fromKα(q),N ∩ Bn(yj , ε/2). Since

xj ∈ Kα(q),N andn ≥ N from (8.4) we have

−n(T (q)+ qα(q)) ≤ −n(T (q)+ qα(q))− (Snϕq)(xj )+ (Snϕq)(yj )+ |q|K
≤ nδ

2
+ (Snϕq)(yj )+ |q|K.

Thus we can continue the estimate (8.5) as follows:

m(Kα(q),N , λ, Ũ, n) ≤ e−nδ/2+|q|K ∑
yj∈E′

exp((Snϕq)(yj ))

≤ C′e−nδ/2Zn(ϕq, E).

Using the estimates from Lemma (4.3) and the fact thatP(ϕq) = 0 we conclude that

m(Kα(q),N , λ, Ũ, n) ≤ C′′e−nδ/2.

Hence
m(Kα(q),N , λ, Ũ) = lim

n→∞m(Kα(q),N , λ, Ũ, n) = 0,

and sinceU was an open cover by balls of radiusε/2 we get

m(Kα(q),N , λ) = lim
diam(U)→0

m(Kα(q),N , λ, Ũ) = 0.

Then by definition of the topological entropy we have

htop(f |Kα(q),N ) ≤ λ

for all N . Hencehtop(f |Kα(q) ) ≤ λ for all λ > T (q)+ qα(q). This completes the proof
thathtop(f |Kα(q), ) ≤ T (q)+ qα(q).

The rest of the statement is taken from [18]. It states that we have a complete de-
scription of the spectra for local entropies.

(4) If the equilibrium state for the potentialϕ is not a measure maximal entropy then
it was shown in Lemma 4.1 thatT (q) is strictly convex, i.e., the following holds for
everyq, q0 ∈ R, q 6= q0:

T (q) > T (q0)+ T ′(q0)(q − q0).

Therefore, ifα ∈ (α, α) then there existsq0 ∈ R such thatα = −T ′(q0). We have seen
that in this caseEE(α) = T (q0) + αq0. Using the strict convexity ofT (q) we obtain
that forq ∈ R, q 6= q0 the following holds

EE(α) = T (q0)+ αq0 < T (q)+ αq.

Hence,EE(α) = inf
q∈R

(T (q)+ αq) for α ∈ (α, α).



Multifractal Analysis of Local Entropies 609

In a similar manner one obtains the second relationT (q) = supα∈(α,α)(EE(α)−qα).
Using the notion of the Legendre transform [15] we can say that actually functions

T (q) andF(α) := −EE(−α) form a Legendre pair, i.e., one is the Legendre transform
of another. Therefore the convexity and differentiabilty ofEE follow from the properties
of the Legendre transform. In particular, forα ∈ (α, α) one hasE ′

E(α) = q, where
q ∈ R is such thatα = −T ′(q).

In the case whenµ is the measure of maximal entropy one has

hµ(f, x) = hµ(f ) = htop(f )

for all x ∈ X. It means thatEE is a delta-like function

EE(α) =
{
htop(f ), if α = htop(f ),

0, otherwise.

This “degenerate” behaviour of the multifractal spectrum for the measure of maximal
entropy can be successfuly exploited. For this see [2], where it has been used for the
calculations of the mutifractal spectra for Lyapunov exponents.

(5) This is an essentially new result. We prove it by means of standard thermodynam-
ical technique.

Let q > 1 andE be an arbitrary(n, ε)-separated set. One has∫
µ(Bn(x, ε))

q−1 dµ ≥
∑
xi∈E

∫
Bn(xi ,ε/2)

µ(Bn(x, ε)
q−1 dµ

≥
∑
xi∈E

µ(Bn(xi, ε/2))
q,

sincex ∈ Bn(xi, ε/2) impliesBn(xi, ε/2) ⊂ Bn(x, ε).
Applying inequality (3.4), and using the fact thatE is an(n, ε)-separated set, we get∫

µ(Bn(x, ε))
q−1 dµ ≥ sup

E

∑
xi∈E

A
q
ε/2 exp

(
−qPn+

n−1∑
j=0

qϕ(f jxi)
) ,

where the supremum is taken over all(n, ε)-separated sets. Taking logarithms and ap-
plying estimates from Lemma 4.3 we conclude that in the limit

hµ(f, q) ≤ Rµ(f, q) ≤ P(qϕ)− qP (ϕ)

1 − q
.

To finish the proof we have to show the opposite inequality. We do it in a similar
manner.

Let nowE be a maximal(n, ε/2)-separated set, then∫
µ(Bn(x, ε/2))

q−1dµ ≤
∑
xi∈E

∫
Bn(xi ,ε/2)

µ(Bn(x, ε/2))
q−1dµ

≤
∑
xi∈E

µ(Bn(xi, ε))
q,

sincex ∈ Bn(xi, ε/2) implies thatBn(x, ε/2) ⊂ Bn(xi, ε).
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Again sinceE is an arbitrary(n, ε/2)-separated set and applying the inequality (3.4)
we obtain∫

µ(Bn(x, ε/2))
q−1dµ ≤ sup

E

∑
xi∈F

Bqε exp
(
−qPn+

n−1∑
j=0

qϕ(f jxi)
) .

Taking logarithms and using estimates from Lemma 4.3 in the limitn → ∞ we get

hµ(f, q) ≥ Rµ(f, q) ≥ P(qϕ)− qP (ϕ)

1 − q
.

Combining all together we get the statement in the caseq > 1. The caseq < 1 is
completely analogous. The continuity and other properties ofhµ(f, q) follow from the
corresponding properties ofT (q). ut

9. Final Remarks

A. Consider an irregular set

B = {x ∈ X : hµ(f, x) does not exist}

= {x ∈ X : lim
n→∞

1

n

n−1∑
k=0

ϕ(f k(x)) does not exist}.

We have seen that for the measure of maximal entropymE this is an empty set. It was
shown in [3] that in a number of cases, the setB is either empty or has full topological
entropy and Hausdorff dimension.

B. There exists another way of defining local (pointwise) entropies. Namely, consider
an arbitrary finite measurable partitionξ of X. We can define a local entropy atx with
respect toξ as follows (if the limit exists):

hµ(f, x, ξ) = lim
n→∞ −1

n
logµ(ξ(n)(x)),

whereξ (n) = ξ ∨ f−1ξ ∨ . . . ∨ f−n+1ξ andξ (n)(x) is the element ofξ (n) containing
x. We can define a spectrum of local entropies with respect toξ as follows:

EE(α) = htop(f |{x:hµ(f,x,ξ)=α)}).
The situation whenξ is a finite Markov partition for an expanding dynamical system
has been studied in [2,1]. One can eaily check that in this case the two spectra coincide.

C. The results of this paper can be extended to the case of expansive endomorphisms
(i.e., non-invertible maps) with the specification property. They are defined in exactly
the same way as the expansive homeomorphisms with specification except that the set
Z in (2.1) is substituted byN (positive expansiveness). The characteristic property of
the equilibrium states (Theorem 3.7) remains valid [17]. Therefore our analysis works
without any modifications.

In the case of expansive homeomorphisms we can give another definition of local
entropies. Namely, for anyn ≥ 1 define

B±
n (x, ε) = {y ∈ X : d(f i(x), f i(y)) < ε for all i = −n+ 1, . . . , n− 1},
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and

h±
µ(f, x) = lim

ε→0
lim inf
n→∞ − 1

2n− 1
logµ(B±

n (x, ε)),

h
±
µ(f, x) = lim

ε→0
lim sup
n→∞

− 1

2n− 1
logµ(B±

n (x, ε)).

Then the level sets of these local entropies will be in one-to-one correspondence with
the level sets of two-sided ergodic averages ofϕ,

lim
n→∞

1

2n− 1

n−1∑
k=−n+1

ϕ(f k(x)).

The level sets of two-sided and one-sided ergodic averages ofϕ can be different. However,
they have the same topological entropy with respect tof . Therefore the multifractal
spectrum based onh±

µ(f, x) will be the same.

D.A requirement of the existence of a Markov partition is stronger than a specification
property, provided the dynamical system is mixing.

Consider the family of one-dimensional interval mapsTβ , defined byTβ(x) =
βx (mod 1). Forβ > 1 these maps are expanding and therefore expansive. The ergodic
properties ofTβ depend on the number-theoretic properties ofβ. For these systems it
turns out [19] that:

i) the set ofβ ’s for whichTβ has a finite Markov partition is at most countable;
ii) the set ofβ ’s for which Tβ has the specification property is uncountable and has

Hausdorff dimension 1, but still has Lebesgue measure 0.

Therefore, we can see that in the family{Tβ}β>1, specification is a much more general
property than the property of having a finite Markov partition.
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