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Abstract: In the present paper we study the multifractal spectrum of local entropies.
We obtain results, similar to those of the multifractal analysis of pointwise dimensions,
but under much weaker assumptions on the dynamical systems. We assume our dy-
namical system to be defined by an expansive homeomorphism with the specification
property. We establish the variational relation between the multifractal spectrum and
other thermodynamical characteristics of the dynamical system, including the spectrum
of correlation entropies.

1. Introduction

Recently in the series of papers [10,11,2] L. Barreira, Ya. B. Pesin, J. Schmeling, and
H. Weiss performed a complete multifractal analysis of local dimensions, entropies and
Lyapunov exponents for conformal expanding maps and surface Axiom A diffeomor-
phisms with Gibbs measures. The main goal of these papers was primarily the analysis
of the local (pointwise) dimensions. This is an extremely difficult problem and, for ex-
ample, similar results for hyperbolic systems in dimensions 3 and higher have not been
obtained.

In the present work we concentrate our attention on the multifractal analysis of the
local (pointwise) entropies. We are able to obtain results, which are similar to those men-
tioned above, for Gibbs measures of the expansive homeomorphisms with specification
property.

Note that such dynamical systems may not have Markov partitions, which is a crucial
condition in the previous works. However, due to the fact that less is known about
thermodynamical properties of these dynamical systems we were able to obtain only the
continuous differentiabilty of the multifractal spectrum of local entropies (compare: the
same spectra for the dynamical systems with Markov partitions are analytic). We believe
that the smoothness of the multifractal spectrum in our case can be improved.
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We have related the mutifractal spectrum of the local entropies to the spectrum of
correlation entropies. These correlation entropies serve as entopy-like analogues of the
Hentschel-Procaccia and Renyi spectra of generalized dimensions. This allows us to
complete the duality between the mutifractal analyses of local dimensions and entropies.

2. Expansiveness and Specification

The following definitions and fundametal results are taken from [6,8,17], for a compact
presentation see [9, Chap.20].
Throughout this paper we assur¥¢, d) to be a compact metric space.

Definition 2.1. A homeomorphisnf : X — X is called expansive if there exists a
constanty > 0 such that if

d(f"(x), f"(y)) <y forallneZ then x =y. (2.2)

The maximay with such a property is called the expansivity constant.
Another important property is the following.

Definition 2.2 (Bowen [6). We say thatf : X — X is a homeomorphism with the
specification property (abbreviated to “a homeomorphism with specification”) if for
eachd > 0there exists an integef = p(8) such that the following holds: if

a) I, ..., I, areintervals of integers]; C [a, b] for someu, b € Z and all j,

b) dist(/;, I;) > p(6) fori # j, then for arbitraryxy, ... , x, € X there exists a point
x € X such that
1) fomatr@(x) = x,

2) d(f*x), f*xi)) < sfork e I,.

The specification property guarantees good mixing propertieg ahd a sufficient
number of periodic orbits. Homeomorphisms that are expansive and with specification,
form a general class of “strongly chaotic” dynamical systems. For example, the following
holds:

Theorem 2.3 ([9, Theorem 18.3.9] Let A be a topologically mixing compact locally
maximal hyperbolic set for a diffeomorphigmThenf |, has the specification property.

Remark.A generalization of the notion of a space with a hyperbolic diffeomorpism is
the so-called Smale space [16]. Also for the Smale spaces mixing implies specification
as well.

3. Equilibrium States

For the multifractal analysis one needs an invariant probability measure. On an attractor
there is usually one physically relevant measure (density of a generic orbit) called the
SRB (Sinai-Ruelle-Bowen) measure, which often belongs to the class of equilibrum
states or Gibbs measures. We introduce the last notion now. AgaitXJet) be a
compact spacef : X — X a continuous map ang: X — R a continuous function.

We shall use the following notation.
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Definition 3.1. For everyn € N and anyx, y € X define a new metric
dy(x,y) = max d(f'(x), (),
i=0,...,n—1

andletB,(x,e) ={y € X : dy(x,y) <e}fore > 0.

The setE C X is said to be(n, ¢)-separated if for every, y € E such thate # y
we haved, (x, y) > &.

We say that a st C X is (n, ¢)-spanning if for every € X there existc € F such
thatd,(x, y) < e.

For any functionp : X — R andx € X put

n—1
(Snp)(x) =Y o(f* ().

k=0

Now we introduce the topological pressure which will be defined on the gpaxe
of all continuous functions o0X, d).

Definition 3.2. Forn € N ande¢ > 0 define

Zu(p.e) = sgp{ > exp((snw(x))} : (3.1)

xeFE

where the supremum is taken over @il ¢)-separated set&. The pressure is then
defined as

P(p) = lim lim supE l0g Z, (¢, ¢). (3.2)
e=>0 psoo N

The topological entropy of, denoted byi,,,(f), is by definition the topological
pressure o = 0. The topological pressure admits other equivalent definitions, for this,
see [21]. In particular, the following statement is known as the Variational Principle.

Theorem 3.3. Denote byM ¢ (X) the set of allf -invariant Borel probability measures
onX. Lety € C(X). Then

P(p)= sup <hu(f) + / wdu) :
neMy(X)
This result inspires the following definition.
Definition 3.4. An element of M ;(X) is called an equilibrium state for the potential
@ if
P(@) = hu(f) +f<p dp.

The equilibrium state fop = 0 (if it exists) is called a measure of maximal entopy.
We recall some other basic properties of the topological pressure:

1. P: C(X) — Ris continuous and monotonously increasing, i.e.,

o <Y = P(p) < P({).
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2. One of the following holds:
P(p) =400 Vg € C(X),
P(p) <400 Vg € C(X).

Expansive homeomorphisms, which we will consider in the next sections, always
have finite topological entropy and hence the pressure of every continuous function
is finite.

3. P:C(X) — Risconvex,i.e.YA € [0, 1],

PG+ (1-0Y) =iP@)+A-1PW).

4. Foranyyp € C(X) andc € R one hasP (¢ +¢) = P(p) +c.

We impose additional conditions on the class of potentials under consideration.
We say that € V¢ (X) ifitis continuous and there exist> 0 andK > 0 such that
foralln e N,

d(ff @), ffo)) <efork=0,...,n =1 = [(Sup)(x) — (Su@)(»)] < K.

For example, for a hyperbolic diffeomorphisfiy any Hélder continuous functiop is
inV¢(X) [9, Prop.20.2.6].

Theorem 3.5 ([6,16,9). If f is an expansive homeomorphism with specification and
¢ € V¢(X) then there exists a unique measyrgsuch that

P(p) =hy,(f) + / pdpg.

Moreover,u, is ergodic, positive on open sets and mixing.

The equilibrium statgs, can be constructed from the measures concentrated on
periodic points in the following way. For eveny> 1 define a probability measurg, ,
supported on the set of periodic poirfisx (") = {x € X : f"(x) = x} as follows:

1
_ (Snp)(x)
Hon = Yo S0, (3.3)
Pt o.m) xeFix(fm")
wheres, is a unit measure at and P(f.¢.n) = > ¥ is a normalizing
xeFix(f")

constant.

Theorem 3.6 (6,9]). An equilibrium state., is a weak limit of the sequencéu, .},
i.e., foreveryh € C(X),

/h(x)duw,n — /h(x)d//,qJ as n — oo.

For our purposes of analysis of local entropies the following result will play a key
role.
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Theorem 3.7 ([8, Proposition 2.1], [9, Theorem 20.3)4l et f be an expansive home-
omorphism with the specification property. ket V¢ (X) and denote its equilibrium
state byu,. Then for a sufficiently smadl > O there exist constants,, B, > 0 such
that for all x € X andn > 0O,

k(e X d(ff@). ff o) <efork=0.....n—1)) _

A <B.. (3.4)
exp(—=nP(p) + (Sup)(x))

Remark.Actually, the result above states that for expansive homeomorphisms with
specification the equilibrium states are the so-called Gibbs measures (states) as well.
See [8] for detailed discussion.

We have seen that for evegye V' (X) there exists a unique equilibrium state. Using
(3.3) and (3.4) we are able to give necessary and sufficient conditions for potentials
@, ¥ € V¢(X) to have the same equilibrium staeg = 11y,

Theorem 3.8. Let f be an expansive homeomorphism with specification. The equilib-
rium statesu,, and uy, corresponding to the potentials v € V¢ (X) coincide if and
only if there exists a constante R such that

(Sn)(x) = (Sp¥)(x) +nc (3.5)
forall x € Fix(f") and alln.

Proof. If (3.5) holds for allx € Fix(f") andn, then by (3.3) one has, , = py., for
alln. Thuspy = y .

Suppose that, = ny =: n. Consider “adjusted” potentials = ¢ — P(¢p) and
17} =y — P(y). Letx € Fix(f") for somen € N, applying (3.4) for sufficiently small
e > 0, we conclude that

A? exp(($pP)(x)) < u(Bu(x, e)) < BY eXp((Snlz)(X))-
This implies that s, @) (x) < (S, ¥)(x) + C’ for some constar@’ independent of and

n. Sincex € Fix(f*") for all k € N we have that

(Skn(p)(x) < ||m wz(sna)(x)

(SiP)x) = lim <

k— 00

By symmetry we obtain the opposite inequality. Hence

(Su®)(x) = (Sp ) (x)

forall x € Fix(f") andn € N. This implies (3.5) withc = P(¢) — P(y). O

4. Thermodynamical Formalism for Expansive Homeomorphisms
with Specification

In this section we establish some technical results on the properties of the pressure for
expansive homeomorphisms which will be exploited later in the proof of the main result.
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Lemma 4.1. Supposef : X — X is an expansive homeomorphism with specification.
Lety € V¢(X). Then the functiorP(g¢), ¢ € R, is continuously differentiable with
respect tay and its derivative is given by

dP(qp) _ /wd
dq Mg,

whereyu, is the equlibrium state corresponding to the potenial Moreover,P (g¢) is
a strictly convex function af provided the equilibrium statg, for ¢ is not a measure
of maximal entropy.

If 1y is the measure of maximal entropy thRly @) — g P(¢) = (1 — q)h.ep(f) for
all g e R.

Proof. We shall use several results from [21] to show tiRdt;¢) is a differentiable
function ofg.

For a moment we are going to use the fact tfiat X — X is a continuous map
on a compact metric spac#, d) with finite topological entropy. Since the topological
pressure is a continuous and convex function(X), for everyp, ¢ € C(X), the

function
P(p +1ty) — P(p)
t — ;

is non-increasing as | 0. Hence there exist right and left derivatives(y) in the
direction ofy, i.e.,

P(p +1ty) — P(p)
. ,
P(p+1ty) — P(p)
; .

d*Pip)) = lim

d"Pp)) = lim.

We say that the pressureis Gateaux differentiable at if for every ¢ the following
holds

dTP@)W) =d~P(@)W).

This turns out to be equivalent to the condition that the map d* P(p)(y) is linear.
A linear functionakx on C (X) is called a tangent functional (subdifferential)R¢-)
atg if
Plo+y)— Plp) = a(y)

for all v € C(X). Applying the Riesz representation theorem we conclude that there
exist a finite signed measuve= v(«) on X such that

() = / Yy

for all v € C(X). From now on we identify the tangent functionalwith the corre-
sponding measunefrom the Riesz representation.

Denote by, (P) the set of all tangent functionals Roaty and byM,, (X) the set of all
equilibrium states corresponding to the potentiahpplying the Variational Principle
one concludes

My(X) C 1,(P).
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One can easily check that the pressBris Gateaux differentiable atif and only if
there is a unigue tangent functionalo P atg [21, Corollary 2] and that

AP (@) () = / Vv,

Combining the results of Theorems 8.2 and 9.15 from [21] one has that for expansive
homeomorphisny : X — X,
M(p(X) = t(p(X)
for everyp € C(X).
Since for everyp € V¢ (X) the setM,(X) consists of a single element (uniqueness
of equilibrium states), we have that the pressBrés Gateaux differentiable at any
¢ € Vy(X) and

d
S| _= [van, 4.1

for all v € C(X). This proves the differentiability of the pressure functibfy¢) at
g = 1. The result for all otheyg follows in the same manner singe € V¢ (X) for every
g eRif g e Vi (X).

If a convex function is differentiable, then its derivative is continuous. Since we have
already established the differentiability Bfg¢) (and it is convex) we obtain the desired
result.

Now we are going to establish the strict convexityRig¢). Supposej,, is not a
measure of maximal entropy. Then applying the result of Theorem 3.8 we conclude that
the equilibrium stateg,, and.,,, corresponding to potentiajsy andgo¢ respectively,
are not equal ifjy # g2. Indeed, assumg,, = u4, for someq; # g». Then by
Theorem 3.8 we conclude that for some constant

(Snq19) (x) = (Sng2¢) (x) + nc

for all n andx € Fix(f™). This implies that(S,¢)(x) = nc with ¢ = ¢/(q1 — ¢2).
Appying again Theorem 3.8 one has that the equilibrium gigtand the equilibium
stateuo, corresponding to potentigh = 0, are equal. It means that, is the measure

of maximal entropy. Hence we have arrived at a contradiction with the assumption.

Thereforeu,, # g, if g1 # qo.
The functionk : R — R is called strictly convex if for everyg € R there exists

A(go) € R such that

h(g) > h(qo) + A(q0)(q — qo) forall g # qo.

Puti(qo) = [ ¢dg, for anygo € R. Sincepy # g, for g # go andp,, is the unique
equilibrium state fog ¢, one has

Pgp) = hﬂ,,(f)+/q¢duq

= sup (hu(r)+ [ avdu)
neMy(X)

> h/tqo f) +fq¢dﬂqo

= Nygo () +fqo<pduqo + (g — qo)/wduqo
= P(qop) + A(q0)(q — q0)-
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This means thaP (¢ ¢) is a strictly convex function.

If the equilibrium stateu,, is indeed a measure of maximal entropy, then =
nqe =: pforall g € R. This is a consequence of Theorems 3.5 and 3.8. Then applying
the Variational Principle ta., andu,, we conclude that

P(q9) = hu(f) +q/<pdu,

P(p) =M(f)+f<pdu,

whereh, (f) = hiop(f) sincepn is the measure of maximal entropy. The result follows
immediately. O

Remark.Much stronger result on smoothness of the pressure are known. For example,
the analyticity of pressure has been established for Smale spaces [16], i.e., general-
izations of Axiom A diffeomorphisms. The key property which these systems inherit
from hyperbolic dynamical systems is the so-called local product structure, which in
turn guarantees the existence of Markov partitions. The known methods of establishing
the analyticity of pressure strongly rely on this Markov structure. Expansive homeo-
morphism with specification do not necessarily have Markov partitions. For expansive
homeomorpshism with specification we were able to prove only the continuous differ-
entiability of the pressure. However we believe that this result can be improved.

Definition 4.2. We say thaF is a maximaln, ¢)-separated set if it can not be enlarged
by adding new points preserving the separation condition.

It is easy to see that every maxim@al, ¢)-separated sef is an(n, £)-spanning set
as well.
The following estimates from [8] will be used later.

Lemma 4.3. Let f be an expansive homeomorphism gnd> 0 be its expansivity
constant. Lelp € Vy(X). For every finite seE put

Zu(@. E) =Y exp((S:0)() ).

xeE

1. Ife,¢’ < y/2andE, E’ are the maximaln, ¢)- and (n, ¢')-separated sets respec-
tively then one has
Zn(9, E) < CZy(p, E,

where the constar® = C (e, ¢’) is independent of. In particular,

P(p) = lim Eloan(w, E,), 4.2)
n—-oon

whereE, are the arbirary maximaln, ¢)-separated sets.
2. If furthermore f satisfies the specification property ane: y /2, then there exists a
constantD = D(g, ) > 0 such that

1109 Zy (¢, En) —nP(p)| < D (4.3)

for all » and all maximal(n, ¢)-separated sets.
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5. Topological Entropy for Non-Compact Sets

The generalization of the topological entropy to non-compact or non-invariant sets goes
back to Bowen [5]. Later Pesin and Pitskel [13] generalized the notion of pressure to the
case of non-compact sets. Note that by definition topological entropy is the topological
pressure fop = 0. Now we give the formal definition of the topological entropy of a
non-compact or non-invariant set.

Supposef : X — X is a continuous map on a compact metric spaced). Let
M ={Us, ..., Uy} be afinite open cover of. By defintion, a strindJ is a sequence
Ui, ... Ui, with iy € {1,..., M}, its lengthn is denoted by:(U). The collection of all
strings of length is denoted by, (31). For eachJ € W, (1) define the open set

XW=unftuon...nfy,
={xeX: f“WxeU, k=1,... ,n).
We say that a collection of stringscovers a sef C X if
U XU > Z.
Uel
For every real numberintroduce
M(Z,s, ) = lim inf exp(—n(U)s),
(Z, s, 4D N%”u; p=n(U)s)

where the infinum is taken over all collectiofisc |, y W, (£0) coveringZ. There
exists a unique valuesuch thatM (Z, -, $1) jumps from-+oo to 0,

h(Z,3) :=s=sups: M(Z,s, k) = +oo} =inf{s : M(Z, s, 1) = 0}
Finally, one can show that the following limit exists:

hiop(f17) = i h(Z, 40).

Definition 5.1. The number:;,,(f|z) is called the topological entropy of restricted
to the setZ, or, simply, the topological entropy &f.

This definition of the topological entropy is similar to the definition of the Hausdorff
dimension (the diameters of the covering open sets are substituted bym&kp),
which can be treated as a “dynamical diameterX@t))). Indeed, these definitions are
particular cases of the so-called Carathéodory dimension characteristics [14].

Theorem 5.2 (12]). The topological entropy as defined above has the following prop-
erties:

1. htap(f|21) = htop(lez) for anyzl C ZZ C X;
2. htap(f|Z) = Suphlop(f|2f)a whereZ = U?il Z; C X;

3. if u is an invariant measure such tha(Z) = 1, thenh;,,(f1z) = h,(f).
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6. Local Entropy

In this section we give the definition of local entropy. The fundamental result on its
existence and properties is the Brin—Katok formula below.

Using the notation from Sect. 3 we introduce the lower and upper local entropies at
x € X as follows

h,(f, %)= lim liminf —} log u (B, (x, €)), (6.1)
e—>0 n—o00 n

hy(f,x) = lim lim sup—} log (B, (x, €)). (6.2)
£—~>U n—oo n

Note that the limits ire exist due to the monotonicity.
We say that the local entropy existsyaif

hu(f?x) =17H(f,x). (63)
In this case the common value will be denotediby f, x).

Theorem 6.1 Brin—Katok formula, [7]. Let f : X — X be a continuous map on a
compact metric spaceX, d) preserving a non-atomic Borel measurethen

1. for u-a.e.x € X the local entropy exists, i.e.,

hu(f, %) = h, (f, %) = hyu(f, x);
2. h,(f, x)is a f—invariant function ofx, and

/ B (fo ) di = By (),

whereh, (f) is the measure—theoretic entropy fof
Remark.If w is ergodic therk,, (£, x) = h,(f) for u-a.e.x € X.

Lemma 6.2. Let f be an expansive homeomorphism with specification. Consider an
equilibrium stateu,, for the potentialy € V¢ (X). For everyx € X put

n—1

* i i E i

¢ (x) = liminf ~ ;w(f @),
n—1

. 1 ;
7" () =limsup=—3 o(f'(x)).
i=0

n—o00

Then
h,(f.x) = P(p) — 7" (x),

E,u(fa x) = P(p) _f*(x),
for all x € X. Therefore

h,(f,x) =h,(f,x) ifandonlyif ¢*(x)=g*(x).
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Proof. Using the estimate from Theorem 3.7 we conclude that for every sufficiently
smalle > 0 and some constantg, Co one has

C1 12 . 1
=4 P@)— =) e(f' (1) < —>logu(B,(x. )
n n =0 n
C2 1 n—1 ,‘
<=+ P@) - ;)(p(f (x))

foralln > 1 and every € X. The statement follows easily.

7. Multifractal Spectrum for Local Entropies

Following [2] we introduce a multifractal spectrum for (local) entropies. For ewery
consider a level set of local entropy

Ko={xeX: hy(f x)=ua}, (7.1)
and the corresponding multifractal decomposition on level sets

X = JKo| Jix € X1 hy(f. x) does not exigt (7.2)

We use the topological entropy, defined in Sect. 5, to measure the “size” qif&gts
Namely, define a multifractal spectrum for local entropies as follows:

Ee(@) = hiogp(flk,)- (7.3)

This notation needs a brief explanation: two E’s stand for the topologicabpy of
level set of localEntropy. For other multifractal spectfdg, £p, Dp, see [2].

From a general multifractal formalism one expetts«) to be smooth and concave
on a certain interval af’s. We are able to establish this in the case of equilibrium states
for expansive homeomorphisms with specification. The crucial observation which we
exploitin the proofis the following. Legt = ., be an equilibrium state for a potential
Then applying the result of the previous section one gets that

n—1

xeKy &= h(f,x) =0 nleOO%Z¢(fi(x)) = P(p) —a. (7.4)
k=0

Therefore, the level sets of local entropies are exactly the level sets of limits of ergodic
averages op. From the Ergodic Theorem one concludes that only one of these level sets
has full measure, while others are of measure 0. We adopt a technique of estimation of
the topological entropy of these level sets from [2]. The main idea is the following: we
introduce a 1-parameter family of measures such that for eatith K, # @ there is
exactly one measure in the family for whi&fy has full measure. These measygsare

the equilibrium states for potentialg = g¢ — P(q¢). However, for the correspondence
between level$K,} and measureg:,} we need a parameterizatiofig) such that

1, ifa=walg),
“q(K&)—{o, if & £ a(q).
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The parameterization can be given as follows: first defitg) = P(g¢) — g P(p), and
a(g) = —T'(g) (note thatT is C* by Lemma 4.1). Below we will establish that

hlop(f'Ka(q)) = huq (f)v

i.e., uq is the measure with maximal metric entropy among all invariant measguyes
such thab(K,(4)) = 1. In order to complete the analysis we have to showkhat= &
for everyo ¢ [inf, a(q), sup, a(q)].

8. Main Result

In this section we state our main result. It is exactly in the form of the corresponding
results from [2,10] for the multifractal analysis of local (pointwise) dimensions. We
are following the same notation and order of statements. The last statement of our
theorem is analogous to Remark 5 in [10]. It relates the multifractal spectra of the local
entropies to the spectha, ( £, ¢) of the correlation entropies (analogue of the Hentschel—-
Procaccia spectra for dimensioHsP (¢)) and R, ( f, ¢) (analogue of the Renyi spectra

of dimensionsk(g)). Although it would be natural to cak,, ( f, ¢) the Renyi spectra of
entropies, it might cause some confusion, since there exists a different notion called the
Renyi entropy of ordey [4,20].

Theorem 8.1. Let f be an expansive homeomorphism with the specification property
of a compact metric spadeX, d). Lety € V((X) andu = p, be the corresponding
equilibrium state. Then

1. For u-a.e.x € X the local entropy ak exists and
o) = hu(F) = P@) = [ wdu.

2. For anyq € R define the function

T(q) = P(qp) —qP(p).

ThenT () is a convexC! function ofg. Moreover,T (0) = hiop(f), T(L) = 0; for
everyg € R one hasT’(q) = [¢du, — P(¢) < 0, wherey, is the equilibrium
state forg, = g¢ — P(q¢).

3. Puta(g) = —T’(q). Then

Ee(@(q) = hiop(flKyy) =T (@) +qa(q).

Define
a=infa(g) = lim a(q),
q q—+00

o =supa(g) = lim a(g).
g q——00

ThenK, = o if « ¢ [o, @]. It means that the domain of the multifractal spectrum
for local entropiesx — £g(«) is the range of the functiop — —T'(q).
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4. If the equilibrium stateu for the potentialp is not a measure of maximal entropy,
then the relation betweefiz and T'(¢) can be written in the following variational
form:

Eela) = in]%(T(q) +qa) fora e (o, @),
q€

T(g) = sup (Eg(a) —qa) forg e R.
ae(a,®)
This implies thaf is strictly concave and continuously differentiable(ana) with
the derivative given by} (o) = g, whereg € R is such thatx = —T'(q).
5. For everyg € R, g # 1, the following limits exist:

hu(f.q) = lim lim _;_1)|09/M(3n(x,8))"_1du,

e—~>0n—>o00 n(q

R, (f,q) =lim lim —

0100 n(q — 1)

| W),
og(s‘gp;E H(Ba(x, ©))7)

where the supremum is taken over@ll ¢)-separated setf.
For g # 1one has
T(q)

h(f@) = Ru(Foq) = = —7
The family of correlation entropigs, (f, ¢) depends continuously enand

h//.(fa 0) = htop(f)v
h(f, D) = Jiinlhu(f, q) = hu(f).

Proof. (1) The first statement is a consequence of the Brin-Katok formula for ergodic
dynamical systems (Theorem 6.1).

(2) The smoothness and convexity propertieg dbllow directly from Lemma 4.1.
We calculate the derivative df with respect tg;. Using the formula from Lemma 4.1
one gets

T'(q) = /wduq — P(yp), (8.1)

wherey, is the equilibrium state for the potentig) = g¢ — P(q¢). The inequality
T'(g) < 0 follows from the Variational Principle applied o

(3) This statement is taken from [2] where it has not been proved. For the sake of
completeness we give the proof here.

Let us first calculate the measure—theoretic entropy of the equilibriumsafgom
the Variational Principle fop, we have

hu, (f) = Ploq) — f‘/’qd“q

=0+ T(q)+qP(<P)—CI/‘/’d“q (8.2)

= T(q)+q(P(<p)—/§0duq)

=T(q) +qa(q),
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wherea(q) = —T'(g) and we use formula (8.1) for the derivativeBfq).

As we have seen in Lemma 6.2 for amypne has

1 n—1 ‘
hu(f.x)=ea ifandonlyif lim = ¢(f(x)) = P(p) —a.
n—-oon P
Let us apply now Lemma 6.2 to the equilibrium statecorresponding to the potential
qgo. Similarly one gets that for evely,
n—1

. . .1 .
h, (f;)=p  ifandonlyif ¢ lim = gw’ (x)) = P(qp) — B.

Hence one concludes that
hy(f,x) =« ifandonlyif h,, (f,x) = P(qe) —qP(p) +qa.
Fora = a(q) we get
x € Ko(g ifandonlyif h,, (f,x)=T(q) +qa(q). (8.3)
Combining the results of (8.2) and (8.3) one gets

hu, () =T(q) +qa(q),
hyu, (f, x) =T(q) + qa(q) ifand only if x € Ky (y).
This means thak,,, (f, x) = hy,(f) ifand only ifx € Ky (). Sincep, is ergodic, we

know from the Brin—Katok formula that,, (f, x) = hy,, (f) for u,-a.e.x € X. Hence
we conclude that

Mq(Kotq) = /Lq({x : huq(f: x) = huq(f)}) =1

Therefore we obtained the desired parametrization of the level sets.
We have to compute the topological entropyfofestricted toK ),

EE(@(q)) = hiop (f1Kaq) -
Using the properties of the topological entropy from Theorem 5.2 we conclude that
EE(@()) = huop (flKui) = huy () =T(q) +qa(q),
sinceu,(Ky () = 1. We have to prove the oposite inequality. For this it would be
sufficient to show thak,,, (f|k,,) < A foranyir > T(q) +qa(g). Choose such and

lets = A —T(g) — qu(q) > 0.
Rewriting the definition oK, (4) in terms ofu, andg, one has

Ko ={x € Xt hy, (f.x) = hy, (f) = T(q) + qa(q))

. 1n—l . B
= {x eX: nleoo;;%(f x) =-T(q) —Qa(q)}.



Multifractal Analysis of Local Entropies 607

For everyx € K, () there exists an integer(x) such that

n—1

1 .
=D 0 (f'0) +T(@) +qa(@)| <
i=0

(8.4)

NI S

foralln > n(x). For every integelN consider the set
Kot(q),N ={xe Kot(q) : n(x) <N}
Obviously we have
Kuigy = | Katg).n> Katq)N C Kaig).n41-
N>1

Using the properties of the topological entropy from Theorem 5.2 we conclude that
htop(f'l(a(q)) = Nlinoo ht()p(f|Ko,(q).N)~

We are going to show that for any € N one hasiop (f|k,, ) < *; this in turn will
Imply ht()[?(flKa(q)) = A

Consider an arbitrary finite covéf = {‘B(x,-, 8/2)}?11 of X by open balls of radius
g/2, with~s < y/2, wherey is the expansivity constant fof. Together withi/ we

consider/ an open cover by balls with centersaatand radiis. Let E = {y;} be a
maximal (n, ¢ /2)-separated set iX. Define a subseE’ of E by choosing those;
which have a point fronk, (), 5 close to them, namely

E' ={yj € E: Kyg),NnNBu(yj.e/2) # ).

This implies that

Kagv € | Ba(yj. 8/2).
y;EE’

For everyy; € E’ there exists at least one strig, . ;,_, from W, (U) such that
yj € X(Uj,... i,_1)- It is easy to see that if
y] € X(Uio,.‘,,in_l) = UiO N .f_lUil n... f_n+lUin—l’
then B 3 5 3
Bu(j.€/2) C SWis....iny) = Uig N f 105 0L T,

In other words the collection of strings= {U,-O,,,, .in_1) COVErsKy () n- Therefore

m(Ka(gy.ns A U, n) = inf 2 exp(—m(U)A)
FCUkZV,Wk(M) UeTl
r coverska(q),N

< Z exp(—m(U)1)
Jef (8.5)
=e ) exp(—n(T(q) +qa(q)))
Uel

= Z exp(—n(T(q) +qot(q))>.

' ’
Y €EE
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Since the potentiap € V¢ (X), so isg,, and

n—1 n—1
|(S00g) () = (Sup) )| = | Y 0 (F*0)) = D0y (f* )| < lgIK
k=0 k=0

forallx,y € X withd, (x, y) < &/2.
For anyy; € E’ letx; be an arbitrary point fronkK, )~ N B, (y;, ¢/2). Since
xj € Ky(g),n @andn > N from (8.4) we have

—n(T(q) +qa(q)) < —n(T(q) +qa(q)) — (Snpg)(xj) + (Snpy) (¥;) + lgI K

né
> + (Supg) (vj) + 191K

IA

Thus we can continue the estimate (8.5) as follows:
m(Ko(g).n- 2 U, ) < e 720K N expl(S,00) (7))
y;EE’
S C/e—n5/22n((pq’ E)

Using the estimates from Lemma (4.3) and the fact th@i,) = 0 we conclude that

m(Ko(g).n> )»,Z/?, n) < C" e "9/2.

Hence _ _
m(Kgg),N. A, U) = nleoom(Ka(q),Nv rU,n) =0,

and sincé/ was an open cover by balls of radizg we get

m(K A= lim m(K AU =0.
(Ka(q),N> M) gm0 (Ka(q),N )

Then by definition of the topological entropy we have

ht()p(f'Ka(q),N) = A

forall N. Hencehy,, (fx,,) < A forallx > T(g) + ga(q). This completes the proof
thathop (flk,,) < T(q) +qa(q).

The rest of the statement is taken from [18]. It states that we have a complete de-
scription of the spectra for local entropies.

(4) If the equilibrium state for the potentialis not a measure maximal entropy then
it was shown in Lemma 4.1 th&t(q) is strictly convex, i.e., the following holds for

everyq, qo € R, g # qo:
T(q) > T(qo) + T'(q0)(q — q0)-

Therefore, ife € («, @) then there existgg € R such thatr = —T'(gg). We have seen
that in this cas&€r(e) = T (go0) + ago. Using the strict convexity of (¢) we obtain
that forg € R, g # go the following holds

Ee(a) =T(qo) +aqo < T(q) +aq.
Hence &g (a) = in{%(T(q) +agq) fora € (o, @).
qe
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In a similar manner one obtains the second relafiey) = SUR, ¢ (y.7)(EE(@) —qa).
Using the notion of the Legendre transform [15] we can say that actually functions
T(q) andF(x) := —Eg(—«a) form a Legendre pair, i.e., one is the Legendre transform
of another. Therefore the convexity and differentiabilt¥gffollow from the properties
of the Legendre transform. In particular, fere («, @) one hasCy(«) = ¢, where
g € Rissuchthatr = —T'(q).
In the case whep is the measure of maximal entropy one has

I (f, x) = hy () = hiop(f)
forall x € X. It means thafg is a delta-like function

_ hiop(f), if o = hy, (),
Eela) = {Ot g otherwise,

This “degenerate” behaviour of the multifractal spectrum for the measure of maximal
entropy can be successfuly exploited. For this see [2], where it has been used for the
calculations of the mutifractal spectra for Lyapunov exponents.

(5) This is an essentially new result. We prove it by means of standard thermodynam-
ical technique.

Letg > 1 andE be an arbitrary(n, ¢)-separated set. One has

[ tan= [ wier i
NCEB, (x./2)

> D w(Bulxi, £/2)),

x;€E

sincex € B, (x;, £/2) implies B, (x;, £/2) C B, (x, €).
Applying inequality (3.4), and using the fact th&atis an(n, ¢)-separated set, we get

n—1
/ n(Bulx. ) dp > sgp( > Alpexp(—qPn+ quo(ffxi))) ,
j=0

x;€E

where the supremum is taken over @] ¢)-separated sets. Taking logarithms and ap-
plying estimates from Lemma 4.3 we conclude that in the limit

P(qp) —qP(p)

hu(f. @) = Ru(f.q) < 14

To finish the proof we have to show the opposite inequality. We do it in a similar
manner.
Let now E be a maximaln, ¢/2)-separated set, then

[t s Y[ e lan

NEE B (xi,6/2)

<Y (B, 8)),

x;eE

sincex € B, (x;, ¢/2) implies thatB,, (x, ¢/2) C B, (x;, €).
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Again sinceE is an arbitrary(n, ¢ /2)-separated set and applying the inequality (3.4)
we obtain

n—1
/M(Bn(x, £/2))1 tdu < SUD(Z B! EXP(—an + qu(fjxi))
E P20

x;€F
Taking logarithms and using estimates from Lemma 4.3 in the limit co we get

P(gp) —qP(p)

hu(f,q) = Ru(f.q) = 1—4

Combining all together we get the statement in the ease 1. The casey < 1is
completely analogous. The continuity and other propertids,¢f, ¢) follow from the
corresponding properties @f(g). O

9. Final Remarks
A. Consider an irregular set

B ={x e X: hyu(f, x)does not exis}
1 n—1
={xeX: lim =% ¢(f*(x)) does not exist
n—oo n pard

We have seen that for the measure of maximal entrapythis is an empty set. It was
shown in [3] that in a number of cases, the Bas either empty or has full topological
entropy and Hausdorff dimension.

B. There exists another way of defining local (pointwise) entropies. Namely, consider
an arbitrary finite measurable partitigrof X. We can define a local entropy atwith
respect t& as follows (if the limit exists):

- 1 ()
hu(f, %, 8) = im_—~log (¢ ().

wheree™ = ¢ v =g v .. v f71g ande™ (x) is the element of ™ containing
x. We can define a spectrum of local entropies with respeg®follows:

Ee(@) = hiop(f(xih, (fx.6)=a)})-

The situation wherg is a finite Markov partition for an expanding dynamical system
has been studied in [2,1]. One can eaily check that in this case the two spectra coincide.

C. The results of this paper can be extended to the case of expansive endomorphisms
(i.e., non-invertible maps) with the specification property. They are defined in exactly
the same way as the expansive homeomorphisms with specification except that the set
Z in (2.1) is substituted b (positive expansiveness). The characteristic property of
the equilibrium states (Theorem 3.7) remains valid [17]. Therefore our analysis works
without any modifications.

In the case of expansive homeomorphisms we can give another definition of local
entropies. Namely, for any > 1 define

BEx,e)={yeX: d(fix), fi(y) <e forall i=—-n+1...,n-1),
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and

1
+ T . . _ +
hy (f,x) = 8I[)nOI|’[1l|Orlf o 1 log i (B;; (x, €)),

7E(f, x) = lim lim su 1
LX) = -
" el M SUPTS T

log 1u(B;, (x, €)).

Then the level sets of these local entropies will be in one-to-one correspondence with
the level sets of two-sided ergodic averages of

n—1
Jim o= Y o),
k=—n+1

The level sets of two-sided and one-sided ergodic averagesaofbe different. However,
they have the same topological entropy with respect t@herefore the multifractal
spectrum based dr,f(f, x) will be the same.

D.Arequirement of the existence of a Markov partition is stronger than a specification
property, provided the dynamical system is mixing.

Consider the family of one-dimensional interval méafys defined byTg(x) =
Bx (mod 1. ForB > 1 these maps are expanding and therefore expansive. The ergodic
properties offg depend on the number-theoretic propertieg oFor these systems it
turns out [19] that:

i) the set ofg’s for which T has a finite Markov partition is at most countable;
ii) the set ofg’s for which Ty has the specification property is uncountable and has
Hausdorff dimension 1, but still has Lebesgue measure 0.

Therefore, we can see that in the fam{il } 5-.1, specification is a much more general
property than the property of having a finite Markov partition.
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