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1 Introduction

Sloshing of liquid onboard spacecraft, e.g. fuel or cargo, can
produce unwanted disturbances of the spacecraft motion. These
can jeopardize the success of manoeuvres such as docking,
which require millimeter precision. A recent example of a mis-
sion that was seriously influenced by ’overenthousiastic’ liquid
behaviour was NEAR (Near Earth Asteroid Rendezvous).
During a course correction the NEAR spacecraft shut itself
down, and it was difficult to regain control. Reconstruction of
the incident learned that during the orbital manouevre the pro-
pellant liquid reacted more dynamic than anticipated: it came
outside the foreseen operational envelope and the spacecraft
went into a safety mode. The NEAR mission suffered a 13

month delay due to this incident [1, 2]. 
To control spacecraft dynamics, insight is required in the

behaviour of liquid under conditions where capillary forces
dominate over gravity, as in microgravity. A ‘classical’ treatise
on sloshing in spacecraft has been prepared by Abramson [3] (in
particular, see Chapter 11). As just indicated, a major physical
ingredient of liquid motion onboard satellites are the capillary
forces. These include surface tension effects along the liquid
surface, as well as wetting properties and the associated contact
line dynamics. Here, the contact angle (i.e. the angle between
the free liquid surface and the confining wall) plays an impor-
tant role. It determines the motion of the contact line, and here-
with the global liquid dynamics. In gravity, the influence of the
contact angle is often negligible and therefore it does not have
to be modelled accurately for reliable predictions of liquid
motion. However, in microgravity this is not the case, and a
detailed study of the contact angle and the related contact line
motion is required. 

When a liquid is brought into contact with a solid surface,
adhesion of the liquid with the solid and with the ambient air,
and cohesion of the liquid become interacting forces; the con-
tact angle is a result of the three-phase balance of these forces.
When the force balance is in equilibrium, the contact line does
not move; the matching contact angle is then called static. If the
force balance is out of equilibrium, the contact line will move
towards its equilibrium position. Contact line motion has long
been badly understood, because on a continuum scale a viscous
liquid cannot move along a solid surface (the no-slip condition),
see e.g. the review article by Dussan V. [4]. Experimental obser-
vations reveal that the contact line motion takes place on a
microscopic molecular scale, where the liquid is rolling along
the solid surface. These observations have recently been given
a theoretical explanation [5]. On a global hydrodynamic scale,
the contact line motion induces an apparent or macroscopic
(dynamic) contact angle (DCA). When the liquid comes to rest
the macroscopic contact angle equals the static contact angle
(SCA).
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dation data are available. It is observed that the DCA can have
a large influence on liquid dynamics in microgravity. Correct
modelling of the DCA is found to be essential for realistic
numerical simulation, and hysteresis effects cannot be ignored.
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The velocity with which the contact line moves is called the
contact line velocity (VCL); it often can be modelled as a func-
tion of the DCA; e.g. [4] or [6]. Several investigations have
been made to relate the VCL, represented by the capillary num-
ber, to the discrepancy between DCA and SCA. Many of these
investigations are empirically based, and cover only small cap-
illary numbers. Three of these empirical models will be inspect-
ed more closely, namely those of Jiang et al. [7], Bracke et al.
[8] and Seeberg et al. [9]. The experimental data these models
are based on show a large scattering. This is of course partly due
to error in measurement and/or experiment, but theoretical work
suggests that more parameters play an explicit role in the kinet-
ics of the DCA, for example the surface structure of the solid
and the type of liquid [6]. 

Attempts have been made from various scientific perspec-
tives to obtain theoretical understanding of the DCA. E.g.
research based on molecular kinetics has been carried out by
Blake since the mid 1970s, see e.g. [6]. A new theory, derived
from first principles, that relates the microdynamic physics
close to the contact line to the macrodynamic hydrodynamics
has been presented by Shikhmurzaev [5]. In particular, his the-
ory predicts the rolling contact line motion that was found
experimentally. As examples of other approaches, Fan et al. [10]
discuss a thermodynamic point of view, whereas Zhang and
Kwok [11] discuss a Lattice-Boltzmann model. 

In the present paper, the consequences of Blake’s theoretical
model, and the empirical models of Jiang, Bracke, and Seeberg
for computational fluid dynamic simulations in microgravity
are investigated. Especially, we are interested in the dependence
of the liquid dynamics on the modelling of the DCA. In concre-
to, the flow in a partially liquid-filled axisymmetric tube is con-
sidered after a step reduction of gravity (Fig. 1). Experimental
validation data are available for two different liquids: one with
a large and one with a small SCA. The experimental results
have been obtained in the ZARM drop tower of the University
of Bremen [12, 13]. 

2 Mathematical model

2.1 Equations of motion
The above-mentioned contact line models will be compared in

a computational study of liquid reorientation in microgravity.
The flow model is based on the incompressible Navier-Stokes
equations, consisting of conservation of mass 

∇ ⋅  u = 0, (1)

and conservation of momentum 

Here, u denotes velocity, ρ density, p pressure and µ molecular
viscosity; F represents an external force (e.g. gravity). 
Equations (1) and (2) have to be supplied with boundary condi-
tions. At a solid wall a no-slip condition u = 0 is prescribed,
however the contact line is allowed to move, as will be dis-
cussed below. At the free liquid surface continuity of normal
and tangential stress is imposed:

Here, un and ut are the velocity components normal and tangen-
tial to the free surface, with n and t the corresponding directions.
Further, p0 denotes the atmospheric pressure, γ surface tension
and 2H the total curvature of the free surface. Also, a kinemat-
ic condition describing the evolution of the free surface is pres-
ent,

stating that liquid only moves through advection. G(x, t) is an
indicator function with G (x, t) = 1 when liquid is present at
position x and time t, otherwise G (x, t) = 0. Finally, to complete
the system of hydrodynamic equations, the macroscopic contact
angle has to be prescribed; this will be discussed below. 

2.2 Contact angle models 
Dynamic contact angle: The theoretical studies on wetting car-
ried out in the last decades (Shikhmurzaev [14] gives a com-
prehensive discussion) have led to a number of theoretical
dynamic contact angle models. In all of these models the con-
tact line is allowed to move along the solid surface. For the con-
tact line velocity various proposals have been made. To ’cir-
cumvent’ the no-slip condition of the flow on a macro scale, it
is generally assumed that the liquid near the contact line is
rolling over the solid surface [5]. 

In our numerical simulations we have applied the model of
Blake [6], which is based on molecular kinetics. This model has
also been investigated elsewhere, e.g. in an experimental study
by Hamraoui et al. [15]. To describe this model, first let θ (t)
denote the dynamic contact angle, and θ0 its (static) equilibrium
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Figure 1: Liquid reorientation after a step reduction of gravity.



value. Then Blake’s model [6] is formulated as 

VCL = A sinhB(cos θ0 - cos θ (t)), (6) 

where A = 2κ 0
s λh̄/(µv) and B = γ /(2nkT), with κ 0

s the frequency
of molecular displacements at equilibrium, λ the average length
of an individual molecular displacement in the three-phase
zone, h̄ Planck’s constant, v the molecular flow volume, n the
number of adsorption sites per unit area, κ Boltzmann’s con-
stant and T the temperature. For many liquids the values of
these parameters are known. 

In contrast with the theoretical studies, also dynamic contact
angle models have been proposed that are based on experimen-
tal measurements. These models are formulated in terms of the
capillary number

We will consider three of these empirical models, in chrono-
logical order given by 

• Jiang et al. [7] 

• Bracke et al. [8] 

• Seeberg et al. [9] 

Recently, Billingham [16] proposed a similar relation where the
contact line velocity is considered a linear function of the con-
tact angle (for a static angle of 90°). He found that the influence
of the proportionality constant is quite substantial. Wölk et al.
[17] followed a different approach, where the contact angle is
proposed a function of the deviation from the equilibrium
height. Again another approach to simulate the contact line

dynamics is through Lattice Boltzmann modelling [11]. It is
interesting to note that this microscale approach is able to very
accurately predict Blake’s macroscale model (6). It should be
stressed that the empirical models (8)–(10) are only valid for
positive contact line velocity, i.e. for an advancing contact line,
whereas Blake’s model (6) is generally applicable, for advanc-
ing as well as for receding contact lines. 

Hysteresis: In theory, the contact line velocity VCL is equal to
zero if and only if θ (t) = θ0, which is in practice often not the
case. This phenomenon is called contact angle hysteresis, and is
generally attributed to surface roughness of the solid (see [4],
[6] and references therein). The result is that the contact line
stops moving already when it is close to its equilibrium position
(Fig. 2). The VCL is then equal to zero in an interval [θR, θA]
which is called the hysteresis domain. The angles θR and θA are
called the receding and advancing contact angle, respectively. A
theoretical manner to model the hysteresis domain is not known
to the authors, but for some liquids experimental data are avail-
able [12, 13]. 

3. Numerical method

The equations of motion as given in Section 2, written in an
axisymmetric formulation, have been solved with a finite-vol-
ume method on a Cartesian staggered grid. If required, nonuni-
form grids have been employed; to evaluate the numerical dis-
cretization error grid refinement studies have been carried out.
The position of the free liquid surface has been described with
a VOF[18]-based method. Its evolution is governed in principle
by Eq. (5). The numerical evolution follows a mass-conserva-
tive displacement algorithm. Adaptions to the evolution
described in [18] have been made to prevent the ’flotsam’ and
’jetsam’ from which the original VOF formulation suffers. An
essential ingredient is the use of a local height function to
describe the free surface position. Details of the numerical
method can be found in [19]–[23].

4. Experiment

To validate the dynamic contact angle models, two experiments
carried out in the 145 m high drop tower of the ZARM institute
in Bremen have been simulated [12, 13]. The experiments
involve a (partially) liquid-filled axisymmetric cylindrical tube
that is released from the tower, after which it experiences a
period of 4.74 seconds of free fall. The liquid velocities, e.g. the
contact line velocity VCL, are kept relatively low by means of a
small tube radius, resulting in a low capillary number Ca ≡
µVCL/γ , implying that viscous forces are relatively unimportant
in comparison with capillary forces (see Eq. (7)). The values for
the Ohnesorge number Oh ≡ (υ²ρ/γ R)1/2, lying well below 10-2

(see Table 1), also indicate only a minor role of the viscosity.
Under terrestrial gravity, the Bond numbers Bo ≡ ρgR2 /γ for the
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Figure 2: Schematic contact line velocity with hysteresis.



experiments range from 47 to 74. This number indicates the rel-
ative influence of gravity over capillary effects. 

The response of the contact line and of the liquid height at the
centerline of the tube is monitored during the experiment.
Initially, under gravity the liquid surface is (almost) flat; then,
during the free fall, the liquid surface turns into a spherical
shape specified by the static contact angle. The experiments
involve two types of liquid: one liquid (M3) with a large SCA,
and one liquid (detra) with a small SCA. Table 1 gives some rel-
evant physical data [12, 13]. 

5. Results 

In this section the results of the numerical simulations will be
reported and compared with the experimental results. The alter-
natives from Section 2.2 for modelling the contact angle have
been investigated: the static contact angle θ =θ0, Blake’s theo-
retical model (6), and the three empirical models (8)–(10). Each
of these models has a local character and can be implemented in
quite general conditions, e.g. irrespective of wall geometry.
Also the effect of wall roughness leading to hysteresis is stud-
ied. The comparison with experiment is made in terms of the
position of the contact line along the side wall of the tube as a
function of time, and the height of the free surface along the
centerline. (Note that the initial centerline position is used as the
reference position h = 0.) 

5.1 Large static contact angle 
To begin with, we report on the experiments with Baysilone
M3, a silicon oil manufactured by Bayer AG. In this experiment,
the cylinder wall was covered with a thin sheet of FC- 732 to
produce contact angles away from zero degrees: experimental-
ly the contact angle was determined at 53.6° ± 1.6°. The physi-
cal parameters pertinent to Blake’s model can be found in [6];
however, these were determined for a different solid wall mate-
rial. In all simulations, first the equilibrium position under grav-
ity was calculated. From that initial condition, gravity was
instantaneously removed, mimicing the free fall in the drop
tower. 

Static contact angle: In the first simulation a static contact angle
is used. In this model, the contact line is moved such that at all
times θ =θ0. This is a simple model, which conceptually differs
from the dynamic contact angle models discussed in Section
2.2. Comparison with experiment in Fig. 3a shows that the con-
tact line starts moving too violent, and furthermore it keeps
moving for too long. Also, consistently, along the centerline the
liquid keeps oscillating much too long (Fig. 3b). The simula-
tions have been carried out for two different computational
grids, 40×40 and 80 × 80, revealing that the numerical discreti-
sation error is quite modest. Clearly, a static contact angle does
not fit the flow dynamics. 

Blake’s model: Next Blake’s model (6) has been implemented,
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M3 detra

radius of test tube (m) 1.0 10-2 1.5 10-2

viscosity µ/ρ (m2/s) 2.91 10-6 2.51 10-6

surface tension γ /ρ (m3/s2) 2.06 10-5 2.97 10-5

static contact angle θ0 (deg) 53.6° 5.5°

Bond number (earth) 47.6 74.3

Ohnesorge number 6.41 10-3 3.77 10-3

Table 1: Some experiment parameters and corresponding dimension-
less numbers.

Figure 3: Free surface motion with a static contact angle vs. experi-
ment: a) contact line motion, b) height along centerline.



at first without hysteresis. For a silicon oil moving along a glass
surface, Blake [6] gives physical values for the parameters that
appear in his model: k 0

s = 1.7 1011 s-1, λ = 0.8 10-9 m/s, ν = λ3, n
= 1.6 1018 m-2 and we assume that T = 293° K. 

These values lead to A = 1.4 10-1m/s and B = 1.3. The results
are shown in Fig. 4. The maximum wall height is very nicely
predicted now, but the liquid still keeps on moving for too long
(Fig. 4a), although it damps more than with the static model. On
the other hand, the motion along the centerline seems to damp
out too much (Fig. 4b). Again, this difference cannot be blamed
to numerical discretization errors: the 40 × 40 and 80 × 80 com-
putational grids produce almost indistinguishable results. The
experiment gives the impression that the contact line gets stuck.
Thus it was decided to add hysteresis to the model. Michaelis
and Dreyer [13] have actually measured the receding and
advancing contact angle. For M3 they found θR = 46.7° ± 2.1°,
θ0= 53.6° ± 1.6° and θR = 56.4° ± 1.0°. 

The dashed curve in Fig. 5 shows that the contact line motion
is now predicted much closer to the experiment. Further, the
height along the centerline is oscillating much longer than with-
out hysteresis (compare the dashed curve in Fig. 5b with Fig.
4b); this behaviour is compatible with the experimental obser-
vations. A similar oscillating behaviour of the centerline height
in the presence of a stuck contact line has been observed in [13]. 

The solution turns out somewhat sensitive to the chosen hys-
teresis domain. It allows, within the experimental uncertainty
range, to choose the contact angles such that even a better fit
with experiment results, both in contactline motion as in the
free-surface height along the centerline. This also is shown in
Figure 5, where the dash-dotted curve represents the outcome
for θR = 48.5°, θ0 = 55.0° and θR = 55.4°. 
Empirical models: As the empirical DCA models (8)–(10) are
restricted to an advancing contact line, only the first advancing
phase of the contact line motion can be simulated. Fig. 6 shows
a comparison with Blake’s results and with experiment (note
that hysteresis does not yet come into play in this initial phase).
Blake’s theoretical, and generally applicable, model fits the
experiments somewhat better than the empirical models (recall
the large experimental scattering these models are based on).
The behaviour is consistent with the theoretical relation
between capillary number and contact angle, as plotted in Fig.
7. When the DCA remains under 65°, which is the case here, the
theoretical velocity profiles imply that Blake’s model predicts
the highest initial contact line velocity, followed by Jiang,
Seeberg and Bracke, respectively. This ordering is also found in
the computational results in Fig. 6. 

5.2 Small static contact angle 
The second liquid that has been used for experiment has a very
small SCA (5.5°). This means that in order to reach equilibrium
position, the contact line has to rise considerably from its equi-
librium height in gravity, in contrast with the M3 experiment.
Another difference with M3 is that the small SCA brings along

a numerical difficulty: when the liquid is at rest, with or without
gravity, the liquid surface near the wall is highly curved. This
causes a significant error in the discretisation of the contact
angle when the uniform M3 grid is used. However, this error is
reduced considerably with local grid refinement near the wall.
Additionally, a numerical correction has been applied which
transforms the analytical contact angle at the wall to an average
contact angle over the grid cell adjacent to the wall. It has been
verified that with these adjustments, in absence of gravity
(which is the most critical situation) the discrete equilibrium
height matches its analytical value. For details we refer to [20].
Two different grids of 40 × 60 and 80 × 120 cells show that also
for this test case the numerical discretisation error is quite mod-
est (Figs. 8 and 10). Further, no hysteresis is modelled in this
test case, because the contact line keeps advancing throughout
the experiment. 
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Figure 4: (a) Contact line motion and (b) height along centerline for
M3 with Blake´s Model vs. experiment.



Static model: The reorientation results for the static contact
angle model are shown in Fig. 8. As in the previous test case, in
the early reorientation phase the computed VCL is much too high
compared to experiment. 

Blake’s model: Detra is a mixture of five volumes 1234-tetrahy-
dronaphtalene and eight volumes decahydronaphtalene [12].
The values for λ and κ 0

ω in coefficient A in (6) could not be
found by the authors. It is instructive to see what happens if, for
example, these unknown values are chosen to have the same
values as for M3; this leads to A = 1.6 10-1 m/s and B = 2.1.
Figure 9 shows that the initial contact line velocity is much too
high, unlike the M3 situation, which stresses the importance of
a correct parameter choice. Subsequently, the coefficient A has
been adjusted to fit the experimental results; this yielded A = 4.3

10-2 m/s. Figure 10 shows that now Blake’s model is much bet-
ter. 

Comparison with the other models: Figure 11 gives the results
of the empirical models, compared to Blake’s model. Because
no negative contact line velocities occur, the three empirical
models are applicable throughout (in contrast with the situation
with a large contact angle in the previous section). Right after t
= 0, the empirical models give rise to a very high contact line
velocity, and after that the contact line almost stops moving.
None of them resembles experiment very well. This is in con-
trast with the contact line from Blake’s theoretical model, which
follows the experimental contact line much better. The compu-
tational results in Fig. 11 match the theoretical velocity profiles
in Fig. 12. For the large contact angles that appear in the initial
reorientation phase, Blake predicts a much smaller velocity than
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Figure 5: Hysteresis added to Blake’s model: (a) contact line motion
and (b) height along centerline. The hysteresis domain has been
chosen according to the measurements in [13]; the fitted values are
chosen within the experimental uncertainty range.

Figure 7: Theoretical velocity profiles (for M3) corresponding with
the various contact line models.

Figure 6: Validation of contact line motion for M3: Blake’s theoreti-
cal model compared with three empirical models.



the other models. Figure 12 also shows that within the empiri-
cal models Jiang’s model predicts the highest VCL, followed by
Seeberg and Bracke, respectively, which again is consistent
with the computational results in Fig. 11. 

6. Discussion 

Various, generally implementable, dynamic contact angle mod-
els have been tested by means of numerically simulating a num-
ber of experiments, in which the reorientation of two liquids,
each with different contact angle properties, has been monitored
after a step reduction of gravity. It has been shown that the mod-
elling of the DCA can have a large influence on the simulation
of liquid dynamics in capillary-dominated situations, such as
microgravity. 

A first conclusion is that a static contact angle model pro-

duces highly inaccurate results. In particular, the liquid reacts
too violently and keeps oscillating too long. 

Secondly, the use of a dynamic contact angle leads to more
realistic results. The theoretical model of Blake [6] works quite
well, both for a large and a small contact angle, although in the
latter case some of the involved physical parameters were not
available and have been chosen to fit the experiment. The oscil-
lating test case with a large contact angle does require the addi-
tion of hysteresis. Doing so, with experimentally obtained hys-
teresis angles, the flow dynamics are accurately captured. We
stress that the simulation of the latter flow case only makes use
of known physical parameters - no numerical tuning is applied.
Thirdly, the investigated empirical models, which are only
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Figure 9: Contact line motion for detra: Blake’s model with the coef-
ficient A at its M3 value.

Figure 8: Contact line motion for detra with a static contact angle.

Figure 10: (a) Contact line motion and (b) centerline height for
detra: Blake’s model with the adjusted coefficient A.



applicable during advancing contact line motion, are less acu-
rate than Blake’s model. These models are based on quite scat-
tered experimental data, in contrast with Blake’s theoretical
basis. The differences between the models can be explained in
terms of the relation between contact angle and capillary num-
ber. Overall, using Blake’s theoretical dynamic contact angle
model with a corresponding hysteresis domain, it has been pos-
sible to reproduce the experimentally observed contact line
behaviour. Thus, it seems promising to further investigate theo-
retical contact line models (including hysteresis), and to imple-
ment them in numerical simulation methods. 
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Figure 11: Validation of contact line motion for detra: Blake’s theo-
retical model compared with three empirical models.

Figure 12: Theoretical velocity profiles (for detra) corresponding
with the various contact line models.
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