

 University of Groningen

Modeling Architectural Patterns Using Architectural Primitives
Zdun, Uwe; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Zdun, U., & Avgeriou, P. (2005). Modeling Architectural Patterns Using Architectural Primitives. In
EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://research.rug.nl/en/publications/add18b76-8e3f-4f79-afb4-e911cd6fd19a

Modeling Architectural Patterns Using Architectural
Primitives

Uwe Zdun
Department of Information Systems

Vienna University of Economics
Vienna, Austria

zdun@acm.org

Paris Avgeriou
Fraunhofer IPSI

Darmstadt, Germany
paris.avgeriou@ipsi.fraunhofer.de

ABSTRACT
Architectural patterns are a key point in architectural documenta-
tion. Regrettably, there is poor support for modeling architectural
patterns, because the pattern elements are not directly matched by
elements in modeling languages, and, at the same time, patterns
support an inherent variability that is hard to model using a sin-
gle modeling solution. This paper proposes tackling this problem
by finding and representing architectural primitives, as the partici-
pants in the solutions that patterns convey. In particular, we exam-
ine a number of architectural patterns to discover those primitive
abstractions that are common among the patterns, and at the same
time demonstrate a degree of variability in each pattern. These ab-
stractions belong in the components and connectors architectural
view, though more abstractions can be found in other views. We
have selected UML 2 as the language for representing these primi-
tive abstractions as extensions of the standard UML elements. The
added value of this approach is twofold: it proposes a generic and
extensible approach for modeling architectural patterns by means
of architectural primitives; it demonstrates an initial set of primi-
tives that participate in several well-known architectural patterns.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; D.2.10
[Software Engineering]: Design

General Terms
Design, Languages

Keywords
Software patterns, architectural patterns, modeling patterns, archi-
tectural documentation, UML, OCL

1. MOTIVATION
The software architecture of a system needs to be rigorously

documented in order to profit from the advantages of architecture-
centric development and evolution. One of the most significant as-
pects of documenting software architectures is the representation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

architectural patterns (also known as architectural styles1). In gen-
eral, a pattern is a problem-solution pair in a given context. A pat-
tern does not only document ‘how’ a solution solves a problem but
also ‘why’ it is solved, i.e. the rationale behind this particular solu-
tion. Architectural patterns help to document architectural design
decisions, facilitate communication between stakeholders through
a common vocabulary, and assist in analyzing the quality attributes
of a software system.

There are three major approaches that have been used so far for
modeling architectural patterns: (a) Architecture Description Lan-
guages (ADLs) which aim at representing software architectures in
general [23], (b) the Unified Modeling Language which is a generic
modeling language but can be used to describe software architec-
tures [32, 22, 4], and (c) some formal or semi-formal approaches
for the formalization of pattern specification [8, 25, 37, 21]. Unfor-
tunately, none of these approaches succeeds in effectively modeling
architectural patterns for the following reasons:

• They are too limited in the abstractions they propose, to grasp
the rich concepts found in patterns. UML, to start with, falls
short in offering certain standard concepts of architectural
patterns [1, 22, 17]. For example in the ‘pipes and filters’
architectural pattern [36, 6], a pipe does not match the UML
connector, since the latter cannot have an associated state or
even interfaces. Furthermore there are no elements in UML
to model architectural configurations such as a virtual ma-
chine [36], a blackboard [3], or a C2 topology [22]. In con-
trast, many ADLs inherently support a few specific patterns
such as C2 [22] or pipes and filters [36, 6], or can be extended
to represent patterns (e.g. using style repositories [26]). But
except for these few patterns, ADLs cannot model the rest of
the patterns. Similarly, the third aforementioned approach is
basically concerned with just a handful of patterns from [11].

• They do not deal with the inherent variability of architectural
patterns. This is not restricted to architectural patterns but
it is a general problem of specifying patterns of any kind,
because each pattern covers not only one (parametric) solu-
tion, but informally describes a whole solution space for a
recurring design problem. The problem is obvious in UML
and ADLs, and even more so in the third aforementioned
approach that deals with the formal specification of design
patterns: such methods are capable of specifying one partic-
ular solution in the solution space of the pattern, but fail to

1In this paper we do not distinguish between the terms ‘architec-
tural pattern’ (used e.g. in [6, 33, 38]) and ‘architectural style’ (used
e.g. in [36]). For the sake of simplicity, we shall use only the term
‘architectural pattern’ for the rest of this paper. Their commonali-
ties and differences are elaborated in [2].

133

specify the whole solution space expressed by the informal
pattern description.

We propose to remedy the problem of modeling architectural
patterns through identifying and representing a number of ‘archi-
tectural primitives’ that can act as the participants in the solution
that patterns convey. We use the term ‘primitive’ because they
are the fundamental modeling elements in representing a pattern
and also because they are the smallest units that makes sense at
the architectural level of abstraction (e.g. specialized components,
connectors, ports, interfaces). Our approach relies on the assump-
tion that architectural patterns contain a number of architectural
primitives that are recurring participants in several other patterns
[24]. These primitives are common among the different patterns
even if their semantics demonstrate slight variations from pattern
to pattern. We have ‘mined’ a number of architectural patterns and
discovered several architectural primitives that we believe are key
concepts in modeling architectural patterns and subsequently soft-
ware architectures in general. We provide a modeling abstraction
for each type of elicited architectural primitive, and then demon-
strate that it is possible to model architectural patterns explicitly,
precisely, and intuitively, through a case study. It is noted that the
set of primitives identified in this paper is not exhaustive, but does
contain some of the most common primitives found in popular ar-
chitectural patterns.

Our general approach to define architectural primitives can take
advantage of any modeling language, as long as the language can
be extended to provide the syntax and semantics of the primitives.
We have chosen the Unified Modeling Language for this purpose,
because it has become the ‘lingua franca’ of software design and
is vastly supported by tools. We have specified an extension of
a UML 2.0 metaclass for each elicited primitive, using the stan-
dard UML extension mechanisms: stereotypes, tag definitions, and
constraints. We have also used the Object Constraint Language
(OCL) to formalize the constraints and provide more precise se-
mantics of the primitives. The result is a UML profile that can be
imported in modeling tools; in our case we specified the profile in
Eclipse/Octopus.

The rest of the paper is structured as follows: in Section 2 we
give an overview of the proposed approach. Section 3 presents the
UML extension mechanism of ‘Profiles’ and the subset of the UML
2.0 metamodel that was used for specifying our Profile. Section 4
elaborates on the results of the approach by mining several archi-
tectural patterns and providing a full discussion for one exemplary
architectural primitive and summaries for other primitives. Section
5 demonstrates the approach through a case study, and Section 6
discusses related work in this field. Finally, Section 7 sums up with
conclusions and future work.

2. THE PROPOSED APPROACH
The underlying idea behind our approach is that the various ar-

chitectural patterns share some common architectural ‘primitives’.
Thus we use the patterns of a particular architectural view, as a
foundation to elicit the significant architectural primitives for that
view. Specifically, we propose the following approach:

1. Analyze the architectural patterns of a given architectural
view to discover common participants in their solutions.
These should be recurring and probably varying instances
of the same architectural concept, e.g. a special-purpose
component or connector. Patterns (a) capture the variations
of a solution and (b) describe the solution in a realization-
independent way. For instance, pattern descriptions contain

pattern variants, implementation hints, design alternatives,
consequences, forces that govern a solution, and so forth.
These are all sources for eliciting the architectural primitives.

2. Map the primitives to well-established architectural abstrac-
tions, like components, connectors, or ports that are a close
semantic match to the primitives.

3. Represent these architectural abstractions as (meta-)modeling
elements that can be used by architects. Any modeling lan-
guage can potentially be extended for this purpose; we have
chosen to extend UML. After finding the appropriate UML
metaclasses, we define the semantics of these primitives
more precisely with the help of OCL in order to facilitate the
unambiguous and consistent modeling of patterns.

4. Use the derived UML extensions of primitives to model pat-
tern instances in real case studies and validate the effective-
ness of the primitives to unambiguously model architectural
patterns.

It is noted that the pool of architectural patterns, we used to elicit
primitives, includes some patterns that are described as ‘design pat-
terns’ in the literature. In general it is hard to draw the line between
architectural patterns and design patterns. In fact, it depends heav-
ily on the viewpoint of the designer or architect whether a specific
pattern is categorized as an architectural pattern or a design pattern.
Consider for instance, a classical design pattern, the INTERPRETER
[11]. The description in [11] presents it as a concrete design guide-
line. Yet, instances of the pattern are often seen as a central ele-
ments in the architecture of software systems because an INTER-
PRETER is a central, externally visible component. Therefore the
pattern is treated as an architectural pattern (see [36]). Thus we
refer to such design patterns as architectural patterns, considering
them at an architectural level of abstraction.

3. EXTENDING UML TO REPRESENT
THE PRIMITIVES

3.1 A UML profile
According to the UML 2.0 standard [28] there are two ways to

extend the language: the hard extension produces an extension of
the language meta-model, i.e. a new member of the UML family of
languages is specified; the soft extension results in a profile, which
is a set of stereotypes, tag definitions, and constraints that are based
on existing UML elements with some extra semantics according to
a specific domain. In order to model the architectural primitives
we have chosen the soft extension mechanism of UML (i.e. the
definition of a profile for architectural primitives) for the following
reasons:

• A UML profile is good enough for this task since there are
already existing UML metaclasses that are semantically a
close match to the architectural primitives. Therefore we can
simply extend the semantics of these metaclasses rather than
having to define completely new metaclasses.

• The users of this profile will feel comfortable by using
stereotypes that are extensions of existing metaclasses rather
than using concepts they are not familiar with. The learning
curve can thus be minimized.

• A profile is still valid, standard UML, so we can count on
support from the existing UML tools, rather than offer pro-
prietary UML tools which are rarely used in practice.

134

We also use OCL to define the necessary constraints for the de-
fined stereotypes so as to (semi-)formalize their semantics. OCL
constraints are the primary mechanism for traversing UML models
and specifying precise semantics on metaclasses and stereotypes.

3.2 The UML 2 metamodel
This section briefly presents the existing UML 2.0 metamodel for

architectural description, and in particular those metaclasses that
we have extended in order to model the architectural primitives.
It is noted that, according to the software architecture community,
an architectural description is comprised of multiple views [7, 15,
16, 20]. In this paper we focus on the view that is considered to
contain the most significant architectural information, which is the
component-and-connector view [7]. This view deals with the com-
ponents, which are units of runtime computation or data-storage,
and the connectors which are the interaction mechanisms between
components [29, 7]. We have focused on this view because the
patterns that we have mined concern mainly this view. However
other architectural patterns from other views, such as the ‘logical’
or ‘module’ view, can also be searched for primitives, as will be
stated in Section 7.

The following UML 2.0 metaclasses are extended to model ar-
chitectural primitives in the component and connector view, mainly
taken from the composite structures and components packages:

1. Components are specializations of classes and therefore have
attributes and operations, but are also associated with pro-
vided and required interfaces. They inherit indirectly from
EncapsulatedClassifier and thus may own ports that formal-
ize their interactions points.

2. Interfaces serve as contracts that components must comply
with. An interface is either a provided interface that de-
scribes a set of functionalities offered by a component, or a
required interface that describes a set of functionalities that
a component expects from its environment.

3. Ports specify a distinct interaction point between the com-
ponent that owns the port and its environment, or between
the component and its internal parts (properties). Ports may
specify required and provided interfaces of the component
that owns them.

4. Connectors are either assembly connectors that connect the
required interface of one component to the provided interface
of a second, or delegation connectors that link the ports of a
component to its internal parts.

5. Packages are mechanisms for grouping model elements ei-
ther by owning them or importing them. They also provide
a namespace for uniquely identifying the elements by their
name.

We have also used the following UML metaclasses in order to
express the OCL constraints while traversing the UML metamodel:
AggregationKind, Association, Classifier, ConnectableElement,
ConnectorEnd, EncapsulatedClassifier, Feature, RedefinableEle-
ment, Namespace, NamedElement, PackageableElement, Property,
RedefinableElement, VisibilityKind. Finally, it is noted that UML
2.0 provides the means to describe a design pattern through the
Collaboration metaclass, as an interaction between instances of
components and connectors. However we do not use this metaclass
since it is also bounded by the limitations for modeling patterns
discussed in Section 1.

The specification of the primitives was implemented with the
help of the Octopus plug-in (http://www.klasse.nl/) in the Eclipse

environment (http://www.eclipse.org/). We chose this tool for spec-
ifying the primitives because Eclipse is open-source and widely
used, and also because the Octopus plug-in can statically check
OCL 2.0 constraints. For all OCL constraints we assume the stan-
dard UML 2.0 role names for the extensions: “baseX”, where X is
the extended metaclass, and “extensionY”, where Y is the stereo-
type name.

Figure 1 illustrates part of the UML metamodel that contains the
aforementioned metaclasses and shows their relationships, espe-
cially for traversing OCL constraints. The figure has been adapted
from the UML 2 standard [28], and, for simplicity, some details
have been omitted.

4. MODELING ARCHITECTURAL
PRIMITIVES

In this section, we provide more details about our approach,
demonstrating the elicitation of architectural primitives from gen-
eral purpose architectural patterns, and modeling them with a UML
2.0 profile. First we will demonstrate how to document architec-
tural primitives. Next we present, as an example, the full documen-
tation of the Callback primitive. In the last subsection, a number of
other primitives are presented in abbreviated form.

4.1 Template for architectural primitive
documentation

Once an architectural primitive is elicited it needs to be docu-
mented. We propose a simple template consisting of four elements:

• Textual description: A textual description and discussion of
the architectural primitive.

• Known uses in patterns: A short description of the patterns
in which the architectural primitive participates.

• Modeling issues: An explanation why this primitive cannot
be modeled with standard UML and thus needs to be sup-
ported with a UML extension.

• Modeling solution: A description of UML 2.0 extensions,
containing stereotypes, possibly with tag definitions, and
constraints.

4.2 Example of an architectural primitive
documentation: Callback

Textual description:
‘Callback’ is described as follows:

A callback denotes an invocation to a component B

that is stored as an invocation reference in a compo-
nent A. The callback invocation is executed later, upon
a specified set of runtime events, usually implemented
as methods. Between two components A and B, a set
of callbacks can be defined, also usually implemented
as methods. Note that in this description A might be
equal to B. In essence, the callbacks between two
components A and B are a set of tuples. Each tuple
consists of one method methodAx ∈ MethodsA that
represents a trigger event and a method methodBx ∈
MethodsB that is a callback, like:

CallbacksAB = {(methodA2, methodB1),

(methodA1, methodB2),

(methodA2, methodB3),

. . . }

135

+ association

+ memberEnd
2..*

0..1

Component Interface

-required
* *

-provided
* *

-required *

*

-provided*

*

parents()

name:String

Classifier Packageable
Element

Package

-ownedMember

-owningPackage 0..1

*

Namespace

-importedMember

1

*

visibility :
visibilityKind
name: String

NamedElement
Redefinable

Element

Feature

+ featuringClassifier

+ feature *

*

Port

Encapsulated
Classifier

-ownedPort

0..1

*

Class

Connector

*
0..1 +type

ConnectorEnd

-end

1

2..*

Connectable
Element

-role

-end

0..1
*

aggregation:
aggregationKind

Property-ownedEnd

0..1

*

-owningAssociation

+ownedAttribute

0..1

*

+class

*
0..1+ opposite

none
shared
composite

«enumeration»
Aggregation

Kind public
protected
private
package

«enumeration»
Visibility

Kind

Association

Figure 1: Part of the UML 2.0 metamodel that was used for the stereotype definition

There are two main variants of callbacks:

• The runtime events are ordinary method invocations, field ac-
cesses, or other events in the program flow. (Note that these
are also called ‘joinpoints’ in aspect-oriented programming
[19]).

• The runtime events are ‘real events’ in an event-based pro-
gramming system, triggered by some event loop.

With regard to modeling the callback, the two variants make no
difference: structurally, both kinds of callbacks are realized in the
same way. Sometimes a callback has only one associated runtime
event (e.g. a set with only one tuple), sometimes it is raised by a
number of different runtime events.

Known uses in patterns:
Callbacks are key participants in several architectural patterns, such
as the following:

• In the OBSERVER pattern [11] an observer component is no-
tified by one or more subjects about state changes and other
events. Usually the notification is realized as a callback.

• MODEL-VIEW-CONTROLLER [6] uses callbacks to inform
views (and possibly controllers) about changes in the model,
much like the logic behind the OBSERVER pattern.

• A REACTOR [33] is a special kind of OBSERVER that is in-
formed about network events using callbacks.

• In the EVENT SYSTEMS pattern [36] components may broad-
cast a number of events. Another component may register an
interest in an event by associating a callback with the event.

When an event occurs, the EVENT SYSTEM dispatches all the
callbacks associated with the event.

• There are various patterns describing interception architec-
tures, such as INTERCEPTOR [33], MESSAGE INTERCEPTOR
[39], and INVOCATION INTERCEPTOR [38]. Interceptors are
invoked as extensions to some other invocation; thus they
must be invoked, when this other invocation takes place.
Usually, the interceptors are triggered by callback events
like ‘invocation arrived’ or ‘invocation finished’.

• VISITORS [11] are used to define an interpretation mecha-
nism apart from the structure to be interpreted. They are
usually called back, by the elements to be visited.

Modeling issues:
A major problem in modeling these patterns in UML is that,
even though the callback-structure is a key participant in the
patterns, it cannot be explicitly modeled and made visible in
UML diagrams, such as component diagrams, class diagrams, or
sequence diagrams. There are only some ‘hints’ that might imply
the presence of a callback but there can be much ambiguity that
could lead to false detections of callbacks. Consider the following
examples of such ‘hints’:

• A structural indicator for a callback that we could include in
UML’s structural diagrams is to have a class or a component
A store a reference to a method of B. Using this indicator,
however, is problematic because there is no unambiguous in-
dication whether the method reference is intended for being
used as a callback or not. To make matters worse, invocation
references are not necessarily realized by using a reference to

136

a method. Many programming languages don’t require a ref-
erence to the callback operation at all. For instance, in Java
it is sufficient to have the operation name stored in a string to
be able to look-up the operation using reflection. When the
pattern COMMAND [11] is used, the callback can be encap-
sulated in the COMMAND. In both cases, the intended use of
these structures as callbacks is not directly visible in a UML
model.

• Another structural hint for callbacks is their return type. In
event-driven applications, the return type of a callback is usu-
ally “void”, because the callback is raised by an event, and
thus the callback cannot return anything. However, this is not
always the case: for instance, an interceptor often returns an
error state to indicate to the interceptor architecture, whether
the interceptor invocation was successful or not. Also, in
non-event-driven applications, for instance, in the VISITOR
and OBSERVER patterns, this rule-of-thumb does not hold:
the callback may well be used with a return value.

• In some cases, where the callback can be modeled as sim-
ple recursive invocations (as in the VISITOR pattern), we can
get around this problem by using an accompanying sequence
diagram that shows the recursive callback (e.g. class A calls
B and then B calls A back). However, there are two basic
problems with this approach:

– No semantic annotation: Even though the sequence di-
agram has a callback-like structure, the same kind of
sequence diagram might be used for a ‘normal’ invoca-
tion going back and forth, which is not a callback.

– Temporal decoupling: Callbacks are usually stored un-
til an event happens, often much later in time, and then
they are invoked upon that event. This cannot be easily
depicted with a sequence diagram because of the many
invocations that happen between performing the call-
back and the event that caused it to be invoked.

In summary, UML elements can be used as an indicator that a
callback is used, but the callback structure cannot be identified un-
ambiguously in UML’s structural and interaction diagrams. Thus,
the runtime behavior and interaction semantics of the callback-
structure cannot be properly modeled in standard UML.

«stereotype»
IEvent

«stereotype»
ICallback

«metaclass»
Interface

«stereotype»
CallbackPort

«stereotype»
EventPort

«metaclass»
Port

«stereotype»
Callback

«metaclass»
Connector

required provided

Figure 2: Stereotypes for modeling Callback

Modeling solution:
To capture the semantics of callbacks properly in UML and tackle
the above problems, we propose five new stereotypes:

• �IEvent�: A stereotype that extends the ‘Interface’ meta-
class and contains a number of methods that are exclusively
trigger events for a callback.

• �ICallback�: A stereotype that extends the ‘Interface’
metaclass and contains a number of methods that serve
exclusively as callback methods.

• �EventPort�: A stereotype that extends the ‘Port’ metaclass
and is typed by two interfaces: IEvent as a provided interface
and ICallback as a required interface. This can be formalized
using two OCL constraints for EventPort:

-- An event port is typed by IEvent as a
-- provided interface.

inv: self.basePort.required->size()=1
and self.basePort.required->forAll(
i:Core::Interface|

ICallback.baseInterface->exists(j|j=i))

-- And: an event port is typed by ICallback
-- as a required interface.

inv: self.basePort.provided->size()=1
and self.basePort.provided->forAll(
i:Core::Interface|

IEvent.baseInterface->exists(j|j=i))

• �CallbackPort�: A stereotype that extends the ‘Port’ meta-
class and is typed by two interfaces: ICallback as a provided
interface and IEvent as a required interface. This can be for-
malized using two OCL constraints for CallbackPort:

-- A callback port is typed by ICallback as a
-- provided interface.

inv: self.basePort.required->size()=1
and self.basePort.required->forAll(
i:Core::Interface|

IEvent.baseInterface->exists(j|j=i))

-- And: a callback port is typed by IEvent
-- as a required interface.

inv: self.basePort.required->size()=1
and self.basePort.required->forAll(
i:Core::Interface|

ICallback.baseInterface->exists(j|j=i))

• �Callback�: A stereotype that extends the ‘Connector’
metaclass and specifies the semantics of a callback con-
nector, which connects an EventPort of a component to a
matching CallbackPort of another component. This can be
formalized using two OCL constraints:

-- A Callback connector has only two ends.

inv: self.baseConnector.end->size()=2

-- A Callback connector connects an EventPort
-- of a component to a matching CallbackPort of
-- another component. An EventPort matches a
-- CallbackPort if the provided IEvent interface
-- of the former matches the required IEvent
-- interface of the latter, and the required
-- ICallback interface of the former matches

137

-- the provided ICallback interface of the latter:

inv: self.baseConnector.end->forAll(
e1,e2:Core::ConnectorEnd|e1<>e2 implies(

(e1.role->notEmpty() and
e2.role->notEmpty()) and
(if EventPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=
e1.role)

then
(CallbackPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=
e2.role)

and
e1.role.oclAsType(Core::Port).required=
e2.role.oclAsType(Core::Port).provided
and
e1.role.oclAsType(Core::Port).provided=
e2.role.oclAsType(Core::Port).required)

else
CallbackPort.basePort->exists(p|

p.oclAsType(Core::ConnectableElement)=
e1.role)

endif)))

Figure 2 illustrates these stereotypes according to the UML 2.0
Profiles package, while Figure 3 depicts the notation used for the
stereotypes. All stereotypes use the notation of the metaclass they
extend, adorned by the name of the stereotype in guillemets.

A

«IEvent»
ObserveEvent

«EventPort»
e

«ICallback»
update

B

«ICallback»
update

«CallbackPort»
c

«IEvent»
ObserveEvent

A B
«EventPort»

e
«CallbackPort»

c

«Callback»

Figure 3: The notation of the stereotypes in Callback modeling

4.3 More architectural primitives
Due to space restrictions, we will not go into detail for the rest

of the architectural primitives we have elicited, but we will give a
brief overview of these primitives. We also consider that the readers
are familiar with the details of the patterns that are referenced in
the known uses. In Section 5 we will give examples for all of the
primitives mentioned here. It is stressed that this list of primitives
is not exhaustive. On the contrary, an analysis of more patterns
and especially in other specific domains, can elicit a plethora of
architectural primitives using the general approach proposed in this
paper. We consider this as future work (see Section 7).

Indirection
• Textual description: Indirection happens when a “proxy”

component receives a message on behalf of a “target”
component and forwards the message to that “target”,
perhaps after some computation has taken place. Afterward
the result is sent back through the “proxy” component again.

• Known uses in patterns: INDIRECTION LAYER [39], LAYERS
[6], VIRTUAL MACHINE [36], INTERPRETER [36], ADAPTER
[11], FACADE [11], PROXY [11], COMPONENT WRAPPER

[41], WRAPPER FACADE [33], MESSAGE REDIRECTOR [39],
CLIENT PROXY [38].

• Modeling issues: The indirection structure is not explicit in
structural UML diagrams. The semantics is missing: is it
an ordinary collaboration or an indirection? As in callback,
sequence diagrams may help, but are ambiguous.

• Modeling solution: We define two stereotypes �IIndirec-
tor� and �ITarget� as extensions of the Interface metaclass.
We define the stereotype �IndirectionTargetPort� as exten-
sion of the Port metaclass. The �IndirectionTargetPort� is
attached to the ‘target’ component, and provides an �ITar-
get� interface, in order to accept requests from the ‘proxy’.
We define the stereotype �IndirectionPort� as extension of
the Port metaclass. The �IndirectionPort� is attached to
a “proxy” component, requires an �ITarget� interface and
provides an �IIndirector� interface. The client of the tar-
get component can connect via the �IIndirector� interface
to the “proxy” component, which forwards the request to
the target component through its �ITarget� interface. The
two ports are connected through a stereotyped connector, the
�Indirection�.

Grouping
• Textual description: A group member is part of a whole, and

the whole is an abstract or virtual entity. That is, there is no
component in the software architecture for representing the
group as a whole, but it is made only of its parts.

• Known uses in patterns: Subsystem of FACADE [11], LAY-
ERS [6], components of a BROKER [6].

• Modeling issues: UML’s aggregation and composition rela-
tionships can be used to model part-whole relationships. But
the whole should not really exist as a tangible component,
it is only the sum of its parts. For instance, a subsystem
contains subsystem elements, but usually there is no explicit
component for representing the subsystem as a whole. Also,
a UML package can be used to depict such a group, but a
package may own the elements, which means that a destruc-
tion of the package would also destroy the elements. On
the contrary we need a more loose relationship between the
group and its members.

• Modeling solution: We add a simple extension to the UML
metamodel for modeling groups: a stereotype �Group�, ex-
tending the Package metaclass, is used to model a group, pro-
viding a namespace for the different group member compo-
nents. We constrain the Group stereotype, so that only com-
ponents can be its members, and these components are only
imported and not owned by the group.

Layering
• Textual description: Layering builds upon the Grouping

primitive and further constrains it. Specifically, it entails that
group members from layer X may call into layer X − 1 and
components outside the layers, but not into layer X − 2 and
below.

• Known uses in patterns: LAYERS [6], LAYERED SYSTEM
[36], OBJECT SYSTEM LAYER [41], INDIRECTION LAYER
[39].

138

• Modeling issues: The problems in modeling Layering are
similar to Grouping, but additionally we need to ensure that
calls between components residing in different layers do not
violate the aforementioned constraints, and in contrast to
groups, one layer member cannot be part of multiple layers.

• Modeling solution: We introduce the �Layer� stereotype,
which specializes the �Group� stereotype introduced above
(which itself is an extension of the Package metaclass). We
also impose the following constraints: a component can only
be member of one layer and not multiple layers; components
who are members of layer X may call their fellow compo-
nents in layer X , as well as components in layer X−1 but not
in other layers (e.g. X − 2 and below). It is noted that there
is no constraint about calling components in layer X + 1 or
above, since this is a specific issue to the pattern realization.
Also, we introduce the tag definition layerNumber for Lay-
ers which represents the number of the layer in the ordered
structure of layers.

Aggregation Cascade
• Textual description: A COMPOSITE [11] describes part-

whole hierarchies where a composite object is composed of
numerous subparts. Both composite and leaf components
inherit from the same class and are treated uniformly by
clients. For example a GUI widget can call its parts to paint
themselves, and they call their parts and so on. A cascade
[9] is a COMPOSITE structure with (recursive) constraints of
the form: “a composite A can only aggregate components of
type B, B only C, etc”.

• Known uses in patterns: COMPOSITES [11] with constraints,
CASCADE [9], ORGANIZATION HIERARCHY [10].

• Modeling issues: For this primitive, we could consider the
UML Aggregation, which is a special form of the UML As-
sociation. Through Aggregation, a whole aggregates parts,
and a part cannot contain its whole, but it is possible for a part
to be aggregated in multiple wholes. That is, links between
hierarchies are possible, but not circular links. In our primi-
tive, the composites call their parts recursively, and there are
recursive composition constraints. UML’s aggregation can-
not perform such recursive calls or ‘cascading’ constraints.

• Modeling solution: We constrain all components of the
hierarchy, composites and leafs, to inherit from the same
component type. Furthermore we define a stereotype
�AggregationCascade� as an extension of the stereotype
�Indirection�, which itself extends the Connector meta-
class. An Aggregation Cascade connects a composite to its
parts. It extends Indirection since it forwards the recursive
operations to clients. Since it specializes Indirection all
the constraints from Indirection are also valid here. The
Association that types the Connector is an Aggregation, to
enforce that this is really a connector between a composite
and its parts. Since we introduce the aggregation between
two specific, connected components, and not between a
Composite and a generic interface (as in the COMPOSITE
pattern), these aggregations are constrained so that “A
composite A can only aggregate components of type B, B

only C, etc”.

Composition Cascade
• Textual description: A Composition Cascade builds upon

Aggregation Cascade, and further enforces that a component

may not be part of more than one composite at any time. In
this case, composites have a lifecycle responsibility for their
parts. That is, the whole may take direct responsibility for
creating or destroying the parts, or it may accept an already
existing part, and later pass it on to some other whole that
assumes responsibility for it. Again, these lifecycle opera-
tions need to be applied in a recursive fashion: e.g. a com-
posite that is destroyed, destroys its parts, which recursively
destroy their parts and so on.

• Known uses in patterns: Same as Aggregation Cascade.

• Modeling issues: We face the same modeling issues as in
Aggregation Cascade, but we need to model a more rigid ag-
gregation relationship: a component may not be part of more
than one composite at any time. The recursive operations
must also include the aforementioned lifecycle operations.

• Modeling solution: The solution is to constrain even more
the �Aggregation Cascade� Connector. We thus define the
�CompositionCascade� stereotype as an specialization of
�AggregationCascade�. In this case the Association that
types the connector is a Composite Aggregation, so each part
can only be owned by one Composite.

Shield
• Textual description: One or more components act as ‘shields’

for a set of components that form a subsystem. No client
should be allowed to access members of the subsystem di-
rectly, but access should happen only through these ‘shields’.

• Known uses in patterns: FACADE as a public subsystem in-
terface [11], MESSAGE REDIRECTOR [39], OBJECT SYSTEM
LAYER [41], LAYERS [6], remoting patterns used in a layered
BROKER architecture [38].

• Modeling issues: We need to model the members of the sub-
system, as well as the components shielding the subsystem.
We need to make sure that no invocation can bypass the
‘shield’ components. These concepts cannot be represented
in standard UML.

• Modeling solution: We utilize the Grouping primitive (or
extensions of it such as Layering), described above to model
the membership of the components in the ‘shielded’ group.
We introduce the stereotype �IShield� that extends the
Interface metaclass. �IShield� is offered by the compo-
nents that shield the subsystem and provide access to the
rest of the group members. We also introduce the stereo-
type �Shield� that extends the Connector metaclass. A
�Shield� connector can be used by a client to connect to the
“shield” component. Thus we constrain �Shield� to match
the provided �IShield� interface of a “shield” component
to the matching required interface of a client component. Fi-
nally, we introduce the stereotype �ShieldPort� that extends
the Port metaclass. A port stereotyped as �ShieldPort� pro-
vides at least one �IShield� interface. �ShieldPort� is
also extended by a tag definition, shieldGroup, for denoting
the group which is shielded. �ShieldPort� is constrained
so that all components that connect to its port and are not
client components, should be members of the shieldGroup.
Finally, each such component that is not itself a shield
component for the same or other groups, should have a
“package” visibility for all its provided interfaces. That
means, the member components of the shielded group can

139

only be accessed by other members of the group or via the
�IShield� interfaces.

Typing
• Textual description: In many situations, the typing relation

provided by the design or programming language is not suf-
ficient for modeling domain types. For instance, the do-
main might require dynamic or constrained type dependen-
cies. Consider for example a typical business situation: there
are different Party Types in a company (e.g. “manager”, “im-
plementation group”), and a particular business entity (e.g.
John, group X) can change its Party Type at runtime. For in-
stance, a person of party type “manager” can become “senior
manager”, a group of type “test group” can become “imple-
mentation group”, and so forth. There are usually constraints
on these type changes (e.g. a group cannot take a Party Type
that needs to be fulfilled by a person). In other words, a
custom, dynamic type system for Party Types needs to be
implemented from scratch by the developers.

• Known uses in patterns: TYPE OBJECT [18], KNOWLEDGE
LEVEL [10], OBJECT SYSTEM LAYER [41].

• Modeling issues: Such typing relationships can only be mod-
eled using UML associations. But, they are nothing more
than ordinary associations, lacking the semantics of typing,
such as type compliance rules, type conversion rules, inher-
itance, etc. Constraints of the typing relation are also not
documented as such.

• Modeling solution: We introduce two stereotypes that extend
the Connector metaclass and realize the typing relationships:
�TypeConnector� realizes the typing relationship and �Su-
pertypeConnector� realizes the supertype relationship. Both
connectors are constrained not to form cycles (e.g. “A is of
type B, B of type C, and C of type A” should not be allowed).
Using these connectors we can document a custom-built type
system. For instance, in the example above we can asso-
ciate the business entity ‘John’ with a �TypeConnector� to
a specific Party Type “manager”, which itself has a �Super-
typeConnector� to a generic “party type” class. Using this
meta-model, we can derive instances, representing different
parties and party types, and we can provide the respective
constraints both on the instance-level and the meta-level.

Virtual Connector
• Textual description: In many patterns and larger architec-

tures, components have no direct relationship, but still com-
municate virtually using other components and connectors in
between. For instance, in a layered distributed client/server
architecture a component on the client-side often virtually
communicates with a component from the same layer on the
server side.

• Known uses in patterns: BROKER [6], remoting patterns [38],
remote PROXY [6].

• Modeling issues: The virtual relationship is an important ad-
ditional information, but is not explicit in a UML diagram. It
must be deduced from the implicit collaboration of compo-
nents and connectors. If multiple virtual dependencies exist
in the same architecture, as for instance in distributed lay-
ers, it cannot be deduced which component corresponds with
which other component without further documentation.

• Modeling solution: We introduce a stereotype �VirtualCon-
nector� as an extension of the Connector metaclass. This
connector is used between components that have a virtual re-
lationship. We further define the stereotype �IVirtual�, as
an extension of the Interface metaclass. Therefore a �Virtu-
alConnector� matches an �IVirtual� Interface of one com-
ponent to another. We enforce the constraint that the �Vir-
tualConnector� can only be used between two components
A and B, if there is a path of components and connectors
that link A to B. For instance, if A is connected to C, C is
connected to D, and D is connected to B, then a �Virtual-
Connector� from A to B might be introduced.

5. CASE STUDY
Leela [40] is an infrastructure that provides a federation of re-

mote peers, thus offering loosely-coupled services. Within a feder-
ation, all peers are equal, they can offer Web services (and possibly
other kinds of services) to other peers, and they can connect spon-
taneously to other peers (and to the federation). Each remote object
can potentially be part of more than one federation as a peer, and
each peer decides which services it provides to which federation.
Certain peers in a federation may be able to access extra services
that are not offered to other peers in this federation, via their partak-
ing in other federations. Leela peers are hosted by Leela applica-
tions. One such application can host multiple peers and federations.

Leela’s design follows the architectural patterns from [38]. In
our first attempt to design the system, we used the standard UML
class diagrams [40]. However, the architectural patterns could not
be explicitly modeled and therefore the design decisions taken that
were concerned with these patterns are not documented, except as
complementary meta-information to the class diagrams. This meta-
information can be textual or it can make use of a formal nota-
tion, nevertheless it is not part of the UML diagrams. To overcome
this problem, we have applied our UML profile to explicitly model
the architectural components, connectors, configurations, and con-
straints in Leela’s design. Due to space constraints, as a case study
we present an excerpt of this design: the basic communication
framework of Leela.

5.1 Broker architecture
Leela implements a BROKER [6], which suggests a general ar-

chitectural configuration that separates a distributed system’s com-
munication functionality from its application functionality by iso-
lating all communication-related concerns. A BROKER hides and
mediates all communications between the objects or components
in a system. Local client-side and server-side brokers enable the
exchange of requests and responses between the peers.

Each peer in Leela acts as a client and a server at the same
time. Thus, Leela peers are composite components that contain
both client-side and server-side BROKER sub-components. In the
following description, the BROKER is viewed as a compound pat-
tern that is implemented using several patterns from the Remoting
pattern language [38] (the details are depicted in Figure 4). Even
though client-side and server-side BROKER components are present
in the same system, it makes sense to distinguish client-side and
server-side roles of the components in order to make the pattern-
based architecture more understandable. Unfortunately, this cannot
be easily modeled with UML because the BROKER as a whole is not
an explicit component, but consists of several components. Thus
we cannot use UML composition or aggregation relationships here.
However, the Grouping primitive from our UML profile is an ideal
match. We introduce two �Group� packages: ClientBroker and
ServerBroker. For each BROKER component, we add a namespace

140

Peer

clientRequestHandler 1..*

«Shield»

«Shield»

peers * peers

«Shield»

Requestor Invoker

«ShieldPort»
{shieldGroup=Invocation}

requestors

«Callback»

ProtocolPlugInServer

«EventPort»

ProtocolPlugInClient

RequestHandler
«CallbackPort»

«ShieldPort»
{shieldGroup=RequestHandling}

«ShieldPort»
{shieldGroup=RequestHandling}

1 invoker

Invocation

«ShieldPort»
{shieldGroup=Invocation}

*

1requestor

1..* invokers

«Shield»

 1..* serverRequestHandler

clientProtocolPlugIns 1..*

requestHandler
1 requestHandler

serverProtocolPlugIns 1..*

1

layerNumber=1

layerNumber=2

layerNumber=3

layerNumber=4

AORHandler

Figure 4: Basic broker-based invocation architecture

relationship either to the ClientBroker group or the ServerBroker
group, indicating membership to the respective group. The group
membership of the components introduced is depicted in Figure 5.

AORHandler Invocation

Requestor

RequestHandler

ProtocolPlugInServerProtocolPlugInClient

«Group»
ServerBroker

«Group»
ClientBroker

Invoker

InterceptorClient InterceptorServer

Figure 5: Group memberships of the Leela components

5.2 Basic invocation architecture
Figure 4 shows the basic software architecture diagram of

Leela, using our profile. The BROKER consists of a client-side
REQUESTOR to construct and forward invocations, and a server-
side INVOKER [38] that calls the target peer’s operations. A
MARSHALLER is implemented by the Invocation and AORHandler
components. These are used on each side of the communications
path to handle the transformation of requests and responses from
programming-language-native data types into byte arrays that can

be sent over the wire. Thus they are member of both groups,
ClientBroker and ServerBroker (see Figure 5).

As its basic communication resource each Leela application uses
a component, called the RequestHandler, that implements both a
CLIENT REQUEST HANDLER [38] and a SERVER REQUEST HAN-
DLER [38]. The CLIENT REQUEST HANDLER forwards request
messages from a client to the server. The SERVER REQUEST HAN-
DLER receives these requests at the server side and triggers the in-
vocation of the peer. Because RequestHandler realizes both pat-
terns, it is member of both groups, ClientBroker and ServerBroker.

The request handlers contain PROTOCOL PLUG-INS [38] for the
various protocols that transport the message across the network.
Currently, Leela supports PROTOCOL PLUG-INS [38] for various
SOAP implementations. However, virtually any other communica-
tion protocol can be used as well, because Leela’s MARSHALLER
[38] uses a simple string-based format as a message payload, and
(re-)uses Tcl’s automatic type converter to convert the string repre-
sentations to native types and vice versa.

There are a number of further design issues which need to mod-
eled. First of all, the application of the remoting patterns leads to
an architecture based on the LAYERS pattern [6]. The same layers
are present on client and server side: Protocol, RequestHandling,
Invocation, and Application. We model the layers according to our
Layering primitive. For each layer, we introduce a �Layer� pack-
age and the tagged value receives the respective layer number. Each
layered component is imported to the corresponding layer. Figure
6 shows the layer membership of the components discussed in this
section. There a number of constraints:

• Components from the layer Application can only interact
with components from the layers Application and Invocation,
or components who are not part of a layer.

141

«Layer»
Application

{layerNumber=4}

«Layer»
Invocation

{layerNumber=3}

Requestor

RequestHandler
«Layer»

RequestHandling
{layerNumber=2}

ProtocolPlugInServer

ProtocolPlugInClient
«Layer»
Protocol

{layerNumber=1}

Invoker

InvocationInterceptor

PeerProxy

Federation

FederationProxy

Peer

AORHandler

Invocation

Figure 6: Layers of the Leela architecture

• Components in the layer Invocation can only be accessed via
Invoker or Requestor, through a Shield Connector. That is,
all internal interfaces are stereotyped �IShield�.

• Components from the layer Invocation can only inter-
act with components from the layers Invocation and
RequestHandling, or components who are not part of a layer.

• Components in the layer RequestHandling can only be ac-
cessed via the RequestHandler component through a Shield
Connector. That is, all internal interfaces are stereotyped
�IShield�.

• Components from the layer RequestHandling can only inter-
act with components from the layers RequestHandling and
Protocol, or components who are not part of a layer.

• Components from the layer Protocol can only interact with
components from the layer Protocol or components who are
not part of a layer.

Note that these constraints apply for client-side and server-side
components, which, as aforementioned, are distinguished using the
Grouping primitive. The client-side PROTOCOL PLUG-IN is simply
invoked by the request handler component. The server-side PRO-
TOCOL PLUG-IN, however, receives requests and result messages
from the network asynchronously (it contains a REACTOR [33] im-
plementation). Thus the request handler is informed of network
events using callback events. This is modeled using our Callback
primitive (see Figure 4).

In addition a virtual communication between the respective com-
ponents at each layer of the BROKER architecture happens. This is
modeled using the Virtual Connector primitive, as shown in Figure
7.

So far we have only modeled the base components. In the next
sections, let us take a closer look at two exemplary component
types: peers and interceptors.

«VirtualConnector»

«VirtualConnector»

«VirtualConnector»

ProtocolPlugInClient

Requestor

ProtocolPlugInServer

InterceptorServer

Invoker

Peer

InterceptorClient

RequestHandler

«VirtualConnector»

«VirtualConnector»

Figure 7: Virtual communication among Leela components

5.3 Peers and federations
As aforementioned, two different kinds of peers exist: ordinary

peers and federations of peers. Federations, naturally, contain
peers, but this cannot be properly modeled with UML’s com-
position or aggregation relationship alone because we require a
constrained relationship here. Thus we model federations as spe-
cial, composite peers that are connected through an Aggregation
Cascade to other peers with the following constraints:

• A peer can be part of multiple federations. That’s why we
use Aggregation Cascade and not Composition Cascade.

• A federation cannot contain peers of the type federation.

Peers can interact with other peers using the REQUESTOR, which
realizes the virtual communication link. Sometimes it is more con-
venient to use the pattern CLIENT PROXY [38]: a CLIENT PROXY
is a placeholder for the peer in the client process. By presenting
clients with an interface that is the same as the peer’s interface,
the proxy lets the client interact with the peer as if it were a local
object. Internally, the CLIENT PROXY transforms the invocations
it receives into REQUESTOR invocations. Leela supports peer and
federation proxies that act as CLIENT PROXIES, offering the inter-
faces of a peer or federation. The proxies thus provide indirections,
which can be modeled using the Indirection primitive (see Figure
8).

5.4 Invocation interceptors
The Leela invocation chain on the client side and the server side

is based on INVOCATION INTERCEPTORS [38], which transpar-
ently extend the invocation on both sides with new behavior. IN-
VOCATION INTERCEPTORS are used for introducing many add-on
tasks, such as logging and authentication. The most prominent task
of the INVOCATION INTERCEPTORS in Leela is control of remote
federation access. On the client side, an INVOCATION INTERCEP-
TOR intercepts the construction of the remote invocation and adds
all federation information for a peer into the INVOCATION CON-
TEXT [38]. On the server side this information is read by another
INVOCATION INTERCEPTOR. If the remote peer is not allowed to

142

Peer

«Indirection»

PeerProxy

FederationFederationProxy

«IndirectionPort» «IndirectionTargetPort»

«Indirection»

«IndirectionPort»

«AggregationCascade»

«IndirectionPort»
«IndirectionTargetPort»

«IndirectionTargetPort»peerpeerProxy

peers *

federationfederationProxy
1 1

11

Figure 8: Proxy-based indirection in Leela

access the invoked peer, the INVOCATION INTERCEPTOR stops the
invocation and sends a REMOTING ERROR to the client, otherwise
access is granted. INVOCATION INTERCEPTORS are triggered by
callbacks (modeled using the Callback primitive), as can be seen
in Figure 9. Naturally the interceptors on the client-side and the
server-side are linked through a Virtual Connector.

Requestor

InterceptorClient

«Callback»

«EventPort»

Invoker

InterceptorServer

«Callback»

«EventPort»

«CallbackPort»«CallbackPort»

«VirtualConnector»

«VirtualConnector»

invoker 1

interceptors *

requestor 1

interceptors *

Figure 9: Invocation interceptors in the invocation chain

Often interceptors for one and the same task exist both on client-
side and server-side. In Figure 10 three examples are presented.
Logging is needed both on client-side and server-side, but no Vir-
tual Connector between the logging interceptors is necessary. The
server-side federation interceptor checks whether an invoking peer
belongs to a federation or not. The client-side federation intercep-
tors thus must put the federation information of the invoking peer
into the INVOCATION CONTEXT. Thus there is a virtual commu-
nication between these two interceptors, which is modeled using
a Virtual Connector. Likewise, the client-side and server-side au-
thentication interceptors need to transmit authentication informa-
tion over the wire.

6. RELATED WORK
The approach described in this paper is based on related research

on architectural primitives, UML profiles for architectural descrip-
tion, and modeling architectural patterns.

The idea of primitives as the fundamental elements of architec-
tural patterns and design patterns has been investigated from several
viewpoints. Pree has worked in the area of object-oriented frame-
works and has explored primitives in the construction of ‘hot spots’,
i.e. variation points that are adapted in individual applications [30,
31]. His primitives are defined at two levels of abstraction: at a
lower level, the fundamental elements of patterns are ‘hook’ and
‘template’ methods and their corresponding classes; at a higher

level the aforementioned fundamental elements are used to spec-
ify composition patterns for hot spots that are called meta-patterns.
These composition patterns themselves can be used for specifying
even higher-level patterns, such as the GoF [11] patterns; however
they are not architectural elements and thus cannot be used to de-
scribe architectural patterns like the architectural primitives in this
paper.

In the realm of patterns, many patterns are described as com-
pound patterns that consist of other, existing patterns. For instance,
in [38] the BROKER pattern is described as a compound pattern
composed from patterns from [38, 33, 11, 6]. Our approach fol-
lows a similar philosophy as we define primitives that can be used
to model architectural patterns, but is different in that these archi-
tectural primitives are more specific and formally specified than
patterns. The primitives can be seen as participants of patterns,
whereas patterns require substantial hand-crafting (i.e. a design
and implementation effort) in order to be used as part of another
pattern.

Mehta and Medvidovic proposed a framework for composing ar-
chitectural patterns through architectural primitives [24] that are
certain underlying concepts, shared by all patterns. They propose
a number of such primitives as the building blocks for construct-
ing the architectural elements of patterns and demonstrate their ap-
proach through the representation of several architectural patterns
through the primitives. This approach is based on the assump-
tion that there exists a fixed set of fundamental primitives that can
potentially characterize any architectural pattern participant and
therefore this framework of primitives can be used for characteriz-
ing and comparing patterns. Our approach is different in the sense
that we investigate architectural primitives at a larger granularity
and a higher level of abstraction. Moreover, our primitives are re-
curring concepts in several, but not all, architectural patterns, and
they are characterized by rich semantics that serve specialized pur-
poses. Similarly, Bass et al. in [3] have also proposed a predefined
set of unit operations, such as separation, abstraction, compression
and resource sharing as the building blocks for all architectural and
design patterns. In contrast to our architectural primitives, these
unit operations are defined at a much higher level of abstraction.
They rather describe atomic architectural transformations and op-
erations, whereas our primitives describe fundamental, recurring
structures.

There have also been several attempts for specifying existing
ADLs or proposing new ADLs as extensions of UML, usually in
the form of profiles. Medvidovic et al. have pointed out three dif-
ferent ways to use UML as an ADL [22]: (a) using the “pure”
UML metamodel “as is”, which forces the architect to implicitly
define the necessary architectural concepts; (b) constraining the
UML metamodel through profiles and thus providing explicitly the

143

InterceptorServerInterceptorClient

LoggingInterceptorServerLoggingInterceptorClient

FederationInterceptorServerFederationInterceptorClient

AuthenticationInterceptorServerAuthenticationInterceptorClient

«VirtualConnector»

«VirtualConnector»

«VirtualConnector»

Figure 10: Special invocation interceptors

architectural concepts as constrained stereotypes, while still con-
forming to the standard metamodel; (c) modifying the UML meta-
model and thus providing “native” support for architectural de-
scription, but losing conformance to the standard metamodel. They
have also evaluated the first two approaches by using them to map
three ADLs to UML. Clements et al. in [7] demonstrated how UML
1.x can be used “as is” in representing the fundamental architec-
tural concepts in a number of architectural views. This work was
continued by Garlan et al. in [12] and later by Ivers et al. in [17]
to take under account the forthcoming UML 2.0, and particularly
focus on the provision for the component and connector view in the
new standard. The improvements of the new UML 2.0 metamodel
for architectural concepts, especially ports and internal structures,
was also advocated by Björkander and Kobryn in [4]. Finally Selic
and Rumbaugh [34, 35] have defined a UML profile for real-time
systems, UML-RT, which embodies several architectural concepts
such as components (so-called “capsules”), connectors, and ports.
Our approach uses a different line of attack: we do not model the
architectural concepts that are specific to an architectural pattern,
but rather the fundamental primitives that participate in a number
of patterns. Thus we overcome the limitations of ADLs by pro-
viding a wealth of abstractions, capable of modeling several of the
well-known architectural patterns.

There are many approaches for modeling or representing soft-
ware patterns, the vast majority of which focuses on the design
patterns from [11]. A number of such approaches attempted to for-
mally specify these patterns (see for instance [8, 25, 37, 21]). These
approaches, however, have not gained much momentum, mainly
because of their complexity and the resulting limitations regarding
their practical use. These approaches have not been used for archi-
tectural patterns or whole pattern languages, like our primitives, but
just for some isolated patterns from [11]. A third major difference
of these approaches, compared to our approach, is that they only
support one variant of a pattern (often simply following the C++
example from [11]) and not other possible pattern variations. The
same problem appears also when using the Collaboration metaclass
provided by UML 2.0 to describe a design pattern. Most patterns
(especially architectural patterns), however, can be realized using
a multitude of different design variants. Our approach describes
primitives that are participants of the patterns and can be tailored to
support multiple variants of a pattern. In other words, we can model
the variants of a pattern, by constraining the specific semantics of
the architectural primitives that comprise the pattern.

There have also been some approaches that propose language
support for design patterns, such as [27, 5], or implementations
of patterns as aspects, such as [13, 14]. These approaches make
patterns first-class entities of the language or aspect framework,
and thus they become more traceable in the code than a pattern
implementation scattered across a number of classes. All of these
approaches might be considered as a way to better understand the
use of a single pattern in an architecture, but not for documenting
the design of complex architectures based on (multiple) patterns, as
this paper advocates.

7. CONCLUSIONS AND FUTURE WORK
We have proposed modeling architectural patterns through a

number of architectural primitives in the component and connector
view. We have elicited an initial set of these primitives from a
pool of established architectural patterns in order to ensure their
correctness and broad applicability. This set of primitives is
original and helps solving the fundamental problems in modeling
architectural patterns that were outlined in Section 1: they offer
the necessary abstractions that grasp the rich semantics found in
patterns; they can represent not only a specific pattern variant
but multiple variants of a pattern, by tailoring the architectural
primitives with constraints.

We have selected UML, a de-facto standard modeling language
in software architecture, in order to guarantee tool support and fa-
miliarity of modelers. However the the main shortcoming of this
approach stems from the very own use of UML. The extension
mechanisms of UML, in particular the stereotypes, are awkward
to use because of their second-class status: they are neither meta-
classes of the standard metamodel, nor model elements and this
fact often confuses the users of UML. Furthermore, even though
OCL constraints provide semi-formal semantics to the stereotypes,
they are not well accepted in the software architecture community,
partly because there are no tools so far that can dynamically check
the constraints in UML models. Lastly, the constant evolution of
the UML standard, forces us to update the mapping of the architec-
tural primitives in the language in its subsequent versions, which
can prove to be cumbersome. However, we do believe that the ad-
vantages that UML conveys outweigh these disadvantages.

We plan to extend this work in the following directions:

• document the architectural primitives of other domain-
specific patterns and pattern languages in the component and
connector view;

144

• further work on the relation of our approach to the notion of
pattern languages (larger collections of interrelated patterns).
In particular, we plan to document more patterns from the
remoting pattern language (see [38]) and a pattern language
for general-purpose architectural patterns (see [2]);

• search for architectural primitives in other views, such as the
module view.

8. REFERENCES
[1] P. Avgeriou, N. Medvidovic, and N. Guelfi. Software

Architecture Description with UML. In J. Nunes, B. Selic,
A. Silva, and A. Toval, editors, UML Modeling Languages
and Applications - UML 2004 Satellite Activities, Lisbon,
Portugal, October 2004. Springer Verlag, Volume 3297 of
LNCS.

[2] P. Avgeriou and U. Zdun. Architectural patterns revisited – a
pattern language. In 10th European Conference on Pattern
Languages of Programs (EuroPlop 2005), Irsee, Germany,
July 2005.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice 2nd Edition. Addison Wesley, Reading, MA,
USA, 2003.

[4] M. Björkander and C. Kobryn. Architecting systems with
UML 2.0. IEEE Softw., 20(4):57–61, 2003.

[5] J. Bosch. Design patterns as language constructs. Journal of
Object Oriented Programming, 11(2):18–32, 1998.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-orinented Software Architecture - A System
of Patterns. J. Wiley and Sons Ltd., 1996.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2002.

[8] A. H. Eden and Y. Hirshfeld. LePUS – symbolic logic
modeling of object oriented architectures: A case study. In
Second Nordic Workshop on Software Architecture -
NOSA’99, Ronneby, Sweden, April 1999.

[9] T. Foster and L. Zhao. Cascade. Journal of Object-Oriented
Programming, 11(9), Feb. 1999.

[10] M. Fowler. Analysis Patterns. Addison-Wesley, 1997.
[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[12] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling
the needs of architectural description with object-modeling
notations. Sci. Comput. Program., 44(1):23–49, 2002.

[13] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In C. Norris and J. J. B.
Fenwick, editors, Proceedings of the 17th ACM conference
on Object-oriented programming, systems, languages, and
applications (OOPSLA-02), volume 37, 11 of ACM
SIGPLAN Notices, pages 161–173, New York, Nov. 2002.
ACM Press.

[14] R. Hirschfeld, R. Lämmel, and M. Wagner. Design Patterns
and Aspects — Modular Designs with Seamless Run-Time
Integration. In Proc. of the 3rd German GI Workshop on
Aspect-Oriented Software Development, Technical Report,
University of Essen, Mar. 2003. 8 pages.

[15] C. Hofmeister, R. Nord, and D. Soni. Applied software
architecture. Addison-Wesley Longman Publishing Co., Inc.,
2000.

[16] IEEE. Recommended Practice for Architectural Description
of Software Intensive Systems. Technical Report
IEEE-std-1471-2000, IEEE, 2000.

[17] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and
J. R. O. Silva. Documenting component and connector views
with UML 2.0. Technical Report CMU/SEI-2004-TR-008,
Software Engineering Institute, Carnegie Mellon University,
2004.

[18] R. Johnson and B. Woolf. Type object. In R. C. Martin,
D. Riehle, and F. Buschmann, editors, Pattern Languages of
Program Design 3. Addison-Wesley, 1998.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of ECOOP’97, Finnland, June
1997. LCNS 1241, Springer-Verlag.

[20] P. Kruchten. The 4+1 view model of architecture. IEEE
Softw., 12(6):42–50, 1995.

[21] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun. Precise
modeling of design patterns in UML. In Proceedings of the
26th International Conference on Software Engineering,
pages 252–261. IEEE Computer Society, 2004.

[22] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E.
Robbins. Modeling software architectures in the unified
modeling language. ACM Trans. Softw. Eng. Methodol.,
11(1):2–57, 2002.

[23] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Trans. Softw. Eng.,
26(1):70–93, 2000.

[24] N. R. Mehta and N. Medvidovic. Composing architectural
styles from architectural primitives. In Proceedings of the 9th
European software engineering conference held jointly with
10th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 347–350,
Helsinki, Finland, 2003. ACM Press.

[25] T. Mikkonen. Formalizing design patterns. In Proceedings of
the 20th international conference on Software engineering,
pages 115–124, Kyoto, Japan, 1998. IEEE Computer Society.

[26] R. T. Monroe and D. Garlan. Style-based reuse for software
architectures. In Proceedings of the Fourth International
Conference on Software Reuse, April 1996.

[27] G. Neumann and U. Zdun. Filters as a language support for
design patterns in object-oriented scripting languages. In
Proceedings of COOTS’99, 5th Conference on
Object-Oriented Technologies and Systems, San Diego,
California, USA, May 1999.

[28] OMG. UML 2.0 superstructure final adopted specification.
Technical Report ptc/03-08-02, Object Management Group,
August 2003.

[29] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering
Notes, 17(4), October 1992.

[30] W. Pree. Metapatterns: A Means for Capturing the Essentials
of Object-Oriented Design. In European Conference on
Object-Oriented Programming, (ECOOP), Bologna, 4-8 July
1994. Springer-Verlag.

[31] W. Pree. Hot-spot-driven framework development. In R. J.
M. Fayad, D. Schmidt, editor, Building Application
Frameworks: Object-Oriented Foundations of Framework
Design. Wiley & Sons, 2000.

[32] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.

145

Rosenblum. Integrating architecture description languages
with a standard design method. In Proceedings of the 20th
ICSE, pages 209–218, Kyoto, Japan, 1998. IEEE Computer
Society.

[33] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Patterns for Concurrent and Distributed Objects.
Pattern-Oriented Software Architecture. J. Wiley and Sons
Ltd., 2000.

[34] B. Selic. Turning clockwise: using UML in the real-time
domain. Commun. ACM, 42(10):46–54, 1999.

[35] B. Selic and J. Rumbaugh. Using UML for modeling
complex real-time systems. 1998.

[36] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Addison-Wesley, 1996.

[37] N. Soundarajan and J. O. Hallstrom. Responsibilities and
rewards: Specifying design patterns. In Proceedings of the
26th International Conference on Software Engineering,
pages 666–675. IEEE Computer Society, 2004.

[38] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns.
Pattern Series. John Wiley and Sons, 2004.

[39] U. Zdun. Patterns of tracing software structures and
dependencies. In Proceedings of EuroPlop 2003, Irsee,
Germany, June 2003.

[40] U. Zdun. Loosely coupled web services in remote object
federations. In Proceedings of the Fourth International
Conference on Web Engineering (ICWE’04), Munich,
Germany, July 2004.

[41] U. Zdun. Some patterns of component and language
integration. In Proceedings of 9th European Conference on
Pattern Languages of Programs (EuroPlop 2004), Irsee,
Germany, July 2004.

146

