

 University of Groningen

Visual Exploration of Combined Architectural and Metric Information
Termeer, Maurice; Lange, Christian F.J.; Telea, Alexandru; Chaudron, Michel R.V.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Termeer, M., Lange, C. F. J., Telea, A., & Chaudron, M. R. V. (2005). Visual Exploration of Combined
Architectural and Metric Information. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli
Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://research.rug.nl/en/publications/d485a3ad-5f7e-4d7c-aea0-a9d33640d7d4

Visual Exploration of Combined Architectural and Metric Information

Maurice Termeer Christian F. J. Lange Alexandru Telea Michel R. V. Chaudron

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Den Dolech 2, 5600 MB Eindhoven, the Netherlands
 m.a.termeer@student.tue.nl, c.f.j.lange@tue.nl, alext@win.tue.nl, m.r.v.chaudron@tue.nl

Abstract

We present MetricView, a software visualization and
exploration tool that combines traditional UML
diagram visualization with metric visualization in an
effective way. MetricView is very easy and natural to
use for software architects and developers yet offers a
powerful set of mechanisms that allow fine
customization of the visualizations for getting specific
insights. We discuss several visual and architectural
design choices which turned out to be important in the
construction of MetricView, and illustrate our approach
with several results using real-life datasets.

1. Introduction

UML diagrams are one of the most widespread forms
of depicting software architectural and design
information. UML models are usually created and used
visually, using interactive modeling tools or diagram
editors. Software metrics, such as produced by analysis
tools [16], are efficient and effective instruments for
analyzing large system architectures [3]. Metrics can
answer complex, targeted questions, such as “which
components are unstable or non-conforming to specific
guidelines and requirements?” or “what happens if I
change this component?” Metrics come mostly in two
flavors. Global metrics, e.g. system cohesiveness or
quality, characterize entire systems by single numbers,
so they are best shown by tables with text and numbers.
Per-element metrics characterize separate components
or relationships, e.g. component coupling, fan-in, fan-
out, ‘provides’, or ‘uses’. To understand such metrics,
tables are not enough. We need to correlate their values
with already familiar, understood model information,
such as contained in the various UML diagrams.

We present an approach that combines architectural
and metric data on software systems in an integrated,
interactive visualization tool called MetricView. We
aim to create a single view where users smoothly and
easily navigate between classical UML diagram data
and architectural metric data, minimizing the cognitive
disruption present in approaches that separate the two.
Next, we let users easily, yet completely, customize the

metric visualization in a variety of ways. Finally, we
designed MetricView so that combining UML and
metric data is easy and imposes no constraints or
modifications on the data sources.

Section 2 presents related work on combining
software metric and structural information. Section 3
details the visualization techniques we adapted and
applied for our goals with MetricView. Throughout the
presentation, we compare our experiences with
MetricView and SoftVision [12], the latter being a
related software visualization tool we developed in the
past, and outline the lessons learnt. Section 4 concludes
our discussion and outlines future work directions.

2. Related Work

We define the goal of software architecture
visualization using the 5-dimensional model of Maletic
et al. [9]: task, audience, target, medium, and
representation. Our main task is to gain insight in the
structure and semantics of architectures represented in
the UML language. Our audience consists of system
architects and developers, interested to understand a
system’s structure and dependencies, and evaluate
various functional and non-functional component
properties. Our visualization target is the system
architectural information, given as a set of (class,
sequence, package, etc) UML diagrams, enriched with
various computed software metrics. The visualization
medium is the standard PC display. Finally, the
representation augments the classical UML diagram
graphical layout used by modeling tools with metric
data, shown as overlaid transparent icons.

UML-based modeling tools, such as Rational Rose
[11] or Together [14], are the most accepted way for
visually understanding architectures. However effective,
such tools are limited to showing only UML diagrams.
Adding extra information to the picture, e.g. software
metrics, is not supported. At the other extreme,
architectures can be analyzed by means of software
metrics, computed by reverse engineering and software
analysis tools and presented in tables and histograms
[8][10]. This presentation form makes it hard to
correlate metrics with structural information.

Somewhere between the above, programmable
visualization tools such as Rigi [6], SHriMP [12] or
SoftVision [13] propose a more abstract, system view
which disposes of many rich UML visual details. Figure
1 (top) illustrates this in the SoftVision tool. Boxes are
components, box nesting shows component inclusion
(containment), and lines are component call
relationships.

Figure 1: Software architecture without (top)

and with metrics (bottom) in SoftVision

Being more customizable than the fine-tuned, but
more rigid UML modelers, such tools allow users to
specify several visualization elements. For example,
software metrics can be displayed atop of the system
structure graph, e.g. by tuning the color, shape, or size
of the graph nodes to corresponding component metrics.
Similar ideas have been presented in [1] and [8]. Figure
1 (bottom) shows a similar architecture as in Figure 1
(top). Each component has a four metrics bar chart laid
out in the vertical dimension atop of the structure graph.
Programming this visualization in SoftVision took us
around two hours [15]. However useful, we discovered
that this approach has several limitations. First, many
users preferred the richer UML diagrams to our more
simplified, albeit more customizable, visualization.
Second, our users wanted a nearly automatic way to add
metric visualization to their UML diagrams, in a single

tool. We answered these requirements by combining the
strengths of UML views (intuitive, interactive, visual
navigation) and metric data (concise, precise) in an
integrated tool, called MetricView. This tool is
presented next.

3. Anatomy of MetricView

MetricView is essentially an UML visual tool that
adds highly customizable metric visualizations to the
well-known diagrams. In a nutshell, given a UML
diagram (Figure 2a) and a set of metric values (Figure
2b), MetricView produces the result shown in Figure 2c.
In the following, we describe the design (Section 3.1)
and metric information (Section 3.2) used by
MetricView. Next, we detail the visualization
techniques we created to integrate the two in one view
(Section 3.3).

3.1. Structure (UML) Data

MetricView can visualize class, sequence, state, use
case, and collaboration UML diagrams, imported from
XMI (XML Metadata Interchange) files conforming to
OMG’s version 1.2 [5]. The UML data is represented
using the UML 1.3 metamodel [4]. Although these
standards are a bit aged, they are still better accepted
than their successors, XMI 2.0 and UML 2.0. At the
time of writing, the UML 2.0 standard is still not yet
released as final. Moreover, only very few UML tools
support this format. Hence, our choice for the older and
more supported format.

3.2. Metric Data

MetricView supports both global metrics, i.e., defined
for a complete UML model, and element metrics, i.e.,
defined for an element, or relationship, of the model. A
metric is modeled as a (key, value) pair. The key is the
metric’s (unique) textual name. MetricView currently
supports boolean and numeric metrics. Any element can
have any number of metrics. One may freely choose
which metrics to define for which elements. Metrics and
UML diagrams are provided as separate input files to
MetricView. This loose association between the metric
and structural data, similar to the one used by
SoftVision [12], allows users to easily combine metric
and UML data that come from independent tools.
Indeed, our UML models came from various modelers
[11][14]. So far, we used the over 40 metrics provided
by our own software architecture analysis tool SAAT
[10]. However, using metrics computed by other tools,
e.g. [16], or alternatively UML models provided by
different modelers, is clearly an easy task.

a) UML design information b) Metric information c) Combination in MetricView
Figure 2 : Combining UML design and software metric information in MetricView

3.3. Visualization

Figure 3 shows a typical visualization session in
MetricView. The canvas (A) displays a UML class
diagram, combined with six element (class) metrics.
Users can select the desired diagram from the complete
diagram (model) set from the XMI input file using the
diagram browser (B). The UML diagram is drawn using
the structural and layout information stored in the XMI
input file. Layout data is, however, not a mandatory part
of the XMI specification. In practice, different UML
modelers may store different amounts of layout data,
ranging from simple per-element 2D bounding box and
position data to detailed geometry. MetricView is
capable of drawing the UML diagrams even if only
basic bounding box data are available, by performing a
number of local element layouts using various graph
layout techniques. The metric list (C) shows a textual
list of all available metrics in the input file. In itself, this
panel is similar to the text-based output of metric tools
such as SAAT [10]. For every metric, the list shows its
name, type (indicated by the letter “b” for boolean and
“ï” for integer), and a checkbox to select the metric for
display (Figure 4 left).

Visualizing a metric proceeds as follows. First, the
desired metric is checked in the list (D). A metric icon
appears now atop of all UML elements in the canvas for
which that metric is available. Several types of metric
icons are available to choose from. They differ in the
way they map the metric value to a visual attribute, as
well as whether they work for boolean or integer
metrics. We implemented the following integer metric
icons (the visual attribute that maps the metric value is
given in brackets): 2D rectangles (color, using a blue-to-
red rainbow colormap), 2D height bars (y dimension),
2D circles (radius), 2D pies (circle arc), 3D bars (z
dimension) and 3D cylinders (z dimension). For boolean
metrics, we implemented several flavors of 2D
checkbox icons. If several metric values are to be
displayed for a UML element, MetricView lays out their
chosen metric icons in a 2D grid layout over the element

drawing itself. Finally, various metric icon specific
parameters, such as cylinder icon and circle arc icon
resolution, checkbox symbols, colormap color entries,
and so on, can be tuned via GUI controls (E).

A

B

C

D

E

Figure 3: MetricView visualization overview

Figure 4 (right) shows such an UML class element

with four metrics M1, M2 (boolean) and M3, M4
(integer) displayed, using two checkbox icon flavors
and twice the same 2D height bar icon respectively. To
let users make the correspondence between the
displayed icons and the metrics in the metric list, we use
two visual curs, as follows. First, a layout legend panel
is drawn in MetricView (Figure 3C). The panel shows
the grid layout used for to position icons over the UML
elements in the canvas. Second, every metric in the
metric list (Figure 3D) displays a small colored type
symbol right to its check box (Figure 4 left). The layout
legend displays the colors of the metrics that are
selected from the metric list to be visualized in the
canvas. Thus, the user can, in two steps, see which
metrics are displayed over a given UML element, by a)
looking at the color of the corresponding position in the
layout legend and b) looking at the metric with that
color in the metric list. Although direct icon-to-metric

Layout legend

M1

M2

M3

M4

Metric list

M1 M2

M4 M3

Metric icons
Figure 4: Visual mapping of metric list (left) to metric icons (right) via layout legend (middle)

association is also possible by clicking a metric icon in
the canvas and getting its associated metric entry in the
list, the previous two-step visual mechanism is better,
since it allows one to directly interpret all metric icons
present on all the canvas elements.

In comparison, SoftVision’s icon customization
features are technically more powerful than those of
MetricView. SoftVision icons (called glyphs) can be
any 2D or 3D graphical object, of which all attributes
(shape, color, texture, lighting, size, and even interactive
behavior) can be parameterized by any number of
metric values by user-defined scripts. MetricView icons
are a limited set of shapes, and the metric to shape
attribute parameterization is strictly one to one.
However, our extensive experience with SoftVision
showed its icon mechanism to be often unnecessarily
complex and hard to grasp for end users. Often, users
want just a small icon type set, with straightforward
parameterization and meaning, which is usable via
pointing and clicking, with no scripting involved.
Hence, our choice for the icon design used in
MetricView.

A second visualization issue is how to let users freely
navigate between the structural (UML) information and
the metric information in the same view. We solved this
problem by controlling the transparency of the two. By
changing both the UML diagram (αS) and metric icon
(αM) transparencies interactively via two sliders, users
can effectively and efficiently change the focus from the
structure (Figure 6 top, αS=0.8, αM=0.2) and metrics
(Figure 6 bottom, αS=0.2, αM=0.8). In the extreme
cases, we obtain a pure UML diagram visualization
(αS=1, αM=0) or a pure histogram-like metric
visualization (αS=0, αM=1).

A third visualization issue is the use of spatial
dimensions. MetricView is able to do both 2D and 3D
visualizations. Figure 5 (bottom) shows a 3D
visualization, where the xy plane contains the UML
diagram and the z dimension is used for the 3D metric
icons. Although this visualization uses the same
mechanisms as the one in Figure 1 (bottom) made with
the SoftVision tool, the one made with MetricView

provides more insight, due to the fine UML diagram
detail available as well as the various navigation and
metric customizations provided. Figure 5 (top) shows
the same data as in Figure 5 (bottom), but using a 2D
visualization. Interestingly enough, although we tried to
provide well-tuned, advanced 3D support in
MetricView, including 3D stereo display, most users
preferred the 2D mode. We recorded the same
experience from our use of SoftVision for software
visualization in reverse engineering activities [12]. The
only case, in both MetricView and SoftVision, when the
use of 3D was preferred, was when users wanted to
quickly get a comparative overview of several metric
values defined for many elements of a given
architecture. Using height bars produced here
landscape-like visualizations such as Figure 1 and
Figure 5, which, when navigated, allowed users to
immediately spot outlier values (e.g. maxima).

Tuning transparency, as described before, prevents
UML diagram element occlusion by the metric icons.
Still, this is not a solution when one desires to view both
metric and structural data. We solve this by allowing
users to tune the metric grid layout by scaling and
translating the 2D layout area used, on every element, to
display the metric icons. Figure 5 uses this technique to
‘shift’ the metric icons to the upper-right quarter of the
elements, making the UML annotations (class and
method names, etc) visible. Another visualization issue
is how to address questions such as “spot all
components having important properties”. We assume
these properties are described by specific metric values
or value ranges. To allow easy spotting of such
components, we provide several simple interval-based,
slider-like, filtering mechanisms in MetricView’s
interface. These allow users to select which metric
values, or ranges, to display. No icons are displayed for
metric values outside the selection, so this immediately
lets users spot those diagram elements that match their
selection. We did not implement more sophisticated
metric filtering. Our previous experience with this
situation in SoftVision showed that the best result is
reached by computing more involved filtering as
metrics and doing only basic filtering interactively.

Figure 5: Planar (top) and 3D (bottom) layouts

Figure 6: Tuning diagram and metric opacity

As a last example to illustrate the combination of
structural and metric information, we present a
visualization showing 15 metrics per diagram element
(Figure 7). We use here the perspective, instead of the
orthogonal, projection (compare to Figure 5 bottom).
Although the displayed metric data amount per
element is high, the 3D layout (xy plane for structure,
z axis for metrics), and the usage of the same color for
the same metric icon, provides an effective way to
compare the various model elements.

MetricView is implemented in C++ using OpenGL
for graphics, FreeType for the UML diagram high-
quality fonts, and wxWindows for the user interface,
and runs under both Windows and Linux. It can
interactively visualize XMI datasets of tens of
megabytes containing UML models up to thousand
classes, on a Pentium 4 PC at 1.8 GHz with
accelerated OpenGL. A prototype of MetricView
showing all features presented in this paper, including
an easy-to-use installer and example UML and metric
data is publicly available at:

http://www.win.tue.nl/empanada/metricview

Figure 7: 3D perspective visualization with 15

metrics per component

4. Conclusions and future work

We have presented MetricView, an integrated
software tool for interactive exploration of UML
software models and software metrics. Throughout the
design of MetricView, its users, and their preferences,
stood central, as follows. First, MetricView builds
upon the UML visualizations, using diagrams and
graphical layouts which are familiar to software
architects and developers. Metric information,
computed by separate software architecture analysis
tools, is added to the UML diagram visualization in a
non-intrusive way. Users can continuously change the
appearance of the visualization between the two
extremes of a classical, architecture-only UML

diagram, and a histogram-like, metric-only display, by
the simple dragging of a slider. Second, MetricView
offers a wide range of fine-grained visualization
customization options, that allow users to specify
which metrics to display, how to arrange (layout)
them, which graphical shapes, colors, sizes, and so on,
to use for the metrics. Third, MetricView is designed
to fully decouple the implementation details of its four
main ingredients, or information types: the UML
layout and structural information; the metric
information; the metric layout (where to draw
metrics); and the metric mapping (how to draw
metrics). This allowed us, as proved by several use
cases, to quickly build visualization scenarios that
import UML information from various sources, e.g.
modeling tools; add metric data computed with third-
party software analysis tools; and easily choose, at
run-time, which metrics to display, and how.
Compared to our previous experience with SoftVision,
which was designed for similar goals, MetricView

allowed our users to combine structural and metric
information in visualizations in a fraction of the time
needed before, and with definitely more satisfying
results. MetricView is an evolving project. We are
currently working on several extension directions, as
follows. First, we plan to integrate several graphical
layout plug-ins, based on existing work in this area
[1]. This will allow users to quickly produce quality
visualizations even when no layout information is
present in the UML input data, and also work on novel
layouts to allow visualizing hundreds of elements on a
single screen with minimal cluttering. Second, we plan
to extend the metric visualizations beyond the metric-
per-component current capabilities, e.g. by computing
displaying more global, per subsystem, or per project
metrics. Finally, we work on improving the metric
computation tools themselves to extract more
insightful and usable information from software
architectures and display it within our improved
MetricView tool.

References

[1] Diehl, S. (ed.), Software Visualization, Proc. Dagstuhl
2001 Intl. Seminar, Springer, 2002.

[2] Eiglsperger, M., Kaufmann, M., Siebenhaller M. A.
Topology-Shape-Metrics Approach for the Automatic
Layout of UML Class Diagrams, Proc. ACM SoftVis,
ACM Press, 2003, pp. 189 – 198

[3] Fenton, N., Pfleeger, S. Software Metrics: A Rigorous
and Practical Approach, Intl. Thomson Computer Press,
1996

[4] Fowler, M. UML Distilled, 3rd ed., Addison-Wesley,
2003

[5] Grose, T., Doney, G., Brodsky, B., Mastering XMI: Java
Programming with XMI, XML, and UML, John Wiley &
Sons, OMG Press, 2002

[6] Tilley, S. R., K. Wong, M. Storey, H. A. Müller,
Programmable Reverse Engineering, Intl. Journal of
Software Engineering and Knowledge Engineering, vol.
4, no. 4, World Scientific, 1994, pp. 501-520

[7] Maletic, J.I., Marcus, A., Collard, M.L. A Task Oriented
View of Software Visualization, Proc. Vissoft’02, IEEE
CS Press, pp. 32-40

[8] Lange, C., Chaudron, M., Combining metric data and
the structure of UML models using GIS visualization
approaches, Proc. Intl. Conf. on Information
Technology: Coding and Computing, 2005, pp. 322 –
326

[9] Marcus, A., Feng, L., Maletic, J.I., 3D Representations
for Software Visualization, Proc. ACM SoftVis ‘03,
ACM Press, 2003, pp. 27 – 36.

[10] Lange, C. F. J., Empirical Investigations in Software
Architecture Completeness, Master’s Thesis, Eindhoven
University of Technology Press, 2002

[11] Rational Rose: www.306.ibm.com/software/rational/

[12] Storey, M.A., Best, C., Michaud, J., Rayside, D.,
Litoiu, M., Musen, M., SHriMP Views: An Interactive
Environment for Information Visualization and
Navigation, Proc. CHI ‘02, ACM Press, NY, 520 – 521

[13] Telea, A., Maccari, A., Riva, C., An Open Toolkit for
Prototyping Reverse Engineering Visualization, Proc.
IEEE VisSym ‘02, EG Association, 2002, pp. 241 – 251

[14] Together: http://www.borland.com/together, 2005

[15] Voinea, L., Telea, A., A Framework for Interactive
Visualization of Component-Based Software, Proc.
EUROMICRO ’04, IEEE CS Press, 2004, pp. 567 – 574

[16] Wust, J. SDMetrics: The software design metrics tool
for UML, http://www.sdmetrics.com, 2005

