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Abstract

The importance of dispersal for biodiversity has long been recognized. However, it was

never advertised as vigorously as Stephen Hubbell did in the context of his neutral

community theory. After his book appeared in 2001, several scientists have sought and

found analytical expressions for the effect of dispersal limitation on community

composition, still in the neutral context. This has been done along two relatively

independent lines of research that have a different mathematical approach and focus on

different, yet related, types of results. Here, we study both types in a new framework that

makes use of the sampling nature of the theory. We present sampling distributions that

contain binomial or hypergeometric sampling on the one hand, and dispersal limitation

on the other, and thus views dispersal limitation as ubiquitous as sampling effects.

Further, we express the results of one line of research in terms of the other and vice

versa, using the concept of subsamples. A consequence of our findings is that

metacommunity size does not independently affect the outcome of neutral models in

contrast to a previous assertion (Ecol. Lett., 7, 2004, p. 904) based on an incorrect

formula (Phys. Rev. E, 68, 2003, p. 061902, eqns 11–14). Our framework provides the

basis for development of a dispersal-limited non-neutral community theory and applies

in population genetics as well, where alleles and mutation play the roles of species and

speciation respectively.

Keywords

Binomial sampling, biodiversity, community, dispersal-limited sampling, Ewens sampling

formula, hypergeometric sampling, neutral model, random sampling.
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I N TRODUCT ION

The importance of dispersal in ecology has long been

recognized (e.g. Grinnell 1922; MacArhur & Wilson 1967;

Levins & Culver 1971; Brown & Kodric-Brown 1977;

Hanski 1983; Tilman 1994; Loreau & Mouquet 1999). Yet,

seldom has a more vigorous (quantitative) case been made

than by Hubbell (1997, 2001) who presented a comprehen-

sible suite of stochastic neutral models of community

structure based on the fundamental processes of speciation,

extinction and dispersal. In the most often cited model of

these, the local community consists of J individuals of

different species whose offspring compete for sites that are

left open after an individual dies. They do not only compete

with one another, but they also compete with immigrants

from outside the local community: there is a probability m

that an open site is colonized by an immigrant. If m < 1 the

local community is called dispersal-limited. With probability

1 ) m, the open site is colonized by offspring of a local

individual. Each individual in the local community, regard-

less of species, has an equal chance of colonizing the open

site (the neutrality assumption). Each open site is immedi-

ately recolonized so community size remains constant (the

zero-sum assumption). The immigrants come from a

regional species pool (the metacommunity; Hubbell 2001)

that is in a stochastic balance between speciation and

extinction. This balance is characterized by the parameter h,
a composite of the speciation rate m and metacommunity

size JM. Speciation in this model occurs by �point mutation�
[in other models Hubbell (2001) uses �random fission�
speciation which is a first step towards modelling allopatric

speciation]. This model resembles the continent-island

infinite alleles model with Moran (1962)-like reproduction

in population genetics (Wright 1931; Moran 1962; Ewens

1972); the difference with Moran (1962) reproduction is that

the individual that dies does not produce any offspring that
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could replace it. We note that the terminology �continent-
island� is only historical; the theory also applies to a local

sample from a continuous landscape.

Hubbell’s (2001) model has been heavily criticized, mostly

because of its neutrality assumption. But even if this

assumption turns out to be untenable, we should not reject

the theory completely, as this would be throwing out the

baby with the bath water. It is now realized that the neutral

model is the appropriate null model with which other

models containing more processes should be compared.

Hubbell (2001) thus effectively introduced Ockham’s razor

to community ecology, i.e. the maxim that science should

aim at finding the minimal set of processes that can

satisfactorily explain observed phenomena. However, less

attention has been given to the fact that Hubbell (2001) put

dispersal at the top of this minimal set. In the present study,

we argue that dispersal is just as ubiquitous as sampling

effects and can even be framed in the same mathematical

setting.

While Hubbell (2001) presented analytical results for his

model without dispersal limitation (m ¼ 1) because these

were already known in population genetics (Ewens 1972;

Karlin & McGregor 1972), he provided only simulation

results for the biologically more interesting case with

dispersal limitation (m < 1). This made it difficult to test

accurately whether the neutral model can explain observed

diversity patterns, such as the species-abundance distribu-

tion, better or worse than other community models (McGill

2003). Recently, however, analytical results for the case

m < 1 have been found, along two distinct lines of research.

These lines of research study the problem from the two

perspectives that result from the duality of the theory

(Etienne & Olff 2004b) with respect to time: forwards- and

backwards-in-time.

The forwards-in-time perspective uses a master equation

approach with a Markovian description of states and

transitions (McKane et al. 2000, 2004; Vallade & Houch-

mandzadeh 2003; Volkov et al. 2003; Alonso & McKane

2004). This has resulted in exact analytical expressions and

various approximations for the �expected number of species

with a certain abundance� in a sample of J individuals from a

dispersal-limited local community: if n is the abundance,

then E[Sn|h, m, J] denotes the expected number of species

with this abundance in this sample. Vallade & Houchmand-

zadeh (2003) and subsequent studies used the shorthand

notation of Æ/næ or S(n) for this expectation, but we employ

the longer notation to emphasize that this is an expectation

that follows from the model in contrast to the actually

observed number of species with abundance n, which we

will denote by Un as in Etienne (2005). The expected

number of species with a certain abundance is the classical

approach to study commonness and rarity in community

ecology and also a very useful tool in exploring the

behaviour of community models. However, it cannot be

used to obtain accurate estimates of the model parameters.

The backwards-in-time perspective takes a genealogical,

coalescent-type approach where community members are

traced back to the ancestors that once immigrated into the

community (Etienne & Olff 2004a,b; Etienne 2005). This

line has resulted in an analytical expression for the �joint
multivariate probability of observing S species with abun-

dances� n1, n2,…,nS in a sample of J individuals from the

local community. Let us denote this collection by ~D, i.e.
~D ¼ ðn1; n2; . . . ; nS Þ. The joint multivariate probability is

thus the likelihood P ½~Djh; m; J �, which can be used in

maximum likelihood estimation of model parameters from

species-abundance data (Etienne 2005) or other methods

based on the likelihood (Etienne & Olff 2005), but is less

useful for studying the behaviour of the model.

Because both lines of research work on the same model

and have provided exact analytical results, they must

somehow be related, but until now the common framework

has not been made explicit. In the present study, after

presenting the basic results of the two lines of research, we

build such a framework. Its most important property is the

sampling nature of the theory and the role that dispersal

plays in it. We introduce new distributions, called the

dispersal-limited binomial and dispersal-limited hypergeo-

metric distributions by which the results of both lines of

research arise naturally. As a result we find that the

expression for E[Sn|h, m, J] for finite metacommunity size,

as reported by Vallade & Houchmandzadeh (2003) is

incorrect. An important consequence is that it is not

possible to estimate metacommunity size and hence the

speciation rate from species-abundance data, as was

suggested based on this formula (Alonso & McKane 2004,

p. 904). Next, we link the two lines of research by expressing

results of one line of research in terms of the other and vice

versa, by making use of the concept of subsamples. Most of

our results are summarized in Table 1. We end with a

discussion of our results that tries to open new doors to

further development of neutral as well as non-neutral

theories in community ecology and population genetics.

RESUL T S OF THE TWO L INES OF RESEARCH

No dispersal limitation

Without dispersal limitation (m ¼ 1), E[Sn|h, J] is given by

(Moran 1958, Watterson 1974 and Vallade & Houchmand-

zadeh 2003):

E½Snjh; J � ¼
h
n

Cð J þ 1Þ
Cð J þ 1� nÞ

CðJ þ h� nÞ
CðJ þ hÞ ð1Þ

The multivariate probability distribution is given by the

Ewens sampling formula (Ewens 1972)

1148 R. S. Etienne and D. Alonso
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P ½D
!
jh; J � ¼ J !QS

i¼1 ni
QJ

j¼1 Uj !

hS

ðhÞJ
ð2Þ

where Uj is the observed number of species with abundance

j, as we noted above, and (h)J is the Pochhammer symbol

defined as

ðhÞJ ¼
YJ
i¼1

ðhþ i � 1Þ ¼ Cðhþ J Þ
CðhÞ ¼

XJ
j¼1

sðJ ; jÞhj ð3Þ

where C(x) is the gamma function and �s( j, k) is the so-

called unsigned Stirling number of the first kind. We will

frequently use the last two equalities in our formulas below.

We also note that �s( j, 1) ¼ C( j) ¼ ( j ) 1)!. Below we will

also frequently use the definition of the beta function:

Bða; bÞ ¼ CðaÞCðbÞ
Cða þ bÞ ¼

Z 1

0

xa�1ð1� xÞb�1
dx ð4Þ

In Pochhammer notation, eqn 1 becomes even more

compact:

E½Snjh; J � ¼
h
n

ð J þ 1� nÞn
ð J þ h� nÞn

ð5Þ

Note that JM does not enter eqns 1 and 2, except by its role

in h. Below, we make this more explicit.

Dispersal limitation

With dispersal limitation (m < 1) and metacommunity size

JM tending to infinity, E[Sn|h, m, J] is given by Vallade &

Houchmandzadeh (2003) and Alonso & McKane (2004):

E½Snjh;m; J � ¼
h

ðI ÞJ
J

n

� �Z 1

0

ðIxÞn½I ð1�xÞ�J�n

ð1�xÞh�1

x
dx

ð6Þ
where, we used notation of Etienne (2005) for later com-

parison. Here, J
n

� �
is the usual binomial coefficient,

J

n

� �
¼ J !

n!ð J � nÞ! ð7Þ

and I is a transformed immigration parameter,

I ¼ m

1� m
ð J � 1Þ ð8Þ

The parameter I is called l in Vallade & Houchmandzadeh

(2003) and c in Alonso & McKane (2004), while Ix is called

k in Volkov et al. (2003). I is related to the immigration

probability m and local community size J as the fundamental

biodiversity number h is related to the speciation probability

m and metacommunity size JM (Vallade & Houchmandzadeh

2003; Alonso & McKane 2004; Etienne 2005),

Table 1 Overview of the analytical results for the species-abundance distribution of a local sample in neutral community theory

Quantity JM fi ¥ JM < ¥

m ¼ 1

E[Sn|h, J]
R 1
0
Pbin½njx; J �XðxÞdx ¼

PJM
j¼1 Phyp½nj j ; JM; J �E Sj jh; JM

� �
P½D

!
jh; J �

QS

i¼1

R 1

0
Pbin ½ni jx; Ji �XðxÞdxQJ

j¼1
Uj !

¼
QS

i¼1

PJM

j¼1
Phyp ½ni jj ;JM; J �E Sj jh; JM½ �QJ

j¼1
Uj !

m < 1

E[Sn|h, m, JM, J]
R 1
0
PDL
bin ½njm; x; J �XðxÞdx ¼

PJM
j¼1 P

DL
hyp½njm; j ; JM; J �E Sj jh; JM

� �
P½D

!
jh; m; JM; J �

QS

i¼1

R1
0

PDL
bin ni jm; x; Ji½ �bX½xjh;m;D!iþ1 �dxQJ

j¼1
Uj !

¼

QS

i¼1

R1
0

PDL
bin ni jm; x; Ji½ �bX½xjh;m;D!iþ1 �dxQJ

j¼1
Uj !

Let the entire metacommunity consist of JM individuals and let the sample consist of J individuals of S different species with abundances

n1, n2,… ,nS. Let us denote this sample by D
!
, i.e. D

! ¼ ðn1; n2; . . . ; nS Þ; Uj is the number of species in the sample that have

abundance j. The model parameters are the fundamental biodiversity number h, which is a measure of the regional diversity,

and the fundamental dispersal number I. The immigration probability m is a function of I, see eqn 8, m ¼ I
I þ J � 1

. The

quantities E[Sn|h, J] and E[Sn|h, m, JM, J] represent the expected number of species with abundance n in the cases without

dispersal limitation (I ¼ ¥, i.e. m ¼ 1) and with dispersal limitation (I < ¥, i.e. m < 1) respectively, according to the neutral

model. X(x)dx, where X(x) is given by eqn 21, is the number of species with relative abundance between x and x + dx in the

metacommunity (regional species pool); bX½xjh; m; D! iþ1�dx is a modified version of that, see eqn 39. The probabilities

P½D!jh; J � and P½D!jh; m; J � represent the joint multivariate probability of observing S species with abundances n1, n2,… ,nS in

a sample of J individuals, again for the cases without and with dispersal limitation respectively. Pbin[n|x, J], Phyp[n|j, JM, J],

PDL
bin ½njm; x; J � and PDL

hyp½njm; j ; JM; J � are the binomial, hypergeometric, dispersal-limited binomial and dispersal-limited

hypergeometric distributions respectively, given in eqns 15, 20, 24 and 28. These four distributions are the distributions by

which the expressions for the regional species-abundance distribution must be weighed to obtain the expressions for the local

sample. The binomial distribution Pbin[n|x, J] and the hypergeometric distribution Phyp[n|j, JM, J] are the limits of the dis-

persal-limited hypergeometric distribution PDL
hyp½njm; j ; JM; J � for m fi 1 in the cases JM fi ¥ and JM < ¥ respectively.
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h ¼ m
1� m

ðJM � 1Þ ð9Þ

In analogy to h, we will call I the �fundamental dispersal

number�.
Vallade & Houchmandzadeh (2003) derived a different

expression for E[Sn|h, m, JM, J] for finite metacommunity

JM:

� E Snjh;m; JM; Jð � ¼ J

n

� �XJM
j¼1

I
j

JM

� �
n
I 1� j

JM

� �h i
J�n

Ið ÞJ
� E Sj jh; JM

� �
�

ð10Þ
Wewill showbelow that this expression is incorrect (hence the

*), and that the expression forE[Sn|h, m, JM, J] for finite JM is

also given by eqn 6. This important finding that JM only enters

the formulae through h, see eqn 9, will be discussed later.

The joint multivariate probability distribution for m < 1

is given by a new sampling formula (Etienne 2005)

P ½D
!
jh;m; J � ¼ J !QS

i¼1 ni
QJ

j¼1 Uj !

hS

Ið ÞJ

XJ
A¼S

K ðD
!
;AÞ I A

hð ÞA
ð11Þ

Here, the K ðD
!
; AÞ for A ¼ S,… ,J are coefficients fully

determined by the data, being defined as

K ðD
!
;AÞ ¼

X
fa1;...;aS j

PS

i¼1
ai¼Ag

YS
i¼1

s ni ; aið Þs ai ; 1ð Þ
s ni ; 1ð Þ ð12Þ

In Appendix A (see Supplementary Material) we show that

eqn 11 can also be written in integral notation

P ½D
!
jh;m; J � ¼ J !QS

i¼1 ni
QJ

j¼1 Uj !

hS

Ið ÞJ

Z 1

0

. . .

Z 1

0

YS
i¼1

Iixið Þni
1� xið Þh�1

xi

" #
dx1 . . . dxS

ð13Þ
where

Ii ¼ I
Yi�1

k¼1

1� xkð Þ ð14Þ

Equation 13 provides a way to avoid Stirling numbers in

computing the multivariate probability, e.g. by Monte Carlo

integration. This will, however, be very computationally

intensive for a large number of species S.

We also note that eqns 2 and 11 must be multiplied byQJ

j¼1
Uj !

S !
if the species are labelled in some way because their

identity matters (Johnson et al. 1997, chapter 41).

THE SAMPL ING NATURE OF THE NEUTRAL THEORY

The essential difference between the actual distribution of

species abundances in the whole community and the

observed abundance distribution in samples was already

recognized by Fisher et al. (1943), and addressed by using

Poisson random sampling (Pielou 1969; Bulmer 1974) and,

more recently and in a fully exact way, by using hyperge-

ometric random sampling (Dewdney 1998). In population

genetics, it was immediately acknowledged that the Ewens

sampling formula represents a theory where such sampling

effects are fully taken into account (hence the name).

However, it has not been emphasized enough in community

ecology that this is also true for Hubbell’s (2001) extension

of the theory that includes dispersal limitation. In this

section, we emphasize this by building a single sampling

framework that contains the previous expressions that come

from the two separate lines of research.

A particular property of our model formulation is the

invariance of the formulae under hypergeometric sampling

(drawing without replacement), i.e. if we take a subsample of

size J2 from a sample of size J1 ( J1 > J2), then the formulae

for the subsample are identical to those for the sample when

we simply substitute J2 for J1. The mathematical formulation

is as follows. We first define the hypergeometric distribution

as

Phyp½nj j ; J1; J2� ¼
j
n

� �
J1�j
J2�n

� �
J1
J2

� � ð15Þ

which is the probability of sampling n individuals of a

species in a subsample of size J2 given that there are j

individuals of this species in the sample of size J1. More

generally, given a sample of size J1 that contains S1 species

with abundances j1,… , jS1, the probability of drawing a

subsample of size J2 with abundances n1,… ,nS1 (some of

which may equal 0) is given by

Phyp½D2

!
jD1

!
; J1; J2� ¼

QS1
i¼1

ji
ni

� �
J1
J2

� � ð16Þ

where D1

!
¼ ðj1; . . . ; jS1Þ and D2

!
¼ ðn1; . . . ; nS1Þ with

some of the ni equalling 0 if S2 < S1.

Invariance under sampling then means

E Snjh;m; J2½ � ¼
XJ1
j¼n

Phyp½nj j ; J1; J2�E Sj jh;m; J1
� �

ð17aÞ

P ½D2

!
jh;m; J2� ¼

X
D1

!	 
 Phyp½D2

!
jD1

!
; J1; J2�P½D1

!
jh;m; J1�

ð17bÞ
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where the sum in the second line is over all distinct data sets

D1

!
that have size J1.

No dispersal limitation

When there is no dispersal limitation, a local community is a

simple sample from the metacommunity. Then we have eqn

17a with J1 ¼ JM and J2 ¼ J; hence

E Snjh; J½ � ¼
XJM
j¼1

Phyp½nj j ; JM; J �E Sj jh; JM
� �

ð18Þ

For infinite metacommunity size JM this can also be written as

E Snjh; J½ � ¼
Z1
0

Pbin½njx; J �XðxÞdx ð19Þ

where Pbin[n|x, J] is the binomial distribution (drawing with

replacement),

Pbin½njx; J � ¼
J

n

� �
xn 1� xð ÞJ�n ð20Þ

and

XðxÞ ¼ hð1� xÞh�1

x
ð21Þ

is the abundance distribution in the infinite metacommunity

(Ewens 1972; Alonso & McKane 2004; see also Table 1).

We remark that the binomial distribution is the limit of the

hypergeometric distribution for infinite metacommunity size

(in which case there is no difference between sampling with

and without replacement).

Equations 18 and 19 are identical for finite JM as well:

they both lead to eqn 1, the former due to the sampling

nature of the theory expressed in eqn 17a, the latter by

recognizing the beta distribution in the integrand and

writing factorials as gamma functions:

E Snjh; J½ � ¼ J

n

� �Z 1

0

xn 1� xð ÞJ�nhð1� xÞh�1

x
dx

¼ h
C J þ 1ð Þ

C nþ 1ð ÞC J � nþ 1ð Þ
C nð ÞC hþ J � nð Þ

C hþ Jð Þ

¼ h
n

C J þ 1ð Þ
C J � nþ 1ð Þ

C hþ J � nð Þ
C hþ Jð Þ

ð22Þ

Dispersal limitation

With dispersal limitation, the local community is no

longer a simple hypergeometric sample from the meta-

community. It is a dispersal-limited hypergeometric

sample (which is dispersal-limited binomial for infinite

JM). We will derive an expression for the corresponding

distribution.

We first consider a metacommunity of infinite size. Let us

write eqn 6 as (see also Table 1)

E Snjh;m; J½ � ¼
Z1
0

PDL
bin njm; x; J½ �XðxÞdx ð23Þ

where

PDL
bin njm; x; J½ � ¼ J

n

� �
Ixð Þn I 1� xð Þð ÞJ�n

Ið ÞJ
ð24Þ

and X(x) is given by eqn 21. Equation 24 was first calculated

in the context of a stochastic model of community dynamics

based on the community matrix (McKane et al. 2000; Solé

et al. 2000), and then applied to the context of neutral

community ecology (Volkov et al. 2003; McKane et al.

2004). It also appears in a similar model in population

genetics (Wakeley & Takahashi 2004). Mathematically, it is

known as the negative hypergeometric distribution which is

a special case of the Pólya-Eggenberger distribution which

in turn is a special case of the unified hypergeometric dis-

tribution (Johnson et al. 1997, chapters 39 and 40). In eqn

23, PDL
bin ½njm; x; J � must be interpreted as the probability for

a dispersal-limited species of relative abundance x in the

metacommunity (with infinite size) to be represented by

exactly n individuals in a sample of size J (McKane et al.

2004). Our notation of PDL
bin ½njm; x; J � refers to the fact that

eqn 24 is the dispersal-limited binomial distribution; it be-

comes the binomial distribution (eqn 20) as m fi 1

(Alonso & McKane 2004). We can generalize eqn 24 to

PDL
bin ½D1

!
jm;D2

!
; J � ¼ J !

n1! . . . nS !

QS
i¼1 Iixið Þni

Ið ÞJ
ð25Þ

where, Ii is given by eqn 14 and D2

!
is a vector of relative

abundances xi. This provides an alternative derivation of

eqn 13; this is most easily done with the �labelled-species�
form of eqn 11.

For finite metacommunity size the analogue of the

dispersal-limited binomial distribution PDL
bin will be called the

dispersal-limited hypergeometric distribution PDL
hyp. Here, we

derive an expression for this distribution. We follow the

second line of research in tracing back individuals in a

sample from the local community to their ancestors that

once immigrated into that local community (Etienne & Olff

2004b). These ancestors represent a sample from the

metacommunity and thus obey all the formula we have

presented for the case m ¼ 1. We only need to establish the

link between the current sample and this sample of

ancestors. Let the sample of ancestors contain A ancestors.

Its probability distribution is also governed by the Ewens

A dispersal-limited sampling theory 1151
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sampling formula, with parameter I (Etienne & Olff 2004b;

see Wakeley 1998 for similar equation in population

genetics):

P AjmðI Þ; J½ � ¼ s J ;Að Þ I A

Ið ÞJ
ð26Þ

Let there be a ancestors of the species under consideration.

The probability of finding a ancestors of this species, given

that there are j individuals of this species in the metacom-

munity, is the hypergeometric distribution Phyp[a|j, JM, A]

of eqn 15. The probability that a ancestors have n descend-

ants among the J individuals in our dispersal-limited sample

is computed as follows. From combinatorics it is known

that there are �s(J, A) partitions of J individuals into A

groups (each group containing at least one individual). For

example, if J ¼ 4 and A ¼ 3, the possible partitions are

(a, b, cd), (a, bc, d), (ab, c, d), (ac, b, d), (ad, b, c) and (a, bd, c).

Likewise there are �s(n, a) partitions of n individuals into a

groups and �s(J ) n, A ) a) partitions of the remaining J ) n

individuals into A ) a groups. There are J
n

� �
ways of

choosing n out of J individuals. Likewise, there are A
a

� �
ways

of choosing a out of A ancestors. The probability

P[n|a, A, J] that n individuals in our local community sample

descend from exactly a ancestors in our metacommunity

sample is given by Wakeley (1999)

P nja;A; J½ � ¼
J
n

� �
A
a

� � s n; að Þ s J � n;A� að Þ
s J ;Að Þ ð27Þ

The dispersal-limited hypergeometric distribution is there-

fore a sum of the product of the three probabilities given in

eqns 15, 26 and 27 over all possible values of A and a:

PDL
hyp njm; j ; JM; J½ � ¼

XJ
A¼1

Xn
a¼1

P nja;A; J½ �Phyp½aj j ; JM;A�

P AjmðI Þ; J½ � ¼ J

n

� �XJ
A¼1

Xn
a¼1

s n; að Þs J � n;A� að Þ

� I A

Ið ÞJ
1
A
a

� � Phyp½aj j ; JM;A�
ð28Þ

For m fi 1, I becomes infinite and only the term A ¼ J

and a ¼ n contribute to the sum, so eqn 28 becomes

Phyp[n|j, JM, J], because �s(n, n) ¼ 1. For JM fi ¥, the

hypergeometric distribution Phyp[a|j, JM, A] becomes the

binomial with parameter x ¼ j=JM and the remaining sums

in terms of Stirling numbers and powers of x can be written

as Pochhammer symbols resulting in eqn 24. So, the new

dispersal-limited hypergeometric distribution has the right

limit behaviour. For any value of JM, when m tends to 1, it

tends to the random hypergeometric sampling distribution.

When JM tends to infinity, for any value of m, it tends to the

dispersal-limited binomial distribution. With the new

distribution (eqn 28), we can write the analogue of eqn 23

for finite JM (see also Table 1):

E Snjh;m; JM; J½ � ¼
XJM
j¼1

PDL
hyp njm; j ; JM; J½ �E Sj jh; JM

� �
ð29Þ

When we compare this to the result of Vallade & Houch-

mandzadeh (2003) given in eqn 10, we see that these

expressions are different in general, being only equal for

infinite JM for which we have eqn 23. The expression of

Vallade & Houchmandzadeh (2003) given in eqn 10 is

incorrect, because it is not invariant under hypergeometric

sampling. In fact, it corresponds to an approximate dis-

cretization of the exact integral result (eqn 6) and only

converges to eqn 6 when JM tends to infinity (see Appendix

B). In Fig. 1 we show that eqn 10 converges to the exact

result (eqn 6) when JM is large enough, but substantially

deviates from it for lower values of JM. As in the case

without dispersal limitation, the expressions (eqns 23 and

29) for infinite and finite metacommunity size JM are iden-

tical, as we shown in Appendix C (see also Table 1).

The dispersal-limited hypergeometric distribution can be

generalized to
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Figure 1 Example of the difference in expected number of species

between the exact result (eqn 6) and the approximation (eqn 10) by

Vallade & Houchmandzadeh (2003) for two different values of

metacommunity size. The parameter values used are h ¼ 50 and

m ¼ 0.5. Local community size is J ¼ 20 000. Particularly the

diversity of species with low abundances is underestimated with

eqn 10. The lower and upper boundaries of the abundance classes

are such that abundance class i contains all abundances n for which

2i)1 £ n < 2i.
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PDL
hyp D1

!
jm;D2

!
; JM; J

h i
¼ J !

n1! . . . nS !XJ
A¼1

Xn1
a1¼1

. . .
XnS�1

aS�1¼1

YS�1

i¼1

s ni ; aið Þ
" #

s J �
XS�1

i¼1

ni ;A�
XS�1

i¼1

ai

 !

� I A

Ið ÞJ
a1! . . . aS !

A!
Phyp½ a

! j j
!
; JM;A� ð30Þ

which leads to eqn 11 when applied to a sample from the

metacommunity [which is governed by the (�labelled-species�
form of the) Ewens sampling formula (eqn 2)]. While eqn 28

has a parallel expression in population genetics (Wakeley

1999), its generalization (eqn 30) is, to our knowledge,

entirely new.

The subsample approach

In this section, we relate the expected number of species,

eqns 1 and 6, to the corresponding multivariate probability

distributions, eqns 2 and 11. First, we examine whether eqns

2 and 11 can be expressed in terms of eqns 1 and 6,

respectively, for the observed values n1,… ,nS. This does not

only show the link between the two types of expressions

(from two lines of research), but it has practical importance

as well, because the expected number of species with a

particular abundance is usually easier to obtain (using the

master equation approach) than the multivariate probability

distribution.

We need the concept of subsamples. First, we note that

P ½D
!
jH; J � ¼ P ½n1; . . . ; nS jH; J � can, like every multivari-

ate probability, be written as

P ½D
!
jH; J � ¼ P n1; . . . ; nS jH; J½ � ¼ P n1jH; J½ �P n2jn1;H; J½ �

. . . P nS jn1; . . . ; nS�1;H; J½ �
ð31Þ

where Q represents the model parameters [h or (h, m)].
Equation 31 just follows from the definition of conditional

probabilities.

The first term in eqn 31, P [n1|Q, J], is the probability

of a species in a sample of size J to have exactly

abundance n1. The second term in eqn 31, P [n2|n1, Q, J],
is the probability of a species in sample size of size J to

have exactly abundance n2 given that another species in

the sample has abundance n1. This probability is

equivalent to the probability of a species in sample of

size J ) n1 to have exactly abundance n2. It can therefore

be expressed as

P n2jn1;H; J½ � ¼ P n2jH; J � n1½ � ð32Þ
We call the sample size J ) n1 the effective sample size for

species 2. More generally, we can define the effective sample

size Ji for species i as

Ji ¼ J �
Xi�1

k¼1

nk ð33Þ

This definition implies, for instance that J1 ¼ J, JS ¼ nS and

JS+1 ¼ 0. For later convenience, we define the partial data sets

Di

!
¼ ni ; . . . ; nSð Þ ð34Þ

entailing D1

!
¼ D

!
and DS

!
¼ nS . We further define Uni

as

the number of species with abundance ni in the subsample

Di

!
.

With the definitions in eqn 33, eqn 31 becomes

P½D
!
jH; J � ¼

YS
i¼1

P ni jH; Ji½ � ð35Þ

In Appendix D we show that this leads to the following

expressions (see also Table 1):

P½D
!
jh; J � ¼

QS
i¼1 E Sni jh; Ji½ �QJ

j¼1 Uj !
ð36Þ

and

P½D
!
jh;m; J � ¼

QS
i¼1
bE Sni jh;m; Ji½ �QJ
j¼1 Uj !

ð37Þ

with

bE Sni jh;m; Ji½ � ¼
Z1
0

PDL
bin ni jm; x; Ji½ �bXðxjh;m;D! iþ1Þdx

ð38Þ
where PDL

bin ½ni jm; x; Ji � is defined in eqn 24 andbXðxjh; m; D! iþ1Þ is defined bybXðxjh;m;D! iþ1Þ ¼ X xð ÞF xjh;m;D
!

iþ1

� �
ð39Þ

with X(x) given eqn 21 and Fðxjh; m; D
!

iþ1Þ defined in

equation (D-7) in Appendix D. Comparing eqns 23 and 38

we can interpret eqn 38 as having an abundance distribution

X(x) that is modified by a factor that takes into account the

subsample D
!

iþ1. We further note that eqns 36 and 37 are

even simpler when species are labelled: then there is only S !

in the denominator.

We also note that eqns 1 and 6 can be derived from the

multivariate probability distributions (eqns 2 and 11) using

the equality

E SnjH; J½ � ¼
XJ
Un¼0

UnP UnjH; J½ � ð40Þ

where P[Un|h, J] is the probability that exactly Un species

with abundance n are observed. This is a sum over all

possible data sets that have Un species with abundance n:
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E SnjH; J½ � ¼
XJ
Un¼0

Un

X
D
!
jUn

	 
 P½D! jH; J � ð41Þ

In Appendix E we show that with help of the subsample

concept this indeed leads to eqns 1 and 6.

Watterson (1974) already provided alternative derivations

for the mathematically identical model in population

genetics when m ¼ 1. However, no such derivations have

been given for the case with dispersal limitation.

D I SCUSS ION

We have presented previously obtained results of neutral

community theory in a general framework where the

dispersal-limited sampling nature of the theory plays a

central role. We have summarized our results in Table 1.

For the first time in neutral community ecology, the main

results of two lines of research – E[Sn|h, m, J], the expected
number of species with abundance n in a sample of size J,

and P ½D
!
jh; m; J �, the joint multivariate probability of

observing S species with abundances n1, n2,…,nS in a sample

of size J – have been presented together and related to one

another. In the case without dispersal limitation (m ¼ 1),

P ½D
!
jh; J � can even be expressed in terms of E[Sni|h, Ji]

using subsamples D
!

i , whereas in the case with dispersal

limitation, this expression must be somewhat modified, but

has a similar form. Also, we have derived E[Sn|h, m, J] and
E[S|h, m, J] from P½D

!
jh; m; J �. Although this has been

derived in the mathematically identical theory in population

genetics for the case without dispersal limitation, the

derivation for the case with dispersal limitation is given

here for the first time. Relating expected values to

multivariate distributions is important because it is much

easier to write and solve for stationarity dynamical one-

dimensional models involving expected values (McKane

et al. 2000, 2004; Vallade & Houchmandzadeh 2003) than it

is for their corresponding multivariate distributions.

However, we emphasize that precisely these exact multi-

variate sampling distributions taken as likelihood functions

are actually needed to perform maximum likelihood

estimation of model parameters (Etienne 2005) and sound

statistical model comparisons (Etienne & Olff 2005).

Moreover, our sampling framework has enabled us to

show that the sampling distributions are valid for a

metacommunity of any size JM. In other words, two

samples of equal size from two metacommunities of

different sizes JM, 1 and JM, 2 are characterized by exactly

the same sampling distributions, as long as both metacom-

munities are described by the same biodiversity number

(h1 ¼ h2). This has not been emphasized in previous work.

This is important for two reasons. First, an already existing

expression E[Sn|h, m, JM, J] when JM is finite (Vallade &

Houchmandzadeh 2003) turns out to be incorrect. Alonso

& McKane (2004), assuming Vallade & Houchmandzadeh

(2003) to be correct, suggested that species-abundance data

can be used to estimate the metacommunity size and hence

the speciation rate m because h :¼ mðJM � 1Þ
1� m (Vallade &

Houchmandzadeh 2003; Alonso & McKane 2004; Etienne

2005). The independence of metacommunity size that we

have shown in the present study, however, implies that this

is not possible. Second, as metacommunity size does not

matter, we can safely assume infinite metacommunity size,

which simplifies our formulae, because we can use binomial

sampling instead of hypergeometric sampling. We want to

stress, however that it is invariance under hypergeometric

sampling that provided the basis for our sampling theory.

Thus, mathematically, our formulas are valid for any JM.

Nevertheless, we need to remember the model assumption of

separation of spatiotemporal scales: a local scale with

immigration as the source of new species vs. a regional

metacommunity scale with speciation as the source of new

species.We cannot, therefore, choose any size JMwe want; we

need to require that JM � J. This assumption allows us to

safely ignore speciation at the local level, and to assume that

local dynamics are much faster than regional dynamics, so the

metacommunity composition does not change appreciably

when the ancestors are sampled (which occurs at different

instances). The assumption JM � J is biologically very

realistic, because, within our framework, J is the sample size

that is in practice much lower than the metacommunity size.

We already noted that sampling effects have been

recognized since Fisher et al. (1943). However, other

stochastic models of communities do not (fully) take this

into account (Volkov et al. 2003; He 2005), or impose

Poisson sampling afterwards (Engen & Lande 1996a,b,

Dewdney 2000; Diserud & Engen 2000). This makes

comparison of different models difficult, even in the latter

case, because the expressions may be conditioned

differently. Some (implicitly) assume the number of sampled

species S and others assume the number of sampled

individuals J, as do our formulas. For a correct comparison,

we need to condition on both (Etienne & Olff 2005).

Neutral community theory as formulated by Hubbell

(2001) can be seen as an extension of Ewens� (1972) theory
into the ecological arena. This extension is far from trivial

because Hubbell’s (2001) main intuition is that, in addition to

neutral (or ecological) drift, it is dispersal limitation that is the

leading factor structuring ecological communities. All recent

theoretical advances in neutral community theory based on

Hubbell’s (2001) formulation can now be translated back to

population genetics to extend Ewens� (1972) work as �a
dispersal-limited sampling theory of selectively neutral alleles�.
With the dispersal-limited sampling distributions introduced

in this work, we can not only examine whether a certain allelic

polymorphism is maintained neutrally, but we can also easily
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estimate the amount of dispersal limitation (or degree of

isolation) of the locality where this allelic polymorphism

comes from. It also enables computation of the ages of alleles

in dispersal-limited populations.

Concerning the evolutionary age of species (or, equival-

ently, species time-to-extinction), the neutral theory has

been strongly criticized for yielding unrealistically old

species (Lande et al. 2003; Nee 2005). However, this finding

may depend more on other model assumptions than on the

assumption of neutrality. For instance, Nee’s (2005)

estimates of species ages are based on Ewens� (1972)

equilibrium model for fixed community size with h fi 0

and m ¼ 1. Griffiths & Lessard (2005) recently presented a

formula for any value of h that makes species ages already a

few orders of magnitude smaller. Species ages might also be

appreciably different if dispersal limitation is taken into

account. Furthermore, non-equilibrium dynamics and fluc-

tuations in community size may substantially affect effective

community size and thereby the time scales of species

origination. Also, even if species ages are better explained by

non-neutral processes at evolutionary time scales, such as

ecological succession (a process involving ecologically non-

equivalent species interacting through non-neutral processes

such as facilitation and hierarchical competition), the final

mature community that we observe today may still be

consistent with neutral dynamics. In sum, the use of species

ages to falsify the neutral theory is rather premature.

A stronger test of neutrality than the goodness-of-fit of a

single species-abundance distribution is a test whether two

local communities that are both dispersal-limited hyperge-

ometric samples from the same metacommunity, but are

separated by a known distance have the (dis)similarity in

their species-abundance distributions that one would expect

from neutrality. We believe that our sampling framework is

able to provide such a test in principle. As the distance

between the local communities obviously matters, a spatially

explicit model seems to be unavoidable, but perhaps the

spatially implicit model with appropriately chosen parame-

ters may be used as a proxy that captures the essence. In any

case, this is a difficult task mathematically, but one that

merits further study. Ideas in population genetics involving

�isolation by distance� (e.g. Wakeley & Aliacar 2001) may

provide fruitful starting points.

We have expressed the local community as a sample from

the larger regional metacommunity, a sample which may or

may not be affected by dispersal limitation. In our

expressions the metacommunity is purely regulated by

speciation and extinction, and thus governed by the Ewens

sampling formula, but this is not necessary. Our dispersal-

limited hypergeometric distribution can also be applied to

metacommunities that are structured according to other,

even non-neutral, rules. Although at the local community

level the dynamics is neutral, any differences in species

abundances because of (non-neutral) metacommunity struc-

ture propagate to this local level. This allows for a dispersal-

limited sampling theory for non-neutral communities. A

more exact but more challenging approach would be to

replace the dispersal-limited hypergeometric distribution of

eqns 28 and 30 that assume local neutrality by a new

dispersal-limited distribution that takes into account, at the

local level, the same non-neutral factors controlling abun-

dances in the metacommunity. This can potentially be done

in essentially the same formalism we have presented here

(possibly following suggestions in the population genetics

literature (e.g. Wakeley & Takahashi 2004; Slade & Wakeley

2005). Our expressions are however, good approximations

that are fully in line with the model assumptions on the time

scale discussed above.

The picture that emerges is thus: species and niche

assembly originate through evolutionary time shaping species

abundances on the regional, long temporal scale. The very

spatially extended nature of ecological systems involves

dispersal limitation on the local and short temporal scale. So, if

a particular locality is sampled, we will always have some

degree of dispersal limitation in addition to other factors

determining species abundances at the metacommunity level.

The current challenge is to develop a dynamic community

theory that can quantify the relative importance of dispersal

limitation vs. other, neutral or non-neutral, factors determin-

ing species abundances through evolutionary time. We

strongly believe that our dispersal-limited sampling theory

provides the basis for such a unifying theoretical framework.
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