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a b s t r a c t

The shift towards an energy grid dominated by prosumers (consumers and producers of
energy) will inevitably have repercussions on the electricity distribution infrastructure.
Today the grid is a hierarchical one delivering energy from large scale facilities to end-
users. Tomorrow it will be a capillary infrastructure at the medium and low voltage levels
that will support local energy trading among prosumers. We investigate how different
network topologies and growthmodels facilitate amore efficient and reliable network, and
how they can facilitate the emergence of a decentralized electricity market. We show how
connectivity plays an important role in improving the properties of reliability and path-
cost reduction. Our results indicate that a specific type of evolution balances best the ratio
between increased connectivity and costs to achieve the network growth.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Something is changing in the way energy is both produced and distributed, due to the combined effects of technological
advancements and the introduction of new policies. In the last decades a clear trend has invested the energy sector: that
of unbundling. This is, the process of dismantling monopolistic and oligarchic energy system, by allowing a greater number
of parties to operate in a certain role of the energy sector and market. The goal of unbundling is that of reducing costs
for the end-users and providing better services through competition (e.g., Refs. [1,2]). From the technological perspective,
new energy generation facilities (mainly based on renewable sources) are becoming more and more accessible. These are
increasingly convenient and available at both the industrial and the residential scale [3]. The new actors operating in this
scenario, who are both producers and consumers of energy, also known as prosumers, are increasing in number andwillmost
likely demand a market with total freedom for energy trading [4]. In this future setting, the main role of the high voltage
grid will change, leaving more space and relevance for the distribution grid (i.e., medium voltage and low voltage). In fact,
the energy interactions between prosumers will increase and occur at a rather local level, therefore involving the low and
medium voltage grids, inevitably calling for an upgrade of the enabling distribution infrastructure in order to facilitate local
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energy exchanges. This vision for the infrastructure is comparable to a ‘‘peer-to-peer’’ system on the Internet, rather than
the current strictly hierarchical system. But how will the infrastructure evolve or change to enable and follow this trend?

The starting point of our study is to assume that the infrastructure must change to accommodate the new way of
producing and distributing energy [5]. The tool for our investigation is that of Complex Network Analysis (CNA) [6–9]. In
particular, in the present case we use CNA as an engineering tool to synthesize networks using topological models coming
from the literature of modeling the evolution of technological, infrastructural and social network. Our goal is to provide a
methodology to support the change by statistically looking at how the current infrastructure should evolve and estimating
the benefits of the evolutionswhile keeping an eye on the associated costs. In a nutshell,we intend to provide the foundations
for a decision support system for high level planning the upgrade of the distribution network. We base our study on actual
samples of the Dutch grid and previous results that provided an initial economic analysis of the possible barriers from an
infrastructure point of view to delocalized trades [10]. The present paper considers growth models for network topologies
providing an analysis of which models suit best the purpose of local energy exchange. In order to evaluate the adequacy
of the generated networks, we develop a set of metrics, based on CNA literature and our own experience, that capture the
various aspects that networks suited for small-scale energy exchange need to satisfy. It is then quite straightforward to
compare the results of the synthetic models with the real samples and, on that ground, propose network models that best
suit a prosumer-based local energy exchange. Finally, a quantitative evaluation of how the improvement in the topology
directly influences electricity transport prices is then possible considering the metrics defined in the literature. In simple
words, we look at the possible evolutions of the current grid that would make most sense to achieve the vision of a smart
grid from the point of view of the prosumer. The study is statistical and can provide a budgeting and decision support tool
for governments and utilities.

We remark the novelty of this proposal with respect to previous CNA studies of the power grid. In the surveywork [11], it
is emphasized that the use of CNA is mainly on the high voltage networks to get information on resilience to failures, while
the medium and low voltage grids have been mostly neglected. Another novelty is the use of CNA not as a tool for pure
analysis of the existing infrastructure, but to exploit it as an infrastructure design tool. Using Graph Theory in the design of
distribution systems is not completely new, several studies have incorporated Graph Theory elements in operation research
techniques for grid planning [12], but never, to the best of our knowledge, has Graph Theory been combined with global
statistical measures to design the grid. In addition, we ground the design methods into investments by taking into account
the costs of grid cabling based on the types of cables typically used in real distribution networks (i.e., Northern Netherlands
medium and low voltage network samples). The exploitation of the advancement in network studies and topology provides
a newway of looking at the development of the power grid infrastructure. A future grid thatwill havemuch of its production
decentralizedwill call for an adequate infrastructure whose topology and development has to take advantage of themodern
development of network models and network metrics to analyze its properties. In addition to the physical constraints
dictated by the Kirchhoff’s laws, the gridwill have to obey a set ofmetric and constraints coming from the scientific approach
at studying networks to have an efficient and optimized infrastructure. In summary, the paper discovers which topologies
according to CNA-basedmetrics are best suited in terms of performance and reliability of the infrastructure for a local energy
exchange, gives an estimation of the cabling cost for the realization of such topologies and assesses the advantages from the
electricity distribution point of view of the proposed topologies compared to the current ones. From the point of view of
Power Systems, we propose a new way to look at distribution grid planning. Our proposal is to consider statistical tools for
estimating benefits and costs of upgrading the infrastructure. This can be a high-level decision-support tool in the hands of
grid planners and governmental organizations. To the best of our knowledge, this type of approach to power grid planning,
called for by the shift towards decentralized generation, is novel.

The paper—which is a condensed version of the on-line available and unpublished technical report [13] to which we
refer for detailed simulation data—is organized as follows. Section 2 describes the main properties of the network models
considered, while the metrics utilized to compare the properties of the various generated graphs are described in Section 3.
The analysis and discussion of the results is presented in Section 4. The economic aspects of denser networks are evaluated
in Section 5, while an overall discussion of the evolution of topologies is in Sections 6 and 7 reviews the related work, while
concluding remarks are in Section 8. Appendix provides definitions of the metrics used in the evaluation of the models.

2. Modeling the power grid

We resort to complex network analysis, a branch of Graph Theory having its root in the early studies of Erdős and
Rényi [14] on random graphs and considering statistical structural properties of very large graphs. CNA is a relatively
young field of research. The first systematic studies appeared in the late 1990s [15,16] having the goal of looking at the
properties of large networks with a complex systems behavior. Afterwards, CNA has been used in many different fields
of knowledge, from biology [17] to chemistry, from linguistics to social sciences [18], from telephone call patterns [19] to
computer networks [20] and the web, to virus spreading [21], logistics and also inter-banking systems [22]. Men-made
infrastructures are particularly interesting to study under the CNA lenses, especially when they are large scale and grow
in a decentralized and independent fashion, thus not being the result of a global, but rather of many local autonomous
designs. The power grid is a prominent example. In this work, we consider a novel approach both in using CNA tools as
a design instrument (i.e., CNA-related metrics are used in finding the most suited medium and low voltage grid for local
energy exchange) and in focusing on themedium and low voltage layers of the power grid. In fact, traditionally, CNA studies
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Table 1
Categories of Medium and low voltage
network and their order based on Ref. [10].

Network layer Category Order

Low voltage Small ≈20
Low voltage Medium ≈90
Low voltage Large ≈200
Medium voltage Small ≈250
Medium voltage Medium ≈500
Medium voltage Large ≈1000

applied to the power grid only evaluate reliability issues and disruption behavior of the grid when nodes or edges of the
high voltage layer are compromised, e.g., Ref. [23].

In particular, we study models for graph generation proposed for technological complex networks. For each model we
evaluate the properties of the network for several values of the order of the graph. Following our analysis of the Northern
Dutchmedium and low voltage grids [10], we categorize networks as Small,Medium and Large, see Table 1. We then analyze
the properties of the networks generated from by synthetic models by applying relevant CNA metrics and combining them
appropriately. In this way, CNA is not only a tool for analysis, but it becomes a design tool for the future electrical grid.

Herewe look at networkmodels that have proven successful in showing salient characteristics of technological networks
(i.e, preferential attachment, Copying Model, power-law networks), social networks (i.e., small-world, Kronecker graph,
recursive matrix) and natural phenomena as well (e.g., Random Graph, small-world, Forest Fire) to investigate which one is
best suited for supporting local-scale energy exchange from a topological point of view. Nextwe provide a brief introduction
to all the models used in the present study, while a more in-depth presentation is available for instance in Ref. [24] or [25].
A graphical representation of the topological models generated is shown in Fig. 1.

RandomGraph. A RandomGraph is a graph built by picking each possible pair of nodes and connecting themwith an edge
with probability p. It was formalized in the pioneering studies of Erdős and Rényi [14].

Small-world Graph. The small-world phenomenon became known after the works of Milgram in the sociological
context [18] who found short chains of acquaintances connecting randompeople in the USA.More recently, the small-world
characterization of graphs has been investigated byWatts and Strogatz [26,15], who showed the presence of the small-world
property in many types of networks such as actor acquaintances, the power grid and neural networks in worms.

Preferential Attachment. The preferential attachment model represents the phenomenon happening in real networks
where a fraction of nodes has a high connectivity while the majority of nodes has small node degree. This model is built
upon the observation by Barabási and Albert [16] of a typical pattern characterizing several type of natural and artificial
networks.

R-MAT.R-MAT (RecursiveMATrix) is amodel that exploits the representation of a graph through its adjacencymatrix [27].
In particular, it applies a recursive method to create the adjacency matrix of a graph, thus obtaining a self-similar graph
structure. This model captures the community-based pattern appearing in some real networks.

Models independent from the average node degree

When generating certain models there is no explicit dependence on the average node degree, these include Random
Graph with power-law model, Copying Model, Forest Fire and Kronecker Graph which are presented next. Some of these
models produce networks with power-law node degree distribution. Power grids infrastructures do not follow power-laws
in the degree distribution, but rather an exponential one [28]. However, in this design phase of a future grid we do not want
to exclude a topology a priori.

Random Graph with Power-law. A Random Graph with power-law model generates networks characterized by a power-
law in the node degree probability distribution (P(k) ∼ k−γ ) having the majority of nodes with a low degree and a small
number of nodeswith a very high degree. Power-law distributions are very common inmany real life networks both created
by natural processes (e.g., food-webs, protein interactions) and by artificial ones (e.g., airline travel routes, Internet routing,
telephone call graphs) [9].

Copying Model. Replicating the structure underlying the links of WWW pages brought the Copying Model [29] capturing
the tendency of members of communities with same interests to create pages with a similar structure of links.

Forest Fire. In order to capture dynamic aspects of the evolution of networks, Leskovec et al. [30] proposed the Forest Fire
model. The intuition is that networks tend to densify in connectivity and shrink in diameter (i.e., the greatest shortest path
in the network) during the growth process. Technological, social and information networks show this phenomenon in their
growth process.

Kronecker Graph. A generating model with a recursive flavor similar to R-MAT uses the Kronecker product applied to the
adjacency matrix of a graph [31]. If the Kronecker product is applied to the same matrix, therefore multiplying the matrix
with itself recursively, a self similar structure arises in the graph. This model creates networks that show a densification in
the connectivity of its nodes, thus providing a shrinking diameter over time.
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(a) A Random Graph (199
nodes, 400 edges).

(b) A small-world graph (200 nodes,
399 edges).

(c) A Preferential Attachment graph (200
nodes, 397 edges).

(d) A R-MAT graph (222 nodes, 499
edges).

(e) A Random Graph with power law graph
(200 nodes, 399 edges).

(f) A Copying Model graph (200
nodes, 199 edges).

(g) A Forest Fire graph (200 nodes, 505 edges). (h) A Kronecker graph (167 nodes, 264
edges).

Fig. 1. Graphical representation of the network models generated.

3. Network metrics

To assess the suitability of network topologies for the local energy exchange we consider requirements and metrics that
the new networks need to satisfy. The metrics considered here come from the set of traditional CNA metrics and from the
results obtained in the analysis of medium and low voltage power grids [10]. The novelty resides in defining bounds for the
values of suchmetrics and evaluating the satisfaction of suchmetrics by the evolution/growthmodels of networks presented
in Section 2. We set two main categories of requirements: qualitative and quantitative desiderata that the network should
satisfy.

The main qualitative requirement we envision for the future distribution network is based on the modularity of the
network topology. In the power system domain, modularity is advocated as a solution that provides benefits by reducing the
uncertainties in energy demand forecasting and the costs for energy generation plants, as well as the risks of technological
and regulatory obsolescence [3]. Modularity is usually required not only in the energy sector, but more generally in the
design and creation of products or organizations [32]. It is also a principle that is promoted in the innovation of complex
systems for the benefits it provides in terms of reduced design and development time, adaptation and recombination [33].
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Table 2
Metrics classification.

Metric Efficiency Resilience Robustness

CPL ✓

CC ✓

Avg. betweenness ✓

Betw. coeff. of variation ✓

RobN ✓

APL10th ✓ ✓

We assess the modularity of a network as the ability of building the network using a self-similar recurrent approach and
having a repetition of a kind of pattern in its structure.

As a global statistical tool, quantitative requirements are even more useful as they give a precise indication of network
properties. Here are the relevant ones when considering efficiency, resilience and robustness of a power system. For the
formal definition of the main CNA properties we refer to well-known literature on the topic e.g., Refs. [6,7].
• The Characteristic Path Length (CPL) [26] is lower or equal to the natural logarithm of the order of the graph: CPL ≤ ln(N),

where N is the order of the graph. The requirement deals with providing, generally, a limited path when moving from
one node to another. In the grid this provides for a network with limited losses in the paths used to transfer energy from
one node to another.

• The Clustering Coefficient (CC) [26] is 5 times higher than that of a corresponding random graph (RG) with the same order and
size: CC ≥ 5×CCRG. Watts and Strogatz [15] show that small-world networks have clustering coefficients such that CC ≫

CCRG. Herewe require a similar condition, although less strong by using a constantmultiplication factor of 5. This require-
ment is proposed in order to guarantee a local clustering among nodes, since it ismore likely that energy exchanges occur
at a very local scale (e.g., neighborhood) when small-scale distributed energy resources are broadly implemented.

• Betweenness-related requirements:
– A low value for average betweenness [34] in terms of order of the graph υ =

σ
N , where σ is the average betweenness of

the graph and N is the order of the graph. For the Internet, Vázquez et al. [35] have found for this metric υ ≈ 2.5. The
Internet has proved successful in tolerating failures and attacks [36,37], therefore we require a similar value for this
metric for the future grid.

– A coefficient of variation for betweenness cv =
s
x < 1 where s is the sample standard deviation and x is the sample mean

of betweenness. Usually distributions with cv < 1 are known as low-variance ones.
The above two requirements are generally considered to provide network resilience by limiting the number of critical
nodes that have a high number of minimal paths traversing them. These properties provide distributions of shortest
paths which are more uniform among all nodes.

• An index for robustness such that RobN ≥ 0.45. Robustness is evaluated with a random removal strategy and a node
degree-based removal strategy, by computing the average of the order of the maximal connected component (MCC) of
the graph between two situations when the 20% of the nodes of the original graph are removed [10]. It can be written as
RobN =

|MCCRandom20%|+|MCCNodeDegree20%|

2 . Such a requirement is about twice the value observed for current medium voltage
grids and 33% more than the value of the low voltage samples [10].

• A measure of the cost related to the redundancy of paths available in the network: APL10th ≤ 2 × CPL.

APL10th =
1

|G⋆|


vi∈G⋆,vj∈G⋆′

d(vi, vj, 10) (1)

where

d(vi, vj, 10) =


lvi,vj,10 if |P(vi, vj)| ≥ 10
max(lvi,vj) ∈ P(vi, vj) if |P(vi, vj)| ≤ 10

(2)

and P(vi, vj) is the set containing the paths between vi and vj; lvi,vj,10 is the length of the 10thminimal length of the paths
between vi and vj. With this metric we consider the cost of having redundant paths available between nodes. In partic-
ular, we evaluate the 10th shortest path (i.e., the shortest path when the nine best ones are not considered) by covering
a random sample of the nodes in the network (40% of the nodes, half of which represent source nodes, G⋆ in Eq. (1), and
the other half represents destination nodes, G⋆′ in Eq. (1)). The values for the paths considered are then averaged. In the
case where there are less than ten paths available, the worst-case path between the two nodes is considered. This last
condition gives not completely significant values when applied to networks with small connectivity (i.e., in absence of
redundant paths).

We categorize the above quantitative metrics into three macro categories with respect to how they affect the power
grid, and measure the metrics’ goodness from a topological point of view: through the network’s efficiency in the transfer
of energy, its resilience in providing alternative paths if part of the network is compromised/congested, and its robustness
against failures in network connectivity. Table 2 summarizes the property each metric assesses. Each metric gives a specific
contribution and all the metrics together cover all the properties a smart grid infrastructure should have.



G.A. Pagani, M. Aiello / Physica A 396 (2014) 248–266 253

4. Generating smart grids

The baseline network for comparing possible evolutions must be the real current power grid network. Therefore, we use
actual samples from the medium and low voltage network of the Northern Netherlands (for a complete description of the
data we refer to Ref. [10]).

Table 3 in Ref. [13] summarizes the values for the networkmetrics applied on the Dutch network samples.We notice that
the average degree of the medium and low voltage samples scores almost constantly around ⟨k⟩ ≈ 2, independently of the
order of the network. In the low voltage networks we see a tendency towards the increase of the characteristic path length,
with a value of about 18 when the order and size tend towards 200 nodes and edges, respectively. This metric does not
have the same clear tendency for the medium voltage samples. Considering the clustering coefficient there is a general rule
appears: a null value for the low voltage samples and small, but at least significant, values for the medium voltage samples.
These differences in both characteristic path length and clustering coefficient come from thedifference in topology of the two
networks. A low voltage network is almost a non-mashed network which resembles (for certain samples) trees or closed
chains with longer paths on average, especially for networks with bigger order. On the other hand, the medium voltage
network is more meshed (despite having the same average node degree) with more connections that act as ‘‘shortcuts’’.
It also has some redundancy in the connections between the neighborhood of a node, which implies a more significant
clustering coefficient compared to the low voltage network. The analysis of the robustness metric shows generally poor
scores that decrease while the samples increase in order, at least for the low voltage networks, while the tendency is not
clear for the medium voltage samples considered. A common behavior for the medium voltage samples is the problem they
experience with regard to the maximal component connectivity, when the 20% of the nodes with the highest degree are
removed from the network, the order of theMCC falls to 4.56%, 3.66% and 3.96% of its initial value, respectively, for the Small,
Medium and Large sample. Considering the additional effort requiredwhen the first nine shortest paths are not available, we
see a general increase especially for the low voltage samples, where the APL10th increases three times for the Large sample
analyzed; the increase is still present inmedium voltage, but it is limited compared to the low voltage samples. It is again an
indication that the medium voltage provides more efficient alternative paths to connect nodes. An exception in the results
is the low voltageMedium size sample: here the 10th average path length is very close to the traditional characteristic path
length. This is due to the absence of alternative paths, therefore the only paths between nodes are at the same time the best
and worst case. Such aspect reinforces the idea of a low voltage network with a fixed structure (similar to chains or trees)
and a limited redundancy.

Considering the betweenness-related metrics shown in Table 4 in Ref. [13], one notices an increase in the average
betweenness as the samples become more numerous in the two segments of the network (i.e., medium voltage and low
voltage). This same tendency is present also in the average betweenness/order ratio: the biggest samples in terms of order
both of low voltage andmedium voltage score highest. In particular, the Large sample belonging to the low voltage is almost
twice the value of the biggest sample of the medium voltage. Again this can be justified by the tree-like structure of the low
voltage sample, forwhich nodes responsible for the paths that enable sub-trees or sub-chains to be connected are the highest
scoring for betweenness. This highly increases the average betweenness (while the mode is usually null). The coefficient of
variation is above one for all the big samples and reaches almost three for the biggest sample belonging to the medium
voltage network.

Model parameters

To model the future power grid, we compare network topologies that evolve in size (M) and order (N). In particular, we
consider the increase of the average node degree (⟨k⟩ =

2M
N ). The evolution implies new cables and costs. For the Random

Graph, small-world, preferential attachment and R-MAT models, we consider an evolution in the magnitude of the average
node degree of≈2 then≈4 and≈6. Formodels that do not allow explicit settings of both size and order, we operate on other
parameters available that generate comparable networks. Each of the models introduced in Section 2 is defined by a set of
specific parameters. For the details of the parameters used in generating each model we refer to Ref. [13].

Model generation

Each network model described is generated and analyzed according to the significant power grid metrics described in
Section 3. We begin with themodels for which it is possible to explicitly assign order and size (or one of these quantities and
the average node degree); we then proceed analyzing the other models that do not explicitly allow to set the average node
degree parameter.

Model generation implementation and metrics computation. The generated topologies are obtained using the Stanford
Network Analysis Project (SNAP)1 library that enables the generation of the network topologies described in Section 2.
The analysis of the generated graphs according to the metrics described in Section 3 is performed with ad-hoc created

1 http://snap.stanford.edu/.

http://snap.stanford.edu/
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Table 3
Metrics for small-world (SW), preferential attachment (PA), Random Graph (RG) and R-MAT models with average node degree ≈2.

Network type Model Order Size Avg. deg. CPL CC Removal robustness (RobN ) Redundancy cost (APL10th)

LV-Small SW 20 20 2.000 4.053 0.00000 0.330 7.580
LV-Medium SW 90 90 2.000 11.820 0.01593 0.167 12.932
LV-Large SW 200 201 2.010 17.397 0.01083 0.109 21.544
MV-Small SW 250 250 2.000 24.237 0.00000 0.087 24.534
MV-Medium SW 500 501 2.004 28.084 0.00000 0.057 35.413
MV-Large SW 1000 1001 2.002 47.077 0.00000 0.040 60.074
LV-Small PA 20 19 1.900 2.579 0.00000 0.349 2.800
LV-Medium PA 90 89 1.978 4.315 0.00000 0.263 4.471
LV-Large PA 200 199 1.990 6.523 0.00000 0.206 6.375
MV-Small PA 250 249 1.992 5.426 0.00000 0.245 5.570
MV-Medium PA 500 499 1.996 5.705 0.00000 0.231 5.745
MV-Large PA 1000 999 1.998 6.976 0.00000 0.187 6.908
LV-Small RG 17 21 2.471 2.938 0.07451 0.390 7.472
LV-Medium RG 78 92 2.359 5.987 0.03547 0.418 10.974
LV-Large RG 172 207 2.407 6.254 0.00736 0.354 10.796
MV-Small RG 224 259 2.313 7.269 0.00000 0.322 12.002
MV-Medium RG 435 516 2.372 8.380 0.00138 0.321 12.818
MV-Large RG 863 1026 2.378 9.061 0.00070 0.328 13.446
LV-Small R-MAT 27 31 2.296 3.615 0.00000 0.356 7.830
LV-Medium R-MAT 88 125 2.841 4.115 0.05688 0.369 6.418
LV-Large R-MAT 199 261 2.623 5.495 0.00737 0.364 8.774
MV-Small R-MAT 195 263 2.697 5.629 0.00865 0.378 8.642
MV-Medium R-MAT 365 523 2.866 5.470 0.01360 0.396 7.646
MV-Large R-MAT 728 1056 2.901 5.726 0.00589 0.363 7.887

Table 4
Betweenness metrics for small-world (SW), preferential attachment (PA), Random Graph (RG) and R-MAT models with average node degree ≈2.

Network type Model Order Size Avg. betweenness Avg. betw/order Coeff. variation

LV-Small SW 20 20 62.300 3.115 0.804
LV-Medium SW 90 90 985.956 10.955 1.307
LV-Large SW 200 201 3429.720 17.149 1.260
MV-Small SW 250 250 5881.296 23.525 1.598
MV-Medium SW 500 501 13980.228 27.960 1.745
MV-Large SW 1000 1001 47919.616 47.920 2.279
LV-Small PA 20 19 31.400 1.570 2.344
LV-Medium PA 90 89 293.400 3.260 3.068
LV-Large PA 200 199 1089.260 5.446 3.288
MV-Small PA 250 249 1096.144 4.385 3.972
MV-Medium PA 500 499 2401.680 4.803 5.049
MV-Large PA 1000 999 6061.288 6.061 6.240
LV-Small RG 17 21 31.059 1.827 1.157
LV-Medium RG 78 92 408.308 5.235 1.126
LV-Large RG 172 207 938.512 5.456 1.276
MV-Small RG 224 259 1474.143 6.581 1.265
MV-Medium RG 435 516 3415.890 7.853 1.204
MV-Large RG 863 1026 7081.119 8.205 1.264
LV-Small R-MAT 27 31 70.593 2.615 1.320
LV-Medium R-MAT 88 125 282.500 3.210 1.540
LV-Large R-MAT 199 261 937.578 4.711 1.297
MV-Small R-MAT 195 263 959.118 4.919 1.395
MV-Medium R-MAT 365 523 1692.910 4.638 1.581
MV-Large R-MAT 728 1056 3633.473 4.991 2.004

software based on the JAVAgraph library JGraphT.2 The versions of SNAP and JGraphT software libraries used are respectively
v10.10.01 and v0.8.1.

Comparison of models with average node degree ⟨k⟩ ≈ 2
The results for the metrics with average degree ⟨k⟩ ≈ 2 for the small-world, preferential attachment, Random Graph

and R-MATmodels score quite poorly, cf. Table 3. Low values for the metrics are due to the small connectivity the networks
show. Especially, we highlight the low results of the small-world model under these conditions.

The betweenness analysis, whose results are presented in Table 4, shows an average for each node that increases with
the size of the graph.

2 http://www.jgrapht.org/.

http://www.jgrapht.org/
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Table 5
Metrics for small-world (SW), preferential attachment (PA), Random Graph (RG) and R-MAT models with average node degree ≈4.

Network type Model Order Size Avg. deg. CPL CC Removal robustness (RobN ) Redundancy cost (APL10th)

LV-Small SW 20 39 3.900 2.289 0.26000 0.721 4.720
LV-Medium SW 90 177 3.933 3.652 0.14646 0.780 6.032
LV-Large SW 200 399 3.990 4.407 0.15367 0.767 6.631
MV-Small SW 250 498 3.984 4.566 0.12581 0.779 6.836
MV-Medium SW 500 1000 4.000 5.067 0.10681 0.764 7.231
MV-Large SW 1000 1998 3.996 5.749 0.10879 0.781 7.910
LV-Small PA 20 37 3.700 2.263 0.47341 0.554 4.380
LV-Medium PA 90 177 3.933 2.910 0.11216 0.426 4.788
LV-Large PA 200 397 3.970 3.322 0.09566 0.448 5.047
MV-Small PA 250 497 3.976 3.504 0.08400 0.419 4.998
MV-Medium PA 500 997 3.988 3.687 0.03929 0.401 5.232
MV-Large PA 1000 1997 3.994 4.211 0.01536 0.401 5.678
LV-Small RG 20 40 4.000 2.079 0.17667 0.733 4.350
LV-Medium RG 87 180 4.138 3.174 0.03418 0.735 5.368
LV-Large RG 199 400 4.020 3.869 0.03064 0.734 6.107
MV-Small RG 247 500 4.049 4.057 0.01681 0.740 6.432
MV-Medium RG 494 1000 4.049 4.495 0.00823 0.749 6.670
MV-Large RG 987 2001 4.055 5.062 0.00359 0.738 7.150
LV-Small R-MAT 30 59 3.933 2.517 0.27360 0.579 4.511
LV-Medium R-MAT 105 250 4.762 3.019 0.13039 0.581 4.490
LV-Large R-MAT 227 504 4.441 3.619 0.04683 0.601 5.302
MV-Small R-MAT 230 496 4.313 3.736 0.02940 0.626 5.381
MV-Medium R-MAT 420 1004 4.781 3.915 0.00450 0.591 5.249
MV-Large R-MAT 932 2039 4.376 4.562 0.00875 0.690 6.251

Table 6
Betweenness metrics for small-world (SW), preferential attachment (PA), Random Graph (RG) and R-MAT models with average node degree ≈4.

Network type Model Order Size Avg. betweenness Avg. betw/order Coeff. variation

LV-Small SW 20 39 24.900 1.245 0.654
LV-Medium SW 90 177 235.244 2.614 0.653
LV-Large SW 200 399 683.780 3.419 0.703
MV-Small SW 250 498 897.568 3.590 0.653
MV-Medium SW 500 1000 2043.600 4.087 0.706
MV-Large SW 1000 1998 4762.808 4.763 0.677
LV-Small PA 20 37 23.100 1.155 1.505
LV-Medium PA 90 177 170.644 1.896 2.219
LV-Large PA 200 397 463.060 2.315 2.733
MV-Small PA 250 497 611.520 2.446 3.017
MV-Medium PA 500 997 1342.864 2.686 3.484
MV-Large PA 1000 1997 3179.750 3.180 3.450
LV-Small RG 20 40 23.600 1.180 0.807
LV-Medium RG 87 180 196.345 2.257 0.850
LV-Large RG 199 400 589.849 2.964 0.889
MV-Small RG 247 500 766.389 3.103 0.857
MV-Medium RG 494 1000 1768.757 3.580 0.972
MV-Large RG 987 2001 4068.393 4.122 0.942
LV-Small R-MAT 30 59 44.000 1.467 1.342
LV-Medium R-MAT 105 250 223.733 2.131 1.695
LV-Large R-MAT 227 504 609.419 2.685 1.493
MV-Small R-MAT 230 496 650.374 2.828 1.468
MV-Medium R-MAT 420 1004 1285.786 3.061 1.652
MV-Large R-MAT 932 2039 3422.348 3.672 1.506

Comparison of models with average node degree ⟨k⟩ ≈ 4
Table 5 shows the results for small-world, preferential attachment, Random Graph and R-MAT models with an average

degree ⟨k⟩ ≈ 4. One notices that the scores for the metrics improve compared to the ⟨k⟩ ≈ 2 case. The average over the
characteristic path length of all the samples reduces from around 10 to a value that is slightly less than 5. The clustering
coefficient has values that are significant and all positive. The small-world model scores best in this specific metric, since
it relies on the lattice topology that, with an average degree of 4, connects each node with four neighbors. In particular, 3-
triangle structures emerge in each neighborhood of a node (of course before the rewiring process takes place). This provides
a substantial contribution to the quite high clustering coefficient. A graphical comparison for the Large sample for medium
voltage considering the characteristic path length, clustering coefficient and robustness metrics are shown in Fig. 2.

When analyzing network betweenness, we see a general improvement in the metrics compared to the ⟨k⟩ ≈ 2 case, cf.
Table 6. The most important improvement is for the small-world model which, with approximately 4 connections per node,
substantially reduces the average betweenness by a factor of 10 compared to the ⟨k⟩ ≈ 2 case. A graphical comparison for
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Table 7
Metrics for small-world (SW), preferential attachment (PA), Random Graph (RG) and R-MAT models with average node degree ≈6.

Network type Model Order Size Avg. deg. CPL CC Removal robustness (RobN ) Redundancy cost (APL10th)

LV-Small SW 20 59 5.900 1.816 0.33250 0.775 3.470
LV-Medium SW 90 266 5.911 2.809 0.20131 0.794 4.508
LV-Large SW 200 598 5.980 3.324 0.13596 0.797 4.895
MV-Small SW 250 747 5.976 3.486 0.14477 0.798 5.039
MV-Medium SW 500 1494 5.976 3.968 0.14477 0.799 5.518
MV-Large SW 1000 2996 5.992 4.429 0.14854 0.797 5.905
LV-Small PA 20 54 5.400 1.868 0.34839 0.749 3.460
LV-Medium PA 90 264 5.867 2.466 0.16601 0.742 3.933
LV-Large PA 200 594 5.940 2.854 0.08772 0.671 4.130
MV-Small PA 250 744 5.952 2.926 0.08676 0.705 4.257
MV-Medium PA 500 1495 5.980 3.185 0.05017 0.667 4.481
MV-Large PA 1000 2994 5.988 3.487 0.03335 0.679 4.664
LV-Small RG 20 60 6.000 1.684 0.29599 0.775 3.370
LV-Medium RG 90 270 6.000 2.640 0.06987 0.791 4.298
LV-Large RG 200 600 6.000 3.141 0.03991 0.777 4.693
MV-Small RG 249 750 6.024 3.230 0.01934 0.793 4.884
MV-Medium RG 499 1500 6.012 3.620 0.00976 0.792 5.284
MV-Large RG 998 3000 6.012 4.022 0.00544 0.791 5.662
LV-Small R-MAT 32 87 5.438 2.194 0.21179 0.760 3.945
LV-Medium R-MAT 123 374 6.081 2.926 0.08173 0.717 4.377
LV-Large R-MAT 249 759 6.096 3.165 0.04444 0.736 4.622
MV-Small R-MAT 236 747 6.331 3.143 0.04982 0.746 4.389
MV-Medium R-MAT 466 1512 6.489 3.427 0.04365 0.743 4.805
MV-Large R-MAT 925 3035 6.562 3.742 0.02560 0.723 4.925

the results of the Large sample formedium voltage type considering the average betweenness/order ratio and the coefficient
of variation metrics is shown in Fig. 3.

Comparison of models with average node degree ⟨k⟩ ≈ 6
Table 7 shows the results for small-world, preferential attachment, Random Graph and R-MAT models with an average

degree ⟨k⟩ ≈ 6. The scores for the metrics considered improve even more with respect to those of Tables 3 and 5. The
characteristic path length of all the samples has reduced to a value that, considering the average over all the samples with
⟨k⟩ ≈ 6, is about 3; yet this is 2 hops lower than the situation with ⟨k⟩ ≈ 4. The same tendency for the clustering coefficient
found for samples in Table 5 applies to this situation, too. The small-world model scores highest since the neighbors of a
node have nine connections with each other (before rewiring), thus contributing to a high coefficient.

Having increased the average degree to 6 brings benefits to the betweenness statistics too, cf. Table 8. The benefits on the
average betweenness/order ratio are about 25% higher than in the ⟨k⟩ ≈ 4 situation; this ratio therefore is now very close
to the experimental values that have been found for the Internet (i.e., ≈2.5).

Amore thorough analysis of these results and adetailed comparison and analysis of themodels independent fromaverage
node degree have been performed and the comprehensive results are available in Ref. [13].

Comparing the generated topologies with the physical ones
The analysis of the Northern Netherlands grid shows an average degree almost constant of about ⟨k⟩ ≈ 2. In terms of

average node degree, the situation is similar for the high voltage grid based on the data describing the Eastern andWestern
high voltage U.S. power grid and the U.S.Western high voltage power grid. Thereforewe consider it to be fair to compare the
generated models with similar average degree, the Copying Model ones and the Random Graphs with power-law in node
degree distribution with average node degree ⟨k⟩ ≈ 2. Generated models, except the model based on Random Graph with
power-law, score better than the physical topologies for all the metrics considered; the characteristic path length scores
half for the R-MAT and Copying Model cases in comparison to the real data. Also synthetic networks are more robust than
the real data samples: R-MAT and Random Graph score constantly above 0.3 for robustness metric, while real data hardly
obtain this value. Clustering coefficients are quite similar since in this configurationwith limited connectivity having triangle
structures in the network is rare, however we see that the R-MATmodel has almost always significant clustering coefficient
values. An exception is the small-world model which scores almost always worse than the real data samples, in fact, under
this situation of such average node degree it is actually not fully correct to consider this synthetic topology a ‘‘small-world’’.
The same sort of considerations can be done considering betweenness values: except the small-world model, all the other
synthetic ones score better for the average betweenness/order ratiometric, while for the coefficient of variation the situation
is similar. If one considers the satisfaction of the desiderata for the actual samples of the Dutch Medium and low voltage
grid, summarized in Table 9, we notice that all parameters are not satisfied. However, networks generated according to the
models with almost the same average node degree (networks with ⟨k⟩ ≈ 2 in Table 20 in Ref. [13], and networks based on
Random Graph with power-law based on data from Eastern andWestern high voltage U.S. power grid and the U.S. Western
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(a) Characteristic path length.

(b) Clustering coefficient.

(c) Removal robustness.

Fig. 2. Results for metrics for the Large sample of medium voltage network type with average node degree ≈4.

high voltage power grid in Table 22 in Ref. [13]) do not satisfy all the desiderata as well. Therefore, this highlights that the
first ingredient for the next generation of grids to enable local energy exchange is an increased connectivity.

Increasing the average node degree naturally provides for better values for the network metrics, as shown in Table
20 in Ref. [13]. The case of the small-world model is emblematic. The ⟨k⟩ ≈ 2 case scores extremely poorly as there
are not enough ‘‘shortcuts’’ in the network so that they cannot improve much the characteristic path length. Actually,
under such small average degree, the condition Watts and Strogatz impose for their model is not completely satisfied
(i.e., n ≫ k ≫ ln(n) ≫ 1, where k is the average node degree and n is the order of the graph). When we move closer
to satisfying the small-world condition by increasing the average node degree, the value of the metrics suddenly change
and the models score extremely high. The small-world scores best for the clustering property and resilience to failures in
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(a) Betweenness to order ratio.

(b) Betweenness coefficient of variation.

Fig. 3. Results for metrics for the Large sample of medium voltage network type with average node degree ≈4.

Table 8
Betweenness-related metrics for small-world (SW), preferential attachment (PA), Random Graph (RG) and R-MAT models with average node degree ≈6.

Network type Model Order Size Avg. betweenness Avg. betw/order Coeff. variation

LV-Small SW 20 39 15.800 0.790 0.581
LV-Medium SW 90 177 163.778 1.820 0.555
LV-Large SW 200 399 464.330 2.322 0.617
MV-Small SW 250 498 621.488 2.486 0.609
MV-Medium SW 500 1000 1479.404 2.959 0.565
MV-Large SW 1000 1998 3441.742 3.442 0.564
LV-Small PA 20 37 15.900 0.795 1.292
LV-Medium PA 90 177 133.378 1.482 2.640
LV-Large PA 200 397 374.970 1.875 2.401
MV-Small PA 250 497 485.352 1.941 2.514
MV-Medium PA 500 997 1095.116 2.190 2.894
MV-Large PA 1000 1997 2447.594 2.448 3.283
LV-Small RG 20 40 14.700 0.735 0.662
LV-Medium RG 87 180 151.489 1.683 0.809
LV-Large RG 199 400 431.090 2.155 0.835
MV-Small RG 247 500 563.839 2.264 0.710
MV-Medium RG 494 1000 1328.405 2.662 0.745
MV-Large RG 987 2001 3051.922 3.058 0.771
LV-Small R-MAT 30 59 38.000 1.188 0.989
LV-Medium R-MAT 105 250 247.008 2.008 1.351
LV-Large R-MAT 227 504 550.538 2.211 1.352
MV-Small R-MAT 230 496 530.093 2.246 1.357
MV-Medium R-MAT 420 1004 1169.382 2.509 1.506
MV-Large R-MAT 932 2039 2599.496 2.810 1.731
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Table 9
Desiderata parameter compliance of real samples of the
Northern Netherlands grid.

Desiderata Northern Netherlands
medium and low voltage samples

Modularity ✗

CPL ≤ ln(N) ✗

CC ≥ 5 × CCRG ✗

υ =
σ
N ≈ 2.5 ✗

cv ≤ 1 ✗

RobN ≥ 0.45 ✗

APL10th ≤ 2 × CPL ≈

Table 10
Comparison of generated topologies for varying average node degree.

Avg. node degree transition Average metric improvement
(%)
CPL CC Robustness

⟨k⟩ ≈ 2 → ⟨k⟩ ≈ 4 61.7 941.6 128.5
⟨k⟩ ≈ 4 → ⟨k⟩ ≈ 6 18.0 11.8 19.6

Table 11
Satisfaction of modularity, performance and cabling cost for generated
models.

Network model Avg. node deg. Avg. node deg. Avg. node deg.
⟨k⟩ ≈ 2 ⟨k⟩ ≈ 4 ⟨k⟩ ≈ 6

Small-world ✓✓ ✓✓✓ ✓✓

Preferential ✓ ✓✓ ✓

attachment
Random Graph ✓ ✓✓ ✓

R-MAT ✓✓ ✓✓ ✓✓

⟨k⟩ ≈ 4 situations. Under these conditions also the betweenness values are quite concentrated around the mean with a
coefficient of variation not exceeding the unit.

Comparing the average values of the generated models for increasing node degree, one notices a natural improvement
of the metrics, cf. Table 10. In fact, we have a reduction in characteristic path length of about 60% and an increase in the
clustering coefficient of one order of magnitude; at the same time the robustness doubles. With ⟨k⟩ ≈ 6 the improvement
in themetrics is less prominent, i.e., between 10% and 20%. From the comparison of themetric results in Table 20 in Ref. [13],
one sees that the small-worldmodel almost always satisfies the desired requirement from a quantitative point of viewwhen
the average node degree is at least 4. From a qualitative point of view, the small-world model shows somemodularity being
generated starting from a regular lattice and then rewiring a certain fraction of the edges.

The models which are independent from average node degree perform generally worse than the other models. The
adherence to the target values is shown in Table 22 in Ref. [13]. There is a general prevalence of requirement dissatisfaction,
especially for parameters involving betweenness.

From the topological analysis one can see that between the models analyzed when there is a minimal connectivity
(⟨k⟩ ≈ 4 or ⟨k⟩ ≈ 6) the small-world stands out, cf. Table 20 in Ref. [13]. In Table 11, themodels with explicit dependence on
node degree are once again compared by assigning a ‘‘tick’’ sign (✓) for the fulfillment of each of the following properties:
qualitative topological parameters (i.e., modularity), quantitative topological parameters (Table 20 in Ref. [13]) and the
thrift in network realization (e.g., addition of cables which represent a cost). The latter is just an estimation; a more detailed
analysis of the cost in realizing a network of to medium or low voltage with a certain size (i.e., Small, Medium or Large)
and the economic benefits in electricity distribution arising from the enhanced connectivity is provided in Section 5. From
Table 11, we conclude that networks generated with small-world model with average degree ⟨k⟩ ≈ 4 provide the best
balance between modularity, performance and thrift for the future power grid.

5. Economic considerations

Traditionally, the problem of evaluating the expansion of an electrical system is a complex task that involves both the use
ofmodeling (usually based on operation research optimization techniques and linear programming [38]) and the experience
and vision of experts in the field supported in their decisions by computers. With more distributed generating facilities at
local scale, traditional methods have limits and need to be modified or updated to take into account the new scenarios the
smart grid framework brings into play. The models that we have so far analyzed as being candidates for the vision of the
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Table 12
Cabling cost for ⟨k⟩ ≈ 2 synthetic samples for Low voltagenetworks.

Sample type Size Cost (thousand euro)

Low voltage-Small ≈20 ≈30
Low voltage-Medium ≈90 ≈78
Low voltage-Large ≈200 ≈449

Table 13
Cabling cost for ⟨k⟩ ≈ 2 synthetic samples for medium
voltage networks.

Sample type Size Cost (millions euro)

Low voltage-Small ≈250 ≈32
Low voltage-Medium ≈500 ≈42
Low voltage-Large ≈1000 ≈43

future smart grid need also to be evaluated from the economic point of view. How much will it cost to generate electrical
infrastructures according to these models? What is the actual cost of adding a physical edge to the topology?

The cost of adding edges

One important difference that a physical infrastructure such as the power grid has compared to the WWW or social
networks is the physical presence of cables that have to connect the medium voltage substations or low voltage end-users’
generating units. If establishing a link from a Web page to another one is free, each increase in connectivity in the power
grid implies costs in order to build or upgrade the substation or end-user premise involved and the cables required for the
connection. To assess these costs in the medium and low voltage infrastructure, we consider a simple relation where the
cost of cabling and cost of substations are added:

Cimp =

N
j=1

Sscj +
M
i=1

Cci (3)

where Cimpl stands for cost for implementation, Sscj is the adaptation cost for the substation j and Cci is the cost for the
cable i. The cost of the cable can be expressed as a linear function of the distance the cable i covers: Cci = Cuc · l where
Cuc is the cable cost per unit of length and l is the length of the cable. Several types of cables exist which are used for
power transmission and distribution with varying physical characteristics and costs. In addition, the cost for installation
can also vary significantly given the difficulty to perform underground or aerial line installations due to the geographical
characteristics of the territory [39]. In the present work, to provide an initial estimate, we simply consider cabling costs and
ignore substation ones.While the pricing for the former is directly tied to the topology and length of the links, the pricing for
the latter is too dependent on other factors such as the cost of land to expand a substation. This cost varies considerably given
urban or rural locations and between different regions. As a source of data for cable type and pricing, we have been provided
(courtesy of Enexis B.V. The Netherlands) with cable characteristics and prices, together with topological information, for 11
network samples belonging to the low voltage network and 13 samples belonging to the medium voltage of the Northern
Netherlands, the same from which we extracted the topological properties.

Economic benefits of highly connected topologies

Once the information about cable prices is available, it is possible to estimate the cost for realizing a network with a
certain connectivity and whether such networks are able to lower the (economic) barrier towards decentralized energy
trading. The results for low voltage networks of Small, Medium and Large types with an average node degree ⟨k⟩ ≈ 2 are
shown in Table 12. The results for ⟨k⟩ ≈ 4 and ⟨k⟩ ≈ 6 are about two and three times more expensive, since there is an
increase in the number of edges by the same quantity.

For medium voltage, the results for the networks with an average node degree ⟨k⟩ ≈ 2 are shown in Table 13. The results
for ⟨k⟩ ≈ 4 and ⟨k⟩ ≈ 6 are just two and three times more expensive since there is an increase in the number of edges by
these same factors. The small difference in costs between the Medium and Large types of networks for medium voltage is
related mainly to the different technologies (i.e., cable types) in the cables that are used for the types of networks that we
have found in the sample data provided.

Price alone is not enough to describe future scenarios. It is important to investigate how an enhanced connectivity is ben-
eficial to the electricity distribution costs. We have shown the benefits for more connected networks in Section 4; however,
those results consider only the topology without any parameter related to the properties of the cables (e.g., resistance and
supported current). In order to consider the effects of topology in electricity distribution costs, we have developed a set of
metrics [10] (the α and β metrics) that associate topological properties of power grid networks to costs in electricity distri-
bution. We have applied these metrics in the analysis of the medium and low voltage grid of the Northern Netherlands in
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Fig. 4. Comparison of the transport cost between synthetic small-world networks (white diamonds) and Northern Netherlands low voltage samples (red
dots).

Ref. [10]. In order to apply thesemetrics to power grid networks,weights are essential, representing physical quantities such
as the resistance of the cable and themaximal operating current supportedby the cable. Oncewehave the statistical informa-
tion about the types and the length of the cables used in a specific type of physical network (i.e., medium or low voltage and
its Small,Medium or Large size) it is possible to assignweights to the edges of the generated graphs. This is done under the as-
sumption that the same type of cables are used and that the distances covered in general (i.e., statistically) remain the same.

We consider the α and β metrics for networks generated following the small-world model, since it has proven to be the
best one in the pure topological analysis (Section 4). For low voltage network, we compute the metrics for networks with
an increasing average node degree (⟨k⟩ ≈ 2, ⟨k⟩ ≈ 4 and ⟨k⟩ ≈ 6). It is not surprising to see the samples with ⟨k⟩ ≈ 2 score
poorer than the other networks. The network with Medium size scores best and the difference between the network with
⟨k⟩ ≈ 6 and the network with ⟨k⟩ ≈ 4 is limited. Robustness (i.e., the β parameter) for theMedium and Large size networks
reaches a high value just with a sufficient connectivity (i.e., ⟨k⟩ ≈ 4) and more connectivity (i.e., ⟨k⟩ ≈ 6) does not improve
much this metric. The samples with Small size score better in the α metric, and this is quite reasonable since the paths are
limited, of course due to the reduced order of the network.

Considering the α and β metrics for the networks generated for the medium voltage, the same tendency appears: once
the network is sufficiently connected (i.e., ⟨k⟩ ≈ 4) the metrics score definitely better than the ⟨k⟩ ≈ 2 situation.

Let us compare the α and β metrics of the synthetic networks with the values of the real power grid samples of the
Northern Netherlands. Considering the low voltage samples and the synthetic networks designed for this purpose, we
generally see an improvement in the metrics, especially in the α values for the ⟨k⟩ ≈ 4 and ⟨k⟩ ≈ 6 networks. In fact,
if we do not consider the synthetic networks with ⟨k⟩ ≈ 2; because of the problems of small-world topology with such
small connectivity, there is an improvement on average in the α metric for synthetic samples with ⟨k⟩ ≈ 4 of more than
50% compared to the Northern Netherlands samples. In fact, for the α metric from an average of about 13 for the physical
samples, the ⟨k⟩ ≈ 4 synthetic ones score about 6. The improvement is more than 60% when considering the ⟨k⟩ ≈ 6 ones
where the average for these synthetic networks scores just below 5. There are improvements also in the β metric, although
limited. From an average around 4 for the physical samples, the ⟨k⟩ ≈ 4 on average score just below 2.75; while a better
result is obtained by ⟨k⟩ ≈ 6 which on average score 2.30 (about 40% improvement). The graphical comparison between
Dutch real samples (red dots) and generated samples (white diamonds) is shown in Fig. 4, in which each dot represents a
sample in theα, β quadratic function envelope that is chosen as the type of dependence between the topological parameters
and electricity transport prices.

Taking into account theDutchmediumvoltage samples and the small-world synthetic networks,we see an important im-
provement in the metrics both in the α and β values for the ⟨k⟩ ≈ 4 and ⟨k⟩ ≈ 6 networks. As already mentioned, synthetic
networks with ⟨k⟩ ≈ 2 should not be considered. The improvement on average in the α metric is more than 65% compared
to the ⟨k⟩ ≈ 4 synthetic samples (from an average of the α metric about 33 for the physical samples, the ⟨k⟩ ≈ 4 synthetic
ones score about 11), and an improvement of more than 75% when comparing to the ⟨k⟩ ≈ 6 ones (the average of the α
metric for ⟨k⟩ ≈ 6 synthetic networks scores around 7.3). There are improvements also in the β metric. In particular, from
an average around 3.55 for the physical samples the ⟨k⟩ ≈ 4 score on average just below 1.15; a similar result is obtained
by ⟨k⟩ ≈ 6, which on average score about 1.2 (more than 65% improvement). The graphical comparison is shown in Fig. 5.

6. Discussion

Watts and Strogatz’s small-world model, as shown in Tables 20, 22 in Ref. [13] and Table 11, is the model that captures
best the requirements for the new grid compared to the other analyzed, be these dependent on the average node degree
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Fig. 5. Comparison for transport cost between synthetic small-world networks (white diamonds) and Northern Netherlands medium voltage samples
(red dots).

(preferential attachment, R-MAT and Random Graph) or not (Copying Model, Forest Fire, Kronecker and Power Laws). The
tight clustering that these models exhibit provides efficient local distribution with paths that are locally short; at the same
time, the shortcuts between the local clusters are the elements that keep the average path extremely limited. These two
aspects influence the α parameter which then stays relatively small. At the same time, the small-world model benefits from
a general robustness against failures: the absence of big hubs that keep the network together (which are present on the
other hand in the power-law-based topologies, for instance) improves the reliability against attacks which help obtaining
good scores for the β parameter. More quantitatively, one sees the general improvement in the metrics characterizing both
the parameters influencing the losses (i.e., the α parameter) and the reliability of the grid (i.e., the β parameter) while
the network becomes more dense, i.e., more edges are added. On average, we see an improvement of at least 50% when
comparing the physical samples of Northern Netherlands with the small-world networks with an average degree ⟨k⟩ ≈ 4,
while better results are obtainedwithmore density (i.e., ⟨k⟩ ≈ 6) where the improvement are 60% compared to the physical
samples. This is indeed beneficial to the power grid and, according to the relationship with the topology, it should translate
into a reduction in the costs for electricity distribution since the α and β metrics are composed of essential ingredients
influencing electricity distribution price [10].

These benefits come literally at a cost. The network needs more connectivity, therefore costs for extra cabling need to be
considered in addition to the cost for upgrading the substations and end-users electricity gateways. A return-on-investment
analysis on this aspect is beyond the scope of the present study. Nevertheless, it is interesting to see how, using the α and
β metrics, it is possible to consider how a certain physical sample belonging to a certain size category (Small, Medium and
Large) would improve in its performance if its topology was arranged according to the principles of a synthetic model and
more connections were added accordingly.

The benefits reached for the α and β metrics should translate into a reduction in the cost for electricity transport
and distribution, since the parameters that influence these metrics are directly connected to aspects related to costs.
However, the significant investment required to add more connectivity in the network might not immediately enable
cheaper electricity costs, but, on the contrary, make it more expensive.

On the one hand, dense networks are less vulnerable compared to less dense ones, aswehave shown in the quantities that
measure robustness to node failures. Froma topological perspective, amore robust network reduces the costs (e.g., economic
output loss) of potential outages [40]. On the other hand additional costs in equipment have to be taken into account
considering, e.g., the electric line protection system and protection coordination of the distribution grid. In our vision, grids
need to bemore dense than the current ones, thereforemore lines need tomonitored and protected against currents beyond
the specification limits. Methods and principles today mainly applied to the high voltage system (e.g., Ref. [41]) will be
inherited by the distribution grid to protect its lines when the distribution grid becomes more complex (e.g., distributed
generation) than its current state. Thus, a balance between the additional costs of the protection systems and a reduction in
the costs of local blackouts will need to be evaluated when smart grids will be implemented on the field.

7. Related work

Network evolution, growth and shrink processes have been studied in the field of statistical physics to characterize and
model hownetworkphenomena in nature and inman-made infrastructures emerge [42,43], in social sciences to evaluate the
social network evolution [44,45], and also by computer scientists to study the evolution of the Internet [46,35]. However,
all these works only focus on the analysis and modeling of the existing grids rather than proposing how a new network
topology should be (or should evolve) to maximize the benefits for members of such a network.
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Complex Network Analysis related work in the power grid domain takes into account the high voltage level usually to
analyze the structure of the network without considering in detail the physical properties of the power lines. In Ref. [11],
we have analyzed several works that investigate power grid properties using CNA approach. There are basically two main
categories ofworkswith the following objectives: (1) understand the intrinsic property of grid topologies and compare them
to other types of networks, assessing the existence of properties such as small-world or scale-free e.g., Refs. [26,15,16];
and (2) better understand the behavior of the network when failures occur (i.e., edge or node removal) and analyze the
topological causes of black-out spread and cascading failures of power lines, e.g., Refs. [47,23,48,49]. Few studies in the
CNA landscape consider the possibility of using the insight gained through the analysis to help the power grid design.
These few cases consider the addition of lines in the network to assess the increase in the reliability of the entire power
grid. Examples are the study of the Italian high voltage grid [50] and the study of improvement by line addition in Italian,
French and Spanish grids [51]. Also Holmgren [52] uses the CNA to understand which grid improvement strategies are most
beneficial showing improvement of typical CNA metrics (e.g., path length, average degree, clustering coefficient, network
connectivity), although for a very small graph (fewer than 10 nodes) when different edges and nodes are added to the
network. Broader is the work of Mei et al. [53], where a self-evolution process of the high voltage grid is studied with CNA
methodologies. Wang et al. [54,55] study the power grid to understand the kind of communication system and the related
network topologies needed to support the decentralized control required by the new power grid applying CNA techniques.
The simulation results are compared to the real samples of high voltage U.S. power grid and synthetic reference models
from the IEEE literature. The effects of distributed and erratic generation from renewable sources, which is a key feature in
the future grid is considered in Ref. [56] where cascades in several IEEE bus networks are considered due to the overload of
power lines analyzed with a DC flow power model. In Ref. [57] the topic of renewable-based generation and their location
on the grid is analyzed from a topological (i.e., page rank-based location of the nodes to attach the generators) and from an
electrical point of view (i.e., effects on the stability of the grid). The authors show, for the Polish high voltage grid that a small
amount the renewable generation is beneficial, but once a certain threshold is surpassed, it is a threat for the stability of the
grid. CNA is not generally used as a design tool to propose new topologies for the future smart grid, especially at medium
and low voltage level, as we use in this paper, where we also assess the benefits in terms of economical improvement.

8. Conclusions

In an evolving electricity sector with end-users able to produce their own energy and sell it on a local-scale market,
the grid plays the essential enabling role of supporting infrastructure. Local scale energy exchange is in fact beneficial for
several aspects, such as the increase in renewable-based energy production, the possibility for the end-user to make a profit
by selling surplus energy and, not less important, making a step forward towards the unbundling of the electricity sector.
We studied how different topologies inspired from technological and social network studies have different properties and
may (or not) be adequate for the future smart grid networks. We showed that among the various models analyzed, the
small-world model appears to have many appropriate characteristics, according to a set of topological metrics defined for
power grids. We also showed how these topological benefits can be related to economical aspects of electricity distribution
through an improvement in the α and β parameters. The underlyingmotivation for the present work is to develop decision-
support techniques based on CNA metrics to upgrade the power grid to a smart grid and provide methodologies to assess
the current infrastructures. In addition, it enables to predict how a change in the topology, according to a certain network
model, can be beneficial for the network from an efficiency, resilience and robustness perspective.

From the industrial perspective, where a unique and clear definition of the smart grid term [58] is missing and where
the standardization process is at the early stages of development, we consider that the present proposal is useful to make
general decisions on how to evolve the grid and (roughly) what costs are entailed. Existing planning techniques will have
to be revised in the future, especially for the distribution grid, due to the presence of advanced metering infrastructure
(i.e., bidirectional intelligent digitalmeters at customer location) and distribution automation (i.e., feeders can bemonitored,
controlled in automatedway through two-way communication). In addition, themediumand lowvoltage gridwill no longer
be a layerwhere only energy is consumed, but distributed energy generation facilities (small-scale photovoltaic systems and
small-wind turbines) will be attached to this segment of the grid; altogether, these elements are likely to reshape the way
planning for medium and low voltage is realized [59] and will also call for new instruments such as the one we propose
here. The dynamics of the power system taking place on top of the grid topology is another relevant issue to consider. The
existing literature focuses on the high voltage grid by assessing the synchronization properties through a spectral analysis
of the graph [60] and how the robustness of networks are influenced by the properties of their spectrum [61]. Even closer
to the practical problems is the issue of choosing control parameters and control strategies to apply to the nodes of the
networks (generators) to ease the achievement and conservation of synchrony between the generators of a networked
power system [62]. We do not consider these last aspects in the present work; however, we envision that the analysis of the
dynamics on networks for the electrical distribution grid is an interesting area of research that deservemore precise models
to bring the smart grid into the field.

Our future efforts will be devoted to realizing an engineering process that guides the evolution of current network
infrastructure towards future topologies optimized for local energy exchange in the smart grid context. Our initial findings
suggest that different strategies of adding links to an existing network can be used to improve the distribution grid physical
samples [63].
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Appendix. Relating topology to economic benefits of electricity distribution

In Section 5 we introduced the association of the grid topology to the cost of electricity. Here we give a thorough
explanation of these concepts based on the findings of the work of Pagani and Aiello [10], where they used these metrics to
relate topological aspects and electricity cost and applied them to the existing Dutchmediumand low voltage infrastructure.

The goal is to consider, from a topological perspective, those aspects and quantities that are critical in contributing
to the cost of electricity as elements in the transmission and distribution networks. Economic studies have assessed the
components of the cost of electricity. The studies of Harris and Munasinghe [64,65] provide the following aspects that
influence price and that are related to topology:

• losses both in line and at transformer stations,
• security and capacity factors,
• line redundancy, and
• power transfer limits.

The topological aspects thatwe consider provide two sorts ofmeasures: the first one,α, gives an average of the dissipation
in the transmission between two nodes

α = f (LlineN , LsubstationN ); (A.1)

the second one, β , is a measure of reliability/redundancy on the paths among any two nodes

β = f (RobN , RedN , CapN). (A.2)

The functions to explicitly compute the α and β parameters can be expressed as follows:

• Losses on the transmission/distribution line can be expressed by the quotient of the weighted characteristic path length
and the average weight of a line (a weighted edge in the graph):

LlineN =
WCPLN

w
. (A.3)

• Losses at substation level are expressed as the number of nodes (on average) that are traversed when computing the
weighted shortest path between all the nodes in the network:

LsubstationN = NodesWCPLN . (A.4)

• Robustness is evaluated with a random-removal strategy, and the weighted-node-degree-based removal by computing
the average of the order of maximal connected component between the two situations when the 20% of the nodes of the
original graph are removed. It can be written as:

RobN =
|MCCRandom20%| + |MCCNodeDegree20%|

2
. (A.5)

• Redundancy is evaluated by covering a random sample of the nodes in the network (40% of the nodes whose half
represents source nodes and the other half represents destination nodes) and computing, for each source and destination
pair, the ten shortest paths of increasing length. If there are fewer than ten paths available, the worst-case path between
the two nodes is considered. To have a measure of how these resilient paths have an increment in transportation cost, a
normalization with the weighted characteristic path length is performed. We formalize it as:

RedN =


i∈Sources,j∈Sinks

SPwij

WCPL
. (A.6)

• Network capacity is considered as the value of the weighted characteristic path length [10], whose weights are the
maximal operating current supported, normalized by the average weight of the edges in the network (average current
supported by a line). That is:

CapN =
WCPLcurrentN

wcurrent
. (A.7)
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With these instantiations, Eqs. (A.1) and (A.2) become:

α = f (LlineN , LsubstationN ) = LlineN + LsubstationN (A.8)

β = f (RedN , RobN , CapN) =
RedN

RobN · ln(CapN)
. (A.9)

The aspects considered here are just some of the factors (the ones closely coupled to topology) that influence the overall
price of electricity. Naturally, there are other factors that influence the final price, e.g., fuel prices, government policies and
taxation, etc., as illustrated for instance in the economic studies of Harris and Munasinghe [64,65].
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