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KORTE, S. M., B. BUWALDA, G. A. H. BOUWS, J. M. KOOLHAAS, F. W. MAES AND B. BOHUS. Conditionedneuroendocrine 
and cardiovascular stress responsiveness accompanying behavioral passivity and activity in aged and in young rats. PHYSIOL 
BEHAV 51(4) 815-822, 1992.--Mean arterial pressure (MAP), heart rate (HR), plasma epinephrine (E), plasma norepinephrine 
(NE), and plasma corticosterone (CORT) were measured in 3-month- and 24-month-old male Wistar rats exposed to a conditioned 
emotional stress response (CER) paradigm and a conditioned defensive burying (CDB) paradigm. In the CER situation blood 
samples were taken during reexposure to the training environment one day after a single inescapable footshock (0.6 mA, AC for 
3 s) had been administered. In the CER paradigm the young rats displayed passive behavior (immobility) accompanied by an 
increase in plasma levels of CORT and E, whereas both the control and conditioned animals showed increased NE responses. 
Previously shocked aged rats exhibited an attenuated plasma NE response, whereas levels of E remained elevated to a greater 
extent. Aged animals showed elevated basal levels of CORT one day after footshock administration. Stress-induced immobility 
was preserved in the aged rats. These animals had an increase in basal MAP values and a decrease in basal HR values compared 
to young ones. 

In the CDB paradigm, rats were exposed to a nonelectrified probe 1 day after the repeated shock (2 mA/contact) procedure. 
Young rats displayed defensive burying accompanied by increments in MAP, HR, CORT, and NE. The aged animals showed 
similar hormonal, autonomic, and behavioral stress responses. 

Thus, the age-related alterations in neuroendocrine and autonomic response patterns are apparent in stressed animals during 
behavioral passivity in absence of control (CER) rather than during active control (defensive burying). 

Stress A g i n g  Blood pressure Heart ra te  Catecholamines Corticosterone 

STRESS, age, and behavioral characteristics are considered to 
be risk factors for disturbances of the cardiovascular system in 
animal and man (17,18,31). Previous studies from our laboratory 
revealed significant interactions between individual responsive- 
hess to a changing environment and susceptibility for high blood 
pressure in chronically stressed rats (l 7). During aging the in- 
hibitory influences on cardiac rhythm in response to certain 
conditioned stressors diminish, either directly due to impairment 
of the descending vagus tone or indirectly due to a decrease in 
the central drive of this system (31). Although the biology of 
aging is a major field of interest, surprisingly few studies have 
examined autonomic and endocrine responses to stress in aged 
rodents (7,30). Based on measurements of plasma norepineph- 
fine and epinephrine, there is some evidence to suggest that aged 
rats are less capable of regulating the sympathoadrenomedullary 

system during and after exposure to stressors (7,30). In these 
studies the direct physical consequences of aversive stimulation 
rather than the consequences of conditioned fear was studied. 
In order to separate direct effects of the aversive stimulus from 
the psychological consequences of the punishment, we studied 
changes in cardiovascular and hormonal parameters in condi- 
tioned stress paradigms. The stress responses are determined by 
interactions between the environment (controllability/predict- 
ability), the properties of the stressor (quality, intensity, and du- 
ration), and individual differences in coping strategy (3,4,20,43). 
To test the effects of aging in a situation that is well defined 
with respect to these interactions we studied stress responses in 
young and in aged rats in two different conditioned stress 
paradigms in which the animals display either passive or active 
behavior. 

Requests for reprints should be addressed to S. M. Korte. 
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Young male adult rats 3 months of age, weighing 301 ± 2 g 
and rats aged 24 months and weighing 534 ± 30 g were used. 
The animals were of a Wistar strain [Cpb, TNO, Zeisl, The 
Netherlands] and were bred in our laboratory. Six animals were 
housed per cage. Group housing was consistent until the begin- 
ning of the experimental procedures. In the case of the aged 
group, housing was consistent over the 24-month period. After 
surgery they were placed individually in clear Plexiglas cages 
(25 × 25 × 30 cm) on a 12 h light:dark regime (0730 h-1930 
h, light on) at a room temperature of 21 _+ 2°C. They were 
handled daily. All animals had free access to standard food (Hope 
Farms rat chow) and water. The experiments took place between 
0900 h and 1300 h. 

Smi~,,e#3" 

During surgery the rats were anesthetized with ether. A silicon 
heart catheter (0.95 mm o.d., 0.50 mm i.d.) was inserted through 
the right jugular vein externalized on top of the skull according 
to the technique described earlier (40). This method allows fre- 
quent blood sampling in unstressed freely moving rats. For direct 
recording of arterial blood pressure and heart rate a nonocclusive 
aortic catheter was implanted (17). The aorta was approached 
via a midline incision in the abdomen. Blood flow was briefly 
interrupted by placement of a small artery clip at the level of 
the iliolumbar vessels. A silicon catheter (0.95 mm o.d., 0.50 
mm i.d.) with a J-shaped teflon tip (TW30, Talas, Ommen, The 
Netherlands), oriented in an upstream direction, was inserted 
through a 23-gauge needle puncture into the abdominal aorta. 
This puncture was made approximately 3 mm rostral to the 
aortic bifurcation. The length of the teflon tubing in the aorta 
was 1 cm. After insertion, the catheter was anchored inside to 
the left psoas muscle, just lateral to the aorta. No leakage occurred 
at the point of insertion, the elasticity of the aortic wall being 
sufficient to close the opening around the catheter. The arterial 
catheter was also externalized on top of the skull and filled with 
a 50% heparinized polyvinylpyrrolidonum (PVP, M = 25,000) 
solution (40). This PVP was replaced daily with fresh new so- 
lution. Eighty-five percent of the catheters were patent after 3 
weeks. The rats were given 1-2 weeks to acclimatize to the new 
cages and recover from surgery. 

('ardiovascu/ar Data Acquisition 

Arterial blood pressure was recorded via a pressure transducer 
(Honeywell 130 PC) and an amplifier (E.D.B., Haren, The 
Netherlands). The heart beat signal was derived from the dif- 
ferentiated blood pressure signal. Both signals were fed into a 
microcomputer (Olivetti M24). The blood pressure signal was 
converted analog to digital (12 bits) at a rate of over 1.0 kHz. 
Data processing and display was performed by the CARDIA 
software package (Maes, in preparation). HR (beats/min) was 
determined on a beat-to-beat basis as the reciprocal of individual 
interbeat intervals. Systolic and diastolic pressures, respectively, 
were determined as the maximum and minimum pressures ob- 
served per interbeat interval. MAP was calculated as (systolic 
pressure + 2 × diastolic pressure)/3. The program provided an 
on-line graphical display of HR, and systolic and diastolic pres- 
sures. Data were stored on disk automatically. 

Blood Sarnpling and Cardiovascular Monitoring 

Before the beginning of the experiments the pressure trans- 
ducer was calibrated by applying water pressures using the 

( 'ARI)IA program, l h c  connecting tube was lillcd with t~cp:.l- 
rinized saline ( 10~ heparin of 500 IU/ml). F'ortv minutes before 
the start of the experiment the animal's catheters wcrc connected 
to polyethylene tubes (0.4 m length. 1.45 mm o.d. and 0.75 mm 
i.d. t fbr blood sampling and blood pressure/hearl rate monitoring 
in their home cages. Alter withdrawal of'each blood sample (0.45 
ml) an equal quantity of donor blood was given to avoid dim- 
inution of the blood volume with related changes in hemody- 
namics (40). Donor blood was obtained from unstressed rats ol 
the same strain with permanent heart cathetcr~ 

('heroical Determinalto#~ s 

Blood samples were taken for determination of plasma epi- 
nephrine (E), plasma norepinephrine (NE), and plasma corti- 
costerone (CORT) levels. The samples were transt~rred imme- 
diately into chilled (0°C) centrifuge tubes containing 0.01 percent 
EDTA as antioxidant and 10 ul heparin solution (50(I IU/ml) 
as anticoagulant. They were then centrifuged at 4°C for 10 rain 
at 5000 rpm, and 100 ul of the supernatant were stored at -20°C 
for CORT and at 80°C for the catecholamine (CA) measure- 
ments. Plasma CORT was measured by means of reversed phase 
high performance liquid chromatography (HPLC), as described 
earlier (10). Determination of plasma CA concentrations was 
performed by HPLC in combination with electrochemical de- 
tection (23,38). 

EXPERIMENT 1 

A two-compartment stepthrough apparatus with a sliding 
door between the compartments (1) was used to investigate the 
conditioned stress responses in young and in aged rats. The par- 
adigm is similar to the often-used conditioned emotional stress 
response (CER) paradigm (27), except that only a single foot- 
shock was given (one-trial learning). Before the actual measure- 
ments started, the rats were briefly placed in a waiting cage ad- 
jacent to the apparatus for 1 min. Next, they were trained to 
enter, from the illuminated platform, the dark compartment 
where they were left for 5 min. This procedure was repeated 
three times to allow habituation to occur. During the first test 
session, which was designed to investigate the effects of trans- 
ferring and exposing the rats to the apparatus, the rats were 
transferred directly into the dark compartment, where exploring 
the environment took most of the time (21). No shock was ad- 
ministered at this time (nonshocked). 

Two days later the rats were subjected to the one-trial learning 
CER paradigm (27). They received a single inescapable scram- 
bled fooishock (0.6 mA, AC tbr 3 s) through the grid floor of 
the apparatus immediately upon entering the dark compartment 
of the apparatus (stress chamber). The rats were removed from 
the dark chamber 30-40 s after termination of the footshock. 
One day after the inescapable footshock, stress responses were 
measured during forced exposure to the stress chamber, while 
no further tbotshock was administered (shocked). The duration 
of time spent on immobility behavior was measured at T : 1 I 
min up to T - 13 rain during reexposure to the dark compart- 
ment and was used as behavioral parameter. Hormonal and 
cardiovascular responses were measured in the home cage (at T 
= 0 and T = 5 rain), during the first and fifth rain of exposure 
to the stress chamber (T - 10 and T = 14 min) and after return 
in the home cage (T = 25). 

EXPERIMENT 2 

Two days after Experiment 1 the rats were subjected to the 
shock probe/conditioned defensive burying (CDB) test. The test 
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was performed in each individual 's home cage in order to avoid 
disturbance of  the neuroendocrine and cardiovascular system 
by intercage transfer (10,22). A removable teflon probe (6.5 cm 
long, 1 cm in diameter) was inserted 2 cm above the bedding 
material (wood shavings) through a small hole in the center of  
the front wall of the Plexiglas cage. An electric current was passed 
through two exposed wires (0.5 m m  in diameter) each wrapped 
independently 25 times around the probe. On the first day the 
shock probe was inserted for 15 min. When touching the probe 
the animal received a shock of  2 mA/contact.  During the entire 
period the shock circuit was left on [repeated shock probe pro- 
cedure; Treit and Fundytus (42)]. On the second day the pro- 
cedure was identical except that no electrical current was applied 
to the probe. Thus, the procedure investigated the conditioned 
consequence of  former punishment rather than the direct effect 
of shock. The behavior of  each rat was recorded on videotape. 
The amount  of  time spent on defensive burying [i.e., moving 
toward the probe and spraying or pushing the bedding material 
toward the probe with rapid movements of  the snout or forepaws 
as described earlier by Pinel et al. (32)] was measured during 
the first 5 min of  presentation of  the nonelectrified probe on the 
second day. Blood pressure, heart rate, and hormonal levels were 
measured for l-rain periods without probe (T = 0 and T = 5 
rain), during (T = 6, T = 10, and T = 20 min), and after pre- 
sentation of  the nonelectrified probe (T  = 50 min). 

240 

Results are presented as mean _+ SEM. Behavioral data were 
analyzed with the Mann-Whi tney  U-test. For statistical analysis 
of  hormonal and cardiovascular basal values between young and 
aged animals the two tailed t-test (STATS) was used. This test 
was also used for analysis of  the (stress) responses--i.e.,  peak 
level minus basal level. The paired t-test (STATS) was used for 
comparisons within subjects. Multivariate analysis of  variance 
with repeated measures (MANOVA) and the Pillai test of  SPSS/ 
PC+ were used for multivariate statistics. A probability level of  
p < 0.05 was taken as significant. 
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FIG. 1. Immobility behavior of previously nonshocked (24 h earlier) 
and shocked animals both in aged (24-month-old) and young (3-month- 
old) animals during reexposure to the stress chamber. Mean _+ SEM are 
from circa 9-10 rats per group. **, p < 0.01. (Mann-Whitney U-test). 
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FIG. 2. Plasma Levels of epinephrine and norepinephrine of young 
- - © -  (3-month-old) and aged - - • -  (24-month-old) rats before 
(nonshocked) and l day after inescapable shock (shocked). Hormone 
levels were measured in the home cage, in the experimental room with 
stress chamber (indicated by the shaded area on the horizontal axis), and 
after return into the home cage. Data are expressed as the mean _+ SEM 
from circa 9-10 animals in both groups. *, p < 0.05 (two-tailed t-test). 
Results from MANOVA of plasma E data are as follows: l) nonshocked: 
period effect, F(4,13) = 4.07, p = 0.024; and 2) shocked: period effect, 
F(4,14) = 18.43, p < 0.001. Results from MANOVA of plasma NE data 
are as follows: 1) nonshocked: period effect, F(4,13) = 19.84, p < 0.001; 
and 2) shocked: period effect, F(4,14) = 26.68, p < 0.001. 

RESULTS 

E X P E R I M E N T  1 

Behavioral Response in the One-Trial Learning CER 
Paradigm 

Figure 1 shows the behavioral response of  the young and the 
aged rats during reexposure to the shock compartment.  The 
conditioned emotional stress of  fear for repetition of  the shock 
elicited an increase in the t ime spent immobile  in both young 
and aged rats compared to nonshocked controls. The aged an- 
imals, whether in the nonshocked or the shocked state, displayed 
more immobili ty relative to corresponding young controls (p < 
0.01). 

Catecholamines 

Figure 2 shows the basal plasma E and NE levels. The levels 
did not significantly differ between young and aged rats. Trans- 
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ferring and exposing animals to the test chamber in the non- 
shocked trial led to similar elevations of plasma levels of E in 
both age groups. Both young and aged animals, however, showed 
a larger E increment one day after shock than in the nonshock 
trial (p < 0.05). Plasma levels of E in aged rats remained elevated 
above baseline levels in the home cage at T - 25 min after 
exposure to the emotional stressor (p < 0.05). NE elevations 
were apparent in both nonshocked and shocked animals. The 
aged rats exhibited a diminished NE response (from T - 5 to T 
= 10 rain) to the emotional stressor compared to young rats (p 
< 0.05). Significant results of the MANOVAs are shown in the 
legends. 

Corlicosteron e 

Figure 3 shows the changes in plasma CORT levels before 
and 1 day after inescapable electrical footshock in the young 
and in the aged rats. Basal plasma CORT levels tended to be 
higher in the nonshocked aged rats compared to the young con- 
trols, but the differences were not significant. Transferring and 
exposing the animals to the test chamber led to equivalent in- 
creases in plasma levels of CORT in both young and old rats. 
Shocked animals of both ages showed a further increase of the 
CORT response compared to the nonshocked controls (p < 0.05). 
One day after shock, the plasma CORT levels of aged rats in 
the home cage were significantly higher than these of the young 
controls (p < 0.05). In the stressed condition, both groups reached 
the identical peak plasma CORT levels at T = 25 min. Only 
significant results of the MANOVAs are shown in the figure 
legends. 

Cardiovascular Measurements 

Figure 4 shows the MAP (in mmHg) and HR (beats/min) 
before, during, and after exposure to the dark test chamber in 
the young and in the aged rats before (nonshocked) and 1 day 
after inescapable shock (shocked). The basal MAP of the aged 
rats was significantly higher (at least p < 0.05), whereas the basal 
HR was significantly lower (17 < 0.05) in both the nonshocked 
and the shocked state compared to young animals. Transferring 
and exposing the animals to the test chamber caused an increase 
of both HR and MAP. There was no significant difference in 
the responsiveness of the cardiovascular system in nonshocked 
and shocked animals, but a tendency to diminished responsive- 
ness was observed in the aged animals. Significant results of the 
MANOVAs are shown in the figure legends. 

EXPERIMENT 2 

Behavioral Response in the CDB Test 

One day after the shock both young and aged rats spent 
roughly the same amount of time (163 _+ 23 s, n = 8; 150 _+ 25 
s, n = 9; respectively) on defensive burying, i.e., pushing of bed- 
ding material toward or over the nonelectrified probe during the 
first 5 min of presentation of the probe. 

Catecholamines 

Figure 5 shows the plasma E and NE levels before, during, 
and after presentation of the nonelectrified probe 1 day after 
shock. There was practically no E response to the presentation 
of the probe in both the aged and the young animals. Basal 
plasma NE levels tended to be higher in the aged animals, but 
this difference was not significant. During presentation of the 
probe the NE levels showed a larger increase in young than in 
aged rats, but these failed to reach the level of significance. 

T 

~, 2c 

0 
C 
e t5 

0 
._u 
~ t0 
u 

NONSHOCKED SHOCKED 

• AGED 
O YOUNG 

25 

' ' d ' ' d 0 10 0 0 10 0 
time (min) 

FIG. 3. Plasma corticosterone levels of young - -  © - -  (3-month-old) 
and - -  • - -  aged (24-month-old) rats before (nonshocked) and 1 day 
after inescapable shock. Hormone levels are measured in the home cage, 
the experimental room with stress-chamber (indicated by the shaded 
area on the horizontal axis), and after return into the home cage. Data 
are expressed as mean _+ SEM from circa 9-11 animals in both the 
young and the aged group. *, p < 0.05 (two-tailed t-test). Result from 
MANOVA of plasma CORT data are as follows: 1) nonshocked: period 
effect, F(4,16) = 14.16, p < 0.001; and 2) shocked: period effect, F(4,15) 
= 26.22, p < 0,001. 

Corticosterone 

There was no significant difference in the plasma CORT levels 
between the aged and the young rats before, during, or after 
presentation of the nonelectrified probe (Fig. 6). Plasma CORT 
increases were of the same order of magnitude in both age groups. 

Cardiovascular Measurements 

Figure 7 shows the MAP and HR before, during, and after 
presentation of the nonelectrified probe in the home cage of the 
young and the aged rats. The systolic and diastolic pressure in 
the aged animals was respectively 142 + 7 mmHg and 108 + 8 
mmHg. In the young animals systolic pressure was 127 _+ 4 
mmHg and diastolic pressure was 84 + 2 mmHg. During all 
measurements, MAP of the aged animals was significantly higher 
(p < 0.01 or p < 0.05, respectively), whereas HR in the aged 
group was significantly lower compared to young animals (p < 
0.05 or p < 0.01, respectively). The MAP response due to pre- 
sentation of the nonelectrified probe was in the same order of 
magnitude in young and aged rats, whereas the HR response of 
aged relative to young animals was less and approached signif- 
icance (p = 0.07). 

DISCUSSION 

In the present study the differences between 3-month- and 
24-month-old male Wistar rats in physiology and behavior dur- 
ing and after exposure to conditioned emotional stressors were 
investigated. Aging affected the basal activity of the cardiovas- 
cular system. Aged rats that had absence of control (in the CER 
paradigm) showed elevated basal plasma levels of CORT, di- 
minished plasma NE responses, and a delayed post-stress re- 
covery of plasma catecholamines compared to young controls. 
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FIG. 4. Mean blood pressure (MAP) and heart rate (HR in beats/min) 
of young - -  © - -  (3-month-old) and aged - -  • - -  (24-month-old) rats 
before (nonshocked) and 1 day after inescapable shock (shocked). HR 
was measured in the home cage, the experimental room with stress 
chamber (indicated by the shaded area on the horizontal axis), and after 
return to the home cage. Data are expressed as mean _+ SEM from circa 
8-10 animals in both the aged and young group. *, p < 0.05; **, p < 
0.01 (two-tailed t-test). Results from MANOVA of MAP data are as 
follows: 1) nonshocked: period effect, F(4,11) = 29.4, p < 0.001; period 
× aging, 1=(4,11) = 7.96, p = 0.003; and 2) shocked: period effect, F(4,13) 
= 31.86, p < 0.001. Results from MANOVA of heart rate data are as 
follows: 1) nonshocked: aging effect, F(1,14) = 16.71, p = 0.001; period 
effect, F(4,11) = 25.15, p < 0.001; and 2) shocked: aging effect, F(1,16) 
= 12.32, p = 0.003; period effect, F(4,13) = 26.27, p < 0.001. 

Rats were in succession tested in the conditioned emotional 
stress (CER) paradigm in which immobili ty was displayed and 
in the conditioned defensive burying (CDB) test in which animals 
showed behavioral activity. The behavioral responses in the aged 
animals in both test conditions were fully maintained which is 
in accordance with earlier findings (31,41). This suggests that 
there was neither learning nor memory impairment  for the con- 
ditioned stimuli. The significantly higher score of immobil i ty in 
the aged relative to the young animals is in agreement with find- 
ings of a decreased spontaneous locomotor activity in aged an- 
imals (44). 

The stress response in the CER paradigm was characterized 
by passive behavior (immobility) associated with increased 
plasma levels of corticosterone (CORT) and epinephrine (E). 
Thus, simultaneous activation of both the adrenomeduUary sys- 
tem and the pituitary-adrenocortical axis appear to have oc- 
curred. Findings by Kvetnansky et al. (24,25) and De Boer et 

al. (10,11) support this conclusion. In the CDB paradigm rats 
displayed active coping behavior (defensive burying) with con- 
comitant  rise in mean arterial pressure (MAP) and heart rate 
(HR), and increases in plasma levels of CORT and norepineph- 
rine (NE). These results are in accordance with the findings that 
physical activity causes an increase in the release of NE (37). 
Furthermore, these results fit in well with the view that the pi- 
tuitary-adrenocortical axis can be regulated independently from 
the sympathoadrenomedullary system (10,24,25). High plasma 
NE levels in combinat ion with low plasma levels of E suggests 
that a dissociation of central regulation of the peripheral sym- 
pathetic nerves and the adrenal medulla seems to have occurred 
during the present testing conditions (10,24,25,37,45). An in- 
crease in sympathoadrenal activity implies enhanced outflow of 
catecholamines from the adrenal medulla and the peripheral 
nerve endings of the sympathetic nervous system. However, 
plasma levels of NE investigated in young animals depend on 
release, reuptake, metabolic, and excretory processes (5). There- 
fore changes in plasma NE levels should be interpreted with 
caution. In general, venous plasma NE provides a useful esti- 
mation of average peripheral sympathetic outflow. Plasma levels 
of NE and E are increased during many  types of acute stress 
and physical activity (7,10,30). Recently, it was reported that 
physical activity in young rats selectively caused an increase in 
the release of NE. Activation of the adrenal medulla was evoked 
by emotional stressors and led to an increase in E levels in the 
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FIG. 5. Plasma levels of epinephrine and norepinephrine in young 
- - O -  (3-month-old) and aged - - • -  (24-month-old) rats before, 
during, and after presentation of the nonelectrified shock probe in the 
rat's home cage 1 day after shock. The period of probe presentation is 
indicated by the shaded area on the horizontal axis. Data are expressed 
as mean f SEM from nine animals per group. The t-tests and MANOVAs 
revealed no significant differences. 
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FIG. 6. Plasma levels of corticosterone of young - -  © - -  (3-month-61d) 
and aged - -  • - -  (24-month-old) rats before, during, and after presen- 
tation of the nonelectrified shock probe in the rat's home cage one day 
after shock. For further explanations see Fig. 5. Data are expressed as 
mean _+ SEM from 10 animals in the young group and from nine in the 
aged group. The t-tests revealed no significant differences. Results from 
MANOVAs of plasma CORT data are as follows: period effect, F(4,14) 
- 1 1 . 8 6 ,  p < 0.001. 

blood (37). It canno t  be excluded that  earlier stress experience 
in the CER paradigm has influenced the results of  the exposure 
to the CDB paradigm. 

The effect of  aging on the basal ca techolamine  levels seems 
rather  complex. In aged rats the resting levels of  plasma NE 
tended to be higher, whereas the basal levels of  E were unchanged. 
Increased plasma basal levels of  NE have been reported in aged 
rats (7,36, Buwalda et al., submitted).  Elevated levels of  plasma 
NE may reflect an age-related increase o f N E  spillover rate (36). 
Factors such as a decrease in the metabolic clearance rate cannot  
be excluded (16). Therefore it is quest ionable whether  the NE 
levels in the aged animals  reflect a different pat tern of  NE release 
and altered sympathetic nerve activity. The possible mechanisms 
by which aging could produce an increase in sympathet ic  nerve 
activity e.g., by a decrease in central vagal inhibitory mechanisms 
(31), an increase in central  excitatory mechanism,  or through a 
decrease in baroreceptor  sensitivity (16), are presently subject 
to further investigations. 

The effect of  aging on the plasma E and  NE responses in the 
aged animals  was different compared  to the young animals  in 
the CER paradigm. Following exposure to the emotional  stressor, 
aged rats exhibited a smaller plasma NE response, whereas 
poststress re turn to basal ca techolamine  levels seemed to be de- 
layed. The  density of nerve terminals  may decline in the heart  
and in some arteries with aging (2,8). This  could explain why 
the release of  plasma NE in stressed aged rats is reduced. The 
slower return of  plasma E to prestress values in these animals  
is in agreement  with other  studies in the rat (30). Addit ional  
research with regard to the clearance of  E and  NE from the 
blood would be especially useful. 

Basal plasma corticosterone (CORT) levels showed a ten- 
dency to increase with age, and  basal C O R T  levels of  the aged 
animals  were significantly elevated 1 day after footshock. Ele- 
vated basal plasma levels of  C O R T  in the aged rats is in agree- 
ment  with a n u m b e r  of other  reports (4,28,35). This  age-depen- 
dent difference may be related to specific corticoid receptorbound 

brain processes ( 12,13,19,26.33.34) or changcs !r, ~idrcnal sell 
sitivit3 to ACTH (8). 

l h e  effects of aging on the cardiovascular system were pr,,- 
nounced.  In our  study basal MAP values were elevated in aged 
rats while basal t tR  values showed a decrease. Conllict ing data 
exist for MAP and HR in freel> moving aged rats..Mi increascd 
basal MAP in 20-24-month-old  animals was reported by ( 'h iuch 
et al. (7). and a nonsignificant elevation by M c ( a r t }  (311). Some 
investigators have reported higher systolic blood pressure (~,q), 
while others failed to observe changes in diastolic blood pressure 
(l 5). The finding that  resting f tR  declines with age is consistent 
with one study f7), while m conflict with others that report no 
change (15) or an increase in HR in aged rats (30). l 'hc lower 
HR of  the aged animals  in the present study ma} bc duc to a 
lower intrinsic HR of the aged animals  (Buwalda c t a l . ,  sub- 
mitted). Possible factors in causing these different findings may 
be the use of different rat strains or the consequences of diflkr- 
ences in previous stress his tow or rearing condi t ions  of  the an- 
imals. Another  possible reason fi)r different findings within lhe 
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FIG. 7. Mean arterial pressure (MAP in mmHg) and heart rate (beats/ 
rain) of young - -  O - -  (3-month-old) and aged - -  • - -  (24-month-old) 
rats before, during, and after presentation of the nonelectrified shock 
probe in the rat's home cage one day after shock. For further explanations 
see Fig. 5. Data are expressed as mean _+ SEM from 9 animals in the 
young group and from 8 animals in the aged group. *, p < 0.05; **, p 
< 0.01 (two-tailed t-test). Results from MANOVAs of MAP data are as 
follows: aging effect, F(1,15) = 5.54, p = 0.033; period effect, F(5,11 ) = 
4.87, p = 0.014. Results from heart rate data are as follows: aging effect. 
F(I,15) = 10.49, p = 0.006; period effect, F(5J 1) = 12.89, p < 0.001. 
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same laboratory may be that a group of  aged animals is more 
heterogeneous than a group of  young animals, as reflected in 
the larger SEM. 

In both paradigms the tachycardia is of  the same magnitude 
in the young and the aged animals. Borton and Docherty (6) 
suggested that a reduced function of  neuronal uptake of  NE in 
the aged rat may serve to maintain responses in spite of  a reduced 
postjunctional responsiveness in the heart. The MAP response 
due to activation or emotional stressors was not significantly 
different between the aged and the young animals. 

Due to the small amount  of  data no reliable correlations 
could be made between hormonal  and cardiovascular values. It 
remains a matter of discussion whether elevated basal MAP levels 
are associated with an increase in arterial stiffness or elevated 
levels of  catecholamines. However, a role of  catecholamines in 
the development of  age-related hypertension cannot be excluded 
(29,30). It is tempting to suggest that once hypertension has 
been established, the elevated MAP may accelerate the rigidity 
of  large arteries that develops with age (26). Longitudinal studies 
will be necessary for a deeper understanding of cause and effect. 
Furthermore, the social status of  the animals (dominant, sub- 
dominant, subordinate, or outcast) should be taken into account. 

In summary, aged rats that have been exposed to the CER 
paradigm showed diminished plasma NE responses. In those 

aged animals, levels of  E remained elevated to a greater extent 
during recovery from stress compared to young animals. No 
significant differences were seen in the neuroendocrine mea- 
surements of  young and aged animals in the CDB paradigm in 
which the animals display active behavior. Furthermore, aging 
may affect the cardiovascular system which is reflected in a higher 
basal MAP and lower basal HR in the aged animals. In spite of  
these age-induced differences, the behavioral response was pre- 
served in both actively and passively behaving aged animals. It 
is suggested that the age-related differences in neuroendocrine 
and autonomic parameters are more clearly apparent in stressed 
animals during absence of  control (immobility) than during ac- 
tive control (defensive burying). 
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