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Abstract -In this paper a method is presented to build an Euler
Lagrange model for switching electrical networks in a struc-
tured general way, which is also applicable to ideal electri-
cal circuits without switches. The switches make the dynamic
models nonlinear. For using the Lagrangian structure for con-
troller design, a preliminary study of the zero-dynamics ofsuch
switching network is presented. A case study, where a passivity
based controller has been applied, is given for theĆuk con-
verter.

I. INTRODUCTION

DC-to-DC power converters play a primary role in modern
power systems for satellites, non-civilian, industrial and con-
sumer electronic applications. Optimization of converterde-
sign is an important issue. Therefore a thorough understand-
ing of the converter as a system is required and one must be
able to analyze converter behavior like stability and transient re-
sponse. Power converters employ pulse modulation for control-
ling the duty cycle. The pulse modulation process presents sig-
nificant difficulties in analyzing the behavior of these convert-
ers. Approximations in system modeling are usually required.
State-space averaging has been demonstrated to be an effective
method for analysis.

The feedback regulation of DC-to-DC power supplies is,
broadly speaking, accomplished through either pulse-width-
modulation (PWM) feedback strategies, or by inducing an ap-
propriate stabilizing sliding regime ([17], [11]). In the con-
text of PWM feedback policies, modeling and regulation of
switched DC-to-DC power converters was initiated by the pi-
oneering work of Middlebrook and́Cuk ([9]) in the mid sev-
enties. The average PWM model could be justified from a
purely mathematical viewpoint, without regarding their possi-
ble physical significance or derived from the energy property of
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the switched electrical circuit. In the latter we have the advan-
tage of exploiting the physical properties during the feedback
controller design stage. In particular, we would like to apply
thepassivity-basedapproach in the feedback duty ratio synthe-
sis problem, i.e., based on the energy of a system we design
a controller, see e.g. [13, 10] and therefore we like to work
with Euler Lagrange models. Sira-Ramirezet. al.demonstrate
([13]) for the ’boost’, ’buck’, ’buck-boost’ converters ona case
by case basis that idealized mathematically motivated models
actually correspond to systems derivable from classical Euler-
Lagrange (EL) dynamics considerations. The approach consists
in establishing a suitable set of averageEL parametersmodu-
lated by the duty ratio function. Here we develop a procedure
that results in the EL parameters of a general switching electri-
cal network structure, where we assume switches to be ON or
OFF, and where the EL parameters are extended with constraint
equations stemming from Kirchhoff’s current laws.

Due to a possible non-minimum phase nature of the average
output voltage variable, adirect application of the passivity-
based design method, aimed primarily at output-voltage regu-
lation, may lead to an unstable dynamical feedback controller.
For this reason, anindirect approach, consisting of output-
voltage regulation through stabilization of one of the other dy-
namical elements is undertaken. A study of the zero-dynamics
is thus necessary, and here we present some preliminary results
on this matter. Indirect controller design for a non-minimum
phase system has been justified, for nonlinear system in the
work of Benvenutiet. al. ([1]).

In Section II we present the general procedure to develop an
EL model for switching and non-switching electrical networks.
Then, in Section III we give some preliminary results on general
statements about the stability of the zero-dynamics, correspond-
ing to the (non)-minimum phase behavior of the output. Section
IV treats the development of a passivity based controller for the
Ćuk converter. In Section V the simulations with theĆuk con-
verter are presented. Finally, in Section VI we end with the
conclusions.
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II. EULER-LAGRANGE MODELING OF

(SWITCHING) NETWORKS

The EL dynamics of an electric circuit, containing no magnetic
coupling between its different branches, is classically character-
ized by the following set of nonlinear differential equations

d
dt

(

∂L
∂q̇

)

−
∂L
∂q

= −
∂D
∂q̇

+Fq (1)

whereq̇ is the vector of flowing current andq represent their
time integrals, orelectric charge. The vector of electric charge
constitutes thegeneralized coordinatesdescribing the circuit.
This vector is assumed to haven components, represented by
q1, . . .,qn. It is well-known that the scalar functionL is the
Lagrangianof the system, defined as the difference between
themagnetic co-energyof the circuit, denoted byT (q, q̇), and
theelectric field energyof the circuit, denoted byV(q), i.e.

L(q, q̇) = T (q, q̇)−V(q) (2)

The functionD(q̇) is theRayleigh dissipation cofunctionof the
system. The vectorFq = (Fq1, . . .,Fqn) represents the ordered
components of the set ofgeneralized forcing functions, or volt-
age sources, associated with each generalized coordinate.
EL circuits are thus generally represented by the set of equation

d
dt

(

∂T
∂q̇

)

−
∂T
∂q

+
∂V
∂q

=−
∂D
∂q̇

+Fq. (3)

Following ([10]), we refer to the set of functions(T ,V,D,Fq)
as theEL parametersof the circuits, and simply express a circuit
Σ by means of the ordered quadruple:

Σ = (T ,V,D,Fq). (4)

We are interested in a general method for dynamic modeling of
electrical networks, with or without switches. We considerideal
physical elements, and want to follow the above mentioned La-
grangian framework, so that the physics can be easily used for
control purposes. However, actually the Euler-Lagrange (EL)
equations are a balance of generalized forces, or, efforts,which
in the electrical domain is given by the voltages, and involves
both generalized position and generalized velocity coordinates
for each separate physical element. In the electrical domain
that means that we attach to each separate element (inductor
and capacitor)two state-variables, namely a charge and a cur-
rent. Clearly this does not correspond to the physical intuition,
but it can be viewed as if for the inductor the charge is anin-
termediate helpvariable, and for the condensator the current is.
In order to involve also the Kirchhoff current laws, we need to
consider the constraint form of the EL equations, see e.g. [14],
given by,

d
dt

(

∂L
∂q̇

)

−
∂L
∂q

=−
∂D
∂q̇

+A(q)λ +Fq

A(q)T q̇ = 0
(5)

which then finally results in the removal of these intermediate
help variables. This procedure can be performed for electri-
cal networks with linear inductive and capacitive elementsand
with or without ideal switches. The switches can be naturally
involved in the constraints that follow from Kirchhoff’s current
laws. If we denote by the scalaru the switch position, which is
assumed to take values on a discrete set of the form{0,1}. The
complete procedure is as follows:

Procedure:

1. Give all n dynamic elements in the network two coordi-
nates, namely a charge and a current coordinate,qi , andq̇i ,
i = 1. . .n.

2. Determine the corresponding energy for all ideal elements,
i.e., the magnetic co-energy for the inductive elements, de-
noted byT (q, q̇), and the electric field energy for the ca-
pacitive elements, denoted byV(q). In case of a switch-
ing network, this step doesnot involve the position of the
switch.

3. Determine the Rayleigh dissipation energy, denoted by
D(q̇), for the resistive elements, which may involve the
switch positionu, and the use of a Kirchhoff current law
for determining the current through the resistive element
in terms of the dynamic elements as given in step 1.

4. Determine the generalized forcing functionsFq given by
the voltage sources, possibly depending on the switch po-
sition.

5. Give the constraint equations that are determined by Kirch-
hoff’s currents laws, that do not include the laws of step 3,
and thus only involve the currents through the dynamic el-
ements. If there are no constraint equations for this step,
then putA(q) = 0.

6. Plug the information of the previous steps in the constraint
form of the EL equations (5) and determine a state space
model by choosing the currents corresponding with the in-
ductive elements, and either the charge or the voltage cor-
responding with the capacitive elements, as state variables.2

In the following we present two examples to illustrate the above
method, a simple LC-circuit with an odd number of states, and
a Ćuk converter circuit with an ideal switch. Both of these ex-
amples use the constraint Euler-Lagrange equations (5). The
Ćuk converter serves as a case study further in the paper. How-
ever, the above procedure also applies to the unconstraint case,
i.e., whereA(q) = 0, like in the examples of the buck, boost
and buck-boost converter circuits, [13], where the EL models
of these systems have been obtained on a case by case basis.
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Example 1: LC-circuit of Figure 1.

U

L 1

C2 L 3

+

- -

+

+ -

+

-

i

Figure 1: LC circuit

This example is taken from Example 4.2.1. of [14], and is meant
to show the potential of this method, even if the number of dy-
namic elements is not even. At first sight the EL equations may
demand an even number, but due to the above procedure where
each dynamic element has two coordinates, this is not neces-
sary.

(Intermediate) state variables:qi, q̇i, i = L1,C2,L3

Lagrangian:L = 1
2L1q̇2

L1
+ 1

2L3q̇2
L3
− 1

2C2
q2

C2

Kirchhoff: q̇L1 − q̇L3 − q̇C2 = 0

with q = (qL1,qC2,qL3)
T we obtain from the equations (5) with

A(q)T = (1,−1,−1)

L1q̈L1 = λ +V

1
C2

qC2 = −λ

L3q̈L3 = −λ
0 = q̇L1 − q̇L3 − q̇C2

which results in the dynamical equations corresponding to
(4.19) in [14], with(x1,x2,x3) = (q̇L1,

1
C2

qC2 , q̇L3)

ẋ1 = −
1
L1

x2 +V

ẋ2 =
1

C2
(x1−x3)

ẋ3 =
1
L3

x2 2
Example 2: Ćuk converter of Figure 2.

This example illustrates the potential of the proposed procedure
for switching networks, and serves as a case study throughout
the paper.

(Intermediate) state variables:qi, q̇i, i = L1,C2,L3,C4
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Figure 2:Ćuk converter circuit

Magnetic co-energy:T(q̇L) = 1
2L1q̇2

L1
+ 1

2L3q̇2
L3

Electric field energy:V(qC) = 1
2C2

q2
C2

+ 1
2C4

q2
C4

Rayleigh dissipation:D(q̇L3, q̇C4) = 1
2R(q̇L3 − q̇C4)

2

External forces:FqL1
= E, FqC2

= FqL3
= FqC4

= 0

Kirchhoff constraint: ˙qC2 −uq̇L3 − (1−u)q̇L1 = 0

And thusA(q)T = (−(1−u),1,−u,0). Plugging this into the
equations (5) yields for théCuk converter:

L1q̈L1 = −(1−u)λ +E
1

C2
qC2 = λ

L3q̈L3 = −R(q̇L3 − q̇C4)−uλ
1

C4
qC4 = R(q̇L3 − q̇C4)

0 = q̇C2 −uq̇L3 − (1−u)q̇L1

which results in the state equations for(x1,x2,x3,x4) =
(q̇L1,

1
C2

qC2 , q̇L3,
1

C4
qC4):

ẋ1 = −(1−u)
1
L1

x2 +
E
L1

ẋ2 = (1−u)
1

C2
x1 +u

1
C2

x3

ẋ3 = −u
1
L3

x2−
1
L3

x4

ẋ4 =
1

C4
x3−

1
RC4

x4

(6)

This is the model with the discrete values for the switch, butas
we will see next, is also closely related to the PWM model.2
A PWM policy regulating the switch position functionu may
be specified as follows:

u(t) =

{

1, for tk ≤ t < tk +D(tk)T
0, for tk+D(tk)T ≤ t < tk +T

tk+1 = tk +T; k = 0,1, . . .

(7)

wheretk represent a sampling instant; the parameterT is the
fixed sampling period; the sampled value of the state vectorx(t)
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of the converter are denoted byx(tk). The functionD(·) is the
duty ratio function, acting as an external control input to the
average PWM model of the converter [12]. The value of the
duty ratio functionD(tk) determines at every sampling instant
tk the width of the upcoming ON pulse asD(tk)T (during this
period the switch is fixed at the position represented byu = 1).
Now, the duty ratio functionD(·) is evidently a function limited
to take real values on the open interval ]0,1[.

For networks with a switch, note that, according to the PWM
switching policy (7), at every sampling interval of periodT, the
Kirchhoff constraintA(q)T q̇ = 0 for u = 1 is valid over only a
fraction of the sampling period given byD(tk), while the con-
straint foru = 0 is valid over only a fraction of the sampling
period equal to(1−D(tk)). One possible way to handle this,
is to considering an average value of the Kirchhoff constraint
and thus to propose the set of EL parameters with the constraint
dependent on the duty cycle, as in the original procedure it is
dependent on the discrete values of the switch. Note that if we
would takeD = 1 or 0, one recovers, respectively, the Kirchhoff
constraint for the two switch positions. Indeed, such aconsis-
tencycondition is verified by noting that

A(q)T q̇ |D=1= 0,

A(q)T q̇ |D=0= 0.
(8)

We note that the Lagrangian function associated with the above
defined average EL parameters is actuallyinvariantwith respect
to the switch position function.

Example 2 (continued)
The PWM model for théCuk converter is given by the dynamic
equations as in (6), where the state variablex is replaced by the
average statez, i.e.,z1 andz3 represent the average inductor cur-
rents, andz2 andz4 the average capacitor voltages, and where
the discrete signalu is replaced by the duty cycleD that takes
values in the open interval ]0,1[. 2
The presented Euler-Lagrange modeling technique for (switch-
ing) networks results in the same dynamical models as when the
Hamiltonian framework is used, e.g. [7, 3], provided that the
same level of ideal physics is assumed. However, the Hamil-
tonian framework does not introduce the “semi”-physical in-
termediate help-variables. Nevertheless, we do think thatthe
above framework is an easy, general, and straightforward way
to obtain the dynamic models of electrical networks, where the
interconnection between the elements, given by the Kirchhoff
laws, corresponds to the straightforward knowledge of the elec-
trical engineer. It gives us the opportunity to apply the well-
known passivity based control techniques, as presented in [13]
for the buck, boost and buck-boost converter, but this time for
more general electrical network structures.

III. Z ERO-DYNAMICS

In the sequel, we continue with the dynamic PWM model of the
converter structures, as can be obtained from the previous sec-
tion, where we now denote the averaged state space variables
by z, and the duty cycle byD. The design of passivity based
control for the buck, boost, and buck-boost converter can be
found in [13], whereas further analysis of the closed loop sys-
tem is explored in some follow-up work, e.g. [15, 16]. Since
we have given a general procedure to build an Euler-Lagrange
model for switching networks, we can also generally apply the
passivity based control design technique. However, one issue
that remains is the choice of the average state variable to be
stabilized to a certain value, in order to, possibly indirectly, reg-
ulate our average output toward a desired equilibriumvalue. For
the boost and buck-boost converters, it was shown in [13] that
the average output voltage could not be directly controlled, due
to the unstable zero-dynamics (i.e., for linear systems this cor-
responds to zeros in the right half plane, or in other words, un-
desirable non-minimum phase behavior), and therefore, hadto
be indirectly controlled via the average input-current, which ex-
posed stable zero-dynamics.

In general, we can not say much about the stability or instability
of the zero-dynamics of the separate elements of switching net-
works, since we are not able to give general descriptions of the
zero-dynamics. However, when we consider converter struc-
tures with one switch, a resistive element over the output capac-
itor, a constant voltage source that applies to an inductiveele-
ment, and exclude the forcing function to depend on the switch
position (like for the buck converter), then we can at least give
one element of the zero-dynamics.

The description of the dynamics as described in words above is
given by the following more compact matrix representation

Mż+DJ1z+J2z+Rz= E (9)

whereM is invertible, and whereJi = −J T
i and its elements

are given by{−1,0,1}, for i = 1,2.

Example 2 (continued)
For theĆuk converter of Example 2 we have

M =









L1 0 0 0
0 C2 0 0
0 0 L3 0
0 0 0 C4









; J1 =









0 −1 0 0
1 0 −1 0
0 1 0 0
0 0 0 0









;
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R=









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1/R









; J2 =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









;

E =









E
0
0
0









. 2
For the converter structures we consider here, we can bring the
system in normal form (see e.g., [4]) for the outputy given by
the statezi , which has relative degreer i, then we obtain the new
coordinates,ξ = (ξ1, . . .,ξr i)

T , andη = (ηr i+1, . . .,ηn)
T , with

(ξ,η) = φ(z), andφ1 = y, . . .φr i = y(r i). For theη coordinates,
that are related to the state of the zero-dynamics we obtain

∂φi

∂z
(z)M−1J1z= 0, i = r i +1, . . .,n.

This implies that at least the total energy, given by

φr i+1(z) =
1
2

zTMz (10)

is part of the zero-dynamics. If we drop the assumption that
the generalizing forces are independent of the switch, we can
still do the above analysis, but then we have to add to the total
energy of (10) an additional term which depends on the voltage
source.

IV. PASSIVITY BASED CONTROL FOR

THE ĆUK CONVERTER

In the sequel we will continue with the passivity based con-
troller design for theĆuk converter of Example 2 as a case
study. It is immediately obtained that the equilibrium values
for a constant duty ratio functionD(t) = Dc is for the average
currents, denoted byI1d , I2d , and the average voltage, denoted
by V1d , V2d , are given by

I1d =
E
R

(

Dc

1−Dc

)2

; V1d =
E

1−Dc
;

I2d = −
Dc

1−Dc

E
R

; V2d =−
Dc

1−Dc
E.

(11)

Note that forDc in the open interval]0,1[, results inV2d < 0.
Henceforth, given a desired equilibrium valueV2d for the out-
put voltage, which correspond to a constant value of the duty
ratio functionDc = V2d/(V2d −E), the uniquecorresponding
equilibrium values for the average voltage and currents are

I1d =
V2

2d

RE
; I2d =

V2d

R
; V1d = E−V2d . (12)

This means that if we desire to regulatez4 toward an equilib-
rium valueV2d which is known to correspond to a steady state
valueDc of the duty ratio functionD, then such a regulation
can beindirectly accomplished by stabilizing one of the other
average variables toward the corresponding equilibrium values
computed in (12).

If we consider the average output voltagez4 as the output, we
see thatr4 = 2, and thus that

ξ1 := φ1(z) = z4

ξ2 := φ2(z) = ż4 =
1

C4
z3−

1
RC4

z4

and that the state of the zero-dynamics is going to be determined
by

η1 := φ3(z) = L1z1 +L3z3

η2 := φ4(z) = 1
2z2

1L1 + 1
2z2

2C2 + 1
2z2

3L3

We now use Mathematica 3.0 for calculatingz= φ−1(ξ,η), and
we form the zero-dynamics by givingz4 its desired valueV2d ,
i.e., thenξ1 = V2d , ξ2 = 0, and then we consider the dynamics
of η, see [4]. In order to determine whether or not the zero-
dynamics are stable, we linearize the zero-dynamics at the equi-
librium pointη0, that corresponds to (12).

In order to be able to numerically compute the eigenvalues, in
order to determine the stability, we need to fill in some values
for the parameters. Mathematica is not yet able to do this sym-
bolically for the expressions we have here. In the sequel, when
the stability of the zero-dynamics has to be computed, we use
for the parameters the following (real-life) values:E = 100V,
R= 40 Ω, L1 = L3 = 600 µH, C2 = C4 = 10 µF. In the case
of the zero-dynamics ofz4 this yields for the linearization the
eigenvalues(625−9107.29i, 625+9107.29i) with real part in
the right half plane. Thus the zero-dynamics are unstable, and
we can conclude that directly controllingz4 to its desired value
is infeasible, due to non-minimum phase behavior.

Consider now the output of the circuit to be represented by the
average output currentz3 (i.e, y = z3). In this case we would
perform an indirect control of the output voltagez4 by control-
ling the output currentz3. The relative degreer3 = 1. In order
to find the zero-dynamics we proceed as along the same lines as
above, i.e.,

ξ := φ1(z) = z3

and then we findφ2(z), φ3(z), φ4(z) by taking

η1 := φ2(z) =
1
2

z2
1L1 +

1
2

z2
2C2+

1
2

z2
3L3

η2 := φ3(z) = L1z1 +L3z3

η3 := φ4(z) = z4.

(13)

Again we perform the calculation of the inverse transformation
φ−1(ξ,η) with the help of Mathematica 3.0, and we find the
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zero-dynamics as described above, where nowz3 = I2d . The
numerical results of the linearization yield in this case three
eigenvalues(−2500, 625− 9107.29i, 625+ 9107.29i); since
the two complex conjugates have the real part greater than zero
we conclude that the controller is, unfortunately, not feasible
due to its lack of stability.

Consider now the output of the system to be represented by the
average input voltagez2. In this case we would perform an
indirect control of the output voltagez4 by controlling the input
voltagez2. The relative degree ofz2 is r2 = 1. As above, we
now have

ξ := φ1(z) = z2

and then we complete the transformation by takingη1,η2,η3

as in (13). Again the calculation of the inverse transforma-
tion z= φ−1(ξ,η) has been performed with the help of Math-
ematica 3.0. The zero-dynamics are then given by putting
z2 =V1d , and linearizing these dynamics yields eigenvalues with
a real part in the right half plane, i.e.,(−15311.6, 6405.8−
17938.7i, 6405.8+ 17938.7i). Hence, we conclude that con-
trolling z4 via z2 is also infeasible.

Our last opportunity for indirectly controlling the outputvoltage
z4 is given by controlling the average input currentz1, which
also has relative degreer1 = 1. Hence, as above,

ξ := φ1(z) = z1

and we complete the transformation by takingη,η2,η3 as in
equation (13). Going through the calculations withz1 = I1d , we
obtain for the linearized zero-dynamics the three eigenvalues
(−1668.99, −1040.5+15766.1i, −1040.5−15766.1i). Now
all of them have the real part in the left half plane. Hence, we
conclude that, at least for the chosen values of the parameters,
controllingz4 indirectly viaz1 is feasible. Since the expression
is too complicated we are not able to analyze the behavior of the
eigenvalues depending on the parameters analytically, butwe
have seen that for varying values of the parameters the orderand
the sign of the eigenvalues remain the same. Hence, from the
above analysis we may conclude that we can indirectly control
the output voltage by controlling the input current.

We now provide the only feasible regulation based on anin-
direct output capacitor voltage control, achievable through the
regulation of the input current. Suppose it is desired to regulate
z1 towards a constant valuez1d = I1d . Corresponding to this ob-
jective for the input voltagez1, the required input voltage, out-
put voltage and output current may be represented by the func-
tionsz2d(t), z3d(t) andz4d(t), to be determined later. Now we
follow the procedures as given in [10], and by the same thread
as in [13] we obtain the following controller that preservespas-

sivity of the closed loop system:

ż2d =−
1

C2

(

(1−
E+R1(z1− I1d )

z2d
)(I1d −z3d)− I1d

−R2(z2−z2d)

)

ż3d =−
1
L3

(

(1−
E+R1(z1− I1d)

z2d
)z2d +z4d

−R3(z3−z3d)

)

ż4d =−
1

C4

(

1
R

z4d −z3d

)

z2d(0) > 0
(14)

D = 1−
E+R1(z1− I1d)

z2d
.

whereR1,R2,R3 > 0 are design parameters that inject the damp-
ing that is required for asymptotic stability. For further analysis,
we refer to related considerations and remarks as given in [13].
We only present the scheme of Fig. 3 which is the implementa-
tion scheme based on philosophies that can be found in [5, 6].

PWM

0

1

1

tk

passivity-based
Nonlinear

dynamical duty ratio
synthesizer

x2

x1

x3

I d1

Converter
Power

DC-to-DC
x1

x2

x3

x4

D (actual) D

D (calculated)

Limiter

Figure 3: PWM feedback control scheme for indirect, passivity-
based, output voltage regulation forĆuk converter.

V. SIMULATION RESULTS

Simulation are performed in order to test the effectivenessand
robustness of the proposed feedback controller. First of all we
set an ideal voltage sourceE = 100V. Resistors, capacitors,
inductors and the transistor are supposed to be also ideal and as
before, their values are taken to be the following typical values:
R= 40Ω, L1 = L2 = 600µH, C1 = C2 = 10µF. For the damp-
ing parameters we choose the valuesR1 = 1, R2 = 1, R3 = 1.
For the switch implementation we had to consider both the fol-
lowing cases

(i) Ideal switch

(ii) Actual switch (one position switch plus diode)
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In fact we would always like to use the actual switch but this
however implies two nonlinear models for the plant (one when
the transistor is ON and the other when the transistor is OFF)
and for small values of the desired output voltage we get nu-
merical problems.

For the use of the ideal switch, we have a numerically efficient
procedure that uses the fact that for both switch positions we
have a linear model, i.e.,

ẋ(t) = Ax(t)+B

and we can easily find the solution

x(t +∆t) = eA∆tx(t)+
Z t+∆t

t
eA(t+∆t−s)Bds

= eA∆tx(t)−A−1B+A−1eA∆tB.

for A invertible, which is the case here. It is also necessary to
charge the electric network before applying the controlleroth-
erwise we run into numerical problems. Since our calculations
are only valid near the equilibrium values, this does not seem
very restrictive.

When we use the real switch, for the diode we use the exponen-
tial relation

I = IR(e
V
k −1)

where the reverse current isIR = 1 mA and k = 0.1086 i.e.
the forward current isIF = 10 A when the forward voltage is
VF = 1V. These are typical values for a power diode. The sam-
pling frequency for the PWM policy is set at 230kHz, which
gave the best trade-off between accuracy and simulation time.
To avoid the use of low-pass filters, instead of using the aver-
aged state variablesz1, z2 andz3 for feedback on the duty ratio
synthesizer, we use as it is customarily done, the actual PWM
controlled statex1, x2 andx3 in the controller equations. The
desired ideal average input inductor current is calculatedby the
equation in (12). We have setV2d =−200V and this correspond
to an ideal average input currentI1d = 10A, with a steady-state
duty ratio ofD = 0.667; from the equations in (12) we calculate
also the other ideal average valuesI2d =−5 A andV1d = 300V.
Figure 4 shows the closed-loop state trajectories as well asthe
duty ratio function. As can be seen from the simulation, the
proposed feedback controller (14) achieves the desired indirect
stabilization of the output voltage around the desired equilib-
rium value. The average steady-state errors, with respect to the
equilibrium values, is approximately 2.8% in the input current,
0.2% in the input voltage, 4.8% in the output current and about
0% in the output voltage. The ideal duty ratio is also achieved
within 0% error.

In applications these systems are typically subject to exter-
nal disturbances (see e.g., [15], [16]). For instance, the regu-
lated voltage is perturbed by fluctuations in the external voltage
source. In Figure 5 a stochastic perturbation signal has been
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Figure 4: Simulation result for performance evaluation of the
indirect PWM controller in áCuk converter with an ideal source
voltageE.

added to the external voltage source starting from an initially
uncharged system. The peak-to-peak magnitude of this noiseis
chosen to be approximately 20% of the value ofE. The aver-
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Figure 5: Simulation result for performance evaluation of the
indirect PWM controller in aĆuk converter with a perturbed
source voltageE.

age steady-state errors, with respect to the equilibrium values,
is now approximately 4% in the input current, 1.4% in the in-
put voltage, 27% in the output current and 2.6% in the output
voltage. The ideal duty ratio is achieved within less than 6%er-
ror. The controller performance hence exhibits a high degree of
robustness with respect to the external stochastic perturbation.

Unknown load resistance variation generally affects the behav-
ior of the closed-loop performance of the controlled converter.
Simulations, shown in Fig. 6, were performed to depict the sen-
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sitivity of the system currents, voltages and duty ratio with re-
spect to abrupt, but temporary, unmodeled changes in the load
resistance R. A sudden change in the load resistance was set to
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Figure 6: Robustness evaluation of the indirect PWM controller
in aĆuk converter with a perturbed source voltage and an abrupt
change in the load resistor R.

20% of its nominal value. As can be seen from the figure, the
controller rapidly manages to restore the desired steady state
conditions immediately after the load perturbation disappears.
The state variable most affected by such a perturbation is the
input current. Conversely, as can be expected, the duty ratio
function is barely affected by such sudden load change.

VI. CONCLUSION

A method has been presented to build in a structured way an Eu-
ler Lagrange model for switching electrical networks, which is
also applicable to ideal electrical circuits without switches. The
switches make the models nonlinear, and for using the physical
structure as exposed by the EL model, we have made a prelim-
inary study of the zero-dynamics of such switching network.A
case study, where a passivity based controller has been applied,
is given for theĆuk converter.

The presented method now has the advantage that we have a
general modeling technique for switching networks such that
we immediately can apply some well-known nonlinear con-
troller techniques that are based on the physics of the system,
namely the passivity based control technique.

The method presented here can also be performed for Hamilto-
nian models, which is a recent topic of study in e.g., [3, 7], and
can be argued to be better physically motivated, since no inter-
mediate physical help variables are needed. However, in some
cases it might be helpful to build Euler Lagrange models, since

it is sometimes easier, and since we then can apply well-known
passivity based control techniques.

Further research is recommended in the development of an
adaptive modification of the controller because one of the use-
ful properties of the passivity-based controllers is that they eas-
ily can be modified to account for parametric uncertainty in the
system dynamics. Furthermore, future research includes the in-
volvement of more non-ideal physical effects, a more general
statement about the non-minimum phase behavior, and the in-
fluence of the different topologies that are given in the power
electronics literature.
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