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I. Introduction

Adjoint operators play an important role in linear systems
theory. They provide duality between input and output. The
properties with respect to input, e.g. controllability and stabi-
lizability issues, of linear systems directly translate to the dual
results with respect to output, observability and detectabil-
ity issues. Consider a linear operator (transfer function)
Σ(s) : E → F with Hilbert spaces E and F . Then its adjoint
operator Σ′(s) : F ′ → E′ is isomorphic to ΣT (−s) : F → E.
The adjoint can be easily described by a state-space realiza-
tion if the operator Σ(s) has a finite dimensional state-space
realization. In this paper we study the nonlinear extension of
such adjoint operators, and apply the results to Hankel theory.

Nonlinear adjoint operators can be found in the mathe-
matics literature, e.g. [1], and they are expected to play a
similar role in the nonlinear systems theory. So called non-
linear Hilbert adjoint operators are introduced in [5, 11] as a
special class of nonlinear adjoint operators. The existence of
such operators in an input-output sense was shown in [6], but
their state-space realizations are only preliminary available in
[4], where the main interest is the Hilbert adjoint extension
with an emphasis on the use of port-controlled Hamiltonian
system methods.

Here, we consider these adjoint operators from a variational
point of view and provide a formal justification for the use
of Hamiltonian extensions by using Gâteaux derivatives. We
investigate whether one can use the state-space realizations
given by the Hamiltonian extensions to characterize singular
values of nonlinear operators, and, in particular, for the Han-
kel operator. We also consider the relation with the previ-
ously defined singular value functions that have been defined
entirely from the controllability and observability functions
corresponding to a state space representation of a nonlinear
system [10].

In Section 2 we present the linear system case as a
paradigm, in order to present the line of thinking for the non-
linear case. In Section 3 we present the state-space realizations
of nonlinear adjoint operators, in terms of Hamiltonian exten-
sions. In Section 4 we provide the formal justification of the
use of Hamiltonian extensions for nonlinear adjoint systems.
In Section 5 we concentrate on the Hankel operator, and corre-
spondingly on the controllability and observability operators
for nonlinear systems. Then, in Section 6, we extend some
results of the linear case on singular values, see e.g. [13], and
their relation to the Hankel operator to the nonlinear case by
using the state space realizations for adjoint systems as given
in Section 3. Finally, some conclusions are given.

II. Linear systems as a paradigm

This section gives some examples of linear adjoint operators
which play an important role in the linear systems theory, see
e.g. [13]. They are presented in a way that clarifies the line of
thinking in the nonlinear case. Consider a causal linear input-
output system Σ : Lm2 [0,∞) → Lr2[0,∞) with a state-space
realization

u 7→ y = Σ(u) :

�
ẋ = Ax+Bu

y = Cx
(1)

where x(0) = 0. The Laplace transformation gives its transfer
function matrix

G(s) := C(sI −A)−1
B. (2)

Its adjoint operator is isomorphic to Σ∗ : Lr2[0,∞) →
Lm2 [0,∞), where the transfer matrix is given by

G
∗(s) := G

T (−s) = B
T (−sI − A

T )−1
C
T (3)

with a state-space realization

ua 7→ ya = Σ∗(ua) :

�
ẋ = −ATx− CTua
ya = BTx

(4)

where x(∞) = 0. Here ua and ya have the same dimensions
as y and u respectively. Σ∗ satisfies the definition for Hilbert
adjoint operators, namely,

〈Σ(u), ua〉Lr
2

= 〈u,Σ∗(ua)〉Lm
2
. (5)

Since ua has the same dimension as y we obtain

‖Σ(u)‖2
Lr

2
=〈Σ(u),Σ(u)〉Lr

2
=〈u,Σ∗◦Σ(u)〉Lm

2

by substituting ua = Σ(u). This relation can be utilized to
derive the singular values of the input-output map.

Now, consider the Hankel operator of a continuous-time causal
linear time-invariant input-output system S : u → y with
an impulse response H which is analytic on [0,∞). ĤΣ =
[HΣ i,j ], where ĤΣ i,j = Hi+j−1 for i, j ≥ 1. Its rank is finite
if and only if the corresponding transfer function is composed
of strictly proper rational components [12]. If S is BIBO stable
(take here to mean thatH ∈ L1[0,∞)) then the system Hankel
integral operator in this context is the well defined mapping

HΣ : L
m
2 [0,∞) → L

p
2 [0,∞)

: û→ ŷ(t) =

Z ∞

0

H(t+ τ)û(τ) dτ.

Define the time flipping operator as the injective mapping

F : L
m
2 [0,∞) → L

m
2 (−∞,∞)

: û→ u(t) =

�
û(−t) : t < 0

0 : t ≥ 0,



then HΣ = SF , where the codomain of S is restricted to
Lp2 [0,∞).

It is well known that the composition H∗
ΣHΣ is a compact

positive semi-definite self-adjoint operator with a well defined
spectral decomposition [8]:

H∗
ΣHΣ =

∞X
j=1

σ
2
j 〈·, vj〉L2 vj, σj ≥ 0, vj ∈ L

m
2 [0,∞) (6)

〈vj, vk〉L2 = δjk, 〈vj, (H
∗
ΣHΣ)(vj)〉L2 = σ

2
j . (7)

The nonnegative real numbers σ1 ≥ σ2 ≥ . . . are called the
Hankel singular values for the input-output system S.

When there exists a finite integer n such that σn 6= 0 and
σj = 0 for all j > n, or equivalently rank(ĤΣ) = rank(HΣ) =
n, then there exists a state space realization (A,B,C) of S
with dimension n. Any such realization induces a factoriza-
tion of the system Hankel matrix into the form ĤΣ = ÔΣĈΣ,
where ÔΣ and ĈΣ are the (extended) observability and con-
trollability matrices. If the realization is asymptotically stable
(i.e., A is Hurwitz) then the Hankel operator can be written
as the composition of uniquely determined observability and
controllability operators; that is, HΣ = OΣCΣ, where the ob-
servability and controllability operators, OΣ : Rn → Lr2[0,∞)
and CΣ : Lm2 [0,∞) → Rn, respectively, are given by

x0 7→ y = OΣ(x0) := CeAtx0 (8)

u 7→ x
0 = CΣ(u) :=

R∞

0
e
Aτ
Bu(τ)dτ. (9)

Note that these operators OΣ and CΣ are also operators on
Hilbert spaces, hence their adjoint operators are given by O∗

Σ :
Lm2 [0,∞) → Rn and C∗

Σ : Rn→ Lr2[0,∞)

ua 7→ x
0 = O∗

Σ(ua) :=
R∞

0
e
AT τ

C
T
ua(τ)dτ (10)

x
0 7→ ya = C∗

Σ(x0) := B
T
e
AT t

x
0
. (11)

It can be easily checked that they satisfy

〈OΣ(x0), ua〉Lr
2

= 〈x0
,O∗

Σ(ua)〉Rn (12)

〈CΣ(u), x0〉Rn = 〈u, C∗
Σ(x0)〉Lm

2
. (13)

These adjoint operators can be used to calculate the observ-
ability and controllability Gramian, respectively:

‖OΣ(x0)‖2
Lr

2
= 〈x0

,O∗
Σ◦ OΣ(x0)〉Rn

= 〈x0
,
R∞

0
CA

τ
A
Tτ
C
T
dτ x

0〉Rn (14)

= 〈x0
, Q x

0〉Rn

‖C∗
Σ(x0)‖2

Lm
2

= 〈x0
, C∗∗

Σ ◦ C∗
Σ(x0)〉Rn (15)

= 〈x0
,
R∞

0
B
T
A
Tτ
A
τ
Bdτ x

0〉Rn (16)

= 〈x0
, P x

0〉Rn

These imply Q = O∗
Σ ◦ OΣ and P = C∗∗

Σ ◦ C∗
Σ = CΣ ◦ C∗

Σ.

Furthermore, it is known that

Lemma II.1 [13] The operator H∗
ΣHΣ and the matrix QP

have the same nonzero eigenvalues.

III. State-space realization of nonlinear

Hilbert adjoint operators

This section is devoted to the state-space characterization of
nonlinear Hilbert adjoint operators as an extension of the
properties given in the previous section. We will show a re-
lationship between nonlinear Hilbert adjoint operators and
Hamiltonian extensions.

The precise definition of nonlinear Hilbert adjoint operators is
given as follows [5, 6, 11].

Definition III.1 Consider an operator T : E → F with
Hilbert spaces E and F . An operator T∗ : F × E → E such
that

〈T(u), y〉F = 〈u, T∗(y, u)〉E , ∀u ∈ E, ∀y ∈ F (17)

holds is said to be a nonlinear Hilbert adjoint of T .

Remark III.2 In the most general setting, let F be a topo-
logical vector space over Rwith dual space F ′ [1]. Let E be
a nonempty set, and A a collection of nonempty subsets of
E. Let Eβ be a linear space of real-valued functions xβ on
E with the property that the restriction x

β
A to every A ∈ A

is bounded. A mapping T : E → F is called A-bounded if
T maps the sets of A into bounded subsets of F . For any
A-bounded mapping T : E → F , the dual map of T is defined
as

T
′ : F

′ → E
β

: y
′ 7→ (T ′(y′))(u) = (y′ ◦ T)(u) (18)

∀u ∈ E, ∀y ∈ F.

Hence a nonlinear Hilbert adjoint operator T∗ yields an ad-
joint operator in the usual sense by

(T ′(y′))(u) := 〈u, T∗(y, u)〉E , u ∈ E, y ∈ F. (19)

The converse result can be found in [6].

If T is a linear operator then T∗ always exists and is equivalent
to T ′. Of course T∗ is a function only of F , i.e.

〈T(u), y〉F = 〈u, T∗(y)〉E , ∀u ∈ E, ∀y ∈ F (20)

in the previous section.

Adjoint operators and Hamiltonian extensions

This subsection gives some relations between nonlinear Hilbert
adjoint operators and Hamiltonian extensions. Let us consider
an input-output system Σ : Lm2 (Ω) → Lr2(Ω) defined on a
(possibly infinite) time interval Ω = [t0, t1] ⊆ Rwhich has a
state-space realization

u 7→ y = Σ(u) :

�
ẋ = f(x, u) x(t0) = 0
y = h(x, u)

(21)

with x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rr. Here we assume
the origin is an equilibrium, i.e. f(0, 0) = 0, h(0, 0) = 0 holds,
and that all signals and functions are sufficiently smooth.

Before giving the Hamiltonian extension of Σ, we have to in-
troduce the variational system of Σ. It is given by

(u, uv) 7→ yv = Σv(u, uv) :

8>><>>: ẋ = f(x,u)

ẋv = ∂f
∂x
xv + ∂f

∂u
uv

yv = ∂h
∂x
xv + ∂h

∂u
uv

(22)



with x(t0) = 0 and xv(t
1) = 0. The input-state-output set

(uv , xv, yv) are the so called variational input, state, and out-
put, respectively, and they represent the variation along the
trajectory (u, x, y) of the original system Σ.

The Hamiltonian extension Σa of Σ is given by a Hamiltonian
control system [2] which has an adjoint form of the variational
system. It is given by

(u, ua) 7→ ya = Σa(u, ua) :8>>>>>>><>>>>>>>: ẋ = ∂H
∂p

T
= f(x, u)

ṗ = − ∂H
∂x

T
= −

�
∂f
∂x

T
p+ ∂h

∂x

T
ua

�
ya = ∂H

∂u

T
= ∂f

∂u

T
p+ ∂h

∂u

T
ua

y = ∂H
∂ua

T
= h(x, u)

(23)

with x(t0) = 0, p(t1) = 0, and with the Hamiltonian

H(x, p, u, ua) := p
T
f(x,u) + u

T
a h(x, u). (24)

Remark III.3 In Section 4, we show that such a Hamilto-
nian control system is a realization of the Gâteaux derivative
of the adjoint of the operator. This interpretation results from
taking the Gâteaux derivative from the squared L2 norm of
the nonlinear operator. Therefore, it is a more restricted inter-
pretation than is given above by the Hilbert adjoint definition
in terms of the inner product.

By careful consideration of the Hamiltonian, we can relate the
Hamiltonian extension idea to the Hilbert adjoint as follows
(for more details, see [4]):

Theorem III.4 [4] Consider the system Σ as in (21) and
let Σ : Lm2 (Ω) → Lr2(Ω) where Ω = [t0, t1] ⊆ R denotes
the mapping u 7→ y. Suppose f and h are input-affine, i.e.
f(x, u) ≡ g0(x) + g(x)u and h(x, u) ≡ k0(x) + k(x)u for some
smooth functions g0, g, k0 and k. Suppose moreover that

u ∈ Lm2 (Ω), ub ∈ Lr2(Ω) ⇒

|x(t1)| <∞, |p1(t
0)| < ∞, |p2(t

0)| < ∞
(25)

for the state-space system

(ub, u) 7→ yb = Σ∗(ub, u) :8>>>>>>>>>>><>>>>>>>>>>>: ẋ = g0(x) + g(x)u

ṗ1 = − ∂g0
∂x

T
p1 −

∂k0
∂x

T
p2

ṗ2 = ub

yb =
�
∂(gT p1)
∂x

+ ∂(kT p2)
∂x

�
g0(x)

−gT (x)
�
∂g0
∂x

T
p1 + ∂k0

∂x

T
p2

�
+ kT (x)ub

y = k0(x) + k(x)u

(26)

with x(t0) = 0, p1(t
1) = 0 and p2(t

1) = 0. Then a state-space
realization of the nonlinear Hilbert adjoint Σ∗ : Lm+r

2 (Ω) →
Lm2 (Ω) of Σ is given by (26).

There also exists a relation between adjoint operators and
port-controlled Hamiltonian systems, as has been established
in [4]. Then, instead of the interpretation in terms of the
Gâteaux derivative of the norm, the interpretation is more
general, and can be given in terms of the Hilbert adjoint and

the inner product. Despite this more general interpretation
for the port-controlled case, we only consider here the Hamil-
tonian extensions as defined in [2], since we then have explicit
solutions for the “dual” coordinates p of the system. Much
more can be said about port-controlled Hamiltonian systems,
however, that falls beyond the scope of this paper, and we
refer to [4] for more details.

IV. Gâteaux differentiation of dynamical

systems

This section develops the concept of Gâteaux differentiation
for dynamical systems from an input-output point of view.
In Remark III.3 we mention that it is of importance for un-
derstanding the meaning of the Hamiltonian extensions and
adjoint systems as presented in the previous section. Also,
Gâteaux differentiation of Hankel operators plays an impor-
tant role in the analysis of the properties of Hankel operators,
which is the topic of Section 5 and 6. To this end, we state
the definition of Gâteaux differentiation.

Definition IV.1 (Gâteaux differentiation) Suppose X and
Y are Banach spaces, U ⊆ X is open, and T : U → Y . Then
T has a Gâteaux derivative at x ∈ X if, for all ξ ∈ U the
following limit exits:

dT(x)(ξ) = lim
ε→0

T(x + εξ)− T(x)

ε
=

d

dε
T(x + εξ)|ε=0 . (27)

We write dT(x)(ξ) for the Gâteaux derivative of T at x in the
“direction” ξ.

Next, we state the chain rule of Gâteaux derivative for conve-
nience.

Lemma IV.2 The derivative of a composition is given by the
following equation:

d(T ◦ S)(x)(ξ) = dT(S(x), dS(x)(ξ)). (28)

Perhaps more well-known than the Gâteaux derivative is the
Fréchet derivative, which is especially useful for the analysis of
nonlinear static functions. Fréchet differentiation is a special
case of Gâteaux differentiation. In the sequel, we concentrate
on Gâteaux differentiation, since that is the most suitable in
our framework.

Theorem IV.3 Suppose that Σ : u 7→ y as in (21) is input-
affine and has no direct feed-through, i.e. f(x, u) ≡ g0(x) +
g(x)u and h(x, u) ≡ h(x) for some analytic functions g0, g
and h. Furthermore, suppose that Σ is Gâteaux differentiable,
namely that there exists a neighborhood Uv ⊆ Lm2 (Ω) of 0 such
that

u ∈ Lm2 (Ω), uv ∈ Uv ⇒ yv ∈ Lr2(Ω). (29)

Then it follows that

Σv(u, v) = dΣ(u)(v) (30)

with the variational system Σv given in (22).

In order to prove Theorem IV.3, we need the following prop-
erty of variational systems.



Lemma IV.4 [2] Let (x(t, ε), u(t, ε), y(t, ε)), t ∈ [a, b] be a
family of state-input-output trajectories of Σ, parameterized
by ε, such that x(t,0) = x(t), u(t, 0) = u(t) and y(t, 0) = y(t),
t ∈ [a, b]. Then the quantities

xv(t) =
∂x(t, 0)

∂ε
(31)

uv(t) =
∂u(t, 0)

∂ε
(32)

yv(t) =
∂y(t, 0)

∂ε
(33)

satisfy yv = Σv(u, uv).

Note that in case of a fixed initial state x(0) = x0 the varia-
tional state xv(0) at time 0 is necessarily 0. Now, we can give
the proof of Theorem IV.3.

Proof of Theorem IV.3 Let u(t, ε) = u(t)+εv(t) in Lemma
IV.4. Then we have

Σ(u+ εv)(t) = y(t, ε)

= y(t, 0) +
∂y(t, 0)

∂ε
ε +

∞X
i=2

1

i!

∂iy(t, 0)

∂εi
ε
i

= Σ(u)(t) + Σv(u, v)(t) ε+
∞X
i=2

Ri(u, v)(t) ε
i

where Ri(u, v)(t) := 1
i!
∂iy(t,0)

∂εi . This implies

(dΣ(u)(v))(t) = lim
ε→0

Σ(u+ εv)(t) − Σ(u)(t)

ε

= lim
ε→0

 
Σv(u, v)(t) +

∞X
i=2

Ri(u, v)(t) ε
i−1

!
= Σv(u, v)(t).

This proves the theorem. 2
The Hamiltonian extension Σa also has a relation with
Gâteaux differentiation and provides a justification for being
called the adjoint form of the variational system in [2].

Theorem IV.5 Suppose that the assumptions in Theo-
rem IV.3 hold, and that u ∈ Lm2 (Ω), ua ∈ Lr2(Ω) ⇒
‖x(t1)‖ < ∞, ‖p(t0)‖ < ∞. Then it follows that

Σa(u, v) = (dΣ(u))∗(v) (34)

with the Hamiltonian extension Σa given in (23).

The fact that the Hamiltonian extension Σa(u, v) is linearly
dependent on v is crucial to prove Theorem IV.5. A more
general version, related to the Hilbert adjoint definition, can
be derived from the differential version of Proposition 2 in [4],
but falls beyond the scope of this paper.

V. The Hankel operator and its derivative

This section gives a state-space realization for the nonlinear
Hilbert adjoint of some particular energy functions and oper-
ators, namely the observability and controllability functions
and operators and the Hankel operator. Furhtermore, a re-
lation with singular value analysis of the Hankel operator is

given. We only consider time invariant input-affine nonlinear
systems without direct feed-through in the form of

Σ :

�
ẋ = f(x) + g(x)u
y = h(x)

(35)

defined on the time interval Ω := (−∞,∞). Here Σ is L2-
stable in the sense that u ∈ Lm2 (−∞, 0] implies that Σ(u)
restricted to [0,∞) is in Lr2[0,∞). Suppose that the input-
output mapping u 7→ y of this system can be described by
a Chen-Fliess functional expansion [3, 7], i.e. the mapping
u 7→ y is represented by the following convergent generating
series

u 7→ y(t) =
X
η∈I∗

c(η)Eη(t, t
0)(u), t ≥ t

0 (36)

where I∗ is the set of multi-indices for the index set I =
{0, 1, . . . ,m} and

Eik...i0(t, t
0)(u) =

Z t

t0
uik(τ)Eik−1 ...i0(τ, t

0)(u)dτ (37)

with E∅(u) := 1 and u0(t) := 1. Here c(η) ∈ Rr is described
by

c(η) = Lgηh(0) := Lgi0
Lgi1

. . . Lgik
h(0) (38)

with g0 := f . Let us consider the observability and controlla-
bility operators OΣ : Rn → Lr2(Ω+) and CΣ : Lm2 (Ω+) → Rn
with Ω+ := [0,∞) of Σ given in [5, 6, 11] which are defined
by

x
0 7→ y(t) = OΣ(x0) :=

∞X
i=0

L
i
g0
h(x0)E0...0|{z}

i

(t, 0) (39)

u 7→ x
1 = CΣ(u) :=

X
η∈I∗

(Lgηx)(0)Eη(0,−∞)F−(u). (40)

Here F− : Lm2 (Ω+) → Lm2 (Ω−) with Ω− := (−∞, 0] denotes
the so called flipping operator defined by

F−(u)(t) :=

�
u(−t) t ∈ Ω−

0 t ∈ Ω+
. (41)

These are a natural generalization of the linear case (8) and
(9).

One can employ state-space systems to describe the observ-
ability and controllability operators, which are operators of
the form Rn → Lr2 and Lm2 → Rn. Specifially, their state-
space realizations are given by

x
0 7→ y = OΣ(x0) :

�
ẋ = f(x)
y = h(x)

(42)

u 7→ x̃
1 = CΣ(u) :

�
˙̃x = f(x̃) + g(x̃)F−(u)
x̃1 = x̃(0)

(43)

where x(0) = x0 and x̃(−∞) = 0. Furthermore, the Hankel
operator HΣ : Lm2 (Ω+) → Lr2(Ω+) of Σ is given by

HΣ := Σ ◦ F−. (44)

and HΣ = OΣ ◦ CΣ holds. This has been proven in [5, 6],
along with a deeper and more detailed analysis of the Hankel
operator. We can state the differential version of this fact
using Lemma IV.2 as

dHΣ(u)(uv) = dOΣ(CΣ(u))(dCΣ(u)(uv)). (45)

The state-space realizations of the Gâteaux differentiations
dOΣ, dCΣ and dHΣ are then characterized by the following
theorem.



Theorem V.1 Consider the system Σ, and suppose the as-
sumptions of Theorem IV.3 hold. Then

dOΣ = OdΣ

dCΣ = CdΣ

dHΣ = HdΣ.

This theorem directly follows from the definition of OΣ, CΣ,
HΣ and the Gâteaux derivative d(·). Furthermore their ad-
joints can be obtained by using Theorem IV.5.

Theorem V.2 Consider the operator Σ as in (35). Sup-
pose that the assumptions of Theorem IV.3 and Theorem
IV.5 hold. Then state-space realizations of (dOΣ(x0))∗ :
Lr2(Ω+)(×Rn) → Rn, (dCΣ(u))∗ : Rn(×Lm2 (Ω+)) → Lm2 (Ω+)
and (dHΣ(u))∗ : Lr2(Ω+)(×Lm2 (Ω+)) → Lm2 (Ω+) are given by

(x0, ua) 7→ p0 = (dOΣ(x0))∗(ua) :8>><>>: ẋ = f(x)

ṗ = − ∂f
∂x

T
(x) p− ∂h

∂x

T
(x) ua

p0 = p(0)

(46)

with x(0) = x0 and p(∞) = 0,

(p1, u) 7→ ya = (dCΣ(u))∗(p1) :8>><>>: ẋ = f(x) + g(x)F−(u)

ṗ = − ∂f
∂x

T
(x) p

ya = F+(gT (x) p)

(47)

with x(−∞) = 0 and p(0) = p1,

(ua, u) 7→ ya = (dHΣ(u))∗(ua) :8>><>>: ẋ = f(x) + g(x) F−(u)

ṗ = − ∂f
∂x

T
(x) p− ∂h

∂x

T
(x) ua

ya = F+(gT (x) p)

(48)

with x(−∞) = 0 and p(∞) = 0, respectively. Here F+ :
Lm2 (Ω−) → Lm2 (Ω+) denotes another time flipping operator
defined by

F+(u)(t) :=

�
0 t ∈ Ω−

u(−t) t ∈ Ω+
. (49)

The proof of this theorem is easily obtained by applying the
adjoint Hamiltonian extensions of Section 3 and using tech-
niques from [4].

VI. Energy functions and singular values

Define the following energy functions of a system.

Definition VI.1 The observability function Lo(x) and the
controllability function Lc(x) of Σ as in (35) are defined by

Lo(x
0) :=

1

2

Z ∞

0

‖y(t)‖2
dt, x(0) = x

0
, u(t) ≡ 0 (50)

Lc(x
1) := min

u ∈ Lm
2 (Ω−)

x(−∞) = 0

x(0) = x1

1

2

Z 0

−∞

‖u(t)‖2
dt (51)

respectively.

These functions are closely related to the observability and
controllability operators and Gramians in the linear case. In
[10] these functions have been used for defining balanced re-
alizations and singular value functions of nonlinear systems.
They also fulfill certain Hamilton-Jacobi equations, in a sim-
ilar way as the observability Gramian and the inverse of the
controllability Gramian are solutions of a Lyapunov/Riccati
equation. In order to proceed, we first review what is meant
by input-normal/output-diagonal form, see [10]:

Theorem VI.2 [10] Consider a system (f, g, h) that fulfills
certain technical conditions. Then there exists on a neigh-
borhood U ⊂ V of 0, a coordinate transformation x =
ψ(z), ψ(0) = 0, which converts the system into an input-
normal/output-diagonal form, where

L̃c(z) := Lc(ψ(z)) =
1

2
z
T
z,

L̃o(z) := Lo(ψ(z)) =
1

2
z
T
diag(τ1(z), . . . , τn(z))z

with τ1(z) ≥ . . . ≥ τn(z) being the so called smooth singular
value functions on W := ψ−1(U).

The relation between the observability function, operator and
Gramian is

Lo(x
0) =

1

2
‖OΣ(x0)‖2

Lr
2

=
1

2
〈OΣ(x0),OΣ(x0)〉Lr

2

=
1

2
〈x0

,O∗
Σ(OΣ(x0), x0)〉Rn (52)

=: 〈x0
, φ(x0)〉Rn .

The function φ(x0) can always be rewritten as φ(x0) =
Q(x0) x0 using a square symmetric matrixQ(x0). This matrix
coincides with the observability Gramian in the linear case.

In the controllability case, there does not hold such a simple
relation. Instead, it follows that

Lc(x
1) =

1

2
‖C†

Σ(x1)‖2
Lm

2

=
1

2
〈x1, C†

Σ

∗
(C†

Σ(x1), x1)〉Rn (53)

=:
1

2
〈x1

, ϕ(x1)〉Rn

with C†
Σ : Rn → Lm2 (Ω+), which is the pseudo-inverse of CΣ

defined by
C†
Σ(x1) := arg min

CΣ(u)=x1
‖u‖Lm

2
. (54)

Now, we can state the result from [5, 6] that relates the sin-
gular value functions to the Hankel operator:

Theorem VI.3 [5] Let (f, g, h) be an analytic n dimen-
sional input-normal/output-diagonal realization of a causal
L2-stable input-output mapping S on a neighborhood W of
0. Define on W the collection of component vectors z̃j =
(0, . . . , 0, zj, 0, . . . , 0) for j = 1, 2, . . . , n, and the functions
σ̂2(zj) = τ(z̃j). Let vj be the minimum energy input which
drives the state from z(−∞) = 0 to z(0) = z̃j and define
v̂j = F(vj). Then the functions {σ̂j}

n
j=1 are singular value

functions of the Hankel operator HΣ in the following sense:

〈v̂j, (H
∗
ΣHΣ)(v̂j)〉L2 = σ̂

2
j (zj)〈v̂j, v̂j〉L2 , j = 1, 2, . . . n. (55)



The above result is quite limited in the sense that it is depen-
dent on the input-normal/output-diagonal coordinate frame
To give a more general relation, the idea is to extend Lemma
II.1, by extending the proof of that lemma as given in [13]. To
this effect, we consider the Gâteaux derivative of the Hankel
operator in the following way

d‖HΣ(u)‖2
2(v) = 2 〈dHΣ(u, v),HΣ(u)〉 (56)

= 2 〈v, (dHΣ(u))∗ ◦ HΣ(u)〉 (57)

and consider the eigenstructure of the operator u 7→
(dHΣ(u))∗ ◦ HΣ(u) as

(dHΣ(u))∗ ◦HΣ(u) = λ(u)u (58)

where λ(u) is an eigenvalue, and u the corresponding eigen-
vector. However, since we want to relate it to the notion of
singular value functions, which depend on x0, an additional
step is needed. Therefore, we propose to consider the eigenval-
ues σ̃(x0) and corresponding eigenvectors x0 of the following:

CΣ ◦ dH∗
Σ ◦ HΣ(u) = CΣ ◦ dH∗

Σ ◦ OΣ(x0) = σ̃(x0)x0,

CΣ(u) = x0
(59)

We obtain the following result:

Theorem VI.4 Assume all technical conditions for Theorem

VI.2 are fulfilled. Let φ(x̃) := ∂TLc

∂x̃
(x̃) = Mc(x̃)x̃, for x̃ ∈ W

such that Mc is invertible on W , then

CΣ ◦ dH∗
Σ ◦ HΣ(u) = CΣ ◦ dC∗

Σ ◦ dO∗
Σ ◦ OΣ(x0)

= CΣ(λ(u)u) (60)

= Mc(ψ(x0))
−1 ∂Lo

∂x
(x0)

for x0 = CΣ(u), and ψ(x0) = φ−1
�
∂TLo

∂x
(x0)

�
.

Proof: First, observe that the solution of system (46) is given

by p = ∂TLo

∂x
(x), where x is the solution of system (42), and

ua = y = h(x). Thus,

p
0 = dOΣ ◦ OΣ(x0) =

∂TLo

∂x
(x0).

Furthermore, observe that p̃ = ∂TLc

∂x̃
(x̃) is the solution of sys-

tem (47), where x̃ is the solution of system (43) and where
u = ya = F+(gT (x̃)p). Thus,

x̃
1 = CΣ ◦ dC∗

Σ(p0) =

0BBBB@Mc

�
φ
−1

�
∂TLo

∂x
(x0)

��| {z }
(ψ(x0))

1CCCCA−1

p
0
.

This proves the theorem. 2
Remark VI.5 It is straightforward to obtain that the above

theorem applied to a linear system yields Mc(ψ(x0))−1 = P ,

where P is the controllability Gramian, and ∂Lo

∂x
(x0) = Qx0,

where Q is the observability Gramian. Hence, the above the-
orem can be seen as a nonlinear extension of the proof of
Lemma II.1, which has been given in [13]

By taking x0 to be an eigenvector of the above operator, we
obtain the relation (59). Observe that the σ̃(x0)’s do not equal
the singular value functions as defined in Theorem VI.2, due
to the fact that here we deal with the gradients of the control-
lability and observability functions, instead of the functions
themselves.

VII. Conclusions

We studied the use of Hamiltonian extensions for the nonlin-

ear adjoint systems. We formalized the basic concepts, and

then applied them to study the singular value functions of the

nonlinear Hankel operator. In future research, we use these

results to establish more direct relations between state space

notions stemming from energy functions and input-output no-

tions like the Hankel operator.
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