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Abstract Resource allocation is the problem that a process may enter a critical section CS of
its code only when its resource requirements are not in conflict with those of other processes
in their critical sections. For each execution of CS, these requirements are given anew. In
the resource requirements, levels can be distinguished, such as e.g. read access or write
access. We allow unboundedly many processes that communicate by reliable asynchronous
messages and have finite memory. A simple starvation-free solution is presented. Processes
only wait for one another when they have conflicting resource requirements. The correctness
of the solution is argued with invariants and temporal logic. It has been verified with the
proof assistant PVS.

1 Introduction

Resource allocation is a problem that goes back to Dijkstra’s dining philosophers [8] and
the drinking philosophers of Chandi and Misra [4]. It is the problem that a process may
enter a critical section of its code only when its resource requirements are not in conflict
with those of other processes in their critical sections. In the case of the dining philosophers,
the philosophers form a ring and the resource requirements are two forks shared with the
neighbours in the ring. In the drinking philosophers problem the philosophers are the nodes
of an arbitrary finite undirected graph and each edge is assigned a set of bottles. When a
philosopher gets thirsty, it chooses as resource requirement a set of bottles on its incident
edges.

In the general resource allocation problem, there is a network of active user processes and
passive resources, e.g., memory pages or data bases. For brevity, we often abbreviate “user
process” to “process”. From time to time a process may need access to a set of resources, e.g.,
to read data from the resources, or to write and synchronize the data on a set of resources. In
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298 W. H. Hesselink

the first case, it needs the guarantee that the data are not concurrently modified. In the second
case, it needs exclusive access to the resources of the set.

For each access of a process, this set of requirements, which consists of access rights to
resources, is called the job. The actual access to these resources is called the execution of
the job or the critical section (CS). Jobs of different processes are called compatible when
concurrent execution is allowed, and conflicting when it is not. A process with a job is called
competing, otherwise it is called idle. When it is idle, it may choose a job and become
competing.

The problem is to design a communication protocol for the processes such that every
process with a job can eventually execute it and become idle again. The safety property
required is partial mutual exclusion: conflicting jobs must never be executed concurrently.
The progress property required is that unnecessary waiting is avoided. This has two main
aspects: starvation freedom and concurrency. Informally speaking, starvation freedom [9],
also called lockout freedom [19], means that, when it is always the case that every competing
process eventually does a step, every competing process will eventually execute its job and
become idle again. Concurrency [4,23] means that every competing process that does steps
will eventually execute its job unless it comes in eternal conflict with a process that does no
steps.

1.1 Setting and sketch of solution

We present a solution for a setting with finitely many resources and unboundedly many
processes. The processes have extendable private memory and communicate by asynchronous
messages. The processes and messages are assumed to be reliable: the processes never crash,
the messages are guaranteed to arrive and be handled, but the delay is unknown. Messages
are not lost, damaged, or duplicated. They can pass each other, however, unlike in [3,19]
where the messages in transit from one sender to one receiver are treated first-in-first-out.
Every process can send messages to every other process, and receive messages from it.

We accommodate unboundedly many processes by presenting code for infinitely many
processes, which are initially all idle, and by using interleaving semantics. An execution
of the system is an infinite sequence of states such that every subsequent pair of states is
related by a step of one of the processes or by equality in case of a skip step. Infinitely many
consecutive skip steps will be ruled out by fairness assumptions. An execution may contain
steps of infinitely many processes, but at every moment only finitely many have done steps.
It follows that the set of not idle processes is always finite. Similarly, there are always only
finitely many messages in transit.

In our solution, processes with a job are informed about potential competitors in the
following way. The resources are distributed over finitely many sites which keep finite lists
of processes registered for the resources. When a process chooses a job, it registers at some
sites for the resources it needs, and receive from these sites finite sets of processes that it
needs to communicate with before it can enter CS. The union of these sets is finite. It is called
the current neighbourhood of the process. The first part of the protocol thus determines the
neighbourhood of the process, it makes this set finite and hopefully small. This part is called
the registration algorithm.

In the second part of the protocol, called the central algorithm, every process with a job
contacts the processes in its neighbourhood and proceeds to CS, but waits if that is necessary
to maintain partial mutual exclusion. We assume that every process has a process identifier,
a natural number that characterizes the process uniquely. In the central algorithm, these
numbers are used for tie breaking.
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The protocol has two kinds of waiting conditions: waiting for messages in transit to arrive,
and waiting for conflicting processes to proceed (in the second case, the process is waiting
for a message that has not yet been sent). It is not our aim to minimize the waiting time. We
offer a simple solution with as much nondeterminism as possible and as much progress as
we can accommodate in view of the safety requirement.

The proofs of the safety and liveness properties of the protocol have been carried out with
the interactive proof assistant PVS [21]. The descriptions of proofs closely follow our PVS
proof scripts, which can be found on our web site [12]. It is our intention that the paper can be
read independently, but the proofs require so many case distinctions that manual verification
is problematic.

In some applications of the protocol, for every resource there is only a small set of processes
that may ever need the resource. In this case one can decide to keep the neighbourhoods
constant, and remove the registration algorithm and the sites. Then the protocol reduces to
the central algorithm, and has similar functionality as the drinking philosophers [4].

1.2 Overview

Section 2 contains preparatory material: our programming notations and their semantics, and
the model for the jobs and their compatibility. Section 3 presents the specification and the
algorithm. Section 4 contains the proof that the algorithm satisfies partial mutual exclusion.
In Sect. 5, we introduce a second safety property: absence of localized deadlock, and prove
that the algorithm satisfies this. In Sect. 6, we introduce and formalize progress, in a form that
combines starvation freedom and concurrency. We discuss message complexity and waiting
times in Sect. 7. We briefly describe related research in Sect. 8, and conclude in Sect. 9.

2 Preparation of the algorithm

Notations for concurrent programs and their semantics are introduced in Sect. 2.1. In Sect. 2.2,
we give the syntax for message passing. Section 2.3 describes the semantics of the messages.
In Sect. 2.4, we develop a model for the jobs and their compatibility.

2.1 Semantics, variables, and guarded commands

Every process has a private state space spanned by the private variables. If v is a private
variable of a process, we write v for it in the code for the process, but elsewhere we write v.p
for the value of v of process p.

We model the algorithm as a transition system with as (global) state space the Cartesian
product of the private state spaces augmented with the collection of messages in transit. If
we need to emphasize the (global) state x of the system, the value of private variable v of
process p in state x is denoted by x .v.p. In Sect. 2.3, we explain how the messages in transit
are modelled (by shared variables).

The transitions of the algorithm are presented as guarded commands of the form

[] B → S.

with B the enabling condition and S the command to be executed, compare [20]. Every
transition is executed by a single process, often called p, which can only inspect and modify
its own private variables, receive messages, and send messages to known destinations (a
destination is known to p if it is a site, or a process with a number occurring in a message that
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p has received). The transition can be regarded as an atomic step because actions on private
variables give no interference, the messages are asynchronous, and any delay in sending a
message can be regarded as a delay in message delivery.

Each process has a program counter pc that is formally just a private variable of type N.
For the sake of conciseness, we use a labelled command k : S as an abbreviation of the
guarded command

[] pc = k → pc := k + 1 ; S.

In command S, we may use goto � as syntactic sugar for pc := �.
A labelled command of the form

k : await C ; T .

where C is a condition, is an abbreviation of the guarded command

[] pc = k ∧ C → pc := k + 1 ; T .

The values of pc are called line numbers or locations. For a process p and a line number
�, we write p at � to express pc.p = �. If L is a set of line numbers, we write p in L to
express pc.p ∈ L .

2.2 Asynchronous messages

Every message has a message key (the identifier used in the algorithm, see Sect. 3.2), a
sender, and a unique destination. It may have a value. As in CSP [13], we write m.q.r ! for
the command for process q to send a message with key m to process r , and m.q.r ? for the
command for process r to receive this message. Unlike CSP, the messages are asynchronous.
We write m.q.r ! v for the command for process q to send a message with key m and value
v to r , and m.q.r ? v for the command for process r to receive message m from q and assign
its value to the private variable v.

In the algorithm, for every message key m, and for every source q and destination r , we
shall prove that there is never more than one message with key m in transit from q to r .
Therefore, e.g., in Promela, the language of the model checker Spin [14], one could model
the messages by channels with buffer size 1.

For the correctness of the algorithm, the time needed for message transfer can be
unbounded. For other issues, however, it is convenient to postulate an upper bound � for
the time needed to execute an atomic command plus the time that the messages sent in this
command are in transit. Similarly, when discussing progress, we assume that the execution
time of the critical sections is bounded by �.

2.3 Modelling of the messages

We need to formalize the messages and their transitions by describing the state changes
induced by sending and receiving messages. This is done as follows. For a message with
key m of type void, we use m.q.r as an integer shared variable that holds the number of
messages with key m in transit from q to r , to be inspected and modified only by the processes
q and r .

A command m.q.r ! for process q to send message m to r corresponds to an incrementation
of m.q.r by one, which can be denoted m.q.r + +. A command (m.q.r ? ; S) for process r
to receive message m from q followed by command S, corresponds to a guarded command
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in which m.q.r is decremented by one when positive, followed by S:

[] m.q.r > 0 → m.q.r-- ; S.

The value of m.q.r can be any natural number, but in our algorithm we preserve the invariants
m.q.r ≤ 1.

For a message that holds a value v of some type T , the above way of modelling cannot
be used. In principle, we should model such messages by means of bags (i.e. multisets) of
messages from sender to destination. In the algorithm, however, there is never more than
one message with key m in transit from q to r . For simplicity, therefore, we model such a
“channel” with key m from q to r as a shared variable m.q.r of type T ∪ {⊥}, which equals
v when there is a message with key m in transit from q to r with value v, and which equals
⊥ otherwise.

A command m.q.r ! v for process q to send value v via m to r is modelled as m.q.r := v.
The command (m.q.r ? v ; S) for process r to receive a message with key m from q and
assign the value to v, followed by command S, is modelled by

[] m.q.r �= ⊥ →
v.r := m.q.r ; m.q.r := ⊥ ; S.

Initially, m.q.r = ⊥ for all q and r .
As we model the bag by a single variable, we need to make sure that the bag has never

more than one element. In other words, this way of modelling gives us the proof obligation
that m.q.r is sent only under the precondition m.q.r = ⊥ .

2.4 The job model

We introduce a type Job to hold the jobs of the processes. For jobs u, v, we write u ∗ v to
express that the jobs u and v are compatible (i.e., not conflicting). The value none : Job
represents the empty job (absence of resource requirements). We assume that compatibility
satisfies the axioms that u ∗ none ≡ true and that u ∗ v ≡ v ∗ u for all jobs u and v.

In the simple case that the processes always need exclusive access to the resources they
need, one may regard every job as a set of resources, and define jobs to be compatible if and
only if these sets are disjoint. We then have u ∗ v ≡ (u ∩ v = ∅) and none = ∅.

If one wants to distinguish read requests from write requests, however, one needs a more
complicated job model. In this case, one could model a job as a pair of sets of resources,
say (r, w) where r is the set of the resources for read access and w the set of resources for
write access. Jobs (r1, w1) and (r2, w2) are then compatible if and only if the intersections
w1 ∩ w2, w1 ∩ r2, and r1 ∩ w2 are empty. One can also propose compatibility relations
with more than two permission levels, where “shallow” access (e.g. reading of metadata) is
allowed concurrently with “innocent” writing.

We therefore use a flexible job model that allows an arbitrary number K ≥ 1 of levels.
Let upto(K ) be the set {i ∈ N | i ≤ K }. Let Rsc be the finite set of the resources. We define
a job to be a function Rsc → upto(K ), and define compatibility of jobs u and v by requiring
that u + v is at most K :

u ∗ v ≡ (∀ c ∈ Rsc : u(c) + v(c) ≤ K ). (0)

In this way, relation ∗ is indeed symmetric, and the job none given by none(c) = 0 for all c
is compatible with all jobs.
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The simple job model is the case with K = 1. We take K = 2 for the readers/writers
problem. Read access at resource c requires u(c) ≥ 1, write access requires u(c) = 2. In this
way, concurrent reading is allowed, while writing needs exclusive access.

3 The algorithm

Section 3.1 contains the specification of the algorithm. The implementation begins in Sect. 3.2
with an abstraction function from implementation to specification, and the split between the
central algorithm and the registration algorithm.

The central algorithm is sketched in Sect. 3.3. Section 3.4 contains the code of the central
algorithm and discusses some global aspects. In Sect. 3.5, we present its design as a layered
algorithm. Section 3.6 contains commands to abort the entry protocol. The registration algo-
rithm is presented in Sect. 3.7. As the registration algorithm only allows the registration level
of a process to grow, we give in Sect. 3.8 the processes the option to lower it again.

The entire algorithm is presented in this section without verification. The verification
is postponed to Sect. 4. Yet, we designed the algorithm concurrently with the verification,
because that is for us the only way to obtain a reliable algorithm. We separate the two aspects
here for the ease of reading.

3.1 Specification

In the specification, every user process p has two private variables job.p : Job and st.p :
Status. See Sect. 2.4 for the type Job. The type Status is given by

Status = {idle, entr y, C S, exi t, abort}.
We use Proc for the (possibly infinite) set of process identifiers. As the processes are char-
acterized by natural numbers, we take Proc to be an arbitrary subset of N. The abstract state
space Y consists of pairs of functions:

Y = [# job : Proc → Job , st : Proc → Status #].
Here, we use the record type constructor [# , #] of PVS. Given a global state y, its component
job is a function from processes to jobs. Therefore, job.p is the current job of process p. In
other words, job.p can be regarded as a private variable of process p. In the code of process
p, we write job instead of job.p.

When we need to be explicit about the abstract state y ∈ Y , we write y. job.p and y.st.p
for the job and the status of process p in state y. The initial state y0 has y0.job.p = none
and y0.st.p = idle for all process identifiers p ∈ Proc.

A user process has two aspects: a client and a server. As a client, it repeatedly may choose
a job with the purpose to execute it. As a server, it participates in a protocol. For us, the clients
are given and the servers are to be implemented. Each client only communicates with its own
server. In the implementation, the servers need to communicate with each other in order to
ensure that conflicting jobs are never executed concurrently, while unnecessary waiting is
avoided.

For every process p, the client and the server share the private variables job.p and st.p.
The client of p can choose a job when the process is idle. It executes the critical section when
allowed, and then enables the exit protocol. If the entry protocol takes “too long”, the client
can signal the server to abort the entry protocol. This is sketched in the transition diagram
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below, with the client performing the vertical transitions (c) and the server performing the
horizontal transitions (s):

idleabort exit

entry CS

c c c

s s

s

The possibilities are formalized in the following guarded commands, where we have
included the modifications of job.

client (p) :
[] st = idle → choose job �= none ; st := entr y.

[] st = C S → st := exi t.

[] st = entr y → st := abort.

end client .

The server of p inspects and modifies the variables job and st of p as follows:

server (p) :
[] st = entr y → st := C S.

[] st = exi t → job := none ; st := idle.

[] st = abort → job := none ; st := idle.

end server .

In the first alternative, the server grants access to the critical section. It may have to wait
before doing so. The second alternative serves to enable other processes to proceed. In the
last alternative, the server terminates the entry protocol of p.

The safety requirement of partial mutual exclusion is the condition that concurrently
executed jobs be compatible, as formalized in the invariant

Rq0: st.q = C S ∧ st.r = C S ⇒ q = r ∨ job.q ∗ job.r.

Here and henceforth, q and r stand for processes. For all invariants, we implicitly universally
quantify over the free variables, usually q and r .

3.2 Towards the implementation

We turn to the implementation of the server . The user processes now get many private vari-
ables, the main ones being job and pc. The sites mentioned in Sect. 1.1 will be implemented in
Sect. 3.7 as rudimentary processes, in the sense that they have one private variable (list), and
that they answer to messages. Henceforth, however, when we write “processes”, we mean
user processes and not sites.

The algorithm uses six message keys notify, withdraw, ack, gra, hello,
welcome for messages between processes, and four keys asklist, lower, answer,
done for the communication between processes and sites.

The concrete state space X is a record type just as the abstract state space Y of Sect. 3.1,
but now combining the private variables of the processes and the sites, and with ten families
of shared variables for each of the ten message keys.
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Anticipating the code developed below, we define the abstraction function abs : X → Y
to be given by

abs(x) = (# job := x . job, st := status(x) #).

Here, the pair (#, #) is the record constructor of PVS that corresponds to the type constructor
used in Sect. 3.1. The status of process p is determined by its current line number via
status(x)(p) = dec(x .pc.p) with

dec(k) = ( k = 21 ? idle

: k ∈ {22 . . . 26} ? entr y

: k = 27 ? C S

: k = 28 ? exi t

: k ∈ {29 . . . 33} ? abort).

Here and henceforth, we use a C-like syntax for conditional expressions.
We concentrate on the first two alternatives of the specification of the server . As

announced in Sect. 1.1, we distinguish within the protocol a registration algorithm that pro-
vides a competing process with a neighbourhood, and a central algorithm in which the process
communicates with the processes in its neighbourhood to obtain permission to enter CS. The
neighbourhoods are represented in the algorithm by two closely related private variables nbh
and nbh0 of the processes. The registration algorithm serves to maintain the invariant:

Rq1: q at 27 ∧ r at 27 ⇒ q = r ∨ r ∈ nbh0.q ∨ job.q ∗ job.r .

The central algorithm uses the sets nbh0.p to guarantee the invariant:

Rq2: q at 27 ∧ r at 27 ∧ r ∈ nbh0.q ∧ q ∈ nbh0.r ⇒ job.q ∗ job.r .

Line 27 of the concrete algorithm is the location of the critical section CS. Using the symmetry
of the operation ∗, we obtain that every concrete state that satisfies Rq1 and Rq2 is mapped
by the abstraction function to an abstract state that satisfies predicate Rq0 of Sect. 3.1.

3.3 Sketch of the central algorithm

Inspired by the shared-variable mutual exclusion algorithm of Lycklama-Hadzilacos [17],
the central algorithm is designed in three layers: an outer protocol to communicate the job to
all neighbours, a middle layer to guarantee starvation freedom and to guard against known
conflicts, and an inner protocol to guarantee partial mutual exclusion.

The inner protocol is the competition for CS. It uses the process numbers mentioned in
Sect. 1.1 for tie breaking, just as Lamport’s Bakery algorithm [15]. If q and r are process
identifiers with q < r , we speak of q as the lower process and r as the higher process.
For every pair of processes, the inner protocol gives priority to the lower process, and it
lets the higher process determine compatibility. As processes can enter the inner protocol
concurrently only within the margins allowed by the middle layer, we expect that the priority
bias of the inner protocol is not very noticeable unless the load is so heavy that the performance
of any algorithm would be problematic.

Despite the three layers, the central algorithm is rather simple. The outer protocol uses
three messages for every process in nbh. The middle layer needs no additional messages.
The inner protocol uses one message for every higher process in nbh, and no messages for
the lower processes in nbh.
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3.4 Into the code of the central algorithm

The code of the central algorithm is given in Fig. 1. For an unbroken flow of control, we
include the lines 21, 22, 23, 27, which do not belong to the central algorithm. In accordance
with the abstraction function of Sect. 3.2, the lines 21 and 27 correspond to the first two
alternatives of the client , whereas the server is in entry when p is in 22…26, and in exit
when at line 28.

As process p is always able to receive messages, in Fig. 1, the six alternatives of receive
can be interleaved with the eight alternatives of central.

Every process has a private variable job of type Job, initially none. It has private variables
nbh, nbh0, prio, wack, after, away, need, prom, which all hold finite sets of processes. All
these sets are initially empty. It has the private variables pack, fun, and curlist, which serve in
the registration algorithm and are treated in Sect. 3.7. The private variable nbh0 is a history
variable. It is set to nbh in line 25 and reset in line 28. It is not used in the algorithm, but
serves in the proof of correctness.

Process p has a private extendable array copy.p, such that copy.p(q) = job.q holds
under suitable conditions. It is set when receiving notify.q.p and reset in after. We
use the convention that copy.p(q) = none when q is not in the current range of the array.
Initially, the range of copy.p is empty.

The lines 22 and 23 are treated in Sect. 3.7 with the registration algorithm. For now we
just assume that nbh.p gets some value before curlist.p becomes empty at line 23 and that,
somehow, predicate Rq1 is guaranteed.

The central algorithm uses four message keys: notify, withdraw, ack, gra. The
messages notify hold values of the type Job, the other messages hold no values, they
are of type void. The alternatives of receive with labels after and prom correspond to
delayed answers. The message key asklist is treated in Sect. 3.7.

3.5 A layered solution

As announced, the central algorithm has three layers: an outer protocol to communicate
the jobs, a middle layer to regulate access to the inner protocol, and an inner protocol to
guarantee Rq2. The three layers have waiting conditions in the lines 24, 25, 26, respectively.
The outer protocol uses the messages notify, withdraw, ack, and the private variables
job, nbh, wack, and copy. It can be obtained from Fig. 1 by removing the lines 20 …23, and
all commands that use the messages gra and the private variables prio, need, away, prom.
The middle layer consists of all commands that use prio. The inner protocol consists of the
commands that use the messages gra and the private variables need, away, prom.

3.5.1 The outer protocol

In the outer protocol, every process p sends its job to all neighbours by means of notify
messages in line 25, and it withdraws this in line 28. Reception of notify and withdraw
is handled in the first three alternatives of receive . In the first line of notify, process p
registers the job of q in copy.p(q). The conditional statement of notify belongs to the
inner protocol. When process p has received both notify and withdraw from q , it can
execute the alternativeafter of receive , send ack back to q , and reset copy.p(q) := none.
In this way, we allow the message withdraw to arrive before notify, even though it was
sent later.
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Fig. 1 The central algorithm for process p (with p’s private variables)

In the fourth alternative of receive , when process p receives an ack from q , it removes
q from its set wack. This variable has been set by p to nbh.p in line 28, while sending
withdraw to its neighbours. When process p arrives again at line 24, it waits for wack to
be empty. In this way, it verifies that all its withdraw messages have been acknowledged,
to preclude interference by delayed messages.

3.5.2 The inner protocol

To ensure partial mutual exclusion Rq2, every process forms in line 25 a set need of processes
from which it needs “permission” to enter CS. Condition Rq2 is implied by the invariants

Rq2a: r ∈ nbh0.q ∧ q ∈ nbh0.r
⇒ r ∈ need.q ∨ q ∈ need.r ∨ job.q ∗ job.r,

Jq0: r ∈ need.q ⇒ q in {26, 29} ∧ r ∈ nbh0.q .

Indeed, the first two disjuncts of the consequent of Rq2a are false when q and r are at line
27 because of Jq0. The proofs of these invariants are postponed to Sect. 4.4.

At this point, we break the symmetry. Recall that we represent the processes by natural
numbers, and that, if q < r , we say that process q is lower and that r is higher. Notifications
from lower processes are regarded as requests for permission that must be granted when
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possible, because we give priority to lower processes. Therefore, when process p receives
notify from q < p, it stores q in prom.p. When the alternative prom is enabled, process
p grants permission by sending gra to q . In away.p, it records the lower processes to which
it has granted permission. If it is at line 26 and in conflict with q , it puts q in need.p.

There is a difference in the interpretation of need.p for lower and higher processes. If
q < p, then q ∈ need.p means that process p is in conflict with q and has granted priority to
q . Process p therefore needs to wait for q’s withdrawmessage. If p < q , then q ∈ need.p
means that process p has requested permisssion from q and is still waiting for the gra
message (no conflict implied).

3.5.3 The middle layer

Without waiting at line 25, the algorithm of Fig. 1 would satisfy Rq2, but it would have two
defects. At line 26, one low process could repeatedly pass all higher conflicting neighbours.
Also, long waiting queues of conflicting processes could form. These defects are treated by
the middle layer.

When process p enters at line 24, it assigns to prio.p the set of processes with known
conflicting jobs. This set is finite because it is contained in the finite set {q | copy.p(q) �=
none}. Process p then waits for the set prio.p to become empty. It removes q from prio.p
when it receives withdraw from q . In this way, the middle layer only admits processes to
the inner protocol that are not known to be conflicting with processes in the inner protocol.
This improves the performance by making it unlikely that at line 26 long waiting queues of
conflicting processes are formed. On the other hand, it ensures starvation freedom. In fact,
when process p has executed line 25 and its notify messages have arrived, any conflicting
neighbour of p that passes p at line 26, will have to wait for p at line 25, and hence cannot
pass p again.

Remark The first ideas for the present paper were tested in [11] in a context with a single
resource. There, the notify messages are sent in the analogue of line 24 instead of line 25.
This is also possible here. It has the effect that processes at line 25 are waiting for processes
that arrived earlier at line 25. In other words, it induces a form of a first-come-first-served
order. This, however, is not a good idea for resource allocation. Consider, e.g., the following
senario.

Process p0 arrives and starts using resource r0 in CS. Now processes pk for k ≥ 1 arrive
in their natural order at line 24 at intervals > � (see Sect. 2.2), needing exclusive access to
the resources rk−1 and rk , and with empty wack. If the notifications are sent in line 24, they
all remain waiting at line 25, because pk−1 ∈ prio.pk , until p0 has passed CS. In the present
version, with notifications sent at line 25, the processes with k odd start waiting at line 25,
while the processes with k even go through to CS. ��
3.6 Aborting the entry protocol

As specified in Sect. 3.1, during entry, we give the client the option to signal the server to
abort the entry protocol. The client can do this by jumping over the remainder of the code of
central :

clientAbort (p) : 22 ≤ pc ≤ 26 → pc := 55 − pc.
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By jumping in this way, the ranges of line numbers in the remainder of the code and in the
invariants of Sect. 4 remain reasonably contiguous. The server reacts to the signal by

abort (p) :
[] pc = 29 ∧ need ∩ {q | p < q} = ∅ →

for all q ∈ nbh do withdraw .p.q ! od ; wack := nbh;
job := none ; need := nbh := nbh0 := ∅; pc := 21.

[] pc = 30 → job := none; nbh := prio := ∅; pc := 21.

[] pc = 31 ∧ pack = ∅ →
job := none ; nbh := ∅ ; pc := 21.

[] pc = 32 ∧ curlist = ∅ →
for all q ∈ pack do hello.p.q ! od ; pc := 31.

[] pc = 33 → job:=none ; pc:=21.

In all cases, job is reset to none and pc is reset to 21, in accordance to the specification. Other
variables that have acquired values that are no longer useful are reset as well.

At the lines 29, 31 and 32, the server needs to wait for some additional condition. At line
29, it has to wait for emptiness of the higher part of need, necessary to catch the expected gra
messages. This waiting is short because process p has priority over its higher neighbours.
Indeed, the higher part of need is empty after � + 2� (see Sect. 2.2).

At line 31, the server needs to wait for welcome messages, which are treated below in
Sect. 3.7. This is only waiting for messages to arrive. The waiting time is therefore shorter
than 2�. At line 32, the server needs to complete its registration, as treated in Sect. 3.7. It
takes less than 2� to reach line 31, from which it again takes less than 2� to become idle.

3.7 The registration algorithm

Recall from the Sect. 1.1, that the registration algorithm serves to provide the processes with
sets nbh and that the resources are distributed over sites. Every process registers at the sites
for the resources that it needs, and then obtains lists of other registered clients. Let Site be
the finite set of the sites. We use a fixed function loc : Rsc → Site to formalize how the
resources are distributed over the sites.

We use the job model with upper bound K of Sect. 2.4. In particular, every job is a function
Rsc → upto(K ). A process can only use resource c at level k if it is registered at site loc(c)
for level ≥ k. It therefore has an array fun such that f un.p(s) is the p’s registration level at
site s. When some process obtains a new job, it needs at site s the level

L( job)(s) = Max{ job(c) | loc(c) = s}.

For functions f , g : Site → N, we define f ≤ g to mean (∀ s : f (s) ≤ g(s)).
In line 21 of Fig. 1, the client in process p chooses a new job. At line 22, process p may

have to wait, to avoid interference with the lowering thread that is treated below. It then sends
L( job)(s) to site s if it is positive, and thus asks the site for a lists of clients that might
compete for its resources. The set nbh gets its contents while the process waits at line 23,
through messages from the sites in answer to asklist.

We give the sites very small tasks. To avoid fragmentation of the code, we include treatment
of messages lower and done that serve purposes not yet introduced. Site s communicates
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with the processes by receiving messagesasklist and lower, and answering by answer
and done, respectively; this according to the code:

site (s) from (q) :
[] asklist.q.s ? k; list (q) := max(list (q), k);

answer.s.q ! {r | list (r) > K − k}.
[] lower.q.s ? k; list (q) := k;done.s.q !.

end site .

In this code, list is the private extendable array of site s, that holds the levels of registered
processes. The value 0 means not-registered. The answering message answer has as value
the set of the processes that are in potential conflict at the level k. If process q lowers at site
s its level to k, it gets response done as an acknowledgment.

Process p receives the messages from site s according to:

listen (p) from (s) :
[] answer.s.p ? v; nbh := nbh ∪ (v \ {p});

if f un(s) < L( job)(s) then

pack := pack ∪ (v \ {p});
f un(s) := L( job)(s) endif ;

curlist := curlist \ {s}.
[] done.s.p ?; reglist := reglist \ {s}.

end listen .

If process p increases its registration level at site s, it collects the potential competitors in
the private variables pack. When it has received all answers, its sends all members of pack a
message hello in line 23, and waits for the responses welcome at line 24. The reason for
this is that the processes q ∈ pack.p can be anywhere in their protocol and need not have
p ∈ nbh.q .

The new messages hello and welcome are between processes. They are treated in the
following two alternatives that should be included in receive of Fig. 1.

[] hello.q.p ?;
welcome.p.q ! (pc ∈ {26 . . . 29} ∧ q /∈ nbh ? job : none);
if pc ∈ {23 . . . 32} then add q to nbh endif .

[] welcome.q.p ? v; remove q from pack;
if v �= none then copy(q) := v endif .

Process p answers hello from q with welcome. If it is in {26 . . . 29} and q /∈ nbh.p, the
message welcome carries the job of p as a belated notification. Otherwise, it only holds
none as an acknowledgement. If it is in {23 . . . 32}, it adds q to nbh because, if possible, it
needs to send notify to q in line 25, and in any case, it needs to send withdraw to q
later. At this point, the set nbh0 can become a proper subset of nbh.

In welcome, the assignment to copy.p(q) ensures that, when process p raises its reg-
istration level, it cannot enter its inner protocol when in conflict with q , while q remains in
its inner protocol. At this point, the guard of line 25 is necessary for safety. This is a third
reason for the middle layer of Sect. 3.5.3.
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3.8 Lowering

In the communication between process and sites the registration level as registered in the
variables f un.p never decreases and occasionally increases. A process with a high registra-
tion level may receive many messages from other processes. A high registration level of a
process thus forms a burden for its performance. We therefore offer the client the option to
lower its registration level.

Lowering means the choice of a new value news for fun, which can be equal or lower than
the current value. The processes can lower at the sites more or less concurrently with the
loop 21–28. For this purpose, each of them gets a separate concurrent thread with a separate
process counter pcr. We write q at � to mean pc.q = � if � ∈ {21 . . . 33}, and to mean
pcr.q = � if � ∈ {41 . . . 43}. Initially, every process is both at 21 and at 41.

lowering (p) :
[] pcr = 41 → choose news with news ≤ f un; pcr := 42.

[] pcr = 42 ∧ (pc = 21 ∨ (pc ≥ 24 ∧ pc �= 32 ∧ L( job) ≤ news))

→ reglist := {s | news(s) �= f un(s)}; f un := news;
for all s ∈ reglist dolower.p.s ! news(s) od ; pcr := 43.

[] pcr = 43 ∧ reglist = ∅ → pcr := 41.

The decision to lower does not belong to the protocol and must therefore be taken by the client
side of the process. When pcr = 41, the client may decide to start lowering by choosing a
new value news for its variable fun and go to line 42. Lowering itself is executed by the server.
At line 42, the server informs the sites for which the level is to be modified by sending them
a message lower with the new value. If the main thread is in 22, 23, or 32, lowering needs
to wait to avoid interference. The guard L( job) ≤ news is needed to protect the current job
of p.

We did not announce lowering in the specification of Sect. 3.1 because it is functionally
void. It is only an option that can possibly improve the performance and lessen the message
burden of the system.

Initially, the private sets pack.p and reglist.p are empty and the functions f un.p,
news.p, and list.s are constant zero.

3.9 Summary

In total, the transition system consists of the 29 step relations: there are 13 step relations at
the line numbers 21…33 of Fig. 1 and Sect. 3.6. There is the step relation clientAbort of
Sect. 3.6. There are the 3 step relations at the line numbers 41, 42, 43 of Sect. 3.8. Finally,
there are 12 message reception step relations, 10 for each of the ten message keys notify,
withdraw, ack, gra, hello, welcome, asklist, lower, answer, done, and the
two delayed message reception step relations after and prom of Fig. 1.

For the discussion of progress, we partition the step relations or steps of the algorithm in
a different way. The 3 steps at the lines 21, 41, and clientAbort are called the free steps,
because they can be executed, but there is never a reason to do so. We define the forward
steps to be the 12 steps at the line numbers 22…33, and the lowering steps to be the 2 steps
at the lines 42, 43. Execution of CS at line 27 is taken to be a forward step, because we may
want to express that CS terminates. The 12 steps for (possibly delayed) message reception
are called triggered steps.
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Coming back to the abstraction function of Sect. 3.2, it is now straightforward to verify
that every step of the concrete algorithm corresponds to a step of the abstract algorithm or to
a skip step that does not change the abstract state. Moreover, every abstract step of a client
corresponds to a unique concrete step of the same client. Note that a concrete client can do
a lowering step at line 41, which corresponds to a skip step for the specification.

Two points remain: we have to verify that the concrete algorithm satisfies partial mutual
exclusion and that it makes progress.

4 Verification of partial mutual exclusion

In this section, we prove that Rq1 and Rq2 are invariants of the algorithm.
In Sect. 4.1, we describe the verification of safety by means of invariants. In Sect. 4.2, we

describe some choices we made for the ease of proof management.
In Sect. 4.3 we develop the invariants of the outer protocol that are needed in the proof

of Rq2. As indicated in Sect. 3.5.2, Rq2 is implied by Jq0 and Rq2a. These invariants of the
inner protocol are proved in Sect. 4.4, together with a number of auxiliary ones.

In Sect. 4.5, we add the registration algorithm, verify that the new messages are modelled
correctly and that this addition does not disturb the safety properties of the central algorithm.
Section 4.6 shows that it indeed serves its purpose and guarantees the invariant Rq1.

4.1 Using invariants

In a distributed algorithm, at any moment, many processes are able to do a step that modifies
the global state of the system. The only way to reason successfully and reliably about such a
system is to analyse the properties that cannot be falsified by any step of the system. These
are the invariants.

Formally, a predicate is called an invariant of an algorithm if it holds in all reachable
states. A predicate J is called inductive if it holds initially and every step of the algorithm
from a state that satisfies J results in a state that also satisfies J . Every inductive predicate
is an invariant. Every predicate implied by an invariant is an invariant.

When a predicate is inductive, this is often easily verified. In many cases, the proof assistant
PVS is able to do it without user intervention. It always requires a big case distinction, because
the transition system has many different alternatives.

Most invariants, however, are not inductive. Preservation of such a predicate by some
alternatives needs the validity of other invariants in the precondition. We use PVS to pin
down the problematic alternatives, but human intelligence is needed to determine the useful
other invariants.

In proofs of invariants, we therefore use the phrase “preservation of J at �1 . . . �m follows
from J1 . . . Jn” to express that every step of the algorithm with precondition J ∧ J1 . . . Jn

has the postcondition J , and that the additional predicates J1 . . . Jn are only needed for the
alternatives �1 . . . �m .

We use the following names for the alternatives. The first 8 alternatives of central in
Fig. 1 are indicated by the line numbers. The alternatives of receive are indicated by the
message names and the labels after and prom.

For all invariants postulated, the easy proof that they hold initially is left to the reader. We
use the term invariant in a premature way. See the end of this section.
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4.2 Proof engineering

Effective management of the combined design and verification of such an algorithm requires
a number of measures. We give most invariants names of the form Xqd, where X stands for
an upper case letter and d for a digit. This enables us to rename the invariants in the text and
the PVS proof files by query-replace, and to keep them consistent. Indeed, any modification
of proof files must be done very carefully to avoid that the proof is destroyed. Using short
distinctive names also makes it easy to search for definitions and to see when all of them
have been treated.

Line numbers may change during design. In order to use query-replace for this in all
documents, we use line numbers of two digits. In this way, we preclude that the invariants
get renamed by accident. This is also the reason to use disjoint ranges for the line numbers
for forward steps and for lowering steps.

There is a trade off in the size of the invariants. Smaller invariants are easier to prove and
easier to apply, but one needs more of them, and they are more difficult to remember. We
therefore often combine a number of simple properties in a single invariant, see Iq1 below.
Bigger invariants are sometimes needed to express different aspects of a complicated state
of affairs, compare Iq2 below.

4.3 Invariants of the outer protocol

For now, we restrict ourselves to the transition system with the 14 transitions of Fig. 1 and
the 6 aborting transitions of Sect. 3.6. For simplicity of exposition, in the discussion of the
invariants, we concentrate on the first set of transitions and ignore the aborting transitions.
Yet, the invariants presented are also preserved by the aborting transitions. The nine steps of
Sects. 3.7 and 3.8 are added in Sects. 4.5 and 4.6.

We have two invariants about neighbourhoods:

Iq0: q /∈ nbh.q ,

Iq1: r ∈ nbh0.q ⇒ q in {26 . . . 29} ∧ r ∈ nbh.q .

These predicates are easily seen to be inductive.
At line 24, the processes wait for acknowledgements as expressed by emptiness of wack.

This corresponds to the invariant:

Iq2: withdraw.q.r + | q ∈ a f ter.r | + ack.r.q = | r ∈ wack.q |.
Recall that withdraw.q.r is the number of withdraw messages from q to r and that

ack.r.q is the number of ack messages from r to q . For Boolean b, we define | b | ∈ N

to be 1 if b holds, and 0 otherwise. Predicate Iq2 is a concise expression of a complicated
fact. Namely, r ∈ wack.q holds if and only if if there is a withdraw message in transit
from q to r , or an ack message in transit from r to q , or q ∈ a f ter.r . Furthermore, the
three possibilities are mutually exclusive. Finally, there is at most one withdraw message
from q to r , and at most one ack message from r to q . One could therefore split Iq2 into 9
different invariants.

Preservation of Iq2 whenwithdraw is sent at line 28 follows from the inductive invariant:

Iq3: q in {25 . . . 30} ⇒ wack.q = ∅.

For practical purposes, it is useful to notice that Iq2 and Iq3 together imply

Iq2a: q in {25 . . . 30} ⇒ withdraw.q.r = 0 ∧ q /∈ a f ter.r.
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As announced, one of the functions of the outer protocol is to guarantee that, under suitable
conditions, process r has the job of q in its variable copy.r(q). In fact, the conditions are
that r is in nbh0.q and that there is no message notify in transit from q to r , as expressed
in the invariant

Iq4: r ∈ nbh0.q ∧ notify.q.r = ⊥ ⇒ copy.r(q) = job.q.

Preservation of Iq4 at line 21 follows from Iq1. Preservation at after follows from Iq1
and Iq2a. Preservation at line 25 and notify follows from Iq1 and the new invariants:

Iq5: job.q = none ≡ q at 21,

Iq6: q in {26 . . . 29} ∧ notify.q.r �= ⊥ ⇒ notify.q.r = job.q.

Predicate Iq5 is inductive. Preservation of Iq6 at line 25 follows from the new invariant

Iq7a: q at 25 ⇒ notify.q.r = ⊥ ∧ copy.r(q) = none.

Predicate Iq7a is logically implied by Iq2, Iq3, and the new invariant:

Iq7: (notify.q.r = ⊥ ∧ copy.r(q) = none)
∨ (q in {26 . . . 29} ∧ r ∈ nbh.q)

∨ withdraw.q.r > 0 ∨ q ∈ a f ter.r.

Preservation of Iq7: at after follows from the new invariant:

Iq8: notify.q.r = ⊥ ∨ copy.r(q) = none.

Preservation of Iq8 at line 25 follows from Iq7a.
This is not circular reasoning: the above argument shows that, if all predicates Iq* hold in

the precondition of any step, they also hold in the postcondition. Therefore, the conjunction
of them is inductive, and each of them is an invariant.

4.4 The proof of partial mutual exclusion

In Sect. 3.5.2, we saw that the partial mutual exclusion predicate Rq2 is implied by Jq0 and
Rq2a. In this section, we prove that these two predicates are invariants.

Preservation of predicate Jq0 at prom follows from Iq4, Jq0, and the new invariants

Rq1a: q in {26 . . . 29} ∧ r in {26 . . . 29} ⇒ q = r ∨ r ∈ nbh0.q ∨ job.q ∗ job.r,
Jq1: q ∈ prom.r ⇒ q < r,
Jq2: q < r ⇒ |notify.q.r �= ⊥ | + | q ∈ prom.r | + gra.r.q = | r ∈ need.q |.

Predicate Rq1a is a strengthening of Rq1 of Sect. 3.2, which is guaranteed by the registration
algorithm as shown in Sect. 4.6 below. Predicate Jq1 is inductive. Preservation of Jq2 at 25
and prom follows from Iq5, Jq0 and Jq1. Note the similarity of Jq2 with Iq2.

Predicate Rq2a of Sect. 3.5.2 is implied by Iq0, Iq1, Iq2a, and the new invariants:

Jq3: q < r ∧ r ∈ nbh0.q ⇒ r ∈ need.q ∨ q ∈ away.r ,
Jq4: q ∈ away.r ∧ q ∈ nbh0.r ∧ withdraw.q.r = 0

⇒ q ∈ need.r ∨ job.q ∗ job.r .

Preservation of Jq3 at withdraw follows from Iq1, Iq2a. At gra, it follows from the new
invariant

Jq5: gra.r.q > 0 ⇒ q ∈ away.r .

Preservation of Jq4 at 21 follows from Iq1. Preservation at prom follows from Iq1, Iq4,
Jq0, Jq1, and Jq2. Preservation at line 25 and at gra and withdraw follows from Iq4, Jq5
and the new invariants:
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Jq6: q ∈ away.r ⇒ q < r ∧ notify.q.r = ⊥,
Jq7: q ∈ away.r ∧ withdraw.q.r = 0 ⇒ r ∈ nbh0.q .

Preservation of Jq5 at withdraw follows from Iq2a, Jq0, and Jq2. Preservation of Jq6
follows at line 25 from Iq1, Iq2, Iq3, and Jq7, and at prom from Jq1, Jq2. Preservation of
Jq7 at 25 and 28 follows from Iq1, and at prom and withdraw from Jq0, Jq1, Jq2, and
Jq6.

This concludes the proof of the invariants Jq0 and Rq2a under assumption of Rq1a, and
hence of Rq2.

4.5 Adding registration

We now add the registration algorithm to the central algorithm, i.e., we extend the transition
system with the nine transitions of Sects. 3.7 and 3.8. There are three things to verify. The
modeling must be correct, the proof of the central algorithm must not be disturbed, and
condition Rq1a of Sect. 4.4 must be guaranteed. The first two points are treated in this
section. The third point is postponed to the next section.

The new messages asklist, answer, welcome, and lower are not void, and are
therefore modelled in the same way as notify. This gives us the obligation to prove, for
each of these four message keys m, that the value of m is ⊥ whenever a message m is sent.
For the message keys asklist and answer, this follows from the invariants (compare
Iq2):

Kq0: |asklist.q.s �= ⊥ | + |answer.s.q �= ⊥ | = | s ∈ curlist.q |,
Kq1: q in {23, 32} ∨ curlist.q = ∅.

Predicate Kq1 is inductive. Predicate Kq0 is preserved at 22 because of Kq1. The invariants
Kq0 and Kq1 together imply

Kq0a: answer.s.q �= ⊥ ⇒ q in {23, 32}.
For the message keys welcome and lower, m.q.r = ⊥ holds whenever m is sent because
of the invariants:

Kq2: hello.q.r + |welcome.r.q �= ⊥ | = | q in {24, 31} ∧ r ∈ pack.q |,
Kq3: |lower.q.s �= ⊥ | + done.s.q = | q at 43 ∧ s ∈ reglist.q |.
Predicate Kq2 is preserved at answer because of Kq0a. Predicate Kq3 is inductive.

We turn to the question whether the central algorithm is disturbed by the new registration
commands. The only variables that the registration algorithm shares with the central algorithm
are pc, pcr, nbh, pack, and copy. Sharing pc is harmless, because the flow of controle is not
modified. Sharing pack and pcr is harmless because the central algorithm has no invariants
for pack and pcr. Sharing nbh is almost harmless because all invariants except Iq0 allow
enlarging nbh. Predicate Iq0 is preserved by hello because of hello.q.q = 0 which
follows from Kq2 together with the inductive invariant

Kq4: q /∈ pack.q .

Modification of copy by welcome requires new invariants. Predicate Iq4 is preserved at
welcome because of Iq1 and the new invariant

Kq5: q in {26 . . . 29} ⇒ welcome.q.r ∈ {⊥, none, job.q}.
Predicate Iq7: is preserved at welcome because of
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Kq6: welcome.q.r ∈ {⊥, none} ∨ withdraw.q.r > 0
∨ q ∈ a f ter.r ∨ (q in {26 . . . 29} ∧ r ∈ nbh.q).

Predicate Iq8 is preserved at welcome because of

Kq7: welcome.q.r ∈ {⊥, none} ∨ (notify.q.r = ⊥ ∧ copy.r(q) = none).

Predicate Kq5 is preserved at 25 because of Iq2a and Kq6. Predicate Kq6 is preserved at
after and hello because of Iq1 and Kq7. Predicate Kq7 is preserved at 25 and hello
because of Iq2a, Iq7, and Kq6.

This concludes the proof that the registration algorithm preserves the invariants claimed
for the central algorithm.

4.6 Safety of registration

We approach predicate Rq1a in a bottom-up fashion. The lowering thread does not interfere
with the main thread because of the inductive invariants:

Lq0: q in {23, 32} ⇒ q in {41, 42} ,
Lq1: news.q ≤ f un.q .

The sets prio and pack are only nonempty in specific locations, as expressed by the invariants:

Lq2: q ∈ prio.r ⇒ r in {25, 30} ∧ q /∈ a f ter.r ,
Lq3: q in {23, 24, 31, 32} ∨ pack.q = ∅.

Indeed, Lq2 is inductive. Predicate Lq3 is preserved by answer because of Kq0a.
For the communication with the sites, we claim the invariants:

Lq4: asklist.q.s ∈ {⊥, L( job.q)(s)},
Lq5: lower.q.s ∈ {⊥, f un.q(s)}.

Predicate Lq4 is preserved at 21 and 28 because asklist.q.s �= ⊥ implies q at 23, as
follows from Kq0 and Kq1. Predicate Lq5 is preserved at answer because of Kq0a, Kq3,
and the mutual exclusion invariant Lq0.

There are subtle relations between L( job.q)(s), f un.q(s), and list.s(q) expressed by
the invariants:

Lq6: q in {22, 33} ∨ s ∈ curlist.q ∨ L( job.q)(s) ≤ f un.q(s),
Lq7: q in {23 . . . 32} ∧ asklist.s.q = ⊥ ⇒ L( job.q)(s) ≤ list.s(q),
Lq8: f un.q(s) ≤ list.s(q).

Predicate Lq6 is preserved at line 42 because of Iq5. Predicate Lq7 is preserved by asklist
because of Lq4. It is preserved by lower because of Kq3, Kq1, Lq0, Lq5, and Lq6. Predicate
Lq8 is preserved at 42 because of Lq1, at answer because of Kq0, Kq1, Lq7, and at lower
because of Lq5.

After this preparation, we turn to the proof that the registration algorithm satisfies it
purpose, i.e., guarantees predicate Rq1a of Sect. 4.4. At line 23, process q expects and receives
an answer from site s. This answer is a set that contains process r iff L( job.q)(s)+list.s(r) >

K , where list.s is the value at the time of sending the answer. In this way, we arrive at the
invariant:

Mq0: q in {23 . . . 29} ⇒ q = r ∨ r ∈ nbh.q ∨ hello.r.q > 0
∨ (r in {23, 32} ∧ q ∈ pack.r) ∨ L( job.q)(s) + f un.r(s) ≤ K

∨ (s ∈ curlist.q ∧ (answer.s.q = ⊥ ∨ r ∈ answer.s.q)).
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Predicate Mq0 is preserved at line 22, 42, welcome, asklist because of Kq0a, Lq1, Kq2,
Lq4, Lq8. It is preserved at answer because of Kq0a and the new invariant:

Mq1: q in {23 . . . 29} ∧ answer.s.r �= ⊥
⇒ q = r ∨ r ∈ nbh.q ∨ q ∈ answer.s.r
∨ L( job.q)(s) + L( job.r)(s) ≤ K
∨ (s ∈ curlist.q ∧ (answer.s.q = ⊥ ∨ r ∈ answer.s.q)).

Predicate Mq1 is preserved at 21, 22, 28 because of Kq0a. It is preserved by asklist
because of Kq0, Kq1, Lq4, Lq7.

The predicates Mq0, Kq2, Kq1, Lq6 together imply the derived invariant:

Mq0a: q in {24 . . . 29} ∧ r in {24 . . . 29} ∧ pack.r = ∅
⇒ q = r ∨ r ∈ nbh.q ∨ job.q ∗ job.r .

Predicate Mq0a approximates Rq1a, but the disjunct r ∈ nbh.q of Mq0a is weaker than
the disjunct r ∈ nbh0.q of Rq1a. As a remedy, we postulate the invariant:

Mq2: q in {26 . . . 29} ∧ r ∈ nbh.q
⇒ r ∈ nbh0.q ∨ welcome.q.r = job.q ∨ copy.r(q) = job.q.

Predicate Mq2 is preserved at notify, answer, after, welcome, hello because of
Iq1, Iq2a, Iq5, Iq8, Kq0a, Kq2, Kq5.

The conjunction of Mq0a and Mq2 is not strong enough to imply Rq1a. We need yet
another invariant:

Mq3: q in {26 . . . 29} ∧ r in {25 . . . 29}
⇒ q = r ∨ r ∈ nbh0.q ∨ q ∈ prio.r ∨ job.q ∗ job.r .

Predicate Mq3 is preserved at lines 24 and 25 because of Mq0a and Iq2a, Iq5, Kq2, Lq3,
Mq2. It is preserved at welcome because of Iq2a.

We can now conclude the proof of partial mutual exclusion Rq0. Indeed, predicate Rq1a
of Sect. 4.4 is implied by Mq3 and Lq2, because Lq2 eliminates the alternative q ∈ prio.r
of Mq3. This concludes the proof of the invariants Rq1 and Rq2 of Sect. 3.2. It follows that
the abstraction function of Sect. 3.2 maps all reachable states of the concrete algorithm to
abstract states that satisfy condition Rq0 of Sect. 3.1.

5 Absence of localized deadlock

Absolute deadlock in a transition system means that no transition can modify the state any-
more. In our transition system, there are always infinitely many idle processes and these
can always go to entry. Therefore, absolute deadlock cannot occur, but this fact is not very
meaningful.

We introduce localized deadlock to pin down the kind of blocking that can or that cannot
occur in the algorithm. In Sect. 5.1, we introduce some invariants needed for this purpose. In
Sect. 5.2, we zoom in on specific properties related to disabledness. In Sect. 5.3, we define
and prove the absence of localized deadlock.

5.1 Invariants against blocking

In order to prove absence of blocking, we need additional invariants about need, copy, prio,
because of the guards of the alternatives 25, 26, after, and prom.

We need two invariants for need in the inner protocol:
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Nq0: q < r ∧ q ∈ need.r ⇒ q ∈ away.r ,
Nq1: q < r ∧ q ∈ need.r ∧ job.q ∗ job.r ⇒ withdraw.q.r > 0.

Predicate Nq0 is inductive. Predicate Nq1 is preserved at 21 because of Iq5, at 25 because of
Iq1, Iq4, Jq6 and Jq7, and at 28 because of Iq1, Jq0, Jq7, and Nq0. It is preserved at prom
because of Iq4, Jq0, and Jq2.

We also need a new invariant of the outer protocol (compare Iq7:):

Nq2: notify.q.r = ⊥ ∧ copy.r(q) = none ∧ welcome.q.r ∈ {⊥, none}
⇒ q /∈ a f ter.r ∧ withdraw.q.r = 0.

Preservation of Nq2 at 28, hello, after, and notify follows from Iq1, Iq2, Iq4, Iq5,
Kq2, Mq2, and the new postulate

Nq3: notify.q.r �= none.

Predicate Nq3 is preserved at 25 because of Iq5.
Next to Lq2, we need a second invariant about prio:

Nq4: q ∈ prio.r ⇒ ¬ copy.r(q) ∗ job.r .

Predicate Nq4 is preserved at 21, 28, and after because of Lq2. It is preserved at notify
and welcome because of Iq8 and Kq7. This concludes the construction of the invariants for
progress.

5.2 Disabledness and conflicts

We use the invariants obtained thus far to derive four so-called waiting invariants that focus
on disabledness of processes in relation to the occurrence of conflicts. Forward steps can be
disabled at the lines 23, 24, 25, 26 (and 29, 31, 32) by nonemptiness of curlist, wack, prio,
need, respectively. Message reception is disabled when there is no message.

Disabledness of processes is often caused by processes that are in conflict, i.e., have
conflicting jobs. We write q �� r to denote that q and r are in conflict. So we have

q �� r ≡ ¬ job.q ∗ job.r.

Let d A f ter(q, r) and d Prom(q, r) be the conditions, respectively, that the alternatives
after and prom for sending ack or gra from q to r are disabled:

dAfter(q, r) ≡ r /∈ a f ter.q ∨ copy.q(r) = none,

dProm(q, r) ≡ r /∈ prom.q

∨ (q in {27, 28} ∧ ¬ job.q ∗ copy.q(r)).

For emptiness of wack.q , the invariants Iq2 and Nq2 imply the waiting invariant:

Waq0: withdraw.q.r = ack.r.q = 0 ∧ notify.q.r = ⊥
∧ welcome.q.r ∈ {⊥, none} ∧ d A f ter(r, q) ⇒ r /∈ wack.q .

For emptiness of prio.q , the invariants Kq7, Lq2, Mq2, and Nq4, together with Iq4, Iq5,
Iq7:, and Iq8 imply the waiting invariant

Waq1: r ∈ prio.q ∧ withdraw.r.q = 0 ∧ welcome.q.r ∈ {⊥, none}
⇒ r in {26 . . . 29} ∧ q �� r .

For emptiness of need.q , we are forced to make a case distinction. Using the invariants Nq0
and Nq1 together with Iq1, Jq0, and Jq7, we obtain the waiting invariant
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Waq2: r < q ∧ r ∈ need.q ∧ withdraw.r.q = 0 ⇒ r in {26 . . . 29} ∧ q �� r .

It follows from Iq4, Iq5, Jq0, and Jq2, that we have

Waq3: q < r ∧ r ∈ need.q ∧ gra.r.q = 0 ∧ notify.q.r = ⊥
∧ d Prom(r, q) ⇒ r in {27, 28} ∧ q �� r .

5.3 Localized deadlock

In this section we prove absence of localized deadlock. Informally speaking, this means that,
when there are blocked server processes, some of them are in conflict with uncollaborating
processes. The result is not used in the proof of Theorem 2 in the next section, and it follows
from Theorem 2. Yet, an independent proof of the result is a good preparation of the more
complicated proof of Theorem 2.

The concept is formally defined by means of the partitioning of the steps introduced in
Sect. 3.9. We define a process p to be silent when every forward, lowering, or triggered step
of p is disabled, there is no message from p or towards p in transit, and no process can do a
triggered step that sends a message to p. We define p to be locked when it is silent and not
at line 21.

Let W be an arbitrary set of processes (willing to do steps). The set W is said to be silent
if all its processes are silent. It is said to be locked if it is silent and contains locked processes.
We define absence of W-deadlock to mean that, if W is locked, then it contains some process
that is in conflict with a process not in W . We define absence of localized deadlock to be
absence of W -deadlock for every set W .

This is our next result:

Theorem 1 Assume that a set W of processes is locked. Then there are processes q ∈ W
and r /∈ W with q �� r .

Proof The algorithm clearly satisfies the invariant that every process is always in {21 . . . 33}.
We treat the line numbers �= 21 one by one. The processes in {27, 28, 30, 33} can do a forward
step. Therefore, all processes in W are in {21 . . . 26, 29, 31, 32}.

If process q ∈ W is locked at line 22, then pcr.q = 43. As q cannot do the forward step
of line 43, the set reglist.q is nonempty, say s ∈ reglist.q . By Kq3, it follows that q can
receive a message done from site s or site s can receive lower from q . This contradicts
the assumption that q is locked.

Similarly, because W is locked, we have asklist.q.s = answer.s.q = ⊥ for all
q ∈ W and all sites s. By Kq0, this implies curlist.q = ∅ for all q ∈ W . It follows that W
has no processes locked at the lines 23 and 32.

Similarly, for all pairs q , r with q ∈ W or r ∈ W , the values of notify.q.r and
welcome.q.r are ⊥ and the values of hello.q.r , withdraw.q.r , ack.q.r , and gra.q.r
are all 0. Also, d A f ter(q, r) and d Prom(q, r) hold. This simplifies the waiting invariants
Waq* of Sect. 5.2 considerably. In fact, for q ∈ W and r arbitrary, we obtain:

Wax0: r /∈ wack.q ,
Wax1: r ∈ prio.q ⇒ r in {26 . . . 29} ∧ q �� r ,
Wax2: r < q ∧ r ∈ need.q ⇒ r in {26 . . . 29} ∧ q �� r ,
Wax3: q < r ∧ r ∈ need.q ⇒ r in {27, 28} ∧ q �� r .

It follows from Kq2 and Wax0 that W has no processes disabled at 24 and 31. This proves
that all processes of W are in {21, 25, 26, 29}.
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If process q ∈ W is locked at line 29, there is a process r ∈ need.q with q < r . By
Wax3, process r is in {27, 28} and q �� r . As r is in {27, 28}, it is not in W , thus proving the
assertion.

We may therefore assume that W contains no processes locked at 29. Assume that W
contains processes locked at 26. Let q be the lowest process in W locked at 26. The set
need.q is nonempty, say r ∈ need.q . It follows from Iq0 and Jq0 that r �= q . Then Wax2
and Wax3 imply q �� r . Moreover, if q < r , then r is in {27, 28} by Wax3, so that r /∈ W .
On the other hand, if r < q , then r is in {26 . . . 29} by Wax2. If r ∈ W , then r would be at
26, contradicting the minimality of q . This proves that r /∈ W in either case.

Assume that W also contains no processes locked at 26. Then it has some process q ∈ W
locked at 25 and the set prio.q is nonempty, say r ∈ prio.q . Now Wax1 implies that r is in
{26 . . . 29} and q �� r . Because r is in {26 . . . 29}, it is not in W . ��

6 Progress

The algorithm satisfies strong progress properties. In this section, we introduce and formalize
the progress properties.

We introduce weak fairness in Sect. 6.1. Section 6.2 contains the formalization in (linear-
time) temporal logic. Section 6.3 formalizes weak fairness. In Sect. 6.4, we introduce absence
of localized starvation to unify starvation freedom and concurrency as announced in the
Introduction, and we announce the main progress result Theorem 2. In essence, the proof of
this result looks like the proof of Theorem 1, but it takes several sections to treat the various
line numbers. In fact, in Sect. 6.5, the proof of the Theorem is reduced to an investigation of
line numbers in the range 22…33. Section 6.6 treats all line numbers except for 26 and 29,
which are treated in Sect. 6.7. The Theorem is proved in Sect. 6.8. Progress for the lowering
thread of Sect. 3.8 is treated in Sect. 6.9.

6.1 Weak fairness

First, however, weak fairness needs to be introduced. Roughly speaking, a system is called
weakly fair if, whenever some process from some time onward always can do a step, it will
do the step. Yet if a process is idle, it must not be forced to be interested in CS. Similarly, if
a process is waiting a long time in entry, we do not want it to be forced to abort. In terms of
the partitioning of the steps of Sect. 3.9, we therefore do not enforce weak fairness for the
free transitions, but only for the triggered transitions and (to some extent) the forward and
the lowering transitions.

Formally, we do not argue about the fairness of systems, but characterize the executions
they can perform. Recall that an execution is an infinite sequence of states that starts in an
initial state and for which every pair of subsequent states satisfies the next-state relation. The
next-state relation is defined as the union of a number of step relations.

An execution is called weakly fair for a step relation iff, when the step relation is from
some state onward always enabled, it will eventually be taken. For example, if some process
p is at line 22, we expect that p will eventually execute line 22. If some message m from q
to r is in transit, we expect that r eventually receives message m. By imposing weak fairness
for some step relations, we restrict the attention to the executions that are weakly fair for
these step relations.
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6.2 Formalization in temporal logic

Recall that the state space X of the algorithm is the Cartesian product of the private state
spaces of the processes and the sites, augmented with shared variables for messages in transit.
Executions are infinite sequences of states, i.e., elements of the set Xω. For a state sequence
xs ∈ Xω, we write xs(n) for the nth element of xs. Occasionally, we refer to xs(n) as the
state at time n. For a programming variable v, we write xs(n).v for the value of v in state
xs(n).

We identify a predicate U on the state space X with the subset of X where U holds. For
instance, the predicate p at 21 is identified with the set of the states in which process p is at
line 21.

For a predicate or set of states U , we define [[ U ]] ⊆ Xω as the set of infinite sequences
xs with xs(0) ∈ U . For a relation A ⊆ X2, we define [[ A ]]2 ⊆ Xω as the set of sequences
xs with (xs(0), xs(1)) ∈ A.

For xs ∈ Xω and k ∈ N, we define the suffix (xs|k) by (xs|k)(n) = xs(k + n). For a
subset P ⊆ Xω we define �P (always P) and �P (eventually P) as the subsets of Xω given
by

xs ∈ �P ≡ (∀ k ∈ N : (xs|k) ∈ P),

xs ∈ �P ≡ (∃ k ∈ N : (xs|k) ∈ P).

We now apply this to the algorithm. We write ini t ⊆ X for the set of initial states and
step ⊆ X2 for the next state relation. Following [1], we use the convention that relation step
is reflexive (contains the identity relation). An execution is an infinite sequence of states that
starts in an initial state and in which each subsequent pair of states is connected by a step.
The set of executions of the algorithm is therefore

Ex = [[ ini t ]] ∩ �[[ step ]]2.

If J is an invariant of the system, it holds in all states of every execution. We therefore have
Ex ⊆ �J . An execution in which process p is always eventually at line 21, is an element of
��[[ p at 21 ]].
Remark Note the difference between ��[[ U ]] and ��[[ U ]]. In general, ��[[ U ]] is a bigger
set (a weaker condition) than ��[[ U ]]. The first set contains all sequences that are infinitely
often in U , the second set contains the sequences that are from some time onward eternally
in U .

6.3 Weak fairness formalized

For a relation R ⊆ X2, we define the disabled set D(R) = {x | ∀ y : (x, y) /∈ R}. Now weak
fairness [16] for R is defined as the set of executions in which R is infinitely often disabled
or taken:

w f (R) = Ex ∩ ��([[ D(R) ]] ∪ [[ R ]]2).

For our algorithm, the next state relation step ⊆ X2 is the union of the identity relation on
X (because step should be reflexive) with the relations step(p) that consists of the state pairs
(x, y) where y is a state obtained when process p does a step starting in x . In accordance
with Sect. 3.9, the steps of process p are partioned as:

step(p) = f ree(p) ∪ f wd(p) ∪ low(p) ∪ tr ig(p),
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where f ree(p), f wd(p), low(p), tr ig(p) is the union of the free step relations, of the the
forward step relations, of the lowering step relations, and of the triggered step relations,
respectively. The set of triggered steps of p is again a union:

tr ig(p) =
⋃

q,m

rec(m, q, p) ∪
⋃

s,n

si t (n, p, s),

where rec(m, q, p) consists of the steps where p receives message m from q . Note that
we take the union here over all processes q and the eight message alternatives m, including
the delayed answers after and prom, and si t (n, p, s) consists of the four commands for
message keys n between process p and site s.

The set w f ( f wd(p)) consists of the executions for which every forward step of process
p is infinitely often disabled or taken. Indeed, if we write step(p, �) for the step relation of
process p at line �, we have f wd(p) = ⋃33

�=22 step(p, �) and it can be proved that

w f ( f wd(p)) =
33⋂

�=22

w f (step(p, �)).

Similarly, the set w f (low(p)) consists of the executions for which every lowering step
of process p is infinitely often disabled or taken. Note, however, that w f ( f wd(p)) ∩
w f (low(p)) is a proper subset of w f ( f wd(p) ∪ low(p)), because the latter set contains
(e.g.) an execution in which process p does infinitely many forward steps and ignores a
continuously enabled lowering step at line 43.

The set w f (rec(m, q, p)) consists of the executions for which every message m in transit
from q to p is eventually received.

An execution is defined to be weakly fair for process p if it is weakly fair for the forward
steps of p, and for the lowering steps of p, and for all messages with p as destination or
source, as captured in the definition

W f (p) = w f ( f wd(p)) ∩ w f (low(p)) ∩
⋂

s,n

w f (si t (n, p, s))

∩
⋂

q,m

(w f (rec(m, q, p)) ∩ w f (rec(m, p, q))),

where s ranges over the sites, n over the messages to and from sites, q over the processes, and
m over the eight message alternatives between processes. Note that it is possible to impose
and meet countably many weak (or strong) fairness conditions [10, Section 4].

6.4 Absence of localized starvation

As discussed in the Introduction, there are two progress properties to consider: starvation
freedom, which means that, when every competing process will always eventually do a step,
every competing process will eventually become idle again. Concurrency [4,23] means that
every competing process will eventually become idle again unless it comes in eternal conflict
with an “unwilling” process that does not proceeed. In either case, the client’s option to abort
entry cannot be excluded, but it must not be needed for reaching the idle state. We formalize
willingness as weak fairness.

For starvation freedom we assume weak fairness for all forward, lowering, and triggered
steps of all processes. For concurrency for process p, we only need weak fairness for the
forward and lowering steps of process p itself and for all triggered steps in which process p
is involved. As we want to verify both properties with a single proof, we unify and generalize
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them in the concept of absence of localized starvation, which is similar to the absence of
localized deadlock of Sect. 5.3.

Let W be any set of processes. We define absence of W-starvation to mean that weak
fairness for all forward and lowering steps of the processes in W and for all triggered steps
that involve processes in W , implies that every process in W eventually comes back to line
21 unless it comes in eternal conflict with some process outside W . The special case that W
is the set of all processes is starvation freedom. The special case that W is a singleton set is
concurrency [4,23].

We speak of absence of localized starvation if absence of W -starvation holds for every
set W . The aim is thus to prove that the algorithm satisfies absence of localized starvation.
In order to do so, we formalize the definition in terms of temporal logic.

An execution in which process p comes always eventually back to line 21 is an element
of ��[[ p at 21 ]]. An execution where process q is eventually in eternal conflict with r is
an element of ��[[ q �� r ]]. Let c f (W ) be the set of the executions in which some process
q ∈ W comes in eternal conflict with some process r /∈ W :

c f (W ) =
⋃

q∈W,r /∈W

��[[ q �� r ]].

Absence of W -starvation thus means that all “sufficiently fair” executions are elements of
the set

��[[ p at 21 ]] ∪ c f (W ).

An execution is defined to be weakly fair for a set of processes W if it is weakly fair for
each of them:

W f (W ) =
⋂

p∈W

W f (p).

Absence of localized starvation thus is the following result:

Theorem 2 W f (W ) ⊆ ��[[ p at 21 ]]∪c f (W ) holds for every set W of processes and every
process p ∈ W .

6.5 Trajectories

The proof of Theorem 2 is given in Sect. 6.8. We first claim that a process that from some
time onward does not become idle anymore, remains eternally at some line number �= 21.
More precisely, we have

Lemma 3 Let p be a process. Let xs be an execution that is not in ��[[ p at 21 ]]. Then there
is a line number � ∈ {22 . . . 33} such that xs ∈ ��[[ p at � ]].
Proof We use a so-called variant function to prove this in a systematic way. First note that
pc.p has values in the range 21 . . . 33. As we want to reach line 21, and all jumps are forward
jumps except for the jumps to line 21 and the jump from line 32 to line 31, we define the
state function v f pc(p) : N by

v f pc(p) = vv(pc.p) where

vv(k) = (k = 21 ? 0 : k = 31 ? 1 : 35 − k).

The only transitions in which v f pc(p) increases are those in which process p goes from line
21 to 22. These steps have the precondition v f pc(p) = 0.
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As the execution xs is not an element of ��[[ p at 21 ]], there is a time n such that from
time n onward all states of the execution satisfy v f pc(p) > 0. From n onward, v f pc(p) can
only decrease. Therefore, this function has a limit value. So, there is a value k > 0 and a time
n′ such that v f pc(p) = k holds from time n′ onward. There is a line number � ∈ {22 . . . 33}
with vv(�) = k. We have pc.p = � from time n′ onward. ��
6.6 Verification of progress

We prepare the proof of Theorem 2 by concentrating on what can be inferred from weak
fairness for a single process. In view of Lemma 3, we first enumerate line numbers where a
weakly fair process cannot stay eternally.

Lemma 4 For any process p, the intersection W f (p) ∩ ��[[ p at � ]] is empty for the line
numbers � = 43, 22, 23, 24, 27, 28, 30, 31, 32, 33.

Proof Let xs be an element of the intersection, i.e., an execution, weakly fair for p, in which
eventually process p remains at line �. As the forward step of line � is disabled, we have
� /∈ {27, 28, 30, 33}.

Next assume that � ∈ {23, 32}. If process p remains at line 23 or 32, its variable curlist.p
does not grow, and it shrinks when p receives a message answer from a site. As it is
a finite set, this implies that, if the set curlist.p remains nonempty, there is a site s that
remains in curlist.p forever. As the messages asklist.p.s and the answers answer.s.p
are eventually received, predicate Kq0 implies that r is eventually removed from curlist.p.
This proves that curlist.p is eventually always empty. The forward step of line � is therefore
eventually always enabled. By weak fairness, this step will be taken, so that p do not remain
at line �. This proves that � /∈ {23, 32}. Let us call the argument used in this paragraph the
shrinking argument for the set curlist.p and the invariant Kq0.

Indeed, the same shrinking argument, but now for the set reglist.p and the invariant
Kq3, gives that, if p remains at line 43, the finite set reglist.p is eventually always empty.
Therefore the forward step of p is eventually always enabled, and by weak fairness p leaves
line 43. This proves that � �= 43.

If p remains at line 22, by weak fairness, its forward step of line 22 is always eventually
disabled. Therefore, p is always eventually at line 43. By the previous paragraph, however,
it eventually leaves line 43, but then by the guard of line 42, it cannot enter line 43 again.
This proves that � �= 22.

If p remains at line 24 or 31, the finite set pack.p eventually becomes empty because of
the shrinking argument with the invariant Kq2. It follows that process p cannot remain at
line 31. This proves that � �= 31.

It remains to consider the case that p remains at line 24. By the previous paragraph, the
set pack.p is eventually always empty. In order to show that p leaves line 24, it suffices to
show that p is eventually always enabled. For this purpose, it suffices to show that wack.p
is eventually always empty. At line 24, the set wack.p never grows, and it can shrink by
reception of messages ack. If it does not shrink to the empty set, there is a process r with
r ∈ wack.p eventually always. We now use predicate Waq0 of Sect. 5.2. As process p
remains at line 24, it will not send any messages withdraw and notify to r . From
some time onward, we therefore have notify.p.r = ⊥ and withdraw.p.r = 0 and
welcome.p.r ∈ {⊥, none}. Therefore, by Waq0, ¬d A f ter(r, p) ∨ ack.r.p > 0 holds
henceforward. By weak fairness for its triggered step after, process r will send ack to p.
This ackwill be received and process p will remove r from wack.p. This is a contradiction,
proving that � �= 24. ��
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A process can be forced to remain at line 25 by coming in some eternal conflict:

Lemma 5 Let xs ∈ W f (p) ∩ ��[[ p at 25 ]]. Then there is a process q with xs ∈
��[[ q in {26 . . . 29} ∧ p �� q ]] .

Proof The sequence xs is an execution, weakly fair for p, in which, from some time n0

onward, process p is and remains at line 25. As the execution is weakly fair for p, by the
shrinking argument, there is a process q such that, from time n0 onward, q ∈ prio.p always
holds. If withdraw.q.p > 0 holds at some time n ≥ n0, by weak fairness this message will
eventually arrive and falsify q ∈ prio.p. Therefore,withdraw.q.p = 0 holds from time n0

onward. By the above argument, there is a time n1 ≥ n0 such thatwelcome.p.q ∈ {⊥, none}
holds from time n1 onward. By Waq1, q is in {26 . . . 29} and p �� q holds from time n1

onward. ��
6.7 Progress at lines 26 and 29

It remains to consider an execution, weakly fair for process p in which eventually p remains
at line 26 or 29. If we would treat the line numbers 26 and 29 separately, line 29 is somewhat
simpler than line 26. We prefer, however, to treat them together.

Process p waits at line 26 or 29 for emptiness of need or of a subset of it. This condition
belongs to the inner protocol. The inner protocol in isolation, however, is not starvation
free because it would allow a lower process repeatedly to claim priority over p by sending
notifications. We need the outer protocol to preclude this. Technically, the problem is that
need.p can grow at lines 26 and 29 because of the alternative prom.

We therefore investigate conditions under which the predicate q ∈ need.p or its negation
is stable, i.e., once true remains true. As p remains at line 26 or 29, the set nbh0.p remains
constant. We define the predicate

b f (q, p) : ¬ (q ∈ nbh0.p ∧ q in {25 . . . 30}) ∨ job.p ∗ job.q ∨ p ∈ prio.q.

Roughly speaking, b f (q, p) expresses that q is not in the inner protocol or is not in conflict
with p. While process p is and remains at line 26 or 29 and copy.q(p) �= none, the predicate
b f (q, p) is stable. The main point is when process q executes line 24. If the second disjunct
of b f (q, p) does not hold, process q puts p into prio.q . The proof uses Iq2a, Iq4, Iq7:, Iq8,
and Rq1a.

While process p is and remains at line 26 or 29 and either b f (q, p) holds or p < q , the
predicate q /∈ need.p is stable. This is proved at the alternative prom with Iq4, Jq0, Jq1,
Jq2, and Lq2.

While process p is and remains at line 26 or 29 and b f (q, p) is false and q ≤ p, the
predicate q ∈ need.p is stable. This is proved at the alternatives gra and withdraw with
Iq2a, Jq5.

We can now combine these predicates in the variant function

v f (q, p) = (b f (q, p) ? | q ∈ need.p |
: q ∈ need.p ? 3

: p < q ? 2 : 4).

Clearly, v f (q, p) is odd (1 or 3) if and only if q ∈ need.p holds. Similarly, v f (q, p) ≤ 1
holds if and only if b f (q, p).

The above stability results about b f (q, p) and q ∈ need.p and its negation imply that,
while p is and remains at line 26 or 29 and copy.q(p) �= none, the function v f (q, p) never
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increases. By weak fairness, eventually notify.p.q = ⊥ holds. As process p remains at
line 26 or 29, notify.p.q = ⊥ remains valid. The invariant Iq4 together with Iq5 and Iq1
therefore implies that copy.q.(p) �= none holds and remains valid. Therefore, from that time
onward, v f (q, p) never increases.

It follows that, for every q ∈ nbh0.p, eventually,v f (q, p)gets a constant value. Therefore,
the truth value of q ∈ need.p is also eventually constant. Finally, as need.p is always a subset
of the finite set nbh0.p, which is constant while p is at line 26 or 29, we can now conclude
that the set need.p is eventually constant.

If the set need.p is eventually empty, process p would be eventually always enabled.
Weak fairness of p would then imply that process p would leave line 26 or 29. Therefore,
there is some process q eventually always in need.p. We have q �= p because of Jq0 and
Iq0. This proves

� ∈ {26, 29} ⇒ W f (p) ∩ ��[[ p at � ]] ⊆
⋃

q �=p

��[[ q ∈ need.p ]]. (1)

Assume that q ∈ need.p holds from time n0 onward. We now make a case distinction. First
assume q < p. If withdraw.q.p > 0 holds at some time n ≥ n0, weak fairness implies
that the message withdraw will be received at some time > n0, which would falsify
q ∈ need.p. Therefore, withdraw.q.p = 0 holds from time n0 onward. By predicate
Waq2, we thus have q in {26 . . . 29} and p �� q from time n0 onward. This proves

q < p ⇒ W f (p) ∩ ��[[ q ∈ need.p ]] ⊆ ��[[ q in {26 . . . 29} ∧ p �� q ]]. (2)

Next, assume p < q . If gra.q.p > 0 holds at some time n ≥ n0, this gra message
will be received because of weak fairness, falsifying q ∈ need.p. Therefore, gra.q.p = 0
holds from time n0 onward. Also by weak fairness, we have notify.p.q = ⊥ at some time
n1 ≥ n0. Because process p is and remains at line 26 or 29, it cannot send such messages
again. Therefore, notify.p.q = ⊥ holds from time n1 onward. Because process q sends
no gramessage to p after n0, weak fairness implies that d Prom(q, p) holds infinitely often
after n1. By Waq3 this implies that, infinitely often, we have

bg(q, p) : q in {27, 28} ∧ p ∈ nbh.q ∧ p �� q.

We need the condition bg(q, p) eternally, however, not only infinitely often. For this purpose,
we reuse that v f (q, p) is eventually constant, say that v f (q, p) = k holds from time n2 ≥ n1

onward. As condition bg(q, p) contradicts b f (q, p), we have k > 1. Therefore, b f (q, p) is
false from time n2 onward. This implies that process q does not execute line 28 from time
n2 onward. Therefore, condition bg(q, p) holds eventually always. Consequently, we obtain

p < q ⇒ W f (p) ∩ ��[[ q ∈ need.p ]] ⊆ ��[[ q in {27, 28} ∧ p �� q ]]. (3)

We now combine these results as follows:

Lemma 6 Let W be a set of processes. Let p ∈ W and � ∈ {26, 29}. Let xs ∈ W f (W ) ∩
��[[ p at � ]]. Then xs ∈ c f (W ).

Proof Because W contains some process that remains eternally at �, we can consider the
lowest process in W , say q , with this property. By formula (1), there is a process r �= q that
remains eternally in need.q . If q < r , formula (3) implies that r remains eternally in {27, 28}
and in conflict with q . By Lemma 4, it follows that r /∈ W and hence that xs ∈ c f (W ). On
the other hand, if r < q , formula (2) implies that r remains eternally in {26 . . . 29} and in
conflict with q . If r ∈ W , minimality of q implies that eventually process r is not eternally in
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{26, 29}, and therefore by Lemma 3, it is eventually always in {27, 28}, contradicting Lemma
4. Therefore r /∈ W , and xs ∈ c f (W ). ��
6.8 The proof of Theorem 2

Consider an execution xs ∈ W f (W ) \ c f (W ). Let p ∈ W . The Lemmas 3, 4, and 6 together
imply that

xs ∈ ��[[ p at 21 ]] ∪ ��[[ p at 25 ]]. (4)

Assume that xs ∈ ��[[ p at 25 ]]. Lemma 5 then gives us a process q with xs ∈
��[[ q in {26 . . . 29}∧ p �� q ]]. By Lemma 3, there is � ∈ {26 . . . 29} with xs ∈ ��[[ q at � ]].
By formula (4), we have q /∈ W and hence xs ∈ c f (W ). This contradicts the assumption,
thus proving that xs ∈ ��[[ p at 21 ]]. This concludes the proof of Theorem 2.

6.9 Progress for lowering

Lemma 4 gives progress for the lowering step at line 43, under the assumption of weak
fairness. Progress at line 42, however, requires more than weak fairness. While process p is
at line 42, the value of pc.p can repeatedly enter and leave the set {22, 23, 32}. Therefore,
the step of line 42 is not eventually always enabled. Indeed, we do not want that resource
acquisition suffers for lowering.

We need strong fairness for progress at line 42. Strong fairness at line 42 means that, if
process p is infinitely often enabled at line 42, it will eventually take the step of line 42.
Formally, for a relation R ⊆ X2, strong fairness [16] for R is defined as the set of executions
in which R is eventually always disabled or infinitely often taken:

s f (R) = Ex ∩ (��[[ D(R) ]] ∪ ��[[ R ]]2).

If, in some execution, process p is always eventually at line 21, and yet remains at line
42, the step of line 42 is infinitely often enabled, so that indeed strong fairness guarantees
that the step will be taken. In combination with Lemma 4, we thus obtain progress for the
lowering thread in the sense that it always returns to its idle state at line 41:

��[[ p at 21 ]] ∩ W f (p) ∩ s f (step(p, 42)) ⊆ ��[[ p at 41 ]],
where step(p, 42) is the relation corresponding to the step of p at line 42.

7 Message complexity and waiting times

In the central algorithm, a process exchanges 3 or 4 messages with every neighbour. In the
querying phase, at lines 22 and 23, it exchanges 2 messages with every site it is interested
in, plus 2 messages for every potential competitor.

In a message passing algorithm, we can distinguish two kinds of waiting. There is waiting
for answers that can be sent immediately. Such waiting requires at most 2�, because �

is an upper bound of the time needed for the execution of an alternative plus the time the
messages sent are in transit. This happens at line 23, for emptiness of curlist, and at line 24,
for emptiness of pack and wack. In the case of concurrent lowering, the waiting at line 22 is,
via line 43, also of this kind.

The other kind of waiting is when a process needs to wait for the progress of other
processes. These are the important waiting conditions. The central algorithm has two locations
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where this happens. At line 25, the process waits for emptiness of prio to make accumulation
of conflicting processes unlikely. At line 26, it waits for emptiness of need to ensure partial
mutual exclusion.

The waiting time T1 for emptiness of need at line 26 depends on the conflict graph of the
processes that are concurrently in the inner protocol. The middle layer tries to keep this graph
small by guaranteeing that conflicting processes do not enter the inner protocol concurrently
unless they pass line 25 within a period �.

The waiting time T2 for emptiness of prio in line 25 depends on the efficiency of the inner
protocol, because for a process p the elements of prio.p are in the inner protocol and are
removed from prio.p when they withdraw. We thus have T2 ≤ T1 + � + � where � is an
upper bound for the time spent in CS. Indeed, every element of prio arrives in CS after time
T1, and at line 28 after T1 + �, while the message withdraw takes time �. It follows that
the total time for the main loop body is at most 6� + T2 + T1 + � ≤ 2T1 + 2� + 7�.

The value of T1 heavily depends on the load of the system and other system parameters:
for resource c, the number of jobs activated per � that need resource c; the number of
resources per job; the number of resources per site; the number of processes per site; the
number of conflicts per job. Of course, all these numbers should be averages, and they are
not independent. Experiments are needed to evaluate the performance of the algorithm, and
to compare it with other algorithms.

8 Related research

The readers/writers problem [2] goes back to Courtois, Heymans, and Parnas [6], in the
context of shared memory systems with semaphores. We are not aware of solutions for
systems with message passing.

In the drinking philosophers’ problems of [4,19,25], the philosophers are the nodes of a
fixed finite undirected graph with bottles attached to the edges. The job of process p is always
a subset of the set of bottles on its incident edges, chosen nondeterministically when the
process becomes “thirsty”. When it becomes thirsty, a process p needs to communicate with
all members of its neighbourhood nbh.p in the graph. The message complexity is therefore
proportional to the size of nbh.p. This is a disadvantage for cases with large complete graphs.
To enforce starvation freedom, these solutions assign directions to the edges of the graph
such that the resulting directed graph is acyclic. They more or less ignore the information
contained in the jobs, which is heavily used by our algorithm.

Much work has been done to minimize the response time [3,5,22,23,25]. For instance,
the paper [25] offers the possibility of a waiting time that is constant and not proportional to
the (in our case unbounded) number of processes. It does so by means of the algorithm of
[18], which uses a linear ordering of the resources adapted to a fixed netwerk topology. The
papers [23,25] offer modular approaches to the general resource allocation problem.

Another important performance aspect is robustness against failures. The paper [5] intro-
duces the measure of failure locality, see also [24]. The paper [7] concentrates on self-
stabilization, while imposing specific conditions on the resource requirements.

As far as we can see the only papers that treat the dynamic resource allocation problem that
allows conflicts between arbitrary pairs of processes are [3,23]. The algorithm of [3] ignores
the resources and takes the conflicts as given. Whenever two processes have conflicting jobs,
at least one of the two is activated with knowledge of the conflict. The emphasis of [3,23]
is on minimizing the response time. The algorithms are more complicated and need more
messages than our solution. The paper [23] uses resource managers.
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9 Conclusions

The problem of distributed resource allocation is a matter of partial mutual exclusion, with
the partiality determined by a dynamic conflict graph. Our solution allows unboundedly many
processes, and it allows conflicts between every pair of processes. The primary disentangle-
ment is the split into the central algorithm and the registration algorithm.

In the central algorithm, the conflict graph is dynamic but limited by the current registra-
tions, and the jobs can be treated as uninterpreted objects with a compatibility relation. The
central algorithm itself consists of three layers. In the outer protocol, the processes commu-
nicate their jobs. In the inner protocol they compete for the critical section. The middle layer
protects the inner protocol from flooding with conflicting processes.

The neighbourhoods used in the central algorithm are formed in a registration phase in
which the processes communicate with a finite number of sites. We use a flexible job model
that allows e.g. the distinction between read permissions and write permissions. We reach a
fully dynamic conflict graph by enabling the processes to modify their registrations.

Our solution does not automatically satisfy the “economy” condition of [4] that perma-
nently tranquil philosophers should not send or receive an infinite number of messages.
Indeed, in our algorithm, a permanently idle process that occurs infinitely often in the neigh-
bourhood of other processes will receive and send infinitely many messages. It can avoid
this, however, by lowering its registrations to zero. It is true, however, that a process that has
never been competing, never receives messages.

Our solution is more concurrent than the layered solution of [25]. It satisfies the require-
ment that, “if a drinker requests a set B of bottles, it should eventually enter its critical region,
as long as no other drinker uses or wants any of the bottles in B forever” ([25, p. 243]).

Our algorithm does not minimize the response time. Yet, it may perform reasonably well
in this respect, because the middle layer of the central algorithm prohibits entrance for new
processes that have known conflicts with processes currently in the inner protocol. In the
inner protocol, the lower processes have the advantage that they can force priority over
higher conflicting processes. When conflicts in the inner protocol are rare, however, this bias
towards the lower processes will not be noticeable.

The algorithm as presented allows several simplifications. (1) The aborting commands of
Sect. 3.6 can be removed. (2) One can decide to give every resource its own site, or to use a
single site for all resources. (3) If one takes the simplest job model, i.e. K = 1 in Sect. 2.4,
the arrays fun, news, and list reduce to finite sets. (4) One can fix the network topology, i.e.,
replace the variables nbh.p by constants, and remove the registration algorithm. (5) If the set
Proc of all processes is finite and rather small, one can even take nbh.p = Proc for all p.

The algorithm could not have been designed without a proof assistant like PVS. This holds
in particular for the proofs of safety of registration (the invariants Mq*), the proof of progress
of the central algorithm (Sect. 6.7), and the use of array copy in the registration algorithm to
avoid additional waiting.

In the mechanical proof, we summarize the argument for safety by forming the conjunction
of the universal quantifications of the predicates of the families Iq*, Jq*, Kq*, Lq*, Mq*, Nq*
(the so-called constituent invariants). As verified mechanically, this conjunction is inductive.
Such mechanical verification is relevant, because with more than 40 invariants, the probability
of overlooking an unjustified assumption or a clerical error is significant. As each of the
constituent invariants is a consequence of the conjunction, each of them is itself invariant,
as are all logical consequences of them. In particular, the mutual exclusion predicate Rq0 is
invariant. One may wonder whether the constituent invariants are independent. We do believe
so, but we have no suitable way to verify this.
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Future research. It would be interesting to see how much the algorithm can be simplified
by using reliable synchronous messages. It will be quite a challenge to make the algorithm
robust by allowing the asynchronous messages to be lost or duplicated. In our algorithm, a
process that has ever been competing must eternally be willing to receive messages. It should
be possible to offer the processes the option to (perhaps temporarily) quit from the algorithm,
with the guarantee that there will be no messages in transit to a process that has quitted. Here,
the difficulty is the last communication between two quitting processes.

Acknowledgments The observation that the algorithm also solves the readers/writers problem was made
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