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DISTANCE BETWEEN BEHAVIORS AND RATIONAL
REPRESENTATIONS∗

H. L. TRENTELMAN† AND S. V. GOTTIMUKKALA†

Dedicated to the memory of Jan C. Willems (1939–2013)

Abstract. In this paper we study notions of distance between behaviors of linear differential
systems. We introduce four metrics on the space of all controllable behaviors which generalize existing
metrics on the space of input-output systems represented by transfer matrices. Three of these are
defined in terms of gaps between closed subspaces of the Hilbert space L2(R). In particular we
generalize the “classical” gap metric. We express these metrics in terms of rational representations
of behaviors. In order to do so, we establish a precise relation between rational representations
of behaviors and multiplication operators on L2(R). We introduce a fourth behavioral metric as a
generalization of the well-known ν-metric. As in the input-output framework, this definition is given
in terms of rational representations. For this metric, however, we establish a representation-free,
behavioral characterization as well. We make a comparison between the four metrics and compare
the values they take and the topologies they induce. Finally, for all metrics we make a detailed
study of necessary and sufficient conditions under which the distance between two behaviors is less
than one. For this, both behavioral as well as state space conditions are derived in terms of driving
variable representations of the behaviors.

Key words. behaviors, linear differential systems, gap metric, ν-metric, rational representa-
tions, multiplication operators
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1. Introduction. This paper deals with notions of distance between systems.
In the context of linear systems with inputs and outputs, several concepts of distance
have been studied in the past. Perhaps the most well-known distance concept is that
of gap metric introduced by Zames and El-Sakkary in [28] and extensively used by
Georgiou and Smith in the context of robust stability in [7]. The distance between two
systems in the gap metric can be calculated, but the calculation is by no means easy
and requires the solution of an H∞ optimization problem; see [6]. A distance concept
which is equally relevant in the context of robust stability is the so-called ν-gap, in-
troduced by Vinnicombe in [22], [21]. Computation of the ν-gap between two systems
is much easier than that of the ordinary gap and basically requires computation of
the winding number of a certain proper rational function, followed by computation of
the L∞-norm of a given proper rational matrix. A third distance concept is that of
L2-gap, which is the most easy to compute but which is not at all useful in the context
of robust stability, as shown in [21]. More recently an alternative notion of gap for
linear input-output systems was introduced by Ball and Sasane in [13], allowing also
nonzero initial conditions of the system.

In this paper we will put the above four distance concepts into a more general,
behavioral context, extending them to a framework in which the systems are not
necessarily identified with their representations (e.g., transfer matrices), but in which,
instead, their behaviors, i.e., the spaces of all possible trajectories of the systems, form
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4212 H. L. TRENTELMAN AND S. V. GOTTIMUKKALA

the core of the theory. This idea was put forward for the first time in [12]. Indeed,
we will introduce four metrics on the set of all (controllable) behaviors with a fixed
number of variables that we will call the L2-metric, the Zames (Z) metric, the Sasane–
Ball (SB) metric, and the Vinnicombe (V) metric. The first three will be defined in
terms of the concept of “gap” between closed subspaces of the Hilbert space L2(R,C

q)
of square integrable functions; the fourth one, the V-metric, will be defined in terms
of representations of the behaviors. Of course, no a priori input-output partition
of the system variables needs to be given. Our setup will, however, be applicable
also to the “classical” input-output framework. We will establish several behavioral,
representation-free characterizations of properties of the metrics we have introduced.
We will also study the interrelation between the metrics and compare the topologies
they induce.

We want to mention that the idea of distance between behaviors was also studied
in a more general framework in [3]. The latter paper deals with behaviors as general
subsets of the set of all functions from time axis to signal space (not necessarily
representable by higher order linear differential equations) and introduces a notion of
distance between such behaviors.

A key ingredient in our paper will be the notion of rational representation of
behaviors, recently introduced in [27]. Whereas, originally, behaviors of linear differ-
ential systems were defined as kernels and images of polynomial differential operators,
in [27] it was explained how they also allow representations as “kernels” and “images”
of “rational differential operators” in a mathematically consistent, natural way. In
fact, for a given behavior, there is freedom in the choice of the rational matrices used
for its representation, and they can, for example, be chosen to be proper, bounded
on the imaginary axis, stable, prime, and inner, all at the same time. In this paper
we will use these properties of the rational representations to describe the relation-
ship between kernels and images of the rational differential operators on the one hand
and kernels and images of the (operator theoretic) multiplication operators associated
with the rational matrices on the other.

Using the relation between rational representations of behaviors and multiplica-
tion operators, we will on the one hand express the L2-metric, Z-metric, and SB-metric
in terms of rational representations, and on the other hand give a representation-free
characterization of the V-metric. As a special case, this will provide a representation-
free characterization of the classical ν gap in the input-output framework.

For each of the four metrics we will also characterize under which conditions the
distance between two behaviors is strictly less than one. For the L2-metric and the
V-metric this will turn out to be relatively easy, and we obtain behavioral character-
izations for this. However, for the Z-metric and the SB-metric this is more involved,
and we will make a detailed study of this problem using driving variable state rep-
resentations of the behaviors involved. This will also involve the problem of state
represention of the kernel of a Toeplitz operator with an invertible symbol.

The outline of this paper is as follows. In section 2 we review behaviors of linear
differential systems and introduce the L2-metric, Z-metric, and SB-metric. In section
3 we briefly review rational kernel and image representations of behaviors. We also
show that behaviors admit rational image representations in which the rational ma-
trices are proper and stable, right prime, and inner and have no zeros. An analogous
result is proved for rational kernel representations. In section 4 we establish in detail
the relation between rational image and kernel representations of behaviors on the one
hand and the images and kernels of the classical multiplication operators associated
with these representations on the other. Using this relation, in section 5 we express
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DISTANCE BETWEEN BEHAVIORS 4213

all three behavioral metrics that were introduced in section 2 in terms of rational
representations of the behaviors. We also show that our definitions of Z-metric and
SB-metric generalize classical gap metrics for input-output systems represented by
transfer matrices. In section 6 we introduce the fourth metric, the V-metric. Unlike
the other three metrics, the definition of this metric is in terms of representations of
the behaviors, involving the notion of winding number. We will in this section derive
a new, representation-free, behavioral characterization of this metric. Section 7 deals
with a comparison of the four metrics. We will compare both the values they take and
the topologies they induce. In section 8, for each of the metrics we find conditions
under which the distance between two behaviors is strictly less than the value one.
For the L2-metric and the V-metric this issue is readily dealt with, and we obtain
behavioral characterizations. For the Z-metric and the SB-metric this is a harder
problem, and in sections 9 and 10 we study this problem using driving variable state
representations of the behaviors. This also involves the study of Toeplitz operators
with an invertible symbol. The paper closes with conclusions in section 11.

1.1. Basic concepts and notation. We now introduce the basic concepts and
notation used in this paper. We will denote the ring of polynomials with real coeffi-
cients by R[ξ]. The field of real rational functions is denoted by R(ξ) and the ring of
proper real rational functions by R(ξ)P . As usual, a proper real rational function will
be called stable if its poles are in C− := {λ ∈ C | Re(λ) < 0}. It is called antistable
if its poles are in C+ := {λ ∈ C | Re(λ) > 0}. RL∞ will denote the ring of all proper
real rational functions without poles on the imaginary axis, and RH∞ denotes the
ring of all proper and stable real rational matrices. RH−

∞ will denote the ring of
proper antistable real rational functions.

For a given ring R, a matrix G with coefficients in R is called right prime over
R (left prime over R) if there exists a matrix G+ with coefficients in R such that
G+G = I (GG+ = I). In this paper the condition of primeness will occur with
respect to the rings R[ξ], R(ξ)P , RL∞, RH∞, and RH−∞. We will be using matrices
with coefficients from the above rings. In order to streamline notation we will supress
the dimensions. For example, the spaces of all real rational matrices with coefficients
in RL∞ or RH∞ will again be denoted by RL∞ or RH∞.

For a given real rational matrix G we denote G∗(ξ) := G�(−ξ). A proper real
rational matrix is called inner if G∗G = I and co-inner if GG∗ = I. Note that if
G ∈ RL∞ is inner (co-inner), then it is right prime (left prime) over RL∞. The
analogous statement is not true for left and right primeness over RH∞. G is called
unitary if G∗G = GG∗ = I. We denote the usual infinity norm of G ∈ RL∞ by ‖G‖∞.
For a given complex matrix M , σmaxM and σminM denote the largest and smallest
singular value, respectively. Note that ‖G‖∞ = supω∈R

σmax G(iω). For a given real
rational matrix G, its zeros are the roots of the nonzero numerator polynomials in
the Smith–McMillan form of G (see [27]).

For a given real rational function g without poles or zeros on the imaginary axis,
the winding number of g is defined as the net number of counterclockwise encirclements
of the origin by the (closed) contour g(λ) as λ traverses in counterclockwise direction
a standard D-contour enclosing all poles and zeros of g in C

+. The winding number
of g is denoted by wno(g), and is equal to the difference Z−P , where Z is the number
of zeros and P is the number of poles of g in C+.

In this paper, we will only consider real-valued signals. For a given integer q,
we denote by L2(R,R

q) the space of all Lebesgue measurable functions w : R → Rq

such that
∫∞
−∞ ‖w(t)‖2dt < ∞. This is a Hilbert space with inner product given by
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4214 H. L. TRENTELMAN AND S. V. GOTTIMUKKALA

〈w1, w2〉 =
∫∞
−∞ w1(t)

�w2(t)dt. The usual L2-norm is denoted by ‖ · ‖2. In what
follows, in the notation we will mostly suppress the dimension q and simply denote
this Hilbert space by L2(R). The subset of all signals w such that w(t) = 0 for
almost all t < 0 is a closed subspace of L2(R) and is denoted by L2(R

+). Likewise,
L2(R

−) will denote the closed subspace consisting of all signals w such that w(t) = 0
for almost all t > 0. Obviously, L2(R

−)⊥ = L2(R
+). The orthogonal projections of

L2(R) onto L2(R
+) and L2(R

−) are denoted by Π+ and Π−, respectively.
In addition to their time-domain descriptions, signals allow descriptions in the fre-

quency domain. For given integer q, we denote by L2(iR,C
q) the space of all Lebesgue

measurable functions W : iR → Cq such that 1
2π

∫∞
−∞ ‖W (iω)‖2dω < ∞. This is again

a Hilbert space with inner product given by 〈W1,W2〉 = 1
2π

∫∞
−∞ W1(iω)

∗W2(iω)dω.
Again, we suppress the dimension q in the notation and denote this space by L2(iR).
We will denote the usual Hardy space of all complex valued functions W that are
analytic in C+ and that satisfy supσ>0

1
2π

∫∞
−∞ W1(σ+ iω)∗W2(σ+ iω)dω < ∞ by H2.

This space can be identified with a closed subspace of L2(iR) (see [5]).
The usual Fourier transformation is denoted by F. The Fourier transform W (iω)

of a (real-valued) signal w ∈ L2(R) satisfies the property W (−iω) = W (iω), where v
denotes the componentwise complex conjugate of v ∈ Cq. Define

(1.1) S := {W ∈ L2(iR,C
q) | W (−iω) = W (iω) ∀ω ∈ R}.

It is well known that F is a linear transformation and that it defines a bijection between
L2(R) and the subpace S. Furthermore, FL2(R

+) = H2 ∩ S and FL2(R
−) = H⊥

2 ∩ S.
The inverse of F will be denoted by F−1.

We will denote by Lloc(R,R
q) the space of all measurable functions w from R

to Rq that are locally integrable, i.e., for all t0, t1 the integral
∫ t1
t0

‖w(t)‖dt is finite.

For systems of linear differential equations R( d
dt )w = 0, solutions w are understood

to be in this space, and the differential equation is understood to be satisfied in
the distributional sense. If the dimensions are clear from the context we use the
notation Lloc.

2. Distance between behaviors. In the behavioral context, a linear differen-
tial system is defined as a triple Σ = (R,Rq,B) with R the time axis, Rq the signal
space, andB ⊂ Lloc(R,R

q) the behavior, which is equal to the space of solutions of a fi-
nite number of higher order, linear, constant coefficient differential equations. For any
such system there exists a real polynomial matrix R such that B is equal to the space
of solutions of the system of differential equations R( d

dt )w = 0. This is then called a

polynomial kernel representation of the behavior B and we write B = kerR( d
dt ). The

set of all linear differential systems with q variables is denoted by Lq. The subset of
all controllable ones is denoted by L

q
cont. We denote by m(B) (the input cardinality)

the number of inputs of B. For an overview of the basic material on behaviors, we
refer to [11], [26].

In this section we will introduce three metrics on the space L
q
cont of behaviors of

controllable linear differential systems, inspired by the several notions of “gap” in the
context of input-output systems represented by transfer matrices. The general idea
is to associate with every controllable behavior B a suitable subspace of the Hilbert
space L2(R) and in this way define a metric on L

q
cont in terms of the usual metric on

the set of closed subspaces of L2(R). This can be done in several ways, and each of
these choices will lead to a particular metric on L

q
cont. In later sections, we will study

these metrics and compare them.

D
ow

nl
oa

de
d 

01
/1

4/
14

 to
 1

29
.1

25
.6

3.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTANCE BETWEEN BEHAVIORS 4215

In order to set the scene, we now first review some standard material on the gap
between closed subspaces of a Hilbert space (see, e.g., [1] or [23]). For a given Hilbert
space H, the directed gap between two closed subspaces V1 and V2 of H is defined as

�gap(V1,V2) := sup
v1∈V1

‖v1‖=1

inf
v2∈V2

‖v1 − v2‖.

The gap between V1 and V2 is then defined as

gap(V1,V2) := max( �gap(V1,V2), �gap(V2,V1)).

The gap between two subspaces always lies between zero and one, i.e., 0 ≤
gap(V1,V2) ≤ 1 for all V1,V2. It is also well known that the gap between two sub-
spaces can be expressed in terms of the norms of the orthogonal projection operators
onto these subspaces. More specific, �gap(V1,V2) = ‖ΠV⊥

2
ΠV1‖. Here, ΠV is the or-

thogonal projection of H onto V. Also, gap(V1,V2) = ‖ΠV1 −ΠV2‖. Another relevant
fact is that the gap does not change after taking orthogonal complements; in other
words, gap(V1,V2) = gap(V⊥

1 ,V
⊥
2 ).

In this paper, the relevant Hilbert space will always be H = L2(R). The directed
gap and gap between two closed linear subspaces of the Hilbert space L2(R) will be
denoted by �gapL2

and gapL2
, respectively.

We now introduce the following metrics on the space L
q
cont of controllable linear

differential systems.

2.1. L2-metric. The first metric that we consider is the one that is directly
induced by the gap on the Hilbert space L2(R). We will call it the L2-metric.

Definition 2.1. Let B1,B2 ∈ L
q
cont. The L2-metric, denoted by dL2(B1,B2),

is defined as the gap between B1 ∩ L2(R) and B2 ∩ L2(R) in L2(R):

dL2(B1,B2) := gapL2
(B1 ∩ L2(R),B2 ∩ L2(R)).

The L2-metric measures the distance between two behaviors as the gap between
their L2-behaviors over the whole real line.

2.2. Zames metric. The second metric that we introduce is obtained by in-
tersecting the behaviors with the subspace L2(R

+) of all signals that are zero in the
past. We will call it the Zames metric because in the input-output transfer matrix
context it will turn out to coincide with the classical gap metric.

Definition 2.2. Let B1,B2 ∈ L
q
cont. The Zames metric, denoted by dZ(B1,B2),

is defined as the gap between B1∩L2(R
+) and B2∩L2(R

+) in the Hilbert space L2(R):

dZ(B1,B2) := gapL2
(B1 ∩ L2(R

+),B2 ∩ L2(R
+)).

In what follows we will often use the shorthand terminology Z-metric.

2.3. Sasane–Ball metric. A third metric that we will consider is obtained by
projecting the L2-behaviors onto the future and subsequently taking their gap in the
Hilbert space L2(R). It will be called the Sasane–Ball metric since it will turn out
to coincide with the behavioral distance introduced in the input-output framework in
[13]. Recall that Π+ is the orthogonal projection of L2(R) onto L2(R

+).
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Definition 2.3. Let B1,B2 ∈ L
q
cont. The Sasane–Ball metric, denoted by

dSB(B1,B2), is defined as the gap between Π+(B1 ∩L2(R)) and Π+(B2 ∩L2(R)) in
L2(R):

dSB(B1,B2) := gapL2
(Π+(B1 ∩ L2(R)),Π+(B2 ∩L2(R))).

The Sasane–Ball metric measures the distance over the future time axis with
arbitrary past. The Hilbert space is again taken as L2(R). We will often use the
shorthand terminology SB-metric.

In what follows we will make a detailed study of the above three metrics and
express their properties in terms of rational representations of the behaviors and their
associated multiplication operators. Later, we will also introduce a fourth metric,
the Vinnicombe metric. As in the input-output case, the definition of the latter can
only be given in terms of representations, since it does not seem to allow a natural
interpretation in terms of gap in Hilbert space.

3. Rational representations of behaviors. In addition to polynomial repre-
sentations, behaviors admit rational representations (see [27]). In particular, for a
real rational matrix G a meaning can be given to the equation G( d

dt )w = 0 and to the

expression kerG( d
dt ). For this we need the concept of left coprime factorization of a

rational matrix G over R[ξ]. A factorization of such G as G = P−1Q with P and Q
real polynomial matrices is called a left coprime factorization if

(
P Q

)
is left prime

over R[ξ] and det(P ) �= 0. Following [27], if G = P−1Q is a left coprime factorization
over R[ξ], then we define G( d

dt )w = 0 if Q( d
dt )w = 0 and

(3.1) ker G

(
d

dt

)
:= ker Q

(
d

dt

)
.

In this way every linear differential system also admits representations as the “kernel
of a rational matrix.” If G is a rational matrix, we call a representation of B as
B = {w ∈ Lloc(R,R

q) | G( d
dt )w = 0} a rational kernel representation of B and often

write B = kerG( d
dt ). For a more detailed exposition on rational representations of

behaviors see [27], [15].
Therein, it can also be found that a linear differential system is controllable if

and only if its behavior B admits a representation

(3.2) B =

{
w ∈ Lloc(R,R

q) | ∃v ∈ Lloc
1 (R,Rm) such that w = G

(
d

dt

)
v

}

for some integer m and some real rational matrix G with m columns. The equation

w = G( d
dt )v should be interpreted as

(
I −G( d

dt )
) (w

v

)
= 0, whose meaning was defined

above. The representation (3.2) is called a rational image representation, and we often
write B = im G( d

dt ). The minimal m required can be shown to be equal to m(B), the
input cardinality of B, and is achieved if and only if G has full column rank.

If G is a real rational matrix, then for the behavior B = im G( d
dt ) we can obtain

a polynomial image representation as follows, using right coprime factorization over
R[ξ]. A factorization G = MN−1 with M and N real polynomial matrices is called a

right coprime factorization over R[ξ] if
(M
N

)
is right prime over R[ξ] and det(N) �= 0.

Lemma 3.1. Let G be a real rational matrix and let G = MN−1 be a right
coprime factorization over R[ξ]. Then im G( d

dt ) = im M( d
dt ).
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Proof. Let G = P−1Q be a left coprime factorization over R[ξ]. Then we obviously

have
(
P −Q

)(M
N

)
= 0. Using this, it can be shown that

ker

(
P

(
d

dt

)
−Q

(
d

dt

))
= im

⎛
⎜⎜⎜⎝
M

(
d

dt

)

N

(
d

dt

)
⎞
⎟⎟⎟⎠

(see [19, Proposition 3.2]). Since (I−G) = P−1(P −Q) is a left coprime factorization,
we have w = G( d

dt )v ⇔ (I − G( d
dt ))col(w, v) = 0 ⇔ (P ( d

dt ) − Q( d
dt ))col(w, v) = 0.

Thus we obtain w ∈ im G( d
dt ) ⇔ ∃v such that w = G( d

dt )v. In turn this is equivalent

with: ∃v such that (P ( d
dt )−Q( d

dt ))col(w, v) = 0 ⇔ ∃v, � such that
(w
v

)
=
(
M( d

dt )

N( d
dt )

)
� ⇔

∃� such that w = M( d
dt )� ⇔ w ∈ im M( d

dt ).
A given behavior allows rational image and kernel representations in which the

rational matrices satisfy certain desired properties. In particular, they can be chosen
to be proper, stable, prime and (co-)inner at the same time. The precise statement
is as follows.

Theorem 3.2. Let B ∈ L
q
cont. There exists a real rational matrix G such that

B = im G( d
dt ), where G satisfies the following four properties:

1. G ∈ RH∞,
2. G is right prime over RH∞,
3. G is inner,
4. G has no zeros.

If B ∈ Lq, then there exists a real rational matrix G̃ such that B = ker G̃( d
dt ), where

G̃ satisfies the following three properties:
1. G̃ ∈ RH∞,
2. G̃ is left prime over RH∞,
3. G̃ is co-inner.

Proof. We first prove the existence of G satisfying properties 1, 2, 3, and 4 such
that B = imG( d

dt ). Since B ∈ L
q
cont, by [27, Theorem 9] there exists G1 ∈ RH∞,

right prime over RH∞ and having no zeros, such that B = imG1(
d
dt ). We now adapt

G1 in such a way that also property 3 is satisfied.
Define Z := G∗

1G1. By right primeness ofG1 it is easily verified that Z is biproper.
Further we have Z∗ = Z and Z has no poles and zeros on the imaginary axis. Let
G1 = MN−1 be a right coprime factorization over R[ξ]. Now let L be a square
polynomial matrix such that M∗M = L∗L, and L is Hurwitz. Indeed such L exists
and is obtained by polynomial spectral factorization of M∗M . Define W := LN−1.
Since Z is biproper, we have

deg det(N∗N) = deg det(M∗M) = deg det(L∗L).

Therefore W is biproper and since N and L are both Hurwitz, we have W,W−1 ∈
RH∞. Define G := G1W

−1. Clearly G ∈ RH∞ and G∗G = I. Further, since G1

is right prime over RH∞, there exists G+
1 ∈ RH∞ such that G+

1 G1 = I. Define
G+ := WG+

1 . Clearly G+ ∈ RH∞ and G+G = I, so G is right prime over RH∞.
Clearly G = ML−1 is a right coprime factorization over R[ξ]. Therefore imG( d

dt ) =

imM( d
dt ) = imG1(

d
dt ) = B.

If B ∈ Lq, from Theorem 5 in [27], it admits a rational kernel representation
B = ker G̃1(

d
dt ) such that G̃1 is right prime over RH∞. Using polynomial spectral
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factorization of G̃1G̃
∗
1 a rational matrix G̃ can then be obtained such that B =

kerG( d
dt ) and the conditions are satisfied.

Obviously, the above theorem also holds with RH∞ replaced by RH−
∞, the space

of proper and antistable real rational matrices. In this paper we will often use rational
image and kernel representations ofB that satisfy some, or all, of the properties stated
in Theorem 3.2. In general, if B = im G( d

dt ) = ker G̃( d
dt ), then obviously G̃G = 0.

If, in addition, G is inner and G̃ is co-inner, then it is immediate that the rational
matrix (G G̃∗) is unitary and therefore also GG∗ + G̃∗G̃ = I.

To conclude this section, we review the notion of dual behavior; see [18, section 10]
and [20]. For a given behavior B ∈ L

q
cont we define its dual behavior B∗ by

B∗:=
{
w ∈ Lloc(R,R

q)

∣∣∣∣
∫ ∞

−∞
w(t)�w′(t)dt = 0 ∀w′ ∈ B with compact support

}
.

It can be shown that B∗ ∈ L
q
cont and that m(B∗) = q − m(B). Moreover, in the

polynomial contextB = im M( d
dt ) if and only if B∗ = kerM∗( d

dt ). Using Lemma 3.1,

this carries over to rational representations: for real rational G we have B = im G( d
dt )

if and only if B∗ = kerG∗( d
dt ).

4. Rational representations and multiplication operators. In this section
we will study the relation between rational representations of behaviors and classical
multiplication operators on L2(R). In particular we will clarify the connection between
rational kernel and image representations and the kernels and images of the associated
multiplication operators.

With any real rational matrix G ∈ RL∞ we can associate a unique linear operator
G : L2(iR) → L2(iR) whose action is defined by the multiplication W �→ GW . If
G ∈ RH∞, then the subspace H2 is invariant under the multiplication operator, i.e.,
GH2 ⊂ H2. In this paper we will focus on system descriptions in the time domain.
Let F denote the Fourier transformation. Then, with any G ∈ RL∞ we associate a
time-domain “multiplication operator” in the usual way as follows.

Definition 4.1. Let G ∈ RL∞. The operator MG : L2(R) → L2(R) is defined
by MG := F−1G F.

We will call MG the multiplication operator with symbol G. Of course, MG can
be interpreted as a convolution operator, but we will not use this fact here. Obvi-
ously, if G1, G2 ∈ RL∞, then MG1G2 = MG1MG2 . It is a well-known fact that the
operator MG is an isometry, i.e., ‖MGw‖2 = ‖w‖2 for all w ∈ L2(R) if and only
if G is inner, i.e., G∗G = I. For any G ∈ RL∞, the operator norm ‖MG‖ is equal
to the L∞-norm ‖G‖∞. Also, if G1, G2, G3 ∈ RL∞ and G1 is inner and G3 is co-
inner, then ‖MG1MG2MG3‖ = ‖MG2‖. The restriction of MG to L2(R

+) is denoted
by MG |L2(R+). The composition Π+MG |L2(R+): L2(R

+) → L2(R
+) is called the

Toeplitz operator with symbolG. It will be denoted by TG. IfG ∈ RH∞, then L2(R
+)

is invariant under MG. In this case, MG is called causal. Also, then MG |L2(R+)= TG.
We will now study the connection between rational representations of behaviors

and multiplication operators. In particular, with any p× q real rational matrix G ∈
RL∞ we can associate the linear differential behaviors kerG( d

dt ) ⊂ Lloc(R,R
q) and

im G( d
dt ) ⊂ Lloc(R,R

p). On the other hand G defines a multiplication operator MG

with kerMG ⊂ L2(R) and imMG ⊂ L2(R). We will now study the relation between
these different kernels and images. We first prove the following useful lemma.

Lemma 4.2. Let G, G̃ ∈ RL∞ be such that imG( d
dt ) = ker G̃( d

dt ). If G is right-

prime and G̃ is left-prime (over RL∞), then imMG = kerMG̃. If G, G̃ ∈ RH∞ and

G is right-prime and G̃ is left-prime (over RH∞), then imTG = kerTG̃.
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Proof. Since GG̃ = 0 we have MG̃MG = 0, whence imMG ⊂ kerMG̃. Conversely,

let G+, G̃+ ∈ RL∞ such that G+G = I and G̃G̃+ = I. Then clearly(
G+

G̃

)
(G G̃+) =

(
I 0
0 I

)
,

whence GG+ + G̃+G̃ = I. Then MG̃w = 0 implies w = MGMG+w. Since MG+w ∈
L2(R), the result follows. The second statement follows in a similar manner.

The above lemma is instrumental in proving the following basic relation between
rational representations and multiplication operators.

Theorem 4.3. Let G ∈ RL∞. Then the following hold:
1. kerG( d

dt ) ∩ L2(R) = kerMG.

2. If G is right prime (over RL∞), then imG( d
dt ) ∩ L2(R) = imMG.

3. If G ∈ RH∞, then kerG( d
dt ) ∩ L2(R

+) = kerTG.

4. If G ∈ RH∞ is right prime (over RH∞), then imG( d
dt ) ∩ L2(R

+) = imTG.
Proof. 1. Let G = P−1Q be a right coprime factorization over R[ξ]. Then

w ∈ kerG( d
dt ) ∩ L2(R) if and only if Q( d

dt )w = 0 and w ∈ L2(R). This holds if and
only if Q(iω)W (iω) = 0 and W ∈ S, where W = Fw and S is the subspace of L2(iR)
given by (1.1). Since P has no roots on the imaginary axis, the latter is equivalent
with P−1(iω)Q(iω)W (iω) = 0 and W ∈ S, equivalently, w ∈ L2(R) and MGw = 0.

2. Let G̃ ∈ RL∞ be left prime and such that imG( d
dt ) = ker G̃( d

dt ). Then, by
Lemma 4.2, imMG = kerMG̃, and the result follows from statement 1.

Finally, proofs of 3 and 4 can be given in a similar manner, using a left
prime G̃ ∈ RH∞ and with L2(R) replaced by L2(R

+) and S replaced by
H2 ∩ S.

In general, for a given behavior B, its intersection with L2(R) is called an L2-
behavior. L2-behaviors have been studied before; see, e.g., [24] or, more recently, [9].

Suitable rational image and kernel representations of a given controllable behavior
immediately yield explicit expressions for the orthogonal projection of L2(R) onto the
associated L2-behavior and its orthogonal complement.

Lemma 4.4. Let B ∈ L
q
cont and let B = imG( d

dt ) = ker G̃( d
dt ) with G, G̃ ∈

RL∞ inner and co-inner, respectively. Then the orthogonal projection of L2(R) onto
B ∩ L2(R) is given by the multiplication operator MGG∗. The orthogonal projection
of L2(R) onto (B ∩ L2(R))

⊥ is given by the multiplication operator MG̃∗G̃.
Proof. In order to prove the first statement note that MGG∗ is a projector,

(MGG∗)2 = MGG∗GG∗ = MGG∗; it is self-adjoint, (MGG∗)∗ = M(GG∗)∗ = MGG∗ ;
and, by Theorem 4.3, its image imMGG∗ is equal to imMG = B∩L2(R). The second
statement follows from the fact that MG̃∗G̃ = I −MGG∗ .

A related issue arises if one wants to put the notion of dual behavior in the Hilbert
space context and, in particular, relate duality and orthogonality. The following result
holds.

Lemma 4.5. Let B ∈ L
q
cont. Then (B ∩L2(R))

⊥ = B∗ ∩L2(R).
Proof. (⊂) If w ∈ L2(R) satisfies

∫∞
−∞ w�(t)w′(t)dt = 0 for all w′ ∈ B ∩ L2(R),

then it does also for all w′ ∈ B of compact support. Hence w ∈ B∗ ∩ L2(R).
(⊃) If w ∈ B∗ ∩ L2(R), then

∫∞
−∞ w�(t)w′(t)dt = 0 for all w′ ∈ B of compact

support. By a density argument (using controllability of B) the integral can then be
shown to be 0 for all w ∈ B ∩ L2(R).

5. Distance between behaviors and rational representations. Using the
relation between rational representations and multiplication operators established in
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section 4, in the present section we will for each of the three metrics introduced in
section 2 study how to compute their values in terms of rational representations of the
behaviors. We will also show that these behavioral metrics are in fact generalizations
of classical gaps studied previously in the input-output transfer matrix context.

5.1. L2-metric. Obviously, by Theorem 4.3, if for i = 1, 2, Gi ∈ RL∞ is right
prime and Bi = imGi(

d
dt ), and if G̃i ∈ RL∞ is such that Bi = ker G̃i(

d
dt ), then

dL2(B1,B2) = gapL2
(imMG1 , imMG2) = gapL2

(kerMG̃1
, kerMG̃2

).

The following result is well known in the context of input-output systems; see [21],
[22]. Here, we state it in the context of rational representations of behaviors, and for
completeness we include a proof.

Theorem 5.1. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Let G1, G2 ∈ RL∞ such

that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ) with G1, G2 inner. Also, let G̃1, G̃2 ∈ RL∞

such that B1 = ker G̃1(
d
dt ) and B2 = ker G̃2(

d
dt ) with G̃1, G̃2 co-inner. Then

dL2(B1,B2) = ‖G̃2G1‖∞ = ‖G̃1G2‖∞.

Proof. According to Lemma 4.4 we have �gapL2
(B1 ∩ L2(R),B2 ∩ L2(R)) =

‖MG̃∗
2G̃2

MG1G∗
1
‖= ‖MG∗

2
MG̃2G1

MG∗
1
‖= ‖MG̃2G1

‖ = ‖G̃2G1‖∞. Thus, dL2(B1,B2) =

max{‖G̃2G1‖∞, ‖G̃1G2‖∞}. We prove that ‖G̃2G1‖∞ = ‖G̃1G2‖∞. Indeed, us-
ing the fact that G2G

∗
2 + G̃∗

2G̃2 = I, and pre- and postmultiplying this expres-
sion by G∗

1 and G1, respectively, we see that (G̃2G1)
∗G̃2G1 + (G∗

2G1)
∗G∗

2G1 = I.
This yields σ2

max(G̃2G1)(iω) = 1 − σ2
min(G

∗
2G1)(iω) for all ω ∈ R. Since the singu-

lar values of (G∗
2G1)(iω) and (G∗

1G2)(iω) coincide, this implies σmax(G̃2G1)(iω) =
σmax(G̃1G2)(iω) for all ω, whence ‖G̃2G1‖∞ = ‖G̃1G2‖∞.

Since the gap does not change by taking orthogonal complements in Hilbert space,
by applying Lemma 4.5 we immediately obtain that the L2-metric is invariant under
dualization of behaviors.

Lemma 5.2. dL2(B1,B2) = dL2(B
∗
1,B

∗
2).

5.2. Zames metric. We will first show that Definition 2.2 generalizes the clas-
sical definition of gap metric in the input-output framework. Indeed, suppose we have
two systems, with identical numbers of inputs and outputs, given by their transfer
matrices G1 and G2. In [7] the gap δ(G1, G2) is defined as follows. Let Gi = MiN

−1
i

be normalized right coprime factorizations with Ni,Mi ∈ RH∞. Then, following
[7], the gap between G1 and G2 is defined as the L2-gap between the images of the
corresponding Toeplitz operators (the “graphs”):

δ(G1, G2) = gapL2

(
imT(

N1
M1

), imT(
N2
M2

)
)
.

This can be interpreted in the behavioral setup as follows. The system with trans-
fer matrix Gi has in fact (input-output) behavior Bi given by the rational image
representation (

ui

yi

)
=

(
I

Gi(
d
dt )

)
vi.

Moreover, by [15, Theorem 7.4], an alternative rational image representation of Bi is
given by (

ui

yi

)
=

(
Ni(

d
dt )

Mi(
d
dt )

)
v′i.
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By Theorem 4.3 we therefore obtain

δ(G1, G2) = gapL2
(B1 ∩ L2(R

+),B2 ∩ L2(R
+)),

which indeed equals dZ(B1,B2) as defined by Definition 2.2. This shows our claim.
In terms of rational representations, the metric defined in Definition 2.2 can be

computed in terms of solutions of two H∞ optimization problems. The following
proposition is a generalization of a well-known result by Georgiou (see [6]) on the
computation of gap metric in the input-output framework using normalized coprime
factorizations of transfer matrices. We formulate the result here in a general frame-
work using rational representations of behaviors. A proof can be obtained by simply
adapting the proof given in [17] in the input-output framework.

Proposition 5.3. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Let G1, G2 ∈ RH∞

be such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ) with G1 and G2 inner and right

prime over RH∞. Then we have

(5.1) �gapL2
(B1 ∩ L2(R

+),B2 ∩ L2(R
+)) = inf

Q∈RH∞
‖G1 −G2Q‖∞

and hence

(5.2) dZ(B1,B2) = max

{
inf

Q∈RH∞
‖G1 −G2Q‖∞, inf

Q∈RH∞
‖G2 −G1Q‖∞

}
.

We conclude this subsection with the following result that was obtained in an
input-output framework in [21] (see also [17, Theorem 4.7]). The result expresses
computation of the distance in the Z-metric as a single optimization problem. The
proof from [21] immediately carries over to our framework and will be omitted.

Proposition 5.4. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Let G1, G2 ∈ RH∞

be such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ) with G1 and G2 inner and right

prime over RH∞. Then

dZ(B1,B2) = inf
Q,Q−1∈RH∞

‖G1 −G2Q‖∞.

Remark 5.5. As mentioned in the introduction, in [3] a notion of gap between
behaviors was introduced in a more general context, with behaviors as arbitrary sub-
sets of the set of all functions from time axis to signal space. This notion of distance
was inspired by the gap metric for nonlinear input-output systems introduced in [8].
It can be shown that for the special case of controllable linear differential systems (as
is being considered in the present paper) the behavioral gap in [3] specializes to our
Zames metric.

5.3. Sasane–Ball metric. In this subsection we show that our definition, Defi-
nition 2.3, generalizes the gap as defined by Sasane in [12] and Ball and Sasane in [13].
In [13], for a given minimal input-state-output system ẋ = Ax + Bu, y = Cx +Du
with state space R

n and stable p × m transfer matrix G, the “extended graph” is
defined as the subspace

(5.3) G(G) :=

(
0

CeAt
�(t)

)
R

n +

(
I
TG

)
L2(R

+,Rm)

of the Hilbert space L2(R
+,Rm+p). Here, �(t) denotes the indicator function of R+

and TG is the Toeplitz operator with symbol G. For stable G the ordinary graph in
the gap context is given by
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I
TG

)
L2(R

+,Rm),

so the difference lies in the first term in (5.3), which takes into account arbitrary
initial conditions on the system. In [13] the following metric is then defined on the
space of stable p×m transfer matrices:

δ′(G1, G2) = gapL2
(G(G1),G(G2)).

We will now show that for any given transfer matrix G the extended graph is in fact
equal to the image of the intersection of the input-output behavior with L2(R) under
the orthogonal projection onto L2(R

+):

(5.4) G(G) = Π+

(
im

(
I

G( d
dt )

)
∩ L2(R)

)
.

Indeed, from Theorem 4.3 the right-hand side of (5.4) equals

Π+

(
I

MG

)
L2(R)

= Π+

(
I

MG

)
L2(R

−) + Π+

(
I

MG

)
L2(R

+)

= im

(
I

H+
G

)
+ im

(
I
TG

)
.

Here H+
G denotes the Hankel operator Π+MG |L2(R−): L2(R

−) → L2(R
+). Since

(A,B) is reachable, imH+
G = CeAt

�(t)Rn. This proves (5.4). From this we con-

clude that for the two input-output behaviors Bi = im
( I
Gi(

d
dt )

)
we have δ′(G1, G2) =

dSB(B1,B2) as defined by Definition 2.3.
We now turn to the problem of computing for two given behaviors their distance

in the SB-metric. It turns out that not much work needs to be done for this, since
the SB-metric is in a sense dual to the Z-metric. We first prove the following lemma.

Lemma 5.6. Let B ∈ L
q
cont. The orthogonal projection of B∩L2(R) onto L2(R

+)
is equal to the orthogonal complement in L2(R

+) of B∗ ∩L2(R
+):

Π+(B ∩ L2(R)) =
(
B∗ ∩ L2(R

+)
)⊥ ∩ L2(R

+).

Proof. (⊂) Let w+ ∈ Π+(B ∩ L2(R)), and let w+ = Π+w with w ∈ B ∩ L2(R).
Take any v ∈ B∗ ∩ L2(R

+). Since L2(R
+) ⊂ L2(R), by Lemma 4.5 we have v ∈

(B ∩ L2(R))
⊥
. Thus

∫∞
−∞ v�w+dt =

∫∞
0 v�w+dt =

∫∞
0 v�wdt =

∫∞
−∞ v�wdt = 0.

Thus w+ ∈ (B∗ ∩L2(R
+))

⊥
.

(⊃) First note that Π+(B ∩ L2(R)) = Π+ (B∗ ∩ L2(R))
⊥. Since Π+ = Π∗

+,

the latter equals
(
Π−1

+ (B∗ ∩ L2(R))
)⊥

, the orthogonal complement of the inverse

image under Π+ of B∗ ∩ L2(R). Now let w ∈ (B∗ ∩ L2(R
+))

⊥ ∩ L2(R
+). Take any

v ∈ Π−1
+ (B∗ ∩ L2(R)). Then v+ := Π+v ∈ B∗ ∩ L2(R

+). Thus
∫∞
−∞ w�v+dt = 0.

Therefore,
∫∞
−∞ w�vdt =

∫∞
0 w�vdt =

∫∞
0 w�v+dt =

∫∞
−∞ w�v+dt = 0. We conclude

that w ∈ (Π−1
+ (B∗ ∩ L2(R))

)⊥
= Π+(B ∩ L2(R)). This completes the proof of the

lemma.
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By applying this lemma, we obtain the following theorem that expresses the
distance between two behaviors in the SB-metric in terms of the distance of the dual
behaviors in the Z-metric.

Theorem 5.7. Let B1,B2 ∈ L
q
cont. Then dSB(B1,B2) = dZ(B

∗
1,B

∗
2).

Proof. By Lemma 5.6 we have

(5.5) dSB(B1,B2) = gapL2
(
(
B∗

1 ∩ L2(R
+)
)⊥∩L2(R

+),
(
B∗

2 ∩ L2(R
+
)⊥∩L2(R

+)).

For i = 1, 2, let Πi be the orthogonal projection of L2(R) onto B∗
i ∩ L2(R

+). Then

I − Πi is the orthogonal projection onto (B∗
i ∩ L2(R

+))
⊥
. As before let Π+ be the

orthogonal projection onto L2(R
+). Clearly ΠiΠ+ = Π+Πi = Πi. It is easily verified

that ((I −Πi)Π+)
2 = (I − Πi)Π+, that

(5.6) im (I −Πi)Π+ =
(
B∗

i ∩ L2(R
+)
)⊥ ∩ L2(R

+),

and that (I − Πi)Π+ is self-adjoint. Hence (I − Πi)Π+ is in fact the orthogonal
projection onto the subspace (5.6). As a consequence we find that (5.5) is equal to

‖(I −Π1)Π+ − (I −Π2)Π+‖ = ‖Π1 −Π2‖ = gapL2
(B∗

1 ∩ L2(R
+),B∗

2 ∩ L2(R
+)),

which by Definition 2.2 equals dZ(B
∗
1,B

∗
2). This completes the proof.

As a consequence, for given controllable behaviors the distance in the SB-metric
can be computed by computing the distance between the dual behaviors in the
Z-metric. Again, this involves the solutions of two H∞ optimization problems.

Theorem 5.8. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Let G̃1, G̃2 ∈ RH−

∞ be such
that B1 = ker G̃1(

d
dt ) and B2 = ker G̃2(

d
dt ) with G̃1 and G̃2 co-inner and left-prime

over RH−
∞. Then we have

(5.7) dSB(B1,B2) = max

{
inf

Q∈RH∞
‖G̃∗

1 − G̃∗
2Q‖∞, inf

Q∈RH∞
‖G̃∗

2 − G̃∗
1Q‖∞

}
.

Proof. Note that B∗
1 = im G̃∗

1(
d
dt ) and B∗

2 = im G̃∗
2(

d
dt ), that m(B

∗
1) = m(B∗

2), and

that G̃∗
1, G̃

∗
2 ∈ RH∞ are inner and right prime over RH∞. The result then follows by

applying Proposition 5.3.
Remark 5.9. According to Theorem 7 in [12], for the special case of stable input-

state-output systems the concept of distance between behaviors that was introduced
in [12] coincides with the SB-metric defined in our paper. Most likely, the distance
concept from [12] in fact coincides with the SB-metric for general controllable behav-
iors. This issue is left for future research.

6. Vinnicombe metric. In [21], [22], Vinnicombe proposed a notion of distance
between transfer matrices in the input-output framework often referred to as the ν-
gap (see also [2], [14]). The main difference between the ν-gap and both the L2-gap
and the usual gap metric studied in [7] is that the ν-gap does not have an apparent,
direct interpretation in terms of “gap between subspaces” of the Hilbert space L2(R).
Instead, in computing the value of the ν-gap between two transfer matrices, an im-
portant role is played by the winding number of a rational matrix associated with the
given transfer matrices.

In the present section we will generalize the notion of ν-gap and introduce a metric
on the set of controllable behaviors with the same input cardinality. This will yield a
representation-free characterization of the ν-gap between two systems.
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Definition 6.1. Let B1,B2 ∈ L
q
cont, and m(B1) = m(B2). Let G1, G2 ∈ RH∞

be inner and right prime (over RH∞) such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ).

We define the Vinnicombe metric dV (B1,B2) by

(6.1) dV (B1,B2) :=

⎧⎨
⎩
gapL2

(imMG1 , imMG2) if det(G∗
2G1)(iω) �= 0 ∀ω ∈ R

and wnodet(G∗
2G1) = 0,

1 otherwise.

It should of course be checked whether this definition is correct, in the sense that
the definition of dV (B1,B2) is independent of the rational matrices G1, G2. For this,
we prove the following lemma.

Lemma 6.2. Let G,G′ ∈ RH∞ be inner and right prime. Then imG( d
dt ) =

imG′( d
dt ) if and only if there exists a constant unitary matrix U such that G′ = GU .

Proof. From [15], imG( d
dt ) = imG′( d

dt ) if and only if there exists a nonsingular
rational matrix U such that G′ = GU . Let G+, G′+ ∈ RH∞ be left inverses of G and
G′, respectively. Then U = G+G′, so U ∈ RH∞. Also, U−1 = G′+G, so U−1 ∈ RH∞.
Finally, note that I = G′∗G′ = U∗G∗GU = U∗U , so U−1 = U∗. Since U∗ ∈ RH−

∞ we
conclude that U is constant.

To prove that Definition 6.1 is correct, let G′
1, G

′
2 ∈ RH∞ be alternative rational

matrices, both inner and right prime, such that B1 = imG′
1(

d
dt ) and B2 = imG′

2(
d
dt ).

Obviously, imMGi = imMG′
i
= Bi ∩L2(R). Also, from the previous lemma we have

that G′
i = GiUi for constant unitary matrices Ui. Thus, G′∗

2 G
′
1 = U∗

2G
∗
2G1U1, so

det(G∗
2G1)(iω) �= 0 for all ω ∈ R if and only if det(G′∗

2 G
′
1)(iω) �= 0 for all ω ∈ R.

Also, wno det(G∗
2G1) = 0 if and only if wno det(G′∗

2 G
′
1) = 0.

A proof of the fact that dV (B1,B2) as defined above indeed defines a metric (on
the subset of Lq

cont of all controllable behaviors with the same input cardinality) can
be given by adapting the corresponding proof in the input-output setting. For this we
refer to [21]. As shorthand terminology, in what follows we will refer to this metric
as the V-metric.

Of course, computing the gap between two controllable behaviors in the
Vinnicombe metric only involves checking an appropriate winding number, possibly
followed by a computation of the gap in the L2-metric. The following result follows
immediately from Theorem 5.1.

Theorem 6.3. Let B1,B2 ∈ L
q
cont, and m(B1) = m(B2). Let G1, G2 ∈ RH∞ be

inner and right prime (over RH∞) such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ).

Also, let G̃1, G̃2 ∈ RL∞ such that B1 = ker G̃1(
d
dt ) and B2 = ker G̃2(

d
dt ) with G̃1, G̃2

co-inner. Then

dV (B1,B2) :=

⎧⎨
⎩
‖G̃2G1‖∞ (= ‖G̃1G2‖∞) if det(G∗

2G1)(iω) �= 0 ∀ω ∈ R,
and wnodet(G∗

2G1) = 0,
1 otherwise.

The original definition of V-metric as given in [21], as well as its generalization
given above, are not entirely satisfactory, since they are given in terms of the rational
matrices representing the systems. In the remainder of this section, we will instead es-
tablish a representation-free characterization of the distance between two controllable
behaviors in the V-metric, no longer using the matrices appearing in their rational
representations. Before doing this, we first introduce some additional material on
linear differential systems.
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6.1. More about behaviors. In section 2 we introduced linear differential sys-
tems as those systems whose behavior can he represented as the kernel of a polynomial
differential operator, B = kerR( d

dt ), with R a real polynomial matrix. Another rep-
resentation is a latent variable representation, defined through polynomial matrices
R and M by R( d

dt )w = M( d
dt )v with B = {w ∈ Lloc | ∃v ∈ Lloc such that R( d

dt )w =

M( d
dt )v}. The variable v is called a latent variable. If the latent variable has the

property of state (see [11], [18]), then the latent variable is called a state variable,
and the latent variable representation is called a state representation of B. For any
B ∈ Lq many state representations exist, but the minimal number of components of
the state variable in any state representation of B is an invariant for B. This nonneg-
ative integer is called the McMillan degree of B, denoted by n(B). It is a basic fact
that the McMillan degree of B and its dual B∗ are the same: n(B) = n(B∗). The
following lemma expresses the McMillan degree in terms of rational representations.

Lemma 6.4. Let G be a proper real rational matrix. Then the following
holds:

1. If G is left prime over R(ξ)P and G = P−1Q is a left coprime factorization
over R[ξ], then the McMillan degree of the behavior kerG( d

dt ) is equal to
deg det(P ).

2. If G has no zeros and is right prime over R(ξ)P and G = MN−1 is a right
coprime factorization over R[ξ], then the McMillan degree of the behavior
imG( d

dt ) is equal to deg det(N).

Proof. 1. The crux is that if Q is a full row rank polynomial matrix with p rows,
then the McMillan degree of kerQ( d

dt ) is equal to the maximum of the degrees of the
determinants over all p× p minors of Q (see [11]). Now let G have p rows and be left
prime over R(ξ)P . Then by [27, p. 240], it has a biproper p × p minor, say, G̃. The
corresponding p × p minor of Q, say, Q̃, satisfies G̃ = P−1Q̃. In addition, for every
p × p minor Q̃′, P−1Q̃′ is proper. Thus for every minor Q̃′ we have deg det(Q̃′) ≤
deg det(P ), while deg det(Q̃) = deg det(P ). This proves the claim.

2. This is proved along the same lines, using the fact that if M is a full column
rank polynomial matrix with m columns, having no zeros, then the McMillan degree
of imM( d

dt ) is equal to the maximum of the degrees of the determinants over all
m×m minors of M .

Next we will briefly discuss autonomous behaviors; see [11, p. 66]. Let B ∈
Lq. We call the behavior autonomous if it has no input variables, i.e., if m(B) = 0.
Being autonomous is reflected in kernel representation as follows: B is autonomous
if and only if there exists a square, nonsingular polynomial matrix R such that B =
kerR( d

dt ). Also, a given B ∈ Lq is autonomous if and only if it is a finite-dimensional
subspace of Lloc(R,R

q). In fact, its dimension is then equal to the degree of the
polynomial det(R). Also, this number is equal to the McMillan degree of B, i.e.,
dimB = n(B).

The roots of the polynomial det(R) are called the frequencies of B. They only
depend on B, since if B = kerR′( d

dt ) is a second kernel representation of B with
R′ square and nonsingular we must have R′ = UR for some unimodular polynomial
matrix U . A frequency λ with Re(λ) = 0, i.e., λ lies on the imaginary axis, is called
an imaginary frequency. The following is easily seen, and we omit the proof.

Lemma 6.5. Let B ∈ Lq. Let M be a polynomial matrix with q columns. Then
B is autonomous if and only if M( d

dt )B is autonomous. Let λ ∈ C be such that M(λ)
has full column rank. Then λ is a frequency of B if and only if λ is a frequency of
M( d

dt )B.
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If B is autonomous and has no imaginary frequencies, then B = Bstab ⊕ Banti

uniquely, with Bstab stable (i.e., limt→∞ w(t) = 0 for all w ∈ Bstab) and Banti anti-
stable (i.e., limt→−∞ w(t) = 0 for all w ∈ Banti).

6.2. A representation-free approach to the Vinnicombe metric. In this
subsection we present a representation-free approach to the Vinnicombe metric. We
first prove a lemma that expresses the winding number appearing in the definition of
the Vinnicombe metric in terms of McMillan degrees associated with the underlying
behaviors.

Lemma 6.6. Let B1,B2 ∈ L
q
cont with m(B1) = m(B2). Let G1, G2 ∈ RL∞ such

that Bi = imGi(
d
dt ). Then

1. G∗
2G1 is a nonsingular rational matrix if and only if B1 ∩B∗

2 is autonomous,
2. (G∗

2G1)(iω) is nonsingular for all ω ∈ R if and only if B1∩B∗
2 is autonomous

and has no imaginary frequencies.

Furthermore, if G1, G2 ∈ RH∞, G2 is left prime over RL∞ and 2 above holds, then

wnodet(G∗
2G1) = n(B2)− dim(B1 ∩B∗

2)anti,

where (B1 ∩B∗
2)anti denotes the antistable part of B1 ∩B∗

2.
Proof. Let G1 = MN−1 be a right coprime factorization over R[ξ] and G∗

2 =
P−1Q a left coprime factorization over R[ξ]. Then B1 = imM( d

dt ). Furthermore,

since B∗
2 = kerG∗

2(
d
dt ), we have B∗

2 = kerQ( d
dt ). It is then easily verified that

B1 ∩B∗
2 = M( d

dt ) ker(QM)( d
dt ).

1. Now G∗
2G1 = P−1QMN−1, hence G∗

2G1 is nonsingular if and only if QM
is nonsingular, and equivalently, B1 ∩ B∗

2 is autonomous. Statement 2 then follows
from Lemma 6.5. Assume now that G1, G2 ∈ RH∞, G2 is left prime over RL∞, and
condition 2 holds. We have

det(G∗
2G1) =

det(QM)

det(P ) det(N)
.

The winding number wno det(G∗
2G1) is equal to number of roots of det(QM) in C+

minus the number of roots of the product det(P ) det(N) in C+. The number of
roots of det(QM) in C+ is equal to dim(B1 ∩B∗

2)anti, while the number of roots of
det(P ) det(N) in C

+ is equal to the degree of det(P ). (Note that N is Hurwitz, and
P is anti-Hurwitz.) Finally, from left-primeness of G2, by Lemma 6.4 the degree of
det(P ) is equal to the McMillan degree of B∗

2, which is equal to the McMillan degree
of B2. This completes the proof.

This immediately leads to the following result, which expresses the distance in
the V-metric between two given behaviors completely in terms of the behaviors and
no longer in terms of their rational representations.

Theorem 6.7. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Then

dV (B1,B2) =

{
dL2(B1,B2) if B1 ∩B∗

2 autonomous, has no imaginary
frequencies, and dim(B1 ∩B∗

2)anti = n(B2),
1 otherwise.

We conclude this subsection with establishing some basic properties of the
V-metric. In contrast to the L2-metric, the V-metric is not invariant under dual-
ization. The following result result gives conditions under which invariance does hold.
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Theorem 6.8. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Then the following hold:

1. If n(B1) = n(B2), then dV (B1,B2) = dV (B
∗
1,B

∗
2).

2. If dV (B1,B2) < 1 and dV (B
∗
1,B

∗
2) < 1, then dV (B1,B2) = dV (B

∗
1,B

∗
2) if

and only if n(B1) = n(B2).
Proof. 1. Consider the following conditions: B1 ∩B∗

2 is autonomous and has no
imaginary frequencies and dim(B1 ∩B∗

2)anti = n(B2). Obviously, since (B∗
1)

∗ = B1,
and by the assumption that n(B2) = n(B1) = n(B∗

1), this set of conditions is
equivalent to the following: B∗

2 ∩ (B∗
1)

∗ is autonomous, has no imaginary frequen-
cies, and dim(B∗

2 ∩ (B∗
1)

∗)anti = n(B∗
1). Now we distinguish between two cases:

(a) the above equivalent sets of conditions hold. Then dV (B1,B2) = dL2(B1,B2)
and dV (B

∗
2,B

∗
1) = dL2(B

∗
2,B

∗
1). By symmetry we then obtain dV (B1,B2)=

dL2(B1,B2) = dL2(B2,B1) = dL2(B
∗
2,B

∗
1) = dV (B

∗
2,B

∗
1) = dV (B

∗
1,B

∗
2). (b) The

conditions do not hold. In that case both dV (B1,B2) = 1 and dV (B
∗
2,B

∗
1) = 1, so

again dV (B1,B2) = dV (B
∗
1,B

∗
2).

2. From dV (B1,B2) < 1 it follows that dim(B1 ∩B∗
2)anti = n(B2). On the other

hand, dV (B
∗
2,B

∗
1) < 1 implies that dim(B∗

2 ∩ (B∗
1)

∗)anti = n(B∗
1). Thus, n(B2) =

n(B∗
1) = n(B1).
Example 6.9. We give an example in which dualization changes the values of

the V-metric if the McMillan degrees of the behaviors are not equal. Define Bi :=
imGi(

d
dt ) with

G1(ξ) :=
1√
2

(
1
1

)
, G2(ξ) :=

1

ξ +
√
5

(
1

ξ − 2

)
.

Note that n(B1) = 0 while n(B2) = 1. We compute (G∗
2G1)(ξ) = − ξ+3√

2(ξ−√
5)
.

Clearly its winding number is unequal to 0, so we have dV (B1,B2) = 1. Now,
B∗

1 = kerG∗
1(

d
dt ) = imH1(

d
dt ) and B∗

2 = kerG∗
2(

d
dt ) = im H̃2(

d
dt ) = imH2(

d
dt ), where

H1(ξ) :=
1√
2

(−1
1

)
, H̃2(ξ) := − 1

ξ +
√
5

(
1 −ξ − 2

)
, H2(ξ) :=

1

ξ +
√
5

(
ξ + 2
1

)
.

We compute (H∗
2H1)(ξ) = ξ−1√

2(ξ−√
5)
. Its winding number is equal to 0, so

dV (B
∗
1,B

∗
2) = ‖H̃2H1‖∞. Now, (H̃2H1)(ξ) = ξ+3√

2(ξ−√
5)
, which indeed yields

‖H̃2H1‖∞ = 3√
10

< 1.

We conclude this subsection by stating a result that was proved in [21] in an
input-output setting and that expresses the computation of the distance between two
controllable behaviors in the V-metric as an optimization problem.

Proposition 6.10. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Let G1, G2 ∈ RH∞ be

inner and right prime (over RH∞) such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ).

Then

dV (B1,B2) = inf
Q,Q−1∈RL∞,wnodet(Q)=0

‖G1 −G2Q‖∞.

Recall that computation of the Z-metric was formulated in an analogous way in
Proposition 5.4. Again, the proof given in [21] carries over to our framework and is
omitted here.

Remark 6.11. Although in Theorem 6.7 we established a representation-free
characterization of the V-metric, there still remains the question of whether this metric
can be given a “gap in the Hilbert space” interpretation like the Z-metric and the SB-
metric, for example, by intersecting the behaviors with some “natural” subspace of
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L2(R) or by applying a suitable projection. This question remains unanswered and
is left for future research.

7. Comparison of the metrics. In this section we will compare the metrics
that we introduced in sections 2 and 6. It will turn out that the L2-gap is dominated
by the V-gap, which in turn is dominated by the Z-gap. The L2-gap is also dominated
by the SB-gap. However, the SB-gap will in general turn out to be incomparable with
both the V-gap as well as the Z-gap. We will also compare the topologies induced by
the metrics. Generalizing a result from [21], we will find that the topologies induced
by the V-metric and the Z-metric coincide. We will also show that if we restrict the
V-metric and the SB-metric to the subset L

q
cont(n) of all controllable behaviors of

fixed McMillan degree n, then they induce the same topology on that subset. This
new result will generalize a result from [13] on stable input-output systems.

Our first proposition is a simple generalization of results from [21].
Proposition 7.1. Let B1,B2 ∈ L

q
cont, m(B1) = m(B2). Then

dL2(B1,B2) ≤ dV (B1,B2) ≤ dZ(B1,B2).

Proof. The inequality between dL2 and dV follows immediately from Theorem 6.7.
The one between dV and dZ follows by combining Propositions 5.4 and 6.10.

Next, we study the question of how the SB-metric relates to the other metrics.
We first compare with the L2-metric and the V -metric.

Theorem 7.2. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Then the following hold:

1. dL2(B1,B2) ≤ dSB(B1,B2).
2. If n(B1) = n(B2), then dV (B1,B2) ≤ dSB(B1,B2).

Proof. 1. dL2(B1,B2) = dL2(B
∗
1,B

∗
2) ≤ dZ(B

∗
1,B

∗
2) = dSB(B1,B2). The

first equality follows from the fact that the L2-metric is invariant under dualization,
the second follows from Proposition 7.1, and the third follows from Theorem 5.7.
2. By Theorem 6.8, if n(B1) = n(B2), then dV (B1,B2) = dV (B

∗
1,B

∗
2). Next,

by Proposition 7.1 and Theorem 5.7, respectively, dV (B
∗
1,B

∗
2) ≤ dZ(B

∗
1,B

∗
2) =

dSB(B1,B2).
Remark 7.3. According to the previous theorem, on every set Lq

cont(n) consisting
of all controllable behaviors with fixed McMillan degree n, the V-metric is dominated
by the SB-metric. In general these two metrics turn out to be incomparable. If for two
given behaviors we have dV (B1,B2) < 1, then of course dV (B1,B2) = dL2(B1,B2) ≤
dSB(B1,B2). However, in the following example we present two behaviors such that
dSB(B1,B2) < dV (B1,B2).

Example 7.4. Consider the behaviors B1 and B2 from Example 6.9. We com-
puted that dV (B1,B2) = 1 and dV (B

∗
1,B

∗
2) = 3√

10
. It was shown in [21, p. 241]

that for B1 and B2 with input cardinality equal to 1, their distance in the V-metric
coincides with that in the Z-metric. Thus dZ(B

∗
1,B

∗
2) = 3√

10
. This implies that

dSB(B1,B2) = 3√
10

< 1. Finally, we compare the SB-metric with the Z-metric.

By Theorem 5.7 dZ(B
∗
1,B

∗
2) = dSB(B1,B2). Therefore these two metrics are again

incomparable in the sense that dZ �≤ dSB nor dZ �≥ dSB . In fact, for every pair
of behaviors B1,B2 ∈ L

q
cont we have dZ(B1,B2) < dSB(B1,B2) if and only if

dZ(B
∗
1,B

∗
2) > dSB(B

∗
1,B

∗
2).

Next, we will turn to a comparison of the topologies induced by the metrics. It
follows from the inequalities given in this section that the topology induced by the
L2-metric is coarser than those induced by the others. In fact, this topology can be
shown to be strictly coarser than the other topologies, and it was argued in [21] that,
due to this fact, it is in general not useful in robust control.
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By generalizing Theorem IV.4 in [21], it can be shown that for any pair B1,B2 ∈
L

q
cont there exists a constant 0 < c ≤ 1 (depending on B1) such that

(7.1) c dZ(B1,B2) ≤ dV (B1,B2) ≤ dZ(B1,B2).

Obviously, this inequality implies that the topologies induced by the Z-metric and
the V-metric coincide. We will now compare the topologies of the SB-metric and the
V-metric.

Theorem 7.5. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Assume that n(B1) =

n(B2). Then there exists 0 < c ≤ 1 such that

c dSB(B1,B2) ≤ dV (B1,B2) ≤ dSB(B1,B2).

Proof. By Theorems 6.8 and 7.2, under the assumption n(B1) = n(B2) we have
dV (B1,B2) = dV (B

∗
1,B

∗
2) and dV (B1,B1) ≤ dSB(B1,B1). Using (7.1) there exists

0 < c ≤ 1 such that c dZ(B
∗
1,B

∗
2) ≤ dV (B

∗
1,B

∗
2). This then implies c dSB(B1,B2) ≤

dV (B1,B2).
As a consequence, for any integer n the V-metric and the SB-metric considered as

metrics on the subset Lq
cont(n) of all controllable behaviors of fixed McMillan degree

n induce the same topology. Obviously this topology then also coincides with the
one induced by the Z-metric on L

q
cont(n). The issue whether the Z-metric and the

SB-metric define the same topology was posed as an open problem in [12, p. 1222].
Our result gives an answer to this question in full generality. The result was obtained
before in [13] for input-output systems with stable transfer matrices.

8. Properties of the metrics. In this section we will take a closer look at the
metrics introduced in sections 2 and 6 and establish several properties. Our main
focus will be on expressing these properties in behavioral terms.

It is well known that for subspaces V1,V2 of the Euclidean space Rn with the
standard inner product we have

gap(V1,V2) < 1 if and only if V1 ∩ V⊥
2 = {0}.

In what follows we will study the question how this generalizes to the metrics that we
defined on the space of controllable behaviors. In particular, for each of the metrics we
have defined we will study the question, what are necessary and sufficient conditions
under which the distance between two behaviors is strictly less than one?

8.1. Properties of the L2-metric and the V-metric. We start off with
answering the question posed in the introduction for the L2-metric. The following
lemma gives necessary and sufficient conditions in terms of the rational matrices
appearing in image representations of the behaviors.

Lemma 8.1. Let B1,B2 ∈ L
q
cont with m(B1) = m(B2). Let G1, G2 ∈ RL∞ such

that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ) with G1, G2 inner. Then the following

three statements are equivalent:
1. dL2(B1,B2) < 1,
2. det(G∗

2G1)(iω) �= 0 for all ω ∈ R and G∗
2G1 is biproper,

3. G∗
2G1 is nonsingular and (G∗

2G1)
−1 ∈ RL∞.

Proof. Let G̃2 ∈ RL∞ be co-inner and such that B2 = ker G̃2(
d
dt ). By Theo-

rem 5.1, dL2(B1,B2) = ‖G̃2G1‖∞. From the proof of Theorem 5.1, recall that

‖G̃2G1‖∞ = sup
ω∈R

σmax(G̃2G1)(iω) = 1− inf
ω∈R

σmin(G
∗
2G1)(iω).
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Obviously, infω∈R σmin((G
∗
2G1)(iω)) > 0 if and only if (G∗

2G1)(iω) is nonsingular
for all ω ∈ R and limω→∞ σmin((G

∗
2G1)(iω)) > 0; equivalently, statement 2 holds.

Clearly, 2 and 3 are equivalent.

The property of biproperness in the above can be characterized equivalently in
terms of the associated behaviors as follows.

Lemma 8.2. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Let G1, G2 ∈ RL∞ be right

prime such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ). Then G∗

2G1 is biproper if and
only if B1 ∩B∗

2 is autonomous and dim(B1 ∩B∗
2) = n(B1) + n(B2).

Proof. (⇒) By Lemma 6.6, G∗
2G1 biproper implies that B1 ∩B∗

2 is autonomous.
Let G1 = MN−1 be a right coprime factorization over R[ξ], and let G∗

2 = P−1Q a left
coprime factorization overR[ξ]. Now, G∗

2G1 = P−1QMN−1. By biproperness we have
deg det(QM) = deg det(P )+deg det(N). Also, as in the proof of Lemma 6.6, we have
B1∩B∗

2 = M( d
dt ) ker(QM)( d

dt ). This implies that dim(B1∩B∗
2) = deg det(QM). On

the other hand, by Lemma 6.4, deg det(P ) = n(B∗
2) = n(B2) and deg det(N) = n(B1).

(⇐) The converse implication is proven by reversing the above argument.

This immediately yields the following behavioral characterization.

Theorem 8.3. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Then the following are

equivalent:

1. δL2(B1,B2) < 1,
2. B1∩B∗

2 is autonomous and has no imaginary frequencies and dim(B1∩B∗
2) =

n(B1) + n(B2).

Proof. This follows by combining Lemmas 6.6, 8.1, and 8.2.

Remark 8.4. Note that this theorem gives necessary and sufficient conditions
under which the gap between the subspaces B1 ∩ L2(R) and B2 ∩ L2(R)) of the
Hilbert space L2(R) is smaller than 1. Interestingly, these conditions involve specific
system theoretic properties of the underlying behaviors, in particular autonomy of an
intersection, absence of nonzero periodic signals, and an equality involving McMillan
degrees. In this section we want to extend the above results to the other three metrics.
For the V-metric this extension is straightforward.

Lemma 8.5. Let B1,B2 ∈ L
q
cont and m(B1) = m(B2). Let G1, G2 ∈ RH∞ be

inner and right prime (over RH∞) such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ).

Then the following are equivalent:

1. dV (B1,B2) < 1,
2. dL2(B1,B2) < 1 and wno det(G∗

2G1) = 0.

If any of these conditions hold, then dV (B1,B2) = δL2(B1,B2).
Proof. Assume dV (B1,B2) < 1. Then obviously dL2(B1,B2) < 1. By Defini-

tion 6.1 we also have wnodet(G∗
2G1) = 0. Conversely, if dL2(B1,B2) < 1, then by

Lemma 8.1 det(G∗
2G1)(iω) �= 0 for all ω ∈ R. Together with wnodet(G∗

2G1) = 0 this
yields dV (B1,B2) = dL2(B1,B2) < 1.

This immediately yields the following behavioral characterization for the distance
between two controllable behaviors in the V-metric to be smaller than 1.

Theorem 8.6. Let B1,B2 ∈ L
q
cont, m(B1) = m(B2). Then the following are

equivalent:

1. dV (B1,B2) < 1,
2. dL2(B1,B2) < 1 and dim(B1 ∩B∗

2)anti = n(B2),
3. dL2(B1,B2) < 1 and dim(B1 ∩B∗

2)stab = n(B1).

Proof. The equivalence of 1 and 2 follows by combining Lemmas 6.6 and 8.5. To
prove the equivalence of 2 and 3 note that by Theorem 8.3, dL2(B1,B2) < 1 implies
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dim(B1 ∩B∗
2) = n(B1) + n(B2). Then obviously dim(B1 ∩B∗

2)stab = n(B1) if and
only if dim(B1 ∩B∗

2)stab = n(B1).

8.2. Properties of the Z-metric and the SB-metric. We now study the
question posed in the introduction to this section for the Z-metric and the SB-
metric. In particular we will establish behavioral characterizations for the properties
dZ(B1,B2) < 1 and dSB(B1,B2) < 1. For these two metrics this issue is more
involved than for the L2-metric and the V-metric. Our route will be to first derive
general Hilbert space characterizations and next translate these into behavioral terms.
We first recall the notion of Fredholm operator (see [10], [21]).

Definition 8.7. Let H be a Hilbert space and F : H → H a bounded lin-
ear operator. F is called a Fredholm operator if imF is closed and dim(kerF ) and
codim(imF ) are finite.

Now, for an arbitrary Hilbert space H and closed subspaces V1 and V2 of H, the
following conditions under which the gap between V1 and V2 is smaller than 1 are
well known (see [21], [14]).

Proposition 8.8. Let H be a Hilbert space and let V1 and V2 be closed subspaces.
Let ΠV2 |V1 be the orthogonal projection onto V2 restricted to V1. Then the following
statements are equivalent:

1. gap(V1,V2) < 1,
2. ΠV2 |V1 is Fredholm, V1 ∩ V⊥

2 = {0}, and V2 ∩ V⊥
1 = {0}.

Note that obviously kerΠV2 |V1 = V1 ∩ V⊥
2 . This general result is immedi-

ately applicable in our context with Hilbert space L2(R
+). Denote the gap in this

Hilbert space by gapL2(R+). Let B1,B2 ∈ L
q
cont. For convenience, use the short-

hand notation B2
1 := B1 ∩ L2(R

+) and B2
2 := B2 ∩ L2(R

+). By Definition 2.2,
dZ(B1,B2) = gapL2

(B2
1,B

2
2) = gapL2(R+)(B

2
1,B

2
2) and hence we immediately con-

clude the following.
Proposition 8.9. Let B1,B2 ∈ L

q
cont. Then dZ(B1,B2) < 1 if and only if

1. ΠB2
2
|B2

1
is Fredholm,

2. B2
1 ∩ (B2

2)
⊥ = {0} and B2

2 ∩ (B2
1)

⊥ = {0}.
Our aim in what follows is to reformulate conditions 1 and 2, obtaining more transpar-
ent, behavioral, system theoretic ones, in line with the conditions that we obtained
for the L2-metric and the V-metric in the previous subsection. We will now first
deal with the Fredholm condition 1. Surprisingly, it turns out that this condition is
equivalent to the condition that the distance in the L2-metric is less than one.

Theorem 8.10. Let B1,B2 ∈ L
q
cont. Let G1, G2 ∈ RH∞ be inner and right

prime over RH∞ such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ). Then ΠB2

2
|B2

1
is

Fredholm if and only if TG∗
2G1 is Fredholm. If, in addition, m(B1) = m(B2), then the

following are equivalent:
1. TG∗

2G1 is Fredholm,
2. G∗

2G1 is nonsingular and (G∗
2G1)

−1 ∈ RL∞,
3. dL2(B1,B2) < 1.

Proof. Recall that B2
1 = imTG1 and B2

2 = imTG2 . It was shown in [21] and
[14] that ΠB2

2
|B2

1
is Fredholm if and only if TG∗

2G1 is Fredholm. The condition that
TG∗

2G1 is Fredholm can be expressed equivalently as the invertibility condition 2 on the
rational matrix G∗

2G1. Indeed, by [21, p. 39] (see also [4]), for a given square matrix
G ∈ RL∞ the Toeplitz operator TG is Fredholm if and only if detG(iω) �= 0 for all
ω ∈ R and G has a proper inverse; equivalently G is nonsingular and G−1 ∈ RL∞.
By Lemma 8.1 this is equivalent to the condition that the distance between B1 and
B2 in the L2-metric is less than 1.
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In the next section we will make a detailed study of condition 2 in Proposition 8.9
by, in fact, explicitly computing the subspace intersectionsB2

1∩(B2
2)

⊥ andB2
2∩(B2

1)
⊥

in terms of driving variable state space representations of the behaviors B1 and B2.
This will then yield behavioral as well as state space characterizations of the property
dZ(B1,B2) < 1.

To conlude this subsection, we take a brief look at the SB-metric. By Theorem 5.6,
dSB(B1,B2) = dZ(B

∗
1,B

∗
2), so a characterization of the property dSB(B1,B2) < 1

can be obtained by applying the results obtained so far to the dual behaviors B∗
1 and

B∗
2. Using the fact that the L2-metric is invariant under dualization, in this way we

obtain that dSB(B1,B2) < 1 if and only if dL2(B1,B2) < 1, and the intersection
conditions appearing in condition 2 of Proposition 8.9 hold with B1 and B2 replaced
by B∗

1 and B∗
2.

9. State space representations of the subspace intersections. In this sec-
tion, we will establish representations of the subspace intersections B2

1 ∩ (B2
2)

⊥ and
B2

2 ∩ (B2
1)

⊥ in terms of driving variable state representations of the underlying be-
haviors B1 and B2. Using the fact that B2

1 = imTG1 and B2
2 = imTG2, it will turn

out that the intersection B2
1 ∩ (B2

2)
⊥ can be expressed in terms of the kernel of a

suitable Toeplitz operator with an invertible symbol. We will study such Toeplitz
operators in subsection 9.1. In subsection 9.2 we will review some basic material on
driving variable and output nulling representations of behaviors. Then, in subsections
9.3 and 9.4, we will give the desired representations of the subspace intersections.

A basic result that we will be using in this section is the following.
Lemma 9.1. Let B1,B2 ∈ L

q
cont. Let G1, G2 ∈ RH∞ be right prime over RH∞

and such that B1 = imG1(
d
dt ) and B2 = imG2(

d
dt ). Then

B2
1 ∩ (B2

2)
⊥ = TG1 kerTG∗

2G1 .

Proof. Let w ∈ B2
1 ∩ (B2

2)
⊥. Then w = TG1v. Since (B2

2)
⊥ = (im TG2)

⊥ =
kerT ∗

G1
= kerTG∗

2
, we also have TG∗

2
w = 0. By Halmos’ theorem, since G∗

2 is
antistable and G1 is stable, we have TG∗

2
TG1 = TG∗

2G1 . Hence TG∗
2G1v =

TG∗
2
w = 0 so w ∈ TG1 kerTG∗

2G1 . The converse inclusion is proven by reversing this
argument.

Since a necessary condition for dZ(B1,B2) < 1 is that dL2(B1,B2) < 1, equiv-
alently, G∗

2G1 is nonsingular and (G∗
2G1)

−1 ∈ RL∞, in this section we will assume
that the symbol of the Toeplitz operator TG∗

2G1 is invertible in RL∞.

9.1. Computing the kernel of Toeplitz operators with invertible sym-
bol. In this subsection we will, for a given invertible real rational matrix, compute
the kernel of the associated Toeplitz operator in terms of the constant real matrices
obtained from a state space realization of the rational matrix.

Let G ∈ RL∞ be nonsingular such that G−1 ∈ RL∞. Consider the Toeplitz
operator TG : L2(R

+) → L2(R
+) with symbol G. Let G(s) = C(sI−A)−1B+D be a

realization, possibly nonminimal, where A ∈ Rn×n has no imaginary axis eigenvalues.
Since G is biproper, D is nonsingular. We denote by X−(A) the stable subspace of
A, i.e.,

X−(A) :=
{
x0 ∈ R

n | lim
t→∞ eAtx0 = 0

}
.

Likewise, X+(A) denotes the antistable subspace of A. Clearly Rn = X−(A)⊕X+(A).
Let �(t) be the indicator function of R+. Denote the unobservable subspace of the
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pair (−D−1C,A−BD−1C) by N. We now compute the kernel kerTG of the Toeplitz
operator TG.

Theorem 9.2. Let X0 := [X−(A−BD−1C)+N]∩X+(A). Then the kernel of TG

is equal to

kerTG = {v ∈ L2(R
+) | ∃x0 ∈ X0 : v(t) = −�(t)D−1Ce(A−BD−1C)tx0}.

Consequently ker(TG) is a finite dimensional subspace of L2(R
+) with dimension equal

to dim(X0)− dim(X+(A) ∩N).
Proof. Let v ∈ L2(R

+) be in kerTG. Let w = MGv. This w is the unique
w ∈ L2(R) given by ẋ = Ax + Bv, w = Cx + Dv. Since Π+w = 0, we must have
that w(t) = 0 for t ≥ 0. Using the fact that D is nonsingular, this implies that

for t ≥ 0 we have v(t) = −D−1Ce(A−BD−1C)tx(0). Since v ∈ L2(R
+) we must have

v(t) → 0 as t → ∞. This implies that x(0) must be contained in X−(A−BD−1C)+N,
the sum of the stable subspace and the unobservable subspace. Next we prove that
x(0) ∈ X+(A). Let S be a coordinate transformation in Rn such that

S−1AS =

(
A− 0
0 A+

)
, S−1B =

(
B−
B+

)
,

with A− Hurwitz and A+ anti-Hurwitz. Partition S = (S− S+). Then im(S+) is
equal to the X+(A). For t ≥ 0 the state trajectory x(t) is explicitly given by

x(t) =

∫ t

0

S−eA−(t−s)B−v(s)ds +
∫ ∞

t

S+e
A+(t−s)B+v(s)ds,

where the integration starts at 0 due to the fact that v(t) = 0 for t ≤ 0. By evaluating
x(t) at t = 0 this yields

x(0) =

∫ ∞

0

S+e
A+(t−s)B+v(s)ds,

which obviously is contained in im(S+) = X+(A).

Conversely, let v(t) = −�(t)D−1Ce(A−BD−1C)tx0 with x0 ∈ X0. Let w = MGv.
Again, this w is the unique w ∈ L2(R) given by ẋ = Ax + Bv, w = Cx + Dv. We
claim that, in fact, w is given by

w(t) =

{
CeAtx0, t < 0,

0, t ≥ 0.

First note that since x0 ∈ X+(A), this w is in L2(R). We will now to prove that w
satisfies the equations ẋ = Ax+Bv, w = Cx+Dv with x(0) = x0. Indeed, for t < 0 it
is given that v(t) = 0. Thus the equations become ẋ(t) = Ax(t), w(t) = Cx(t), which

are indeed satisfied for t < 0 by the given w. For t ≥ 0, define x(t) := e(A−BD−1C)tx0.
Then v(t) = −D−1Cx(t) and hence ẋ(t) = Ax(t) + Bv(t) for t ≥ 0. Finally, 0 =
Cx(t) +Dv(t) for t ≥ 0.

We have now shown that w(t) = 0 for t ≥ 0 so Π+w = 0. This implies Π+MGv =
0, so v ∈ ker(TG).

Let {xi, i = 1, 2, . . . , r} be a basis for the subspace X0∩N and extend it to a basis
{xi, i = 1, 2, . . . , k} of X0. Then a basis for ker(TG) is given by

{−�(t)D−1Ce(A−BD−1C)txi, i = r + 1, 2, . . . , k}.
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Thus dim(ker(TG)) = dim(X0) − dim(X0 ∩ N). The result then follows from the
observation that X0 ∩N = X+(A) ∩N.

9.2. Driving variable and output nulling representations of behaviors.
We will now review some basic facts on driving variable and output nulling represen-
tations of behaviors. For details we refer to [25], [20], [16]. We first consider driving
variable representations.

Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D ∈ Rq×m, and consider the equations

(9.1) ẋ = Ax+Bv, w = Cx+Dv.

These equations represent the so-called full behavior

(9.2)
BDV (A,B,C,D) := {(w, x, v) ∈ Lloc(R,R

q)×Lloc(R,R
n)×Lloc(R,R

m) | (9.1) holds}.

In (9.1), we interpret w as manifest variable and (x, v) as latent variables. Thus, BDV

is a latent variable representation of its external behavior given by

BDV (A,B,C,D)ext = {w | ∃(x, v) such that (w, x, v) ∈ BDV (A,B,C,D)}.(9.3)

In fact, in (9.1), x is a state variable and v is an auxiliary variable, called the driving
variable. Further, if B = BDV (A,B,C,D)ext, then we call BDV a driving variable
representation of B. A driving variable representation of B is called minimal if the
state dimension n and the driving variable dimension m are minimal over all driving
variable representations. It can be shown that this holds if and only if n = n(B) and
m = m(B).

Next we review output nulling representations. Let A ∈ Rn×n, B ∈ Rn×q, C ∈
R

p×n, D ∈ R
p×q and consider the equations

(9.4) ẋ = Ax+Bw, 0 = Cx+Dw.

The full behavior represented by these equations is given by

(9.5) BON (A,B,C,D) := {(w, x) ∈ Lloc(R,R
q)× Lloc

1 (R,Rn) | (9.4) holds}.

In (9.4), we interpret w as manifest variable and x as a latent variable. Thus, BON

is a latent variable representation of its external behavior given by

BON (A,B,C,D)ext = {w | ∃x such that (w, x) ∈ BON (A,B,C,D)}.(9.6)

Also in (9.4), x is a state variable. If B = BON (A,B,C,D)ext, then we call BON

an output nulling representation of B. An output nulling representation of B is
called minimal if the state dimension n and the dimension of the equation space p are
minimal over all output nulling representations. This holds if and only if n = n(B)
and p = q − m(B).

There is the following duality between driving variable and output nulling repre-
sentations: if B ∈ L

q
cont, then BDV (A,B,C,D) is a minimal DV representation of B

if and only if BON (−A�, C�,−B�, D�) is a minimal output nulling representation
of the dual behavior B∗.
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The following result from [16, Theorem 5.8] will be used in the rest of the paper.
Lemma 9.3. Let G ∈ R(ξ)P . Let G(ξ) = C(ξI −A)−1B+D be a realization with

(A,B) a controllable pair and (C,A) an observable pair. Then BDV (A,B,C,D) is
a minimal DV-representation of imG( d

dt ) if and only if G is right prime over R(ξ)P
and has no zeros.

9.3. State representation of B1 ∩B∗
2 and B2 ∩B∗

1. In this subsection we
will establish state representations of B1 ∩B∗

2 and B2 ∩B∗
1 in terms of realizations

of rational image representations of B1 and B2.
Let B1,B2 ∈ L

q
cont with m(B1) = m(B2). A standing assumption throughout this

section will be that G1, G2 ∈ RH∞ are right prime over RH∞, B1 = imG1(
d
dt ) and

B2 = imG2(
d
dt ), and G1 and G2 have no zeros. According to Theorem 3.2, such G1

andG2 exist. Now realizeGi(ξ) = Ci(ξI−Ai)
−1Bi+Di, i = 1, 2, with (Ai, Bi) control-

lable and (Ci, Ai) observable. We then have G∗
2(ξ) = −B�

2 (ξI+A�)−1C�
2 +D�

2 . Ac-
cording to Lemma 9.3, this yields the following minimal driving variable representation
of B1:

(9.7) ẋ1 = A1x1 +B1v, w1 = C1x1 +D1v.

Furthermore, a minimal output nulling representation of B∗
2 is given by

(9.8) ẋ2 = −A�
2 x1 + C�

2 w2, 0 = −B�
2 x2 +D�

2 w2.

Now define

(9.9)

A :=

(
A1 0

C�
2 C1 −A�

2

)
, B :=

(
B1

C�
2 D1

)
, C := (D�

2 C1 −B�
2 ), D := D�

2 D1.

Clearly, then (G∗
2G1)(ξ) = C(ξI −A)−1B +D. Also, it is easily verified that a state

representation of the intersection B1 ∩B∗
2 is given by(

ẋ1

ẋ2

)
=

(
A1 0

C�
2 C1 −A�

2

)(
x1

x2

)
+

(
B1

C�
2 D1

)
v,(9.10)

0 = (D�
2 C1 −B�

2 )

(
x1

x2

)
+D�

2 D1v,(9.11)

w = C1x1 +D1v,(9.12)

i.e., w ∈ B1 ∩B∗
2 if and only if there exists x1, x2 and v such that (9.10), (9.11), and

(9.12) hold.
If we assume that (G∗

2G1)
−1 ∈ RL∞, then D = D�

2 D1 is nonsingular. Elimi-
nating the variable v from (9.10), (9.11), and (9.12) and writing x = col(x1, x2), an
alternative state representation of B1 ∩B∗

2 is then given by

(9.13) ẋ = (A−BD−1C)x, w =
(
(C1 0)−D1D

−1C
)
x.

We now address the issue of minimality of the state representation (9.13). Let Ai be
an ni×ni matrix (i = 1, 2). By minimality of the driving variable and output nulling
representations (9.7) and (9.8) above, we have n(B1) = n1 and n(B∗

2) = n2. Thus we
obtain the next lemma.
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Lemma 9.4. Assume that (G∗
2G1)

−1 ∈ RL∞. Then (9.13) is a minimal state
representation of B1 ∩B∗

2.
Proof. By Lemma 8.2, B1 ∩ B∗

2 is autonomous, and we have dim(B1 ∩ B∗
2) =

n(B1)+n(B2). As a consequence, since n(B∗
2) = n(B2), the state space dimension of

the state representation (9.13), being equal to n1+n2, is equal to the McMillan degree
dim(B1 ∩B∗

2) of B1 ∩B∗
2, and hence the state representation is minimal.

In particular this implies that the state is observable from the manifest variable, so
for any w there exists exactly one x = col(x1, x2) such that (9.13) holds. Observability
is equivalent to observability of the pair ((C1 0)−D1D

−1C,A−BD−1C).
Clearly, using observability, the stable part (B1 ∩ B∗

2)stab of the autonomous
behavior B1 ∩B∗

2 consists of those external trajectories w whose corresponding state
trajectory x passes through the stable subspace of A−BD−1C; in other words,

(9.14) (B1 ∩B∗
2)stab = {w ∈ B1 ∩B∗

2 | x(0) ∈ X−(A−BD−1C)}.
Of course, a similar representation holds for the antistable part (B1 ∩B∗

2)anti.
The following lemma states that although (−D−1C,A −BD−1C) does not need

to be observable, we do have that it is detectable.
Lemma 9.5. Assume that (G∗

2G1)
−1 ∈ RL∞. Let N be the unobservable subspace

of the pair (−D−1C,A −BD−1C). Then N ⊂ X−(A−BD−1C).
Proof. Under the assumption, the state representation (9.13) is minimal. Let

x0 ∈ N, x0 = col(x10, x20), and let w be the corresponding external trajectory.
In (9.13) we then have −D−1Cx = 0, so w = C1x1, with ẋ1 = A1x1. Since
A1 is Hurwitz, w(t) → 0 as t → ∞. By observability of (9.13) this implies x0 ∈
X−(A−BD−1C).

Note that x0 is of the form col(0, x20) if and only if x0 ∈ X+(A). The following
will be very useful.

Lemma 9.6. Assume that (G∗
2G1)

−1 ∈ RL∞. Then X+(A) ∩N = {0}.
Proof. Let x0 ∈ X+(A) and in (9.13) assume that the corresponding state trajec-

tory x satisfies D−1Cx = 0. Since then ẋ1 = A1x1 and since x0 = (0, x20) we find
that x1 = 0, so x2 satisfies ẋ2 = −A�

2 x2, 0 = −B�
2 x2. As (A2, B2) was chosen to be

controllable, this implies that x2 = 0, which yields x0 = 0.
As a consequence of the representation (9.14) we can also compute the following.
Lemma 9.7. dim(B1 ∩B∗

2)stab = dimX−(A−BD−1C).
We now turn to establishing a state representation of B2 ∩ B∗

1. As before, let
Gi(ξ) = Ci(ξI−Ai)

−1Bi+Di, i = 1, 2 with (Ai, Bi) controllable and (Ci, Ai) observ-
able. Now define

(9.15)

A′ :=
(

A2 0
C�

1 C2 −A�
1

)
, B′ :=

(
B2

C�
1 D2

)
, C′ := (D�

1 C2 −B�
1 ), D′ := D�

1 D2.

Under the assumption (G∗
1G2)

−1 ∈ RL∞ (equivalently (G∗
2G1)

−1 ∈ RL∞), a minimal
state representation of the autonomous behavior B2 ∩B∗

1 is then given by

(9.16)
d

dt
x′ = (A′ −B′D′−1C′)x′, w′ =

(
(C2 0)−D2D

′−1C′)x′,

where x′ = col(x2, x1). Our aim is to relate this explicitly to the state representation
(9.13) of B1 ∩B∗

2. Indeed, the quadruple (9.15) is similar to the dual of (A,B,C,D):
if we define

S :=

(
0 −I
I 0

)
,
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then SA′S−1 = −A�, SB′ = −C�, C′S−1 = B�, and D′ = D�. Thus, introducing
the new state variable z := Sx′, we get the following minimal state representation for
B2 ∩B∗

1:

(9.17) ż = −(A−BD−1C)�z, w′ =
(
(C2 0)−D2D

−�B�) z.
The advantage of this representation is that it explicitly displays its relation with the
state representation (9.13) of B1 ∩B∗

2. This will be useful in what follows. Note that
this representation is again observable. Therefore

(9.18) (B2 ∩B∗
1)stab = {w′ ∈ B2 ∩B∗

1 | z(0) ∈ X−(−(A−BD−1C)�)}.
Since X−(−(A−BD−1C)�) = X−(A−BD−1C)⊥, in addition to the result of Lemma
9.7 we have

(9.19) dim(B2 ∩B∗
1)stab = n1 + n2 − dimX−(A−BD−1C).

9.4. Representation of B2
1 ∩ (B2

2)
⊥ and B2

2 ∩ (B2
1)

⊥. In this final sub-
section we wrap up things and establish explicit representations of the subspace in-
tersections B2

1 ∩ (B2
2)

⊥ and B2
2 ∩ (B2

1)
⊥ in terms of realizations of rational image

representations of B1 and B2.
Let B1,B2 ∈ L

q
cont, m(B1) = m(B2). Recall the shorthand notation B2

1 :=
B1 ∩ L2(R

+) and B2
2 := B2 ∩ L2(R

+). Again, let G1, G2 ∈ RH∞ be right prime
over RH∞ such that B1 = imG1(

d
dt ) and B2 = imG2(

d
dt ) and such that G1 and

G2 have no zeros. Recall from Lemma 9.1 that B2
1 ∩ (B2

2)
⊥ = TG1 kerTG∗

2G1 . Under
the additional condition that (G∗

2G1)
−1 ∈ RL∞ (equivalently, dL2(B1,B2) < 1; see

Theorem 8.10), a minimal state representation of B1 ∩B∗
2 is given by (9.13).

In finding a representation of the intersection B2
1 ∩ (B2

2)
⊥, the subbehavior of

B1 ∩B∗
2 of all external trajectories w whose corresponding state trajectory x passes

through both the intersection of the stable subspace of A−BD−1C and the anti-stable
subspace of A turns out to be crucial. Define

(9.20) (B1 ∩B∗
2)

+ := {w ∈ B1 ∩B∗
2 | x(0) ∈ X+(A)}.

Note that dim(B1 ∩B∗
2)

+ = n2, the MacMillan degree of B2.
In what follows, let P+ : (Rq)R → (Rq)R denote the map that projects functions

from R to Rq onto their future: (P+w)(t) := w(t)�(t). Then, by applying Theorem
9.2 we find that the subspace B2

1 ∩ (B2
2)

⊥ is the image of (B1 ∩B∗
2)stab ∩ (B1 ∩B∗

2)
+

under this projection.
Theorem 9.8. Assume (G∗

2G1)
−1 ∈ RL∞. Let A,B,C, and D be given by (9.9).

Then we have

B2
1 ∩ (B2

2)
⊥ = P+

(
(B1 ∩B∗

2)stab ∩ (B1 ∩B∗
2)

+
)
.

Furthermore, the dimension of B2
1∩(B2

2)
⊥ is equal to dimX−(A−BD−1C)∩X+(A).

Proof. If w1 ∈ B2
1∩(B2

2)
⊥, then it is of the form w1 = TG1v1 with v1 ∈ kerTG∗

2G1 .
By Theorem 9.2 and Lemma 9.5 we have v1(t) = −�(t)v(t) with

v(t) = D−1Ce(A−BD−1C)tx0

for some x0 ∈ X−(A − BD−1C) ∩ X+(A). Since G1 ∈ RH∞ we have w1 = TG1v1 =
MG1v1, which is the unique solution in L2(R) of ẋ1 = A1x1+B1v1, w1 = C1x1 +D1v1.
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For t ≥ 0 we have v1(t) = v(t), so for t ≥ 0 we must have w1(t) = w(t), where w(t)
is determined by the equations ẋ = (A − BD−1C)x, x(0) = x0, w = ((C1 0) −
D1D

−1C)x. Clearly, w ∈ (B1 ∩B∗
2)stab ∩ (B1 ∩B∗

2)
+ and w1 = P+w.

Conversely, let w ∈ (B1 ∩ B∗
2)stab ∩ (B1 ∩ B∗

2)
+ and consider P+w. By def-

inition, w is determined by the equations ẋ = (A − BD−1C)x, x(0) = x0, w =(
(C1 0)−D1D

−1C
)
x with x0 ∈ X−(A−BD−1C) ∩ X+(A). Define

v(t) := −D−1Cx(t).

Then by Theorem 9.2 and Lemma 9.5 we have v1(t) = −�(t)v(t) ∈ kerTG∗
2G1 . Define

w1 := TG1v1. Then, again, w1 = MG1v1 is the unique trajectory in L2(R) that
satisfies the equations ẋ1 = A1x1 + B1v1, w1 = C1x1 + D1v1. Since for t ≥ 0 we
have v1(t) = v(t), we must also have w1(t) = w(t) for t ≥ 0, so P+w = w1 ∈
TG1 kerTG∗

2G1 = w1 ∈ B2
1 ∩ (B2

2)
⊥.

Finally, from observability of the state representation (9.13) the dimension of
(B1 ∩B∗

2)stab ∩ (B1 ∩B∗
2)

+ is equal to dim(X−(A − BD−1C) ∩ X+(A)). Obviously
this must also be the dimension of B2

1 ∩ (B2
2)

⊥.
Next we turn to representing the dual intersection B2

2 ∩ (B2
1)

⊥. Thus, as before,
we introduce the subbehavior of B2∩B∗

1 of all external trajectories w′ such that their
corresponding state trajectory x′ passes through X+(A

′) (with respect to the state
representation (9.16)):

(9.21) (B2 ∩B∗
1)

+ := {w′ ∈ B2 ∩B∗
1 | x′(0) ∈ X+(A

′)}.

It is easily verified that in terms of the alternative state representation (9.17) we have

(9.22) (B2 ∩B∗
1)

+ = {w′ ∈ B2 ∩B∗
1 | z(0) ∈ X+(−A�)},

so analogously to Theorem 9.8 we find that if (G∗
2G1)

−1 ∈ RL∞, then

B2
2 ∩ (B2

1)
⊥ = P+

(
(B2 ∩B∗

1)stab ∩ (B2 ∩B∗
1)

+
)
.

Moreover, the dimension of B2
2 ∩ (B2

1)
⊥ is equal to dimX−(−(A − BD−1C)�) ∩

X+(−A�).

10. Properties of the metrics, continued. Using the detailed analysis in
the previous section, we will now continue our study of the Z-metric. We will also
return to the L2-metric, the V-metric, and the SB-metric. Let B1,B2 ∈ L

q
cont with

m(B1) = m(B2). Again, a standing assumption throughout this section will be that
G1, G2 ∈ RH∞ are right prime over RH∞, B1 = imG1(

d
dt ) and B2 = imG2(

d
dt ), and

G1 and G2 have no zeros. In addition we now assume that both G1 and G2 are inner.
Throughout this section, the constant real matrices A,B,C, and D are obtained from
minimal realizations of G1 and G2 and are given by (9.9).

10.1. Behavioral characterizations for Z-metric and V-metric. From
Theorem 8.6 recall that for controllable behaviors B1,B2 with the same number
of inputs, dV (B1,B2) < 1 if and only if dL2(B1,B2) < 1 and the dimension of
(B1 ∩B∗

2)stab is equal to the MacMillan degree of B2. Also for the Z-metric, condi-
tions can now be formulated in terms of the stable part of B1 ∩B∗

2. First note the
following immediate consequence of Theorem 9.8.

Lemma 10.1. Assume that (G∗
2G1)

−1 ∈ RL∞. Let (B1 ∩ B∗
2)

+ be defined by
(9.20). Then B2

1 ∩ (B2
2)

⊥ = 0 if and only if (B1 ∩B∗
2)stab ∩ (B1 ∩B∗

2)
+ = {0}.
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By applying Proposition 8.9 and Theorem 9.8, this immediately leads to the
following behavioral characterization. Again, let (B1∩B∗

2)
+ be defined by (9.20) and

let (B2 ∩B∗
1)

+ be defined by (9.21).
Theorem 10.2. Let B1,B2 ∈ L

q
cont with m(B1) = m(B2). Then dZ(B1,B2) < 1

if and only if the following three conditions hold:
1. dL2(B1,B2) < 1,
2. (B1 ∩B∗

2)stab ∩ (B1 ∩B∗
2)

+ = {0},
3. (B2 ∩B∗

1)stab ∩ (B2 ∩B∗
1)

+ = {0}.
Also in case of the V-metric, the behavior intersections appearing in conditions 2

and 3 of Theorem 10.2 turn out to crucial in order to characterize distance less than
one. Indeed, the following theorem gives an alternative for the characterization of
Theorem 8.6 (see also [21, p. 41]).

Theorem 10.3. Let B1,B2 ∈ L
q
cont with m(B1) = m(B2). Then dV (B1,B2) < 1

if and only if the following two conditions hold:
1. dL2(B1,B2) < 1,
2. dim(B1 ∩B∗

2)stab ∩ (B1 ∩B∗
2)

+ = dim(B2 ∩B∗
1)stab ∩ (B2 ∩B∗

1)
+.

Condition 2 above is equivalent to

dimB2
1 ∩ (B2

2)
⊥ = dimB2

2 ∩ (B2
1)

⊥.

Proof. We will show that under the assumption that condition 1 holds (equiva-
lently, (G∗

2G1)
−1 ∈ RL∞), condition 2 is equivalent with dim(B1 ∩B∗

2)stab = n(B1).
Indeed, it was shown in the previous subsection that

(10.1) dim(B1 ∩B∗
2)stab ∩ (B1 ∩B∗

2)
+ = dimX−(A−BD−1C) ∩ X+(A)

and

dim(B2 ∩B∗
1)stab ∩ (B2 ∩B∗

1)
+ = dimX−(−(A−BD−1C)�) ∩ X+(−A�).

Now note that

X−(−(A−BD−1C)�) ∩ X+(−A�)

=X−(A−BD−1C)⊥ ∩ X+(A)
⊥ = (X−(A−BD−1C) + X+(A))

⊥.

As a consequence we obtain

(10.2) dim(B2∩B∗
1)stab∩ (B2∩B∗

1)
+ = n1+n2−dimX−(A−BD−1C)+X+(A).

Next,

n1 + n2 − dimX−(A−BD−1C) + X+(A)

= n1 + n2 −
(
dimX−(A−BD−1C) + dimX+(A)

− dimX−(A−BD−1C) ∩ X+(A)
)

= n1 − dimX−(A−BD−1C) + dimX−(A−BD−1C) ∩ X+(A).

This is equal to dimX−(A − BD−1C) ∩ X+(A) if and only if the condition n1 =
dimX−(A−BD−1C) holds; equivalently, dim(B1 ∩B∗

2)stab = n(B1).
Thus, as indicated before in [21, p. 41], under the assumption that the distance

in the L2-metric is less than 1, the distance in the V-metric is less than 1 if and only
if the dimensions of the intersections (B1 ∩B∗

2)stab ∩ (B1 ∩B∗
2)

+ and (B2∩B∗
1)stab ∩

(B2 ∩B∗
1)

+ are equal, whereas the distance in the Z-metric is less than 1 if and only
if these intersections have dimension zero.
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10.2. State space characterizations. In this final subsection we will collect
the relevant material from section 9 and formulate state space conditions for the
distance in our metrics to be less than 1, in terms of the minimal driving variable
representations of B1 and B2 obtained by realization of G1 and G2. We will first
establish such conditions for the L2-metric.

Theorem 10.4. Let B1,B2 ∈ L
q
cont with m(B1) = m(B2). Then dL2(B1,B2) < 1

if and only if the following two conditions hold:
1. D = D�

2 D1 is nonsingular,
2. A−BD−1C has no imaginary axis eigenvalues.

Proof. (⇒) By Lemma 8.1, G∗
2G1 is biproper. This implies D = D�

2 D1 is non-
singular. By Theorem 8.3, B1 ∩ B∗

2 is autonomous and its dimension is equal to
n(B1) + n(B2). Thus (9.13) is a minimal state representation, so it is observable.
Finally, again by Theorem 8.3, B1 ∩B∗

2 has no imaginary frequencies, so none of the
eigenvalues of A−BD−1C can lie on the imaginary axis.

(⇐) D = D�
2 D1 nonsingular implies that G∗

2G1 is biproper. By Lemma 8.2,
B1 ∩ B∗

2 is autonomous and its dimension is equal to n(B1) + n(B2). Also, (9.13)
is a state representation of B1 ∩ B∗

2. Since A − BD−1C has no eigenvalues on the
imaginary axis, B1 ∩ B∗

2 has no imaginary frequencies. Theorem 8.3 then yields
dL2(B1,B2) < 1.

Next, we turn to the V-metric again.
Theorem 10.5. Let B1,B2 ∈ L

q
cont with m(B1) = m(B2). Denote n1 := n(B1).

Then dV (B1,B2) < 1 if and only if the following conditions hold:
1. dL2(B1,B2) < 1,
2. dimX−(A−BD−1C) = n1.

Proof. If dV (B1,B2) < 1, then dL2(B1,B2) < 1. Under this condition B1 ∩B∗
2

is autonomous and by Lemma 9.7, dim(B1 ∩ B∗
2)stab = dimX−(A − BD−1C). By

Theorem 8.6 the latter equals n1. The converse is proved in a similar way.
Finally, we give a characterization for the Z-metric.
Theorem 10.6. Let B1,B2 ∈ L

q
cont and m(B1) = m(B2). Then dZ(B1,B2) < 1

if and only if the following conditions hold:
1. dL2(B1,B2) < 1,
2. X−(A−BD−1C)⊕ X+(A) = Rn1+n2 .

Proof. dZ(B1,B2) < 1 if and only if dL2(B1,B2) < 1 and conditions 2 and 3
of Theorem 10.2 hold. By (10.1), condition 2 is equivalent with X−(A − BD−1C) ∩
X+(A) = {0}, and by (10.2) condition 3 is equivalent with X−(A−BD−1C)∩X+(A) =
R

n1+n2 .
Note that since dimX+(A) = n2, the condition X−(A − BD−1C) ⊕ X+(A) =

Rn1+n2 implies that dimX−(A − BD−1C) = n1. This indeed confirms that
dZ(B1,B2) < 1 implies dV (B1,B2) < 1, as we already knew.

11. Conclusions. In this paper we have studied notions of distance between
linear differential systems. We have introduced four metrics on the space of all con-
trollable behaviors. Three of these have been defined in terms of gaps between closed
subspaces of the Hilbert space L2(R). After having established the relation between
rational representations of behaviors and classical multiplication operators, we have
expressed these metrics in terms of the proper rational matrices appearing in the
rational representations. We have introduced a fourth metric on the space of control-
lable behaviors as a generalization of the ν-metric. As in the input-output framework,
this definition has been given in terms of rational representations. For this metric, we
have established a representation-free, behavioral characterization as well. We have
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also made a comparison between the four metrics and have compared the values they
take and the topologies they induce. Finally, for all metrics we have made a detailed
study of necessary and sufficient conditions under which the distance between two
behaviors is less than one. For this, both behavioral as well as state space conditions
have been derived in terms of driving variable representations of the behaviors.
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