
 

 

 University of Groningen

On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass
Action Kinetics
van der Schaft, Arjan ; Rao, Shodhan; Jayawardhana, Bayu

Published in:
Siam Journal on Applied Mathematics

DOI:
10.1137/11085431X

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van der Schaft, A., Rao, S., & Jayawardhana, B. (2013). On the Mathematical Structure of Balanced
Chemical Reaction Networks Governed by Mass Action Kinetics. Siam Journal on Applied Mathematics,
73(2), 953-973. https://doi.org/10.1137/11085431X

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1137/11085431X
https://research.rug.nl/en/publications/136f2c19-a8aa-49a6-942e-00c276fca1e8
https://doi.org/10.1137/11085431X


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2013 Society for Industrial and Applied Mathematics
Vol. 73, No. 2, pp. 953–973

ON THE MATHEMATICAL STRUCTURE OF BALANCED
CHEMICAL REACTION NETWORKS GOVERNED BY MASS

ACTION KINETICS∗

ARJAN VAN DER SCHAFT† , SHODHAN RAO‡ , AND BAYU JAYAWARDHANA§

Abstract. Motivated by recent progress on the interplay between graph theory, dynamics,
and systems theory, we revisit the analysis of chemical reaction networks described by mass action
kinetics. For reaction networks possessing a thermodynamic equilibrium we derive a compact for-
mulation exhibiting at the same time the structure of the complex graph and the stoichiometry of
the network, and which admits a direct thermodynamical interpretation. This formulation allows
us to easily characterize the set of positive equilibria and their stability properties. Furthermore,
we develop a framework for interconnection of chemical reaction networks, and we discuss how the
formulation leads to a new approach for model reduction.

Key words. chemical reaction networks, mass action kinetics, complex graph, weighted Lapla-
cian matrix, equilibria, interconnection, model reduction
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1. Introduction. Large-scale chemical reaction networks arise abundantly in
systems biology and bioengineering. The most basic law prescribing the dynamics
of the concentrations of the various species is the law of mass action, leading to
polynomial differential equations for the evolution of each species. In order to handle
the complexity of the resulting high-dimensional sets of nonlinear differential equations
and to gain insight into their dynamical properties it is important to identify their
underlying mathematical structure, and to express the equations in their most intrinsic
way. In line with the recent surge of interest in network dynamics, at least two
aspects should be fundamental in such a mathematical formulation: (1) a graph
representation, and (2) a specific form of the differential equations.

The graph representation of chemical reaction networks is not immediate, since
chemical reactions (the obvious candidates for identification with the edges of a graph)
generally involve more than two chemical species (the simplest candidates for iden-
tification with the vertices). We will follow an approach that has been initiated and
developed in the work of Horn and Jackson (see [15, 14]), and Feinberg (see, e.g.,
[11, 12]) by associating the complexes of the chemical reaction network, that is, the
left- and right-hand sides of the reactions, with the vertices of a graph. The resulting
directed graph, called the complex graph in this paper, is characterized by its inci-
dence matrix. Furthermore, the expression of the complexes in the chemical species
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954 A. VAN DER SCHAFT, S. RAO, AND B. JAYAWARDHANA

defines a matrix, called the complex stoichiometric matrix, while the standard sto-
ichiometric matrix factorizes as the product of this complex stoichiometric matrix
with the incidence matrix of the complex graph; see, e.g., [24, 3]. In order to derive a
specific form of differential equations we will start with a formulation of mass action
reaction network dynamics involving a nonsymmetric matrix defined by the complex
graph and the chemical reaction constants, the basic form of which can be already
found in the innovative paper by Sontag [26]. The main part of the paper, however,
is devoted to a subclass of mass action reaction networks, called (detailed-)balanced
reaction networks, where we assume the existence of a thermodynamical equilibrium,
or, equivalently, where the detailed balance equations admit a solution. Balanced re-
action networks are not only necessarily reversible but also involve, in cases in which
the row rank of the stoichiometric matrix is smaller than the number of reactions,
conditions on the forward and reverse reaction rate constants (usually referred to as
the Wegscheider conditions; see [13]).

A basic contribution of the present paper is to derive for balanced chemical re-
action networks a new formulation of the dynamics, involving a symmetric weighted
Laplacian matrix of the complex graph. It will be shown how this form admits a
natural thermodynamical interpretation, and in fact can be regarded as a full graph-
theoretic version of the thermodynamical formulation for single reactions derived in
the work of Katchalsky, Oster, and Perelson (see [22, 21]). As an immediate conse-
quence we derive that all positive equilibria of balanced reaction networks are in fact
thermodynamic equilibria. Furthermore, this new form of the equations of balanced
chemical reaction networks enables us to give a very simple and insightful proof of
some of the fundamental results obtained for a different class of mass action reaction
networks (roughly speaking, weakly reversible networks with deficiency zero, or defi-
ciency one under additional conditions) in the fundamental work of Horn and Jackson
[15, 14] and Feinberg, e.g., [11, 12], which was an indispensable source of concepts
and tools for the work reported in the present paper. In particular, we give a sim-
ple characterization of the set of positive equilibria and prove (under the assumption
of persistence of the network) the asymptotic convergence to a unique equilibrium
corresponding to the initial condition of the system. Subsequently we extend the
formulation of the dynamics of chemical reaction networks to open reaction networks,
i.e., involving an influx or efflux of some of their species, called boundary chemical
species. It is shown how the chemical potentials of the boundary species define nat-
ural outputs for the system, resulting in a passive system, and how this leads to a
theory of interconnection of open reaction networks, continuing the work of Oster and
Perelson [21, 23].

The identification of an underlying weighted Laplacian matrix of the complex
graph opens the way for the use of (algebraic) graph-theoretic methods, which seem
essential for handling the complexity of large-scale reaction networks. In the current
paper we present a new model reduction method, which is based on the fact that
Schur complements of Laplacian matrices are again Laplacian. This reduction proce-
dure draws inspiration from a similar technique in the theory of large-scale electrical
circuits, sometimes referred to as Kron reduction, and leads to an approximating
reduced model which is again a balanced mass action reaction network.

The paper is organized as follows. In section 2, we summarize the mathematical
structure of chemical reaction networks described in, e.g., [15, 14, 11, 12, 24]; see also
[3] for a clear account. In section 3, we recall the law of mass action kinetics, the
Wegscheider conditions for existence of a thermodynamic equilibrium, and we derive
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BALANCED CHEMICAL REACTION NETWORKS 955

for chemical reaction networks admitting a thermodynamic equilibrium an insightful
formulation involving a symmetric weighted Laplacian matrix for the complex graph.
Before providing the thermodynamical interpretation of this formulation, we discuss
the decomposition of the complex graph into its connected components, largely fol-
lowing the exposition in [24], and its implications for the established formulation of
balanced reaction networks. In section 4 we utilize the developed formulation to de-
rive a simple characterization of the set of positive equilibria, and we give a Lyapunov
analysis to show the convergence to a unique equilibrium depending on the initial
concentration vector. In section 5 the framework is extended to reaction networks
with inflows and outflows, and we discuss interconnection of such reaction networks
through shared boundary chemical species. The application of the established for-
mulation of balanced reaction networks to model reduction is discussed in section 6.
Finally, section 7 contains the conclusions and topics of current and future research.

Notation. The space of m-dimensional real vectors is denoted by R
m, the space

of m-dimensional real vectors consisting of all strictly positive entries by R
m
+ , and

the space of m-dimensional real vectors consisting of all nonnegative entries by R̄
m
+ .

The rank of a real matrix A is denoted by rankA, while its transpose is denoted as
AT . Furthermore, kerA and imA denote the kernel and image, respectively, of the
matrix A. Given a1, . . . , an ∈ R, diag(a1, . . . , an) denotes the diagonal matrix with
diagonal entries a1, . . . , an; this notation is extended to the block-diagonal case when
a1, . . . , an are square matrices. If U is a linear subspace of Rm, then U⊥ denotes
its orthogonal subspace (with respect to the standard Euclidean inner product). �n

denotes the n-dimensional vector with all entries equal to 1. The time-derivative
dx
dt (t) of a vector x depending on time t will be denoted by ẋ(t) or ẋ. The mapping
Ln : R

m
+ → R

m, x �→ Ln(x), is defined as the mapping whose ith component is
given as (Ln(x))i := ln(xi). Similarly, the mapping Exp : Rm → R

m
+ , x �→ Exp(x),

is the mapping whose ith component is given as (Exp(x))i := exp(xi). Also, we
define for any vectors x, z ∈ R

m the vector x · z ∈ R
m as the elementwise product

(x · z)i := xizi, i = 1, 2, . . . ,m, and the vector x
z ∈ R

m as the elementwise quotient(
x
z

)
i
:= xi

zi
, i = 1, . . . ,m. Note that with these notations Exp(x+z) = Exp(x)·Exp(z)

and Ln(x · z) = Ln(x) + Ln(z), Ln
(
x
z

)
= Ln(x)− Ln(z).

2. Chemical reaction network structure. In this section we will survey the
basic topological structure of chemical reaction networks. The first step is the stoi-
chiometry expressing the conservation laws of chemical reactions. A next innovative
step was taken in the work of Horn and Jackson and Feinberg (see [15, 14, 11, 12])
by defining the complexes of a reaction to be the vertices of a graph. We will sum-
marize these achievements in a slightly more abstract manner, also making use of the
expositions given in [24, 3].

2.1. Stoichiometry. Consider a chemical reaction network involving m chem-
ical species (metabolites), among which r chemical reactions take place. The basic
structure underlying the dynamics of the vector x ∈ R

m
+ of concentrations xi, i =

1, . . . ,m, of the chemical species is given by the balance laws

(2.1) ẋ = Sv,

where S is an m × r matrix, called the stoichiometric matrix. The stoichiometric
matrix S, which consists of (positive and negative) integer elements, captures the
basic conservation laws of the reactions. For example, the stoichiometric matrix of
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956 A. VAN DER SCHAFT, S. RAO, AND B. JAYAWARDHANA

the two coupled reactions involving the chemical species X1, X2, X3 given as

(2.2) X1 + 2X2 � X3 � 2X1 +X2

is

S =

⎡
⎣−1 2
−2 1
1 −1

⎤
⎦ .

The elements of the vector v ∈ R
r are commonly called the reaction fluxes. In

section 3.1 we review how v can be expressed as a function v(x) using the law of
mass action kinetics. In many cases of interest, especially in biochemical reaction
networks, chemical reaction networks are intrinsically open, in the sense that there is
a continuous exchange with the environment (in particular, flow of chemical species
and connection to other reaction networks). This will be modeled by a vector vb ∈ R

b

consisting of b boundary fluxes vb, leading to an extended model

(2.3) ẋ = Sv + Sbvb.

Here the matrix Sb consists of mutually different columns whose elements are all 0
except for one element equal to 1 or−1. The nonzero elements correspond to boundary
fluxes for part of the chemical species, called the boundary chemical species, with +1
denoting an uptake flux and −1 a demand flux.

The stoichiometry already contains useful information about the network dynam-
ics, independent of the precise form of the reaction rate v(x). In particular, if an
m-dimensional row-vector k satisfies kS = 0, then the quantity kx is a conserved
quantity for the dynamics ẋ = Sv(x) for all possible reaction rates v = v(x). Indeed,
d
dtkx = kSv(x) = 0. If k ∈ R̄

m
+ , then the quantity kx is commonly called a conserved

moiety. Geometrically, for all possible fluxes the solutions of the differential equations
ẋ = Sv(x) starting from an initial state x0 will always remain within the affine space
x0 + imS. In cases involving an open chemical reaction network, d

dtkx = 0 modifies

into d
dtkx = kSbvb, expressing that the time evolution of the quantity kx depends

only on the boundary fluxes vb.

2.2. The complex graph. The network structure of a chemical reaction net-
work cannot be directly captured by a graph involving the chemical species (since
generally there are more than two species involved in a reaction). Instead, we will
follow an approach originating in the work of Horn and Jackson (see [15, 14]) and
Feinberg [11, 12] introducing the space of complexes.1 The set of complexes of a
chemical reaction network is simply defined as the union of all the different left- and
right-hand sides (substrates and products) of the reactions in the network, where a
product complex of one reaction may be the substrate complex of another and a com-
plex may be the product/substrate complex of more than one reaction. Thus, the
complexes corresponding to the network (2.2) are X1 + 2X2, X3 and 2X1 +X2.

Denoting the number of complexes by c, the expression of the complexes in terms
of the chemical species is formalized by an m × c matrix Z, called here the complex
stoichiometric matrix, whose ρth column captures the expression of the ρth complex
in the m chemical species. For example, for the network (2.2)

Z =

⎡
⎣1 0 2
2 0 1
0 1 0

⎤
⎦ .

1For an approach based on species-reaction graphs, see, e.g., [7, 8, 3].
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Note that by definition all elements of the matrix Z are nonnegative integers.
Since the complexes are left- and right-hand sides of the reactions, they can be

naturally associated with the vertices of a directed graph, with edges corresponding
to the reactions. The complexes on the left-hand side of the reactions are called
the substrate complexes, and those on the right-hand side of the reactions are called
the product complexes. Formally, the reaction σ � π between the σth and the πth
complex defines a directed edge with tail vertex being the σth complex and head
vertex being the πth complex. The resulting graph is called the complex graph.

Recall (see, e.g., [5]) that any directed graph is defined by its incidence matrix B.
This is an c × r matrix, c being the number of vertices (complexes) and r being the
number of edges (reactions), with (ρ, j)th element equal to −1 if vertex ρ is the tail
vertex of edge j and 1 if vertex ρ is the head vertex of edge j, while 0 otherwise. The
relation between the complex stoichiometric matrix Z and the standard stoichiometric
matrix S is expressed as

(2.4) S = ZB.

3. The dynamics of mass action kinetics chemical reaction networks.
In this section we will derive a compact form for the dynamics of a chemical reaction
network, whose reactions are described by mass action kinetics. After deriving a
general form in section 3.1 we will focus on balanced chemical reaction networks.

3.1. The general form of mass action kinetics. The dynamics of the con-
centration vector x (or, equivalently, in case of a fixed volume, the vector n of mole
numbers) is given once the internal fluxes v are specified as a function v = v(x) of x,
defining the reaction rates. The most basic model for specifying the reaction rates is
mass action kinetics, defined as follows. Consider the first reaction in (2.2),

X1 + 2X2 � X3,

involving the three chemical speciesX1, X2, X3 with concentrations x1, x2, x3. In mass
action kinetics the reaction is considered to be a combination of the forward reaction
X1+2X2 ⇀ X3 with forward rate equation vforw1 (x1, x2) = kforwx1x

2
2 and the reverse

reaction X1 + 2X2 ↽ X3, with rate equation vrev(x3) = krevx3. The constants kforw,
krev are called, respectively, the forward and reverse reaction constants. The net
reaction rate is thus

v(x1, x2, x3) = vforw(x1, x2)− vrev(x3) = kforwx1x
2
2 − krevx3.

In general, the mass action reaction rate of the jth reaction of a chemical reaction
network, from a substrate complex Sj to a product complex Pj , is given as

(3.1) vj(x) = kforwj

m∏
i=1

x
ZiSj

i − krevj

m∏
i=1

x
ZiPj

i ,

where Ziρ is the (i, ρ)th element of the complex stoichiometric matrix Z, and kforwj , krevj

≥ 0 are the forward/reverse reaction constants of the jth reaction, respectively.
Without loss of generality we will throughout assume that for every j the constants
kforwj , krevj are not both equal to zero (since otherwise the jth reaction is not active).

Equation (3.1) can be rewritten in the following way. Let ZSj and ZPj denote
the columns of the complex stoichiometry matrix Z corresponding to the substrate
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complex Sj and the product complex Pj of the jth reaction. Using the mapping
Ln : Rc

+ → R
c as defined at the end of the introduction, the mass action reaction

equation (3.1) for the jth reaction takes the form

(3.2) vj(x) = kforwj exp
(
ZT
Sj
Ln(x)

) − krevj exp
(
ZT
Pj
Ln(x)

)
.

The complete reaction network dynamics is now described as follows. Denote the vec-

tor of reaction rates for the complete set of reactions by v(x) =
[
v1(x) · · · vr(x)

]T
.

For every σ, π ∈ {1, . . . , c}, denote by aσπ =
∑

j k
rev
j , aπσ =

∑
j k

forw
j if (σ, π) =

(Sj ,Pj), j ∈ {1, . . . , r}, and aσπ = 0 if there are no reactions between complexes
indexed by σ and π. Define the weighted adjacency matrix A of the complex graph2

as the matrix with (σ, π)th element aσπ, where σ, π ∈ {1, . . . , c}. Furthermore, define
the matrix L as the c× c matrix

(3.3) L := Δ−A,

where Δ is the diagonal matrix whose (ρ, ρ)th element is equal to the sum of the
elements of the ρth column of A 3. Then it can be verified that the vector Bv(x) for
the mass action reaction rate vector v(x) is equal to

Bv(x) = −LExp
(
ZTLn(x)

)
,

where the mapping Exp : Rc → R
c
+ has been defined at the end of the introduction.

Hence the dynamics can be compactly written as

(3.4) ẋ = −ZLExp
(
ZTLn(x)

)
.

A similar expression of the dynamics corresponding to mass action kinetics, in less
explicit form, was already obtained in [26].

3.2. Balanced mass action kinetics. In the rest of this paper we will focus
on an important subclass of mass action chemical reaction networks, characterized by
the existence of a thermodynamic equilibrium

Definition 3.1. A vector of concentrations x∗ ∈ R
m
+ is called an equilibrium

for the dynamics ẋ = Sv(x) if Sv(x∗) = 0, and a thermodynamic equilibrium if
v(x∗) = 0. A chemical reaction network ẋ = Sv(x) is called (detailed) balanced if it
admits a thermodynamic equilibrium x∗ ∈ R

m
+ .

Clearly, any thermodynamic equilibrium is an equilibrium, but not necessarily
the other way around (since in general S = ZB is not injective).

3.2.1. The existence of thermodynamic equilibria. Necessary and suffi-
cient conditions for the existence of a thermodynamic equilibrium can be derived in
the following linear-algebraic way following [13]. These conditions are usually referred
to as the Wegscheider conditions, generalizing the classical results of [28].

Consider the jth reaction from substrate Sj to product Pj , described by the
mass action rate equation (3.2). Then x∗ ∈ R

m
+ is a thermodynamic equilibrium, i.e.,

v(x∗) = 0, if and only if

(3.5) kforwj exp
(
ZT
Sj
Ln(x∗)

)
= krevj exp

(
ZT
Pj
Ln(x∗)

)
, j = 1, . . . , r.

2Strictly speaking, A is the adjacency matrix of a directed augmented graph. Each jth edge of
the complex graph is replaced by two directed edges: one corresponding to the forward reaction with
weight kforwj , and one corresponding to the reverse reaction with weight krevj .

3Note that by construction the column sums of L are zero; it thus corresponds to an advection
matrix in the sense of [6].
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Equations (3.5), referred to as the detailed balance equations, can be rewritten as
follows. Define the equilibrium constantKeq

j of the jth reaction as (assuming krevj �= 0)

(3.6) Keq
j :=

kforwj

krevj

.

Then the detailed balance equations (3.5) are seen to be equivalent to

(3.7) Keq
j = exp

(
ZT
Pj
Ln(x∗)− ZT

Sj
Ln(x∗)

)
, j = 1, . . . , r.

Collecting all reactions, and making use of the incidence matrix B of the complex
graph, this amounts to the vector equation

(3.8) Keq = Exp
(
BTZTLn(x∗)

)
= Exp

(
STLn(x∗)

)
,

where Keq is the r-dimensional vector with jth element Keq
j , j = 1, . . . , r.

Proposition 3.2. There exists a thermodynamic equilibrium x∗ ∈ R
m
+ if and

only if kforwj > 0, krevj > 0 for all j = 1, . . . , r, and furthermore

(3.9) Ln (Keq) ∈ imST .

Proof. Clearly kforwj > 0, krevj > 0, j = 1, . . . , r, is a necessary condition for the
existence of a thermodynamic equilibrium. The existence of a vector Ln(x∗), x∗ ∈ R

m
+ ,

satisfying (3.8) is obviously equivalent to (3.9).
It also follows that once a thermodynamic equilibrium x∗ is given, the set of all

thermodynamic equilibria is described as follows.
Proposition 3.3. Let x∗ ∈ R

m
+ be a thermodynamic equilibrium. Then the set

of all thermodynamic equilibria is given by

(3.10) E := {x∗∗ ∈ R
m
+ | STLn (x∗∗) = STLn (x∗)}.

Remark 3.1. Usually the conditions (3.9) are rewritten in the following more
constructive form. By basic linear algebra (3.9) is satisfied if and only if for all row-
vectors σ satisfying σST = 0 we have

∑r
j=1 σj lnK

eq
j = 0. Putting back in the

definition of the equilibrium constants (3.6), this is seen to be equivalent to the usual
form of the Wegscheider conditions4

(3.11)

r∏
j=1

(
kforwj

)σj
=

r∏
j=1

(
krevj

)σj
.

3.2.2. The standard form of balanced mass action reaction networks.
For balanced mass action chemical reaction networks we can further rewrite the dy-
namics (3.4) in the following useful way. Let x∗ ∈ R

m
+ be a thermodynamic equi-

librium, i.e., v(x∗) = 0. Consider the rewritten form (3.7) of the “detailed balance”
equations. These equations allow us to define [21, 22] the “conductance” κj(x

∗) > 0

4Note that (3.11) only needs to be checked for a maximally independent set of row-vectors σ
satisfying σST = 0. By writing this as σBTZT = 0 this can be related to the topological structure
of the complex graph and to the deficiency of the network; cf. [13]. Clearly, if the row rank of
S is equal to r, then the Wegscheider conditions are void. The Wegscheider conditions admit a
thermodynamical interpretation, since they are intimately related to microscopic reversibility and
the independence of the increase of Gibbs’ energy of the path in the reaction network; see also [21, 22].
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of the jth reaction as the common value of the forward and reverse reaction rates at
thermodynamic equilibrium x∗, i.e.,

(3.12) κj(x
∗) := kforwj exp

(
ZT
Sj
Ln(x∗)

)
= krevj exp

(
ZT
Pj
Ln(x∗)

)
, j = 1, . . . , r.

Then the mass action reaction rate (3.2) of the jth reaction can be rewritten as

vj(x) = κj(x
∗)
[
exp

(
ZT
Sj
Ln
( x

x∗
))

− exp
(
ZT
Pj
Ln
( x

x∗
))]

,

where for any vectors x, z ∈ R
m the quotient vector x

z ∈ R
m is defined elementwise

(see the end of the introduction).
Defining the r × r diagonal matrix of conductances as

(3.13) K := diag
(
κ1(x

∗), . . . , κr(x
∗)
)
,

it follows that the mass action reaction rate vector of a balanced reaction network can
be written as

v(x) = −KBTExp
(
ZTLn

( x

x∗
))

,

and thus the dynamics of a balanced reaction network takes the form

(3.14) ẋ = −ZBKBTExp
(
ZTLn

( x

x∗
))

, K > 0.

This form will be the starting point for the analysis of balanced chemical reaction
networks in the rest of this paper.

The matrix L := BKBT in (3.14) defines a weighted Laplacian matrix5 for the
complex graph, with weights given by the conductances κ1(x

∗), . . . , κr(x
∗). Note

that L is in general different from the matrix L obtained before; cf. (3.3). The
symmetrization of L has been accomplished by the modification of Ln(x) into Ln

(
x
x∗
)
,

using the assumption that x∗ is a thermodynamic equilibrium. A well-known [5]
property of weighted Laplacian matrices BKBT is that they are independent of the
orientation of the graph. Thus we may replace any reaction S � P by P � S
without altering the Laplacian BKBT , in agreement with the usual understanding of
a reversible reaction network.

Note that K, and therefore the Laplacian matrix L = BKBT , is dependent on the
choice of the thermodynamic equilibrium x∗. In section 3.3 we will see that actually
this dependence is minor: for a connected complex graph the matrix K is, up to a
positive multiplicative factor, independent of the choice of x∗.

3.3. The linkage classes of the complex graph. The complex graph provides
a number of tools for the analysis of reaction networks. Recall that for any directed
graph [5]

(3.15) rankB = rankL = c− �,

where c is the number of vertices of the graph, and � is equal to the number of
components6 of the complex graph, the linkage classes in the terminology of [15,

5A weighted Laplacian matrix [5] is a symmetric matrix with positive diagonal elements, non-
positive off-diagonal elements, with zero column and row sums.

6A directed graph is connected if there is a path (a number of unoriented edges) between every
two distinct vertices of the graph. The components of a directed graph are the maximal connected
subgraphs.
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11, 12]. Furthermore, if there is one linkage class in the network (i.e., the graph is
connected and rankB = rankL = c− 1), then

(3.16) kerL = kerBT = span�c,

where as before �c is the c-dimensional vector with elements all equal to 1.
In general, if the reaction network has � linkage classes, then the network can

be decomposed as follows. Let the pth linkage class have rp reactions between cp
complexes. Partition Z, B, and K matrices according to the various linkage classes
as

(3.17)

Z =
[
Z1 Z2 . . . Z�

]
,

B =

⎡
⎢⎢⎢⎢⎢⎣

B1 0 0 . . . 0
0 B2 0 . . . 0
...

...
. . .

...
...

0 . . . 0 B�−1 0
0 . . . . . . 0 B�

⎤
⎥⎥⎥⎥⎥⎦ ,

K = diag
(K1,K2, . . . ,K�

)
,

where for p = 1, . . . , �, Zp ∈ R̄
m×cp
+ , Bp ∈ R

cp×rp , and Kp ∈ R
rp×rp
+ denote, respec-

tively, the complex stoichiometric matrix, incidence matrix, and the diagonal matrix
of balanced reaction constants for the pth linkage class. Furthermore, Sp = ZpBp

is the stoichiometric matrix of the pth linkage class. It follows that (3.14) can be
expanded as

(3.18) ẋ = −
�∑

p=1

ZpBpKpB
T
p Exp

(
ZT
p Ln

( x

x∗
))

,

expressing the contributions of each linkage class to the chemical reactions.
The above expressions also yield the following alternative characterization of the

set of thermodynamic equilibria E given in (3.10). In case of a connected complex
graph we obtain, using ST = BTZT and kerBT = span �c,

(3.19) E = {x∗∗ ∈ R
m
+ | ZTLn (x∗∗)− ZTLn (x∗) ∈ span�c}.

For disconnected complex graphs the same formula holds for every connected compo-
nent. This observation has the following useful consequence.

Proposition 3.4. Consider two thermodynamic equilibria x∗ and x∗∗ with cor-
responding diagonal matrices K(x∗) and K(x∗∗) as defined in (3.13). Assume that the
complex graph is connected. Then there exists a positive constant d such that

K(x∗∗) = dK(x∗), Exp
(
ZTLn

( x

x∗∗
))

=
1

d
Exp

(
ZTLn

( x

x∗
))

.

Furthermore, for a nonconnected complex graph there exist positive constants dp, p =
1, . . . , �, such that for each pth linkage class the diagonal matrix Kp(x

∗) given in (3.17)
satisfies Kp(x

∗∗) = dpKp(x
∗), p = 1, . . . , �.
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962 A. VAN DER SCHAFT, S. RAO, AND B. JAYAWARDHANA

Proof. Assume that the complex graph is connected. Then by (3.19) there exists
a constant c such that ZTLn(x∗∗) = ZTLn(x∗) + c�. Hence by the definition of the
conductances κj in (3.12) we have

κj(x
∗∗) = kforwj exp

(
ZT
Sj
Ln(x∗∗)

)
= kforwj exp

(
ZT
Sj
Ln(x∗) + c

)
= dkforwj exp

(
ZT
Sj
Ln(x∗)

)
= dκj(x

∗),

with d := exp(c) > 0 for each j = 1, . . . , r. The rest follows easily.
Hence the weighted Laplacian matrix L = BKBT is, up to a multiplicative fac-

tor, independent of the choice of the thermodynamic equilibrium x∗. The properties
of this matrix (e.g., its eigenvalue distribution7) serve as an important indicator of
the network structure. In section 6 we will exploit the Laplacian matrix for model
reduction purposes.

3.4. Deficiency. An important notion relating the structure of the complex
graph to the stoichiometry, as introduced in the work of Feinberg [11], is the concept
of deficiency.

Definition 3.5. The deficiency of a chemical reaction network with complex
stoichiometric matrix Z and incidence matrix B is defined as

(3.20) δ := rankB − rankZB = rankB − rankS ≥ 0.

A reaction network is said to have zero-deficiency if δ = 0.
Note that zero-deficiency is equivalent to kerZ ∩ imB = 0, or to the mapping

Z : imB ⊂ R
c → R

m being injective. Hence in the zero-deficiency case there is a
one-to-one correspondence between the rate vector ẋ ∈ imS ⊂ R

m of chemical species
x ∈ R

m
+ and the rate vector ẏ ∈ imB ⊂ R

c of complexes y ∈ R
c. Many chemical

reaction networks are zero-deficient, although with growing complexity (especially in
biochemical networks), deficiency greater than zero is likely to occur. This is also
expressed in the following proposition showing that for a reaction network with zero-
deficiency all its linkage classes have zero-deficiency, but not necessarily the other way
around.

Proposition 3.6 (see [24]). Consider a chemical reaction network with � link-
age classes as in (3.17). If the network has zero-deficiency, then necessarily the link-
age classes have zero-deficiency. Zero-deficiency of the linkage classes implies zero-
deficiency of the total network if and only if additionally

�⋂
p=1

im Z̄pB̄p = 0,

where Z̄p and B̄p denote the columns of Z, respectively, the rows of B, in (3.17)
corresponding to Zp, respectively, Bp.

3.5. Thermodynamical viewpoint. In this section we will indicate the ther-
modynamical interpretation of the quantities introduced before and show how this
suggests a Lyapunov function which will be used in the next section. For more details
regarding the thermodynamical approach to chemical reaction kinetics we refer the
reader to [22, 21].

7Note that the set of eigenvalues of BKBT consists of 0 (with multiplicity equal to the number
of components of the graph) and strictly positive real numbers; cf. [5].
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Recall that for an ideal dilute solution the chemical potential μi of chemical species
i with mole number ni is given by

(3.21) μi(xi) = μo
i +RT ln

(ni

V

)
= μo

i +RT ln(xi),

with μo
i a reference potential, R the universal gas constant, T the temperature, V the

volume, and xi =
ni

V the concentration. The m-dimensional vector μ with components
μi is called the chemical potential vector, while the vector μo with components μo

i is
called the reference chemical potential vector.

Starting instead from the formulation of a balanced chemical reaction network in
(3.14), corresponding to a thermodynamic equilibrium x∗, we may define the chemical
potential vector μ and the reference chemical potential vector μ0 as

μ(x) = RTLn
( x

x∗
)
, μo = −RTLn(x∗).

We conclude that Ln( x
x∗ ) = Ln(x) − Ln(x∗) is, up to the constant RT , equal to

the chemical potential vector, while −Ln(x∗) is, up to this same constant, equal to
the reference chemical potential vector. An important role in (3.14) is formed by
the quantity γ(x) := ZTμ(x) = (RT )ZTLn

(
x
x∗
)
, which we will call the complex

thermodynamical affinity. Correspondingly, we refer to γo := ZTμo as the reference
complex thermodynamical affinity. Recalling from (3.8) the expression of the vector
of equilibrium constants as Keq = Exp

(
STLn(x∗)

)
, it follows that RTLn(Keq) =

(RT )STLn(x∗) = −STμo = −BTγo. The dynamics of a balanced reaction network
is determined by the complex thermodynamical affinity γ, which acts as a “driving
force” for the reactions.8

In thermodynamics the vector of chemical potentials is derived as the vector of
partial derivatives of the Gibbs’ free energy. This suggests defining the Gibbs’ free
energy9 as

G(x) = RTxTLn
( x

x∗
)
+RT (x∗ − x)

T
�m,

where �m denotes a vector of dimension m with all ones. Indeed, with this definition
it is immediately checked that ∂G

∂x (x) = RTLn
(

x
x∗
)
= μ(x).

For simplicity of notation we will assume in the rest of this paper that RT = 1,
or, equivalently, we will redefine

(3.22)
μ(x) := Ln

( x

x∗

)
, γ(x) := ZTμ(x) = ZTLn

( x

x∗

)
,

G(x) := xTLn
( x

x∗
)
+ (x∗ − x)

T
�m.

Then the equation of a balanced reaction network (3.14) can be also written as

(3.23) ẋ = −ZBKBTExp

(
ZT ∂G

∂x
(x)

)
.

8Consider, on the other hand, the vector α(x) := STμ(x), known as (minus) the vector of
thermodynamical affinities. In this case it is not possible (see, e.g., [22, 21]) to express the vector of
mass action reaction rates v(x) as a function of α(x). This is illustrated in [21] by considering the
reaction X1 � X2 with reaction rate v(x1, x2) = kforwx1 − krevx2. When the concentrations x1 and
x2 are doubled, then so is the reaction rate v(x1, x2). However, −α remains the same.

9Note that this definition of G, as before of μ and μo, depends on the chosen thermodynamic
equilibrium x∗.

D
ow

nl
oa

de
d 

06
/0

6/
13

 to
 1

29
.1

25
.6

3.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

964 A. VAN DER SCHAFT, S. RAO, AND B. JAYAWARDHANA

In the next section, we will employ G(x) as a Lyapunov function.

A geometrical interpretation of (3.23) is as follows. Denote the dual space of the
space of concentrations of chemical species M := R

m by M∗. Similarly, denote the
dual space of C := R

c by C∗, and the dual of the space of reaction rates R = R
r

by R∗. Define v∗ := BTExp(γ) and ẏ := Bv(x). All ingredients of (3.23) are then
summarized in the following diagram, which expresses the duality relations between
all the variables involved:

v ∈ R B �� ẏ ∈ C Z �� ẋ ∈ M

G

v∗ ∈ R∗

K(x∗)

γ ∈ C∗
Bt

��

Exp

�� μ ∈ M∗
ZT

��

(3.24)

The concentration vector x and its time-derivative ẋ are elements of the linear space
M with conjugate vector being the chemical potential vector μ ∈ M∗. They are
related by the Gibbs’ function G as μ(x) = ∂G

∂x (x). Furthermore, the vector ẏ is in
the linear space C, with conjugate vector the complex affinity γ. The relations between
ẏ and ẋ and dually between μ and γ are given by ẋ = Zẏ, respectively, γ = ZTμ.
Also note that ẋ = Zẏ = ZBv = Sv, where the vector of fluxes v is in the linear
space R, with conjugate vector v∗ := −K−1v ∈ R∗. The added complication in the
diagram is the map Exp : C∗ → C∗, which introduces a discrepancy between v∗ and
−α := BTγ = STμ.

4. Equilibria and stability analysis of balanced reaction networks.

4.1. Equilibria. Making use of the formulation of the dynamics of balanced re-
action networks in (3.14), we start by giving a simple proof of the statement that
all positive equilibria of a balanced reaction network are actually thermodynamic
equilibria,10 and thus given by (3.10). A similar result was obtained in the classical
papers [14, 15, 12] for a different class of chemical reaction networks (roughly speak-
ing, weakly reversible networks of deficiency zero or deficiency one under additional
conditions).

Theorem 4.1. Consider a balanced chemical reaction network ẋ = Sv(x) =
ZBv(x) governed by mass action kinetics, with thermodynamic equilibrium x∗ ∈ R

m
+ .

Then the set of all positive equilibria is equal to the set E = {x∗∗ ∈ R
m
+ | STLn(x∗∗) =

STLn(x∗)} of thermodynamic equilibria given in (3.10).
Proof. Denote for the jth reaction the substrate complex by Sj and the product

complex by Pj . As before, let ZSj and ZPj denote the columns of the complex stoi-
chiometric matrix Z of the reaction network, corresponding, respectively, to substrate
complex Sj and product complex Pj . Define as before

(4.1) μ(x) = Ln
( x

x∗
)
, γ(x) := ZTμ(x), γSj (x) = ZT

Sj
μ(x), γPj (x) = ZT

Pj
μ(x).

Suppose x∗∗ ∈ R
m
+ is an equilibrium, i.e., ZBKBTExp

(
ZTLn

(
x∗∗
x∗
))

= 0, or, equiva-

lently, ZBKBTExp
(
ZTμ(x∗∗)

)
= 0. Then also

μT (x∗∗)ZBKBTExp
(
ZTμ(x∗∗)

)
= 0.

10Note, however, that the reaction network may have equilibria on the boundary of R̄n
+. Further-

more, these may not be in the closure of E.
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Denoting the columns of B by b1, . . . , br, we have BKBT =
∑r

j=1 κj(x
∗)bjbTj , while

μT (x∗∗)Zbj = μT (x∗∗)
(
ZPj − ZSj

)
= γT

Pj
(x∗∗)− γT

Sj
(x∗∗),

bTj Exp
(
ZTμ(x∗∗)

)
= exp

(
γT
Pj
(x∗∗)

)
− exp

(
γT
Sj
(x∗∗)

)
.

It follows that

(4.2)

0 = μT (x∗∗)ZBKBTExp
(
ZTμ(x∗∗)

)
= γT (x∗∗)BKBTExp (γ(x∗∗))

=
r∑

j=1

[
γPj (x

∗∗)− γSj (x
∗∗)
] [
exp

(
γPj (x

∗∗)
)− exp

(
γSj (x

∗∗)
)]

κj(x
∗).

Since the exponential function is a strictly increasing function and κj(x
∗) > 0, j =

1, . . . , r, this implies that all terms in the summation are zero and thus

γPj (x
∗∗) = γSj (x

∗∗), exp
(
γPj (x

∗∗)
)
= exp

(
γSj (x

∗∗)
)
, j = 1, . . . , r,

which is equivalent to

BTγ(x∗∗) = BTZTμ(x∗∗) = 0, BTExp (γ(x∗∗)) = BTExp
(
ZTμ(x∗∗)

)
= 0.

The first equality tells us that x∗∗ ∈ E , and is thus a thermodynamical equilibrium
(as also follows from the second equality).

4.2. Asymptotic stability. In the next theorem we show that G serves as a
Lyapunov function for (3.14).

Theorem 4.2. Consider a balanced mass action reaction network given by (3.14)
or, equivalently, by (3.23), with G : Rm

+ → R given by (3.22). Then G has a strict

minimum at x∗, while Ġ(x) := ∂TG
∂x (x)Sv(x), x ∈ R

m
+ , satisfies

(4.3) Ġ(x) ≤ 0, Ġ(x) = 0 if and only if x ∈ E .
Proof. In order to show that G has a strict minimum at x∗ we note the following.

Let xi and x∗
i denote the ith elements of x and x∗, respectively. From the strict

concavity of the logarithmic function, z − 1 ≥ ln(z) for all z ∈ R+, with equality if

and only if z = 1. Putting z =
x∗
i

xi
we get x∗

i − xi + xi ln(
xi

x∗
i
) ≥ 0, with equality if and

only if xi = x∗
i . This implies that

G(x) =

m∑
i=1

[
x∗
i − xi + xi ln

(
xi

x∗
i

)]
≥ 0,

with equality if and only if xi = x∗
i , i = 1, . . . ,m. Thus G satisfies G(x∗) = 0, G(x) >

0, x �= x∗.
In order to show (4.3), consider, as in the proof of Theorem 4.1, the jth reaction

between substrate complex Sj and product complex Pj , and let ZSj and ZPj denote
the columns of the complex stoichiometric matrix Z corresponding to complexes Sj

and Pj . Using the notation (4.1) we compute, as in (4.2),

(4.4)

Ġ(x) =
∂TG

∂x
(x)ẋ = −μT (x)ZBKBTExp(ZTμ(x))

= −γT (x)BKBTExp(γ(x))

= −
r∑

j=1

[
γPj (x) − γSj (x)

] [
exp

(
γPj (x)

)− exp
(
γSj (x)

)]
κj(x

∗) ≤ 0,
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since κj(x
∗) > 0 for j = 1, . . . , r, and the exponential function is strictly increasing.

The “if” part of the second part of (4.3) is trivial. For the “only if” part, the summand
in the third line of (4.4) is zero only if γSj(x)−γPj (x) = 0 for every j. This is equivalent

to having BTγ(x) = 0. Thus, Ġ(x) = 0 only if BTγ(x) = BTZTLn
(

x
x∗
)
= 0. It

follows that Ġ(x) = 0 if and only if x ∈ E .
Remark 4.1. A similar reasoning for showing that Ġ ≤ 0 was used in [3] (see also

[14, 11, 12]), making use, however, of the convexity of the exponential function instead
of the weaker property that the exponential function is increasing as in our proof. In
this respect, it can be noted that Theorem 4.2 remains unaltered if we replace (3.14)
by any equations of the form (not corresponding anymore to mass action kinetics)

ẋ = −ZBKBTF
(
ZTLn

( x

x∗
))

,

with F : R
c → R

c a mapping F (y1, . . . , yc) = diag(f1(y1), . . . , fc(yc)), where the
functions fi, i = 1, . . . , c, are all monotonically increasing.

Since the function G has a continuous extension to R̄
m
+ , on which it is proper, it

directly follows from Theorem 4.2 that all solutions of (3.14) are bounded. In order
to derive from Theorem 4.2 asymptotic stability towards the set of E of positive
equilibria, we use a reasoning which is similar to the proof of the zero-deficiency
theorem provided in [12], based on the following proposition in there. Recall from the
introduction that x · z ∈ R

m is defined as the elementwise product.
Proposition 4.3. Let U be a linear subspace of Rm, and let x∗, x0 ∈ R

m
+ . Then

there is a unique element μ ∈ U⊥, such that
(
x∗ · Exp(μ)− x0

) ∈ U .
Proof. See the proof of [12, Proposition B.1, pp. 361–363].
Although it can be shown, using the same arguments as in [26], that the positive

orthant Rm
+ is forward invariant for (3.14), Theorem 4.2 does not directly prevent the

solution trajectories of (3.14) to approach the boundary equilibria of (3.14) for t → ∞.
The reaction network is called persistent11 if for every x0 ∈ R

m
+ the ω-limit set ω(x0)

does not intersect the boundary of R̄m
+ . Define for every x0 ∈ R

m
+ the stoichiometric

compatibility class [12] of x0 as the invariant set S(x0) = {x ∈ R
m
+ | x− x0 ∈ imS}.

Theorem 4.4. Consider the balanced chemical reaction network (3.14). Then
for every x0 ∈ R

m
+ , there exists a unique12 x1 ∈ E with x1 ∈ S(x0). The equilibrium

x1 is (locally) asymptotically stable with respect to all initial conditions in S(x0) near
x1. Furthermore, if the network is persistent, then x1 is globally asymptotically stable
with respect to all initial conditions in S(x0).

Proof. With reference to Proposition 4.3, define U = imS, and observe that
U⊥ = kerST . Let x∗, x0 ∈ R

m
+ . Then by Proposition 4.3, there exists a unique μ ∈

kerST such that x∗ ·Exp(μ)−x0 ∈ spanS. Define x1 := x∗ ·Exp(μ) ∈ R
m
+ . It follows

that STμ = STLn
(
x1

x∗
)
= 0, that is, x1 ∈ E . Furthermore, x1 ∈ S(x0). Together with

Theorem 4.2 it follows that the equilibrium x1 ∈ E is locally asymptotically stable
with respect to nearby initial conditions in S(x0), and globally asymptotically stable
with respect to all initial conditions in S(x0) if the network is persistent.

Remark 4.2. Note that the convergence to E is equivalent to BTγ(x(t)) → 0 for
t → ∞. This means that the elements of the vector γ of complex thermodynamical

11It is generally believed that most reaction networks are persistent. However, up to now this
persistence conjecture has been only partially proved (cf. [1, 4] and the references therein).

12Following an argument similar to that in [26, Theorem 6] (which basically deals with weakly
reversible zero-deficiency chemical networks), one can show that the map which assigns x1 to x0 is
real-analytic.
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affinities belonging to the same connected component of the complex graph converge
to the same value, similar to standard consensus algorithms [20].

5. Chemical reaction networks with boundary fluxes and interconnec-
tion of reaction networks. As discussed in section 2.1, the interaction of a chemical
reaction network with the environment or another chemical reaction network can be
modeled by identifying a vector of boundary chemical species xb ∈ R

b, which is a
subvector of the vector x of concentrations of all the chemical species in the network.
These boundary chemical species are the species that are subject to inflow or outflow
boundary fluxes vb. The natural conjugate vector is (up to the constant RT ) the
vector of chemical potentials μb = ST

b μ ∈ R
b of boundary potentials. Indeed, up to

the factor RT , the product μT
b vb is equal to the power entering or leaving the chemical

reaction network due to the influx or efflux of boundary chemical species.
By combining (2.3) and (3.14) this leads to the equations

(5.1)
ẋ = −ZBKBTExp

(
ZTLn

( x

x∗
))

+ Sbvb,

μb = ST
b Ln

( x

x∗
)
,

which define an input-state-output system with inputs vb and outputs μb. Let G be
defined by (3.22), and as before let γ(x) := Z�Ln

(
x
x∗
)
. It follows that the system

satisfies the energy balance (passivity)

(5.2)
d

dt
G = −γT (x)BKBTExp(γ(x)) + μT

b vb ≤ μT
b vb,

where we have used the basic inequality γTBKBTExp(γ) ≥ 0; see (4.4).

5.1. Interconnection of chemical reaction networks. Complexity of chem-
ical reaction networks is further increased by the interconnection of reaction networks
to each other. The most basic way of interconnecting chemical reaction networks
is through shared boundary chemical species. Consider for simplicity of notation the
interconnection of two chemical reaction networks which have all their boundary chem-
ical species in common; the generalization to the general case is straightforward. Let
Bi denote the incidence matrix of the complex graph, and Zi the complex stoichiom-
etry matrix of network i = 1, 2. The complex graph of the interconnected chemical
reaction network is the direct union of the complex graphs of networks 1 and 2, with
incidence matrix B given as the direct product B = diag(B1, B2). Note that the
complex graph of such an interconnected network is not connected. In fact, if all the
constituent networks are connected, then their complex graphs are linkage classes of
the interconnected network; cf. section 3.4.

The complex stoichiometric matrix Z of the interconnected network is more in-
volved. Permute the chemical species x1, x2 such that

x1 =

[
x̂1

xb1

]
, x2 =

[
xb2

x̂2

]
, Z1 =

[
Ẑ1

Zb1

]
, Z2 =

[
Zb2

Ẑ2

]
,

where Zb1, Zb2 are matrices with the same number of rows, equal to the number of
shared boundary species xb := xb1 = xb2 ∈ R

b. Then

(5.3) Z =

⎡
⎣ Ẑ1 0
Zb1 Zb2

0 Ẑ2

⎤
⎦ .
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Note that in general the property of zero-deficiency is not maintained under intercon-
nection. In fact, this was already discussed in Proposition 3.6 following [24].

Remark 5.1. The resulting matrix Z in (5.3) may have equal columns, correspond-
ing to the case that the two reaction networks have shared complexes (by definition
consisting only of shared boundary chemical species, i.e., for which the corresponding
columns of Ẑ1 and Ẑ2 are zero). Then one may identify the equal columns in the ma-
trix Z and thus obtain a reduced network with complex graph (possibly connected)
consisting of the union of the complex graphs of the two networks with the vertices
corresponding to the shared complexes being identified.

The existence of a thermodynamic equilibrium is not necessarily maintained under
interconnection. Sufficient conditions for this to happen are given as follows.

Proposition 5.1. The interconnection of two balanced reaction networks with
vectors of equilibrium constants Keq

1 ,Keq
2 is again balanced if and only if there exists

(x̂∗∗
1 , x̂∗∗

2 , x∗∗
b ) such that

(5.4) Ln

([
Keq

1

Keq
2

])
=

[
BT

1 Ẑ
T
1 0 BT

1 Z
T
b1

0 BT
2 Ẑ

T
2 BT

2 Z
T
b2

]
Ln

⎛
⎝
⎡
⎣x̂∗∗

1

x̂∗∗
2

x∗∗
b

⎤
⎦
⎞
⎠ .

There exists such a thermodynamic equilibrium for the interconnected network if there
is a partition {1, . . . , b} = I1

⋃
I2 such that all columns of BT

1 Z
T
b1 corresponding to

the index set I1 are contained in the image of BT
1 Ẑ

T
1 , while all columns of BT

2 Z
T
b2

corresponding to the complementary index set I2 are contained in the image of BT
2 Ẑ

T
2 .

Proof. By assumption there exist thermodynamic equilibrium points (x̂∗
1, x

∗
b1) and

(x∗
b2, x̂

∗
2) of the two individual networks. That means (cf. (3.8)) that

Ln(Keq
1 ) = B1

[
ẐT
1 ZT

b1

]
Ln

([
x̂∗
1

x∗
b1

])
, Ln(Keq

2 ) = B2

[
ẐT
2 ZT

b2

]
Ln

([
x̂∗
2

x∗
b2

])
.

Now define x∗∗
b ∈ R

b by taking its ith component for i ∈ I1 equal to the ith component
of x∗

b2, and for i ∈ I2 equal to the ith component of x∗
b1. Then there exist corresponding

x̂∗∗
1 , x̂∗∗

2 such that (5.4) is satisfied.
Under the assumptions of Proposition 5.1 it follows that the balanced intercon-

nected network is given as

(5.5)

⎡
⎣ ˙̂x1

˙̂x2

ẋb

⎤
⎦ = −ZB

[K1(x̂
∗∗
1 , x∗∗

b ) 0
0 K2(x̂

∗∗
2 , x∗∗

b )

]
BTExp

⎛
⎝ZTLn

⎛
⎝
⎡
⎣x̂1/x̂

∗∗
1

x̂2/x̂
∗∗
2

xb/x
∗∗
b

⎤
⎦
⎞
⎠
⎞
⎠ ,

where x̂∗∗
1 , x̂∗∗

2 , x∗∗
b satisfy (5.4), and K1(x̂

∗∗
1 , x∗∗

b ) and K2(x̂
∗∗
2 , x∗∗

b ) are proportionally
related to K1(x̂

∗
1, x

∗
b1) and K2(x̂

∗
2, x

∗
b2), respectively, as in Proposition 3.4.

5.2. Interconnection arising from port interconnection. The above pro-
cedure for interconnection of chemical reaction networks can be also interpreted as
arising from power-port interconnection at the boundary chemical species. Recall the
formulation (5.1) of an open chemical reaction network with inputs vb being the in-
flux/efflux of the boundary chemical species and μb their chemical potentials. Then
the interconnection of two chemical reaction networks (as above under the simplifying
assumption that all boundary chemical species are shared) can be seen to result from
the power-port interconnection constraints

(5.6) μb1 = μb2, vb1 + vb2 = 0,
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expressing that the chemical potentials of the boundary chemical species are equal,
while the boundary fluxes of the two networks add up to zero (conservation of bound-
ary chemical species). Indeed, the resulting interconnected dynamics is given by the
differential-algebraic equations[

ẋ1

ẋ2

]
= −

[
Z1B1K1(x

∗
1)B

T
1 Exp(Z

T
1 μ1(x1))

Z2B2K2(x
∗
2)B

T
2 Exp(Z

T
2 μ2(x2))

]
+

[
Sb1

−Sb2

]
v,

0 =
[
ST
b1 −ST

b2

] [μb1(x1)

μb2(x2)

]
,

with v = vb1 = −vb2 acting as a vector of Lagrange multipliers. After elimination of
the algebraic constraint μb1(x1) = μb2(x2) and the Lagrangian multipliers v, this can
be seen to result in the dynamics (5.5).

Recalling that μT
b vb is (modulo the constant RT ) the power provided to the chem-

ical reaction network, this implies that the interconnection (5.6) is power-preserving,
that is, μT

b1vb1 +μT
b2vb2 = 0, in line with the standard way of interconnecting physical

networks [22, 21, 23].

6. Model reduction of chemical reaction networks. For many purposes
one may wish to reduce the complexity of a large-scale chemical reaction network,
while retaining the structure of a chemical reaction network. In fact, most of the
approaches to model reduction of large-scale chemical reaction networks simplify the
pathways of the chemical reaction network by leaving out intermediate species or
complexes (see, e.g., [10, 2]), or by reduction of mass action enzymatic reactions to
their Michaelis–Menten description [18].

In the following we will propose a new model reduction approach which is directly
based on the formulation (3.14), in particular on the weighted Laplacian matrix L.
First we recall from [27] the following result regarding Schur complements of weighted
Laplacian matrices.13

Proposition 6.1. Consider a directed graph with vertex set V and with weighted
Laplacian matrix L = BKBT . Then for any subset of vertices Vr ⊂ V the Schur
complement of L with respect to the indices corresponding to Vr is well-defined and is
the weighted Laplacian matrix L̂ = B̂K̂B̂T of another directed graph with incidence
matrix B̂, whose vertex set is equal to V − Vr.

Consider a balanced reaction network described in the standard form (3.14):

Σ : ẋ = −ZBKBTExp
(
ZTLn

( x

x∗
))

.

Reduction will be performed by deleting certain complexes in the complex graph, re-
sulting in a reduced complex graph with weighted Laplacian L̂ = B̂K̂B̂T . Further-
more, by leaving out the corresponding columns of the complex stoichiometric matrix
Z one obtains a reduced complex stoichiometric matrix Ẑ (with as many columns as
the remaining number of complexes in the complex graph), leading to the reduced
reaction network

(6.1) Σ̂ : ẋ = −ẐB̂K̂B̂TExp
(
ẐTLn

( x

x∗
))

, K̂ > 0.

13In electrical circuit theory the process of reduction of a resistive network to a resistive network
with fewer vertices, but an equivalent resistance, is referred to as Kron reduction; cf. [19, 9].
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Note that Σ̂ is again a balanced chemical reaction network governed by mass action
kinetics, with a reduced number of complexes and stoichiometric matrix Ŝ := ẐB̂.
The next proposition shows that also other properties of Σ are inherited by Ê .

Proposition 6.2. Consider the balanced reaction network Σ and its reduced
order model Σ̂ given by (6.1). Denote their sets of equilibria by E, respectively, Ê .
Then E ⊂ Ê . Furthermore, if Σ has deficiency zero, then so does Σ̂.

Proof. Assume that the complex graph is connected; otherwise the same argument
can be repeated for every component (linkage class). Recall from (3.10) that the set
of equilibria E is given as {x∗∗ | LnT (x∗∗

x∗
)
S = 0}, where S = ZB. It follows that E is

equivalently represented as E = {x∗∗ | LnT (x∗∗
x∗
)
ZL = 0}, where L := BKBT is the

weighted Laplacian matrix of the complex graph. Let Vr be the set of complexes to
be left out in the reduced network. After permutation of the complexes we partition
L = BKBT and Z as

(6.2) L =

[L11 L12

L21 L22

]
, Z =

[
Z1 Z2

]
,

where Vr corresponds to the last part of the indices (denoted by 2). Then post-
multiply LnT

(
x∗∗
x∗
)
ZL = 0 by the invertible matrix

(6.3)

[
I 0

−L−1
22 L21 I

]
,

not changing the solution set E . It follows that

E =

{
x∗∗ | LnT

(
x∗∗

x∗

)[
Z1 Z2

] [L11 − L12L−1
22 L21 L12

0 L22

]
= 0

}

⊂
{
x∗∗ | LnT

(
x∗∗

x∗

)
ẐL̂ = 0

}
= Ê .

For the second statement assume that the full-order network has deficiency zero, i.e.,
kerZ

⋂
imB = 0, or, equivalently, kerZ

⋂
imL = 0. Postmultiplication of L with the

matrix in (6.3) yields

ker
[
Z1 Z2

]⋂
im

[L11 − L12L−1
22 L21 L12

0 L22

]
= 0,

which implies ker Ẑ
⋂
im L̂ = 0, i.e., zero-deficiency of Σ̂.

A dynamical interpretation of the reduction procedure can be given as follows.
Let Vr again be the set of complexes which we leave out in the reduced network, and
partition L and Z as in (6.2). Write out Σ as

ẋ = − [Z1 Z2

] [L11 L12

L21 L22

] [
Exp

(
ZT
1 Ln

(
x
x∗
))

Exp
(
ZT
2 Ln

(
x
x∗
))] .

Consider now the auxiliary dynamical system[
ẏ1
ẏ2

]
= −

[L11 L12

L21 L22

] [
w1

w2

]
,

where we impose the constraint ẏ2 = 0. It follows that w2 = −L−1
22 L21w1, leading

to the reduced dynamics ẏ1 = − (L11 − L12L−1
22 L21

)
w1 = −L̂w1. Putting back in
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Table 6.1

A subnetwork of the phosphorylation EGFR network in [17]. The concentrations of [Grb], [RP],
[R-G], [R-G-S], [G-S], and [SOS] are given in nM, and all reaction rates have the unit of nM·s−1.

Reactions Reaction rates Rate constants

Grb + RP � R-G v1 = kforw1 [Grb][RP]− krev1 [R-G] kforw1 = 0.003 nM−1s−1

krev1 = 0.05 s−1

SOS + R-G � R-G-S v2 = kforw2 [SOS][R-G]− krev2 [R-G-S] kforw2 = 0.01 nM−1s−1

krev2 = 0.06 s−1

R-G-S � RP +G-S v3 = kforw3 [R-G-S]− krev3 [RP][G-S] kforw3 = 0.03 s−1

krev3 = 0.0045 nM−1s−1

G-S � SOS + Grb v4 = kforw4 [G-S]− krev4 [SOS][Grb] kforw4 = 0.0015 s−1

krev4 = 0.0001 nM−1s−1

Table 6.2

The reduced subnetwork obtained from the subnetwork in Table 6.1. The unit of concentration
is nM and the unit of reaction rate is nM·s−1.

Reactions Reaction rates Rate constants

Grb + RP � R-G v̂1 = k̂forw1 [Grb][RP]− k̂rev1 [R-G] k̂forw1 = kforw1

k̂rev1 = krev1

SOS + R-G � RP +G-S v̂2 = k̂forw2 [SOS][R-G]− k̂rev2 [RP][G-S] k̂forw2 =
kforw
2 kforw

3

krev
2 +kforw

3

k̂rev2 =
krev
2 krev

3

krev
2 +kforw

3

w1 = Exp(ẐT
1 Ln

(
x
x∗
)
), making use of ẋ = Z1ẏ1 + Z2ẏ2 = Z1ẏ1 = Ẑẏ1, we then

obtain the reduced network Σ̂ given by (6.1).
We conclude that the reduction of Σ to Σ̂ rests on the assumption that the deleted

complexes are approximately constant in time (compared to the other complexes).
When perturbed from equilibrium we assume that certain species in the chemical
reaction network reach their equilibrium much faster than the remaining ones. The
principle behind our model reduction method is to impose the condition that com-
plexes entirely made up of such species remain at constant concentrations. It is thus
important to determine the right set of complexes to be deleted in order to ensure
that the resulting reduced model approximates the full model well.

Example 6.1. As an example, we consider the network of the phosphorylation
of the epidermal growth factor receptor (EGFR) as discussed in [17]. The complete
model consists of 25 reactions, where 22 of them are described by mass action kinet-
ics. We focus on the detailed-balanced subnetwork of the model as listed in Table 6.1.
The subnetwork in Table 6.1 consists of 7 complexes which are made out of 6 species.
Removal of the R-G-S and G-S complexes by an application of our model reduction
method results, after a straightforward computation, in the reduced subnetwork given
in Table 6.2. We note that the reaction rates in the reduced subnetwork are indepen-
dent of the choice of thermodynamic equilibrium point x∗, while their rate constants
are easily related to those of the original network. A numerical comparison of the
original subnetwork and the reduced one is shown in Figure 6.1, where the concen-
trations of the 5 species of the reduced subnetwork are seen to behave similarly as in
the original subnetwork.
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Fig. 6.1. Numerical simulation of the concentrations of Grb, RP, R-G, SOS, and G-S using
the full subnetwork (a) and the reduced one (b).

7. Conclusions. In this paper we have provided a compact, geometric formu-
lation of the dynamics of mass action chemical reaction networks possessing a ther-
modynamic equilibrium. This formulation clearly exhibits both the structure of the
complex graph and the stoichiometry, and furthermore admits a direct thermody-
namical interpretation. Exploiting this formulation, we were able to recover, for this
class of mass action kinetics chemical reaction networks, some of the results in the
fundamental work [15, 14, 11, 12] in a simple and insightful way, without having to
rely on the properties of deficiency zero or one. Drawing inspiration from [22, 21, 23],
we have shown how the framework leads to an input-state-output formulation of open
chemical reaction networks, and how this may be used for interconnection. Further-
more, we have indicated how this formulation, in particular the Laplacian matrix of
the complex graph, may be used for a systematic model reduction procedure based
on the elimination of certain intermediate complexes.

Current research is taking place in a number of directions. In [16] we have shown
how the formulation (3.14) extends to reversible Michaelis–Menten reaction rates. The
use of our formulation for the analysis of steady states corresponding to nonzero (con-
stant) boundary fluxes or clamped boundary species concentrations is under study,
taking into account the possibility of multiple steady states [7]. For an application of
our new model reduction procedure to a model of yeast glycolysis, we refer the reader
to [25]. Further ramifications of the model reduction method are currently being in-
vestigated, in particular its properties for systems with boundary fluxes or clamped
boundary species. Another promising application of the weighted Laplacian matrix
for large-scale reaction networks is its use for decomposition purposes; see [2]. A chal-
lenging question is the extension of our framework to biochemical reaction networks,
where the reactions are enzymatic, and the amount of enzymes, through the activity
of the gene and protein networks, will depend on, for example, the concentrations of
a number of chemical species (metabolites). This will lead to the introduction of an
additional network structure (on top of the complex graph of the metabolic reaction
network) originating from the regulatory, and possibly competing, feedback loops.
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