7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

The supply chain of enterprise software
Postmus, D.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Postmus, D. (2009). The supply chain of enterprise software: strategy, structure, and coordination. [Thesis
fully internal (DIV), University of Groningen]. PrintPartners Ipskamp B.V., Enschede, The Netherlands.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://research.rug.nl/en/publications/69da9cb3-59be-4388-9ede-f09fa9ca33f2

Chapter 3

Aligning the economic modeling of software
reuse with reuse practices

3.1 Introduction

Software reuse is the development of new software assets by reusing and
extending existing software assets, such as libraries, frameworks, and com-
ponents (Krueger, 1992). Potential benefits of software reuse include reduced
development time and costs, shortened time-to-market, and improved soft-
ware quality and maintainability. Schmid and Verlage (2002) argue that some
organizations have been able to reduce development costs and time-to-market
by a factor of ten or more by applying software reuse. Other estimates show
that the required workforce can be reduced by a factor of four (Clements and
Northrop, 2002). Software reuse, however, does not automatically result in
cost reduction. Reuse processes and standards have to be implemented, vari-
ations among related applications have to be taken into account, and reusable
assets have to be catalogued in a reuse library. The development of reusable
software should therefore be considered an investment (Barnes and Bollinger,
1991).

Reuse economic models quantify the economic feasibility of this invest-
ment. The benefits of software reuse are generally defined in terms of the
cost difference between the development of applications without reuse and
the development of applications with reuse. Software reuse is considered to
be economically feasible if the accumulated benefits exceed the total costs of
developing software assets for reuse.

A state-of-the-art review leads to the assertion that existing reuse eco-
nomic models are based on two assumptions that do not reflect software
reuse practices very well. First, many assume that the cost of reusing a soft-
ware asset depends on its size (measured in terms of source lines of code or
another size-related metric), including Mili et al. (2001), Bockle et al. (2004),
and Boehm et al. (2004). Size, however, is not always a good predictor of
this cost. For example, “off-the-shelf” components are often adjusted to the

38 Chapter 3. Economic modeling of software reuse

context in which they are used through parameterization (Carney and Long,
2000; Ravichandran and Rothenberger, 2003). The cost of reusing such a com-
ponent will therefore primarily be determined by the number of parameters
that need to be configured, which depends on the commonality among ap-
plications in the target domain, rather than on its size. Second, existing reuse
economic models obtain the cost of developing a software asset for reuse by
multiplying the cost of developing the asset for one-time use by the “Rel-
ative Cost of Writing for Reuse” multiplier, see e.g. Lim (1996) and Wiles
(1999). This approach reflects the case when reusable assets are developed
from scratch, because “reusability” is added to every part of these assets
(Wiles, 1999). In practice, however, software reuse is often applied recur-
sively, i.e. applications are developed by reusing and extending one or more
existing software assets that have been developed with reuse as well (Bosch,
2001; Jaaksi, 2002; Van Ommering, 2005). Existing reuse economic models
cannot be used in this situation, as they do not account for the possibility that
software assets are both developed for and with reuse.

The contribution of this chapter is that it provides modeling elements that
are better aligned with software reuse practices. It obtains these elements by
first distinguishing three different mechanisms for achieving software reuse—
composition, black-box variation, and white-box variation-and then quanti-
fying the associated costs. By using the modeling elements, a reuse economic
model is constructed that can assist practitioners in deciding whether or not
to apply software reuse recursively. The functioning of the model is illus-
trated in an example.

The remainder of this chapter is organized as follows. First, the three
different mechanisms of software reuse are distinguished and the principle
of recursive reuse is explained. Next, existing reuse economic models are
reviewed and their assumptions are discussed. Subsequently, the modeling
elements are derived and the reuse economic model is constructed. Finally,
the chapter concludes with a brief summary and suggestions for further re-
search.

3.2 Software reuse

When constructing a reuse economic model, two characteristics of software
reuse have to be taken into account. First, many forms exist, such as soft-
ware components, object-oriented frameworks, component frameworks, and
product families. To be widely applicable, a reuse economic model should be

3.2. Software reuse 39

an abstract representation of these forms of reuse. Van Ommering and Bosch
(2002) provide such an abstraction. They show that each form is based on
the mechanisms of composition and variation. Section 3.2.1 discusses these
mechanisms. Second, large-scale software reuse is not always directly tar-
geted at building applications. The functionality that is provided by a set of
generic software assets is sometimes extended by adding functionality that is
useful to a smaller group of applications. A hierarchical grouping of software
assets can then be distinguished at software design-time, which is explained
in Section 3.2.2.

3.2.1 Composition and variation

When software reuse is applied, a new software asset is created by reusing
and extending one or more existing software assets. In general, two (often
combined) mechanisms for achieving software reuse can be distinguished:
composition and variation (Van Ommering and Bosch, 2002). Composition
refers to the integration of two or more existing software assets that have been
developed independently from each other (Sommerville, 2004; Torngren et
al., 2005), whereas variation or tailoring refers to the ability to adjust a soft-
ware asset to the context in which it is used (Bosch, 2000; Van Gurp et al.,
2001; Sinnema et al., 2004). For example, in component-based software en-
gineering, a new software system is obtained by integrating several preex-
isting components (Brown and Wallnau, 1996; Brereton and Budgen, 2000;
Crnkovic et al., 2002). Software product line engineering, in contrast, is pri-
marily targeted at variation: software systems are derived from a common
set of core assets using variation points to implement the differences (Bosch,
2000; Clements and Northrop, 2002).

When applying composition, a new software asset is obtained by assem-
bling two or more existing assets. Integration code is then required to com-
pose the reused assets. An important form of composition is component-
based software engineering (CBSE) (Brown and Wallnau, 1996; Brown and
Wallnau, 1998; Szyperski, 1998; Brereton and Budgen, 2000; Crnkovic et al.,
2002). In this approach, software components, i.e. “unit[s] of composition
with contractually specified interfaces and explicit context dependencies only”
(Szyperski, 1998), are assembled to create an application. When CBSE is ap-
plied systematically, components are integrated by using an architectural in-
frastructure, also referred to as component framework, that mediates and
regulates component interaction (Brown and Wallnau, 1996; Brown and Wall-

40 Chapter 3. Economic modeling of software reuse

nau, 1998; Crnkovic et al., 2002). Wrappers may be required to adapt the com-
ponents to fit within the infrastructure and/or to reconcile the interfaces of
incompatible components (Brown and Wallnau, 1996; Brereton and Budgen,
2000; Sommerville, 2004). Components can also be composed without the use
of a component framework. Then, custom-developed code, often referred to
as “glue” (Brown and Wallnau, 1996), is needed to handle the non-functional
concerns that are otherwise managed by the framework.

The components being reused may not provide sufficient functionality to
satisfy all the functional requirements (Brereton and Budgen, 2000). One or
more new components are then created to realize this functionality. The de-
velopment of new components can also be regarded as a kind of composition,
because they are either obtained by assembling smaller-grained components
or by composing lower-level platform functionality, such as numerical com-
putation and file access (Krueger, 1992; Messerschmitt and Szyperski, 2003;
Atkinson and Kiihne, 2005). A software component that is written in Java, for
example, will depend on a large set of predefined Java classes that comprise
the Java platform (Flanagan, 2002).

When applying variation, the behavior of a reusable asset is configured
to fit the requirements at hand. The places at which this behavior can be
customized are generally referred to as variation points (Bosch, 2000; Van
Gurp etal., 2001; Sinnema et al., 2004). Each variation point is associated with
a number of alternative choices called variants. Figure 3.1 gives a schematic
overview of a reusable asset Z (the central rectangle) and its variation points,
which are numbered A, B, and C. The variants associated with A and B are
shown as well (in the right and left ellipse, respectively). A variation point is
bound by selecting a certain variant from the set of associated variants (Van
Gurp et al,, 2001; Sinnema et al., 2004), see also Figure 3.1. For example,
suppose that variation point A is a parameter. To configure this parameter, a
value has to be selected from the set {A1, A2, A3, A4}

A variation point is open if the set of variants can still be extended and
closed otherwise (Sinnema et al., 2004). In Figure 3.1, open and closed vari-
ation points are represented by dashed and solid squares, respectively. Vari-
ation point A is closed, so the set {A1, A2, A3, A4} cannot be extended. In
contrast, variation point B is open, so the set {B1, B2, B3, B4} can be extended
by developing a new variant, say B5, thereby increasing the number of vari-
ants to select from during variation point binding.

Rather than being independent, new variants have to function in the con-
text of a larger whole, i.e. the asset Z on which variation is applied. An un-

3.2. Software reuse 41

Variants associated with B Reusable asset Z with Variants associated with A
unbound variation points

B1 B2 | Al A2

B3 B4 c A3 Ad

Reusable asset Z with
bound variation points

N

| B4 A3

C1

Figure 3.1: A reusable asset with variation points, numbered A, B, and C, and asso-

ciated variants.

derstanding of this context is then required. New variant development can
therefore be regarded as a form of white-box reuse: the use of “a software
fragment, through its interfaces, while relying on the understanding gained
from studying the actual implementation” (Szyperski, 1998). In this chapter,
the term white-box variation is used to refer to the process of specializing Z
by first developing one or more new variants, such as B5, and then config-
uring this asset by binding its variation points. In contrast, black-box reuse
refers to “the concept of reusing implementations [such as Z] without relying
on anything but their interfaces and specifications” (Szyperski, 1998). We use
the term black-box variation to refer to the configuration of a reusable asset
without developing new variants.

The specialization of an object-oriented framework is a well-known exam-
ple of white-box variation. An object-oriented framework has certain classes
that can be extended through subclassing. These classes constitute the frame-
work’s variation points. Each new subclass inherits the methods of the ex-
tended superclass and is regarded as a variant. Software developers cannot
extend and/or override these methods without an understanding of the in-
ternal structure of this framework (Pree, 1994; Fayad and Schmidt, 1997).
The development of a component plug-in within a product family is another

42 Chapter 3. Economic modeling of software reuse

example of white-box variation, since it requires software developers to un-
derstand the internal functioning of this product family (Bosch, 2000). The
configuration of a commercial-of-the-shelf (COTS) component is a typical ex-
ample of black-box variation (Ravichandran and Rothenberger, 2003).

Variation should not be confused with adaptation, which refers to the cus-
tomization of a reused asset by rewriting part of its source code, see e.g. Bosch
(2000). Many of the benefits that are associated with software reuse disappear
when code changes are made. For example, a programmer must thoroughly
understand this part of the source code, and unit testing of the adapted asset
has to be repeated. As Krueger (1992) puts it:

In the worst cases, a software developer spends more time locat-
ing, understanding, modifying and debugging a ... code frag-
ment than the time required to develop the software from scratch.

Adaptation is therefore not considered in this chapter.

To summarize, three different mechanisms for achieving software reuse
have been distinguished: composition, black-box variation, and white-box
variation; see also Figure 3.2. The labels and multiplicities attached to the
arrows indicate how these forms of reuse interact with one or more reusable
assets to create a new software asset. The multiplicity 2..* indicates two or
more.

2
Reusable Asset l€—Integrates

Composition
Configures Specializes and
configures
Black-box White-box
Variation Variation

Figure 3.2: Three different mechanisms for achieving software reuse and how they
interact with one or more reusable assets.

3.2. Software reuse 43

3.2.2 Applying software reuse recursively

In practice, software reuse is often applied recursively, in the sense that con-
crete applications are obtained by reusing and extending one or more existing
software assets that have also been developed with reuse (Bosch, 2001; Jaaksi,
2002; Van Ommering, 2005). For example, Bosch (2001) argues that organiza-
tions that apply the product line approach sometimes develop specialized as-
sets for a subset of the applications in the product line. Concrete applications
are derived from these assets by adding application-specific functionality.
The specialized product line assets, in turn, have been obtained by reusing
and extending a set of generic product line assets.

Nokia is an example of an organization that has adopted this approach
to develop browser products that allow mobile phone users to access ser-
vices over wireless telecommunication networks (Jaaksi, 2002). A generic
version of the browser is offered as a software product to external customers.
A Nokia and a Symbian OS version of this browser have been obtained from
the generic version of the browser by including platform-specific adaptations
and interfaces. Finally, each Nokia mobile phone has its own specifications
for the browser.

The way in which Philips deals with commonality among embedded soft-
ware systems in consumer electronics is another example of recursion in soft-
ware reuse (Van Ommering, 2005). Philips engages in a range of software
intensive products such as televisions, video recorders, and audio systems.
Each product group is organized as a separate product line. Philips has
achieved reuse among product lines by introducing an extra layer of sub-
systems. Although embedded systems from different product lines differ
significantly from each other, they can still be based on this common set of
subsystems.

The examples illustrate that when software reuse is applied recursively,
generic software assets are combined in multiple ways into domain-specific
assets, which, in turn, are combined in multiple ways into applications. A
hierarchical grouping of software assets can then be distinguished at design-
time (Van Ommering, 2002). Each level of this hierarchy consists of software
assets that have been obtained by reusing and extending one or more assets
from the level below, except the ones at the lowest level which have been
developed from scratch. Figure 3.3, which is derived from Van Ommering
(2002), gives an example of such a hierarchy. The applications at the top
level are derived from the domain-specific asset at the intermediate level by

44 Chapter 3. Economic modeling of software reuse

adding functionality that is specific to these applications: the first one is ob-
tained by adding C1 and the second one is obtained by adding C2 and C3.
The domain-specific asset, in turn, has been developed by reusing and ex-
tending three generic assets, i.e. A1, A3, and AS.

C3|C2

Applications A3 | B2

A1|B1| A5
Level 3

Domain-specific
software assets

Generic
s o] (]] [me] [

Figure 3.3: A hierarchical grouping of software assets. Each asset in this hierarchy

Level 2

Level 1

has been obtained by reusing and extending one or more assets from the level below.

3.3 Economic analysis of software reuse

Reuse economic models quantify the trade-off between software develop-
ment with reuse and software development without reuse. Many reuse eco-
nomic models have been proposed in the literature, see e.g. Gaffney and
Durek (1989), Barnes and Bollinger (1991), Gaffney and Cruickshank (1992),
Poulin et al. (1993), Pfleeger and Bollinger (1994), Poulin (1997a), Favaro et
al. (1998), Mili et al. (2001), Bockle et al. (2004), Boehm et al. (2004), Nazareth
and Rothenberger (2004), and Ben Abdallah Ben Lamine et al. (2005). The
benefits of software reuse are generally defined in terms of the cost difference
between the development of applications without reuse and the development
of applications with reuse. Software reuse is considered to be economically
feasible if the accumulated benefits exceed the total costs of developing soft-
ware assets for reuse. Thorough surveys have been conducted by Frakes and
Terry (1996), Lim (1996), Poulin (1997b), and Wiles (1999). This section re-
views the reuse economic models presented in Mili et al. (2001), Bockle et al.
(2004), and Boehm et al. (2004), which are not included in these surveys, as

3.3. Economic analysis of software reuse 45

they are more recent. The rationale for selecting Mili et al. (2001) is that this
model encompasses seventeen earlier ones. In addition, the SoOCoEMo-PLE 2
model (Ben Abdallah Ben Lamine et al., 2005) is based on it. The other two
models are selected because they are representative among many other reuse
economic models.

3.3.1 Overview

Mili et al. (2001) present a reuse economic model for component-based soft-
ware engineering. The cost of developing a component for reuse is deter-
mined by multiplying the cost of developing this component for one-time
use by the “Relative Cost of Writing for Reuse” multiplier. The cost of devel-
oping an application with reuse consists of: (i) the reuse adoption costs, (ii)
the cost of developing the fraction of this application that consists of custom-
developed software, and (iii) the cost of locating, instantiating, and integrat-
ing the reused components. The authors do not provide an expression for the
cost of developing custom software, but argue that this cost can be derived
by using traditional software cost estimation models. The same applies to
the integration costs of the reused components. Furthermore, it is assumed
that the reuse adoption costs, e.g. the costs of training, tool acquisition, and
the operational impact of reuse processes, and the component retrieval and
assessment costs can be estimated by expert judgment. Finally, the cost of in-
stantiating a reused component is assumed to be a fixed fraction (either 0.20
or 0.67, depending on whether the component’s source code is adapted) of
the cost of developing this component from scratch.

Bockle et al. (2004) provide a reuse economic model for software prod-
uct line engineering. They assume that the cost of establishing a software
product line consists of three elements: the costs for an organization to adopt
the product line approach, the cost of developing a reusable core asset base,
and the cost of developing concrete applications by reusing the product line
assets. The authors split an application developed with reuse into a part
consisting of reused product line software and one consisting of custom-
developed software. The cost of reusing product line software is assumed
to be 10% of the cost of building equivalent software from scratch, whereas
the cost of developing the product line assets is assumed to be 150% of the
cost of developing this software for one-time use.

The Constructive Product Line Investment Model (COPLIMO) by Boehm
et al. (2004) is an extension of the COCOMO II model for software cost

46 Chapter 3. Economic modeling of software reuse

estimation (Boehm et al., 1995). The authors divide an application that is
developed with reuse into a product-specific fraction, an adapted-software
fraction, and a reused-software fraction. Adapted software is existing soft-
ware that has been adjusted to the requirements at hand by modifying part
of its source code, whereas reused software is existing software that has been
black-box reused. To establish the cost of developing an application with
reuse, equivalent amounts of custom-developed software are determined for
the adapted-software and the reused-software fractions of this application by
applying the COCOMO II reuse model. The cost of developing a software
asset for reuse is obtained by multiplying the cost of developing similar soft-
ware for one-time use by the “Relative Cost of Writing for Reuse” multiplier,
defined as the product of the COCOMO II cost drivers “Development for
Reuse”, “Required Reliability”, and “Degree of Documentation”.

3.3.2 Discussion

The commonality among the models reviewed above is the following. Each
model is built around the “Relative Cost of Writing for Reuse” (RCWR) and
the “Relative Cost of Reuse” (RCR) factors introduced by Poulin (1997b):
RCWR represents the cost of developing software for reuse relative to the cost
of developing this software for one-time use, while RCR represents the cost
of reusing existing software relative to the cost of developing this software
from scratch. The cost of developing software for reuse is obtained by mul-
tiplying the cost of developing this software for one-time use by the RCWR
multiplier. Similarly, the cost of developing the fraction of an application that
consists of reused software is obtained by multiplying the cost of custom-
developing this fraction by the RCR factor. Mili et al. (2001) and Boehm et
al. (2004) use different RCR factors for existing software that is reused with-
out modification and existing software that is adapted by rewriting part of its
source code. Bockle et al. (2004) do not make such a distinction.

By applying the RCR factor, the reuse economic models above assume
that there is a correlation between the cost of reusing existing software and
the cost of custom-developing this software. In general, such a correlation
will exist if some other factor underlies both of these costs, causing them to
vary together. The cost of developing custom software is primarily deter-
mined by the size of this software, measured in terms of source lines of code
or another size-related metric; see e.g. Banker et al. (1994), Boehm et al.
(1995), and Agarwal et al. (2001). For example, in the COCOMO II model, a

3.3. Economic analysis of software reuse 47

widely used software cost estimation model, the effort required to develop a
software system is expressed as a function of this system’s size (in thousands
of source lines of code), using an exponential factor to account for possible
economies or diseconomies of scale (Boehm et al., 1995). A correlation be-
tween the cost of reusing existing software and the cost of custom-developing
this software will therefore only exist if the cost of reusing existing software
depends on its size.

In section 3.2.1, it has been argued that the complexity of reusing existing
software depends on whether this software is black-box or white-box reused.
Thus, in order to determine whether the cost of reusing existing software
depends on its size, the distinction between black-box and white-box reuse
has to be taken into account. White-box reuse refers to the use of an exist-
ing software asset, while relying on the understanding gained from studying
its implementation. The effort required to study a reused asset’s implemen-
tation is therefore included in the cost of white-box reuse. This effort will
generally depend on the size of the reused asset. In the COCOMO II model,
for example, the effort required to study a reused asset’s implementation de-
pends linearly on its size (Boehm et al., 1995). Size can therefore be used as a
predictor of the cost of white-box reuse.

Black-box reuse, in contrast, refers to the use of an existing software as-
set without knowledge of its implementation. The cost of black-box reuse is
therefore primarily determined by the effort required to configure the reused
asset. This effort will generally depend on the number of variation points,
which is determined by the degree of commonality among applications in
the target domain (Atkinson et al., 2000; Lycett, 2001; Schmid, 2002). As a
consequence, relatively large software assets can have few variation points,
whereas relatively small software assets can have many variation points. Size
can therefore not always be used as a predictor of the cost of black-box reuse.

To summarize, a correlation between the cost of reusing existing software
and the cost of custom-developing this software will generally exist in the
situation of white-box reuse. It is less likely, however, that this correlation
exists when black-box reuse is applied. The RCR factor should therefore not
be used to estimate the cost of black-box reuse.

The RCWR multiplier can be used to capture an important characteris-
tic of software reuse: it is more expensive to develop a software asset for
reuse than to develop a similar asset for one-time use (Boehm et al., 1995;
Poulin, 1997b). The reuse economic models above obtain the cost of devel-
oping a software asset for reuse by multiplying the cost of developing the

48 Chapter 3. Economic modeling of software reuse

asset for one-time use by the RCWR multiplier. This approach reflects the
case when reusable assets are developed from scratch, because “reusability”
is added to every part of the asset (Wiles, 1999). In Section 3.2.2, however,
it has been argued that software reuse is sometimes applied recursively in
the sense that applications are developed by reusing and extending one or
more existing software assets that have also been developed with reuse. A
software asset that is both developed for and with reuse can be divided into
a part that consists of custom-developed software and a part that consists of
reused software. No additional effort is required to generalize the part of the
asset that consists of reused software, as this part has already been developed
for reuse. Thus, in order to estimate the cost of developing for reuse correctly,
the RCWR multiplier should only be applied to the part of the asset that con-
sists of custom-developed software. To conclude, existing reuse economic
models cannot be used when software reuse is applied recursively, as they
do not account for the possibility that software assets are both developed for
and with reuse.

3.4 Modeling elements

The previous section showed that existing reuse economic models are based
on two assumptions that do not reflect software reuse practices very well. In
this section, a set of modeling elements is provided that is better aligned with
these practices. In general, two interrelated trade-offs apply to the develop-
ment of a software asset: (1) whether to develop this asset with or without
reuse, and (2) whether to develop this asset for reuse or for one-time use. The
first trade-off depends on whether the effort needed to tailor the reused assets
to fit the requirements at hand is less than the effort needed to develop the
required functionality from scratch (Ravichandran and Rothenberger, 2003).
The costs of developing a software asset with reuse are quantified in Section
3.4.1. The second trade-off, also referred to as reuse infrastructure scoping
(Schmid, 2002), depends on whether the expected benefits of reusing this as-
set offset the cost of making it reusable. The cost of developing a software
asset for reuse is quantified in Section 3.4.2.

3.4.1 The cost of developing with reuse

In Section 3.2.1, three different mechanisms for achieving software reuse have
been distinguished: composition, black-box variation, and white-box varia-

3.4. Modeling elements 49

tion. Below, the associated costs are quantified.

When applying composition, a new software asset is created by assem-
bling two or more existing assets. Integration code—either wrappers or glue,
depending on whether the reused assets are inserted into a component frame-
work—is then required to compose the reused assets. In addition, custom-
developed code may be required to provide missing functionality. Let S;,
denote the total amount of integration code, and let S,.,, denote the total
amount of new functionality, both measured in terms of thousands of source
lines of code (KSLOC). Similar to COCOMO II (Boehm et al., 1995), we for-
mulate the cost of developing custom software as:

C. = a,- S

custom?

(3.1)

where . reflects the average cost of developing a thousand source lines of
custom code, Scustom = Sin + Snew the total amount of custom-developed
code, and f3. an exponential factor to account for possible economies or dis-
economies of scale in writing lines of code (Banker et al., 1994). If 3. < 1,
doubling the amount of custom-developed software increases development
costs by a factor of less than two, so writing lines of code exhibits economies
of scale. In contrast, 5. > 1 implies that writing lines of code exhibits disec-
onomies of scale. Finally, if writing lines of code exhibits neither economies
nor diseconomies of scale, 5. = 1.

When applying variation, the behavior of an existing software asset is
configured by binding its variation points. Let V' denote the number of vari-
ation points belonging to a reused asset. It is assumed that the accumulated
costs of binding variation points can be expressed as:

Cy=ay- Vﬁb, (3.2)

where «y is the average cost of binding an individual variation point and £,
an exponential factor to account for possible dependencies among variation
points. These occur when the selection of a certain variant at one variation
point constraints the selection of variants at other variation points. For exam-
ple, the binding of variant A1l to variation point A may exclude the binding
of variant B1 to variation point B or may require the binding of variant C1
to variation point C, see e.g. Sinnema et al. (2004). If there are no depen-
dencies among variation points, the accumulated costs of binding variation
points are assumed to be equal to the sum of the costs of binding individual
variation points, i.e. 5, = 1. On the other hand, the presence of dependencies
increases the complexity of binding variation points, so 3, > 1.

50 Chapter 3. Economic modeling of software reuse

The set of variants associated with an open variation point is sometimes
extended by developing a new variant. In Section 3.2.1, it has been argued
that new variant development is a form of white-box reuse, so an understand-
ing of the reused asset’s implementation is then required. Let S;otq; denote the
overall size of a reused asset, measured in KSLOC. The cost of studying the
asset’s implementation is assumed to depend linearly on its size:

Cs = Qs * Stotaly (33)

where «; is the average cost of studying a thousand source lines of code.
Again, this assumption is in line with the COCOMO II model, which ob-
tains this cost by multiplying the size of the asset by the “software under-
standing increment” (a factor that ranges from 0% to 50%, depending on (i)
the structure, clarity, and self-descriptiveness of the reused asset, and (ii) the
programmer’s familiarity with it) (Boehm et al., 1995). In addition, custom-
developed code is required to develop the variant itself. Equation (3.1) can
be used to account for this cost by increasing Scysiom by the size of the new
variant (measured in KSLOC).

Equations (3.1), (3.2), and (3.3) quantify three different sources of costs
associated with software reuse. Table 3.1 shows how these costs apply to the
mechanisms of composition, black-box variation, and white-box variation as
described in Section 3.2.1:

e Equation (3.1) covers the cost of connecting the reused assets when ap-
plying composition.

e When applying black-box variation, a reusable asset is configured by
binding variation points. Equation (3.2) can be used to determine this
cost.

e In the situation of white-box variation, a reusable asset is specialized
by extending the set of variants associated with one or more of its open
variation points. An understanding of the reused asset’s internal struc-
ture is then required. Equation (3.3) covers the cost of studying the
reused asset’s implementation, whereas the cost of developing the new
variants is covered by Equation (3.1). Finally, Equation (3.2) is needed
to obtain the cost of configuring the reusable asset by binding its varia-
tion points.

3.5. The reuse economic model 51

Table 3.1: The mapping of Equations (3.1)-(3.3) to the mechanisms of composition,
black-box variation, and white-box variation. A cross in the (i, j)-th entry of the table
indicates that Equation j applies to mechanism i.

Equation (3.1) Equation (3.2) Equation (3.3)

Composition X
Black-box variation X
White-box variation X X X

3.4.2 The cost of developing for reuse

It is more expensive to develop a software asset for reuse than to develop
similar software for one-time use. For example, domain analysis is required
to identify variation points (Atkinson et al., 2000; Thiel and Hein, 2002) and
software that is developed for reuse needs extra documentation and testing
(Boehm et al., 2004; Sommerville, 2004). We assume that the “Relative Cost
of Writing for Reuse” multiplier (Poulin, 1997b) can be used to account for
these additional costs:

Cf = RCWR - C,, (3.4)

where CYy, is the cost of generalizing the part of a software asset that consists
of custom-developed software and RCWR the “Relative Cost of Writing for
Reuse” multiplier.

In Section 3.3.2, it has been argued that existing reuse economic models
obtain the cost of developing a software asset for reuse by multiplying the
cost of developing the asset for one-time use by the RCWR multiplier. Equa-
tion (3.4) differs from this approach in the sense that the RCWR multiplier is
only applied to the part of the asset that consists of custom-developed soft-
ware. Both approaches yield the same result when reusable assets are de-
veloped from scratch. However, our approach gives lower estimates when
software reuse is applied recursively.

3.5 The reuse economic model

In Section 3.2.2, it has been argued that when software reuse is applied re-
cursively, a hierarchical grouping of software assets can be distinguished at
design-time. Given such a hierarchy, a distinction can be made between the
economic value of the software assets at a particular level of this hierarchy

52 Chapter 3. Economic modeling of software reuse

and the economic value of the total reuse investment, which includes each
level of reusable assets. This section focuses on determining the economic
value of the software assets at the intermediate level of a hierarchy of three
levels. In particular, by using the modeling elements from the previous sec-
tion, we develop a reuse economic model for determining the economic fea-
sibility of having such an intermediate layer of reusable software assets. The
practical relevance of the model is as follows. Suppose that a company has
developed one or more generic software assets, i.e. reusable assets that ap-
ply to several application domains. Now, this company may decide to create
applications by first deriving a set of domain-specific assets and then adding
application-specific functionality. Alternatively, applications can be derived
directly from the generic assets. Our model supports practitioners in making
this decision.

Let us assume that the sets Ly = {a11,...,a10,}, L2 = {a21,...,a2.,},
and L3 = {a31,...,a3,,} represent the three levels of the design-time hier-
archy. The bottom level, the intermediate level, and the top level are indexed
as 1,2, and 3, respectively. The notation employed in the model is as follows:

ng Number of software assets at level £

Be Exponential factor to account for possible economies and
diseconomies of scale in writing custom code

Bp Exponential factor to account for possible dependencies
among variation points

Qe Average cost of developing a thousand source lines of
custom code

ap Average cost of binding a variation point

Qg Average cost of studying a thousand source lines of custom
code

RCWR Relative cost of writing for reuse

Stotal (@ t) Overall size of asset a;;, measured in thousands of source
lines of code

Scustom(aj) Size of custom-developed software for asset a;;, measured
in thousands of source lines of code

V(aj) Number of variation points belonging to asset a; ¢

I(a;s,a;;) Binary variable which equals 1 if asset a; ; is reused when
asset a;; is developed and 0 if otherwise

Iyp(ais,a;;) Binary variable which equals 1 if asset a; ; is white-box
reused when asset a;; is developed and 0 if otherwise

3.5. The reuse economic model 53

C(aj, k) Cost of developing asset a;; by reusing and extending one
or more assets from level k

B Accumulated benefits of reusing the assets from the
intermediate level

TC Total costs of developing the assets at the intermediate
level

Software assets at the intermediate level have both been developed for
reuse and with reuse. By combining Equations (3.1)-(3.4), the cost of devel-
oping software asset as ; can be written as:

C(a2,t7 1) = {Oéc : (Scustom(alt))ﬁc} -RCWR

n1
+ ap - Z V(al,s)ﬂ” . Ir(aLS, ag,t) (35)
s=1

ni
+as - Z Stotal(al,s) : Iwb(al,s> a2,t)~
s=1

The variable I, (a1 s, a2;) is equal to 1 if asset a; 5 is reused when asset az;
is developed and 0 if otherwise. Similarly, the variable I,,;(a1 s, a2¢) is equal
to 1 if asset a; s is white-box reused when asset as; is developed and 0 if
otherwise. Because white-box reuse is a special case of reuse, it holds that
Ipp(ar,s,a2s) < Ip(ars,a2¢). If asset aq s is black-box reused when asset az
is developed, I,(ais,a24) = 1 and I(a1,s,a2:) = 0. The cost of reusing
this asset is then equal to the cost of binding its variation points. Similarly,
if asset a; 5 is white-box reused when asset as; is developed, I, (a1 s, a2;:) =
Iyb(ar,s,az2:) = 1. Then, an additional cost element is taken into account: the
cost of studying the reused asset’s implementation. Recall that the cost of de-
veloping one or more new variants is accounted for by increasing Scstom (a2.+)
by the size of these variants.

The total costs of developing the assets at the intermediate level are equal
to the sum of the costs of developing the individual assets at this level:

TC = Z Claz, 1). (3.6)

t=1

The accumulated benefits of reusing the assets from the intermediate level
are obtained by subtracting the costs of developing applications by reusing
and extending the assets from the intermediate level from the costs of devel-
oping these applications by reusing and extending the assets from the bottom

54 Chapter 3. Economic modeling of software reuse

level. The cost of developing application as3; by reusing and extending the
assets from level k£ can be formulated as:

C(a3,t7 k) = Q¢ (Scustom(aii,t))ﬁc

ng
+ Qp - Z V(ak’s)ﬁb . L»(ak’s, a37t) (37)
s=1

Nk
o - Z Siotat (k) - Twb (s as).

s=1

The accumulated benefits of reusing the assets from the intermediate level
will then be equal to:

B = Z(C(a:’m 1) — C(asy, 2)). (3.8)

If B > TC, the accumulated benefits of reusing the assets from the inter-
mediate level of the hierarchy offset the costs of developing these assets, so
the intermediate level is economically feasible. In contrast, B < T'C implies
that developing the assets at the intermediate level of the hierarchy increases
software development costs.

The additive forms of Equations (3.5) and (3.7) are based on the assump-
tion that the effort required to understand and configure one of the reusable
assets does not affect the effort required to understand and configure the
other reusable assets. This assumption is likely to hold, because reusable
assets have been developed independently from each other. Similarly, the
additive forms of Equations (3.6) and (3.8) suggest that developing one of the
intermediate assets (applications) does not affect the effort required to de-
velop the other intermediate assets (applications). This assumption is plausi-
ble if each of these assets is developed by a different programmer. However,
when the same programmer develops several of them, interactions may come
in play. For example, suppose that this programmer reuses a particular as-
set from the bottom level repeatedly in developing the intermediate assets.
Then, the effort required to study this asset’s implementation is likely to de-
crease every time the asset is reused. Equations (3.6) and (3.8) ignore these
interactions.

3.6. Example 55

3.6 Example

The following example illustrates the functioning of our model. The example
is based on a real-life situation, yet simplified. Company A provides infor-
mation systems to a large number of customers spread across several market
segments. Within a market segment, information systems are derived from
a generic framework called branch model. Although branch models from
different market segments differ significantly from each other, they can still
be based on a common set of business objects. Examples of business objects
include "contract’, ‘order’, ‘customer’, and ‘product’. Over time, the number
of branch models has been extended to address new market segments. Cur-
rently, management faces the decision whether to develop a branch model
for the healthcare domain. To account for the differences among customers,
management decides to offer 3 variants of the healthcare information system.

To determine whether it is economically feasible to develop a branch mo-
del for the healthcare domain, it is assumed that business objects and branch
models are black-box reused. In addition, it is assumed that software devel-
opment exhibits constant returns to scale and that there are no dependencies
among variation points, i.e. &, = 3. = 1.

Management estimates that the size of custom-developed software for the
healthcare branch model will be 30 KSLOC and that 15 business objects will
be reused. A business object has on average 10 variation points. The average
cost of developing a thousand source lines of custom code has been normal-
ized to 1. Suppose that the average cost of binding a variation point is equal
to 0.02 and that the relative cost of writing for reuse is equal to 1.5. Then, the
cost of developing the healthcare branch model will be equal to (Equation
(3.6)):

30-1.5+0.02-15-10 = 48.

The healthcare branch model will have 50 variation points. Suppose that 5
KSLOC is custom-developed if a variant of the healthcare information system
is obtained by reusing and extending the healthcare branch model and that
15 KSLOC is custom-developed if this variant is built directly on top of the
business objects. Finally, assume that 12 business objects will be reused if an
information system variant is obtained by composing business objects. For
3 variants of the healthcare information system, the accumulated benefits of
reusing the healthcare branch model will then be equal to (Equation (3.8)):

3. ((15+0.02-12-10) — (5 +0.02- 50)) = 3 - 11.4 = 34.2.

56 Chapter 3. Economic modeling of software reuse

The accumulated benefits of reusing the healthcare branch model do not
offset its development costs, so management decides to build the 3 variants of
the healthcare information system directly on top of the business objects. In
this example, developing the healthcare branch model pays off at 5 variants.

3.7 Conclusions and future research

Existing reuse economic models rely on two assumptions that do not reflect
software reuse practices very well. First, they assume that there is a corre-
lation between the cost of reusing existing software and the cost of custom-
developing this software. Although such a correlation will generally exist in
the situation of white-box reuse, we have argued that it is less likely to exist
when black-box reuse is applied. Second, existing reuse economic models ob-
tain the cost of developing a software asset for reuse by multiplying the cost
of developing the asset for one-time use by the “Relative Cost of Writing for
Reuse” multiplier. This approach reflects the case when reusable assets are
developed from scratch. In practice, however, software reuse is often applied
recursively in the sense that applications are developed by reusing and ex-
tending one or more existing software assets that have been developed with
reuse as well. A different approach is then required to estimate the costs that
are associated with developing for reuse.

This chapter has provided modeling elements that are better aligned with
software reuse practices by quantifying the costs that are associated with
three different mechanisms for achieving software reuse: composition, black-
box variation, and white-box variation. It has also shown that when software
reuse is applied recursively, a hierarchical grouping of software assets can be
distinguished at design-time. Each level of this hierarchy consists of software
assets that reuse and extend one or more assets from the level below. By using
the modeling elements, a reuse economic model has been constructed that al-
lows one to determine whether the intermediate level of such a hierarchy is
economically feasible. An example has shown how our model may serve as a
tool for practitioners to support decisions such as whether or not to develop
one or more domain-specific software assets by reusing and extending a set
of generic software assets.

Future research will primarily involve empirical validation of the assump-
tions that underlie the modeling elements. In particular, we are interested in
testing the proposed correlation between the cost of black-box variation and
the number of variation points. Effort will also be directed at extending the

3.7. Conclusions and future research 57

reuse economic model. Typically, the life cycle of a software asset consists of
two phases: the development phase, in which the first version of this asset
is created, and the evolution phase, in which upgrades are produced. In its
current form, the model applies to the development phase only. A natural
way to extend the model is therefore to include annual maintenance costs.
In addition, revenue streams from selling applications to customers can be
taken into account, so that the profitability of alternative software develop-
ment strategies can be compared. Finally, it has been assumed that reusable
assets are developed internally. In practice, third-party components may be
reused as well. In-house development costs should then be replaced by li-
cense fees and royalties.

