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Recent advances in mobile phone cameras have poised them to take over com-

pact hand-held cameras as the consumer’s preferred camera option. Along with

advances in the number of pixels, motion blur removal, face-tracking, and noise re-

duction algorithms have significant roles in the internal processing of the devices.

An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast

fine details) of the original scene. Current established methods for resolution mea-

surement fail to accurately portray the texture loss incurred in a camera system.

The development of an accurate objective method to identify the texture preser-

vation or texture reproduction capability of a camera device is important in this

regard.

The ‘Dead Leaves’ target has been used extensively as a method to measure

the modulation transfer function (MTF) of cameras that employ highly non-linear

noise-reduction methods. This stochastic model consists of a series of overlapping

circles with radii r distributed as r−3, and having uniformly distributed gray level,



which gives an accurate model of occlusion in a natural setting and hence mimics

a natural scene. This target can be used to model the texture transfer through a

camera system when a natural scene is captured.

In the first part of our study we identify various factors that affect the MTF

measured using the ‘Dead Leaves’ chart. These include variations in illumination,

distance, exposure time and ISO sensitivity among others. We discuss the main

differences of this method with the existing resolution measurement techniques and

identify the advantages.

In the second part of this study, we propose an improvement to the current tex-

ture MTF measurement algorithm. High frequency residual noise in the processed

image contains the same frequency content as fine texture detail, and is sometimes

reported as such, thereby leading to inaccurate results. A wavelet thresholding-

based denoising technique is utilized for modeling the noise present in the final

captured image. This updated noise model is then used for calculating an accurate

texture MTF. We present comparative results for both algorithms under various

image capture conditions.
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Chapter 1: Introduction

The current generation of mobile phone cameras have reached levels of techno-

logical advancement which make them comparable to the low-to-mid range consumer

cameras. This factor combined with the ease of transport, multi-functionality, and

attractive price point has led the mobile phone camera to be the first choice device

for the everyday photographer. Noise-removal, sharpening, hot pixel identification,

red-eye removal and several more features are commonplace in these devices. Along

with normal everyday usage, specialized apps for medical image diagnosis or mo-

bile dermatology have also become easily available in the market. This area has

expanded because of the ease with which initial medical analyses can be made re-

motely with minimal time and resource expenditure. At the same time, the overall

accuracy of the diagnosis depends, to a large extent, on the quality of the image

produced. The quality of mobile phone camera images includes several parameters

such as the spatial frequency response (SFR), color uniformity, visual noise, chro-

matic aberration, chroma level, texture preservation/texture reproduction etc. In

this report, the main parameter that we consider will be the texture preservation

metric of image quality in mobile smart phones.

The texture preservation measurement is important in camera phones that em-
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ploy aggressive noise reduction algorithms in their image processing pipelines. These

algorithms can mistake high-frequency texture detail for noise in several cases, and

smooth out the image to an extent which removes the texture detail. A parameter is

required to quantify this loss and to identify devices in which there is a high degree

of this texture loss. The generally used metric image resolution, the slanted edge

spatial frequency response, is sometimes fooled by such image processing algorithms,

since edges are detected and processed differently in the image. As a consequence,

the dead leaves target and related algorithms have been developed for the texture

preservation measurement.

The general technique used for the evaluation of image quality is to use par-

ticular targets that are specially designed to evaluate particular metrics of image

quality. Examples include the slanted edge chart for spatial resolution, the dot chart

for chromatic aberration, the dead leaves target for texture preservation etc. Im-

ages of the target chart are captured by the camera system under certain specified

conditions, and the properties of the images are evaluated in order to estimate the

metrics under study. The ‘Dead Leaves’ target has been used extensively to measure

the modulation transfer function (MTF) of cameras that employ highly non-linear

noise-reduction methods. This stochastic model consists of a series of overlapping

circles with radii r distributed as r−3, and having uniformly distributed gray level,

which gives an accurate model of occlusion in a natural setting and hence mimics a

natural scene. This property of the dead leaves target makes it suitable for evalu-

ation of the texture preservation aspect in natural images, which mainly consist of

textures and images with fine detail.
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We present a literature review of the existing algorithms for the measurement

of the texture preservation metric using the dead leaves chart, along with extensions

of the same. The algorithms mainly utilize the variation in the power spectrum of

the ideal target image and the captured image, since the aberrations in the power

spectral density (PSD) of the captured image are due to the image processing oc-

curring in the camera system.

In the first part of the report we identify various factors that affect the texture

MTF measured using the ‘Dead Leaves’ chart. These include variations in illumina-

tion, distance, exposure time and ISO sensitivity, sharpness and the effect of added

noise models. An in-depth study of the effects of varying each of the parameters

would give an idea as to the ideal conditions under which the best performance of

the camera system can be expected. Easily reproducible conditions would mean that

the test procedure can be carried out for a wide array of devices, with results that

can be accurately compared. We also examine the usage of the texture acutance

measurement as a single-value measure. This enables a numerical comparison of the

texture preservation quality between camera systems.

An improvement to the texture MTF algorithm is proposed in the second

part of the report. Images captured at very high ISO values, or under non-uniform

illumination conditions can have considerable amounts of noise in them. These high-

frequency variations in image intensity contain the same frequency content as some

fine texture details. Due to this similiarity in frequency information, the algorithm

can artificially increase the texture MTF at high frequencies in some situations when

noise in the image can be misinterpreted as texture detail. We examine the effec-
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tiveness of using an estimation of the noise level in the texture image by using the

uniform gray region, and propose an alternative noise estimation technique utilizing

wavelet thresholding. The effects on the denoised image peak signal-to-noise ratio

(PSNR) of various parameters in the thresholding step are considered, and suitable

parameters are estimated based on these. After incorporating the modification in

noise estimation, the texture MTF is calculated for a range of images with variations

in noise level, ISO sensitivity and exposure time.
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Chapter 2: Literature Review

Evaluation of the image quality of a camera with respect to its texture preser-

vation aspect requires a different approach than just evaluating the sharpness mea-

sure. The dead leaves target is used for measurement of the texture preservation, as

it models the occlusion phenomenon commonly seen in naturally occurring textures.

Various algorithms have been proposed to measure the texture Modulation

Transfer Function (MTF) using the dead leaves target. The algorithms for image

quality assessment (IQA) can mainly be classified into two categories:

1. Semi-reference IQA (SR-IQA) methods, which estimate the quality of dis-

torted images with respect to subjective perceptual measures without having

to use a reference of the original image; and

2. Full-reference IQA (FR-IQA) methods, which measure local pixel-wise dispar-

ity between the reference image and the obtained distorted image, and then

obtain a scalar representing the total image quality metric of the distorted

image.
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2.1 SR-IQA

The SR-IQA methods for measuring texture preservation utilize the Natural

Scene Statistics (NSS) approach: some of the statistics of the dead leaves target

follow the same statistics as observed in natural images. Cao et al. [1] [2] proposed

that the power spectrum of the dead leaves target follows a power law. By using

this property, the power spectral density (PSD) of an ideal dead leaves model at

any size can be obtained, as given in Equation 2.1. By obtaining the PSD of the

captured image, and then dividing it by the calculated ideal PSD, the texture MTF

of an imaging system can be calculated.

| Ûmn |2=























L4〈u〉2, m = 0, n = 0

A(L)

(

√
m2+n2

L
)p
, otherwise

(2.1)

where p is the empirical power law coefficient, measured as p ∼ 1.857 [2], 〈u〉 the

average image intensity, m and n are the coordinates considered, L the image length

(in numbers of pixels), and A(L) the normalization coefficient. This model is for

the case when the Fourier spectrum is shifted and the location (m,n) = (0, 0)

appears at the center of the transformed image. The normalization coefficient A(L)

is approximated by 71.0156 ∗ L1.8905. The 2-D power spectral density was then

converted to 1-D power spectral density using radial averaging, by averaging over

all orientations. The texture MTF was then calculated as given in Equation 2.2.

MTFtexture =

√

PSDmeasured

PSDideal

(2.2)

McElvain et al. [3] provided several extensions to the method proposed by
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Cao et al. It was shown that the power spectrum of the dead leaves model does not

follow an exact power law across the entire spatial frequency range. The deviation

from the power law was attributed to the limitation in bounding of the radii of the

circles in the dead leaves model. A modified model for the ideal PSD was proposed,

as given in Equation 2.3.

ln[PSDideal(f)] = ln[A(L)]−B(s) ln(f)− C(s)[ln(f)]2 (2.3)

The ln[A(L)], B and C coefficient values depend on the captured image size L as

given in Table 2.1. The factor s is the scale factor obtained by N/L, where N is the

rendered image length (in numbers of pixels).

Table 2.1: Coefficients for the ideal PSD extension, as proposed by McElvain et al.

L=N/s ln[A(L)] B(s) C(s)

128 12.531 2.295 0.09991

256 13.985 2.400 0.12613

512 15.476 2.407 0.12067

1024 16.690 2.718 0.19723

2048 17.253 3.601 0.39951

The second important extension was in the identification that the captured

image PSD at higher spatial frequencies would be dominated by the high frequency

noise and artifacts, thereby causing an artificial and false increase in the captured

image PSD at higher spatial frequency levels. The noise is generally sensor noise and
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JPEG artifacts. Correction of this parameter is performed by first subtracting the

noise PSD from the measured PSD before using it for the texture MTF calculation,

as given in Equation 2.4. The noise PSD is measured from the PSD of a 50% uniform

grey patch, using the same camera system and shooting conditions.

MTFtexture =

√

PSDmeasured − PSDnoise

PSDideal

(2.4)

2.2 FR-IQA

The FR-IQA methods perform local methods comparing each pixel in the

reference image to the corresponding pixel in the captured image, for obtaining the

difference. Kirk et al. proposed a technique for texture preservation measurement

using the dead leaves target that utilizes the phase information as well, using the

cross-correlation power density φY X(f) between the input and output signals, and

the auto power density φXX(f) [4]. The full transfer function H(f) is obtained as

in Equation 2.5.

H(f) =
φY X(f)

φXX(f)
(2.5)

Utilizing registration of the measured pixel pattern to the original pixel pattern is

performed using projective transformation. Fourier transformation of these images

provides the spectrums of the ideal and measured images, from which the cross-

correlation power density, the auto power density and the texture MTF are then

obtained by Equation 2.6.

MTFtexture = averageradial(| H(f) |) (2.6)
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2.3 Summary

This chapter presented an overview of the existing algorithms for texture

preservation measurement in camera devices. The two main categories are semi-

reference and full-reference methods. The semi-reference methods calculate the

texture MTF by modelling the ideal power spectral density according to certain

parameters. The full-reference methods utilize additional spatial information of the

captured and ideal image to obtain the texture MTF.

The model generation data for the original target is required in order for the

utilization of a full-reference method. This model data may not be available at the

testing site. There is also the possibility of errors being introduced in the mea-

surement pipeline during the process of spatial registration between the measured

and the ideal images. Due to these reasons, we concentrate on the semi-reference

method for texture preservation measurement in this study.
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Chapter 3: The Dead Leaves Model

The circular dead leaves target is a reproducible model for the occlusion phe-

nomenon commonly observed in natural images. It consists of a number of over-

lapping discs with the overall image representing a collection of dead leaves, i.e. a

collage of discrete objects that partially occlude one another. Lee et al. [5] provide a

model for the generation of the dead leaves target. Consider a uniform Poisson pro-

cess si = {xi, yi, zi}, and the closed sets Ti in R
2, having random size ri and centered

at the origin. The coordinates given by the Poisson process {xi, yi, zi} are utilized

for locating the discs. The dead leaves model is then generated as in Equation 3.1.

⋃

i

(Ti + si) (3.1)

Thus the set Ti+ si is an object at a time i. The variation in the zi parameter

causes the occlusion of the objects or leaves. Consider that the viewer is situated at

the point zi = 0, and that all the generated values of zi are positive in the direction

away from the viewer. The foremost leaf would be the one generated at the least zi

distance from the viewer. In the theoretical model, the discs that are generated later

in time occlude the discs generated earlier. For the purpose of computer generation

of the dead leaves model, we assume that the discs generated later in time are at

a lesser distance, and thus occlude the earlier generated discs. The random size R

10



of the objects in the dead leaves chart follows the distribution as given in Equation

3.2.

P (R = r) ∝ 1

rα
(3.2)

where α > 1.

The maximum and minimum possible values of the size are set in order to

obtain non-trivial images. For a very low value of rmin the image is almost completely

covered by microscopic objects, and for very large rmax, the image may completely

consist of only one large object. Gray levels are assigned to the discs using a uniform

distribution over the total range, with each point (x, y) being assigned the gray

level of the visible disc at that point. Also, in order to have approximately full

scale invariance, the exponent of the power law for the radii has to be −3. For the

texture preservation measurement using the dead leaves target, Cao et al. [2] suggest

a contrast range for the gray levels of the target to be between [0.25, 0.75]. This low-

contrast is used since it is the image condition in which the processing limitations in

camera devices are most clearly observed. An example of the generated dead leaves

target is shown in Figure 3.1. The statistics followed by the power spectral density

of the dead leaves model have been discussed previously.

The other properties of the considered dead leaves target include:

1. Statistical rotation invariance. Since the objects in the model are discs, ar-

bitrary rotations to the target do not change the measured power spectral

density;

2. Statistical shift invariance. This property arises as a consequence of the Pois-
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Figure 3.1: Generated dead leaves target.

son distribution used for locating the centers of the discs away from the plane

origin. If the origin is shifted and the discs are generated again, the statistical

properties of the completed target are maintained;

3. Statistical scale invariance. Ideal scale invariance would mean that the statis-

tical properties of the target would not depend on the viewing distance. The

dead leaves target is fractal in nature. We do however observe a variation

in the modulation transfer function (MTF) with varying camera-target image

capture distances.
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Chapter 4: Artificial Sharpening

The two factors that determine the perceived sharpness of an image are the

resolution and the acutance. Image acutance is a measure of perceived display

sharpness, which can enable single-number comparisons between different camera

systems, in place of plot comparisons using the texture modulation transfer function

(MTF). It is a relatively recent measurement technique, introduced by the IEEE

Camera Phone Image Quality (CPIQ) group [6]. The factors that determine the

acutance include the system MTF, the contrast sensitivity function (CSF) of the

human visual system, the viewing distance, and the image print height, according

to Equations 4.1 & 4.2.

Acutance =

∫∞
0
MTF (v)CSF (v)dv
∫∞
0
CSF (v)dv

(4.1)

where,

CSF (v) =
avcexp(bv)

K
(4.2)

where, a = 75, b = 0.2, c = 0.8, K = 34.05, and v is angular frequency (cycles/degree).

The relation between spatial frequency in cycles/pixel and angular frequency

in cycles/degree is given by Equation 4.3.

v(
cycles

degree
) = f(

cycles

pixel
)(

π

180
)(
nph

PH
)(d) (4.3)
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Where, nph is the number of vertical pixels along the picture height, d is the viewing

distance, and PH is the picture height in the same units as the viewing distance.

From Equations 4.1 to 4.3 it is clear that the acutance measures the perceived

sharpness as a function of print height and viewing distance. By maintaining stan-

dard experimental values for these variables, different camera systems can be com-

pared on the basis of image quality. This chapter evaluates the effect of sharpening

on the measured acutance value.

4.1 The CSF

The contrast sensitivity describes the ability of the visual system to distin-

guish bright and dark components or areas of an image. Campbell et al. provided

one of the first charts displaying the sinusoidal grating pattern that can be used to

determine the contrast thresholds required to view the pattern at different spatial

frequencies (Figure 4.1). In the chart, the luminance of the pixels is modulated si-

nusoidally, with logarithmically increasing frequency, along the horizontal direction.

The contrast also varies logarithmically from the bottom to the top of the image.

In general, the sensitivity of the visual system at a particular spatial frequency is

the contrast threshold required to view the pattern at that frequency. Hence, by

measuring the contrast thresholds at different spatial frequencies, the contrast sensi-

tivity function is obtained. The area below the obtained CSF curve determines the

combinations of contrast and spatial frequency at which the pattern is visible. The

CSF of the human visual system can be modelled as in Equation 4.2. The results
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are shown in Figure 4.2.

Figure 4.1: Campbell-Robson CSF chart.

The human visual system is less sensitive to low spatial frequencies, than it

is to intermediate spatial frequencies (i.e. 2 cycles/degree to 5 cycles/degree) [7].

Thus maximum sensitivity is attained for a range of intermediate frequencies, with

higher contrast thresholds required for gratings having spatial frequencies outside

this range. For the estimation of the CSF from the chart, the illumination level also

has a role on the contrast sensitivity, with low illumination conditions causing a drop

in visual sensitivity at primarily high spatial frequencies. The low spatial frequencies

are not affected the same at such low illumination levels. In case of modelling the

CSF from the equation, the assumptions of the model include uniform sufficient

illumination over the chart.

As given in Equation 4.1, the acutance weights the SFR or MTF value with

the corresponding value of the contrast sensitivity, and integrates it over all possible

frequencies (normalized by the denominator), to define a single number for the
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Figure 4.2: The Contrast Sensitivity Function.

camera system in question. The CPIQ group defines an acutance value of 0.8851

beyond which there is no perceptible improvement in image quality.

In the context of image sharpness, the acutance measures the transitions in

the image from bright to dim regions, or the overall contrast in the image edges.

The resolution determines the cameras ability to distinguish between closely spaced

detail.

4.2 Unsharp Masking

Sharpening a digital image by increasing its acutance effectively implies in-

creasing the contrast along the edges in the image - a form of contrast enhancement.

A widespread technique for performing this is by the Unsharp Masking method [8].
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A sharpened image is created using a blurred version of the original image, as given

in Equation 4.4 & 4.5.

fedge(x, y) = f(x, y)− fsmooth(x, y) (4.4)

where f(x, y) is the original image, fedge(x, y) contains the edge information or high

frequency detail of the original image, and fsmooth(x, y) is obtained by blurring the

original image (using a Gaussian filter of a specified kernel size, for example).

fsharp(x, y) = f(x, y) + kfedge(x, y) (4.5)

Subtracting the low-frequency information from the original leaves the edge image

which contains the high frequency components. Adding a fraction k of this edge

image to the original image thus amplifies the high frequency components, and

results in a sharpened image. A Gaussian low-pass filter can generally be used for

the purpose of obtaining the blurred image. A threshold value also exists which

specifies how much intensity difference is required between a pixel in the original

image and the blurred image, before sharpening is applied.

The amount parameter in Unsharp Masking determines the strength of the

sharpening effect, and is related to the fraction of the edge image that is added to the

original image (the parameter k in Equation 4.5). Figures 4.3(a) to 4.3(i) shows the

effect of varying the amount parameter, for different illumination intensity levels.

The effect of sharpening is clearly visible in the texture region.

The radius parameter determines the distance out from the edge on the dark

and light sides, that are affected by sharpening. It is related to the kernel size of the

Gaussian filter used for obtaining fsmooth(x, y) via blurring. Using a high radius of
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sharpening can lead to halo effects observed on the edges of images. Figures 4.4(a)

to 4.4(f) show sample images showing variation when both the radius and amount

parameters are varied, at different illumination levels.

4.3 Results

The image processing occurring in mobile camera phones includes an amount

of denoising and sharpening, which would increase the visual quality of the image as

a whole. The sharpening may also add an amount of artificial texture information to

the image which would not have been initially present in the scene. Since acutance is

a perceptive measure of sharpness, artificial sharpening may be used to increase the

edge contrast differences and hence the acutance. This makes an objective measure

of sharpness all the more important. In this section we obtain the texture MTF

results of the dead leaves target image at various illumination levels, that have been

sharpened to different extents.

Figure 4.5 and Figure 4.6 show the results for the texture MTF calculation

for artificially sharpened images.The texture MTF increases with illumination level

and stabilizes at around 1250 lx illumination intensity. This would indicate the

minimum level of illumination required for accurate readings. Too low illumination

levels lead to underexposed images which lack important texture structure and in-

formation. The interesting observation is in the case of the acutance values for the

sharpened images. Sharpened images result in higher acutance for all the illumi-

nation intensity levels, with a correlation between the extent of sharpness and the
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observed acutance. Increasing both the radius and the amount of sharpness lead to

non-linear increases in the calculated texture MTFs. As was discussed earlier, high

levels of sharpening in the texture images lead to a perceived improvement in image

quality. The dead leaves algorithm as such is unable to distinguish between the nat-

ural texture information contained in an unaltered image, and artificially enhanced

edges and other texture components, which increase the amount of high-frequency

information in the image.
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(a) Normal unsharpened im-

age at 150 lx illumination in-

tensity

(b) Sharpened image at 150

lx illumination intensity, ra-

dius=1, amount=0.8

(c) Sharpened image at 150

lx illumination intensity, ra-

dius=1, amount=1.5

(d) Normal image at 1250 lx il-

lumination intensity

(e) Sharpened image at 1250

lx illumination intensity, ra-

dius=1, amount=0.8

(f) Sharpened image at 1250

lx illumination intensity, ra-

dius=1, amount=1.5

(g) Normal image at 3000 lx il-

lumination intensity

(h) Sharpened image at 3000

lx illumination intensity, ra-

dius=1, amount=0.8

(i) Sharpened image at 3000

lx illumination intensity, ra-

dius=1, amount=1.5

Figure 4.3: Effect of varying the ’amount’ factor, at various illumination intensity

levels
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(a) Normal image at 150 lx il-

lumination intensity

(b) Sharpened image at 150

lx illumination intensity, ra-

dius=1.5, amount=0.8

(c) Sharpened image at 150

lx illumination intensity, ra-

dius=1.5, amount=1.5

(d) Normal image at 1250 lx il-

lumination intensity

(e) Sharpened image at 1250

lx illumination intensity, ra-

dius=1.5, amount=0.8

(f) Sharpened image at 1250

lx illumination intensity, ra-

dius=1.5, amount=1.5

Figure 4.4: Effect of varying both the ’amount’ and ’radius’ factors, at various

illumination intensity levels
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Figure 4.5: Results for texture MTF calculation for images sharpened
varying the amount parameter, at various illumination levels.

Figure 4.6: Results for texture MTF calculation for images sharpened
varying the radius and amount parameters, at various illumination levels.
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Chapter 5: Distance from Camera to Target

Setting up the target at a proper distance from the imaging system is important

in order to limit the size of the target in the cameras field of view (FOV). This step

is taken in order to limit the effect of light and color shading, which can be due to

slightly non-uniform illumination of the target, or due to particular characteristics

of the lens or sensor [1]. By limiting the target size over the field of view, geometric

distortion effects across the camera lens are also avoided. Distortion effects are

observed when straight lines in the object space are rendered instead as curved

lines on the sensor, leading to the name curvilinear distortion [9]. The two main

types of distortion commonly occurring in camera systems are barrel and pincushion

distortion, as observed in Figures 5.1(a) and 5.1(b). Distortion effects mainly appear

at the outer extremity of the scene, and have negligible effects at the center of the

lens FOV.

Most camera systems have aperture stops specifically designed to reduce spher-

ical aberrations or astigmatism, which can be a cause of distortion [10] [11].

The position of the obtained image from the object follows the laws of optics,

and forms at the intersection of the three principal rays, which are in turn affected

by the location of the stop. For the location of the stop at the lens, there is no
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(a) Barrel distortion (b) Pincushion distortion

Figure 5.1: Types of distortion

distortion, and the system is called orthoscopic. Barrel distortion occurs when the

image magnification h
y
is smaller than in the orthoscopic case, with the value of

the magnification progressively decreasing toward the image edges. On the other

hand, pincushion distortion occurs when the magnification is greater than the or-

thoscopic case, and increases towards the image edges. Since the center of the image

is relatively unaffected by such distortion effects, the dead leaves target is limited

to lying in this region in the field of view. Several images of the target at varying

distances are obtained using several camera systems, in order to understand the

effect of distance on the calculated texture MTF.

5.1 Results

The Canon digital single-lens reflex (DSLR) camera is included in this experi-

ment along with two other mobile cameras - an iOS system and an Android system.

The spatial frequency readings are converted from cycles/pixel to cycles/mm for
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Table 5.1: % coverage of HFOV at different distances, Canon DSLR

Distance (cm) HFOV (%)

60 60

66 52

72 47

78 43

85 39

all the results, in order to generate accurate representation of the results, since the

same cropped target image occupies a different number of pixels at different dis-

tances. Table 5.1 gives the percentage coverage of horizontal field of view (HFOV)

by the dead leaves target, at different distances.

Figure 5.2 graphs the results of texture MTF obtained for the DSLR camera.

There is an observed difference in the observed MTF readings at low spatial frequen-

cies and high spatial frequencies. At low spatial frequencies, the target occupying

the smallest field of view is observed to have the highest texture MTF. At higher

spatial frequencies, beyond approximately 20 cy/mm, the texture MTF is observed

to decrease in inverse proportion to the distance from the target. A reason for this

may be the limiting resolution of the camera, which may be unable to distinguish

fine texture details in the image, as the distance from the target increases. At larger

camera-target distances, the absence of distortion effects result in an accurate MTF

reading. The obtained acutance values are observed in Figure 5.3. Due to the effect
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of the contrast sensitivity function, the effect of the dip at higher frequencies is

overshadowed by the improved MTF at the lower spatial frequencies. Sensor noise

can also be a factor in the lower MTF reading at the higher spatial frequencies.

Figure 5.2: Variation in texture MTF with distance for the Canon DSLR camera.

The mobile cameras considered are the iPhone 5s and the Nexus 5, running

the iOS operating system and the Android operating system respectively. Table 5.2

and Table 5.3 give the percentage coverage of horizontal field of view (HFOV) by

the dead leaves target, at different distances, for the iPhone 5s and the Nexus 5.

Figure 5.4 and Figure 5.5 display the texture MTF and the acutance values

obtained for the iPhone 5s, for images taken at various distances. A similar trend

to the DSLR camera is observed, with the difference that the threshold point is at a

much higher spatial frequency. Also the difference in the MTF at different distances

is not as high as seen in the case of the DSLR. In the case of the Nexus 5, at the
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Figure 5.3: Variation of acutance with distance of camera to target - Canon DSLR

lower spatial frequencies, the obtained texture MTF is almost constant, with the

variations at higher spatial frequencies being due to the limiting resolution of the

device, as observed in Figure 5.6 and Figure 5.7.

5.2 Conclusion

This chapter examined the effect of varying the camera-target distance on

the obtained texture MTF values for different camera systems. A trend of obtain-

ing initially higher and progressively decreasing texture MTF was identified with

increasing distances. This lower MTF values obtained at the higher spatial frequen-

cies may be due to the effects of noise at larger distances, limiting camera resolution,

and non-uniformity in illumination.
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Table 5.2: % Coverage of
HFOV at different distances,
iPhone 5s

Distance (cm) HFOV (%)

55 43

60 40

65 36

70 34

75 31

Table 5.3: % Coverage of
HFOV at different distances,
Nexus 5

Distance (cm) HFOV (%)

55 41

60 38

65 36

70 33

75 30

Figure 5.4: Variation in texture MTF with distance for the iPhone 5s.
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Figure 5.5: Variation of acutance with distance of camera to target, iPhone 5s.

Figure 5.6: Variation in texture MTF with distance for the Nexus 5.
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Figure 5.7: Variation of acutance with distance of camera to target, Nexus 5.
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Chapter 6: Illumination Variation

The illumination of the target plays an important role in the accuracy of the

observed MTF results. The primary requirement is of uniform illumination covering

the area of the chart which is utilized for the modulation calculation. The presence

of non-uniform illumination can be a cause of shading, which gives erroneous light

intensity readings in parts of the image [1]. In this chapter we take a look at how the

experimental setup ensures illumination uniformity, followed by the results showing

the effect of using different levels of illumination for the dead leaves texture MTF

calculation.

Illumination uniformity is ensured by the use of diffusers in front of the light

sources, which diffuses or scatters the light into a wider angle. The target is then

divided into 12 grids and the light intensity in lux is measured in each grid, using

a handheld illuminance meter. The illuminance uniformity over the target is then

measured using Equation 6.1.

Illuminance Uniformity =
Imin

Iavg
(6.1)

where Imin is the minimum measured illumination level over the grid, and Iavg is the

area weighted-average measured illumination level over all the grids. Illumination

uniformity ∼>0.9 is required to be set for accurate MTF measurements.
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Figure 6.1: Variation of texture acutance with illumination levels for the
iPhone 5s, using the Eiko bulbs.

For the experiment, we vary the illumination levels and the light sources used,

and identify the texture MTF and acutance values for two camera phones. The

spectral power distribution of the light sources used are also obtained to identify if

there is any correlation with the observed texture MTF.

Figure 6.1 shows the acutance values obtained for the iPhone 5s, at various

illumination levels. The default camera app of the phone is used for capturing

the images. The illuminating source used is the Eiko Supreme Photoflood 500W

bulb. The texture acutance is low at low illumination levels below 1000 lux. This is

due to the light intensity being insufficient to accurately capture fine details in the

scene. At ∼1250 lux, the texture acutance stabilizes and plateaus for further higher

illumination intensities.
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Figure 6.2: Exposure time and ISO sensitivity values for the images ob-
tained at the different intensity levels, for iPhone 5s automatic metering
mode, using Eiko bulbs.

Figure 6.2 displays the exposure time values and the ISO sensitivity numbers

for the images taken at the different light intensity levels. These are the settings that

are automatically metered by the camera phone at the time of capturing the image.

A correlation between the two is observed, for intensity levels above 1000 lux. For

lower light intensity values the exposure time reading is less sensitive and remains

at a high value, relative to the ISO number, which varies sharply with increasing

intensity. This points to the fact that the variation in ISO number is preferable to

the variation in exposure time, which can be due to the increased sensor sensitivity.

One of the main factors affecting the sensor sensitivity is change in the ISO number.

The second light bulb considered is the Philipps Halogena BR-30 floodlight.
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(a) PSD for the Eiko Supreme lightbulb (b) PSD for the Philipps Halogena lightbulb

Figure 6.3: Power Spectral Densities for the light sources utilized

The two light sources are used for their effectiveness in providing true-color uniform

bright light for coverage of the target. Figures 6.3(a) and 6.3(b) plot the Power

Spectral Distribution (PSD) for the two light sources utilized. Figure 6.4 gives a

comparison of the texture acutance obtained for the two different light sources uti-

lized. A similar curve is obtained in both cases, with the acutance values plateauing

at above 1100 lux.

Figure 6.5 shows the ISO numbers and exposure time values obtained for the

images taken using the iPhone 5s with the Philipps Halogena lightbulb. In this

case, the exposure time remains stable for a different range of light intensities as

compared to the Eiko bulb. At the higher intensities, the exposure time and ISO

numbers both decrease as observed in the case of the Eiko bulb.

Figure 6.6 plots the texture acutance for the Nexus 5 phone, obtained at

different illumination intensities. This plot correlates with the earlier observation

that the texture acutance increases with increasing illumination intensity up until
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Figure 6.4: Comparison of the texture acutance obtained for the iPhone
5s for two light sources, the Eiko Supreme and the Philipps Halogena,
at different light intensities.

1000 lx after which it stabilizes and remains constant. Figure 6.7 displays the

overall values of texture acutance for the different camera phones and light sources

utilized. While the Nexus 5 gives lower texture acutance values as compared to the

iPhone 5s, the illumination intensity level after which the acutance values stabilize

are approximately the same. There is also no observable correlation between the

observed MTF using the different light sources, and their power spectral densities.
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Figure 6.5: Exposure time and ISO sensitivity values for the images
obtained at the different intensity levels, for the iPhone 5s, using the
Philipps Halogena bulbs.
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Figure 6.6: Comparison of the texture acutance obtained for the Nexus
5 for two light sources, the Eiko Supreme and the Philipps Halogena, at
different light intensities.

Figure 6.7: Overall texture acutance for the iPhone 5s and the Nexus 5.
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Chapter 7: Exposure Time

The exposure time/shutter speed setting of the camera determines the amount

of light which the digital sensor is exposed to, at the time of obtaining the picture.

The amount of light reaching the sensor is directly proportional to the exposure

time. This setting is important mainly in the capture of moving subjects, where the

shutter speed has to be high enough to freeze the motion in the particular frame.

The image obtained can be under-exposed or over-exposed, in case there is less

light or more light than required, respectively. The values for the shutter speed are

generally specified in terms of fractions of a second, such as 1/15 s, 1/30 s, 1/60 s

etc.

With reference to the Dead Leaves target, the parameters of ISO sensitivity

and exposure time are more relevant in the aspect of reliable capture of details, since

the target represents a stationary scene in nature. A sufficiently high exposure time

has to be present in order to allow sufficient light on the sensor, so as to capture the

texture details faithfully. The two parameters of exposure time and ISO number are

interlinked and the study of any one of the parameters involves strictly specifying the

level maintained for the other. For the experiment, in order to vary the parameters

in the camera, we use the VSCO Cam app on the iOS device.
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In the experiment on variation of texture MTF with exposure time, the ISO

number setting of the camera is held at a constant value, and the exposure time is

varied. We isolate the two parameters while performing the experiment. The ISO

number determines the sensitivity to light of the digital sensor of the camera. A

high ISO number is usually required when obtaining images in low-light conditions.

Another aspect of changing the ISO sensitivity is in the noise level obtained in the

final image. A high ISO number increases the sensitivity of the sensor to such an

extent that the noise level in the final image also correspondingly increases. Further

details are presented in the chapter regarding ISO sensitivity.

7.1 ISO32

Figure 7.1: Variation in texture MTF with exposure time, at ISO32.
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The ISO sensitivity is held constant at ISO32, and images are obtained at

different exposure time settings. The illumination level is set at 1200 lx.

Figure 7.1 shows the texture MTF plots for the different images. The obser-

vation is that the calculated texture MTF attains a maximum value for a particular

exposure time.

Figure 7.2: Acutance values for different exposure times, at ISO32,
ISO200 and ISO800.

With reference to Figure 7.2, we observe the acutance values at ISO32 peaking

at the exposure time of 1/60 s. The images do not show any saturation, which may

be due to the relatively low ISO speed at which the images are obtained.
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7.2 ISO200

The same experimental conditions are utilized as earlier, and the ISO sensi-

tivity of the camera is set to ISO200.

Figure 7.3: Variation in texture MTF with exposure time, at ISO200.

Figure 7.3 shows the variation at ISO200. The same exposure times are tested

as in the case of ISO32. Using a higher ISO number, and the longer exposure time of

1/15 s gives a highly saturated and over-exposed image. As such, the image cannot

be used for the purpose of texture MTF calculation, and gives an abnormal MTF

reading. For the higher value of ISO number, a shorter exposure time of 1/150 s

gives an unsaturated image.
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7.3 ISO800

The ISO number is set to the higher setting of ISO800. The exposure times

are different from the previous experiments, so as to permit images with proper

exposure. Even using the adjusted smaller exposure times leads to over-saturated

images as seen in the case of 1/150 s and 1/200 s.

Figure 7.4: Variation of texture MTF with exposure time, at ISO800.

With reference to Figure 7.4, overall a similar trend is seen as in the case of

ISO200, and is slightly different from the trend observed in the case of the lower

ISO number, ISO32. Figure 7.2 contains the plots of the acutance values obtained

at ISO800.
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Chapter 8: ISO Speed

The cameras ISO setting determines the sensitivity of the sensor to the light

that reaches it. A higher ISO number implies higher sensitivity to light. Along with

aperture size, and exposure time, it is one of the factors that determines the image

quality and exposure of the photograph. For getting the same exposure, doubling

the ISO number would require the exposure time to be halved - this is usually the

condition observed in automatic exposure metering in cameras. A side-effect of this

higher sensitivity of the sensor is image noise, which becomes clearly visible at higher

ISO settings.

In the context of the dead leaves target, a high ISO number can cause some

of the fine texture detail present in the target to be lost. It becomes unclear as

to whether the graininess present in the final image is due to noise, or due to the

occluded circles with varied radii. As in the chapter on exposure time, the images

with variation in ISO number are obtained while keeping the exposure time constant.

8.1 Exposure Time Setting 1

The exposure time is set to 1/50 s, and images are obtained from the iOS

device at various ISO speed settings.
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Figure 8.1: Variation of texture MTF with ISO Speed, at 1/50 s exposure time.

The acutance values at different ISO speeds, from Figure 8.2, show a monotonic

decrease in acutance with an increase in ISO number. The correlation between ISO

number and sensitivity to light is linear enhancing the ISO number by a particular

factor enhances the light sensitivity of the digital sensor by the same factor. From

the acutance plot in Figure 8.2, when the ISO number is increased by a factor of

approximately 4 from ISO32 to ISO125, it is observed that the acutance decreases

from 0.88 to 0.65 (a factor of 0.73). It is also observed that the image gets saturated

at around the ISO125 setting.
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Figure 8.2: Acutance values at different ISO speeds, at 1/50 s exposure time.

8.2 Exposure Time Setting 2

The exposure time is set to 1/160 s, and the texture MTF at various ISO

speeds is obtained.

For the exposure time of 1/160 s, the same pattern of decreasing acutance

values is observed, for increasing ISO sensitivities. On increasing the ISO by a

factor of 2 from ISO200 to ISO400, the acutance is observed to drop from 0.77 to

0.63 (a factor of 0.81). This factor is more than double the case of 1/50 s exposure

time.
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Figure 8.3: Sample images obtained at different ISO speeds, at 1/160 s
exposure time.

8.3 Exposure Time Setting 3

The exposure time is decreased further to 1/550 s and the ISO numbers are

taken accordingly to obtain images with reasonable levels of exposure.

The acutance values for the images taken at 1/550 s exposure time show a

decreasing trend with increasing ISO number. This fits with the earlier observation

in the cases of 1/50 s and 1/160 s exposure time. In the case of 1/50 s exposure

time, the acutance values followed a linearly decreasing trend. At shorter exposure

time values, the acutance values decrease at a much higher rate. For a change from

ISO640 to ISO1250, the acutance decreases by a factor of 0.85.
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Figure 8.4: Variation in texture MTF with ISO speed, at 1/160 s exposure time.

Figure 8.5: Acutance values for different ISO speeds, at 1/160 s exposure time.
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Figure 8.6: Variation in texture MTF with ISO speed, at 1/550 s exposure time.

Figure 8.7: Acutance values for different ISO speeds, at 1/550 s exposure time.
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Chapter 9: Noise Addition

Noise in a digital photograph is a random variation in the image brightness

or in the colour values present in the image. It is more noticeable when the images

are taken in low-illumination conditions. Alternatively, high ISO speed settings can

also lead to more visible noise present in the image. The signal-to-noise ratio of an

image gives an idea about the proportion of noise present in the image.

Noise models that are usually observed in digital images include Gaussian

noise, Poisson noise, Salt & Pepper noise and combinations of these. The high-

frequency random noise present in images share a similar frequency characteristic

to fine-scaled texture details and edges, and camera processing for noise removal

can result in the removal of these fine details as well.

9.1 Gaussian Noise Model

Gaussian noise is random noise following the normal probability distribution,

where the probability density function p of a Gaussian random variable z is given

by Equation 9.1.

p(z) =
1

σ
√
2π
e

−(z−µ)2

2σ2 (9.1)

In Equation 9.1, z is the gray level, µ the mean value, and σ the standard
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deviation. Gaussian noise usually arises in digital images at the time of acquisition

and/or transmission [12]. Examples of sources of Gaussian noise include sensor

noise caused by insufficient illumination and high temperature. During transmission,

Gaussian noise can manifest as an effect of electronic circuit noise.

Sensor noise can either be fixed pattern noise, or thermal noise. Fixed pattern

noise consist of spatially fixed variations of the output signal, and can be perceived

more easily as compared to random variations. The thermal noise in a CMOS

image sensor is mainly Johnson-Nyquist noise, which is caused due to the thermal

fluctuations or agitations of charge carriers in the circuit. The Johnson noise in

electrical resistors has a power spectrum which is flat over a very large bandwidth.

Due to this reason, white noise can be used as a model for the thermal noise without

any significant loss in accuracy [13]. Thermal noise is also modelled as a Gaussian

random process, from the central limit theorem, due to being comprised of the

superposition of many independent events (i.e. thermal agitations of the charge

carriers). Thus the overall model for thermal noise would be an additive zero-mean

Gaussian process, with independent samples, which are also independent of the

intensity.

Johnson Nyquist noise also includes the noise caused due to the reset oper-

ation [14]. On resetting the accumulated charge through a reset transistor, the

thermal noise 4kb · T ·Ron · δf is sampled in the accumulation node. Here δf is the

frequency bandwidth, Ron is the ON-resistance of the reset transistor, kb is Boltz-

mann’s constant and T is the absolute temperature in kelvin. The configuration of

the accumulation node depends on the sensor utilized in the camera.
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(a) (b)

Figure 9.1: The figure shows a comparison between the original image
and image with Gaussian noise added. The mean and variance levels are
stated with reference to image having intensity between 0 and 1.

For our experiment, Gaussian noise of varied mean and variance levels are

added to the image obtained from the camera. The texture MTF and acutance

values obtained from the various images are then compared. An iPhone 5s is utilized

for obtaining the images, using the dead leaves target. The illumination level is fixed

at 1400 lx.

Figure 9.2 graphs the texture MTF values obtained for images with added

Gaussian noise at various mean and variance levels. For the addition of low level

variances of noise, there is an observed improvement in the texture MTF values at

high frequencies, with a corresponding increase in acutance, as observed in Figure
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Figure 9.2: Variation in texture MTF, Gaussian noise images.

9.3. This improvement in texture MTF may be due to noise appearing as high-

frequency detail within the image. At high levels of noise, the noise power spectrum

subtraction gives rise to low texture MTF, which correlates with the observed visual

image quality.

Adding Gaussian noise of non-zero mean shows results having approximately

the same texture MTF and acutance values, as observed from Figure 9.4 and Figure

9.5.

9.2 Poisson Noise Model

Poisson or photon noise is an uncertainty in the measurement of light, which

arises due to the quantized nature of light, and the independence of photon detec-
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Figure 9.3: Acutance values for images with added Gaussian noise.

tions [15]. The number of discrete photons incident on the camera sensor determine

the final intensity observed in the image. The independence of random arrivals of

the photons lead to noise, which depends on the signal level at that sensor location.

This noise model is signal dependent, contrary to the Gaussian model which is signal

independent. In a realistic scenario, there would be a combination of different noise

models which would be signal dependent in most cases.

Taking the photon count presents itself as a Poisson model, since the individual

photon detections can be considered as independent events that follow a random

distribution in time [16]. The number of photons N measured at a certain pixel

location, over a time period t can be modelled by a Poisson distribution, as given

in Equation 9.2.

p(N = k) =
e−λt(λt)k

k!
(9.2)

With reference to Equation 9.2, k takes values (0,1,2,. . .), and λ is the ex-
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Figure 9.4: Variation in texture MTF on addition of Gaussian noise of
non-zero mean.

pected number of incident photons per unit time interval. The uncertainty described

by this distribution is the photon or shot noise. By definition λt is the expected

number if incident photons for a time period t, which is proportional to the final

image intensity. The effect of photon noise is negligible for images taken at high

SNR.

For modelling Poisson noise, the value of the pixel at each location in the image

is considered as the mean of the Poisson distribution, since it would be proportional

to the number of captured photons. Noise is thus not artificially added, but is

obtained from the signal level at each location.

For the experiment, Poisson noise generated from the image data is added

to the image obtained from the camera. The texture MTF and acutance values

54



Figure 9.5: Acutance value comparison for images with added Gaussian noise.

obtained from the various images are then compared. An iPhone 5s is utilized for

obtaining the images, using the dead leaves target. The illumination level is fixed

at 1400 lx.

Figure 9.6 plots the variation in texture MTF between the original image,

and the image with Poisson noise added. The texture MTF at the higher spatial

frequencies are observed to dip, due to the subtraction of the noise power spectral

density (PSD) from the image PSD. This observation of texture MTF is in line with

the visual subjective image quality evaluation of the original and noisy images.

9.3 Salt and Pepper Noise Model

The salt and pepper noise model mainly characterizes pixel defects, and ap-

pears as a variation of impulsive noise. The two types of impulse noise are salt and

pepper noise, and random-valued noise [17]. Impulse noise occurs in images due

to bit errors in transmission, errors in signal acquisition, malfunctioning pixels in
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Figure 9.6: Variation of texture MTF with addition of Poisson noise.

camera sensors, faulty memory locations in hardware, or noisy channel transmis-

sions [17] [18]. For images corrupted by salt and pepper noise, the noisy pixels take

the maximum and minimum value in the sensors dynamic range. The standard

median filter and its variations are generally used for the removal of salt and pepper

noise [19].

For the experiment we specify the number of pixels that are affected by the

salt and pepper noise, as a fraction of the total number of pixels in the image. This

fraction can be called the noise density d. Several images of the dead leaves target

are obtained varying the noise density, and the texture MTF for each are calculated.

An example of noisy image generation is shown in Figure 9.8.

Figure 9.9 and Figure 9.10 plot the texture MTF and acutance results obtained

using salt and pepper images. There is a high irregularity observed in the texture
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Figure 9.7: Change in acutance observed on addition of Poisson noise.

MTF plots obtained for salt and pepper noise images with a large fraction of affected

pixels. The acutance values also do not show a monotonic trend of decreasing with

increasing noise density. One reason for this behavior of the texture MTF can be

that the salt and pepper noise mimics the appearance of extremely small discs that

can be present in the ideal dead leaves target. This would artificially enhance the

MTF at certain high spatial frequencies, as observed in the graph. The variation

between the images at different noise densities starts at approximately the 0.25

cy/pixel mark.

9.4 Conclusions

This chapter presented the variations observed in texture MTF on artificially

adding different types and intensities of noise to the dead leaves target. The different

noise models considered were the Gaussian, Poisson and the Salt and Pepper noise

models. It is observed that as the added noise level increases, there is a slight
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Figure 9.8: Noisy image generated with salt and pepper noise, with noise
density d=0.02.

improvement in the texture acutance up until a certain noise threshold, with a

corresponding increase in the texture MTF at high spatial frequencies. Further

increasing the noise intensity above this threshold causes a decrease in the measured

texture acutance. This low amount of added noise increases the apparent sharpness

of the image by inflating the high frequency detail present in the image. Above the

threshold intensity, the algorithm identifies the noise PSD and corrects the texture

MTF according to Equation 2.4.
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Figure 9.9: Variation in texture MTF with addition of salt and pepper
noise with various noise densities.

Figure 9.10: Acutance values for images with added salt and pepper noise.
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Chapter 10: Implementation of the Wavelet Thresholding Approach

For everyday camera systems, captured images are corrupted by sensor noise

and artifacts introduced due to various compression steps. The PSD that is gener-

ated by the target in itself falls off at higher frequencies, but the noise detail present

in the image can artificially improve the measured MTF at these higher frequencies.

This is the reason why the noise PSD is computed and removed from the measured

target PSD, while computing the texture MTF, according to Equation 10.1.

SFRDeadLeaves(f) =

√

PSimage(f)− PSnoise(f)

PStarget(f)
(10.1)

The current approach that has been utilized for calculating the dead leaves

texture MTF makes use of a uniform 50% gray patch, with the image taken at

the same time as that of the target, in order to calculate the noise power spectral

density (PSD) [3]. Figure 10.1 shows an example of the dead leaves chart, with the

texture region and the uniform gray regions. The noise level present in the gray

image is an approximation to the true noise level present in the texture region, i.e.

the dead leaves target. This approximation has been utilized in the algorithm since

it is difficult to calculate the noise level present in the actual texture region. The

first question to be answered is whether the noise variance in the gray region is

actually a good approximation to the noise variance present in the texture region.
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In the case that the noise variance for the texture region is different from the noise

variance in the gray region, the next step is to identify a technique to accurately

estimate the noise variance in the texture region.

Figure 10.1: Example Dead Leaves chart.

10.1 Region for estimating the noise variance

The dead leaves model consists of a region of low-contrast high-frequency de-

tail with components present at several scales and locations. Texture as such, refers

to regions with repetitive patterns and structures at various scales and orientations.

The imaging target consists of both the highly detailed dead leaves texture region,

and a uniform 50% luminance gray region. This image passes through the image

processor in the camera, and undergoes various enhancements, denoising and com-

pression processes before the final observed image is produced. Since the image

processing in the camera might be region- dependent, the homogeneous gray region
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in the target image might not be processed in the same manner as the texture re-

gion. It is a simple matter to denoise the homogeneous region, as even a simple

low-pass filter can remove the noise present in this region. On the other hand, such

a simplistic technique would negatively affect the reconstruction of textured regions

in the image [20]. Liu et al. [21] describe a technique to estimate the noise variance

in images by first determining the weakly textured patches in the image, and then

using these patches to estimate the noise variance. However since the dead leaves

texture model almost completely comprises of texture detail, this method would not

be suitable for the noise variance estimation.

To identify the noise variance present in both the gray region, and the texture

region, we first obtain a denoised estimate of the target image using multiple target

images. A similar averaging approach has been utilized in [22]. A tripod is important

to ensure stabilization so that the images can be properly aligned and registered.

These multiple images are then combined using weighted pixel-level image averaging

in order to get the denoised estimate. In general it can be assumed that the noise

model present in the image is the additive zero mean Gaussian noise. Suppose the

multiple images obtained from the original image x, with the addition of noise zn

are denoted by yn. The weighted average is estimated from these copies by Equation

10.2.

A =
n

∑

i=1

αnyn (10.2)

where, the αn are inversely proportional to the noise variance in each image. As a
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consequence, the αi are calculated using Equation 10.3.

αi =
1

σ2

/

n
∑

i=1

1

σ2
(10.3)

The weightage based on an inverse proportion to the noise variance ensures

that higher weightage is given to those images which contain a lower proportion of

noise with respect to the signal. This method of averaging results in enhanced SNR

as a result of improving the signal content, while the noise deteriorates by a factor

√
n, where n is the number of images.

After the weighted estimate of the denoised image is calculated, the pixel-

wise difference between this estimate and each of the multiple input images gives a

model of the noise present in the image, according to Equation 10.4. The standard

deviations from the gray level region and the texture regions are then obtained from

this noise model in order to estimate the noise levels in the different regions.

Imagenoise = Image− Imageaverage (10.4)

Along with the weighted mean, another method considered for obtaining the

denoised estimate of the image was by using the pixel-level median images from

among the multiple images obtained.

Table 10.1 shows the mean values and the standard deviations obtained from

the Image noise obtained from 10 images, using the weighted average denoised es-

timate. The average value of the standard deviation observed in the gray region

is 0.857, while the average value of the standard deviation observed in the texture

region is 2.31. These values are obtained for pixel values ranging from 0-255.

63



Table 10.1: Noise standard deviations obtained for the gray region and
texture regions from the Imagenoise , obtained for 10 images, using the
weighted average denoised estimate image

Image No. Gray, µ Gray, σ Texture, µ Texture, σ

1 0.20194421 0.895047 0.166602608 2.233122

2 0.005228837 0.840611 0.070238372 2.211464

3 0.131421326 0.869204 0.115405404 2.215862

4 0.102922352 0.885005 0.11344647 2.219322

5 0.113790605 0.849941 0.114552582 2.225755

6 0.019116049 0.858227 0.026628263 2.252515

7 -0.047301051 0.842842 -0.032295462 2.424686

8 -0.086185243 0.838951 -0.108970432 2.305418

9 -0.159606328 0.863088 -0.183842161 2.302975

10 -0.281330757 0.827521 -0.281765644 2.732183

Table 10.2: Noise standard deviations obtained for the gray region and
texture regions from the Imagenoise , obtained for 10 images, using the
median-sorted denoised estimate image.

Image No. Gray, µ Gray, σ Texture, µ Texture, σ

1 0.21682164 0.938086 0.17383742 2.281616

2 0.020106267 0.886725 0.077473184 2.262992

3 0.146298756 0.909126 0.122640216 2.269184

4 0.117799783 0.922468 0.120681282 2.266803

5 0.128668035 0.894269 0.121787394 2.275389

6 0.033993479 0.901433 0.033863074 2.299265

7 -0.03242362 0.877321 -0.02506065 2.478237

8 -0.071307813 0.879493 -0.101735621 2.355171

9 -0.144728897 0.900167 -0.176607349 2.372189

10 -0.266453327 0.871712 -0.274530832 2.833274

64



Table 10.2 shows the mean values and the standard deviations obtained from

the Image noise obtained from 10 images, using the median-sorted denoised estimate.

The average value of the standard deviation observed in the gray region is 0.89, while

the average value of the standard deviation observed in the texture region is 2.37.

These values are obtained for pixel values ranging from 0-255.

The difference in the standard deviation values obtained for the gray region

and the textured regions shows that the approximation in the noise level is not

completely accurate. A better technique to evaluate the noise present in the texture

region is required in order to calculate the texture MTF. Weighted averaging to

obtain the denoised model goes in this direction to some extent, as it provides a noise

model which can be used for the noise PSD calculation. Furthermore the noise levels

obtained on using weighted- averaging are lower compared to median-sorting, which

make it the preferred method. However, an improvement to this denoising method

is considered later by the addition of further denoising using wavelet thresholding

in the pipeline.

The number of multiple images required for the weighted averaging step is

also a parameter that is considered. There is to be found some kind of a trade-off

between experimental efficiency, and the SNR levels required, since it is not prac-

tical to take greater than 10 or 15 images for a target at a particular condition.

Another parameter considered is the burst-mode in image capture which is becom-

ing prevalent in the current generation of smart-phones. The burst-mode enables

the capture of multiple images in quick succession by the camera, by continuously

holding the capture button. It is to be seen whether there is any difference in the
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obtained standard deviation values while using the burst mode, and while taking

the images manually with brief time gaps in between. For the results that follow,

the pixel values are normalized to lie between 0 and 1.

The sets of images are specified as follows

• Experiment 1 - A set of 10 images taken in burst mode

• Experiment 2 - A set of 10 manually taken images

• Experiment 3 - A different set of 10 manually taken images

• Experiment 4 - A set of 15 manually taken images

The mean and standard deviation values for the Image noise obtained in each case

are specified in the plots that follow.

Figure 10.2: The mean noise values obtained for the gray regions, for
the different sets of images.
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Figure 10.3: The noise standard deviations obtained for the gray regions,
for the different sets of images.

Figures 10.2-10.5 graph the mean and standard deviations obtained for the

Imagenoise, from the different sets of images. In every case, the mean values for both

the gray region and the texture region are close to zero, which validates the denoising

method. Also, the values for the images taken using the burst mode and the manual

modes are approximately the same. Thus we use the burst mode when it is available,

and use the manual mode in the case that the feature is not present. Considering

the noise standard deviations in the different sets of images, it is consistently seen

that the noise levels in the gray regions are lower than those observed in the texture

regions. This strengthens the earlier assumption that the mobile camera processes

different regions of the image differently i.e. the homogeneous and textured regions

of the image undergo different processing. Moreover, there is not much variation in
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Figure 10.4: The mean values obtained for the texture regions, for the
different sets of images.

the noise levels on taking a higher number of images, so we consider a minimum of

8 images, which is necessary in order to obtain an appreciable improvement in SNR.

10.2 Wavelet Thresholding for Image Denoising

The wavelet transform can be used to represent a signal or an image with a

high degree of sparsity. The main signal components would be concentrated in a few

coefficients, and the information contained in the rest of the coefficients would be

mainly noise. The wavelet transform is similar to the windowed Fourier transform,

and was developed as a better alternative to the Short-Time Fourier Transform.

The Fourier transform is a form of frequency analysis which transforms time-based

signals to frequency-based signals. The drawback of the Fourier transform is that the
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Figure 10.5: The noise standard deviations obtained for the texture
regions, for the different sets of images.

time information in the signal is lost in its Fourier transform. The main advantage

of the wavelet transform is the different perspective it provides on data analysis,

which is according to scale [23]. The wavelet transform provides both frequency and

time information.

10.2.1 The Discrete Wavelet Transform

The wavelet analysis procedure starts with the selection of a mother wavelet

or an analyzing wavelet ψ(t), which is then scaled and translated to get the family

of associated wavelets, according to Equation 10.5, where s is the scale factor and τ

is the translation factor [24]. The wavelet transform then represents any arbitrary

function as a superposition of these generated wavelets. For the discrete wavelet
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transform, which applies in the case of 2-D images, we obtain a set of coefficients

which represent the weights for each ψs,τ(t).

ψs,τ (t) =
1√
s
ψ

[

t− τ

s

]

(10.5)

Several different wavelet families have been proposed which include Daubechies

wavelets [25], Coiflets [26] [27], Symmlets [27], Haar wavelets [28], and so on. The

variations between the families depend on the initial mother wavelet used and signal

scaling and translation definitions. The selection of the wavelet used may affect the

performance of the denoising technique, and this is one of the parameters which

we have inspected. Wavelets with compact support, which are smooth and have

vanishing moments are preferred [29]. Some examples of these analyzing wavelets

are displayed in Figures 10.6(a)-10.8(b). A wavelet has p vanishing moments if and

only if the wavelet scaling function can generate polynomials up to degree p−1. The

numbers beside the wavelet type in the figure captions represent the number of van-

ishing moments. The Daubechies wavelets are a family of orthogonal wavelets, whose

associated wavelet transform is orthogonal. The inverse wavelet transform of an or-

thogonal wavelet transform is its adjoint. For a given support width, Daubechies

wavelets have the maximum number of vanishing moments. Symmlets have also

been used frequently in literature for denoising purposes.

The discrete wavelet transform (DWT) is observed to provide a fast computa-

tion procedure for obtaining the wavelet transform, when the wavelets are discretely

sampled. For a 1-D signal or a 2-Dimage, its DWT is calculated by passing the sig-

nal/image through a series of filters. This series consists of several filters with
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(a) Daubechies-4 wavelet function. (b) Daubechies-4 scaling function.

Figure 10.6: Daubechies-4 wavelet and scaling functions

(a) Symmlet-8 wavelet function. (b) Symmlet-8 scaling function.

Figure 10.7: Symmlet-8 wavelet and scaling functions

different cutoff frequencies at different scales. The signal in question is decomposed

simultaneously through related low-pass and high-pass filters that together form the

analysis filter bank. After the signal passes through a set of signals, it is further

subsampled, which determines the scale. Figure 10.9 gives a representation of the

DWT decomposition of a 1-D signal. The high pass filter is denoted as h(n) and

the low pass filter as g(n) at each level. The detail coefficients are obtained from

the high pass filters, and approximation coefficients are obtained from the low-pass

filters. Due to half of the frequencies being removed at each filter operation, by the

Nyquist theorem, the signal can be down-sampled by 2. A sufficient number of levels

of decomposition can be specified for time and frequency resolution. Reconstruction
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(a) Coiflet-4 wavelet function. (b) Coiflet-4 scaling function.

Figure 10.8: Coiflet-4 wavelet and scaling functions

of the signal is carried out by the reverse of the decomposition, i.e. by up-sampling

the detail and approximation coefficients, passing them through the respective high

and low filters respectively and adding them, at each level. Carrying out the process

for the same number of levels as the decomposition would result in obtaining the

original signal.

Figure 10.9: The Mallat algorithm for the DWT decomposition.

In the case of a 2-D image the wavelet decomposition is performed for the rows

and then columns, to obtain 4 sub-bands which give the diagonal detail coefficients

(HH or high-high), the horizontal detail coefficients (HL or high-low), the vertical

detail coefficients (LH or low-high), and the approximation coefficients (LL or low-

low), as shown in Figure 10.10. The LL band contains the low frequency components
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which are further split at higher levels of the decomposition.

Figure 10.10: Description of the 2-D DWT decomposition in images
showing the HH, HL, LH sub-bands, and further decomposed LL sub-
band.

10.2.2 Denoising via Wavelet Thresholding

One of the earliest proposals of the application of wavelet thresholding for

denoising was by Donoho et al. [30]. They proposed an algorithm for the shrinkage

of the wavelet coefficients, which would result in a denoised version of the signal.

This seminal work has been followed by several extensions dealing with the same

technique of wavelet thresholding. Chang et al. [31] describe that compression of the

signal, using coefficient quantization, is an approximation to wavelet thresholding,

and results in denoising of the signal. Chang et al. [32] provide a discussion on

the estimation of a data-driven threshold for use in wavelet thresholding, which

is derived in a Bayesian framework. Kaur et al. [33] propose another adaptive
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threshold estimation method for image denoising, based on generalized Gaussian

distribution (GGD) modelling of the sub-band coefficients, which has become a

prevalent model in use. It is observed in a large class of natural images that the

sub-band coefficients can be modelled by a GGD, which can be further simplified

to a Laplacian distribution [34]. Since the dead leaves target models these kind of

natural images, there is further motivation for utilizing wavelet thresholding for the

denoising of the captured dead leaves image. Wavelet thresholding has also been

used for signal compression, and coding [35]. Luisier et al. [36] propose an approach

to wavelet thresholding which does not model the sub-band coefficients and instead

uses the Steins unbiased risk estimate as a mean-squared error (MSE) estimate and

minimizes this for threshold estimation.

The main motivation for using wavelet thresholding for the purpose of denois-

ing is because of the sparse representation which it provides. The noise is spread

uniformly across all the coefficients and can be removed, since most of the image

information is concentrated in the largest coefficients. One important parameter

which affects the accuracy of wavelet thresholding is the threshold selection. This

determines the amount of information which is lost, and ultimately the final quality

of the denoised image. Another parameter which affect denoising performance is the

type of thresholding that is used soft thresholding or hard thresholding. The theo-

retical justifications for the performance of soft-thresholding have been proposed in

detail [37]. Figure 10.11 shows the operations of soft and hard thresholding.

The soft thresholding function provides a smoother transition, with wavelet

shrinkage, and is usually preferred in the case of image denoising as it provides more
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Figure 10.11: Functions for soft and hard thresholding.

visually pleasing images. The soft thresholding function is defined as in Equation

10.6, where λ is the threshold.

ηλ,s(x) = sgn(x)(|x| − λ)+ (10.6)

Hard thresholding, defined as in Equation 10.7, is a cruder approach which

completely turns to zero those coefficients which are below the threshold. As a

consequence of this, the images denoised using hard thresholding also have a slightly

cruder quality.

ηλ,h(x) = x.1(|x|>λ) (10.7)

Denoising of the signal is performed after the stage of DWT decomposition by

thresholding appropriate wavelet coefficients, before carrying out the inverse wavelet

transform. Assuming that the noise model generally present in captured images is

the i.i.d. Gaussian model, ν = N(O, σ2) we have our model for the noisy signal y

as shown in Equation 10.8.

y = x+ ν (10.8)
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Let Y be the vector of wavelet transformed coefficients of the noisy signal. An

estimate x̂ of the original signal is obtained by thresholding the wavelet coefficients

Y and then performing the inverse transform. The threshold is selected so as to

minimize the mean squared error between the original image and the estimate.

The quality of the denoising is measured by calculating the PSNR of the

denoised image according to Equation 10.9. We assume that we have the pixel-

intensity details of the original image in this case, since the noisy images in the

experiments are obtained by manual addition to this original image.

PSNR = 10. log10

(

MAX2
I

MSE

)

(10.9)

Where MAXI is the maximum possible pixel value of the image, which is generally

255 for 8-bit images. The MSE is the mean squared error between the noisy image

y and the original noise-free image x, given by Equation 10.10. The original image

and the noisy image have to be the same size m× n, and are grayscale.

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

(y(i, j)− x(i, j))2 (10.10)

Choosing an appropriate threshold is important to obtain good performance

for the denoising procedure. Using a larger than necessary threshold would result

in the loss of texture details, and lead to an unnatural blurring of the image. At the

same time, too small of a threshold would result in no observable denoising effect.

We consider both a universal threshold, and a sub-band adaptive threshold for the

purposes of this study. Donoho and Johnstone [30] proposed the universal threshold

of σ
√

2 log(N), where N is the number of pixels in the image, and σ is the noise
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variance which is estimated by the robust median estimator in the highest sub-band

HH1 according to Equation 10.11, with all Yij ∈ HH1 .

σ̂ =
Median(|Yij |)

0.6745
(10.11)

The second threshold considered is one using a level-wise threshold estimator

method proposed by Birge and Massart [38]. Suppose Y0 denotes the decomposition

level, m is the length of the coarsest approximation (> 2), and α(> 1) is the sparsity

level, the thresholding strategy is as follows -

1. At the coarser level Y0 + 1, all coefficients are retained.

2. For any level Y from 1 to Y0 , the KY larger coefficients are retained according

to Equation 10.12.

KY =
m

(Y0 + 1− Y )α
(10.12)

The parameter α defines the sparsity level of the retained number of thresholds, and

usually varies from 1 to 3.

10.2.3 Results

We consider the effects of the following parameters on the denoising perfor-

mance utilizing wavelet thresholding -

1. Added noise model (Gaussian, Poisson and Salt & Pepper noise) and noise

value.

2. The wavelet used for the transform - Daubechies, Symmlet and Coiflet wavelets

are considered.
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3. The threshold estimation technique utilized - universal or the level-wise thresh-

olding.

4. The type of thresholding utilized - soft or hard thresholding.

5. The number of levels of decomposition utilized.

The performance of the de-noiser based on each parameter is determined by

the PSNR of the final denoised image, as according to Equation 10.9. Figures 10.12-

10.14 give examples of some of the obtained denoised images. For these examples,

the denoising is performed using a level-5 Symmlet 8 wavelet, with soft thresholding.

The mean and variance of the Gaussian noise are with respect to pixel values that

have been normalized between 0 and 1.

Figure 10.12: Denoising performance for an image having Gaussian noise
with mean=0 and variance=0.0005.

Table 10.3 displays the PSNR values obtained on denoising images using the

Symmlet-8 wavelet, at various levels of decomposition.
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Figure 10.13: Denoising performance for an image having Gaussian noise
with mean=0 and variance=0.005.

Figure 10.14: Denoising performance for an image having salt & pepper
noise with noise density=0.02.

Table 10.3: PSNR values of the denoised image obtained after denoising using

wavelet thresholding, under variation of several parameters

Gaussian noise model, m=0, v=0.0005, initial PSNR=35.7048

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard
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Level 1 36.4715 36.1039 36.5386 36.0543 36.6581 35.8764 36.6477 35.8275

2 35.8083 35.9045 36.2034 35.9130 36.8936 35.8216 36.8991 35.7745

3 35.2971 35.8236 35.8094 35.8581 36.7992 35.8068 36.8405 35.7606

4 35.1500 35.8161 35.6822 35.8524 36.7622 35.8046 36.8155 35.7577

5 35.1163 35.8158 35.6507 35.8525 36.7539 35.8033 36.8091 35.7566

Gaussian noise model, m=0, v=0.001, initial PSNR= 33.6143

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.3405 34.7538 35.3626 34.5913 35.3299 34.0733 35.2519 33.9312

2 34.7631 34.6067 35.0951 34.4420 35.7028 33.9500 35.5996 33.7981

3 34.0718 34.4669 34.5328 34.3260 35.5461 33.9075 35.4905 33.7629

4 33.8659 34.4481 34.3477 34.3091 35.4866 33.8976 35.4474 33.7537

5 33.8120 34.4460 34.2945 34.3061 35.4679 33.8946 35.4326 33.7508

Gaussian noise model, m=0, v=0.005, initial PSNR= 25.5448

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 31.0131 30.9271 31.0135 30.9874 30.9990 30.3036 30.9703 29.7139

2 31.6893 31.7444 31.6551 31.6982 31.9863 30.5734 32.1144 29.4625

3 30.0818 30.7254 30.0082 30.5792 30.9734 29.7334 31.3581 28.7104

4 29.2888 30.4056 29.1738 30.2352 30.4988 29.4644 31.0005 28.4510

5 29.0471 30.3579 28.9032 30.1918 30.3611 29.3871 30.9004 28.3662

Gaussian noise model, m=0.05, v=0.0005, initial PSNR= 25.6054
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Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 25.6772 25.6441 25.6827 25.6393 25.6919 25.6224 25.6909 25.6178

2 25.6158 25.6247 25.6523 25.6259 25.7094 25.6172 25.7099 25.6125

3 25.5640 25.6171 25.6161 25.6209 25.7023 25.6156 25.7055 25.6114

4 25.5483 25.6160 25.6040 25.6204 25.6995 25.6152 25.7037 25.6111

5 25.5439 25.6159 25.6002 25.6202 25.6985 25.6151 25.7029 25.6110

Gaussian noise model, m=0.05, v=0.001, initial PSNR= 25.3671

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 25.5760 25.5143 25.5785 25.4961 25.5767 25.4299 25.5690 25.4114

2 25.5139 25.4963 25.5520 25.4776 25.6155 25.4133 25.6058 25.3932

3 25.4282 25.4798 25.4882 25.4642 25.6009 25.4076 25.5955 25.3884

4 25.4001 25.4776 25.4652 25.4620 25.5950 25.4062 25.5911 25.3871

5 25.3918 25.4772 25.4577 25.4615 25.5927 25.4058 25.5893 25.3866

Gaussian noise model, m=0.05, v=0.005, initial PSNR=22.7789

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 24.8654 24.8457 24.8655 24.8599 24.8624 24.6987 24.8559 24.5227

2 25.0168 25.0274 25.0096 25.0185 25.0778 24.7647 25.1050 24.4564

3 24.6124 24.7796 24.5909 24.7414 24.8449 24.5288 24.9368 24.1939

4 24.3725 24.6905 24.3341 24.6446 24.7223 24.4473 24.8516 24.0971

5 24.2895 24.6769 24.2391 24.6308 24.6824 24.4221 24.8241 24.0661
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Poisson noise model, initial PSNR=29.4151

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 33.1812 32.7498 33.1795 32.6515 33.0649 31.2658 32.9350 30.7634

2 32.8624 32.8258 32.9797 32.6147 33.6819 30.9611 33.5950 30.3381

3 31.6563 32.3581 31.8679 32.1406 33.2360 30.7400 33.2973 30.1548

4 31.2088 32.2665 31.4296 32.0369 33.0419 30.6822 33.1625 30.1052

5 31.0872 32.2565 31.3013 32.0202 32.9862 30.6632 33.1214 30.0886

Salt and Pepper noise model, density=0.02, initial PSNR= 25.0577

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 30.4534 28.2361 30.3087 27.7564 29.4062 26.2942 28.9839 25.9308

2 31.4131 28.6697 31.2644 28.0398 30.2739 26.2379 29.6016 25.7792

3 30.2951 28.3674 30.2288 27.7271 29.9109 26.1083 29.3263 25.6649

4 29.7145 28.2648 29.6550 27.6045 29.6867 26.0680 29.1674 25.6273

5 29.5297 28.2518 29.4563 27.5771 29.6067 26.0543 29.1103 25.6168

Salt and Pepper noise model, density=0.04, initial PSNR= 21.8779

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 28.1704 27.3641 28.1636 27.2295 27.8178 24.9414 27.5445 24.2342

2 30.4617 29.1201 30.4443 28.8776 29.9080 25.4077 29.3728 24.3489

3 29.3457 28.5274 29.2793 28.1183 29.2798 25.0948 28.9180 24.0641

4 28.4131 28.1609 28.2697 27.6020 28.7264 24.9221 28.5142 23.9231
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5 28.0595 28.0921 27.8571 27.4757 28.5120 24.8618 28.3567 23.8730

It is observed from the denoised images that soft thresholding generally yields vi-

sually more pleasing images than hard thresholding. In the case of the obtained

PSNR values as well, the soft thresholding performs better. This may be because

the shrinkage of the wavelet coefficients tend to better preserve the high frequency

texture detail in the dead leaves target, which may otherwise be totally removed in

the case of hard thresholding.

The level of decomposition used also has an effect on the obtained PSNR of

the final denoised image. It is consistently seen that the PSNR attains a maximum

at a level-2 decomposition, and then decreases for further higher levels. This implies

that a 2-level decomposition would be ideally suited for the purpose of denoising.

This characteristic is followed for all the sample images that have been processed.

In the case of the images with the added Gaussian noise, the level-dependent

threshold estimation technique based on the Birge-Massart strategy gives the best

PSNR values, for α with values ranging from 1.25 to 2. This property also holds

in the case of the Poisson noise model, with a change in the sparsity value. In the

case of the salt and pepper noise corrupted image, the universal threshold provides

a better performance, and visually the denoised image has a smoothening effect

with the removal of the error pixels that characterize this noise model. As real-life

captured images generally follow the Gaussian noise model, higher importance is

given to the results obtained in that case.

Table 10.4 shows the PSNR values for the same image that is processed with
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different wavelets. The image has Gaussian noise with mean = 0 and variance =

0.001. The obtained PSNR values give an idea about the variation in denoising

performance with the wavelet used.

Table 10.4: Variation in the denoised image PSNR with the wavelet used for the

wavelet transform

Symmlet-6

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.2708 34.7454 35.2995 34.6019 35.3072 34.0935 35.2451 33.9488

2 34.6746 34.5881 35.0067 34.4405 35.6834 33.9666 35.6108 33.8059

3 33.9865 34.4522 34.4403 34.3307 35.5273 33.9219 35.5079 33.7729

4 33.7759 34.4304 34.2448 34.3100 35.4620 33.9109 35.4628 33.7644

5 33.7234 34.4277 34.1909 34.3068 35.4432 33.9075 35.4486 33.7610

Symmlet-8

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.3405 34.7538 35.3626 34.5913 35.3299 34.0733 35.2519 33.9312

2 34.7631 34.6067 35.0951 34.442 35.7028 33.95 35.5996 33.7981

3 34.0718 34.4669 34.5328 34.326 35.5461 33.9075 35.4905 33.7629

4 33.8659 34.4481 34.3477 34.3091 35.4866 33.8976 35.4474 33.7537

5 33.812 34.446 34.2945 34.3061 35.4679 33.8946 35.4326 33.7508
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db-4

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.0811 34.7022 35.1242 34.5853 35.2153 34.1134 35.1886 33.9798

2 34.3809 34.4817 34.7161 34.3862 35.5426 33.9894 35.5598 33.8382

3 33.6660 34.3219 34.1138 34.2581 35.3689 33.9419 35.4563 33.7967

4 33.4564 34.2999 33.9146 34.2369 35.3032 33.9308 35.4145 33.7850

5 33.4051 34.2984 33.8589 34.2333 35.2841 33.9277 35.4019 33.7823

db-5

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.1742 34.7105 35.2106 34.5825 35.2559 34.0919 35.2110 33.9586

2 34.4850 34.4877 34.8233 34.3737 35.5845 33.9618 35.5658 33.8248

3 33.7533 34.3282 34.2110 34.2450 35.3980 33.9167 35.4483 33.7874

4 33.5486 34.3074 34.0208 34.2235 35.3362 33.9064 35.4075 33.7773

5 33.4982 34.3056 33.9684 34.2218 35.3193 33.9032 35.3958 33.7748

db-10

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.3728 34.9425 35.3856 34.8332 35.3955 34.3210 35.3609 34.1610

2 34.3403 34.5216 34.6744 34.4631 35.5761 34.1061 35.6423 33.9366

3 33.4827 34.3222 33.9631 34.3133 35.3473 34.0414 35.5018 33.8789

4 33.2510 34.2989 33.7626 34.2928 35.2825 34.0261 35.4585 33.8632
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5 33.1876 34.2961 33.7061 34.2911 35.2644 34.0214 35.4444 33.8584

Coiflet-3

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.2750 34.7373 35.3042 34.5920 35.3067 34.0837 35.2427 33.9459

2 34.6840 34.5888 35.0214 34.4446 35.6834 33.9627 35.6077 33.8145

3 33.9871 34.4518 34.4569 34.3328 35.5277 33.9174 35.5015 33.7749

4 33.7865 34.4338 34.2806 34.3160 35.4735 33.9071 35.4614 33.7657

5 33.7322 34.4316 34.2277 34.3128 35.4552 33.9039 35.4470 33.7615

Coiflet-5

Threshold

used

Universal,

soft

Universal,

hard

B-M,

α=3,

soft

B-M,

α=3,

hard

B-M,

α=2, soft

B-M,

α=2,

hard

B-M,

α=1.25,

soft

B-M,

α=1.25,

hard

Level 1 35.3841 34.7650 35.4022 34.6001 35.3463 34.0694 35.2618 33.9339

2 34.8139 34.6104 35.1566 34.4335 35.7168 33.9455 35.5970 33.8010

3 34.1112 34.4766 34.6082 34.3260 35.5658 33.9030 35.4819 33.7633

4 33.9081 34.4567 34.4412 34.3071 35.5122 33.8904 35.4352 33.7523

5 33.8537 34.4546 34.3970 34.3028 35.4969 33.8853 35.4182 33.7481

It is observed that there is not much appreciable difference in the maximum

possible PSNR value on using different wavelets. Also, for the same family of

wavelet, the usage of a wavelet with a higher number of vanishing moments provides

a better PSNR value for the denoised image, which is observed for all 3 families of

wavelets considered. In the case of the wavelets we can consider the number of van-

ishing moments to be an indication of the ability of the scaling function to represent

more complex signals - i.e. complex functions can be represented with a sparser set
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of wavelet coefficients if there are more vanishing moments. The lower PSNR may

be the slight trade-off observed on reducing complexity.

Based on the obtained results in this section, the parameters for denoising

of the captured dead leaves image are set. The denoised image is then used for

calculating the noise PSD, and further, the dead leaves texture MTF.

10.3 Modification to the texture MTF algorithm

Utilizing the results from the previous section, we propose an algorithm for

the calculation of the texture MTF using the dead leaves target. The algorithm is

as given below. The power spectral density in each case is obtained by taking the

Fourier transform of the image, and subsequently the power spectral density. The

2-D PSD is converted to 1-D density by radial binning averaging, which is possible

due to the spherical symmetry of the dead leaves target, and its power spectral

density. The wavelet thresholding parameters have been set according to the results

obtained from the Section 10.2.

Figures 10.15(a)-10.15(c) display the texture MTF results obtained for an

image of the dead leaves target, with various values of added Gaussian noise. The

original images have been obtained from an iOS camera system in all cases. The

Figures 10.16(a)-10.16(c) display the images that have been considered in this case.

The mean and variance values specified are with respect to the pixel intensities of

the image being normalized to within (0-1). Gaussian noise most closely models

the noise model usually seen in captured real-life images. The figures display a
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Algorithm 1: Calculation of texture MTF

1 Obtain multiple images of the dead leaves target. Let the number of images

be n.

2 Perform image registration and alignment of the n copies, I(1,2...n).

3 Obtain the image average from the multiple copies, Iavg.

4 Perform wavelet thresholding on the texture region of Iavg to obtain the

denoised version of the image, Ith.

5 Subtract the denoised image from one of the captured images (from I(1,2...n))

to obtain the noise distribution, and obtain the corrected noise power

spectral density (PSDnoise,corrected).

6 Calculate the spectrum of the ideal image, PSD ideal using the model

equations as defined in [3].

7 The measured PSD can be obtained from the same image used to obtain the

noise distribution.

8 Calculate the texture MTF according to Equation 10.13 below:

MTFtexture =

√

PSDmeasured − PSDnoise,corrected

PSDideal

(10.13)
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comparison between the modified texture MTF which includes the noise correction

term, and the original MTF with no noise correction. It is observed that as the noise

level increases, there is a corresponding increase in the value of the noise correction

term, which results is the texture MTF being lowered. This corresponds to the

visual decrease in texture reproduction quality for the noisy images. These images

can be considered artificial since the noise has been added manually to the images.

In the example image with the Gaussian noise of variance=0.005, it is observed that

the uncorrected MTF is high due to the appearance of the noise as high frequency

detail. The noise correction term thus corrects this artificial increase in texture

MTF and provides a much better estimate of the actual texture MTF observed in

the image.

Figures 10.17(a)-10.17(d) display the texture MTF results from unaltered im-

ages of the dead leaves target, which have been obtained at various levels of exposure

time and ISO speed. The texture MTF is observed to fall at mid-level frequencies

for images taken at high ISO levels, which may be due to a bleaching effect which

appears at high sensor sensitivities. The correction in the texture MTF due to the

noise is clearly observed in each of the cases. The correction matches with the ini-

tial consideration that mostly the texture MTF at the high spatial frequencies are

affected by the high-frequency noise components.
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(a) Texture MTF of image with added Gaus-

sian noise (m=0, v=0.0005).

(b) Texture MTF of image with added Gaus-

sian noise (m=0, v=0.001).

(c) Texture MTF of image with added Gaus-

sian noise (m=0, v=0.005).

Figure 10.15: Texture MTF comparison using the proposed algorithm
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(a) Dead leaves target image with added

Gaussian (m=0, v=0.0005).

(b) Dead leaves target image with added

Gaussian (m=0, v=0.001).

(c) Dead leaves target image with added

Gaussian (m=0, v=0.005).

Figure 10.16: Dead leaves target image at various noise levels
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(a) Texture MTF for image captured at ISO-

32, and exposure time=1/30s.

(b) Texture MTF for image captured at ISO-

32, and exposure time=1/60s.

(c) Texture MTF for image captured at ISO-

650, and exposure time=1/500s.

(d) Texture MTF for image captured at ISO-

800, and exposure time=1/500s.

Figure 10.17: Texture MTF comparison using the proposed algorithm at various

ISO levels and exposure times
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Chapter 11: Conclusion

In this report we have presented information on the following topics -

11.1 Variation of the texture MTF with various parameters

The first part of the report studies the effect of several parameters that con-

stitute the conditions under which a camera system captures an image. The target

used is the dead leaves target, and the effects of these parameters on the obtained

dead leaves texture are considered. The variable parameters that are considered

include target-camera distance, illumination levels, exposure time during the image

capture, ISO sensitivity of the camera used. The effect of the addition of noise to the

dead leaves target image is also considered, along with increasing the sharpness of

the image. These parameters are normally observed in the image processing cycle of

a camera system, thus the results are helpful in characterizing the exact trends that

become visible in these systems. Along with the MTFtexture, values of acutance are

calculated in several cases as well. It is shown that the acutance values can be used

as a single-value quality measure of the texture preservation quality of the camera.

Appropriate conditions for the distance and illumination parameters for obtaining

the target image are specified.
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11.2 Modification of the calculation of the noise spectrum

The second part of the report concerns with a study of the noise spectrum

calculation in the texture MTF algorithm. The estimation of the noise spectrum

using the uniform gray region of the dead leaves target is shown to have some

variation from the actual noise level of the texture region. This is most likely due

to the camera system processing the uniform and texture regions separately. From

this result the next step is in obtaining the actual noise spectrum of the texture

region which is done by utilizing the wavelet thresholding denoising approach. A

denoised version of the texture region is obtained, and results are provided for the

PSNR results of denoised images while varying several parameters of the denoising

step. Utilizing these results, the modification to the texture MTF approach are

implemented, and values are obtained for images obtained under several shooting

conditions.
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