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As unmanned autonomous vehicles (UAVs) are being widely utilized in mil-

itary and civil applications, concerns are growing about mission safety and how

to integrate different phases of mission design. One important barrier to a cost-

effective and timely safety certification process for UAVs is the lack of a systematic

approach for bridging the gap between understanding high-level commander/pilot
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ulation framework for segments of the mission design, such as path planning and

decision making in collision avoidance.

In this thesis, we divided this complex system into sub-systems; path planning,

collision detection and collision avoidance. We then developed software modules for

each sub-system.
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Chapter 1: Introduction

1.1 Introduction

Unmanned autonomous vehicles (UAVs) are increasingly utilized in military

and civilian application due to their potential to provide improved capabilities while

increasing manpower efficiency [2] [4]. Current and future domestic applications for

UAVs include search and rescue, weather forecasting, law enforcement, border pa-

trol, firefighting, disaster response, precision farming, commercial fisheries, scientific

research, aerial photography, mail delivery, infrastructure monitoring and emergency

management [4]. As a result of the prevalence of UAVs, particularly in civilian ap-

plications, there are growing concerns with regard to the safe integration of UAVs

into the national airspace (NAS). The safety and reliability of UAVs are highly re-

liant on their capability to avoid emergency situations in order to have a safe flight.

However, a lack of appropriate systematic method prevents high-level autonomous

systems from being widely fielded. Since just by using a systematic approach, de-

signers are able to capture all possible scenarios and trace back low-level behaviors

and commands into the high-level mission requirements. Therefore, new techniques

for standardized and formalized requirements specification and mission planning of

UAVs are needed that take into account discrete decision-making and can be inte-
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grated with flight simulation software in order to verify the overall system. Using

systems engineering methodologies for solving high-level problems and tracing them

into the lower level problems can reduce the risk of failure and catastrophe as they

provide a platform for identifying the relationships between the system’s elements

and predicting the potential malfunctions and failures.

The goal of this thesis is to develop a preliminary flight management system

model beginning from real-world problem definition and ending with software im-

plementations and simulation analysis. For this purpose, we demonstrate the entire

system design process for a representative UAV flight management system using

systems engineering methodologies. Along with developing our system of interest,

we demonstrate how model-based systems engineering tools can be used to capture

high-level design coupled with low-level constraints.

1.1.1 Model-Based Systems Engineering

Systems engineering is an interdisciplinary approach used in various projects

to enable the realization of a successful system and reduce the risk of encountering

problems during system operation. A systems engineering approach to a project

includes analyzing and deriving stakeholders’ needs, documenting requirements and

continuing with system design while considering the complete problem and vali-

dating the system to ensure it can satisfy stakeholders’ needs in an efficient, cost-

effective and high quality manner. A model-based system engineering methodology

uses formalized applications of modeling to achieve all steps of Systems Engineering
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methodologies [6]. In this methodology, system requirements, structure, and behav-

ior can be visualized in the conceptual phase of system development as well as later

in the life cycle. This method can help systems engineers provide different repre-

sentations of a system from the standpoint of corresponding concerns and issues of

a system [7]. To clarify the importance of systems engineering applications in our

problem, we demonstrate the complexity of the mission design and challenges that

designers may encounter in mission planning and how they can leverage systems

engineering approaches for planning a safe mission.

In mission and scenario planning, various users such as Air Traffic Control and

ground controllers, may interact with the flight mission in different phases of the

mission, based on the mission requirements. In addition, conceptual operations in

different flight states and UAV behaviors and structure can play important roles in

organizing the mission. In developing a mission plan for a UAV, one should address

different design challenges suchs as flight route, sensor modeling, communication,

navigation, threat analysis and 3D visualization. Integrating all these requirements,

verifying the entire complex system, as well as reducing failure risk and improving

mission safety requires a systematic approach to mission planning. This approach

allows us to capture this complex system and detect possible faults and malfunctions

in each phase of the system. All of this leads us to conclude model-based systems

engineering is a good solution for modeling all required states of our UAV flight.

In this thesis, we utilize a model-based systems engineering approach to cap-

ture the requirements, provide a high-level solution to our mission planning problem,

and map the generated models into the mathematical models. As a result, as a first
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step, we formulate our problem and demonstrate the mission requirements and op-

erational concepts. Then, we discuss system architecture as well as functional and

behavioral analysis to better understand the system and required functionality our

proposed system should have.

1.2 Concept Description

In order for UAVs to accomplish their assigned mission, they need to have a

defined representative mission plan and flight plan scenarios. For this reason, iden-

tifying and implementing an appropriate path planning system to develop unique

flight plans across a wide degree of scenarios is useful. A good flight route has some

important attributes: It should provide the optimal path from start node to the

final node with respect to the all constraints in the environment. Finally, path plan-

ning system is expected to be coded in software and implemented for use onboard

UAVs [3].

Furthermore, safe operation of UAVs operated by commercial and military

entities in the National Air Space (NAS) is envisioned to require autonomous situa-

tional awareness and safe response to situations and anomalies [4] that may consti-

tute hazards to human life and property. The hazardous situations and anomalies

may result from loss-of-command-link, violation of flight rules, departure from flight

plan, UAV component failures, failure to respond to ATC directives, and the need

to sense and avoid nearby air traffic [26]. Software algorithms onboard the UAV

must detect and identify these anomalies. In addition, other onboard software al-
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gorithms must decide the “safe response” to each identified situation or anomaly,

wherein determining such responses requires knowledge of map position, obstacle

and terrain features. The onboard “safe response” software must incorporate deci-

sion support to either terminate the UAV flight or alter the UAV’s onboard flight

plan in accordance with the selected response.

1.2.1 Project Objective

The purpose of the proposed research is to create a Preliminary Design of an

Autonomous Intelligent Flight Management System for UAVs that incorporates au-

tonomous situational awareness and safe response to situations and anomalies such

as mid-air collision that may constitute hazards to human life and property. For this

reason, we generate UAV’s trajectories based on mission waypoints, then we develop

a situational awareness software module using collision detection and avoidance al-

gorithms. Afterward, we identify some of the successful and unsuccessful scenarios

based on the developed situational awareness module and how environmental and

physical constraints of UAV can affect the efficiency of path planning and collision

avoidance algorithms. The tasks we covered here are as follows:

1. Execute a prelaunch-uploaded mission plan

2. Identify anomalies (including UAV flight-rule violations, midair collisions,

component failures and loss-of-command-link events)

3. Response to such anomalies by generating revisions to the baseline mission

plan in a manner that minimizes hazards to human life and property
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To accomplish these tasks, we went through the following procedure outlined

in Figure 1.1. First, we define a real-world problem, then we define the scope of

the problem we want to cover by developing concepts of operations and system

requirements. Then, we create a semi-formal model of that system using some UML

and SysML diagrams in order to simplify the real world system. Finally, we create

our simulation system model to capture some parts of our system model and provide

formal analysis based on the simulation results.

Figure 1.1: Research Procedures: Steps Required for developing a simulation

system from an abstract real-world problem. The simulation model is developed

based on the model of the real-world system.

1.3 Background

In this section, we review some of the works done in mission planning architec-

ture, path planning and situational awareness systems. First, we have an overview

of the UAV operational categories and the new technologies developed to leverage

having a safe mission for each of these categories during flight. Then, we discuss

about some different algorithms and approaches that address the path planning and

sense and avoid system and their related cons and pros.
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There are some previous works on system modeling and architecture of mission

planner for UAVs. Cristian Atencia [11] provided a reference architecture for mis-

sion planner system for multiple UAVs operating in a group to achieve their goal.

In this study, UAVs’ specifications, zones information and sensors are considered

as inputs and the sequence of desired tasks to be done by UAVs are the desired

outputs. In another research, Stenger [12] integrated the decision making process

using the cognitive agent-based architecture Soar. His system architecture addresses

the process in which UAV can autonomously make decision and interact with en-

vironment. They used this architecture for capturing UAV behaviors. In another

research, George Vachtsevanos [13] provided a platform for high-level architecture

of mission planning, trajectory generation and vehicle navigation routins. In this

research, the mid-level represents the envelope protection and mode transitioning.

He demonstrate the flows of actions and configurations of mission planning system

and route planner in high level and mid level architecture respectively.

Defining different flight plans and alternative routes for UAV is vital for the

purpose of mission planning and flight management so that the UAV can do the

best reaction in a given situation when it is needed. Therefore, path planning and

waypoint generation should be also considered as a part of flight management system

design to be integrated with SAA. For the purpose of flight plan and alternative

routes, there are some algorithms that are proposed. Some path planning algorithms

such as RRT [15] which is based on space-state and produces a time-parametrized

set of control inputs to move from initial state to the end state, A* [16] which is

based on depth first search concept and Dubins Airplane [35] which we discuss it in
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this research.

UAVs can operate under both cooperative and non-cooperative categories.

Those UAVs in the cooperative category are equipped with some technologies such

as Traffic Alert and Collision Avoidance System (TCAS) and Automatic Depen-

dent Surveillance- Broadcast (ADS-B). These technologies help UAV to have a safe

mission by sharing its position information and getting the same information from

other equipped aircraft in the cooperative scenarios. ADS-B for instance, uses GPS

or other navigation sources to broadcast its own aircraft position, velocity and other

data without being interrogated. With these technologies, UAVs can operate under

the control of ATC and detect other equipped vehicles that are able to cooperate

with ATC. However, they cannot be utilized in non-cooperative scenarios that the

other aircraft are not equipped with the same technologies. This fact provides some

troubles for having a safe mission in many other possible scenarios. As a result,

when flying in the low altitude where other VFR [14] aircraft are flying, UAVs need

to integrate with non-segregated airspace. Thus having a Sense and Avoid (SAA)

system seems to be critical for them so they can detect traffic and obstacles and

determine the right maneuvers for avoiding them.

For SAA purposes, some algorithms and approaches are proposed which all

of them have some advantages and disadvantages. Here we mention and provide

an overview of some of them. SAA has five parts; Sensing, Trajectory Prediction,

Conflict Detection, Conflict Resolution and Evasion Maneuvers. For the conflict

detection and avoidance, Schild [17] provides a set of rules for autonomous separation

for UAVs. These rules are base on some optimization tasks and it involves two
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aircraft sharing the same rules. This approach gives an optimized solution for the

scenario in which all aircraft share the same rules and it cannot integrate a specific

aircraft into the conflict. The other approach that is used is Game Theory Methods.

This approach considers worst case scenario and UAV should avoid all possible

maneuvers and disturbances produced by the intruders [18]. Geometric Methods

are another approach for SAA problem. Several geometric models are proposed.

We go through some of the works done by different authors. Ota et al [19] provided

a method for collision avoidance in both the horizontal and vertical planes based

on relative geometry between intruder and UAV. In this effort the moving obstacles

are described as static obstacles using the concept of ”threat map”. Bilimoria [20]

proposed an optimized geometry solution by minimizing the required velocity vector

for avoiding threat. This algorithm works with changing heading angle and velocity

vector. However, this gives an optimal solution just for one threat and cannot

work for multiple threats. So in the case of multiple collisions, this method works

sequentially. There are also some studies on using traffic collision alerting system

(TCAS) like collision detection and avoidance systems for UAVs [21]. This approach

relies on the vertical commands and needs so many experiences, test flights and

very large amounts of data therefore, there is no analytical verification [22] and

consideration of physical and operational constraints of UAVs such as turn rate and

climb/descent rate. However, statistically speaking, this method can guarantee the

high reliability of TCAS.
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1.4 Outline of Thesis

This thesis is focusing on the systematic procedure for developing a flight

management system. The following chapters are developed based on this procedure.

In Chapter 1, we focused on problem definition. In Chapter 2, we started

with, concept of operations and high level mission requirements and then developed

semi-formal model of our UAV’s mission planner system using SysML and UML

diagrams and mapped behaviors of the system to its structure such that they can

be traced back to the main requirements of the system. Chapter 3 focuses on devel-

oping simulation model based on the semi-formal system architecture and deriving

appropriate results that can be used for proper analysis and conclusions. Chapter

4 discusses about the conclusions and the future steps and process should be done.

Appendix A is concentrated on path planning algorithm concept we used and the

related constraints, assumptions and formulas. Appendix B is dedicated to colli-

sion detection and avoidance algorithms used in this research and elaborates the

equations, concepts and constraints in more details.
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Chapter 2: Semi-formal Flight Management System Design

2.1 Overview

In order to capture functional aspects of the system such as the tasks it should

accomplish, we demonstrate and emphasize the system architecture, including sys-

tem behavior and structure in more details. In this section we discuss the necessary

specifications the system should have in order to meet the users’ requirements. To

begin, we explain the desired inputs and outputs. Then we will walk through the

system’s functional (operational) requirements to achieve those outputs.

2.2 Mission Overview

In order to determine the operational and functional requirements, it is essen-

tial to define representative mission and flight plan scenarios in order to identify,

clarify and analyze users’ requirements. These are focused on a variety of tasking

scenarios characterized by FAA class airspaces A-G [9]. For this thesis, we chose a

loitering scenario and captured both high-level and low-level mission requirements

related to this phase of flight. Table A.1 shows the main goals of the mission, which

are as follows:
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1. Autonomous Flight: Achieve controlled take off, flight, loitering and landing.

2. Cover Entire Search Area: Determine target location within defined distance

(50ft), fly the search area.

3. Obstacle Detection and Avoidance: Carry out Air Traffic Control (ATC) re-

quirement to remain well clear of other traffics.

Table 2.1: Mission Overview

Mission

Overview

High-Level Requirements Low-Level Requirements

1 UAV shall approach the pre-

planned maneuver point

UAV shall capture required infor-

mation from loitering location

2 UAV shall fly at 1000ft altitude UAV shall pass specific waypoints

during loitering

3 UAV shall loiter for 1 hour UAV shall Determine target loca-

tion within defined distance

4 UAV shall resume the flight path

along the border

UAV shall detect all intruders

within 100ft in loitering phase

5 UAV shall climb back after 1 hour

loiter

UAV shall avoid up to 3 intruders

at the same time

While this surveillance application is highly in demand due to its potential to

be used in civilian applications such as disaster response, firefighting, search and
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rescue [23], the approach used in this thesis can also extend to the rest of the flight

phase such as landing, take-off and cruise as well as to other scenarios.

2.2.1 Operational Concepts

After creating the main goals and mission scenarios, the next step is to provide

use case diagrams for our system of interest, the UAV’s mission planner, to capture

the system and sub-system’s behavior. Use-case diagrams are developed using the

main goals of a system and show what the users want the system to do. Systems

engineers can derive system requirements from use cases and their flows of actions

[24]. Thus, we developed two use-case diagrams for the purpose of this example.

One is a high-level system’s use case diagram in which we show the overall tasks of

the mission planner in the sequence of actions that the user might interact with. The

second is an obstacle avoidance use-case which is a lower level use-case diagram for

our mission. We go through the details of each diagram in the following paragraphs.

Figure 2.1 depicts all the states of the mission planner. These are (1) path

planning, (2) trajectory following, (3) sensing, and (4) decision making for emer-

gency situations. In Figure 2.1, the users of the mission are demonstrated. One

type of user is the UAV communication systems, which allows the system to send

and receive data from sensors and ground controls. Another type is the ground

controller, who monitors, manages and tracks the mission and is ready to act in

emergency situations. Ground controllers also have permission to cancel or change

the mission on board if it is necessary.
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Figure 2.1: Use-case diagram for the entire mission: High-Level Use Case Diagram

for Overall Loitering Scenario and different tasks that the UAV must do

To accomplish the mission, the UAV must be safe from any plausible obstacle

in its path. Therefore, the UAV should have a reliable collision avoidance system

for all mission states, including the loitering scenario we focus on. This leads us

to create a sub use case diagram that effectively shows the actions of the collision

avoidance system and how it interacts with actors. Figure 2.2 is our sub-level use

case diagram for the case in which the UAV should avoid obstacles.

As shown in Figure 2.2, while the UAV is loitering and following its trajectory,

it should also sense and detect threats and use an appropriate maneuver to avoid

collisions. However, based on the type of threats, the detection and avoidance system

need to meet different sets of requirements.
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Figure 2.2: Low-level Use-Case: Use Case Diagram for Collision Detection and

Avoidance Scenario

It should be noted that there are two types of intruders, known as cooperative

intruders and non-cooperative intruders. The difference between these two types is

that in the cooperative scenario, the UAV can cooperate with the intruder (another

aircraft or UAV) and they can work together to avoid collision. On the other

hand, non-cooperative intruders encompass birds, balloons, and other intruders that

cannot communicate with our UAV. As a result, the UAV must avoid them entirely

by itself. This research focuses on the non-cooperative scenario to simulate the

results and develop the algorithm.

In our use case diagrams, there are two important components for mission
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planning: path planning and trajectory following, and the capability to avoid po-

tential collisions. In order to combine these two components and demonstrate how

they can be related to each other, we present the following functional diagram in

Figure 2.3.

Figure 2.3 is a context diagram that shows how the system interacts with

the environment, their interfaces, and the flow of information. A context diagram

is a diagram that captures how the system interacts with outside systems and its

environment [27]. We considered documented requirements and a UAV model as

inputs for the mission planner system [N.B. In this thesis, we do not consider the

problem of modeling the UAV dynamics, instead we consider it as an input and a

constraint for UAV mission planning].

Figure 2.3: Context Diagram: System Context Diagram shows interactions between

system and environment and captures desired inputs and outputs of the system.

In Figure 2.3, the required inputs and outputs for the system of interest and
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how they connect with each other is derived. In this figure, the interoperability of

the path planning, sensing and collision detection and avoidance subsystems can

be seen. All the information about the UAV model is used as input for the path

planning and waypoint generation phase. For collision avoidance, the UAV needs

to acquire information about unpredictable obstacles and turbulences from sensors,

and use that to predict if there is a risk of an upcoming collision. Then, based on the

prediction, it needs to avoid the threat and re-plan the trajectory within a specified

time interval. Sometimes sensor data sent to the control station necessitates changes

in the scenario planning. In this case, reliability and safety of the sensor are the key

parameters for a successful mission.

2.3 System Requirements

In systems engineering methodologies, use case analysis is used for document-

ing of the functional requirements by providing a set of scenarios which captures

how the system can interact with users and other systems. This structure helps us

to identify and list main requirements based on proposed scenarios and determine

MOE (measure of effectiveness) of the system. In this thesis, we used defined opera-

tional concepts and use cases to establish a set of system’s measure of effectiveness.

In the following section the list of MOEs is provided.
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2.3.1 System’s Measure of Effectiveness

Setting MOEs for the system, one can answer the question of “Will this system

meet the stakeholder’s need?” [28]. As a result, MOEs can be defined as “standards

against which the capability of a solution to meet the needs of a problem may

be judged. The standards are specific properties that any potential solution must

exhibit to some extent. MOEs are independent of any solution and do not specify

performance or criteria” [28]. Having defined the MOEs and the purpose of using

them, we tried to identify these measures for our Mission Planner System. So the

Mission Planner System MOEs are as followed:

• The system is able to generate a path that passes all the required waypoints

in the loitering scenario of the mission.

• The system is able to provide at least two alternative collision free trajectories.

• The system is able to detect at least dynamic non-maneuvering threats whose

trajectories and speeds are predictable by the sensor system.

• The system is able to avoid at least dynamic non-maneuvering threats whose

trajectories and speeds are predictable by the sensor system.

• The system is able to avoid at least three simultaneous collisions that are

predicted.

Therefore, the final system can be evaluated if it is successful to accomplish

of its mission objectives and achieve desired functions or not. These measures are
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useful to quantify the successfulness of the final system by giving a reference for

analyzing if it can accurately correspond to the mission requirements.

2.4 System Behavior

In the previous sections, we considered the users’ requirements and how they

interface with the system. Next, we develop the system’s behaviors and functions.

For this purpose, activity diagrams are helpful to visualize the steps, actions, and

the parts of the systems that carry out the actions. In the collision detection and

avoidance segments, the sequence and flow of actions are important for managing

requirements and consistency between design and requirements. We provide the

reader with some sections of the activity and sequence diagrams related to the non-

cooperative collision detection and avoidance.

2.4.1 Activity Diagram

Activity diagrams are used in the system behavior modeling in order to capture

actions states, decisions and merges, object flow and concurrent transitions [29]. In

order to identify performance of actions and triggers, we developed activity diagrams

for the detection and avoidance sub-system. Figure 3.10 describes the collision de-

tection system, which highly relies on the history of the tracked obstacle to estimate

the future trajectory. It shows that the detection section shall predict the point of

collision and the time to reach that point in order to provide sufficient information

for the collision avoidance section to avoid threats. This prediction is based on time-
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based information about the history of the obstacle’s trajectory and velocity. Sensor

systems will ensure the whole system about the possibility of getting this kind of in-

formation. If there is sufficient time-based information, the system will estimate the

future trajectory of the obstacle. Then it can predict the closest approaching point

for UAV and obstacle. In Figure 2.5, the collision avoidance activity, which occurs

Figure 2.4: Detection Activity: Activity Diagram for collision detection showing

flows of activities from sensing to data fusion

after detection, is shown. In particular, it shows the steps of determining the best

avoidance maneuver and how it applies the maneuver to avoid the obstacle, as well
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Figure 2.5: Avoidance Activity: Activity Diagram for collision avoidance showing

flows of activities from decision making to reaction maneuvering

as necessity of re-planning and waypoint generation for some small time intervals

to avoid the obstacles. The declaration system uses detection information about

distance and time to closest approaching point to evaluate if the UAV can avoid the

obstacles or not. After this evaluation, the system can provide a no-flight area for

the UAV by considering other obstacles and select the most appropriate maneuvers

for avoiding. In the next chapter, we demonstrate how collision avoidance algorithm

that we use can determine these maneuvers.
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2.4.2 Sequence Diagram

A sequence diagram has two dimensions, the vertical lines indicate time for

actions and horizontal arrows represent different instances and the flow of informa-

tion and data [29]. They are used to describe the sequence of interactions between

objects in the system. In Figure 2.6, the sequence of actions for non-cooperative

collision avoidance is shown. This figure helps us to determine the procedure of the

collision avoidance and the priority of different steps. Sensors receive information

about the location of obstacles and send that information to the data fusion block

for processing. Then, if the information if sufficient, the system tracks the data

and estimates the future trajectory. Afterwards, the predicted trajectory is used for

determining collision time and collision point. The next step is to provide a no-flight

area for UAV and modify its trajectory for some amounts of time. Then, the new

waypoints are generated by autopilot and UAV can execute appropriate avoidance

maneuver.

2.5 System Structure

Structure in this context is described using components, all the attributes,

parts and functions of the components as well as the connections among the com-

ponents [30]. The parts of the component are described by their properties. The

functions of the component contain a reference to the behavioral model of the sys-

tem. In order to map our system behavior into the system structure, we developed

a block definition diagram for the system. It is represented in the following sub-
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Figure 2.6: System Sequence Diagram: Captured sequence of actions between sub-

systems and the flow of data among them

section.

2.5.1 Block Definition Diagram

Having explained functionality and behavior, we now demonstrate the sys-

tem’s structure by using a block definition diagram. A block definition diagram is

useful for showing the system’s module and can be used in software development

and simulation of the system. Block definition diagrams can accept values, parts,

operations and attributes, which allow it to be easily converted to code. In this the-

sis we focus on the procedure and provide the reader with an example of simulation
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results that are extracted from the block definition diagram.To simplify this, our

simulation only looked at the set of requirements for a non-cooperative intruder,

which is explained in the following paragraph. The simulation will be discussed in

more detail in section 3. This is shown in Figure 2.7, which depicts the functionality

of the entire system.

As discussed earlier, one of the first steps in mission planning is generating

trajectories. Other parts of the system are sensing, collision detection and collision

avoidance sub-systems needed for mission safety. All parts have their own opera-

tions and values. For example, the path planning part includes trajectory following

operation with the constraints on transferring latitude, longitude waypoints into

Cartesian model and vice versa as well as using path planning algorithm (Dubins

Airplane Model in this example). In collision detection, the system shall predict the

obstacle’s trajectory in the near future and detect if there will be a collision based

on the speed and trajectory of the UAV, these operations are dependent on having

some values such as obstacle and UAV’s speed and positions, closest approaching

distance and time to closest approaching distance which means that collision de-

tection module needs to calculate these values in order to have a correct detection.

The collision avoidance part shall make the decision on how to avoid the potential

collision by changing speed, turning radius and altitude. Figure 2.7 shows each of

these parts in mission planning. In each block, constraints demonstrate the method

and formula for developing codes for each block. This block diagram helps us design

and develop the simulation system based on the operations, constraints and values

defined in the block definition diagram. It also divides the system into different
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modules and sub-systems that simplify implementation and integration phases of

simulation system design.

Figure 2.7: Class Diagram: System Block Definition Diagram that shows four mod-

ules of the system. These modules are: (1) path planning, (2) collision detection,

(3) sensing, and (4) collision avoidance.
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Chapter 3: Software Modules (Formal System Design)

3.1 Overview

To integrate a complex system consisting of different sub-systems, simulations

are used to analyze and predict the system’s behavior in some situation. Developing

simulations can help us to examine the algorithms that we finally want to implement

in our real system and identify any problems or specific results and patterns that

might be seen in the actual system. Having these analysis, we are able to design

systems with more information so they are better consistent with the system models

and requirements. The simulation system is derived from the system’s model and

tries to capture all aspects of the system’s model. However, in the real world,

the entire system cannot be simulated as there are always many constraints for

simulating all parts of the system. Therefore, it is important to clarify what the

goals of the simulation system are and what parts of the system are going to be

simulated. As it is shown in Figure 1.1, simulation software is developed from the

mission planner model to simulate different segments of the mission planner model.

In the previous sections, we provided a semi-formal model for a mission planner

system and in this section, we provide simulation systems for path planning and

collision avoidance parts of our developed model.
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In order to visualize how the simulation system traces back to the semi-formal

model of the system, we provided a context diagram for the simulation system

itself and defined system model as an input for the simulation system. We also

defined user-interface block to represent the user requirements which have interfaces

with the simulation systems through the simulation’s user-interface. Additionally,

the simulation software can simulate the functionality of the system. Then the

hardware codes can be developed in order to provide 3D visualization of the mission

and integrate them into UAV system. The inputs and outputs and their interactions

are shown in Figure 3.1.

Figure 3.1: Simulation Context Diagram: Simulation Context Diagram shows in-

teractions between system and environment and captures desired inputs and outputs

of the system

In order to show the flow of the data and the structure of the simulation, we

develop the simulation internal block diagram which shows the interaction between

27



parts of the simulation software and how data is transferred between them [31]. Fig-

ure 3.2 shows the internal structure of our simulation system. The simulation parts

are as follows: (1) Mission Planner User Interface, (2) Mission Planner, (3) Mission

Manager, (4) Mission Recovery, (5) Mission Planner Display Engine. The mission

Planner User Interface and Mission Planner Display Engine are related to the users’

inputs, outputs, and the simulation results. The Mission Planner determines the

UAV’s trajectories, waypoints and search area. The Mission Manager is responsible

for determining possible collisions and calculating collision parameters such as point

of closest approach and time to point of closest approach. The Mission Recovery

calculates required speed change, turn rate and altitude change for avoiding obsta-

cles. In Figure 3.2, the flow of information between these parts is also depicted.

In this chapter, we demonstrate a simulation that represents how our UAV

mission planning system meets the customer’s requirements and achieves the re-

quired functionality. Our requirement analysis and the artifacts that we created

allow us to identify relevant data for the simulation and organize our numerical

simulation. For this purpose, first we show the trajectory generation for the overall

mission, then we go through the obstacle avoidance and generalize it by simulating

collision avoidance for 3 obstacles at the same time (which was one of the mission

requirements).
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Figure 3.2: Simulation Structure: Simulation Internal Structure and the Flow of

Information between different parts of the simulation software is shown

3.1.1 Simulation System’s Measure of Effectiveness

The simulation system that we developed is also treated as a system, so it also

should be assigned some measure of effectiveness to evaluate the ultimate simulation

system can satisfy the functional requirements. For this reason, we still need to have

a list of MOEs in order to examine and analyze the simulation system. Below are

Mission Planner Simulation System MOEs:

• The simulation system is able to generate collision free paths for loitering

scenario with the given inputs of the UAV’s physical and behavioral constraints

and information about the environment and mission waypoints.
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• The simulation system is able to calculate collision parameters for at least 3

simultaneous collisions by having the predicted linear trajectory, position and

velocity of the threats and the information of the UAV’s motion.

• The simulation system is able to perform collision analysis based on the colli-

sion parameters for at least three simultaneous collisions.

• The simulation system is able to propose solutions for avoiding detected col-

lisions by controlling turn rate and velocity change for the scenarios in which

threats’ behavior are predictable and linear.

3.2 Path Planing Module

After modeling our simulation system, the first step in developing our simula-

tion is to create the UAV trajectory based on the mission scenario. For the purpose

of path planning, we chose Dubins Airplane model [32]. Some of the reasons why

we picked this model include: 1. it considers a moving object at a constant forward

speed. 2. It has some constraints on maximum bank angle, heading angle and UAV

airspeed V. 3. It does not consider wind speed in the path planing equations and

is treated as some disturbances during flight and the flight controller tries to reject

them [33] . The assumptions regarding Dubins Airplanes algorithm can be match

with the assumptions we provided for our UAV mission requirements. It also can

include UAV physical constraints and capabilities. Although further information

about Dubins algorithm can be found in more details in Appendix A, we have an

over view of this algorithm later in this section.
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3.2.1 Simulation Module Requirements

After selecting an appropriate algorithm for path planning, we need to de-

rive functional and performance requirements to develop the algorithm and create

simulation software for our intended purpose. As a result, we established a list of

simulation software requirements in order to get the desired results. In the follow-

ing lists, you can see the path planning simulation functional and user-interface

requirements for a non-cooperative scenarios. These requirements are all derived

from MOEs of the simulation system:

1. Generate waypoints between main waypoints using Dubins Path algorithms.

2. Develop candidate paths between main waypoints.

3. Choose the optimal Dubins path between each of two waypoints among all

possible generated Dubins paths.

4. Develop 3D trajectory for UAV using Dubins algorithms for 3D environment.

5. Transfer waypoints XYZ coordinate to altitude-latitude-magnitude coordinate

using the transforming equations.

Path planning simulation user-interface requirements for a non-cooperative

scenario are as followed:

1. The system’s path planning part shall allow user to change initial simulation

parameters for UAV.

(a) The system shall allow user to input the main waypoints.
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(b) The system shall allow user to specify UAV maneuvering constrains.

i. The user shall specify the minimum allowed spiral radius for UAV.

ii. The user shall specify the maximum allowed flight angle for UAV.

2. The system shall be capable of outputting the path planning outputs.

(a) The system shall output the trajectories’ waypoints.

(b) The system shall output the optimal Dubins path

3.2.2 Module Architecture

In Appendix A we provided all concepts, assumptions and equations related to

Dubins car model and how it can be extended to Dubins airplane. However, in order

to start, we developed a data structure model of the software module so we could

identify sequence of steps and flow of data required in the module and architect

the simulation software. This data structure diagram is developed based on the

required inputs and operations for the Dubins airplane model. So the input data for

calculating Dubins airplane include desired start and end waypoints, flying altitude,

main mission waypoints and some UAV physical constraints, such as Maximum

and minimum allowed UAV speed, maximum and minimum UAV turn rate [33] .

Those inputs are related to the UAV mission, other inputs related to simulation

specifications are time step (time to update calculations) and simulation total run-

time. These inputs will be used by Dubins airplane algorithm which is implemented

in the simulation software to generate paths by calculating the appropriate turn

rate, banking angle and heading angle of UAV. Here you can see the data structure
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for the path planning module. This diagram demonstrates different types of data,

input data, output data as well as internal data.

Figure 3.3: Path Planning Data Model: Data Structure diagram which demonstrates

the data types for the input, output and internal data of path planning module

3.2.3 Software Implementation

As it is elaborated more in Appendix A, Dubins Cars algorithm is based on

three motion primitives, left, right and straight. This algorithm proves that we just

need some combination of these three motion primitives in order to generate a path

between two points, so the possible combination of these motion primitives could

33



be left-straight-right, right-straight-left, right-left-straight and so on [35]. Dubins

Airplane extends this concept in a three dimensional environment with a difference

that all curves and straight lines turn into some helical and straight lines [33]. So as

to use Dubins Airplane model, we first created simple and primitive Dubins paths

between each two nodes that are shown in Figure A.2. After that we can generate

paths for multiple nodes just by using generated simple Dubins Airplanes paths. The

following figures are some examples of generated paths based on mission waypoints.

Figure 3.4 demonstrates a path generated by using RSR (Right, Straight, Right)

motion primitive combinations.

In Figures 3.4 and 3.5, the UAV loiters in some specific locations and passes

specific waypoints. In order to generate this path, we used Dubins Airplane method

which allows us to generate an optimal solution to the path planning problem. Both

paths include 4 main waypoints which are defined from UAV’s flight mission. In all

these paths we considered that our UAV is flying between two waypoints with a low

altitude difference so we did not consider high altitude flight for our UAV. Having

this assumption, we can assure that UAV does not need additional maneuver to

reach the desired altitude (if the altitude difference between start and end nodes is

big, Dubins Airplane algorithm, due to some constraints regarding bank angle and

heading angle cannot generate path using just 3 motion primitives. In this case, UAV

shall have some extra maneuvers to reduce altitude difference [33]. However, the

generality of path planning problem will not be damaged by using this assumption.

Below, we provided some examples of Dubins Airplane generated by different

motion primitives such that from one node to another node, there is a path generated
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Figure 3.4: Loitering Scenario 1: Path Planning and Waypoint Generation for the

overall loitering scenario in which UAV is loitering above an area and it turns around

for sometimes so the start and end nodes are considered the same. Start node: [0,

-200, -125], end node: [0, -200, -125]. The coordinates indicate North, East and

Altitude respectively

based on one type of motion primitive combinations.

3.3 Situational Awareness Module

Situational awareness module includes sensing, collision detection and collision

avoidance modules. In this thesis, we aimed to develop software modules for collision

detection and avoidance for some of the possible scenarios that might happen for

UAVs. However, we considered that sensor system can work properly and sense
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Figure 3.5: Loitering Scenario 2: Path Planning and Waypoint Generation for the

overall loitering scenario in which UAV is loitering above an area and it turns around

for sometimes so the start and end nodes are considered the same. Start node: [50,

100, 100], end node: [50, 100, 100]. The coordinates indicate North, East and

Altitude respectively

the possible threads in the UAV’s trajectories. Having said these assumptions, we

created a table in which all possible scenarios for UAV and threads are shown. In

this thesis, we tried to cover some of these scenarios and how our simulation results

will change. As it is shown in the table 3.1, various scenarios can be defined by

considering multiple conditions for initial conditions of UAV and updated equations

of motion of obstacles during avoidance maneuver.

In this research, we considered all these scenarios and compared how effective
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Figure 3.6: LSL Dubins Airplane: Path Planning and Waypoint Generation using

LSL (Left, Straight, Left) motion primitives. This path is produced using 4 way-

points, these waypoints are as followed: Start node: [-200, 25, 0], end node: [300,

300, 50], middle nodes:[100, 100, 50], [100, 300, 50]. The coordinates indicate North,

East and Altitude respectively

our collision avoidance algorithm is in different cases and situations. It should be

mentioned that all the simulations for multiple collisions, considered up to three

simultaneous collisions. Although, the platform of the simulation is general enough

to be able to be extended to more than three collisions at the same time.

Avoiding all these collision situations depends on some physical and mechan-

ical constraints of UAVs. For having a successful avoidance maneuvers, it is very

important to examine extreme values of UAV specifications. These boundary values

include but not limited to maximum and minimum UAV’s achievable speed, max-

imum allowed UAV’s turn rate, maximum heading angle, maximum and minimum

UAV tangent acceleration. These parameters may limit the maneuverability and
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Figure 3.7: RSL Dubins Airplane: Path Planning and Waypoint Generation using

RSL (Right, Straight, Left) motion primitives. This path is produced using 4 way-

points, these waypoints are as followed: Start node: [-100, 0, 100], end node: [300,

300, 250], middle nodes:[150, 200, 150], [150, 300, 200].The coordinates indicate

North, East and Altitude respectively

agility of UAV. Since these factors are some design factors, they should either be

designed based on the importance of UAV’s desired collision avoidance capabilities

or they provide restrictions for UAVs in order to avoid collisions. Although, the col-

lision avoidance algorithms used in this paper, are practical in avoiding obstacles, as

they are developed based on UAV’s physical constraints, they cannot provide UAVs

with efficient avoidance maneuvers in all possible scenarios. Therefore, it is very

critical to identify the situations, in which UAV is not agile enough or maneuver-

able enough to do required maneuvers. The other important factor that should be

38



Figure 3.8: LSR Dubins Airplane: Path Planning and Waypoint Generation using

LSR (Left, Straight, Right) motion primitives. This path is produced using 4 way-

points, these waypoints are as followed: Start node: [-100, 0, 100], end node: [300,

300, 250], middle nodes:[150, 200, 150], [150, 300, 200].The coordinates indicate

North, East and Altitude respectively

evaluated when getting simulation results, is the time required for UAVs to process

the commands and apply maneuvers. So the gap time between understanding com-

mands and executing them, can cause some inaccuracies in calculation of required

time to avoid collision. In order to mitigate those inaccuracies, the amounts of re-

sponse lag in executing required command, should be determined. This response

lag will vary for different UAVs. However, in this work we assumed ideal situation

which means there is no lag between system’s command and UAV execution.
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Table 3.1: Possible Collision Scenarios

Number of Threads Vu Va au aa

One Constant Constant 0 0

One Constant Changing 0 Constant

One Constant Changing 0 Changing

One Changing Changing Constant Constant

One Changing Changing Changing Changing

Multiple Constant Constant 0 0

Multiple Constant Changing 0 Constant

Multiple Constant Changing 0 Changing

Multiple Changing Changing Constant Constant

Multiple Changing Changing Changing Changing

3.3.1 Collision Detection Module

After completing the path planning and waypoint generation, we need to cal-

culate how the UAV can successfully detect and avoid the obstacles that may appear

in its path. We used the Geometry model to calculate how the UAV detects the col-

lision and how it decides to avoid the obstacle. This algorithm is purely relies on the

relative geometry between UAV and obstacles by defining important relative veloc-

ities, relative angles and vectors along with or perpendicular to the UAV’s velocity,
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obstacles velocity as well as relative velocity [39]. In Appendix B, all assumptions,

constraints and rules for implementing this algorithm are discussed in more details.

In order to realize how exactly this algorithm works and how its equations are de-

rived, we refer the reader to Appendix B. In the following sections, we concentrate

more on the procedures of designing and implementing collision detection software

module starting with simulation requirements and ending with software implemen-

tation.

3.3.1.1 Collision Detection Simulation Requirements

As previously mentioned in the path planning module, the first step toward de-

signing and implementing a simulation module, is identifying simulation functional

and user-interface requirements. For this purpose, we provided a list of operational

and user-interface requirements in this section. By recognizing these requirements,

one knows how to implement the algorithm in order to meet these requirements. In

the following list, the requirements for a non-cooperative scenario for the collision

detection simulation module are listed:

1. The system shall determine the probability of collision.

(a) The system shall determine closest distance between intruder and UAV.

(b) The system shall determine time to closest distance between intruder and

UAV.

(c) The system shall compare the closest distance with safety circle (mini-

mum allowed distance between intruder and UAV)
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(d) The system shall Compare time to closest distance with look-ahead time

(e) The system shall determine if collision will occur

(f) The system shall do all the procedure for each of the detected targets.

Collision detection simulation user-interface requirements for a non-cooperative

scenario are as follows:

1. The system shall be capable of outputting the detection outputs.

(a) The system shall output the closest distance between all targets and UAV.

(b) The system shall output the time to closest distance between all targets

and UAV.

(c) The system shall output the collision/no collision decision for each target.

2. The system’s collision detection module shall allow user to change the initial

simulation parameters for UAV safety criteria

(a) The user shall specify the look ahead time.

(b) The user shall specify the minimum allowed distance between UAV and

other objects.

3.3.1.2 Detection Simulation Data Structure

After identifying requirements, we know what the desired outputs and func-

tionality of the module are. The next step would be finding out what operations,

data and procedures are needed to achieve all those requirements. For instance, in
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order to find the closest distance between intruder and UAV, simulation needs some

data of both UAV and intruders velocity and positions. Thus, for capturing all these

required data, one possibility is to develop a data-structure model of the simulation,

since it is really important to identify all types of data that are used or generated in

the software so the data flow of software can define all required steps and sequence

of actions to use input data and generate output data. As a result, Figure 3.9,

depicts all input, output and internal data for the detection module. Since the de-

tection module should receive some data both from UAV and intruders, we separate

these data into two types of data: Threat Inputs and UAV Inputs. As the same

as path planing data structure, there are some simulation inputs such as Time-step

and Simulation run-time. The output data is defined considering the functional

requirements for collision detection module. This includes closest distance, time to

closest distance and binary output of collision/no-collision alert. The internal data

includes all data generated while simulation is running such as updated data for

distance between UAV and threat at each iteration.

3.3.1.3 Software Implementation

The detection algorithm that we used, works based on the UAV’s minimum

and maximum allowed speed, acceleration and turn rate as well as look ahead time

and minimum allowed distance between UAV and obstacles [39]. In Figure 3.10,

the UAV calculates the closest point of approach and the time to closest point of

approach for each of the approaching obstacles. In this simulation, the assumption
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Figure 3.9: Detection Data Model: Data Structure diagram which demonstrates the

data types for the input, output and internal data of collision detection module

is that the obstacles’ velocity and heading angles are constant during the detection

period.

3.3.2 Collision Avoidance Module

When the collision detection module predicts one or more future collisions, it is

time for collision avoidance to take some actions and determine the best maneuvers

to avoid possible collisions. As we mentioned before, for the collision avoidance

algorithm, we also used Differential Geometry Modeling. Based on this algorithm,

UAV can control both its velocity and heading angle to stay well clear of other
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Figure 3.10: Detection simulation result: Collision Detection of two Obstacles at the

same time. The circles indicate the first detected collision points where the distance

between UAV and the obstacle is less than the minimum allowed distance for UAV

and obstacle.

obstacles. In Appendix B, the equations for finding desired speed and heading

angle and the approach for solving the collision problem are provided. Finding

out the desired speed and heading angle at each iteration, the algorithm calculates

required speed rate and heading angle rate to reach the desired amounts of speed

and heading angle at each time step [39].
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3.3.2.1 Collision Avoidance Simulation Requirements

The same as the previous module design, we start with collision avoidance

simulation requirements to identify the required functions and capabilities of the

module. As a result, the list of collision avoidance simulation functional require-

ments for a non-cooperative scenario are as follows:

1. The system shall determine the collision avoidance solution.

(a) The system shall determine the speed rate.

(b) The system shall determine the heading angle rate.

(c) The system shall determine the velocity at each time step

(d) The system shall determine the angle at each time step.

(e) The system shall check if at each time step the distance between intruder

and UAV remains above safety circle.

(f) For multiple collisions at the same time, the system shall consider the

maximum relative heading angle among all heading angles between target

and UAV

(g) For multiple collisions at the same time, the system shall consider the

union of all conflict sectors as a conflict resolution.

Collision avoidance simulation user-interface requirements for a non-cooperative sce-

nario are as follows:
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1. The system’s collision avoidance part shall allow user to change the initial

simulation parameters for UAV maneuverability.

(a) The user shall specify the maximum allowed UAV velocity.

(b) The user shall specify the minimum allowed UAV velocity.

(c) The user shall specify the maximum allowed UAV velocity rate.

(d) The user shall specify the maximum allowed UAV heading angle.

(e) The user shall specify the maximum allowed UAV turn rate.

2. The system shall be capable of outputting the avoidance outputs.

(a) The system shall output the velocity of UAV at each time step.

(b) The system shall output the velocity rate of UAV at each time step.

(c) The system shall output the heading angle of UAV at each time step.

(d) The system shall output the turn rate of UAV at each time step.

(e) The system shall output the updated position of UAV at each time step.

(f) The system shall output the updated distance between UAV and all tar-

gets.

3.3.2.2 Avoidance Simulation Data-Structure

The avoidance data structure also has three types of data: input, output and

internal data. The input data for this module consists of UAV inputs, Simulation

inputs and Threats inputs. Sensor systems and collision detection module provide
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the collision avoidance part with the required data for threats. As you can see in

Figure 3.11, the collision detection part provides data of closest distance between

UAV and threat as well as time to closet distance, the data that gained from sensor

are the position and speed of the threats and the predicted trajectory of threat at

each time step. The required output data would be turn rate and speed rate at each

time step as well as updated distance between UAV and threats at each time step.

Figure 3.11: Avoidance Data Model: Data Structure diagram which demonstrates

the data types for the input, output and internal data of collision avoidance module
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3.3.2.3 Collision Avoidance Algorithm

3.3.2.4 Software Implementation

After implementing the collision avoidance algorithm, the simulation results

will be generated to analyze the avoidance maneuvers and the possibility of the

success of UAV to avoid the collision. Therefore, we provided some examples of the

avoidance simulation to evaluate and examine the implemented algorithm. In Figure

3.12, we see that the UAV changes its heading angle to avoid an obstacle. In this

specific scenario, the UAV does not need to change its speed to avoid the obstacle.

The second plot in Figure 3.12 shows how the UAV and obstacle are able to remain

far enough from each other. The first plot depicts the changes of UAV heading

angle in order to avoid the obstacle. As it was mentioned before, this obstacle is

non-cooperative, so the UAV shall do all avoiding maneuvers on its own. This is an

example of a scenario in which both UAV and obstacles have constant initial speed

and heading angle and during the avoidance maneuver, the obstacle don’t change

its heading angle or/and speed.

The next step in developing our simulation is to generalize the collision avoid-

ance part from avoiding one obstacle into avoiding three obstacles. For this purpose,

we simulate the scenario in which the UAV should simultaneously avoid multiple

obstacles [42]. Figure 3.13 indicates a situation in which the UAV should change

both its turning angle and speed to avoid the collision. This simulation result is an

example of a scenario in which all obstacles and UAV have constant initial speed
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Figure 3.12: Collision Avoidance from one Obstacle: UAV heading angle (top), and

distance between obstacles and UAV (bottom)

and heading angle. Moreover, all obstacles have linear trajectories and constant

speed during the avoidance maneuvers.

In order to be certain that our avoidance algorithm works properly, we cap-

tured the distances between all three obstacles and UAV all the time . Figure 3.14

shows how the obstacles and UAV are far enough from each other based on the

minimum allowed distance between UAV and obstacles. This distance is also one of

the requirements.

The other possible scenario could be the one in which at least one of the

obstacles doesn’t have constant speed and heading angle. We extended the collision

avoidance algorithms for the situation that obstacles are changing their speeds.
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Figure 3.13: Multiple Collision Avoidance: UAV’s Velocity and Heading Angle

Change During Time so the distance between obstacles and UAV remain above

minimum safe distance

Thus, we simulate a scenario that involves 3 different obstacles with changing speeds

but with a constant rate (Constant acceleration). This scenario should be evaluated

by collision detection algorithm and be updated during the whole simulation. In the

case that Figure 3.15 shows, we can see how this fact can affect on the avoidance

maneuvers in comparison with the previous scenario in Figure 3.13.

As it is shown in Figure 3.15, the greater the accelerations of the obstacles,

the sharper the slopes of heading angle and speed are. The UAV also ended up

with greater final heading angle and speed in order to avoid all obstacles in the

scenario that the obstacles have a greater tangential acceleration which is shown
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Figure 3.14: Distance Captured: UAV and All Three Obstacles During Avoidance

Time. 10m was considered as the minimum allowed distance

in the bottom picture of Figure 3.15. This result indicates that if the obstacle’s

velocity and acceleration becomes greater, the UAV needs to reach higher heading

angle and velocity in order to avoid the obstacle. This means that at the same time,

the UAV requires higher speed rate and turn rate to perform avoidance maneuver.

Thus, this fact may increase the possibility of the UAV uses the maximum physical

capabilities including maximum turn rate and speed rate for conflict resolution. For

this reason, if the obstacles’ velocity or acceleration is high enough that the UAV

requires greater turn rate and speed rate in order to avoid them, then the UAV will

face some difficulties for avoiding the possible collision. In this case, it should use

its maximum physical capabilities to have the best maneuvers that it can.

52



We designed two other tests in order to see how the algorithm responds to the

obstacles with changing velocity in other scenarios . The first simulation tests the

situation in which each obstacle has a different acceleration, the second simulation

is designed to test the scenario that the accelerations also change during time.

However, these changes are linear. Figure 3.16 represents both these scenarios.

The collision point in the bottom picture of Figure 3.16 occurs earlier in com-

parison with simulation result in the top picture. It also consists of harsher turn

rate and speed rate slopes and the UAV ends up with the greater heading angle

and velocity. In the top picture of Figure 3.16, the accelerations of the obstacles

are greater than the accelerations in Figure 3.15. As a result, the distances between

the UAV and obstacles are smaller than the ones in Figure 3.15. This fact supports

the conclusion we had for the simulation results in Figure 3.15 about the possible

scenario in which the UAV cannot properly do avoiding maneuver due to its phys-

ical constraints. In fact, for the simulation result shown in the bottom picture of

Figure 3.16, the distance between the UAV and obstacles falls bellow the minimum

safe distance which was set as 10m. However, they do not collide with each other

because the distance does not reach zero.

3.4 Analysis and Comparison of Simulation Results

As it was mentioned earlier, the collision avoidance algorithm highly depends

on both the initial condition and the physical constraints of the UAV such as max-

imum turning rate and maximum speed rate. In the previous simulations shown in
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Figures 3.15 and 3.16, we examined the effect of changing obstacle’s specifications

on the avoidance maneuver. Now in order to realize how different specifications of

UAV can have effects on collision resolution, we came up with a series of simulation

results in which we set various initial conditions based on the UAVs physical con-

straints. The ultimate goal of these sets of simulation is to identify any patterns or

rules for predicting the success of an avoidance maneuver before starting it. How-

ever, in this thesis we didn’t develop any relationship between different factors and

we consider this part as the future work.

The first and second sets of results include some scenarios that the UAV’s

maximum allowed turn rate is changed in order to examine how the avoidance

maneuvers could change for different range of UAV’s initial speed.

In Figure 3.17, a set of simulations is shown that indicates how the proposed

maneuvers change if the starting speed of UAV changes. As it can be seen in Figure

3.17, in the right diagram that captures a situation in which the initial speed of

UAV is greater than the left simulation result in Figure 3.17, UAV has a successful

avoidance maneuver that ended up with a higher final speed in comparison to other

diagram. In the left diagram in Figure 3.17, UAV has the lower initial speed and

ended up its maneuver with the higher turn angle.

In the Figure 3.17, avoidance maneuvers for various initial speed can be totally

different from each other both in terms of heading angle pattern and speed pattern.

The slope of speed will be smoother if the initial speed of the UAV becomes greater.

However, despite the amount of initial heading angle of UAV, the slopes and patterns

of heading angle change are very similar before the closest approaching point for
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different initial velocities.

In the next set of simulation results, we changed the maximum allowed turn

rate for UAV between 5 deg/s and 20 deg/s in order to examine the possible changes

in turn rate, speed rate and avoidance maneuvers of the UAV. For this purpose. As

a result, in this set we provided four simulation results with different UAV maximum

turn rate. Figure 3.18 shows the details of heading angle, speed and distance between

UAV and obstacles for each of these scenarios.

As it can be seen in Figure 3.18, the overall trend for speed rate and turn

rate is the same among all four simulation results. The only difference is that

the maximum heading angle that the UAV reaches will increase by increasing the

maximum allowed turn rate. However, in this set of simulation, there is a little

difference in speed rate of UAV. This means that the distance between UAV and

obstacles can be slightly bigger in the bottom right simulation than the top left, due

to the higher maneuverability of the UAV in terms of maximum allowed turn rate.

From Figure 3.18, one can conclude that changing in the input values and

constraints causes some changes in the UAV’s final heading angle and speed. The

other important conclusion is that for a specific scenario, the proposed avoidance

maneuver is the same for different range of inputs. The only thing that might differ

for doing the proposed maneuver, is the sharpness and smoothness of heading angle

and speed change of the UAV which is highly dependent on the UAV’s constraints

and initial conditions.

As we discussed earlier in this chapter that due to the physical constraints of

the UAV, the collision avoidance algorithm might not be successful in all scenarios,
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we examined several situations to see if our collision avoidance algorithm fails in at

least one of them or not. At the end, we encountered a scenario in which the UAV

is not agile enough to avoid the obstacles. In Figure 3.19, it is shown that the UAV

cannot properly avoid one of the obstacles. Figure 3.19 demonstrates that in the

time interval between t=1.9s and t=2.1s ( less than 0.2 s to the collision point (t=2.3

s)), the heading angle rate is 5 deg/s. Although, the UAV applies its maximum turn

rate capability, the distance between UAV and obstacle 3 falls bellow the minimum

allowed distance (10m). Thus, despite of the fact that the distance is a bit above

zero, it is still bellow the minimum allowed distance and is considered as a collision.
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Figure 3.15: Avoidance From Threats with Constant Tangent Acceleration: Obsta-

cles’ Velocity Changes During Time with a constant rate. The top image indicates

a scenario in which the 3 obstacles have a constant acceleration both in [X, Y]

coordinates. The amounts of accelerations are as followed ([-1, 1], [-1, 1], [-1, 1])

m/s2. The bottom pictures simulates a situation in which all three obstacles have a

constant acceleration both in [X, Y] coordinates. The amounts of accelerations are

as followed ([2, 1], [2, 1], [2, 1]) m/s2.
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Figure 3.16: Avoidance From Threats with Changing Tangent Acceleration- Obsta-

cles’ Velocity Change During Time. The top image indicates a scenario in which

the 3 obstacles have a constant acceleration in XY coordinates. The amounts of

accelerations are as follows ([-3, 10], [10, -4], [5, 4]) m/s2. The bottom pictures

simulates a situation in which all three obstacles have a changing acceleration with

linear equations in XY coordinates. The amounts of accelerations are as follows

([-3t, 10t], [10t, -4t], [5t, 4t]) m/s2 where t is time. In both pictures, the turn rate

is 15 deg/s and the speed rate is 20 m/s2

58



Figure 3.17: Avoidance Results for different initial UAV’s speed: The UAV’s speed

in the simulations from left to right are as follows: [16, 14], [20,14] m/s in two

dimensional X-Y coordinate relative to obstacles. The maximum turn rate for UAV

is 5 deg/s and maximum speed rate is 10 m/s2. Each simulation consists of 3

diagrams, UAV heading angle, UAV speed, distance between UAV and each obstacle
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Figure 3.18: Avoidance Results for different UAV’s maximum turn rate and a fixed

initial UAV speed: The UAV’s maximum turn rate for the top left simulation result

5 deg/s. This amount for the top right diagrams is 10 deg/s and for the bottom left

and bottom right pictures are 15 deg/s and 20 deg/s respectively
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Figure 3.19: Collision Avoidance Simulation Results for the scenario in which the

UAV cannot avoid all the obstacles. The amount of turn rate is 5 deg/s.
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Chapter 4: Conclusion

4.1 DISCUSSION AND FUTURE WORK

A model based systems engineering approach applied to this project, helps us

in formalizing requirements analysis and requirement identification. System artifacts

ensure the consistency between design and requirements so the simulation results

and final mission planning design will satisfy the stakeholders’ needs. The simulation

results helped us to identify and verify the robustness of the algorithms for different

scenarios.

The next step after developing path planning and collision avoidance modules

is to integrate them into the mission planner and use onboard UAVs. We already

implemented the trajectories generated by our Path Planning module into the Mis-

sion Planner which is an open source simulation software used for mission design for

UAVs and aircraft. For this purpose, we got the generated waypoints in our Path

Planning module, then we converted the XYZ coordinates of the waypoints into the

latitude- longitude- altitude coordinates. After that we insert the XML file consist-

ing of the desired waypoints into the mission planner simulation software. We got

the following results which are similar to the trajectory the Path Planning module

generated. Figure 4.1 shows the trajectory of the UAV in Mission Planner using
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the implemented waypoints. The trajectory in Mission Planner can be compared

to Dubins Airplane trajectory in Figure 4.2. However, integrating path planning

with collision avoidance and implementing the collision avoidance results into the

Mission Planner would be our next step.

In the future, we will explore the details of the detection and sensing parts,

which would include some challenges about sensor systems, tracking objects and tra-

jectory predictions. Thus, sensor modeling would also be considered for our future

works to determine if the system can satisfy detection and sensing requirements.

We will try to focus more on the most challenging part for the non-cooperative col-

lision, which is the ability of UAV to deal with threats’ maneuvers that are made

at the very last seconds before or right after decision making process and avoidance

maneuvering calculation. So we need to cover more possible scenarios for collision

avoidance than what we covered in this thesis. Also communication and navigation

accuracy play important roles in accomplishing a safe mission. Considering these

parts would be challenging and increase the uncertainty of the results. Furthermore,

a possible future work could be finding a relationship between the UAV’s physical

constraints and the feasibility of the avoidance maneuver. This could be a condition

checking instead of running the whole simulation system.
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Figure 4.1: Trajectory generated in Mission Planner using Dubins

Airplane Waypoints

Figure 4.2: Trajectory generated in Path Planning simulation mod-

ule using the start and end points
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Appendix A: Dubins Airplane Model

A.1 Dubins Car Model

Dubins car is a path planning algorithm using the concept of a moving car

at constant forward speed, us = 1, so it cannot move backward. The other critical

constraint and assumption related using this algorithm is the maximum steering

angle φmax , which results in a minimum turning radius ρmin [34] [35]. The Dynamics

of the moving car is as follows:

Considering the fact that the car cannot move sideways, the back wheels turn

instead of sliding. Therefore, if all four wheels are simultaneously turned toward

a direction, then the car follows a desired curve. However, to have this maneuver,

the car has some rolling constraints which makes it difficult or impossible to do all

the turning maneuvers. We consider the whole car as a rigid body with the origin

of the center rear axle (x,y). As a result the configuration of the car is defined by

q = (x, y, θ) where θ is the angle between horizon and the car axis. The x-axis is

along the main axis of the car. Other important variables in defining the motion of

the car are as follows: 1. s denotes the speed, 2. φ denotes the steering angle 3. L

is the distance between front and rear wheels and 4. ρ is the radius of the circle the

car travels with a constant φ.
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Having defined all the notation, we can represent the motion of the car as a

set of equations.

ẋ = f1(x, y, θ, s, φ)

ẏ = f2(x, y, θ, s, φ)

θ̇ = f3(x, y, θ, s, φ)

(A.1)

considering the fact that in a small time interval of , we have dy/dx = ẏ/ẋ and

tan θ = sin θ/ cos θ and as a result, we have dy/dx = tan θ. The equation bellow is

derived:

−ẋ sin θ + ẏ cos θ = 0 (A.2)

The equation will be satisfied if ẋ = s cos θ and ẏ = s sin θ. To derive the equation

for θ̇ we define w as the distance traveled by the car and we note that dw = ρ(dθ).

From trigonometry, ρ = L/ tanφ. All of this leads to the following equation:

dθ = tanφ/Ldw. (A.3)

As we know that ẇ = s the equation becomes

θ̇ = s/L tanφ. (A.4)

As the car travels between qI and qG, we can minimize the length of the curve

of car’s path. Due to ρmin, this is considered as a shortest path problem [34] [35].

If ρ = 0, then there is no curvature bound. As a result the criteria to optimize the

path is

L(q, u) =
∫ tF

0

√
ẋ2(t) + ẏ2(t)dt (A.5)
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in which tF is the time at which the car reaches to the departure. since the speed

is constant we can simplify the system to

ẋ = cos θ

ẏ = sin θ

θ̇ = u

(A.6)

If for simplicity, we can assume that tanφ = 1. The following results also hold

for any φmax between (0, π/2). The Dubins car algorithm shows that the shortest

Table A.1: Dubins Path

Motion Symbol Steering: u

Straight S 0

Left L 1

Right R -1

path between any two waypoints can be derived using combination of those three

motion primitives (Straight, Left, Right). The basic idea is that for Straight motion

primitive, the car travels straight ahead and for the Left and Right primitives the

car turns as sharply as possible to the left or right, respectively. So the possible

combinations of these three motion primitives are

LαRβLγ, RαSβLγ, LαSβRγ, LαSβLγ, RαSβRγ, RαLβRγ (A.7)

The α, β, γ signs indicate the amount of total rotation for each motion. In this

case we can derive the time related to each motion primitives. The shortest path
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between two points can always be derived by one of these words. Here you can see

the Dubins curves

Figure A.1: The trajectories for two possible combinations of Dubins car motion

primitives [35]

A.2 Extending Dubins Car to Dubins Airplane

For an airplane flying in the air, wind speed can have some effects on the

path that aircraft tries to follow. However, wind effects are not considered in the

path planning equations and are treated as some disturbances during flight and the

flight controller tries to reject them [33]. Because the effects are not known before

the moment they act on the aircraft. Therefore, Dubins Airplane algorithm can be

developed without considering the wind effects. One difference between Dubins car

and Dubins Airplane is that Dubins Car’s path is the combination of some curves

and straight lines based on the car’s steering angles, while Dubins Airplane’s path is

the combination of straight lines and helical paths based on flight path angles and

banking angles. Furthermore, in addition to turn rate constraint we had in Dubins
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Car, the Climb rate constraint is added to Dubins Airplane algorithm. The whole

idea of Dubins Airplane is that the Dubins paths are generated by intersecting two

planes. So if we are able to formulate these two planes, we can get the path using

an arbitrary point and the direction of the generated line.

Ignoring the wind effects, we can consider Dubins Airplanes paths relative to

the inertial environment. In this case, that the effects of wind are not accounted

when formulating equations of motions, the airspeed V equals to the ground speed,

the heading angle ψ equals to the course angle which means we assume there is no

side-slip angle and the flight path angle equals to the air-mass-referenced flight path

angle [33]. The very basic Dubins Airplane equation of motions are as follows if we

consider (rn, re, rd)
T as the starting position of UAV.

rn = V cosψ

ṙe = V sinψ

ṙd = u1 |u1| ≤ 1

ψ̇ = u2 |u2| ≤ 1

(A.8)



ṙn

ṙe

ṙd


=



V cosψ cos γ

V sinψ cos γ

−V sin γ


(A.9)

These equations are based on the assumptions that there are some constraints

on airspeed V, flight path angle γc and the bank angle φc just the same as the
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Dubins Car algorithm. So the Dubins Airplane should satisfies these constraints

φc ≤ φ̄

γc ≤ γ̄

(A.10)

The relationship between the heading angle ψ and the bank angle γ is given

by the coordinated turn condition:

ψ̇ = (g/V ) tanφ (A.11)

where g is the gravity acceleration.

As a result, th equations of motion for the airplane in the desired situation

and with the assumption that there is no violation between the autopilot command

and the response of UAV to the commands are as follows [33] :

rn = V cosψ cos γc

ṙe = V sinψ cos γc

ṙd = −V sin γc

ψ̇ = (g/V ) tanφc

(A.12)

These equations of motion for airplane based on Dubins Airplane model, can

be used based on constraints of airplane’s physical capabilities. So there are limits

on the bank angle and flight-path angle. So ψc < ψ̄ and γc < γ̄. As we have

the kinematic relationships for UAV motions in 3 dimensional, the next step is to

find the desired planes and the intersection of them to generate a desired Dubins

Airplane. We can consider the velocity vector of the UAV along the intersection

by defining the equation bellow in which we used the second partial derivatives for
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each of these two planes:

V(r) = 1/2α1
2(r) + 1/2α2

2(r) (A.13)

In order to assure that the Dubins Airplane follows the intersection, we use

∂V(r)/∂r. When the Dubins Airplane is on the generated line, it must be perpen-

dicular to both ∂α1/∂rand∂α2/∂r. So we can be sure that the Dubins Airplane is

also in the right direction of its trajectory. Having explained these facts, the desired

velocity vector would be:

u′ = −K1∂V(r)/∂r + k2(∂α1/∂r × ∂α2/∂r) (A.14)

We also need to normalize A.14 to make it equal to V, airspeed of UAV. So we have:

u = V u′/||u′|| (A.15)

As a result, u = (u1, u2, u3)T is equal to the A.9. In this regard, we can solve

equations for γc, ψdandφc using equations A.14 and A.9. Then we have:

γc = −satγ̄[sin−1(u3/V )]

ψd = atan2(u2, u1)

φc = satφ̄[Kψ̄c(ψd − ψ)]

(A.16)

Where atan2 is the four quadrant inverse tangent, Kψ̄c is positive and Sat function

is defined as bellow

Sata[x] =



a if x ≥ a

−a if x < −a

x Otherwise.

(A.17)
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After deriving motion kinematics and the Dubins Airplane path formula, we

need to generate both Straight lines and Helical paths based on these principals for

Dubins Airplane paths. In order to find more details of the equations for Helical

and straight line paths we refer you to [33]. How ever, we provide the reader with

the final equations for these paths. The Straight-line paths and the desired velocity

vector are derived using A.18 and the Helical paths and its desired velocity vector

are derived from A.19.

Pline(cl, ψl, γl) = {r ∈ R : R = CL + σql, σ ∈ R}

u′line = K1(nlonnlon
T + nlatnlat

T )(r − cl) + k2(nlon × nlat)
(A.18)

Where nlon is the unit vector perpendicular to the longitudinal plane defined by ql

and nlat is the unit vector perpendicular to the lateral plane defined by ql.

Phelix(ch, ψh, γh, Rh, λh) = {r ∈ R : αcyl(r) = 0&αpl(r) = 0}

u′helix = K1(αcyl∂αcyl/∂r + αpl∂αpl/∂r) + λK2(∂αpl × ∂αcyl)
(A.19)

Where αcyl(r) and αpl(r) equal to:
αcyl(r) = ((rn − cn)/Rn)2 + ((re − ce)/Rh)

2 − 1

αpl(r) = ((rd − cd)/Rh) + tan γh/γh(tan− 1((re − ce)/(rn − cn))− ψh)
(A.20)

The Dubins airplane path between two nodes can be derived using Dubins

motion primitives as we talked earlier in this section. So here you can see the

possible path between two specific nodes can be created using the combinations of

these motion primitives.
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Figure A.2: The trajectories for possible combinations of Dubins airplanes primi-

tives. From top left picture to bottom right picture the motion primitives are LSR,

RSL, LSL and RSR

A.2.1 Dubins Airplane Path

There are three different scenarios for developing the Dubins Airplanes de-

pending on the altitude difference between the start point and the end point. These

three cases are named, low altitude, medium altitude and high altitude. [33]. The

minimum turn radius for Dubins Airplane is

Rmin = (V 2/g) tan φ̄ (A.21)

We consider the altitude between the start and end points to be low if

|zde − zds| ≤ LcarRmin tan γ̄ (A.22)
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The altitude is medium if

LcarRmin tan γ̄ < |zde − zds| ≤ [LcarRmin + 2πRmin] tan γ̄ (A.23)

where the term πRmin shows the adding one orbit at radius min to the path length.

Th altitude is to be considered as high altitude if

|zde − zds| > [LcarRmin + 2πRmin] tan γ̄ (A.24)

The low altitude case occurs when the airplane can reach the end point from the

start point using the simple Dubins path while satisfying the γc < γ̄ constraint.

The high altitude case occurs when the altitude is too high to satisfy the flight path

angle constraint. So in order to extend the Dubins path is to generate some certain

numbers of spiral turns at the beginning or end of the path. The medium altitude

case occurs when the altitude is too low to have complete spiral turns and is too

high to have the Dubins path while satisfying the flight path angle constraints. In

this case certain maneuvers added to the Dubins path in order to complete the path

between the start and end nodes.
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Appendix B: Differential Geometry Concept

B.1 Introduction

Both Collision Detection and Avoidance algorithms are used the differential

geometry concepts. one is controlling UAV heading angle and the other is controlling

ground speed. This algorithm can be used for one or multiple collisions at the

same time. The algorithm is also used the principals of airborne collision avoidance

systems confirming to TCAS. This study limits the analysis to non-cooperating

UAVs and intruders. Some of the assumptions that are considered for developing

this algorithm are

• Vehicle dynamics are presented by point mass in Cartesian coordinates on R2.

• The threats are non-cooperative and non-maneuvering.

• The threats have been sensed by the UAV’s sensors so the deterministic po-

sitions and velocity vector of the intruders are determined. So the UAV can

predict the future trajectories of threats based on the current position and

velocity vectors and their linear projections.
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B.1.1 Differential Geometry Concept

In order to develop the collision algorithms, we should describe the concepts

of the conflict and detection and resolution of the conflict. We used the same

concept for all of these definitions. We used the concepts proposed in [37] and

[38]. Considering that the intruder is sensed by the sensors, the UAV establishes a

sightline between itself and the intruder. This sightline vector is given by

r = ra − ru. (B.1)

considering the assumptions that the velocity of both intruder and UAV is constant,

then the differential of equation B.1 is

ṙts + rθ̇sns = vata − vutu (B.2)

where ns is the basis vector normal to the sightline for UAV and the ts and ta are

the basis vectors along to the sightline for UAV and intruders, respectively. In the

figure bellow you can see the deferential geometry related to the UAV and intruder.

Components of the relative velocity vector along and normal to the sightline

are as follows. These equations are derived from the B.2 and dot product of ts and

ns to the B.2 equation, respectively

ṙ = vats.ta − vuts.tu

rθ̇s = vans.ta − vuns.tu
(B.3)

We can also derive the relative acceleration along and normal to the sightline by

76



Figure B.1: Geometry of the UAV relative to the threat in the Cartesian coordinate

modifying equation B.2 and using the Serret-Frenet[] equations. So we have

(r̈ − r ˙θs
2) = v2

akats.na − v2
ukuts.nu

(rθ̈s + 2ṙθ̇s) = v2
akans.na − v2

ukuns.nu

(B.4)

B.1.2 Detection Algorithm

This algorithm investigates the collision condition and if the UAV may have

a collision with the threats or not. Because both the UAV to sightline angle θus

and threat to sightline angle θas are considered to remain constant, the collision

detection triangle doesn’t change shape, it just shrinks as the UAV and threat move

towards each other. If the distance between the UAV and the threat is or will be

smaller than the minimum separation of dm within a specific time, a collision will

be detected because they disobey the minimum allowed separation distance. So

the CAD and TCPA concepts are used to detect the collision. The algorithms and
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equations are used and modified from previous researches presented in [39], [40], [42]

and [43]. For a non-maneuvering threat, the CAD dc can be derived by projecting

the relative position vector along the sightline:

dc = r sin θ (B.5)

Where θ is the angle between the sightline and the relative velocity vector. if the

dp is the relative distance to the CPA, we can define it as

dp = r cos θ (B.6)

so the TCPA can be derived as follows

τ = dp/vr (B.7)

So we can detect the collision if the dc is smaller than the minimum separation of dm

and the TCPA is in the future and is before the Look-ahead time T. for the multiple

collision, we can extend the above conditions for the multiple threats which are as

follows 

dc1 < dm and τ1 ∈ [0, T )

dc2 < dm and τ2 ∈ [0, T )

...

dcn < dm and τn ∈ [0, T )



(B.8)
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B.1.3 Collision Avoidance

There are two approaches for resolving the collision, the first approach is by

controlling the heading angle of the UAV and the second is by controlling both

heading angle and speed of the UAVs. For the first approach, the UAV speed is

greater than the threat’s speed and for the second approach the speed of the threat is

greater than the speed of UAV. In order to get the most optimal solution, we consider

the vector that guarantees the condition dm = dc, so the resolution is provided

such that satisfies the minimum separation distance. In order to consider probable

maneuvers that the threat can have and we don’t account for in our formulation, we

can scale up the dm so the collision resolution will be more reliable. As it is obvious,

there are two solutions for clockwise and anti-clockwise maneuvers. In this section

we just consider the clockwise solution.

B.1.3.1 Approach I

For this approach and the clockwise solution, we can derive the direction of

the relative velocity vector, θr is

θr = θm = θs + θd (B.9)

In the Figure B.2, you can see the conflict resolution for clockwise rotation.
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Figure B.2: Conflict resolution geometry for clockwise rotation

The matching condition is derived

vu = vr + va

tu = αtm + (1/γ)ta

(B.10)

The alpha is the vr/vu ratio. Bellow in Figure B.3 you can see the clockwise

resolution for the minimum separation.

As the geometry relations between different angles and vectors are shown in

figure B.3, we can derive α and dr/sa using cosine rules:

dr/sa = − cos θam±
√
γ2 − sinθam (B.11)

So given γ and .r/sa in equation B.11, the velocity ration equals to

α = (− cos θam ±
√
γ2 − sin2 θam)/γ (B.12)
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Figure B.3: Geometry for minimum separation for the clockwise solution

where dr =
√
r2 − d2

m and θam = θas − θd. But the heading angle is not the

same as the desired one in order to achieve the matching condition. So the heading

angle should reach the desired one by using an algorithm to change the heading angle

smoothly within a specific time. So we can define heading angle as θe = ˆθum − θum

which means the angle difference between the desired UAV tangent vector t̂u and

the current UAV tangent vector tu. In order to derive the regulating algorithm for

the heading angle, we use Lyapunov function [41] and determine the time derivative

of matching condition for minimum separation solution. So we have

−1/γ|θ̇am ≤ ˆ̇θum ≤ 1/γ|θ̇am (B.13)

As we assumed that the threat is non-maneuvering, we have θ̇a = 0. Therefore,

˙θam = − ˙θm. Using this assumption and the resolution geometry for ˙θm, the equation

B.13 can be modified to

˙θm = (vr/
√
r2 − d2

m) sin θd ∓ θ−1/γ(vr/
√
r2 − d2

m) ≤ ˆ̇θum ≤ 1/γ(vr/
√
r2 − d2

m)

(B.14)
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so the heading angle rate in order to reach the desired heading angle for UAV, can

be derived as follows

θ̇u = (1 + 1/γ)(vr/
√
r2 − d2

m)sign(θe) +Kθe (B.15)

Where K > 0 and sign(θe) = |θe|/θe. The curvature of UAV can be derived from

the equation B.15 and ku = θ̇u/Vu.

B.1.3.2 Approach II

In this section we consider some scenarios in which the speed of threat is

greater than the speed of UAV, so the UAV should adjust its speed and heading

angle to avoid the collision. The same as the previous approach there are desired

speed and heading angle that UAV should have for conflict resolution. So we should

investigate the velocity relation in order to determine the avoidance solution. The

velocity relation is given by

v̂2
u = v̂r

2 + va
2 − 2v̂rva cos π − θ̂am = v̂r

2 + va
2 − 2v̂rva cos θ̂am (B.16)

so we have:

v̂u =
√
v̂r

2 + va2 + 2v̂rva cos θam(B.17)

The same as the previous section, by using a simple Lyapunov function for V and

considering the stability situation, we have the speed rate and heading angle rate

for UAV in order to reach the desired V and θ as follows:

θu = (vr/
√
r2 − d2

m)θe +K1θe

v̇u = (vavr/
√
r2 − d2

m)ve +K2ve

(B.18)
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