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Coprime and nested sampling are well known deterministic sampling tech-

niques that operate at rates significantly lower than the Nyquist rate, and yet allow

perfect reconstruction of the spectra of wide sense stationary signals. However, the-

oretical guarantees for these samplers assume ideal conditions such as synchronous

sampling, and ability to perfectly compute statistical expectations. This thesis stud-

ies the performance of coprime and nested samplers in spatial and temporal domains,

when these assumptions are violated.

In spatial domain, the robustness of these samplers is studied by considering

arrays with perturbed sensor locations (with unknown perturbations). Simplified

expressions for the Fisher Information matrix for perturbed coprime and nested ar-

rays are derived, which explicitly highlight the role of co-array. It is shown that even

in presence of perturbations, it is possible to resolve O(M2) under appropriate condi-

tions on the size of the grid. The assumption of small perturbations leads to a novel

“bi-affine” model in terms of source powers and perturbations. The redundancies

in the co-array are then exploited to eliminate the nuisance perturbation variable,



and reduce the bi-affine problem to a linear underdetermined (sparse) problem in

source powers.

This thesis also studies the robustness of coprime sampling to finite number of

samples and sampling jitter, by analyzing their effects on the quality of the estimated

autocorrelation sequence. A variety of bounds on the error introduced by such non

ideal sampling schemes are computed by considering a statistical model for the

perturbation. They indicate that coprime sampling leads to stable estimation of the

autocorrelation sequence, in presence of small perturbations. Under appropriate

assumptions on the distribution of WSS signals, sharp bounds on the estimation

error are established which indicate that the error decays exponentially with the

number of samples. The theoretical claims are supported by extensive numerical

experiments.
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Chapter 1: Introduction

Parameter estimation is a central problem in statistical signal processing for

sensor arrays, and has been studied for many decades [1]. Several problems fall

under this general umbrella, two of which constitute the main focus of this thesis:

Directions-of-Arrival (DOA) Estimation, and Spectrum Estimation. Recent findings

in the field of array processing [2–4] have enabled us to look at these problems from

a different perspective, by introducing the concept of co-arrays. Two novel sampling

techniques, namely nested and coprime sampling have been proposed, that exploit

the co-array geometry to achieve much higher efficiency in terms of required sampling

resources, compared to their classical counterparts.

In the context of DOA estimation, uniform spatial sampling geometries such

as the Uniform Linear Array (ULA) are well known to be capable of resolving O(M)

sources using M sensors [5, 6]. However, by exploiting the geometry of nested [2]

and coprime [3] arrays, one can dramatically increase degrees of freedom from O(M)

to O(M2) leading to capability of estimating O(M2) source directions. In these

techniques, the vectorized form of the covariance matrix of received signals is studied,

which leads to the concept of virtual co-arrays.

Similarly, co-prime sampling [3, 7] can be used in order to estimate the spec-
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trum of wide-sense stationary (WSS) processes at sub-Nyquist rates. Unlike com-

mon compressive sensing approaches that use sparsity to enable sampling at sub-

Nyquist rates, co-prime sampling only requires the random process to be WSS. For

a line spectrum process, co-prime sampling (with coprime numbers M ,N) is shown

to be capable of recovering O(MN) sinusoidal frequencies [3, 4, 7].

In spite of the huge benefit gained by selecting the location of sensors or sam-

pling instants in coprime/nested fashion, the stability and robustness of these sam-

plers have not been analyzed thoroughly. In this thesis, we examine the robustness

issues associated with these samplers under different scenarios. For spatial sam-

pling, we assume that the sensors are not exactly located on their nominal nested or

coprime locations. This often happens in practice due to lack of perfect calibration.

We study the co-arrays associated with these perturbed arrays, and show that under

some mild conditions, it is always possible to resolve both the unknown perturba-

tions, and the source directions, even when the number of sources is more than the

number of sensors. We also consider a special case where these perturbations are

very small, so that we can use a linear approximation to simplify our model. We will

show that this assumption leads to a specific bi-affine model, which can be recast

as a linear sparse recovery problem. Although the problem of array calibration has

been previously studied in the context of arrays, this thesis presents the first results

considering the perspective of co-arrays.

In the context of temporal sampling, we study the effect of jitter in the sam-

pling instants, which, in principle, can be thought of as the counterpart to the

location errors in the spatial sampling problem. However, there are some subtle
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differences between the two problems which will be studied and elaborated in this

thesis. We also study the effect of finite number of samples in a special case of spec-

trum estimation of the moving average random processes using co-prime samplers.

The results show that co-prime sampling in the for spectral estimation is robust to

finite number of samples as well as sampling jitter.

In this introductory chapter, we will review the problems of DOA estimation

(spatial sampling), and spectral estimation (temporal sampling), using the nested

and coprime samplers, and show how the concept of co-arrays arise.

Notations: Throughout this thesis, matrices are represented by bold uppercase

letters, vectors by bold lowercase letters. The symbol xi denotes the ith entry

of a vector x, while xa:b represents the (Matlab-style) subvector of x starting at

a and ending at b. Similarly, X(a:b,c:d) stands for the submatrix of X consisting

of the (a, b)th through (c, d)th elements. The symbols (.)∗, (.)T , (.)H represent the

conjugate, transpose, and hermitian, respectively. The symbols ◦, �, ⊗ stand for

Hadamard, (column-wise) Khatri-Rao product, and Kronecker product, respectively.

The symbol  denotes the imaginary unit
√
−1. The symbol ‖.‖F represents the

matrix Frobenius norm, while ‖.‖0, and ‖.‖ denote the `0 pseudo-norm and `2 norm

of a vector, respectively. The notation vec(.) represents the vectorized form of a

matrix. Re{.} returns the real part of a complex valued number.
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1.1 DOA estimation

Direction of Arrival (DOA) estimation using an array of antennas is an im-

portant problem in array signal processing, which arises in many different scenarios

such as target localization, radio astronomy, multi-microphone speech processing,

etc [5]. In this Section, we review the recently proposed sparse array geometries,

namely nested and coprime arrays, which are capable of localizing O(M2) sources

using only M sensors.

1.1.1 Signal Model

Consider K narrow-band plane waves impinging on a linear antenna array

with M sensors where dmλ/2 is the distance of the mth antenna from the origin

(m = 1, · · · ,M), and λ is the carrier wavelength. Let θi denote the Direction-

of-Arrival (DOA) corresponding to the ith source and the corresponding spatial

frequency is ωi = λ
2
π sin(θi), for 1 ≤ i ≤ K. The received signal model is given by

y[l] = A(ω)x[l] + w[l], l = 1, 2, · · · , L

where y[l] ∈ CM denotes the lth time snapshot of the signals received at the M

sensors, x[l] ∈ CK are the unknown source signals and w[l] ∈ CM is the vector of

additive noise, uncorrelated to source signals and satisfying E(wwH) = σ2I. Here,

A(ω) = [a(ω1), a(ω2) · · · a(ωK)] with a(ωi) (i = 1, · · · , K) representing the steering

vector associated with the angle θi, where its elements are given by [a(ωi)]m = eωidm .

Let Rx be the covariance matrix of the sources, i.e., Rx = E(xxH). Using
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these assumptions, the covariance matrix of the received signals can be written as

R := E(yyH) = A(ω)RxA
H(ω) + σ2I

Assuming that the sources are statistically uncorrelated, Rx will be a diagonal

matrix, i.e., Rx = diag(γ̃). It has been shown that certain sparse array geometries

such as MRA [8], nested [2], and coprime [3] arrays are capable of recovering more

sources than the number of sensors. Since Rx is a diagonal matrix, we can write

the vectorized form of R as

z := vec(R̃) = Aca(ω)γ̃, (1.1)

where R̃ := R−σ2
nI, Aca(ω) = A∗(ω)�A(ω), � denotes the Khatri-Rao product [2].

Since the ((m− 1)M +n, i)-th element of Aca(ω) is given by eωi(dm−dn), 1 ≤ m,n ≤

M , 1 ≤ i ≤ D, the elements of Aca(ω) are actually characterized by the difference

co-array of the physical array:

Sca = {dm − dn, 1 ≤ m,n ≤M}

Therefore, Aca(ω) acts as a larger virtual array with sensors located at dm − dn for

1 ≤ m,n ≤ M . This longer virtual coarray provably helps us to recover D > M

sources, if the sensor locations follow some specific structures, such as the nested

arrays [2].

Throughout this thesis, the size of the co-array is denoted by |Sca|, and the

size of the longest consecutive sequence of integers belonging to Sca is represented

by Mca. Next, we will review three main array structures that we will deal with

in the sequel. Uniform Linear Arrays: Uniform Linear Arrays (ULA) are the
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Figure 1.1: Signal Model for DOA Estimation

simplest and the most well studied array geometry. In a ULA, the sensors are placed

uniformly on the locations dm = m − 1. The corresponding difference co-array for

such an array is then given by

SULA
ca = {m| −M + 1 ≤ m ≤M − 1}

Therefore, we have Mca = 2M − 1 = O(M).

Nested Arrays: Assuming M to be even, a nested array [2] consists of M/2 sensors

arranged as a ULA with spacing of 1 unit (inner ULA), and the remaining M/2

sensors on another ULA with spacing of M/2 + 1 units (outer ULA). In particular,

dm = m−1 (inner ULA), and dm+M/2 = m(M/2+1) (outer ULA), for 1 ≤ m ≤M/2.

The corresponding difference co-array for such an array is then given by

Snested
ca = {m| −M2/4−M/2 + 1 ≤ m ≤M2/4 +M/2− 1}

Therefore, we have Mca = M2/4 +M/2− 1 = O(M2).

Co-prime Arrays: A co-prime array [3] consists M = 2N1 +N2−1 sensors, whose
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normalized locations are given by

{(i− 1)N1, 1 ≤ i ≤ N2 + 1} ∪ {(j − 1)N2, 1 ≤ j ≤ 2N1}

where N1, N2 are two co-prime numbers, so that N1 < N2. It is possible to show

that the difference co-array corresponding to a co-prime array spans all the integer

numbers in the range −N1N2, · · · , N1N2. In other words, the difference co-array is

given by

Sco-prime
ca ⊇ {m| −N1N2 ≤ m ≤ N1N2}

Hence, we have Mca = 2N1N2 + 1 = O(M2).

1.2 Spectrum Estimation

Many signals in real-life applications can be modeled as stochastic processes.

A broad range of them fall under the category of Wide Sense Stationary (WSS)

processes. A fundamental property of a WSS process x(t) is that E(x∗(t1)x(t2)) =

R(t2 − t1). In other words, the auto-correlation is only a function of difference of

sampling instants. By judiciously choosing the sampling instants, it is possible to

significantly lower the number of measurements, and yet be able to correctly identify

the auto-correlation function. In essence, with little modifications, the co-prime and

nested sampling can be used in order to identify the auto-correlation (or equivalently

power spectral density) of the stochastic process. In this Section, we review a special

case of spectrum estimation using co-prime sampling.
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1.2.1 Co-prime sampling and Line Spectrum Estimation

Consider a specific class of WSS signals whose spectrum consists of lines,

representing frequencies of sinusoids buried in noise. We briefly review the problem

of estimating these frequencies using the concept of co-prime sampling [3]. Consider

a signal x(t) composed of K complex sinusoids, i.e., x(t) =
∑K

k=1 Ake
(2πfkt+φk).

The signal x(t) is WSS if the phases φk are assumed to be uniformly distributed on

[0, 2π]. The signal is sampled using two A/D converters operating at rates 1
MT

and

1
NT

, in which 1/T = 2fmax is the Nyquist rate, yielding

x1[n] =
K∑
k=1

Ake
ωkMn+φk + wn (1.2)

x2[m] =
K∑
k=1

Ake
ωkMm+φk + wm, (1.3)

where ωk = 2πfkT . Now, let us construct the vectors y1[l] = [x1[2Nl] x1[2Nl +

1] . . . x1[2Nl+N − 1]]T , y2[l] = [x2[2Ml+ 1] x2[2Ml+ 2] . . . x2[2Ml+ 2M − 1]]T ,

and y[l] = [y1[l]T y2[l]T ]T . Following [3], the autocorrelation matrix of y can be

derived as

Ry = E
(
yyH

)
=

K∑
k=1

A2
kB(ωk) + σ2I (1.4)

where B(ωk) = a(ωk)a(ωk)
H , a(ωk) = [aM(ωk)

T aN(ωk)
T ]T with

aM(wk) = [1 eωkM e2ωkM . . . eωkM(N−1)]

aN(wk) = [eωkN e2ωkN . . . eωkN(2M−1)]

One can write the (1.4) in the vectorized form to get

vec(Ry) =
K∑
k=1

b(ωk)A
2
k + σ2vec(I), (1.5)
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where b(ωk) = a∗(ωk)⊗a(ωk), and ⊗ denotes the Kronecker product. The elements

of b(ωk) have the form ejwkp, where p takes all the integer values between 0 and

MN . This gives rise to possibility of detecting O(MN) sinusoids by modifying well

known line spectrum estimation algorithms such as MUSIC algorithm [3].

1.3 Outline of the thesis:

This thesis is organized as follows: In Chapter 2, we will consider the problem

of DOA estimation in presence of array perturbations. By deriving the Cramér Rao

bound, and proving the identifiability, we show that even in presence of co-array

perturbations, it is possible to recover O(M2) number of sources. In Chapter 3, we

consider a different perspective of the problem, one in which the perturbations are

assumed to be sufficiently small. This assumption helps us to propose an approx-

imate “bi-affine” model. We then show how it is possible to recast this model as

a linear sparse problem. Our result shows that for small enough perturbations, it

is possible to resolve the array perturbations. Chapter 4 considers the problem of

temporal sampling, and studies the effect of jitter and finite samples on the co-prime

sampling in the temporal domain.

The content of this thesis is derived from several published conference and

journal papers [9–13].
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Chapter 2: Performance Analysis of Spatial Nested and Coprime Sam-

pling in Presence of Perturbation

2.1 Introduction

In Section 1.1.1, we showed how the novel array structures can provide us

with enhanced an degrees of freedom. Generally, there are two main approaches

which can leverage this enhanced degrees of freedom in order to improve the DOA

(directions of arrival) estimation. The first approach is subspace-based methods,

where typical subspace methods for arrays, such as MUSIC, are performed on the

spatially smoothed co-array manifold [3]. In the second approach, a grid-based

approximate model is considered and sparsity is exploited to recover the directions

of sources. In this case, the range of all possible directions is discretized into a grid,

and the DOA estimation problem is then reformulated as a sparse representation

problem [4,14–16]. In this Chapter, we consider the latter approach.

The results established so far are based on an unperturbed array geometry,

one in which the sensor locations exactly satisfy the geometrical constraints. Array

imperfections, however, are known to severely deteriorate the performance of DOA

estimation algorithms [17], [18]. This is mainly due to strong dependence of these al-
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gorithms to the availability of an accurately known array manifold. One of the most

common forms of these imperfections is uncertainty about the accurate location of

the sensors. To address the array imperfections and suppress their effect on DOA

estimation, there are many methods proposed in the literature, which are known

as self-calibration methods. In these methods, the perturbations are modeled as

unknown but deterministic parameters, and these parameters are estimated jointly

with the directions of the sources. The methods in [18], [19], and [20] resolve the

sensor location uncertainty, using eigenstructure-based methods. [21] proposes a uni-

fied framework to formulate the array imperfections, and renders a sparse Bayesian

perspective for array calibration and DOA estimation. In all of these methods,

the array is assumed to be ULA, and none of the self-calibration methods in the

literature use the concept of co-arrays.

The materials presented in this chapter have been published in [9, 11, 13].

2.2 Problem Formulation

In this Section we extend the model defined in Section 1.1.1, into the case that

we have perturbations in sensor locations, assuming that the sources are located on

a predefined grid.

2.2.1 A Grid-Based Model for Co-Array Perturbations

Similar to the model defined in Section 1.1.1, consider an array of M antennas

impinged by K narrow-band sources with unknown directions θ. The sensors of the
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array are originally designed to be at locations given by the vector λ/2d ∈ RM , where

λ is the carrier wavelength of the narrowband sources. However due to deformation

of the sensor array, the sensors are actually located at λ/2(d + δ), in which δ ∈ RM

is an unknown perturbation vector. Recall that corresponding to each direction of

arrival (DOA) θ, we associate a spatial frequency ω = λ
2
π sin θ. In this Chapter, we

use a grid-based model [4] for the spatial frequencies.

The range [−πλ
2
, πλ

2
), is quantized into a certain number of grid points, and

we assume that the spatial frequencies indicating the source DOAs lie on this grid.

This assumption simplifies much of our later derivations (based on the Cramér

Rao bound) since the correlation matrix becomes a linear function of the unknown

parameters of interest (signal powers, in our case).

Let x[l] ∈ CNθ be a K-sparse vector, containing a non zero subvector x̃[l] ∈ CK

indicating the lth time sample of the K source signals. The location of the non zero

elements of x̃[l] reveals the DOA (assuming they are on the grid). The received

signal can be written as

y[l] = Agrid(δ)x[l] + w[l], (2.1)

in which Agrid(δ) = [a(ω1, δ), . . . , a(ωNθ , δ)] is an overcomplete dictionary represent-

ing the perturbed grid-based array manifold with ωk denoting the kth grid point,

i.e.,

ωk =
λ

2
× 2πk

Nθ

, k = 0, 1, · · · , Nθ − 1 (2.2)

The vector a(ωi, δ) ∈ CM represents the steering vector corresponding to the kth
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candidate spatial frequency on the grid and its mth element is given by

[a(ωk, δ)]m = eωk(dm+δm), 1 ≤ m ≤M

Clearly, this dictionary only depends on the perturbation δ, and the geometry of

the array.

Since the sources are assumed to be uncorrelated, following [2], the vectorized

form of the covariance matrix of the received signal is given by

z = Aca(δ)γ + σ2
wvec(I), (2.3)

where Aca(δ) = A∗grid(δ) �Agrid(δ) denotes the Khatri-Rao product [4]. The vec-

tor γ = [γ1, · · · , γNθ ] is the diagonal of Rx = E(xxH). The location of the non

zero elements of γ coincide with those of x̃[l] and reveal the exact DOAs of the

source signals. The elements of Aca(δ) are characterized by the perturbed version

of the difference co-array of the physical array. In particular, the (m + m′M,k)-th

element of Aca(δ) is given by eωk(dm+δm−dm′−δm′ ). Thus each column of Aca(δ) is

characterized by the perturbed difference co-array:

Sca = {dm − dm′ + δm − δm′ , 1 ≤ m,m′ ≤M}

In the rest of this thesis, without loss of generality, we put the first sensor on the

origin, i.e., d1 = δ1 = 0. Using this grid-based model, DOA estimation becomes

equivalent to recovering a sparse γ and identifying its non zero elements (or its

support). We can suppress the effect of noise (σ2
w) by removing the rows in z and

Aca(δ) corresponding to i− j = 0. We further sort the rows in ascending order with

respect to their location in the difference co-array and only keep the positive half to
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obtain

zu = Au
ca(δ)γ (2.4)

where Au
ca(δ) ∈ C

|Sca|−1
2
×Nθ , and |Sca| is the number of distinct elements in the

difference co-array.

2.2.2 Number of recoverable sources

The support of sparse γ represents the source DOAs. One way to recover the

support is to assume that γ represents the sparsest vector satisfying (2.4) and solve

min
γ≥0,δ

‖γ‖0 s.t. z = Au
ca(δ)γ.

The size of the recoverable sparse support (or equivalently, the number of sources,

K) in this case, fundamentally depends on the Kruskal Rank of Aca(δ).

2.3 Effect of Perturbations: A Cramér Rao Bound Based Study

In this Section, we derive a probabilistic model for the DOA estimation prob-

lem in the presence of perturbations. Let us assume that x[l], l = 1, 2, · · ·L are i.i.d

random vectors with normal distribution N (0,Rx), where Rx is a diagonal matrix.

Let w[l] be i.i.d Gaussian vectors, independent of the sources signals and distributed

as N (0, σ2
wI). The received signal is distributed as

y[l] ∼ N (0,Agrid(δ)RxA
H
grid(δ) + σ2

wI︸ ︷︷ ︸
Ry

)
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We will assume the noise power σ2
w to be known, since our goal is to understand

how the presence of unknown δ affects the recovery of the desired parameter γ.

Comment on Notations: For simplicity of notation, we will use Agrid,Aca,A
u
ca in-

stead of Agrid(δ),Aca(δ),Au
ca(δ), respectively, in the sequel. Moreover, we will use

the notations Agrid,0,Aca,0,A
u
ca,0 to indicate the Agrid,Aca,A

u
ca evaluated at δ = 0.

2.3.1 Cramér Rao Bound

Singularity of the Fisher Information Matrix implies non existence of a con-

sistent estimator for γ and δ [22]. Hence, non-singularity of the FIM is a necessary

condition for any algorithm to be able to exactly recover γ (in the limit as L→∞).

However, it is non trivial to derive explicit conditions relating the array geometry

and the range of parameters, for which the FIM is guaranteed to be non singular.

In the following, we will conduct a deeper study of the algebraic structure of the

perturbed FIM and derive explicit conditions under which such a guarantee will

hold. As an important result, we will derive exact conditions on the size of the grid

Nθ, size of the co-array Mca, under which, the FIM will be shown to be non singular

for almost all values of δ and γ. We would like to point out the following facts

about the results derived in this Chapter:

• Sparsity Not Assumed: Although the parameter γ may be sparse (if K <

Nθ), we do not impose a sparse prior on the model for deriving the FIM and

hence the guarantees hold regardless of our prior knowledge about the sparsity

of γ. In other words, under the derived conditions, a Maximum Likelihood
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method can recover a sparse γ (as L→∞) from an overcomplete observation

model (2.1) with Nθ > M , without assuming it to be sparse.

• Number of sources not assumed to be known: We also do not assume

knowledge of the number of sources K in deriving the FIM. Hence, the guar-

antees hold uniformly for any number of sources, as long as the established

conditions are satisfied.

We now turn into deriving the Cramér Rao bound. The probability density function

(pdf) of the received signal is given by

f(y;ψ) =
1

πM det(Ry)
e−y

HRy
−1y. (2.5)

where ψ = [γT δT ]T is the vector of parameters and Ry is a function of ψ. The

Fisher Information Matrix (FIM) is defined as

Jij = E
(

∂

∂ψi
ln f(y;ψ)

∂

∂ψj
ln f(y;ψ)

)
. (2.6)

Let us denote W = Ry
−T ⊗Ry

−1, and define

Hδ , [vec(Rδ2) vec(Rδ3) . . . vec(RδM )],Rδi ,
∂Ry

∂δi
(2.7)

The following theorem provides necessary and sufficient conditions under which the

FIM in (2.6) is non singular:

Theorem 1. Denoting ψ = [γT δT2:M ]T as the parameters to be estimated, the FIM

defined in (2.6) is invertible, iff the matrix B, defined as follows, is full column rank:

B = [Aca Hδ] (2.8)
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Proof. For Gaussian distributed random variables with covariance matrix Ry, the

Fisher Information Matrix (FIM) can be derived as [23]

1

L
Jij = vec(

∂Ry

∂ψi
)H(Ry

−T ⊗Ry
−1)vec(

∂Ry

∂ψj
) (2.9)

The Fisher information Matrix (FIM) for our model (2.5) can be divided into blocks

corresponding to parameters γ and δ as:

J =

Jγγ Jγδ

JHγδ Jδδ

 (2.10)

Notice that

vec(
∂Ry

∂γi
) = vec

(
a(ωi, δ)aH(ωi, δ)

)
= a∗(ωi, δ)⊗ a(ωi, δ)

Hence, from (2.9) and (2.7), we obtain

Jγγ = LAH
caWAca, Jγδ = LAH

caWHδ, Jδδ = LHH
δ WHδ (2.11)

The FIM J can therefore be expressed as

J = BHWB (2.12)

Since W = Ry
−T ⊗ Ry

−1 is positive definite, it follows that rank(J) = rank(B).

Hence J is non singular (i.e. has rank Nθ +M − 1) if and only if B ∈ CNθ+M−1 has

full column rank.

For the unperturbed signal model, the FIM is given by Jγγ and the following

corollary establishes a necessary and sufficient condition for non singularity of FIM.
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Corollary 1. (FIM in absence of perturbation) The matrix Jγγ is invertible

if and only if Nθ ≤Mca.

Proof. From (2.11), rank(Jγγ) = rank(Aca,0), since W is positive definite. Hence,

Jγγ is invertible if and only if rank(Aca,0) = Nθ. Since Aca,0 has Mca distinct

rows which form a Vandermonde submatrix, Aca,0 is full column rank if and only if

Nθ ≤Mca, which concludes the proof.

Remark 1. (Cramér Rao Bound) If the FIM is invertible, the Cramér Rao

bound can be obtained by computing the inverse of J. Moreover, using the Schur

complement of J, the CRB corresponding to the parameter γ can be written as

follows

1

L
(CRBγγ)−1 =

1

L

(
Jγγ − JγδJ

−1
δδ JHγδ

)
= AH

caWAca −AH
caWHδ

(
HH

δ WHδ

)−1
HH

δ WAca

= AH
caW

1/2Π⊥W1/2Hδ
W1/2Aca, (2.13)

where Π⊥
W1/2Hδ

is the projection matrix onto the null space of W1/2Hδ.

2.3.2 Necessary Condition on Size of Grid

The size of the co-array alone dictates the non singularity of FIM in absence

of perturbation. However, for a perturbed signal model, it only imposes a necessary

condition (not sufficient) on the invertibility of the FIM.

Corollary 2. If Nθ > |Sca|, J is singular.
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Proof. Since |Sca| denotes the number of distinct elements in the perturbed co-array,

it also represents the number of distinct rows of Aca. Hence rank(Aca) ≤ |Sca| and

when Nθ > |Sca|, Aca is necessarily column rank deficient, implying B is also column

rank deficient. Therefore, by Theorem 1, J is singular.

Remark 2. Singularity of the FIM matrix J implies that there exist no unbiased

estimator for ψ with finite variance [22]. The above necessary condition imposes

a restriction on the size of the grid with respect to the size of the co-array. Recall

that, in deriving J, the number of sources K was assumed unknown. Furthermore,

γ was not even assumed to be sparse; so in principle, the number of unknowns in

γ is indeed the number of points (Nθ) on the entire grid. Hence, the necessary

condition implies an equation-versus-unknown type of bound, where the number of

equations are given by the distinct elements of the co-array. If the grid size Nθ

becomes larger than |Sca|, we will necessarily need to impose sparse prior on γ for

it to be identifiable. We will further elaborate on this point in Sec. 2.4.

2.3.3 Sufficient Conditions for Invertible FIM

We now derive sufficient conditions under which the matrix B is full column

rank. Note that J is a function of δ, and our goal will be to study for what range

of values of δ, we can argue its non singularity for almost all γ ∈ RNθ . We divide

our analysis into two cases: In the first scenario, we find sufficient conditions under

which J is invertible for almost all γ when δ = 0. Based upon this result, we will

argue that under the same conditions, J will be invertible for almost all δ ∈ RM as
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well.

Notice that studying the non singularity of J for δ = 0 is fundamentally

different from a problem setting where the location of the sensors are known to be

not perturbed. We call the latter the “unperturbed problem”. More precisely, in

the unperturbed problem, the FIM is equal to the top left block of Jγγ of J. Hence,

the unpertubed problem is identifiable if and only if Jγγ is invertible, which simply

reduces to Aca,0 being full column-rank. However, for our problem, δ = 0 is not a

prior knowledge - rather it is just a particular values of the unknown parameter δ.

Therefore, the invertibility of Jγγ does not imply the invertibility of J at δ = 0.

2.3.3.1 Non Singularity of J at δ = 0

Establishing sufficient conditions under which J is non singular at δ = 0 re-

quires careful study of the co-array structure of the physical antenna array under

question, and the details vary, depending on the array geometry. The following the-

orems state our main results for Uniform linear array (ULA) and a slightly modified

version of the nested array:

Theorem 2. (ULA) For a uniform linear array (ULA) with M sensors, if Nθ ≤

2M − 2, J|δ=0 is invertible for almost all γ ∈ RNθ .

This indicates a rather small grid size for the ULA. However, for the nested

array, the grid size (for which J|δ=0 is guaranteed to be non singular) can be much

larger, of O(M2). To prove this, we use a slightly modified version of the original

nested array (assuming M is even), in which the location of the sensors are given
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by diλ/2 where

di = (i− 1)d, di+M
2

=
M

2
id (2.14)

for 1 ≤ i ≤ M/2. In this case, we can verify that Mca = M2/2 + 1. For the

original nested array [2] (reviewed in Section 1.1.1), Mca = M2/2 +M − 1. We use

this configuration to simplify the proof of the following theorem, which establishes

conditions for non singularity of the FIM associated with this modified array:

Theorem 3. (Modified Nested Array) For a modified nested array with M

sensors (given by (2.14), with even M), if Nθ ≤M2/2, J|δ=0 is invertible for almost

all γ ∈ RNθ .

Proof. The proofs can be found in Appendices A.1 and A.2.

Remark 3. We would like to point out that a slightly stronger result can be es-

tablished for the original nested array (which has more degrees of freedom, Mca =

M2/2 + M − 1), for which the grid size can be shown to be Nθ ≤ Mca −M/2 =

M2/2+M/2−1. The proof technique will be similar to the one shown in Appendix

A.2, with some modifications, which we avoid for ease of exposition.

Remark 4. This result indicates that for grids of size O(M2) (as long as the size is

less than M2/2), J is guaranteed to be non singular for almost all γ even when we

do not know the number of sources K. This holds for overcomplete grid-based array

manifolds A where the number of grid points can be as large as O(M2), without the

apriori assumption that the source scene is spare.
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2.3.3.2 Non Singularity of FIM: δ 6= 0

The non singularity of J for almost all δ immediately follows from the condi-

tions developed for δ = 0:

Theorem 4. For ULA and nested array with M sensors, J is invertible for almost

all δ ∈ RM−1 and γ ∈ RNθ , if Nθ ≤ 2M−2 (for ULA) and Nθ ≤M2/2 (for modified

nested array).

Proof. Since elements of J are analytic functions of δ, det(J) is also an analytic

function of δ. Therefore, det(J) has isolated zeros in δ unless it is trivially zero [24].

However, in Theorems 2, and 3, we have shown that for ULA and modified nested

array, det(J) 6= 0 at δ = 0 as long as Nθ ≤ 2M − 2 and Nθ ≤ M2/2 respectively.

This rules out the possibility that det(J) is trivially zero ∀δ. Therefore, the zeros

of det(J) are isolated in RM−1, with a total measure zero. Thus, for almost all

δ ∈ RM−1 and γ ∈ RNθ , det(J) 6= 0, i.e., J is invertible.

Thus, we have established the following key results regarding source localiza-

tion using perturbed ULA and nested arrays:

• If we do not assume the number of sources K to be known (or, equivalently,

do not assume the vector of source powers, γ, to be sparse), Nθ ≤ 2M − 2 is

sufficient for J to be non singular for almost all choices of γ and δ.

• For nested arrays, under the same assumption of K to be unknown, we can

ensure the invertibility of J for almost all choices of γ and δ using a much

larger overcomplete dictionary, where Nθ = O(M2).
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2.4 Non Singularity of FIM for Sparse Vectors

The guarantees for non singularity of J established so far holds for almost all

choices of γ ∈ RNθ . However, they do not ensure non-singularity of J at a sparse γ,

since the set of all sparse γ has zero measure in RNθ . We therefore need to refine

our arguments to make them applicable to sparse γ as well. This can be studied for

two distinct range of values of Nθ.

2.4.1 Non singularity for small grid size

In this case, we assume that Nθ ≤ 2M − 2 for ULA, and Nθ ≤ M2/2 for the

modified nested array. We show that the Fisher Information Matrix is invertible at

almost all sparse γ. In particular, we have the following result:

Theorem 5. Assume δ = 0 and consider the grid based model (2.2). For almost

all sparse vectors γ ∈ RNθ with ‖γ‖0 = K,K < Nθ, where Nθ ≤ 2M − 2 for ULA

and Nθ ≤ M2

2
for modified nested array, J is invertible for almost all δ ∈ RM−1.

Proof. The proof can be found in the Appendix A.3.

2.4.2 Singularity and Identifiability for Nθ > Mca

According to Corollary 2, when Nθ > |Sca|, the Fisher Information Matrix

is necessarily singular. As we will show next, the parameter γ also becomes non

identifiable in this case, and it becomes necessary to assume priors (such as sparsity)

on γ to render it identifiable.
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Definition 1. Let f(y;γ, δ) be the probability density functions of y parameterized

by (δ,γ). The parameters (δ,γ) are identifiable if f(y;γ, δ) = f(y;γ ′, δ′) implies

δ = δ′,γ = γ ′.

Assuming that y has zero mean Gaussian distribution, the above definition of

identifiability boils down to the uniqueness of the covariance matrix with respect

to the parameters. In particular, for our model (2.5), uniqueness of the vectorized

covariance matrices implies

Aca(δ)γ = Aca(δ′)γ ′ ⇔ δ = δ′,γ = γ ′ (2.15)

We will analyze the consequences of non identifiability for two cases: δ = 0 and

δ 6= 0.

1. δ = 0: In this case, Aca,0 is a Vandermonde matrix with Mca distinct rows.

One way to ensure identifiability of γ is to assume that it is K− sparse (or,

equivalently, assume the number of sources to be known). In such a case,

Aca,0γ = z will permit a unique solution in γ, if K < k-rank(Aca)
2

, (see [25]),

where k-rank(.) represents the Kruskal rank of a matrix. Owing to the Van-

dermonde structure of Aca,0, its Kruskal rank is Mca. Hence, in this case,

we can ensure identifiability of γ for δ = 0, by assuming it to be sparse and

ensuring that K < Mca/2.

2. δ 6= 0: Finding an explicit sufficient conditions for identifiability in this case

is a nontrivial problem and can be a topic for future research. This is due to

the fact that the dictionary Aca itself is a function of δ and it no longer has a
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Vandermonde structure, which makes it very difficult to ascertain its Kruskal

rank. However, assuming the perturbation to be small, we can obtain sufficient

conditions for identifiability that relate δ, γ and the smallest singular value

of the unperturbed manifold Aca,0, as discussed next.

2.4.3 Sufficient conditions for identifiability for small perturbations

In this section, we derive sufficient conditions for (2.15) to hold, in terms of

an upper bound for δ.

Definition 2. For a vector δ ∈ RM , define ∆ as

diag(δ)− δ1I 0 · · · 0

0 diag(δ)− δ2I · · ·0

...
...

. . .
...

0 0 · · · diag(δ)− δMI


(2.16)

Also, define ∆′ by replacing the vector δ with δ′ ∈ RM in (3.2).

Assuming that δ is small we can write the linear approximation of Aca(δ) as

(Aca(δ))(r−1)M+s,k ' e(dr−ds)ωk(1 + (δr − δs)ωk),

for 1 ≤ r, s ≤M , which can be also written as

Aca(δ) ' Aca,0 + ∆Aca,0Υ (2.17)

where Υ = diag(ω1, · · · , ωNθ).

For this linearized model, we now proceed to establish sufficient conditions

such that (2.15) holds. We assume that the number of sources is known to be at
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most K, so that all vectors γ in our ambiguity set are at most K−sparse. Suppose

there exists δ′ 6= δ and γ ′ 6= γ (both at most K− sparse) such that

(Aca,0 + ∆Aca,0Υ)γ = (Aca,0 + ∆′Aca,0Υ)γ ′ (2.18)

Let S, S ′ denote the supports of γ,γ ′, respectively. Moreover, let S1 = S\S ′, S2 =

S ′\S, S12 = S ∩ S ′, and k1, k2, k12 be the cardinality of S1, S2, S12 respectively. Let

Ãca,0 and Υ̃ be the submatrices of Aca,0 and Υ, respectively, comprised by the

columns indexed by S1 ∪ S2. Define γi (or γ ′i) be the vector comprised by the

elements of γ (or γ ′) which are indexed by Si, where i = 1, 2, 12. We can rewrite

(2.18) as

(Ãca,0 + ∆Ãca,0Υ̃)


γ1

γ12

0

 = (Ãca,0 + ∆′Ãca,0Υ̃)


0

γ ′12

γ ′2


which is equivalent to

Ãca,0


γ1

γ12 − γ ′12

−γ ′2

 = −∆Ãca,0Υ̃


γ1

γ12

0

+ ∆′Ãca,0Υ̃


0

γ ′12

γ ′2

 (2.19)

Let us assume that each nonzero entry of γ and γ ′ lie within the range

[γmin γmax]. Moreover, assume that each entry of δ and δ′ is bounded above by

δmax. We have

‖LHS‖ ≥ σmin(Ãca,0)
√
k1γmin (2.20)
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Moreover,

‖RHS‖ ≤σmax(∆)σmax(Ãca,0Υ̃)
√
k1 + k12γmax (2.21)

+σmax(∆′)σmax(Ãca,0Υ̃)
√
k2 + k12γmax (2.22)

in which LHS, RHS refer to the left hand side and right hand side of the equation

(2.19), and σmin(.), σmax(.) indicate the smallest and largest singular value of a given

matrix, respectively.

Recall that wk = 2πk
Nθ

. Hence, σmax(Υ̃) < 2π. We also have σmax(Ãca,0Υ̃) <

2πσmax(Ãca,0) < 2π‖Ãca,0‖F < 2πM
√

2K and σmax(∆) ≤ 2δmax.

Hence, a sufficient condition for identifiability is

‖LHS‖ > ‖RHS‖

From (2.20) and (2.21) we can say that one way to ensure ‖LHS‖ > ‖RHS‖ is to

have

σmin(Ãca,0)
√
k1γmin >

4πδmax(
√
k1 + k12 +

√
k2 + k12)M

√
2Kγmax

which is true if

δmax <
σmin(Ãca,0)

4πM

γmin√
2Kγmax

(2.23)

Considering all possible supports, (2.23) is satisfied if

δmax <
σ̃min

4π
√

2KM

γmin

γmax

(2.24)

where σ̃min = minσmin(Ãca,0) over all submatrices Ãca,0 with 2K columns.

We now summarize this result as the following theorem:
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Theorem 6. Suppose |δm| ≤ δmax for m = 1, · · · ,M , and δmax to be small so that

we can approximate Aca(δ) as (3.1). Moreover, assume that ‖γ‖0 ≤ K and the non-

zero elements of γ lie in the range [γmin γmax]. The parameters [γ, δ] are identifiable

for any grid size Nθ, if the maximum perturbation value obeys (2.24).

2.5 Numerical Studies

In this Section, we evaluate the Cramér Rao bound corresponding to the

parameter γ in presence of perturbation δ, and compare it with the RMSE of a

maximum likelihood solver. Following [1, Section 8.5], the log-likelihood function

corresponding to our problem can be written as

L(δ,γ) = −[ln det Ry + tr(Ry
−1R̂y)] (2.25)

where Ry = A(δ)diag(γ)A(δ)H + σ2
wI and R̂y = 1

L

∑L
l=1 y[l]yH [l] is the sample

covariance matrix. We also supposed that the noise variance σ2
w is known and the

signals follow the model defined in (2.5). We find the optimum values for γ and δ

by maximizing L(δ,γ) subject to the constraint γ ≥ 0, using fmincon function of

MATLAB. Notice that the sparsity of γ is not utilized to obtain its estimate.

We consider different scenarios with respect to the number of grid points,

number of sensors, array structure, and sparsity of the sources. Throughout the

simulations, we consider three different arrays: a ULA, a nested array, and a co-

prime array (with coprime numbers N1 = 4 and N2 = 7), all with the same number

of sensors, M = 14 (for coprime array, the number of sensors is M = 2N1 +N2− 1).

In all cases, we assume the spatial frequencies to lie on a uniform grid with Nθ
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grid points. We study the performance for different values of Nθ. The variance

of the noise is fixed to be σ2
w = 0.1 in all the simulations. We assume the sensor

perturbations to be δ = αδ0, where

δ0 = 0.1× [0, 1, 3,−1,−3, 1,−4, 2, 6, 9,−3, 4, 5,−7, 4,−1]T ,

and α is a scalar, which determines the strength of perturbation. We define RMSE

of the maximum likelihood estimator as
√∑Ntests

i=1
‖γ̂−γ‖2
NθNtests

, where γ̂ is the estimated

γ, and Ntests indicates the number of Monte-Carlo simulations for each value of α or

L. In all the simulations, Ntests = 100. Moreover, in all the plots, CRB is computed

from the trace of the Schur complement defined in (2.13).

In the first simulation, we choose Nθ = 35. We study two different cases: in

the first setting, we have as many sources as Nθ, all with powers equal to one. In

the second case, which we refer to as the sparse case, we assume that there are only

K = 4 active sources with powers equal to one and the rest are zero. In this case,

the support of γ is given by S = {3, 7, 11, 16}. As stated earlier, the ML algorithm

does not assume γ to be a sparse vector apriori.

Figure 2.1 shows the performance of the ML estimate and compares it to the

Cramér Rao bound for both sparse and non sparse settings. The label “n” indicates

the nested array with M = 14 antennas, while the label “c” corresponds to the

coprime array with N1 = 4 and N2 = 7. Plots which are marked with “s” indicate

the case where γ is sparse with K = 4. We observe that as we increase the number

of snapshots L, the accuracy of the ML estimator increases, and its MSE is close

to the Cramér Rao bound. Moreover, the sparse case possesses better performance
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than the non sparse case, although sparsity is not assumed beforehand.

In the second simulation, we compare the CRB of ULA and nested array for

different grid sizes. Figure 2.2 depicts the result. We see that in each plot, beyond a

certain grid size, the CRB suddenly jumps to very large values, indicating that FIM

becomes singular beyond that point. We also observe that the corresponding value

for Nθ is much smaller for the ULA than that for the nested array. This supports

the fact that nested array is capable of resolving O(M2) sources even in the presence

of perturbations, whereas ULA fails when Nθ > 2M − 1 = 27. In this plot, α = 0.5

and L = 104.

In the third simulation, we examine the probability of FIM being invertible

for different number of sensors and grid sizes. For this experiment, we consider Nθ

sources located on the grid points, all with powers equal to one. In each trial, we

randomly generate a δ whose entries are uniformly chosen from the range [−0.5 0.5]

(keeping δ1 = 0). For every M and Nθ, we count the events for which J is invertible,

and average the result over 100 runs. The result is demonstrated in Figure 2.3.

The white pixels represent values of (M,Nθ) for which J is invertible with high

probability. The blue line indicates the value of M as a function of Nθ, below which

the FIM evaluated at δ = 0 is nonsingular. This value is computed empirically

from the experiments. The red line, however, shows the theoretical bound on Nθ

that we derived in Theorems 2, 3 (We used the bound proposed in Remark 3 for

nested array). We see that for a ULA, the blue line and the red line match exactly,

meaning that the sufficient condition that we derived in Theorem 2 is also necessary.

However, there is a small gap between the red and blue lines for the nested array,
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indicating the possibility of a gap between necessary and sufficient condition for

non singularity of J at δ = 0. Moreover, we observe that for both ULA and nested

array that there is a white area under the red and blue lines which represents the

region where J
∣∣
δ 6=0

is invertible, although J
∣∣
δ=0

is not. This happens due to the fact

that the perturbations can slightly increase the rank of Aca(δ). Therefore, J can be

invertible even though Aca,0 is not full column rank.
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Figure 2.1: The performance of ML compared with CRB in different
cases. In these plots, “c”, “n” indicate coprime and nested arrays, re-
spectively. Moreover, “s” indicates the cases where the sources are sparse
with K = 5 (without using this sparsity in solving ML problem or finding
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is invertible. The red
line shows the theoretical bounds we derived in Theorems 2, 3.
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Chapter 3: Joint DOA Estimation and Self-Calibration with per-

turbed arrays via Bi-Affine Formulation

3.1 Introduction

In this Chapter, we demonstrate that it is possible to jointly estimate the

DOAs and perturbation coefficients via a novel bi-affine formulation. We assume

that the perturbations δ are small, so that we can approximate the perturbed coarray

manifold using its first order Taylor series expansion. This formulation leads to a

“bi-affine” model, which is linear in source powers, and affine in the perturbation

variable. We show that it is possible to recover the DOAs even in presence of the

nuisance perturbation variables, via clever elimination of variables that exploit the

redundancy present in co-arrays. By exploiting the pattern of repeating elements,

it is possible to reduce the bi-affine problem to a linear underdetermined (sparse)

problem in source powers, which can be efficiently solved using `1 minimization. We

establish precise conditions under which such reduction is possible, for both ULA

and a robust version of coprime arrays.

It is worth mentioning that co-array redundancies have been previously shown

to be useful in order to resolve phase/gain ambiguity [26]. Their approach builds on
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and extends the method in [27], which was originally proposed for a ULA and which

requires the number of sources to be less than the number of sensors. However,

in this chapter, we consider perturbations in sensor locations, which gives rise to a

signal model. Moreover, unlike [26], our method works for non uniform arrays and

allows the number of sources to be greater than the number of sensors.

The contents of this chapter have been published in [12].

3.2 Bi-Affine Formulation

3.2.1 The Bi-Affine Model

In this Section, we derive a bi-affine model from the covariance matrix (2.3)

corresponding to a sensor array with perturbed locations. Our main assumption

is that δ is small enough so that we can approximate the coarray manifold Aca(δ)

using the first order Taylor series expansion as follows:

(Aca(δ))(m′−1)M+m,i ' e(dm−d
′
m)ωi(1 + (δm − δm′)ωi),

which can be also written in the matrix form as

Aca(δ) ' Aca,0 + ∆Aca,0Υ (3.1)
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where Aca,0 denotes the unperturbed co-array manifold, Υ = diag(ω1, · · · , ωNθ),

and ∆ ∈ RM2
is given as

diag(δ)− δ1I 0 · · · 0

0 diag(δ)− δ2I · · ·0

...
...

. . .
...

0 0 · · · diag(δ)− δMI


(3.2)

Therefore, (2.4) can be approximated as

z = (Aca,0 + ∆Aca,0Υ)γ + σ2
wvec(I), (3.3)

To suppress the effect of noise, we discard the 0th lag of the co-array, and only keep

the elements of z corresponding to the positive half of the co-array to obtain 1:

zu = (Au
ca,0 + ∆uAu

ca,0Υ)γ (3.4)

where Au
ca,0 is the unperturbed co-array manifold with rows corresponding to the

positive lags, where we retain repeated rows (that correspond to the same lag in the

virtual array). The matrix ∆u is constructed from ∆ by retaining only the rows

corresponding to those of Au
ca,0. Notice that unlike the approach in [2, 3], we also

keep the repeated rows of Au
ca,0, since their corresponding rows in zu may not be

repeated due to the presence of perturbations. Hence, this redundancy in the rows

of Au
ca,0 can help us to get more information on the perturbations.

1For ease of exposition, we only consider the positive half of the co-array and demonstrate how

to eliminate the spurious variable δ. However, with straightforward modifications to the proposed

technique, it is also possible to incorporate the negative half to generate more augmented equations

and use them for eliminating δ.

35



Inspired by the so-called bilinear model in the literature, which arises in various

problems such as the blind gain and phase calibration (BGPC) problem [28], we call

the model given in (3.4) a “bi-affine” model, since zu is a linear function of γ and

affine function of δ. Given the covariance matrix Ry (or equivalently zu), the goal

is to recover the sparse vector γ from the bi-affine model defined in (3.3).

3.3 Source Localization: Bi-Affine to Linear Transformation

Under the grid-based model, the DOAs can be estimated from the support of

the sparse vector γ that is a solution to the bi-affine system of equations (3.4). In

general, (3.4) can admit multiple solutions in the variables (δ,γ). While the column

rank of a matrix describing a linear system of equations determines if it admits a

unique solution, to the best of our knowledge, no such general condition exists for

a bi-affine (or even bi-linear) system which can be used as a test for existence of

unique solution.

In this Section, we will derive a transformation such that we can extract a linear

system of equations in the variable γ, from (3.4) by eliminating the variable δ. In

particular (3.4) can be reduced to an underdetermined linear system of equations of

the form

h = Gγ (3.5)

where G is a fat matrix, whose size and structure depends on the array geometry.

Hence, the bi-affine system of equations will indeed admit a unique solution in γ

(although, not necessarily in δ) if (3.5) yields a unique K−sparse solution. This
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transformation of the bi-affine problem into a linear problem will be shown to be

possible under appropriate conditions on the array geometry, M (number of sensors),

and K (number of sources).

3.3.1 Elimination of Variables Using Co-Array Redundancies

We derive the aforementioned transformation for two different array geome-

tries: uniform linear array (ULA), and a robust version of coprime array (introduced

later). The basic idea is to use the pattern of repeated elements in the unperturbed

co-array manifold which is specified by the weight function w(k) to equate certain

elements of Ry, thereby eliminating δ.

Let Rmn denote the (m,n)th element of Ry. Given an integer k ∈ Sca, we

define the following notations:

fk :=

Nθ∑
i=1

ekωiγi (3.6)

λk :=

Nθ∑
i=1

ekωiωiγi (3.7)

Using these notations, we can rewrite (3.4) as

Rmn = fk + λk(δm − δn) (3.8)

where 1 ≤ m,n ≤M , and k = dm − dn, k > 0.

Notice that fk and λk are themselves linear functions of the unknown sparse

vector γ. If the lag k in the co-array Sca repeats at least twice, (i.e. w(k) ≥ 2), then

this redundancy can be exploited to eliminate variables as follows. If w(k) ≥ 2, we
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must have di− dj = dm− dn = k, for some 1 ≤ i, j,m, n ≤M . In this case, we have

Rij = fk + λk(δi − δj)

Rmn = fk + λk(δm − δn),

The variable fk can be easily eliminated by subtracting these equations, leading to

Rij −Rmn = λk(δi − δj − δm + δn).

A very similar idea can be used (with some additional computations) to eliminate

δ from the M2 equations of the form (3.8) for both ULA and a robust version of

the co-array. Recall that co-array redundancies are also used to calibrate sensors

with unknown gain and phase errors [26]. However, since we are concerned with

sensor position errors, our signal model fundamentally differs from that considered

in [26]. Consequently, we cannot exploit the co-array redundancies in the same way

as done in [26]. We need to adopt a slightly more involved approach to eliminate the

undesirable variable δ, the details of which depend on the geometry of the physical

array.

3.3.2 Uniform Linear Array

In a ULA, we have dm−dn = m−n. Hence, we can rewrite the equation (3.8)

as

Rmn = fm−n + λm−n(δm − δn) (3.9)

38



−40 −30 −20 −10 0 10 20 30 40
0

5

10

15

20

25

30

35

w
(k

)

k

(a) ULA

−30 −20 −10 0 10 20 30
0

5

10

15

20

25

30

35

w
(k

)

k

(b) Robust-coprime

Figure 3.1: The weight functions corresponding to ULA and robust-

coprime array for M = 32, N1 = 4, N2 = 9.

For a given 1 ≤ k ≤M − 2, define

r̄k =
k+1∑
j=2

Rj,j−1 (3.10)

βk =
Rk+2,2 −Rk+1,1

Rk+2,k+1 −R2,1

(3.11)

The following theorem summarizes our main result for the ULA:

Theorem 7. For a Uniform Linear Array (ULA) containing M antennas with per-

turbed locations, the bi-affine model (3.4) derived from the signal covariance matrix

can be reduced to the form

Cf = h (3.12)

where f ∈ CM−2 = [f1, f2, · · · , fM−2]T and for every 1 ≤ k ≤ M − 2, the elements
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of C ∈ C(M−3)×(M−2) and h ∈ CM−2 are given by

Ck−1,1 = −kβk (3.13)

Ck−1,k = 1 (3.14)

hk−1 = Rk+1,1 − βkr̄k (3.15)

for every 2 ≤ k ≤M − 2. The remaining elements of C are zero. This transforma-

tion holds for almost all δ ∈ RM .

Proof. The proof can be found in A.4.

Remark 5. Notice that the elements of f are linear functions of the sparse vector

γ. In particular, from (3.6), we have

f = BUγ

where the elements of BU ∈ CM−2,Nθ are given by [BU ]m,i = ejmωi. Therefore (3.12)

can be written as the following system of underdetermined equations (since Nθ �M)

h = CBUγ (3.16)

This system can admit a unique sparse solution, representing the true source powers,

if the Kruskal Rank of CBU is at least 2K. Since kruskal-rank (CBU) ≤ M − 3,

this implies ‖γ‖0 = K < (M − 3)/2 is a sufficient condition for the true sparse γ

to be the unique solution. In practice, by exploiting the fact that γ is non negative,

a larger number of sources may be uniquely recovered. We will study the phase-

transition behavior of `1 minimization algorithms to solve (3.16) to determine such

an empirical relation between K and M .
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Remark 6. The matrix C and the vector h, are only functions of the elements

of covariance matrix Ry, and are not explicit functions of the unknown parameter

δ. The constructive proofs in Appendices A.4 and A.5, demonstrate the details of

eliminating the variable δ from our bi-affine equations.

3.3.3 Robust Coprime Array

In order to eliminate δ from the equations (3.4), we need to have w(k) > 1.

However, in the original coprime array, w(k) = 1 for some values of k. Hence, we

cannot apply our simplifications. Hence, we will consider an extended version of

coprime array, defined as follows.

Definition 3 (Robust Coprime Array). A robust coprime array contains M =

4N1 + 2N2 − 2 sensors, whose normalized locations are given by

{(i− 1)N1, 1 ≤ i ≤ 2N2 + 1} ∪ {(j − 1)N2, 1 ≤ j ≤ 4N1}

In other words, we extend the usual coprime array by doubling the number of

sensors in each ULA. Therefore, we have M = 4N1 + 2N2 − 2 sensors in the robust

coprime array. By adding these additional sensors, we are ensured that every lag

between −N1N2, ..., N1N2 is repeated at least twice. We will use these repetitions

to resolve the unknown perturbations. Moreover, we will discard the lags beyond

the aforementioned range. In the sequel, we will denote M ′
ca = N1N2, representing

the number of positive integers in this range.

Notations and Definitions: For the ease of notation, assume every variable with

superscript (.)(1) to be associated with the first sub-array (with spacing N1), and
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every variable with superscript (.)(2) to be associated with the second sub-array

(with spacing N2). Therefore, we have d
(1)
i = (i − 1)N1, d

(2)
j = (j − 1)N2, where

1 ≤ i ≤ 2N2 + 1, and 1 ≤ j ≤ 4N1. Moreover, let R
(12)
ij denote the covariance

between the received signal on the ith sensor of first ULA and jth sensor of the

second ULA, and R
(21)
ij = (R

(12)
ij )∗. Similarly, R

(1)
ii′ (resp. R

(2)
jj′ ) denotes the covariance

between the received signal on the first (resp. second) sub-array on its ith and i′th

(resp. jth and j′th) sensors. This indexing also holds for δ
(1)
i , δ

(2)
j . We also define

several quantities which will be later used to state our main theorem on robust

coprime array. Firstly, define the quantities

r̄
(1)
i :=

i∑
i′=2

R
(1)
i′,i′−1 (3.17)

r̄
(2)
j :=

j∑
j′=2

R
(2)
j′,j′−1. (3.18)

α :=
2r̄

(2)
N1+1 − r̄

(2)
2N1+1

2r̄
(1)
N2+1 − r̄

(1)
2N2+1

(3.19)

We also define the vectors βcp ∈ CM ′ca and hcp ∈ CM ′ca as follows. From the properties

of the difference set of a coprime array, each index k in the range 1 ≤ k ≤ M ′
ca is

necessarily of one of the following four forms:

k =



d
(1)
i − d

(2)
j , 1 ≤ i ≤ N2, 1 ≤ j ≤ 2N1

d
(2)
j − d

(1)
i , 1 ≤ i ≤ N2, 1 ≤ j ≤ 2N1

d
(1)
i − d

(1)
i′ , 1 ≤ i, i′ ≤ N2

d
(2)
j − d

(2)
j′ , 1 ≤ j, j′ ≤ 2N1

In other words, k can either be a self-difference of sensors belonging to the same sub-

array, or a cross-difference of sensors belonging to different sub-arrays. If k happens
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to be both a self-difference and a cross-difference, we consider k as a self-difference

within its corresponding sub-array. Moreover, if k happens to be a cross-difference

of type k = d
(1)
i − d

(2)
j for some i, j, and also we have k = d

(2)

ĵ
− d(1)

î
for some other

î and ĵ, we consider it as a cross-difference of the former type.

The elements of βcp and hcp are then given as follows. Here, the indices i, i′, j,

and j′ vary over the ranges 1 ≤ i, i′ ≤ N2, 1 ≤ j, j′ ≤ 2N1, and ī = i+N2, j̄ = j+N1.

[βcp]k =



α(R
(12)

īj̄
−R(12)

ij )

α(r̄
(1)

ī
−r̄(1)

i −r̄
(1)
N2+1)−(r̄

(2)

j̄
−r̄(2)

j −r̄
(2)
N1+1)

, k = d
(1)
i − d

(2)
j

−
α(R

(12)

īj̄
−R(12)

ij )∗

α(r̄
(1)

ī
−r̄(1)

i −r̄
(1)
N2+1)−(r̄

(2)

j̄
−r̄(2)

j −r̄
(2)
N1+1)

k = d
(2)
j − d

(1)
i

R
(1)
k+2,2−R

(1)
k+1,1

R
(1)
k+2,k+1−R

(1)
2,1

k 6= N2, k = d
(1)
i − d

(1)
i′

R
(2)
k+2,2−R

(2)
k+1,1

R
(2)
k+2,k+1−R

(2)
2,1

k 6= N1, k = d
(2)
j − d

(2)
j′

(3.20)

[hcp]k =



R
(12)
ij − βkr̄

(1)
i + α−1βkr̄

(2)
j , k = d

(1)
i − d

(2)
j

(R
(12)
ij )∗ + βkr̄

(1)
i − α−1βkr̄

(2)
j k = d

(2)
j − d

(1)
i

R
(1)
i+1,1 − βkr̄

(1)
i k 6= N2, k = d

(1)
i − d

(1)
i′

R
(2)
j+1,1 − βkr̄

(2)
j k 6= N1, k = d

(2)
j − d

(2)
j′

(3.21)

Furthermore, [hcp]N1 = [hcp]N2 = 0. Based upon the above definitions, let us also

define a matrix Ccp ∈ CM ′ca×M ′ca such that [Ccp]k,k = 1, 1 ≤ k ≤ M ′
ca, k 6= N1, N2,

and [Ccp]N1,N1 = [Ccp]N2,N2 = 0. Its remaining entries satisfy:

[Ccp]k,N1 =



−(i− 1)βk, k = d
(1)
i − d

(2)
j

(i− 1)βk, k = d
(2)
j − d

(1)
i

−(i− 1)βk, k = d
(1)
i − d

(1)
i′ , k 6= N1

(3.22)

43



[Ccp]k,N2 =



α−1(j − 1)βk, k = d
(1)
i − d

(2)
j

−α−1(j − 1)βk, k = d
(2)
j − d

(1)
i

−(j − 1)βk, k = d
(2)
j − d

(2)
j′ , k 6= N2

(3.23)

Equipped with the above definitions, we state our main result on robust coprime

arrays as the following theorem:

Theorem 8. For a robust coprime array, the bi-affine formulation (3.4) can be

reduced to Ccpfcp = hcp, where fcp = [f1, f2, · · · , fM ′ca ]T and Ccp ∈ CM ′ca×M ′ca ,hcp ∈

CM ′ca are previously defined. This transformation holds for almost all δ ∈ RM .

Proof. The proof can be found in the A.5.

Remark 7. Recall that fcp = Bcpγ, where the elements of Bcp ∈ CM ′ca,Nθ are given

by [Bcp]m,i = ejmωi. Hence, from Theorem 8, we obtain CcpBcpγ = hcp, which

can admit a unique sparse solution in γ if CcpBcp has Kruskal rank of O(M ′
ca). In

future, we will characterize the exact Kruskal rank of CcpBcp. However, in Sec. 4.3,

we experimentally show that `1 minimization can resolve larger number of sources

for coprime arrays, compared to ULA.

3.4 Computational Complexity of the Proposed Algorithm

In this Section, we investigate the computational complexity of the proposed

algorithm. Our proposed algorithm consists of two stage. In the first stage, we

compute the vector h, and the matrix C. We consider the ULA and coprime arrays
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separately. In the second stage, a linear sparse problem is solved using the obtained

dictionaries from the first stage.

3.4.1 Computational Complexity for the Reduction Stage

3.4.1.1 Computational Complexity for ULA

We can calculate each one of the βk’s in O(1). Hence, calculating all the

βk’s requires O(M) time. Moreover, computation of r̄i only involves a summation.

Hence, calculating all the r̄i, for i = 1, · · · ,M , requires O(M) time. Therefore,

we can compute the matrices C, and h in O(M). Finally, since the matrix C

is very sparse and has only two nonzero elements in each row, the product CBU

needs the time O(NθM). Therefore, the overall algorithm requires the time O(M)+

O(NθM) = O(NθM).

3.4.1.2 Computational Complexity for Robust Coprime Array

In this case, we can calculate r̄
(1)
i , and r̄

(2)
i in O(N1 +N2) = O(M). Moreover,

each element of βk can be again calculated in O(1). However, since k can be as large

as N1N2, it will require the time O(N1N2) to compute all of the βk’s. Therefore,

computing hcp and Ccp can be done in O(N1N2). Finally, since the matrix Ccp has

O(1) nonzero elements in each row, computation of the product CcpBcp requires the

timeO(NθN1N2). Therefore, the overall computations needsO(N1N2)+O(NθN1N2)

time.
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3.4.2 The Overall Computational Complexity

After computing the matrices C,h, we only need to solve the linear sparse

problem. This stage completely depends on the algorithm that we choose. If we use

`1 minimization, it will need O
(
(Nθ)

3) computations. It is also possible to use faster

algorithms like Orthogonal Matching Pursuit (OMP), which needs O(NθK
2) com-

putations [29]. Therefore, the overall computational complexity will be depend on

the algorithm that we choose for solving the sparse problem. If we use `1 minimiza-

tion, the overall needed time will be O
(
(Nθ)

3), and if we use OMP, the algorithm

will need at most O (Nθ(K
2 +M2)) computations.

3.5 Simulations

In this section, we conduct two different sets of numerical experiments to

validate our theoretical claims. In all the simulations, we assume Nθ = 200 points

on the grid. The DOAs are chosen uniformly between −60◦ and 60◦, and assigned

to the closest point on the grid. The perturbations are assumed to be δ = αδ0

(Notice that, following the model given in Section 2.2.1, the sensor locations and

the perturbations are normalized with respect to half of the wavelength λ/2). In all

the simulations, δ0 is a fixed vector with |δ|∞ ≤ 0.5, and is drawn from a uniform

distribution.

In the first set of simulations, we assume that we know the covariance matrix

Ry, and that the model defined in Sec. 3.2 holds exactly. In this case, we use the

approach proposed in the proofs of Theorems 7, and 8 to eliminate the perturba-
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tions and recover the source powers. We compare our method against running `1

minimization on the covariance matrix, assuming that the coarray manifold is un-

perturbed (which will lead to a basis mismatch). In other words, we compare our

approach with the solution of the following problem:

min
γ
‖γ‖1 s.t. Au

ca,0γ = zu

As demonstrated in Fig. 3.2, our approach as described in the proofs of Theorems

1 and 2, exactly recovers the true supports for both ULA and coprime arrays when

K = 10 < M = 32 (The blue line corresponding to the true solution and green

line corresponding to our method, match exactly). When K = 35 > M , ULA

cannot recover the true DOAs, while the robust coprime array perfectly identifies

the support (compare Fig. 3.2(f) and Fig. 3.2(h), where α = 0.5). In the third

experiment, we will empirically study the relationship between K and M (for both

ULA and coprime) that ensures perfect recovery of DOAs in the form of a phase

transition diagram.

In the second set of experiments, we study the phase transition diagram of `1

minimization algorithm applied on the linear underdetermined system of equations

obtained from Theorems 7, 8. In these simulations, we assume that the covariance

matrix is known exactly, i.e., we have infinite number of snapshots. We consider

a trial successful if ‖γ − γ̂‖F ≤ ε, where γ̂ is the recovered vector of powers, and

ε = 10−3. The white pixels in the plots of Fig. 3.3 show the problem settings

under which performing `1 minimization on the linear system derived in Theorems

7, and 8 can always recover the true solution. We simulate each case 100 times
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Figure 3.2: Recovered powers using the approach proposed in Theorems
7, 8. In each plot, X-axis shows the directions on the grid in degrees,
and Y -axis shows the power corresponding to each direction on the grid.
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Figure 3.3: Phase transition plots.

and show the probability of success with a gray-scale pixel. In these plots, we only

show the cases where M is an even number (because the robust-coprime array can

only have even number of sensors). Moreover, for each M , we find N1, N2 such

that M = 4N1 + 2N2 − 2 and N1N2 is the maximum possible number. For coprime

arrays, we find that even in presence of perturbation, white pixels exist in the region

where number of sources is greater than number of sensors. This shows that robust

coprime array is capable of resolving more sources than the number of sensors, even

in the presence of perturbations.

3.6 Conclusion

In this Chapter, we investigated the robustness of coprime arrays to unknown

perturbations on the locations of sensors. We assumed that the perturbations are

small and developed a bi-affine model in terms of the unknown perturbations and

the source powers. We used the redundancies of the difference coarray to eliminate
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the nuisance variables, and reduce the bi-affine problem to a linear underdetermined

(sparse) problem in source powers, which can be solved using `1 minimization. We

derived this reduction for both ULA and a robust version of coprime arrays. Our

simulations showed that if the ideal covariance matrix of the received signals is avail-

able, the source powers can be accurately recovered using our proposed approach,

thereby validating the theoretical claims in Theorems 7 and 8. We also showed

the region (in terms of K and M) under which the bi-affine problem has a unique

solution, in the form of a phase transition diagram.
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Chapter 4: Performance Analysis of Temporal Sampling

4.1 Introduction

In this Chapter we study the problem of temporal sampling, and examine

its robustness to nonideal conditions such as sampling jitter and finite number of

snapshots.

The effect of jitter has been extensively studied in the context of uniform

sampling [30–32]. Jitters usually occur due to inaccuracies of the system clock of

A/D converters at high frequencies. A desirable sampling technique would be one

that is tolerant to jitters as well as to additive noise so that small jitters or noise

would lead only to relatively small reconstruction errors. This is also known as

stability of sampling [33].

However, the existing studies about sampling jitter and perturbations cannot

be applied to the co-prime sampling, This is because, in co-prime sampling the goal

is to reconstruct the autocorrelation sequence whereas in typical sampling problems

the goal is to reconstruct the time domain signal.

The materials presented in this chapter have been published in [10].
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4.2 Temporal Coprime Sampling and Effect of Jitter

The guarantees of coprime sampling [3] (see Section 1.2.1 for a short review)

are shown to hold for ideal conditions such as long observation time for statistical

averaging, and sampling is performed without jitter. We now examine the robustness

of coprime sampling to these non ideal conditions and establish how accurately the

true autocorrelation sequence can be reconstructed in each case.

4.2.1 Studying the Effect of Finite Samples on Correlation Estimates

Let Rx(τ) denote the autocorrelation function (ACF) of a wide-sense sta-

tionary (WSS) random process x(t). The signal x(t) is sampled with a pair of

coprime samplers at the rate 1/MT and 1/NT (M < N) to obtain the samples

xM [n] = x(MnT ) and xN [m] = x(NmT ), where 1/T corresponds to the Nyquist

rate determined by the power spectrum density of x(t). It can be shown [3] that

{E[xM [n]xN [m], 0 ≤ n ≤ N − 1, 0 ≤ m ≤ 2M − 1} generates correlation values

Rx(kT ) for all lags 0 ≤ k ≤MN − 1. Hence, it is possible to obtain samples of the

autocorrelation function at the Nyquist rate (1/T ) by using sub-Nyquist samplers

operating at M and N times slower than the Nyquist rate.

In this section, we study the effect of computing the correlation with finite

samples. The signals obtained from the coprime samplers are:

x1[n, l] = x (nMT + 2MNlT ) (4.1)

x2[m, l] = x (mNT + 2MNlT ) (4.2)
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For the purpose of our analysis we make the following assumptions:

1. (A1): x(nT ) is assumed to be a zero mean jointly Gaussian WSS process

whose autocorrelation Rx(kT ) is assumed to be zero for |k| ≥ 2MN . For

instance, a moving-average (MA) process with order less than or equal to

2MN would satisfy this criterion. In particular, this implies x(nT ) and x(nT+

2MNlT + k) are independent for l, k 6= 0 (since these variables are jointly

Gaussian and uncorrelated).

2. (A2): For each n, the random variables {x(nT + k), |k| < 2MN} are jointly

Gaussian with correlation coefficients given by Rx(kT ), |k| ≤ 2MN .

We will suppress T in our notations. Assumptions (A1) and (A2) imply that

x1[n, l] and x2[n, l] are jointly Gaussian for each n, l satisfying E(x1[n, l]x2[m, l]) =

Rx(Nm−Mn). In practice however, we estimate the autocorrelation sequence using

L such observations as

R̂x(Nm−Mn) =
1

L

L∑
l=1

x1[n, l]x2[m, l] (4.3)

with 0 ≤ n ≤ N−1, and 0 ≤ m ≤ 2M−1. Our goal is to understand how perturation

and effect of finite samples jointly influence the estimation of the correlation values

using coprime samplers. The following theorem explicitly characterizes such an

effect:

Definition 4. Define the functions ζi with respect to parameters a, ρ as

ζi(a, ρ) =

√
2|ci|√

−ρ′ +
√
d2
i + 4ρ′cia

e
−

√
d2
i
+4ρ′cia−di

2ρ′ , (4.4)
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in which i can be either + or −, and c+ = ρ+a, c− = a−ρ, d+ = 1 +ρ2 + 2aρ, d− =

1 + ρ2 − 2aρ, ρ′ = 1− ρ2.

Theorem 9. Under assumptions (A1) and (A2) on x(t), for each k = Nm −

Mn, 0 ≤ n ≤ 2M − 1, 0 ≤ m ≤ N − 1, the autocorrelation R̂x[k] estimated using L

samples, differs from the actual autocorrelation Rx(k) as

P
(
|R̂x(k)−Rx(k)| > ε

)
≤
(
ζ+(

ε

Rx(0)
,
Rx(k)

Rx(0)
)

)L
+

(
ζ−(

ε

Rx(0)
,
Rx(k)

Rx(0)
)

)L
(4.5)

where we have 0 ≤ ζ+(a, ρ), ζ−(a, ρ) < 1 for a > 0.

Proof. SinceRx(k) = 0, |k| ≥ 2MN samples, the random variables zmn[l] , x1[n, l]x2[m, l], l =

1, 2, · · ·L are jointly Gaussian and uncorrelated, and hence independent. Also,

E((x1[n, l])2) = E((x2[m, l])2) = Rx(0), and E(x1[n, l]x2[m, l]) = Rx(Nm −Mn).

Using Chernoff bound on R̂x[Nm−Mn] = 1
L

∑L
l=1 zmn[l] (See Appendix B), we can

obtain the concentration inequality (4.5), in which we substituted a with ε/Rx(0),

and ρ with Rx(Mn−Nm)/Rx(0).

The result shows that under the assumption that Rx(k) is a finite sequence

(x(t) is a MA process), the probability of large deviation of R̂x(k) from its mean

decays exponentially in L. The simulations in Fig. 4.2 experimentally show the

tightness of bound for large L.
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4.2.2 Robustness to the Perturbation in Sampling Instants

In order to study the effect of random jiter (or perturbation in sampling in-

stants), we consider a specific class of WSS signals whose spectrum consists of lines,

representing frequencies of sinusoids buried in noise. We study this case owing to

the possibility of obtaining closed form expressions for the contribution of jitter

on the estimated autocorrelation sequence. This model is similar to that of DOA

estimation using sensor arrays. However, unlike our earlier analysis, (i) we do not

consider a grid based model, and (ii) we treat the jitter as a random variable, that

takes independent values at each sampling instant.

Recall the model defined in Section 1.2.1, where we have a signal x(t) =∑K
k=1 Ake

(2πfkt+φk), with uniformly distributed phases φk. The signal is sampled

using two A/D converters operating at rates 1
MT

and 1
NT

, in which 1/T = 2fmax is

the Nyquist rate, yielding

x1[n] =
K∑
k=1

Ake
ωkMn+φk + zn (4.6)

x2[m] =
K∑
k=1

Ake
ωkNm+φk + zm, (4.7)

where ωk = 2πfkT .

Now, assume that due to imperfections of the A/D converters, the samples are
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picked with a random jitter. The perturbed samples can then be written as

x̃1[n] =
K∑
k=1

Ake
ωk(Mn+δ1[n])+φk + zn (4.8)

x̃2[m] =
K∑
k=1

Ake
ωk(Nm+δ2[m])+φk + zm, (4.9)

where δ1[n], δ2[m] are i.i.d random variables distributed uniformly in [−ρ
2
, ρ

2
]. In this

case, we can write ỹ[k] as

ỹ[l] =
K∑
k=1

ãk[l]e
2MNl+φk . (4.10)

Here, ãk[l] = a(ωk) ◦ pk[l], where ◦ denotes the element-wise product, and pk[l] =

[eωkδ1[2Nl] eωkδ1[2Nl+1] . . . eωkδ1[2Nl+N−1] eωkδ2[2Ml]

eωkδ2[2Ml+1] . . . eωkδ2[2Ml+2M−1]]T is a vector consisting of the samples of δ1[n] and

δ2[m] constructed the same way y is composed of the elements of x1[n] and x2[m].

The perturbed autocorrelation matrix is given by the following theorem.

Theorem 10. In the presence of random jitter in the sampling, the perturbed au-

tocorrelation matrix is given by

R̃y =
K∑
k=1

A2
kB(ωk) ◦ Ek + σ2I (4.11)

where Ek is a matrix with ones on the diagonal and sinc2(ωkρ/2) elsewhere.

Proof. The perturbed autocorrelation matrix is obtained by

R̃y = E
(
ỹ[l]ỹH [l]

)
= Eδ

(
K∑
k=1

A2
kB̃k[l] + σ2I

)
,

where B̃k[l] = ãk[l]ã
H
k [l] and B̃k[l] can be written as B̃k[l] = B(ωk) ◦ Pk[l] with

Pk[l] = pk[l]p
H
k [l]. The diagonal elements of the matrix Pk[l] are all 1 and the off
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diagonal elements are of the form eωkβrs[l], 1 ≤ r, s ≤ N + 2M − 1, r 6= s, in which

βrs[l] is the difference of two independent random variables with uniform distribution

in [−ρ
2
ρ
2
]. As a result, the pdf of βrs[l] will be a triangular function spanning from

−ρ to ρ:

fβrs[l](β) =


1

ρ2
(ρ+ β) β < 0

1

ρ2
(ρ− β) β ≥ 0

Hence, with integration we obtain Eδ(e
ωkβrs[l]) =

(
sin(ωkρ/2)
ωkρ/2

)2

, sinc2(ωkρ/2). This

leads to (4.11) in which Ek is a matrix with ones on the diagonal and sinc2(ωkρ/2)

elsewhere.

Corollary 3. Let ρωk � 1 for all k. The deviation of perturbed autocorrelation

matrix R̃y from the ideal autocorrelation matrix Ry is given by

‖Ry − R̃y‖F ≤ (N + 2M − 1)
ρ2

12

√√√√K
K∑
k=1

A4
kω

4
k (4.12)

Proof. Using (4.11), we obtain Ry − R̃y =
∑K

k=1 A
2
kB(ωk) ◦ (1− Ek) in which

1 ∈ C(N+2M−1)×(N+2M−1) is an all-ones matrix. Each off-diagonal element of Ry−R̃y

can be upper-bounded by

∣∣∣∣(Ry − R̃y

)
r,s

∣∣∣∣2 ≤ K

K∑
k=1

A4
k

(
1− sinc2(

ρωk
2

)
)2

,

and the diagonal entries of Ry − R̃y are obviously equal to zero. Hence, we imme-

diately get

‖Ry − R̃y‖F ≤ (N + 2M − 1)

√√√√K

K∑
k=1

A4
k

(
1− sinc2(

ρωk
2

)
)2
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Using the assumption ρωk � 1 for all k, we can approximate 1− sinc2(ρωk
2

) as
ρ2w2

k

12

to obtain (4.12).

4.3 Simulations

In this Section, we study the bounds derived in Section 4.2, and compare them

with empirical results. In the first experiment, we study the bound given in equation

(4.11). Figure 4.1(a) (left) shows the deviation of the autocorrelation matrix (‖Ry−

R̃y‖F/‖Ry‖F ) due to perturbations in sampling instants calculated using equation

(4.11). For this experiment, we use an estimated value for R̃y using L samples.

We choose M = 3, N = 7, L = 500 and consider 10 sinusoids with frequencies

uniformly distributed between 10Hz and 200Hz. The deviation is plotted for the

sample autocorrelation matrix (computed using L = 500 samples) and compared

against the bound derived in (4.11).The empirical values match with the theoretical

bound. The plot in Figure 4.1(b) (right) illustrate this deviation versus the number

of samples L, for fixed values of ρ. As we increase L, the empirical values get close

to the expected covariance matrices.

In the second experiment, we examine the upper bound given in Theorem 9.

We pick the coprime numbers M = 5, N = 7. We consider a finite impulse response

(FIR) filter with triangular shaped impulse response h[n], non zero between time

instants 0 and 29. We generate a WSS moving average (MA) process by passing

i.i.d white Gaussian noise through this filter. This choice ensures the autocorrelation
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sequence is zero beyond 2MN = 70 as required by assumption (A1). Hence, the

bounds of Theorem 9 should be applicable for such a signal, which is validated

experimentally. We consider the lag k = 7 and set ε = 0.13 × Rx(0). We conduct

Nruns = 1000 Monte Carlo simulations to generate different instances of sample

autocorrelation R̂x(k) and empirically estimate the probability of the event |Rx(k)−

R̂x(k)| > ε. Figure 4.2 compares the empirical probability with the upperbound

given in Theorem 9. The bound becomes tighter for larger values of L, and validates

our claim that the error decays exponentially.
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Figure 4.1: Effect of jitter on autocorrelation estimation with coprime
arrays. The symbol ε represents the deviation ‖Ry − R̃y‖F/‖Ry‖F for
the ideal value of the perturbed autocorrelation, while ε̂ is the same
quantity for the estimated autocorrelation, computed using L samples.

4.4 Conclusion

In this Chapter, we studied the effects of additive perturbation and jitter in

coprime sampling. We showed that such non idealness in sampling leads to errors in
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Figure 4.2: The empirical probability of the event |R̂x(k) − Rx(k)| >
εRx(0) with k = 7 and ε = 0.13, compared with the upper bound derived
in Theorem 9. R̂x(k) is the sample autocorrelation sequence of a moving-
average process of order 29. Thus, Rx(k) is zero for k ≥ 2MN .

the estimated correlation which can be bounded under certain mild assumptions on

the spectrum of the underlying WSS process. The robustness of coprime sampling

is thereby established for a generic class of WSS signals, as well as for line spectrum

processes, under small values of the perturbation.
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Chapter 5: Conclusion and Future Work

5.1 Concluding Remarks

In this thesis, we studied the effects of perturbations and finite sample on the

performance of coprime and nested sensing, in both spatial and temporal domains.

For DOA estimation with spatial sensor arrays, the perturbations cause uncertainty

in sensor locations and we treated them as unknown deterministic parameters of the

problem. We established verifiable conditions under which the FIM is guaranteed

to be non singular for such a model. For nested arrays with M sensors, continues

to be non singular without assuming sparsity as a prior, as long as the grid size is

O(M2).

We also studied the case where the perturbations are small, and we developed

a bi-affine model in terms of the unknown perturbations and the source powers. We

used the redundancies of the difference coarray to eliminate the nuisance variables,

and reduce the bi-affine problem to a linear underdetermined (sparse) problem in

source powers, which can be solved using `1 minimization. We derived this reduction

for both ULA and a robust version of coprime arrays.

In the context of temporal sampling, we studied the effects of random sampling

jitters, as well as finite number of samples on the estimated autocorrelation, and
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examined the robustness of coprime sampling to these imperfections. Our theoretical

guarantees are well supported by numerical experiments.

5.2 Future Work

In future, we will extend the analysis framework to more general paramet-

ric spectrum estimation techniques. We will also investigate the trade-off between

latency, estimation error and sampling rates. Furthermore, we will consider non

Gaussian signal models (which can be applicable for speech processing applications),

and extend our current analysis framework.
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Appendix A: Proofs

A.1 Proof of Theorem 2

First, let us define some notations which will be used in the proof.

Definition 5. Let Āca,0 ∈ CMca×Nθ be the matrix constructed from Aca,0 by remov-

ing the repeated rows and sorting them in order such that first row coresponds to

difference of −Mca−1
2

and last row corresponds to difference of Mca−1
2

.

Notice that the difference between Au
ca,0 and Āca,0 is that for Āca,0 we also keep

the zero and negative lags of the co-array.

Recall from Theorem 1 that non singularity of J is equivalent to B = [Aca,0 Hδ]

being full column rank. Our proof technique involves deriving sufficient conditions

under which B has full column rank. Denote H̃δ = [vec(Rδ1)) vec(Rδ2)) · · · vec(RδM ))].

Recall that Hδ = (H̃δ):,2:M , i.e., the matrix comprised by the last M − 1 columns of

H̃δ. After establishing that both Hδ and Aca,0 have full column rank, we establish

that there exists no intersection between the column spaces of H̃δ and Aca,0. Then

it directly follows that the column spaces of Hδ and Acaz do not intersect as well,

thereby proving that B is full column-rank.

Notice that every column of H̃δ is a vectorized form of the matrices Rδi where
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Rδi ,
∂Ry

∂δi
= ARxD

H
δi

+ DδiRxA
H , and Dδi = ∂A

∂δi
.

However, the matrix Rδi is only supported on its ith column and its ith row.

Hence, vec(Rδi) is supported only on very specific rows as follows

(
H̃δ

)
q,r

=



λr,s q = (s− 1)M + r, 1 ≤ s ≤M, s 6= r

− λs,r q = (r − 1)M + s, 1 ≤ s ≤M, s 6= r

0 else

(A.1)
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Accordingly, H̃δ ∈ CM2×M can be written as

0 0 0 · · · 0 0

λ2,1 −λ2,1 0 · · · 0 0

λ3,1 0 −λ3,1 · · · 0 0

...
... · · · . . .

...
...

λM−1,1 0 0 · · · −λM−1,1 0

λM,1 0 0 · · · 0 −λM,1

−λ1,2 λ1,2 0 · · · 0 0

0 0 0 · · · 0 0

0 λ3,2 −λ3,2 · · · 0 0

0
... · · · . . .

...
...

0 λM−1,2 0 · · · −λM−1,2 0

0 λM,2 0 · · · 0 −λM,2

...
...

...
...

...
...

...
...

...
...

...
...

−λ1,M 0 0 · · · 0 λ1,M

0 −λ2,M 0 · · · 0 λ2,M

0 0 −λ3,M · · · 0 λ3,M

0
... · · · . . .

...
...

0 0 0 · · · −λM−1,M λM−1,M

0 0 0 · · · 0 0


where λr,s =

∑Nθ
k=1 γk

2πk
Nθ
e
 2πk
Nθ

(dr−ds), for all 1 ≤ r, s ≤ M , s 6= r. Moreover, let

λ(m) = λr,s, for dr − ds = m. It can be verified that, λ(m) = −λ∗(−m).
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Lemma 1. For almost all γ ∈ RNθ , Hδ has full column rank.

Proof. For almost all γ ∈ RNθ we have λr,s 6= 0 for 1 ≤ r, s ≤ M . This is because

λr,s = 0 describes a linear relation between the elements of γ, which holds only for

a set of measure zero in RNθ . Thus, looking at the rows 2 through M of Hδ (or

equivalently, at (H̃δ)2:M,2:M), we have a diagonal matrix with nonzero numbers on

the diagonal, for almost all γ. Therefore, Hδ has rank M −1, i.e., Hδ is full column

rank for almost all γ.

Observe that

λ(m+Nθ) =

Nθ∑
k=1

γk
2πk

Nθ

e
 2πk
Nθ

(m+Nθ)

=

Nθ∑
k=1

γk
2πk

Nθ

e
 2πk
Nθ

m
= λ(m).

Similarly, the (m+Nθ)th row of Āca,0 is equal to its mth row. We will use this fact

throughout the proof.

Since Aca,0 is full column rank as long as Nθ ≤ Mca, and Hδ is full column

rank for almost all γ (Lemma 1), the only way for B to be column rank deficient is

when there exist non zero α ∈ CNθ , β̃ ∈ CM−1 such that

Aca,0α = Hδβ̃. (A.2)

We first show that there exist no α 6= 0 and β 6= 0 such that Aca,0α = H̃δβ.

This will, in particular imply non existence of non zero α and β̃ such that ((A.2))

holds. We prove this by contradiction, i.e. let us assume there exist nonzero α ∈

CNθ , β ∈ CM satisfying Aca,0α = H̃δβ. This means that for every 1 ≤ r, s ≤M we

have
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βr − βs =

∑Nθ
k=1 αke

 2πk
Nθ

m

λ(m)

:= fα(m), (A.3)

for dr − ds = m.

In a ULA, we have di−di−1 = 1. Thus, βi−βi−1 = fα(1) for 2 ≤ i ≤M . This

implies that

βi = β1 + (i− 1)fα(1)

Upon substitution in (A.2) and using the definition of fα(m) from (A.3), we obtain

Āca,0α = fα(1)×



−(M − 1)λ(−M+1)

...

−λ(−1)

0

λ(1)

...

(M − 1)λ(M−1)



:= c (A.4)

We notice that fα(1) 6= 0. Otherwise, we would have had Āca,0α = 0, implying

α = 0, which contradicts the fact that α 6= 0.

For simplicity, we index the rows of (A.4) from −(M − 1) to M − 1. Let

p = −(M − 1). From (A.3)

fα(p) =

∑Nθ
k=1 αke

2πpk/Nθ

λ(p)

= p, (A.5)

Notice that fα(p+Nθ) = fα(p). Also, since Nθ ≤ 2M − 2, p+Nθ ≤M − 1 and we
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can consider the (p+Nθ) th row to obtain

fα(p+Nθ) =

∑Nθ
k=1 αke

2π(p+Nθ)k/Nθ

λ(p+Nθ)

= p+Nθ

⇒ fα(p) =

∑Nθ
k=1 αke

2πpk/Nθ

λ(p)

= p+Nθ (A.6)

However, (A.5) and (A.6) cannot hold at the same time since p+Nθ 6= p. Therefore,

the range spaces of Aca,0 and Hδ do not coincide except for the zero vector. Using

the facts that Hδ is full column rank for almost all γ, Aca,0 is full column rank for

Nθ ≤ 2M − 1, and the range spaces of Aca,0 and Hδ do not intersect as long as

Nθ ≤ 2M − 2, we conclude that B has full column rank for almost all γ and δ as

long as Nθ ≤ 2M − 2.

A.2 Proof of Theorem 3

Proof. We prove for a slightly modified version of the nested array which is defined

in (2.14).

We follow the same lines of proof of Theorem 2 upto (A.3) since the argument

upto this point applies to any array geometry. For a nested array, the explicit

structure of the vector Hδβ will be quite different and we now examine it more

closely. We use the same definition for fα(m) as in (A.3).

Let fα(m) be defined as in (A.3). Assuming M to be an even number, for a

modified nested array which is defined in (2.14), we have

βi − βi−1 = fα(1),
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for 2 ≤ i ≤ M
2

+ 1, therefore

βi = β1 + (i− 1)fα(1). (A.7)

Moreover, we have

βM
2

+1 − β1 = fα(
M

2
) (A.8)

βM
2

+i − βM
2

+i−1 = βM
2

+1 − β1 = fα(
M

2
), (A.9)

for i = 2, · · · , M
2

. Hence, we get

βM
2

+i = β1 + fα(
M

2
)i.

From (A.7) and (A.8), we get M
2
fα(1) = fα(M

2
).

Therefore, we have

c := Āca,0α = fα(1)×



−M2

4
λ(−M2/4)

...

−2λ(−2)

−λ(−1)

0

λ(1)

2λ(2)

...

M2

4
λ(M2/4)


Similar to the proof of Theorem 2, index the rows as −M2/4 to M2/4 and

consider the pth row and the (p + Nθ)th row to conclude that (A.5) and (A.6)
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cannot hold simultaneously, unless fα(1) = 0. Choosing p = −M2/4 is sufficient

for our argument, since we only need to ensure that the (p+Nθ)th row falls within

range, i.e. p+Nθ = −M2/4 +Nθ ≤M2/4, which obviously holds since we assumed

Nθ ≤M2/2.

A.3 Proof of Theorem 5

Proof. Due to Theorem 1, in order to ensure that the FIM is invertible, we only

need to show that B = [Aca Hδ] is full column rank. A sparse γ only changes the

explicit form of Hδ since the entries λ(m) of Hδ are now given by:

λ(m) =
K∑
k=1

γjkωjke
mdωjk ,

where jk indicates the index of the kth nonzero element of γ, and wjk denotes its

corresponding spatial frequency on the grid. As in the proofs of Theorems 2, 3, B

is of full column rank if Aca and Hδ are full column rank and there exist no non

zero α, β̃ such that Acaα = Hδβ̃. The proof for non existence of non zero α and β

follow the same lines as earlier. However, we only need to establish conditions for

full column rank of Hδ. As argued in the proof of Theorem 2, the structure of Hδ

in (A.1) dictates that it has full column rank M − 1 for almost all sparse γ with

‖γ‖0 = K, if λ(m) is nonzero for every 0 ≤ m ≤ Mca. Let γ̃ = [γj1 , · · · ,γjK ]. We

see that λ(m) = 0 for a particular m describes a linear relation between the elements
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of γ̃:

0 =
K∑
k=1

γ̃kωjke
mdωjk

Hence, γ̃ has a measure zero in RK . Hence, for almost all K-sparse γ, λ(m) 6= 0.

This implies that Hδ has full column rank, and we can repeat the rest of the proofs

of Theorems 2, 3 to establish that J is non singular for almost all K− sparse

γ ∈ RNθ , ‖γ‖0 ≤ K.

A.4 Proof of Theorem 7

Proof. Let k, ik be integers such that 1 ≤ k ≤ M − 2 and 1 ≤ ik ≤ M − k − 1. We

have

Rik+k+1,ik+k = f1 + λ1(δik+k+1 − δik+k) (A.10)

Rik+1,ik = f1 + λ1(δik+1 − δik) (A.11)

Similarly,

Rik+k+1,ik+1 = fk + λk(δik+k+1 − δik+1) (A.12)

Rik+k,ik = fk + λk(δik+k − δik) (A.13)

Subtracting (A.10) from (A.11), and also (A.12) from (A.13) we obtain

βk =
Rik+k+1,ik+1 −Rik+k,ik

Rik+k+1,ik+k −Rik+1,ik

=
λk
λ1

(A.14)

Here, we assumed that δ ∈ RM is such that

δik+k+1 − δik+k − δik+1 + δik 6= 0, (A.15)
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This can be violated only on a set of measure zero in RM . Hence, the following

results will hold for almost all δ.

Notice that for a fixed k, different instances of equation (A.14) corresponding

to different values of ik in the range 1 ≤ ik ≤ M − k − 1 are actually identical, as

long as the observed covariance matrix is exact, and the assumption (A.15) holds

for all ik. Hence, in the sequel, we will assume ik = 1.

From and (3.9) and (3.10), we can verify that

r̄k = kf1 + λ1(δk+1 − δ1) (A.16)

From (A.13), (A.16) we get, for 2 ≤ k ≤M − 2,

βk (kf1 − r̄k) = fk −Rk+1,1

which can be expressed as

Ck−1,1f1 + Ck−1,kfk = hk−1, 2 ≤ k ≤M − 2 (A.17)

where Ck−1,1, Ck−1,k, and hk−1 are given in (3.13), (3.14), and (3.15). We can express

(A.17) in a more compact and explicit form as

Cf = h (A.18)

in which

C =



C1,1 C1,2 0 · · · 0

C2,1 0 C2,3 · · · 0

...
... · · · . . .

...

CM−3,1 0 0 · · · CM−3,M−2


h = [h1 h2 · · · hM−3]T
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A.5 Proof of Theorem 8

Proof. It can be easily verified that

r̄
(1)
i = (i− 1)fN1 + (δ

(1)
i − δ

(1)
1 )λN1 (A.19)

r̄
(2)
j = (j − 1)fN2 + (δ

(2)
j − δ

(2)
1 )λN2 (A.20)

For each lag k, one of the following four possibilities can happen: 1) k =

d
(1)
i − d

(2)
j , 2) k = d

(2)
j − d

(1)
i , 3) k = d

(1)
i − d

(1)
i′ , 4) k = d

(2)
j − d

(2)
j′ .

1. k = d
(1)
i − d

(2)
j : We consider the case where the lag k is generated taking the

difference between the ith sensor from the first sub-array and the jth sensor

from the second sub-array.

Since, we have doubled the number of sensors of each ULA, for each 1 ≤ i ≤

N2, and 1 ≤ j ≤ 2N1 so that d
(1)
i − d

(2)
j = N1i−N2j = k, the sensors indexed

by ī = i+N2, j̄ = j+N1 also create the same lag k. Therefore, we can rewrite

the equations (A.19) and (A.20) for ī, j̄. Subtracting those equations from

(A.19) and (A.20), we get

r̄
(1)

ī
− r̄(1)

i = N2fN1 + (δ
(1)

ī
− δ(1)

i )λN1 (A.21)

r̄
(2)

j̄
− r̄(2)

j = N1fN2 + (δ
(2)

j̄
− δ(2)

j )λN2 (A.22)
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We also know that

R
(12)
ij = fk + (δ

(1)
i − δ

(2)
j )λk (A.23)

R
(12)

īj̄
= fk + (δ

(1)

ī
− δ(2)

j̄
)λk (A.24)

We know that the (N2 + 1)th element of the first ULA, and the (N1 + 1)th

element of the second ULA happen to be the same sensor on the coprime array

(both at the normalized location N1N2). For this particular sensor, we can

write equations (A.19) and (A.20).

r̄
(1)
N2+1 = N2fN1 + (δ

(1)
N2+1 − δ

(1)
1 )λN1 (A.25)

r̄
(2)
N1+1 = N1fN2 + (δ

(2)
N1+1 − δ

(2)
1 )λN2 (A.26)

where δ
(1)
N2+1 = δ

(2)
N1+1 since they are the same sensor, and also δ

(1)
1 = δ

(2)
1 for

the same reason.

We can write similar equations for (2N2 +1)th sensor of first ULA, and (2N1 +

1)th sensor of second ULA, which again happen to be the same sensor.

r̄
(1)
2N2+1 = 2N2fN1 + (δ

(1)
2N2+1 − δ

(1)
1 )λN1 (A.27)

r̄
(2)
2N1+1 = 2N1fN2 + (δ

(2)
2N1+1 − δ

(2)
1 )λN2 , (A.28)

in which δ
(1)
2N2+1 = δ

(2)
2N1+1.

From (A.25), (A.26), (A.27), (A.28), we get

2r̄
(2)
N1+1 − r̄

(2)
2N1+1

λN2

=
2r̄

(1)
N2+1 − r̄

(1)
2N2+1

λN1

(A.29)
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and from equation, we obtain (3.19)

α =
λN2

λN1

=
2r̄

(2)
N1+1 − r̄

(2)
2N1+1

2r̄
(1)
N2+1 − r̄

(1)
2N2+1

From equations (A.23), (A.24) from (A.21), (A.22), we get

δ
(1)

ī
− δ(2)

j̄
− δ(1)

i + δ
(2)
j =

r̄
(1)

ī
− r̄(1)

i −N2fN1

λN1

−
r̄

(2)

j̄
− r̄(2)

j −N1fN2

λN2

=
R

(12)

īj̄
−R(12)

ij

λk
,

whereby (3.20) follows, where [βcp]k := λk
λN1

.

Now, using (A.19), (A.20), we can write

δ
(1)
i − δ

(2)
j =

r̄
(1)
i − (i− 1)fN1

λN1

−
r̄

(2)
j − (j − 1)fN2

αλN1

and

R
(12)
ij = fk + βk(r̄

(1)
i − (i− 1)fN1 − (r̄

(2)
j − (j − 1)fN2)α−1) (A.30)

which is linear in terms of elements of f , and hence it is linear in terms of γ. By

varying the indices i and j in the range 1 ≤ i ≤ N2 and 1 ≤ j ≤ 2N1 in (A.30),

we obtain the corresponding rows of the system of equations Ccpf = hcp.

2. k = d
(2)
j − d

(1)
i :

In this case, (A.23), (A.24) should be rewritten as

(R
(12)
ij )∗ = R

(21)
ji = fk + (δ

(2)
j − δ

(1)
i )λk (A.31)

(R
(12)

īj̄
)∗ = R

(21)

j̄ī
= fk + (δ

(2)

j̄
− δ(1)

ī
)λk (A.32)
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We can repeat the math accordingly to get

(R
(12)
ij )∗ = fk + βk((r̄

(2)
j − (j − 1)fN2)α−1

− (r̄
(1)
i − (i− 1)fN1))

3. k = d
(1)
i −d

(1)
i′ and k = d

(2)
j −d

(2)
j′ : These cases can be handled similar to ULA,

following the same lines of math as in the proof of Theorem 7.
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Appendix B: Chernoff Bound

Following [34], the moment generating function of product of two zero mean

correlated Gaussian variables with unit variance is given by

My(t) =
1√

(1− ρ+t)(1 + ρ−t)
, − 1

ρ−
< t <

1

ρ+
(B.1)

in which Y = X1X2, and X1, X2 are the Gaussian variables, ρ+ = 1 + ρ, and

ρ− = 1 − ρ where ρ = E(X1X2). Moreover, assuming that we have L independent

such Y variables, we can derive a Chernoff bound

P (| 1
L

L∑
l=1

Yl − ρ| > a) ≤ (ζ+(a, ρ))L + (ζ−(a, ρ))L , (B.2)

in which we have

ζ+(a, ρ) = inf
t>0

{
e−(a+ρ)tMy(t)

}
(B.3)

ζ−(a, ρ) = inf
t<0

{
e−(ρ−a)tMy(t)

}
. (B.4)

Taking the derivatives with respect to t, equating with zero subject to the constraints

t+ > 0 and t− < 0 and − 1
ρ−
< ti <

1
ρ+ , we get

t∗i = ±
−di +

√
d2
i + 4ρ′cia

2ciρ′
(B.5)

in which i can be either + or −, and c+ = ρ + a, c− = a − ρ, d+ = 1 + ρ2 +

2aρ, d− = 1 + ρ2 − 2aρ, ρ′ = 1 − ρ2, and we assign the + sign of the ± in (B.5) to

t∗+ and the − sign to t∗−.
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We substitute t∗i in (B.3) and (B.4) to get (4.4).

It can be further verified that ∂ζi(a,ρ)
∂a

< 0 for a > 0, and ζi(0, ρ) = 1. Hence,

ζi < 1 for a > 0. Therefore, the RHS of (B.2) decays exponentially with respect to

L.
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