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This thesis aims to understand how cells coordinate their motion during 

collective migration. As previously shown, the motion of individually migrating cells 

is governed by wave-like cell shape dynamics. The mechanisms that regulate these 

dynamic behaviors in response to extracellular environment remain largely unclear. I 

applied shape dynamics analysis to Dictyostelium cells migrating in pairs and in 

multicellular streams and found that wave-like membrane protrusions are highly 

coupled between touching cells. I further characterized cell motion by using principle 

component analysis (PCA) to decompose complex cell shape changes into a serial 

shape change modes, from which I found that streaming cells exhibit localized 

anterior protrusion, termed front narrowing, to facilitate cell-cell coupling.  

I next explored cytoskeleton-based mechanisms of cell-cell coupling by 

measuring the dynamics of actin polymerization. Actin polymerization waves 

observed in individual cells were significantly suppressed in multicellular streams. 

Streaming cells exclusively produced F-actin at cell-cell contact regions, especially at 

cell fronts. I demonstrated that such restricted actin polymerization is associated with 



  

cell-cell coupling, as reducing actin polymerization with Latrunculin A leads to the 

assembly of F-actin at the side of streams, the decrease of front narrowing, and the 

decoupling of protrusion waves.  

My studies also suggest that collective migration is guided by cell-surface 

interactions. I examined the aggregation of Dictyostelim cells under distinct 

conditions and found that both chemical compositions of surfaces and surface-

adhesion defects in cells result in altered collective migration patterns. I also 

investigated the shape dynamics of cells suspended on PEG-coated surfaces, which 

showed that coupling of protrusion waves disappears on touching suspended cells.  

These observations indicate that collective migration requires a balance 

between cell-cell and cell-surface adhesions. I hypothesized such a balance is reached 

via the regulation of cytoskeleton. Indeed, I found cells actively regulate cytoskeleton 

to retain optimal cell-surface adhesions on varying surfaces, and cells lacking the link 

between actin and surfaces (talin A) could not retain the optimal adhesions. On the 

other hand, suspended cells exhibited enhanced actin filament assembly on the 

periphery of cell groups instead of in cell-cell contact regions, which facilitates their 

aggregation in a clumping fashion.  
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Chapter 1: Introduction 

 

 

In this thesis, I study the motility and migration of the eukaryote 

Dictyostelium discoideum from a biophysical perspective. Cell migration is a 

ubiquitous phenomenon. Many types of cell migration, such as wound healing, tissue 

formation, and development of organisms, involve the collective migration of 

attached groups of cells. Collectively migrating cells require the ability to sense 

multiple external signals, either from extracellular substrates or from neighboring 

cells. Cells respond to these signals by actively regulating their cytoskeletons and 

subsequent motions, both of which have been shown to exhibit wave-like dynamics. 

The scope of this thesis is to understand how these wave-like behaviors are regulated 

by various guidance cues from external substrates and neighboring cells during 

collective cell migration.  

 

1.1 Overview of Cell Migration 

Cell migration has been observed from the early days of microscopy 

development in the 17th century, and it is found to be a ubiquitous phenomenon that 

occurs in all eukaryotic organisms for at least a small time window during their life 

spans. Some cells, such as leukocytes, maintain the ability to migrate throughout their 
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life (Figure 1.1A). On the other hand, other cells are motile during only part of their 

life spans. For example, primordial cells migrate to form the nervous system during 

embryo development and lose their motility afterward (Figure 1.1B) (Matsuda & 

Chitnis 2010). Some cells, as described in many cancer metastasis cases, are initially 

immotile and then gain the ability to migrate following certain events (Figure 1.1D) 

(Hanahan & Weinberg 2011). Examples of cell migration are shown in Figure 1.1, 

including neutrophils, primordial cells, endothelial cells and cancer cells (Vitorino et 

al. 2011; Alexander et al. 2008). 

 

Figure 1.1 - Examples of Cell Migration. (A) A neutrophil migrates through a field of 

red blood cells, chasing after a bacterium (Staphylococcus aureus). (A snapshot from a 

youtube movie that was originally taken by David Rogers, Vanderbilt University in the 

1950s.) The image is reproduced under the CC BY License. (B) Posterior lateral line 

primordial cells migrate in cohesive clumps during the development of the 

mechanosensory lateral line organ in a Zebrafish. (Courtesy of Deborah Hemingway, 

Biophysics Program at Univeristy of Maryland.) (C) A sheet of endothelial cells (gray) 

collectively migrates to close a gap (black) during wound healing. The image is 

reproduced from (Vitorino et al. 2011) with permission. (D) Tumor cells migrate out of 

a primary tumor either individually or collectively to invade neighboring tissue. The 

image is reproduced from (Alexander et al. 2008) with permission. 

 

Cells migrate to carry out key biological functions from tissue formation and 
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organ development to the immune responses, wound healing, and cancer metastasis 

(Lauffenburger & Horwitz 1996; Matsuda & Chitnis 2010; Hanahan & Weinberg 

2011). Different types of cells migrate within distinct contexts to fulfill their 

functions. Leukocytes can migrate within blood vessels as well as tissues to reach 

infection sites. Epithelial cells, however, can only migrate on the surfaces of tissues 

and organs.  

Overall, cell migration occurs in vivo in 3D tissue environments or within the 

circulatory system, where cells are exposed to complex surrounding environments 

composed of the extracellular matrix and various types of cells. Depending on cell 

types and cues from the micro-environment, migrating cells exhibit distinct migratory 

phenotypes.  Cell migration can be classified into individual and collective migration. 

As shown in Figure 1.2 (top half), individually migrating cells adopt different 

migration modes, which are reflected in distinct cell morphologies, including 

amoeboid mode, mesenchymal mode, and blebbing mode (Lauffenburger & Horwitz 

1996; Friedl & Wolf 2010; Yoshida & Soldati 2006). Collectively migrating cells 

form direct cell-cell contacts and form multicellular groups that sometimes migrate 

with stream-like or strand-like patterns as illustrated in Figure 1.2 (bottom half) 

(Friedl & Wolf 2010). The migratory manners that cells adopt within different types 

of collective migration patterns have yet to be fully understood.  
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Figure 1.2 Cells Exhibit Distinct Morphologies and Migratory Phenotypes. Cells 

migrate through crowded environment contacting with extracellular matrix and other 

cells during collective migration. The image is reproduced from (Friedl & Wolf 2010) 

with permission. 

 

Leukocytes, dendritic cells, and Dictyostelium cells are typical amoeboid cells; 

fibroblasts and neural crest cells are typical mesenchymal cells; endothelial and 

epithelial cells are typical collectively migrating cells. However, after losing cell-cell 

adhesion, epithelial cells can individually exhibit mesenchymal migration, a process 

termed epithelial-mesenchymal transition (Thiery 2002). In addition, mesenchymal-

like cancer cells can convert to the amoeboid type via mesenchymal-amoeboid 

transition (Friedl & Wolf 2003). Although migratory phenotypes are distinct in 

pseudopod generation, cell-substrate interaction, and migration speed, they are related 
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and can interconvert under certain circumstances depending on the cell states and 

external environmental cues. This is because they use similar cytoskeleton-based 

migratory machineries that can be regulated in response to external signals (Keren et 

al. 2008; Farooqui & Fenteany 2005; Friedl & Wolf 2003). 

 

1.2 Cell Motion and Cytoskeletal Mechanisms 

A typical migration of an individual cell is a dynamic shape change process 

involving the generation of protrusions at the cell front and contractions at the back 

and side of cells. The protrusions and contractions are actively regulated by the 

cytoskeleton. The cytoskeleton is a complex cytoplasmic network formed by 

interlinking filaments and tubules, including actin filaments, intermediate filaments, 

and microtubules as illustrated in Figure 1.3.  

 

Figure 1.3 Microscopic Image and Diagrams of Cytoskeleton. (A) Cytoskeleton stained 

endothelial cells under the microscope. Nuclei are stained blue, microtubules are 

marked green, and actin filaments are labeled in red. The image is reproduced from 

https://en.wikipedia.org/wiki/Cytoskeleton under the CC BY License. Diagrams of a 

microtubule (B), intermediate filaments (C), and actin filaments (D). Images are 

reproduced from (Fletcher 2010) with permission.  

https://en.wikipedia.org/wiki/Cytoskeleton
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Figure 1.4 Regulation of Actin Network Dynamics in Cell Protrusions. The image is 

reproduced from (Devreotes & Horwitz 2015) with permission. 

 

The cytoskeleton maintains cell integrity and enables cell migration by 

regulating dynamic cell shapes via actin polymerization and myosin-mediated 

contraction. When a cell is stimulated by external signals, the polymerization of actin 

monomers to filamentous actin occurs at the leading edge of the cell. The growing 

actin filaments at their barbed end (polymerizing end) push the cell membrane to 

protrude and form F-actin rich protrusions, such as pseudopods that are wide and 

thick, lamellipodia that are wide and flat, and spiky filopodia that are thin extensions 

(Yoshida & Soldati 2006; Lauffenburger & Horwitz 1996; Ridley 2011). As 

illustrated in Figure 1.4, the polymerization process is regulated by molecules, 

including formin proteins that nucleate and regulate the linear growth of actin 
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filaments, Arp2/3 that nucleate filament branches from existing filaments at a 70 

degree angle, as well as capping proteins and cofilin, which inhibit the polymerization 

of filaments and sever actin filaments respectively to facilitate the recycling of actin 

monomers (Devreotes & Horwitz 2015). Together these molecules produce a 

dendritic actin network that generates and stabilizes protrusions. On the other hand, 

the movement of the whole cell body is also driven by the contraction of the rest of 

the cell body, which is mediated by the protein non-muscle Myosin II (Meili et al. 

2010; Reichl et al. 2008). Microtubules are also found to be involved in the migration 

process (Dogterom & Surrey 2012), as they are oriented toward the site of polarity, 

which help to deliver materials to the leading edge of migrating cells.  

During migration, the building blocks of the cytoskeleton dynamically 

assemble and disassemble, which leads to complex cytoskeletal behaviors as shown 

in some recent studies. Wave-like dynamic behaviors have been observed by Gerisch 

et al., who found that actin polymerization initiates and propagates in a self-organized 

wave-like manner on the boundary of Dictyostelium cells recovering from actin 

depolymerization (Figure 1.5A) (Gerisch et al. 2004). Outward waves have been 

observed by Weiner et al. in neutrophils with fluorescently labeled Hem-1, an 

activator of actin nucleation (Figure 1.5B) (Weiner et al. 2007) and by Hui et al. on T 

cells membrane during cell spreading and activation (Lam Hui et al. 2012; Lam Hui 

et al. 2014). Bidirectional and unidirectional actin waves guided by nano-

topographies have been shown in recent studies by Losert et al. (Figure 1.5C) 

(Driscoll et al. 2014; Sun et al. 2015). In addition, cell shape and cell motion exhibit 

similar wave-like dynamic behaviors as shown in multiple unicellular and 
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multicellular systems (Driscoll et al. 2011; Driscoll et al. 2015; Zaritsky et al. 2014). 

Further understanding of these dynamic behaviors provides insights into how cells 

adapt their migration to the complex external environment. 

 
Figure 1.5 Wave-like Actin Activities are Seen in Cells: Dictyostelium (A, C) and 

neutrophil (B). Images are reproduced from (Gerisch et al. 2004; Weiner et al. 2007; 

Driscoll et al. 2014) with permission.  

 

The focus of this thesis is to investigate dynamic shape deformation and 
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cytoskeletal activity by tuning the interactions between cells and the external 

environment via cell-cell and cell-substrate adhesions. During the migration of some 

types of cells, extended pseudopods form cell-substrate adhesions. The cell-substrate 

binding sites serve as anchor points for moving the whole cell body forward 

(Lauffenburger & Horwitz 1996). As the whole cell body moves forward, cell-

substrate adhesions quickly disassemble so that the back of the cell detaches from the 

substrate (Parsons et al. 2010). Collectively migrating cells maintain strong and 

dynamic cell adhesion with neighboring cells (Collins & Nelson 2015). In 

mammalian cells, the adhesion at the cell-cell junction is usually cadherin-based, and 

cell-cell adhesion interacts with cell-substrate adhesion in a coordinated manner 

(Parsons et al. 2010; Burute & Thery 2012).  

Overall, there is a feedback loop between the cytoskeleton and adhesions: 

cells sense external substrate and neighboring cells via adhesions and assemble their 

cytoskeleton accordingly; the cytoskeleton, in turn, actively regulates adhesions, 

thereby adapting cell motion to a varying external environment. The interplay 

between cell-cell and cell-substrate adhesions will be explained in detail in Chapter 5. 

How external signals guide cell migration via adhesions will be further discussed in 

the next section. 

 

1.3 Sensing of Signals from the Environment 

The active deformation of cell shapes and the re-organization of the 

cytoskeleton enable cell migration in response to external stimulus. The stimulating 

signals can be chemical signals from the surrounding environment, mechanical 
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signals from the extracellular substrate, or chemical and mechanical signals from 

neighboring cells. Cells transduce these external signals through receptors and other 

adhesions into internal signals. Complex signaling pathways have been revealed 

based on extensive studies on various types of cells in the context of migration and 

adhesion. As mentioned in section 1.1, epithelial cells, which commonly migrate 

collectively, can change to a mesenchymal or amoeboid mode of migration under 

certain circumstances. Such interconversion between migration modes suggests that 

similar signaling pathways are shared by a broad range of cell types. In this section, I 

will focus on Dictyostelium and guidance signals for their migration, yet these 

external signals are often found to be effective for higher eukaryotic cells as well.  

Chemical signals from the surrounding environment: 

Chemical signals usually guide cell migration through a process termed 

chemotaxis, where cells sense the concentration gradient of chemoattractants and 

migrate toward higher concentrations. Many chemotactic systems have been 

identified. For example, Dictyostelium cells are guided by the gradient of the 

chemoattractant cyclic adenosine monophosphate (cAMP) and migrate towards 

higher concentrations of cAMP (Kriebel et al. 2003). Likewise, neutrophils are able 

to migrate towards N-formyl-methionine-leucine-phenylalanine (fMLP) using 

chemotactic signaling mechanisms common with Dictyostelium (Anna 

Bagorda  Carole A. Parent 2006). 

Concentration gradient signals are transduced into the cell body and activate a 

signaling cascade network, which includes numerous components and involves 

crosstalk between molecules from different signaling pathways. The pathway of 
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phosphoinositide 3-kinase (PI3K), shown in Figure 1.6, is one of the most-studied 

gradient-sensing pathways, which is initiated by the binding of chemoattractants with 

G-protein coupled receptors (GPCRs) on the plasma membrane (Parent et al. 1998; 

Parent & Devreotes 1999). This binding leads to the dissociation of α and  βγ subunits 

from the heterotrimeric G proteins, that go on to activate a wide range of parallel 

pathways, one of which targets Ras, which in turn actives PI3K. PI3K is recruited at 

the cell front where it produces phosphatidylinositol-3,4,5-triphosphate (PIP3). By 

recruiting PH-domain-containing proteins (Akt, PKB, etc), PIP3 can regulate GTP-

binding proteins, for example, Rho-family small GTPases (Garcia & Parent 2008; 

Friedl & Gilmour 2009). The Rho-family GTPases, such as Rac, regulate actin 

polymerization by targeting cofilin, the WASP family, and in turn Arp2/3 (Ridley et 

al. 2003; Heasman & Ridley 2008; Ridley 2011). Meanwhile, phosphoinositide 3' 

phosphate phosphatase (PTEN) is recruited to the back and sides of cells, converting 

PIP3 into PIP2 (Iijima & Devreotes 2002).This process suppresses the activation of 

PH-domain binding proteins in these regions, which in turn down-regulates the 

activity of small GTPase proteins. Thus, the asymmetrical distribution of PI3K and 

PTEN leads to a polarized cytoskeleton and eventually directional migration. In 

addition to this PI3K-centered-pathway, there are other pathways that act in parallel, 

such as the pathway involving the target of rapamycin complex 2 (TORC2) (Veltman 

et al. 2008; King & Insall 2008; Devreotes & Horwitz 2015). With this complex 

signaling network, cells have the ability to transduce external shallow chemical 

gradients into steep internal signals, and in turn, regulate the cytoskeleton and cell 

motion.  
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The network that I introduced here is based on findings on Dictyostelium and 

neutrophils, but they have a large overlap with the pathways found in many other 

types of cells. For example, GPCR-mediated transduction pathways are highly 

conserved in eukaryotic cells (Penela et al. 2014); Rho GTPases are found to be the 

convergence point of many signaling pathways, which play a key role in regulating 

the actin cytoskeleton in all eukaryotic cells (Etienne-Manneville & Hall 2002; 

Devreotes & Horwitz 2015). 

 

Figure 1.6 Signaling Pathways of Chemical Gradient-Sensing.  The image is reproduced 

from (McCann 2011) with permission. 

 

Mechanical signals from the extracellular substrate: 

Mechanical properties of the extracellular substrate can guide cell migration. 

Multiple types of mechanical guidance cues have been reported. For example, cells 
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are able to follow gradients of the stiffness of the extracellular matrix (ECM), a 

phenomenon known as durotaxis (Roca-Cusachs et al. 2013). Cells can be guided by 

external physical forces exerted by other objects (Weber et al. 2012; Fujita et al. 

2009). In addition, the topography of the ECM can provide the contact guidance for 

cell migration. It has been shown in vivo that fiber-like structures in the ECM can 

provide directional guidance for individual cells and multicellular streams (Wolf et al. 

2013; Ventre et al. 2012).  

Mechanical signals from extracellular substrates guide cell migration via 

integrin-based cell-substrate adhesion complexes, termed focal adhesions. Integrins 

are transmembrane proteins that bridge the cytoskeleton to extracellular substrates. 

They are actively regulated by actin filaments through adaptor proteins, such as talin, 

vinculin, and α-actinin (Case & Waterman 2011; Schwarz & Gardel 2012). On the 

other hand, amoeboid-like cells form non-integrin-based surface adhesions. However, 

my colleagues and I found that non-integrin-based cell-substrate adhesions can also 

be actively regulated by the cytoskeleton. Cells exhibit different collective migration 

patterns on surfaces with different inherent adhesivities. Details about this finding 

will be further discussed in Chapter 4. Moreover, the nano-topography of the 

extracellular surface has been found to be an efficient contact guidance cue for 

amoeboid cells, as cells migrate more directionally on nano-scale structures like 

ridges and grooves (Driscoll et al. 2014; Sun et al. 2015). All of these findings reveal 

that, even for cells without focal adhesions, mechanical cell-surface interactions serve 

as powerful guidance cues for cell migration. Therefore, the motivation of my 
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research in Chapter 3, 4 & 5 is to understand non-integrin-based cell-substrate 

interactions and their cytoskeleton-based mechanisms. 

In addition to mechanical signals from extracellular substrates, physical 

properties of the external environment have been shown to be guidance cues for cell 

migration, such as electric fields and shear stress caused by fluid flow (Zhao et al. 

2002; Lin et al. 2008; Hsu et al. 2005).  

 

Chemical and mechanical signals from neighboring cells: 

Collectively migrating cells can sense signals from neighboring cells and 

adapt their migration accordingly. Such intercellular interactions are sometimes 

mediated by signaling molecules, which can be lipids, phospholipids, amino acids, 

monoamines, proteins, glycoproteins, or other small molecules. Cells release 

molecules into the extracellular environment, where neighboring cells are able to 

perceive the molecules and respond to them. For example, Dictyostelium cells not 

only move towards cAMP but also produce and release cAMP at their rear to locally 

change the cAMP gradient that is sensed by neighboring cells. This signaling relay 

process is essential for the aggregation of Dictyostelium (Kriebel et al. 2003). 

Neutrophils, on the other hand, secrete a secondary chemoattractant, Leukotrene B4 

(LTB4) upon stimulation with primary chemoattractants, such as fMLP. Neighboring 

neutrophils can sense LTB4 and be guided (Afonso et al. 2012; Lammermann et al. 

2013). As another example, human breast cancer cells have been found to form 

invading streams in vivo by using paracrine and autocrine signaling loops between 

tumor cells and host macrophages (Dovas et al. 2012). 
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Some recent studies indicate that intercellular signals can also be transmitted 

via direct cell-cell contact. Molecules in cell-cell adhesion, such as cadherins, often 

directly or indirectly connect to the intracellular cytoskeleton, and in turn, regulate 

cell motion. As shown in Figure 1.7, E-cadherin in cell-cell junctions connects to 

actin filaments through intermediate proteins such as catenins, talin, and other actin-

binding proteins, which allows cells to adapt their cytoskeleton and motion in 

response to the signals from neighboring cells. It has been found that by exerting 

force at cell-cell contact boundaries a polarized Xenopus mesendoderm cell can 

induce reorganization of keratin intermediate filaments in the contacting cell, which 

eventually leads to protrusion generation and polarization of the contacting cell and 

the rest of the cell sheet (Weber et al. 2012). Recent work on epithelial cells also 

shows that cell-cell adhesion molecules mechanically couple with actin filaments and 

myosin to coordinate cell movement during wound healing (Menko et al. 2014). Such 

mechanical coordination of the monolayer cell sheet is found to be mediated by the 

propagation of waves in recent theoretical studies (Zaritsky et al. 2014).  



 16 

 

 

Figure 1.7 - Schematic Model of Cell-Cell Junctions on Adhered Epithelial Cells. The 

extracellular domain of E-cadherin interacts with intracellular F-actin via intermediate 

proteins on neighboring cells. The image is produced from (Vasioukhin & Fuchs 2001) 

with permission. 

 

Despite the fact that signaling through cell-cell contacts is found in many 

biological systems, the underlying mechanisms of mechanical coupling during 

collective migration remain largely unknown. Therefore, the motivation of my 

research in ch5 & ch6 is to understand cell-cell interactions during collective cell 

migration and their cytoskeleton-based mechanisms. 

Overall, cells are able to sense various external guidance signals as 

summarized in Figure 1.8. Cells then integrate these signals internally and regulate 

their cytoskeleton and migration accordingly.  
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Figure 1.8 - Diversity of Guidance Cues and Signaling in Cell Migration. The image is 

adapted from (Haeger et al. 2015) with permission. 

 

1.4 Thesis Outline  

This thesis mainly focuses on how cell shape and cytoskeleton are regulated 

by cell-surface and cell-cell interactions during collective chemotactic migration. In 

this chapter, I introduced some general information about cell migration: the diversity 

of this phenomenon, the internal machinery of cell migration, and the biophysical 

views of cell movement. Multiple guidance cues for cell migration and cell-cell/cell-

substrate interactions have been further reviewed in depth. I will provide more 

detailed background information directly related to my thesis research in Chapter 2, 

including the life cycle of Dictyostelium - my chosen biological model system, 

primary experimental techniques and analysis approaches that were applied in my 

research.  
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Chapter 3 presents my work on optical micromanipulation of active cells to 

probe their mechanical responses to minimal perturbations. Cells exhibit a polarized 

shape and cytoskeleton, which results in distinct cell-substrate and cell-cell 

interactions at different locations on their cell boundary. Thus, it would be ideal if the 

cell-cell/cell-substrate contact is created in a controllable way. To this end, I 

developed optical manipulation approaches, direct pushing and indirect pushing 

approaches, to non-invasively manipulate cells.  

The indirect pushing approach significantly reduced the potential 

photodamage to target cells. In the viability study, most of the indirectly pushed cells 

were able to maintain their polarization and even dynamic shape waves after 

manipulation. Thus, indirect pushing can be applied to study many biological 

questions regarding cell motility. Indeed, the manipulation approaches I developed in 

this study were further applied to the study of cell-substrate interaction, which will be 

described in Chapter 5. 

Chapter 4 discusses how Dictyostelium cells actively regulate cell-surface 

adhesion to migrate on various surfaces. Cell migration requires binding between 

cells and the external substrates, which should be strong and dynamic (Collins & 

Nelson 2015). Previous studies indicate that mammalian cells re-assemble their 

cytoskeleton to adapt to extracellular conditions, which is mediated by integrin-based 

adhesions. I was motivated to understand how cells adapt to mechanical cues via non-

integrin based adhesion by plating Dictyostelium on surfaces with different chemical 

compositions.  
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Overall, I found that cells actively regulated their cytoskeleton and retained 

optimal cell-surface adhesions in response to different extracellular surfaces, 

suggesting that the integrin-based adhesion is not required for cells to respond to 

mechanical cues. Talin A is an adapter protein that connects transmembrane adhesion 

molecules to actin filaments. The cell-surface adhesion of cells lacking talin A was 

mainly affected on less adhesive surfaces, where the cell-surface adhesion is 

reinforced by the actin cytoskeleton. In addition, my colleague and I expanded the 

study from individual migration to collective migration and found that proper 

collective migration requires a balance between cell-cell and cell-surface adhesion. 

This result directly motivated my in-depth study on the interplay of cell-surface and 

cell-cell adhesions, which will be discussed in Chapter 5. 

As mentioned above, collective cell migration involves notable cell-cell and 

cell-substrate adhesions. Mammalian cells form cadherin-based cell-cell adhesion and 

integrin-based cell-substrate adhesion. Cytoskeleton enables the formation and 

maintenance of both adhesions and allows the coordination between them (Parsons et 

al. 2010; Burute & Thery 2012). On the other hand, some fast-moving cells, such as 

Dictyostelium, form non-cadherin-based and non-integrin-based adhesions with 

neighboring cells and substrates. The interplay of adhesions in these cells remains 

largely unexplored.   

Chapter 5 shows that cell shape dynamics and actin polymerization of 

individual cells are not surface-adhesion-dependent, as we observed that suspended 

cells exhibit similar shape and actin dynamics as adhered cells. However, collective 

migration pattern was significantly altered upon the loss of surface adhesion, 
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suggesting that surface-adhesion is crucial for cell-cell interactions. I further 

discovered that the coupling of protrusion waves on pairs of contacting adherent cells 

allows cells to migrate in a coordinated manner. In this context, I found that the actin 

cortex is coordinated by cell-cell and cell-substrate adhesions in a way that facilities 

collective migration. Yet, the driving force of coupled protrusion waves and the 

interaction of the actin cortex between neighboring cells remain unclear. Thus, I 

further explored these questions in chapter 6. 

 Given that the coordination of the cytoskeleton via cell-cell adhesions has 

been recognized in various types of cells (Weber et al. 2012; Menko et al. 2014; Wu 

et al. 2014), I proposed that the coupling of protrusion waves is mediated by the 

traveling actin waves. Remarkably, I found that waves of actin polymerization were 

significantly suppressed, and assembly of actin filaments exclusively occurred at cell-

cell contacts in streams instead of propagating along the boundaries of individual 

cells. The suppression of actin waves enables the robustness of cell migration. The 

restricted actin polymerization facilitates the front narrowing behavior at cell-cell 

contact and enables the wave coupling between cells. This study reveals the 

mechanism that regulates the cell cytoskeleton and the subsequent motion in response 

to collective migration. 

Chapter 7 presents the main conclusions of my studies and discusses potential 

future studies that can be pursued to further understand the mechanisms that regulate 

collective cell migration. 
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Chapter 2: Background 

 

 

This chapter provides background information that is closely related to my thesis 

research, including an introduction of Dictyostelium, the model system that I mainly 

work with, experimental techniques that are crucial for my studies, and major analysis 

approaches that are applied in my research. Since the purpose of this chapter is to 

discuss the prerequisites of my research and prepare the readers for the following 

chapters, I also review previous findings, methods, and tools that motivated my 

studies. 

 

2.1 Dictyostelium discoideum: a model system to study chemotaxis and collective 

migration  

Dictyostelium cells are social amoeba that usually live in soil or leaf litter. 

They are eukaryotic cells and can be either unicellular or multicellular depending on 

the life stage they are in. Their life cycle is relatively short (24 hours) and consists of 

four stages: vegetative, aggregation, migration, and culmination (Figure 2.1A) 

(Dormann & Weijer 2006). Vegetative Dictyostelium live as unicellular cells when 

there is sufficient nutrition in the environment. Upon starvation, vegetative 

Dictyostelium cells enter the developmental life cycle and start to migrate toward 

several aggregation centers in the following four to five hours, which is the early 
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aggregation stage (Figure 2.1B). The aggregation continues until a slug forms, 

containing about 100,000 cells. The slug explores the environment to search for food 

and forms a fruiting body if it fails. Dictyostelium use conserved chemical signaling, 

migratory, and developmental mechanisms with more highly evolved eukaryotic 

cells, such as immune and metastatic cells. However, the shorter life cycle and the 

simpler genome of Dictyostelium make this system a widely used and valuable model 

to uncover important biological mechanisms (Parent 2004).  

 

Figure 2.1 – Life Cycle of Dictyostelium and cAMP Wave Propagation During Their 

Aggregation. (A) The life stages of Dictyostelium discoideum during their development. 

Vegetative cells at the left start to develop to mounds through collective aggregation. 

Mounds further develop to slugs and fruiting bodies which are shown at the right. (B) 

Bright field image of an aggregation center of Dictyostelium. Cells aggregate in a 

streaming fashion. (C) Overlay image of cell streams and cAMP waves indicating cells 

migrate in responds to the cAMP signal. Cells migrate towards the aggregation center 

and cAMP waves propagate in the opposite direction outward of the center. Figures are 

reproduced from (Dormann & Weijer 2006) with permission. 

 

During the early aggregation phase of their life cycle, Dictyostelium cells 

migrate individually as well as collectively by forming head-to-tail multicellular 

streams. When exposed to a gradient of chemoattractant, cAMP, these cells quickly 
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polarize up the gradient and migrate using F-actin based anterior pseudopodial 

extensions. As shown in Figure 2.2A, cAMP not only induces the cells to migrate 

directionally, but also stimulates the cells to produce cAMP through the activation of 

the adenylyl cyclase A (ACA) and release it locally at their rear, which allows them 

to relay the chemoattractant signal to distal cells and migrate collectively in a 

characteristic head-to-tail fashion (Figure 2.2B) (Kriebel et al. 2003).  

Unlike mammalian cells, Dictyostelium form non-integrin-based adhesions 

with surfaces (Loomis et al. 2012). Although some cell-cell adhesion molecules have 

been identified, no cadherin-based cell-cell adhesions have been discovered (Wang et 

al. 2000; Sriskanthadevan et al. 2011).  

 

 

Figure 2.2 –Relay of Chemical Signal in Dictyostelium Leads to Head-to-Tail alignment. 

(A) A model for the chemotactic signal relay in Dictyostelium. When stimulated by 

chemoattractant (red dots), adenylyl cyclase protein is activated at cell back. It 

produces and releases chemoattractant that can be sensed by neighboring cells so that 

to propagate chemotactic signal. Figures are reproduced from (Anna Bagorda, Carole 

A. Parent 2006) with permission. (B) A multicellular stream formed by AX3-Lifeact-

RFP cells with cells aligned head-to-tail on glass. 
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2.2 Cell Migration Assays 

           Live cell imaging is the primary technique of this thesis. Some experiments 

were performed by simply placing cells on desired surfaces and imaging their 

adhesion or spontaneous migration. Other experiments require a better control of 

directional migration, head-to-tail streaming, and drug treatment. One example, 

included in Chapter 6, studies the mechanical coupling of protrusion waves on 

streaming cells during chemotactic migration, where cells are guided by the gradient 

of a chemical concentration and quickly respond to the change of the gradient. A 

stable and controllable cAMP gradient is essential for guiding cells to form 

multicellular streams with head-to-tail alignment. Also, since cells sometimes crawl 

on top of each other during migration, a confined migration space in the z-direction is 

required to ensure that the cellular streams are in a single layer and to acquire good 

quality images. Moreover, to study how cell motion responds to the change of 

intracellular cytoskeleton, cells were treated with Latrunculin A with gradually 

increasing doses. Such drug treatment process requires a controlled drug gradient. For 

all of these needs, I used the under-agarose migration assay that has been previously 

introduced (Nelson et al. 1975).  

             The under-agarose-migration assay creates a stable cAMP gradient lasting for 

up to two hours. As illustrated in Figure 2.3, 0.5% of agarose was cured on a BSA-

coated cover glass, and two wells (2 mm in diameter, 4mm center-center apart) were 

drilled. One well was filled with 1μM cAMP, which diffuses in agarose gel and forms 

a gradient of cAMP concentration. The other well contained cells that migrated to the 
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right, guided by the cAMP gradient. Time-lapse images of cells were taken at regular 

intervals for at least 45 minutes. Cell shape dynamics and principle component 

analyses were applied to those images.  

In some experiments, I used Latrunculin A (LatA) to globally inhibit actin 

polymerization and studied its effect on cell motion. The mixture of cAMP (1μM) 

and LatA (different doses were used in experiments) was added into one well, and 

cells were added into the other well. A gradient of cAMP and LatA concentration was 

built up in the agarose gel. Thus, when cells migrate towards the other well under the 

cAMP concentration gradient, they are exposed to increasing concentrations of LatA 

as well. Based on mathematical models, the concentration of LatA at the edge of the 

well of cells, where the cells start to migrate, is about 10% of the concentration of the 

original LatA in the mixture that was added into the other well (Szatmary et al. 2014). 

 

Figure 2.3 – Experimental Set Up of the Under-Agarose Migration Assay. Cells migrate 

underneath of the agarose gel from the left well to the right well forming multicellular 

streams. Image was taken under a stereo microscope 
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2.3 An Introduction of Optical Manipulation on Cells 

Optical tweezer, also called optical trap, is a technique that is capable of 

generating piconewton (pN) forces by focusing a laser light beam on a micron- or 

nanometer-sized transparent dielectric objects, and moving the object precisely over a 

small distance (Ashkin et al. 1986). The focused light beam is usually obtained 

through microscope objectives, and it generates strong electronic gradients near the 

narrowest region of the focused light beam. Since forces generated by electronic 

fields correspond to the strength of the electronic field, positioning a particle within a 

strong electronic gradient results in imbalanced forces acting on the particle, as 

shown in Figure 2.4. The net force pulls the particle to the center of the light beam, 

where forces acting on different parts of the particle eventually achieve a balance. 

When the distance between the particle and the center of the laser light beam is less 

than the diffraction limit, the net force that the particle receives is proportional to the 

distance, similar to the force generated in the spring system, described by Hook’s 

Law (Neuman & Nagy 2008). 

 

Figure 2.4 – Explanation of A Particle Trapping in Optical Tweezers. Figures are from 

https://en.wikipedia.org/wiki/Optical_tweezers  and reproduced under the CC BY 

License. 

https://en.wikipedia.org/wiki/Optical_tweezers
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When optical tweezers were initially developed in the 1980s, single optical 

traps were generated. The new generation of optical tweezers, holographic optical 

tweezers, came out about a decade ago. They can simultaneously generate multiple 

optical traps by changing the amplitude and phase of the light to form multiple focus 

points. This function is fulfilled by integrating a spatial light modulator (SLM) into 

the light path (Dholakia et al. n.d.).  

In recent years, a number of research groups found optical micromanipulation 

particularly useful for biological objects because of the ability of optical tweezers to 

precisely control the trapped object’s position, orientation, and speed. 

Micromanipulation via optical trapping forces involves directly focusing a laser beam 

on cell samples. Due to the extreme focusing of the laser beam in optical traps down 

to the diffraction limit, considerable photodamage can be inflicted on trapped cells, 

including the death of cells as noted by Ashkin (Ashkin et al. 1987; Ashkin & 

Dziedzic 1987). To avoid direct exposure to laser light which causes photodamage, I 

developed an approach that utilizes the holographic tweezers to indirectly manipulate 

cells and study cell shape dynamics in a controllable way, which will be further 

discussed in Chapter 3 and Chapter 5. 

 

2.4 Shape Dynamics in Cell Migration  

Eukaryotic cells seldom migrate by simply moving the whole cell body 

forward. Instead, they actively vary their shapes to migrate and to maintain proper 

cell-cell contact in groups. These activities include protruding, turning, rotating, 
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expanding, contracting, etc, which are driven by the dynamical assembling and dis-

assembling of the cytoskeleton. Therefore, measuring shape dynamics and 

progression of motion along cell boundaries provides valuable insight into how cells 

actively adapt to the varying surrounding environments by cytoskeleton re-

organization.  

A variety of methods have been used to measure cell shape dynamics (Killich 

et al. 1993; Alt et al. 1995; Driscoll et al. 2011). I used a snake algorithm to extract 

cell boundaries and adapted a custom cell shape dynamics Matlab program that was 

previously developed in Dr. Losert’s lab to obtain the measurements on cell 

boundaries (Driscoll, McCann, et al. 2012).  

The Losert lab has applied the shape dynamics analysis method to study the 

motility of different types of cells (Driscoll, McCann, et al. 2012; Driscoll, Albanese, 

et al. 2012; Driscoll et al. 2015). Dictyostelium cells, for example, migrate in a zig-

zag fashion and actively alter their shapes during migration, as shown in Figure 2.5A. 

They elongate and periodically generate protrusions along the cell membrane. As 

indicated in Figure 2.5B, protrusions on cell boundaries, indicated by arrows, start at 

the front of the cell and travel towards the back along either side of the cell body, 

forming protrusion “waves” on the cell membrane. These boundary protrusion waves 

are more distinct when the shape dynamics of an individual cell is quantitatively 

represented in a curvature-time kymograph (Figure 2.5C): the curvature of boundary 

points are represented in color and aligned vertically according to their position on 

the cell boundary. The two red lines going across horizontally in the kymograph 

represent the front and back of the cell, and the slanted red lines indicate traveling 
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protrusions along the side of cells. Other measurements such as boundary motion and 

boundary intensity can be represented in a similar way.  

The shape dynamic program was initially developed for individual cells, and 

active boundary protrusion waves are found in these cells. However, how waves are 

correlated with collective cell migration remains largely unknown. My thesis research 

explores the robustness of protrusion waves under various perturbations, such as 

changes in cell-surface adhesions and cell-cell-adhesions, and looks for correlations 

between boundary protrusion waves and intracellular processes. Thus, I adapted the 

shape dynamic program to analyze groups of cells and used statistical analysis 

methods, such as principal component analysis (PCA) and cross-correlation analysis, 

to process the measurements obtained from shape analysis program.  

 

Figure 2.5 – Shape Dynamics of Dictyostelium. (A) The trace of a migrating cell formed 

by overlaying cell boundaries extracted from time-lapse images. (B) Cell boundaries 

colored according to the curvature of each boundary point. Red represents positive 
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curvature; blue represents negative curvature. (C) Progression of boundary curvature 

on a migrating cell represented in a kymograph. Figures are reproduced from (Driscoll, 

McCann, et al. 2012) under the CC BY License. 
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Chapter 3: Optical Micromanipulation of Active Cells with 

Minimal Perturbations: Direct and Indirect Pushing 

 

 

This chapter is adapted from Wang, Chowdhury, Gupta, and Losert (Wang et al. 

2013). Text and figures are reproduced here with permission. Chenlu Wang designed 

and performed the experiments and analyzed the data.  

 

 

3.1 Preface  

Active movement and the dynamic shape deformation occur in many types of 

cells. One can perturb the cell movement by attaching an object to cell membrane, or 

by bringing two cells together to observe how they adapt their movement to each 

other. Perturbing a moving cell requires precise manipulation of cells and objects. It 

is possible to directly move cells by focusing a laser beam directly at the cell. This 

direct optical trapping technique allows for the precise manipulation of cells, but it 

also causes photodamage to cells as they are exposed to laser light beam during 

manipulation. This chapter discusses optical-tweezer based techniques I developed 

for non-invasive optical manipulation of cells. I first developed the direct pushing 

method, in which I directly trapped a bead and used the bead to push cells. It greatly 
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reduces photo-damage to cells caused by optical manipulation, and it is further 

applied to study cell shape dynamics that will be discussed in Chapter 5. During 

direct pushing, cells are partially exposed to laser light. Thus, I further developed the 

indirect pushing method that completely avoids direct laser exposure to cells by 

adding an intermediate bead between the targeted cell and the trapped bead. However, 

because cells actively move and beads exhibit Brownian motion, the direction of 

applying pushing force has to be adjusted frequently according to the positions of the 

intermediate bead and the target cell, which makes the indirect pushing too 

complicated for manual manipulation. This problem was tackled by integrating real-

time image processing and automatic control techniques. Our collaborators developed 

an automation program that can extract position of cells and beads from real-time 

images, calculate the optimal direction of applying forces, and then place optical traps 

accordingly. After many iterations of these steps, the program can manipulate cells in 

a controllable way. Furthermore, the automation program allows simultaneous 

manipulation of multiple cells, which brings a great potential of studying cell-cell 

interactions in a controllable way. In Chapter 5, the visualization of the cytoskeletal 

dynamics requires fluorescent imaging, which so far is not yet integrated into the 

automation programs. Thus I used manual direct pushing in chapter 5. 

 

3.2 Overview  

The challenge to wide application of optical tweezers in biological 

micromanipulation is the photodamage caused by high intensity laser exposure to the 

manipulated living systems. While direct exposure to IR lasers is less likely to kill 
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cells, it can affect cell behavior and signaling. Pushing cells with optically trapped 

objects has been introduced as a less invasive alternative, but includes some exposure 

of the biological object to parts of the optical tweezer beam. To keep the cells further 

away from the laser, we introduce an indirect pushing based technique for 

noninvasive manipulation of sensitive cells. We compare three manipulation 

approaches: direct manipulation, pushing, and indirect pushing. We find that indirect 

manipulation techniques lessen the impact of manipulation on cell behavior: Cell 

survival increases, so does the ability of cells to maintain shape and wiggle. Our 

experiments also demonstrate that indirect pushing allows us to form cell-cell 

contacts in a controllable way while retaining the ability of cells to change shapes and 

move.  

 

3.3 Background 

           Light beams exert small forces on objects, and for objects smaller than tens of 

micrometers the forces can be designed to “grasp” a particle in an optical beam and 

move it to a desired position (Ashkin et al. 1986; Ashkin 1992; Grier 2003; Spalding 

et al. 2008). In recent years, a number of research groups found optical 

micromanipulation particularly useful for biological objects because of the ability of 

optical tweezers to precisely control the trapped object’s position, orientation and 

speed (Ashkin et al. 1987; Ashkin & Dziedzic 1987; Kulin et al. 2002; Banerjee et al. 

2011). Studies have been carried out on cells with a wide range of sizes: from bacteria 

which are less than a micrometer to red blood cells which are usually less than ten 

micrometers and mammalian cells which are tens of micrometers (T cells) (Zhang & 
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Liu 2008; Lim et al. 2006; Tan et al. 2010; Wang et al. 2011). Micromanipulation via 

optical trapping forces involves direct focusing a laser beam on cell samples (Neuman 

et al. 1999; Ericsson et al. 2000; Nascimento et al. 2006). Due to the extreme 

focusing of the laser in optical traps down to the diffraction limit, considerable 

photodamage can be inflicted on trapped cells, including the death of cells as noted 

by Ashkin (Ashkin et al. 1987). A range of assays have shown that focused laser light 

can also affect cell function without destroying the cell. Aside from heating, the 

photodamage mechanism has been proposed to be due to the creation of reactive 

oxygen through two-photon absorption (Berns 1976; König et al. 1996; Svoboda & 

Block 1994) These damages can affect the cells in various ways that only become 

visible in careful studies. For example, E. Coli is found to stop replicating after 

optical trapping (Ericsson et al. 2000). Another investigation found that the internal 

pH of E.coli and Listeria bacteria declined because of direct trapping (Rasmussen et 

al. 2008). Even without direct exposure to the focused laser beam, yeast cells are 

found to divide less after optical trapping (Arneborg et al. 2005). 

Since photodamage causes significant negative impact on cells, many in-depth 

studies have investigated to maximize the cell health by a variety of methods. First, it 

was found that 830 nm and 970 nm laser wavelengths were significantly less harmful 

to CHO cells and E.coli cells than the nearby wavelength region from 870 nm to 910 

nm (Neuman et al. 1999; Liang et al. 1996). However, another group found only a 

weak dependence of E.coli viability on wavelength in the range 840 nm to 930 nm, 

with the total dose of laser light the dominant parameter determining the ability of 

cells to express genes (Mirsaidov et al. 2008). Moreover, some studies indicate that 
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the threshold at which light may lead to cell damage is very low compared to the laser 

power needed for optical micromanipulation: using 1064 nm, Rasmussen found that 

the internal pH, a measure of viability, of both E.coli and Listeria bacteria declined at 

laser intensities as low as 6 mW (i.e. 21.6 J for one hour exposure in their study) 

(Rasmussen et al. 2008). Ayano showed that cell damage to E.coli was linearly 

dependent on the total dose received and found that cell division ability was affected 

at a dose larger than 0.35 J (Ayano et al. 2006). Furthermore, Aabo’s study indicates 

that the photodamage to S. cerevisiae is dependent on both the laser power and the 

accumulated dose (Aabo et al. 2010). 

 

In the studies we mention above, photodamage can be minimized by 

minimizing light intensity or optimizing laser wavelength, but this also means 

weakening the manipulation capabilities when directly manipulating cells, and 

choosing a laser wavelength that is optimal for the particular cell line and biological 

process, requiring intensive calibration.  In addition, preferred wavelengths are 

generally in the IR, whereas visible lasers are generally less expensive, safer, and 

more common in labs and industry. Thus, we focus on developing a new indirect 

pushing approach to minimize the exposure of the manipulated cell to any laser light, 

so the light intensity and wavelength of the trapping beam no longer notably affect 

cell viability. Direct pushing is a method by which we manipulate target cells by 

assistant objects that are directly trapped by laser beams. This minimizes the direct 

exposure of the target cells to the laser light. Micro-beads, micro-rods, and some 

other micro-materials can be used as assistant objects. 
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The pushing approach to cell manipulation research has been carried out 

previously with the assistance from micro-objects, such as silica beads and 

erythrocytes (Dao et al. 2003; Grigaravičius et al. 2009). In these studies, the micro-

objects were attached to cells and applied forces on cells, and the resulting cell 

response was investigated. However, for other studies it may be advantageous to not 

attach the object to the cells permanently.  One reason to minimize contact between 

cell and pushing object is that in cells with very active shapes, for example, 

Dictyostelium cells and human epithelial cells, the shape dynamics and cell activity 

change upon adhesive contact with a surface (Driscoll et al. 2012; Weber et al. 2012).  

Hence we prevent the pushing bead and cell from sticking to each other.  In this 

investigation this is straightforward – both cells and beads are negatively charged and 

so repel each other unless the charges are strongly screened by the buffer medium.  

Beads are removed away from manipulated cells after manipulation.  

We had previously developed a pushing technique which we called indirect 

optical gripping, in which we utilize holographic optical tweezers to hold six silica 

beads and form a small 3D trapping pocket (Koss et al. 2011). A single cell can be 

placed in the trapping pocket and has been transported to the goal position (S 

Chowdhury et al. 2013). The gripper, as well as some other optical manipulation 

methods that grip an object touching the cell, is less invasive to the target cell as it 

reduces the light exposure during optical trapping. But it does not completely 

eliminate exposure of the target cell to the light cone, and a fixed size or shape of 

target cells is required for applying these methods easily (Koss et al. 2011). However, 

many types of motile cells have very dynamic cell shapes and continuously generate 
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protrusions and retractions on their membranes (Driscoll et al. 2012; Friedl et al. 2001; 

Barry & Bretscher 2010; Driscoll et al. 2011). In this paper, we introduce a simple 

pushing approach, shown in Figure 3.1(B), to manipulate cells indirectly, which not 

only reduces photodamage but also is suitable for manipulating cells with active 

shapes.  

Our direct pushing method still exposes the pushed object to some laser light 

during the manipulation process. Thus, we also introduce indirect pushing, as shown 

in Figure 3.1(C), where the laser beam does not overlap with cells. Note that in our 

indirect pushing, none of the trapped objects touches the cell, whereas in what is 

commonly called “indirect manipulation” the trapped object usually touches the cell 

(Grigaravičius et al. 2009). 

Previous work estimated photodamage by observing different cell properties: 

growth and division of cells after optical trapping, the rotation rate of the flagella in 

bacteria, cloning efficiency of CHO cells, viscoelastic properties, or pH change in the 

cytosol. Here, we introduce a new simple measure of cell viability: the ability of cells 

to wiggle and change shape. Unlike most previous work, which assessed viability 

from static properties, this measure is based on shape dynamics of the cell. 

Dynamic shape and motility are significant properties to cells. It is widely 

believed that extending protrusions is necessary to many types of cells for migration, 

as cells use protrusions to adhere to surfaces and drag the cell body forward. Also, 

cells have different protrusion dynamics under different circumstances(Driscoll et al. 

2012). Thus, protecting cells from damage to their shape dynamics is crucial when 

studying the motility and migration mechanism of the manipulated cells. Since the 
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shape dynamics are driven by cytoskeletal dynamics, such as the polymerization and 

disassembly of actin filaments, changes of cell shape dynamics indicate that the 

active mechanical properties of the cell have changed (Gerisch et al. 2004).  

To study shape dynamics of manipulated cells, we use amoeboid cells 

Dictyostelium discoideum. Dictyostelium cells have similar chemotaxis and migration 

mechanisms with some cancer cells; hence their migration mechanism has been 

widely studied as a model system. When Dictyostelium migrates on a surface, cells 

elongate and periodically generate protrusions along the cell membrane. The 

protrusions usually start at the front of the cell and then travel to the back on one side 

of the cell body, so they form a protrusion “wave” on the cell membrane. Often 

adhesion to the surface strongly affects cells shape and protrusion dynamics. Thus, 

we focus on suspended cells that cannot adhere to the surface (see Materials and 

Methods for details). Suspended cells can be manipulated and moved with pN optical 

force yet still exhibit protrusion waves after indirect pushing, shown in Figure 3.2. 

 

3.4 Results and Analysis 

3.3.1 Viability of cells after optical manipulation 
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Figure 3.1 - Viability Test of Cells Under Different Optical Manipulation Methods. (a), 

(b), (c): Schematic of manipulation methods. The diameter of the silica beads and cells is 

5 μm. The angular aperture is 67° for the objective. (b): in equilibrium, 6.7% (in volume) 

of the target cell is exposed to the laser cone. (d), (e), (f): Tests indicating viability of 

cells with increasing sensitivity: percentage of cells that do not generate blebs (often a 

precursor to cell death, light gray bars), generate protrusions during manipulation 

(dark gray bars) and still generate protrusions 5 min after manipulation (black bars). 

(g), (h), (i): representative figures of a dead cell, a blebbing cell, and a cell that is 

generating protrusions at its front. Scale bars in (g), (h), (i) are 2 μm. 

 

There are three manipulation approaches that we used on Dictyostelium cells: 

direct trapping, direct pushing, and indirect pushing. To show the configurations of 

different manipulation approaches and illustrate how the focus laser cones intersect 
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with trapped beads or cells, we gave schematice figures of these three methods, as 

shown in Figure 3.1(a-c). The diameter of the silica beads is 5μm. The cells are 

assumed to be spherical with the size similar to the silica beads. The angular aperture 

(the angle between the cone and the direction of the laser beam) is 67° for the 

objective (comparable to other high NA objectives needed for optical trapping) used 

in this study. Unlike direct trapping (Figure 3.1(a)), where the laser beam directly 

focuses on the target cell, the direct pushing approach (Figure 3.1(b)) limits a cell’s 

exposure to light. As shown in Figure 3.1(b), in equilibrium, with the trapped bead at 

the focal point of the laser, 6.7% (in volume) of the target cell is exposed to the laser 

cone. However, this is the lower limit of the volume exposed to laser light: If cells are 

larger than beads (5μm in diameter) or can deform their shape, the exposed volume 

can be higher. For example, the typical size of Dictyostelium cells and epithelial cells 

are over 15 μm in diameter, and the Dictyostelium cells actively deform their shapes. 

Using a bigger bead (at least 8 μm in diameter in this example case) could possibely 

keep the cell out of the laser cone, but bigger beads can not be stably trapped against 

its gravitional force with our optical tweezer system. The third method, indirect 

pushing, is shown in Figure 3.1(c): The target cell is pushed by an intermediate bead, 

and the intermediate bead is pushed by another bead that is directly trapped by the 

laser beam. These two beads and the cell do not stick to each other (e,g. if the 

manipulation involves getting cells together into larger collections, beads have to be 

removed from cell group). The directions of the forces that the directly trapped bead 

applies on the intermediate bead are tuned depending on the relative position of the 

intermediate bead and the target cell. How to reliably push on the cells indirectly was 
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described elsewhere (Thakur et al. 2012; Thakur et al. 2014). When the target cell is 

pushed indirectly, the cell remains at least several microns away from the directly 

trapped bead, and thus is not directly exposed to the light cone of the trapping laser. 

Viability tests of these three manipulation methods were performed on a set of 

suspended Dictyostelium cells (21 cells for direct trapping, 18 cells for direct pushing 

and 26 cells for indirect pushing), and  cells were actively deform their shapes before 

manipulation. To maintain constant conditions, the output laser power was set to be 

0.2 W, and the manipulation times remained between 40 to50 seconds, (i.e. (laser 

power) * (exposure time) = 8~10 J). Four criteria were used here to estimate the 

photodamage (Figure 3.1(d-f)): survival, the generation of blebs on the membrane, 

the generation of protrusions during manipulation, and the generation of protrusions 

after manipulation.  

Note that the 532nm green laser we use is known to be harmful to cells. Thus 

our study presents a worst case scenario that makes it easier to detect differences in 

photodamage with different manipulation methods. 

Dead Dictyostelium cells (shown in Figure 3.1(g)) are easy to distinguish from 

living cells, because they do not keep their membrane intact. All cells survived after 

all three manipulation approaches (data not shown). However, some living cells 

generate blebs on membrane during manipulations, which usually indicates that cells 

cannot retain their cortical tension and are unhealthy (Janson & Taylor 1993; Mills et 

al. 1998; Gerisch et al. 1995). A representative cell with a membrane bleb is shown in 

figure 3.1(h). As shown in Figure.3.1(d-f), the percentages of cells that generate blebs 
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during trapping drops from 67% to 0% from direct trapping approach to indirect 

pushing approach.  

Dictyostelium cells migrate, and they need to extend protrusions in order to 

move forward. When Dictyostelium cells migrate on a surface, they generate new 

protrusions every 20 seconds (Driscoll et al. 2012). Thus, during the 45 seconds 

manipulation in this viability test, a healthy cell normally will be able to generate 

protrusions. But, as shown in Figure 3.1(d-f), only 9% of the cells under direct 

trapping extend protrusion during the manipulation, and this number increases to 50% 

and 80% when using the direct pushing and indirect pushing methods respectively, 

which reveals that only indirect pushing approach does not have significant negative 

impact on cells in terms of generating protrusions in a short time of optical trapping.  

Nevertheless, photodamage could have long term effect on cells. To study that, 

cells have been observed for at least 5 minutes after each manipulation. As shown in 

Figure 3.1(d-f), only after indirect pushing, most of the cells (77%) are found to be 

able to generate protrusions in 5 minutes after manipulation, while only 9% of the 

cells could generate protrusions after the other two types of manipulations. Thus, the 

indirect pushing approach shows no significant long term photodamage on 

Dictyostelium cells. 

3.3.2 Shape analysis of cells after optical manipulation 
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Figure 3.2 - Shape Analysis of Dictyostelium Cells After Optical Manipulation. (a): A 

cell that is directly pushed by a silica bead. (b): A cell that is indirectly pushed by a 

silica bead through an intermediate bead. (c): Extracted outlines of a representative 

polarized cell (Red: positive curvature; Blue: negative curvature) (d): Overlaid shapes 

of a cell manipulated by direct pushing. (20 seconds apart; red:initial shape). (e): 

Overlaid shapes of a cell manipulated by indirect pushing. (2 seconds apart; red:initial 

shape). (f): Curvature vs. time plot of a cell manipulated by direct pushing. (g): 

Curvature vs. time plot of a cell manipulated by indirect pushing. Scale bars in (a), (b), 

(c) are 5 μm. 
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The viability test indicates that the indirect pushing method does not cause 

long-term photodamage on generation of new protrusions, but the shape dynamics of 

the cell could be changed. As we learned from crawling Dictyostelium cells, 

protrusions should not only be generated but also travel on cell membrane like a wave. 

Thus, a shape dynamics analysis method that we previously developed has been used 

to analyze shapes of cells after optical trapping. The image processing details have 

been described in reference (Driscoll et al. 2012).  

The shapes of cells after direct or indirect pushing are analyzed as shown in 

Figure 3.2. In Figure 3.2(b), indirect pushing of a cell towards another cell is shown. 

In both Figures 3.2(a), (b), Dictyostelium cells maintain a polarized, elongated shape. 

The polarized end that generates new protrusions is considered as the “front” (i.e. 

“head”) of the cell, and the other end is the “back” (i.e. “tail”) of the cell. 

To analyze shape dynamics, 400 points on the cell boundary are extracted by 

an active contour algorithm(Chenyang & Prince 1998). The curvature along each 

point on the boundary is calculated and used as a metric for shape. Figure 3.2(c) 

shows an image of a representative cell with its extracted boundary, colored with 

curvature value. Two main high curvature regions are seen (red indicates high 

curvature). One in the front (black arrow) and the other in the back (white arrow). In 

addition, there are small high curvature regions (small red regions) (red arrows).  

To visualize shape dynamics, we overlay cell shape outlines from different 

time points. Figure 3.2(d) shows overlaid cell shapes after direct pushing (the cell is 

the same as in the Figure 3.2(a). As we can see, although the cell retains its polarity 

and looks similar to a healthy cell (shown in Figure 3.2(c)), its overall shape does not 



 45 

 

change notably in 80 seconds, indicating that the cell active shape changes after direct 

pushing. After indirect pushing, however, (the cell in the Figure 3.2(b)), cells 

continue to change shape (Figure 3.2(e)). Cell shape dynamics do not seem to be 

affected by indirect pushing:  Localized protrusions travel from the front to the back 

of the cell (blue arrow), consistent with our prior observations.   

To visualize and quantify shape dynamics over minutes, we plot a kymograph (space 

time plot) where color indicates local curvature. Each vertical line in the kymograph 

represents one shape outline at a different time, for a total of 4.5 minutes (Figures 

3.2(f), (g)). After direct pushing the shape of the cell remains unchanged with time:  

The front and back, as well as additional small protrusions form multiple straight red 

lines in Figure 3.2(f). After indirect pushing (Figure 3.2(g)), tilted red lines are visible 

that start at the front of the cell, indicating protrusions that travel as a wave from the 

front of the cell to the back (white dot lines), similar to what we reported previously 

on healthy Dictyostelium cells(Driscoll et al. 2011).  

3.3.3 Indirect pushing allows for studies of cell-cell adhesion. 

Next we demonstrate an example how indirect pushing may be used to 

address a biological question. We focus on the question that how cell-cell contact 

affects cell behavior. Often cell-cell contact is studied when cells are anchored to a 

surface and thus cell-cell contact competes with cell-surface contact. However, many 

cells can at least temporarily be brought into suspension or prevented from anchoring 

to the surface. In that case they also lack the ability to push off the surface and move, 

and thus need to be manipulated in order to get in contact with other cells in a 

controlled way. 
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We first investigated cell-cell adhesion in cells suspended in distilled water. 

Unlike mammalian cells, the amoeboid cells we investigate (Dictyostelium) have 

special organelle to survive in distilled water. When two cells were pushed together 

we find that they did not form stable cell-cell adhesion. Instead, after indirect pushing 

stopped, they moved apart immediately, though cells were viable by our strictest 

standards. They maintained their shape dynamics until moving out of the field of 

view 19 minutes after manipulation. 

To assess whether this lack of cell-cell adhesion was related to the absence of 

buffer medium which screens charges and limits repulsive forces between cells, we 

used cells in buffer, but on PEG coated glass slides to prevent cell-surface adhesion. 

We find that cells in buffer are able to stick to others when they are pushed into 

contact. This process is shown in Figure 3. In the Figure 3(a), (b), two suspended 

cells are generating new protrusions (black arrows) before manipulation. A bead 

(white arrow) is directly trapped by an optical trap and moved towards an 

intermediate bead and cell A. The indirect pushing process is shown in Figure 3(b), 

(c), (d) as these two cells are arranged along their polarization direction (head-to-tail) 

and are pushed to form direct cell-cell contact. This manipulation process lasts for 

about 40 seconds. After the manipulation stops, these two cells still extend 

protrusions (black arrows) and retain dynamic shapes. The cells remain in contact and 

eventually form a clump several minutes after manipulation, as shown in Figure 3(h). 

We have carried out this procedure 8 times with success, demonstrating that it is 

possible to generate cell-cell contact with controlled polarity for biophysical 

investigations.  



 47 

 

 

Figure 3.3 - Indirect Pushing Of Two Dictyostelium Cells Allows For Tests Cell-Cell 

Adhesion With Controlled Cell Polarity. (a~b): A bead is directly trapped by the optical 

trap and moved towards another bead and cell A. (c~d): Cell A is indirectly pushed by 

the trapped bead through the intermediate bead. (e): The manipulation stops after one 

minute, and the two Dictyostelium cells are able to adhere together. (f~h): The two 

adhered Dictyostelium cells extend protrusions and form a clump in the following 8 

minutes. Scale bar: 5 μm. 
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3.3.4 Manipulating epithelial cells via indirect pushing. 

 

Figure 4 - Indirect Pushing of an MCF-10A Cell. (a): A bead is directly trapped by the 

optical trap and pushed to another bead, and move towards an MCF-10A cell. (b-e): 

Cell is indirectly pushed from a different direction by the trapped bead through the 

intermediate bead. (f): After manipulation, the trapped bead is released from trapping. 

Scale bar in (a): 10 μm. 

 

The indirect pushing method introduced in this paper is useful for non-

adherent cells. But it also can be used on adherent cells, taking advantage of the slow 

process of cell-substrate adhesion. Mammalian cells usually adhere to surfaces or an 

extracellular matrix, and utilize cell-surface adhesion to migrate. When adhered to a 

surface, these cells cannot be manipulated with optical tweezers, since adhesion 

forces are in the nN range, stronger than optical forces. However, there is an up to 

half an hour delay between the time cells settle to the surface and the time they start 

to adhere, as e.g. reported in reference(Dubin-Thaler et al. 2004). The delay time can 
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be tuned by varying the surface coating concentration. As an example, we studied 

MCF-10A Human Breast Cells that are shown in Figure 4. After placement in an 8-

well chamber (Ibidi, Martinsried, Germany), it was possible to push cells indirectly 

with silica beads before the cells stick on the surface for more than 30 minutes. 

3.5 Conclusion and Future Work 

This study presents evidence that indirect pushing significantly reduces the 

potential photodamage to target cells. By indirect pushing we mean optical trapping 

of beads, which push another bead, which in turn pushes on a cell.  Unlike direct 

manipulation or direct pushing (where cells are directly pushed by beads and parts of 

cells are still exposed to the trapping beam) indirect pushing does not expose cells to 

laser light. Indeed, cells remain viable even when hundreds of mW of laser power at 

532nm, i.e. in a harmful wavelength range, is used for manipulation. Our study 

focused on the worst case scenario, manipulation with laser light of a wavelength that 

is known to harm cells, to demonstrate that the indirect pushing method is broadly 

applicable for a wide range of laser wavelengths.  

In the viability study, most of the indirectly pushed cells are able to maintain 

their polarized shapes during manipulation. More importantly, most cells maintained 

their shape dynamics after manipulation. Thus, indirect pushing may be applied to 

study many interesting biological questions regarding cell motility or mechanical 

properties of pairs or groups of cells, the small building blocks of tissues and organs. 

One of the challenges of manual indirect pushing is that the intermediate bead 

could slip out from the configuration. Thus, it requires constant tuning of the pushing 

direction. However, by integrating robotic planning techniques, it is not a challenge to 
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reliably execute indirect pushing operations. The robotic control is achieved through a 

feedback loop that takes the current states of the trapped bead, intermediate bead, and 

the target cell into account to produce optimal action to move the trap so that the cell 

can be transported towards the desired goal location. The instability of the 

intermediate bead due to random Brownian motion does not affect the stability of the 

controller. The authors were even successful in manipulating smaller cells, e.g., Yeast 

that have smaller contact area between intermediate bead and cell which makes the 

pushing more challenging (Thakur et al. 2012; Thakur et al. 2014). Besides, we have 

developed an approach that is able to automatically trap multiple beads at the same 

time and move them on different trajectories using holographic tweezers, which will 

allow us to indirectly push multiple cells to different positions to form collective cell 

patterns in a controlled way (S Chowdhury et al. 2013; Chowdhury et al. 2012; Sagar 

Chowdhury et al. 2013; Banerjee et al. 2012).  

3.6 Materials and Method 

3.5.1 Optical Setup 

Multiple optical point traps are generated by using a 532nm green laser 

(Nd:YAG 5 W, Spectraphysicics, Millenia) coupled into a Nikon inverted light 

microscope, integrated with a Biorryx system (Arryx Inc.). Though the 532nm green 

laser is known to be harmful to cells, it presents a worst case scenario that makes it 

easier to detect differences in photodamage with different manipulation methods. Our 

indirect pushing method keeps cells viable even when hundreds of mW of laser 

power at 532nm is used for manipulation. A spatial light modulator has been built on 

this setup to customize the multi-traps arrangement within three dimensional spaces. 
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With a Nikon 60X NA 1.4 oil immersion objective, the Biorryx system can arrange 

up to 100 point traps within the operating region of about 100 μm*100μm and about 

10 μm above or below the focal plane. The same objective was used for both optical 

trapping and imaging. The cell manipulation process and long-term cell shape 

dynamics were imaged at 15 frames per second by a CCD camera (Foculus Inc.) and 

at 1 frame per second by CCD camera (Ueye from IDS GmbH) representatively. 

3.5.2 Preparations of Dictyostelium cell, Human MCF-10A Mammary Epithelial 

Cells and silica beads 

Dictyostelium discoideum lives as single amoeba cell when there is sufficient 

nutrition in the environment. Upon starvation, wild-type Dictyostelium are able to 

sense their neighboring cells and collectively migrate to an aggregation center, and 

eventually form a slug, which helps the whole cell group move faster during the food 

searching. The wild type Dictyostelium (AX3) cells were grown in HL-5 medium at 

the concentration no higher than 5*106 cells/mL at 21°C (Sussman 1987). For 

experiments, we starved and developed cells for 5 hours in development buffer (DB: 

5 mM KH2PO4; 5 mM Na2HPO4*7H2O; 2 mM MgSO4; 0.2 mM CaCl2) with pulses 

of 75 nM of cAMP every 6 mins, as described in other papers (Devreotes et al. 1987; 

McCann et al. 2010). Developed cells were harvested after 5 hours by centrifuging 

500μL of liquid from develop flask at 9000rpm for 3 minutes. The cell pellets were 

dissolved in 500μl of distilled water or phosphate buffer (PB: 5 mM KH2PO4; 5 mM 

Na2HPO4*7H2O).  

The MCF-10A cells were grown in an incubator in which the humidified 

atmosphere was kept at 37 °C and 5% CO2, in the DMEM/F12 media with 5% horse 
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serum, 10μg/ml insulin (Invitrogen), 10 ng/ml EGF (Peprotech, Rocky Hill, NJ), 0.5 

μg/ml hydrocortisone (Sigma, St. Louis, MO), and 100 ng/ml cholera toxin (Sigma, 

St. Louis, MO). For experiments, cells were harvested from the culture flask by 

adding Trypsin (Invitrogen), and the supernatant were centrifuged at 350 rpm for 5 

minutes. The cell pellet was dissolved in 6mL growth media and 10μL cells were 

added into a well of a μ-slide 8 well chamber (Ibidi, Martinsried, Germany) 

Silica beads (5 μm) are used as optical trapping assistants in indirect 

manipulation approaches. Micro-beads solution was prepared by mixing 2 μl original 

silica microspheres solution (Bangs Laboratories, Fishers, IN) with 1 ml distilled 

water. 

3.5.3 Suspended cells and beads 

In order to have enough time to manipulate cells and beads, the electrostatic 

force is utilized in experiments with Dictyostelium cells to keep cells and beads from 

sticking to the glass surface. The surface of cover glass, Dictyostelium cells, and silica 

beads are all negatively charged. They repel each other because of the Coulomb force 

when they get close. After adding cells into normal buffer, as in a standard 

experiment protocol, cells gradually settle to the surface from suspension. Once 

placed on the surface, they adhere and start to spread, i.e. form a growing contact area 

with the surface. The reason that they are able to overcome the repellent Coulomb 

force is that the cations in the buffer screen out the negative charge on cell 

membranes and surfaces (Socol et al. 2010). In this study, we add cells and beads into 

distilled water, so that the Coulomb force between cells and glass surface can keep 

them suspended for manipulation. When studying cell-cell interaction, the lack of 
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charge screening may also lead to repulsion between negatively charged cells. Thus, 

poly (ethyleneglycol) (PEG) coated glass slides (from MicroSurface, Inc.) are also 

used in the experiment that is shown in Figure 3.3 to keep cells from adhering to the 

surface.  
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Chapter 4: Dictyostelium Cells Migrate Similarly on Surfaces of 

Varying Chemical Composition 

 

 

This chapter is adapted from McCann, Rericha, Wang, Losert, and Parent (McCann et 

al. 2014).Text and figures are reproduced here with permission. Section 4.3 

summarizes and explains the previous experimental results and analysis finished by 

Colin McCann and Erin Rericha, which are not part of my dissertation. These results 

will be referred to as "our results" throughout this chapter. It is included here as 

understanding the previous hypothesis and results is critical to the understanding of 

the subsequent experiments and analysis. The work completed as part of my 

dissertation research is introduced in Section 4.4. Chenlu Wang performed the 

experiments and analyzed the data in Section 4.4. Colin McCann and Erin Rericha 

performed experiments and analyzed the data in Section 4.3.  

4.1 Overview  

Cell migration requires binding between cells and external substrates with 

moderate strength because sufficient adhesion is needed for pseudopods to anchor on 

surfaces and the whole cell body to be pulled forward, and adhesion needs to be weak 

enough for the cells to detach from surfaces. Mammalian cells strongly adhere to 

surfaces to be able to sense extracellular conditions and adapt their migration 
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accordingly, a phenomenon termed mechanotransduction. Mechanotransduction is 

found to be mediated by transmembrane integrins. However, amoeboid cells do not 

form integrin-based focal adhesions. We wonder whether mechanotransduction also 

occurs when these cells use non-integrin-based adhesion to migrate. We find 

individual Dictyostelium actively maintain optimal cell-surface contact area and 

migrate similarly on surfaces with different chemical compositions, which is 

regulated by the cytoskeleton. However, during collective migration, the cell-surface 

contact area and the migration pattern are strongly affected by surface composition, 

suggesting the formation of cell-cell adhesion alters cell-surface adhesion and the 

mechanism that cells migrate on different surfaces.   

 

4.2 Background 

Migrating on surfaces of different compositions is crucial for cells to fulfill 

many biological and pathological functions, such as immune responses, wound 

healing and cancer metastasis (Ridley et al. 2003). The mechanism of cells adhering 

to surfaces varies widely and is mainly determined by cell types (Friedl & Wolf 2010). 

Some types of cells, such as mesenchymal cells, form strong adhesions with surfaces, 

termed focal adhesions, which are mediated by integrins. Integrins are major 

transmembrane receptors which facilitate cells to adhere to surfaces and sense the 

surrounding environment. Thus, integrins play an important role in 

mechanotransduction (Wolfenson et al. 2013). Amoeboid cells, such as Dictyostelium 

cells and neutrophils, form non-integrin-based cell-surface adhesions.  
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Cells maintain their shapes and cell-surface adhesions by regulating 

cytoskeletal dynamics, including polymerization of actin and assembly of myosin II 

(Lecuit et al. 2011). These dynamic processes are often mediated by integrins. 

Integrins interact with cytoskeleton through adaptor proteins, such as Talin, which 

binds to both integrins and actin (Wolfenson et al. 2013). 

In the wild, Dictyostelium discoideum exist in soil, an environment with 

diverse conditions, and are exposed to different types of surfaces. They live as single 

amoeboid cells when there is sufficient nutrition in the environment. Upon starvation, 

wild-type Dictyostelium are able to sense their neighboring cells and collectively 

migrate to eventually form a slug or a fruiting body, which helps the whole cell group 

survive in harsh environment conditions (Müller-Taubenberger et al. 2013). They 

aggregate by secreting and chemotaxing toward cAMP signals forming multicellular 

streams with head-to-tail alignment. Although several adhesion receptors on cell 

membrane have been identified in Dictyostelium, the molecular mechanism of cell-

surface adhesion remains largely unknown (Cornillon et al. 2000; Fey et al. 2002). 

Two identified receptors, SibA and SibC, have homologues with mammalian integrin 

β chains, which could potentially interact with talin, but no actual integrin 

homologues are found (Cornillon et al. 2006; Cornillon et al. 2008). However, they 

express two homologues of talin, Talin A and Talin B, with distinct functions. 

Compared to Talin B, Talin A is more related to talin in mammalian cells, and it is 

found to be involved in a couple of processes in single cell migration, including cell-

substrate interaction (Kreitmeier et al. 1995; Niewöhner et al. 1997). 
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In this study, we were motivated to understand how Dictyostelium adapt their 

migration to complex extracellular environments by plating them on surfaces with 

different chemical compositions. Cell-substrate adhesion and collective migration 

were investigated in both individual cells and cell groups. In addition, we used drugs 

and mutant cell lines to observe activities of actin, myosin II, and talin under 

perturbations so that to probe the roles of them in cell migration. These experiments 

and analysis provide us a new understanding of cell-substrate adhesion and insights in 

underlying intracellular mechanisms during collective migration.  

4.3 Previous Results and Analysis from McCann and Rericha’s Research 

4.3.1 Non-specific cell-surface adhesion is actively regulated 

Unlike mammalian cells who form integrin-mediated focal adhesions, 

Dictyostelium are thought to form non-integrin-mediated adhesions with substrates 

(Eichinger et al. 2005; Décavé et al. 2002; Loomis et al. 2012). This type of 

membrane-surface interaction is expected to be largely determined by the physical 

properties of the external substrate, such as electrostatic charges and hydrophobicity 

(Socol et al. 2010). Thus, we investigated the cell-surface adhesion on surfaces with 

different chemical compositions: bovine serum albumin (BSA) coated glass, poly-L-

lysine (PLL) coated glass, acid-washed glass, and perfluorinated carbon chain coated 

glass.  

To access the strength of cell-surface adhesion, we measured the relative 

contact area of cells, which is the ratio of the surface contacting area of a cell to the 

projected area of the cell. The surface contacting region was visualized under 

Interference Reflection Microscopy (IRM), and the whole cell was visualized under 
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bright-field microscopy (Barr & Bunnell 2009). Cells exhibited visibly similar 

contact area on four surfaces (Figure 4.1A), and the following quantitative analysis 

indicated that the steady-state surface contact covered 20% to 30% of projected cell 

areas (Figure 4.1C, right plot). To further evaluate cell-surface adhesion, shaking 

adhesion assay experiments were used. Cells were plated and allowed to adhere to 

different surfaces. After been shaken orbitally at a controlled speed for a certain 

period of time, some cells were peeled off surfaces and then washed away. The 

numbers of surviving cells were found to be similar on all tested surfaces, indicating 

the strength of cell-surface adhesion is comparable when cells migrate on these 

distinct surfaces.  

In addition to cell-surface adhesion, other properties of cell migration were 

investigated, such as the polarity of cells, which was found to be similar on all tested 

surfaces. Cells also exhibited similar migration speed on different surfaces, as shown 

in Figure 4.1C, left plot.  

The underlying mechanism of cells maintaining similar adhesions on distinct 

surfaces remains unclear. Cytoskeleton provides physical integrity of cells, and it is 

often considered as a generator of forces that regulates cell-surface adhesion (Murrell 

et al. 2011; Reichl et al. 2008; Cuvelier et al. 2007; Robinson & Spudich 2004). To 

verify this hypothesis, we disrupted actomyosin cortex by using latrunculin A (LatA) 

and observed the change of cell-surface adhesions. LatA inhibits the polymerization 

of actin filaments so that to disrupt actomyosin cortex (Parent et al. 1998). Under the 

treatment of LatA, cells adopted a spherical shape and adhered on four surfaces with 

the significantly different relative contact area (Figure 4.1B). The relative contact 
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area of cells was dramatically larger on PLL and FCC coated surfaces than on glass 

and BSA coated surfaces, which was strongly correlated with the inherent adhesivity 

of these surfaces (Schindl et al. 1995). This finding suggests, in the absence of 

actomyosin cortex, cell-surface adhesion is mainly determined by the type of surfaces 

instead of being actively regulated by actomyosin force.  

 

Figure 4.1 – Cell-Surface Contact Area and Cell Migration on Surfaces with Different 

Chemical Composition. (A) Representative bright field images and IRM images of WT 

Dictyostelium cells (AX3) on 4 different surfaces. Scale bar: 35 μm. (B) Representative 

bright field images and IRM images of Latrunculin A treated AX3 cells on 4 different 

surfaces. (C) Average migration speed and the relative surface contact area of AX3 cells 

on 4 different surfaces.  
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4.3.2 Myosin II is required for strong cell-surface adhesions 

Cell-surface adhesions were significantly altered by LatA treatment, 

suggesting that the interaction between the cell membrane and surfaces is actively 

regulated by the cytoskeleton. The cytoskeleton is found to be able to adapt to 

different external substrates through actomyosin forces, which is generated by 

forming protrusions via actin polymerization and by controlling membrane tension 

via contractions mediated by myosin II (Jay et al. 1995). Thus, to understand how 

cell-surface adhesion is regulated by myosin II, we measured the surface contact of 

cells lacking myosin II (myoII- cells). These cells exhibited migration defect as they 

cannot retract their backs (Meili et al. 2010). As shown in Figure 4.2A, myoII- cells 

migrating on PLL and FCC surfaces exhibited larger surface contact areas than those 

migrating on BSA and glass surfaces. Compared to wild-type cells (AX3 cells), the 

relative surface contact area of myoII- cells significantly increased on PLL and FCC 

surfaces (Figure 4.2B). These surfaces were considered to have higher adhesivity than 

BSA and glass surfaces in previous studies. However, absence of myosin II did not 

significantly change cell adhesion on surfaces of low adhesivity, i.e., glass and BSA 

coated surfaces. This finding suggests that cell-surface adhesion to high adherent 

surfaces is highly correlated with the contractile ability of cells mediated by myosin II, 

but cell-surface adhesion to low adherent surfaces is mainly regulated by actin and 

independent of membrane contraction.  
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Figure 4.2 –Cell-Surface Contact Area of myosinII null Cells on Surfaces with Different 

Chemical Composition. (A) Representative bright field images and IRM images of 

myoII- cells on 4 different surfaces. Scale bar: 35 μm. (B) The average relative surface 

contact area of AX3 cells and myoII- cells on 4 different surfaces.  

 

4.4 Results and Analysis 

4.4.1 Actin contributes differently to the regulation of cell-surface adhesions on 

distinct surfaces.  

As revealed in the above experiments, cell-surface adhesions were significantly 

altered by depolymerization of actin. To further examine the effect of actin 

polymerization on adhesions, we measured the relative contact area of cells treated 

with different concentrations of Latrunculin A (Section 4.6.1 Materials & Method). 

BSA and PLL coated surfaces were chosen as representative surfaces that 

respectively display lower and higher contact area after Latrunculin A treatment. 

Experiments were repeated for 3 times, and images of 20~30 cells were taken for 

each experimental conditions. Representative images showing phalloidin staining of 

Latrunculin A-treated cells on both BSA- and PLL-coated surfaces are shown in 
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Figure 4.3A. Interestingly, we found that cells plated on BSA are more resistant to 

actin disassembly compared with cells plated on PLL. As low as 0.5μM Latrunculin 

A significantly increased the relative contact area of cells plated on PLL (Figure 

4.3B). In contrast, cells plated on BSA required a minimum of 5μM Latrunculin A 

before a significant decrease in relative contact area could be measured (Figure 4.3B). 

Indeed, from images we noticed that at equivalent Latrunculin A concentrations the 

phalloidin staining appears to be weaker in cells plated on PLL, compared to BSA, 

particularly at 0.5μM Latrunculin A (Figure 4.3A). These findings indicate that (i) 

Dictyostelium cells regulate their surface contact area and cell-surface adhesion in an 

actin-dependent manner and that (ii) actin contributes differently to maintain optimal 

surface adhesion on different surfaces. 

Figure 4.3 – Cell-Surface Adhesion is Altered by Latrunclun A Treatment in a Dose-

dependent Manner. (A) Representative TRITC-phalloidin fluorescent images of 

Latrunculin A-treated WT (AX3) cells on BSA and PLL surfaces.  Scale bar = 10μm.  (B) 

Quantification of the relative contact area of cells on BSA and PLL surfaces. AX3 cells 

were treated with different Latrunculin A concentrations, as indicated. * indicates 

statistical significance compared to the control condition (*: p<0.05, T-test; **: p<0.005, 

T-test) 
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4.4.2 Talin A is required for weak cell-surfaces adhesions 

To further understand the molecular mechanisms that regulate cell adhesion 

and migration in Dictyostelium, we examined how surface composition affects 

contact area in cells lacking talin A (talin A- cells). Similar to the finding of  previous 

studies (Niewöhner et al. 1997), we found that talin A- cells exhibit less cell-surface 

contact when plated on BSA compared to WT cells (Figure 4.4 A, C&D). In contrast, 

there is no significant differences in the contact area between talin A- cells and WT 

cells when cells were plated on the other more adherent surfaces, except for PLL 

where the talin A- cells showed higher contact area (Figure 4.4D). For these 

experiments, the talin A- parental cell line AX2 was used as a control. These cells 

behave similarly to AX3 cells on the various surfaces tested (Figure 4.4B). As 

discussed in the last section, cells regulate actin cortex to reinforce cell-surface 

adhesion when they migrate on less adhesive surfaces, e.g. on BSA. Our finding that 

talin A- cells exhibit less cell-surface contact on such surfaces suggests that talin A is 

required when cell-surface adhesion is enhanced by cortical actin.  
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Figure 4.4 –Cell-Surface Contact Area of talin A null Cells on Surfaces with Different 

Chemical Composition. (A) Representative bright field images and IRM images of AX2 

(WT) cells on 4 different surfaces. Scale bar: 35 μm. (B) The verage relative surface 

contact area of AX2 cell with Latrunculin A treatment on different surfaces. (C) 

Representative bright field images and IRM images of talin A- cells on different surfaces. 

(D) The average relative surface contact area of AX3 cells and talin A- cells on different 

surfaces. * indicate significance (p<0.05; ANOVA, Tukey test). 

 

4.4.3 Absence of Talin A significantly alters collective cell migration 

Cells not only interact with extracellular surfaces but also interact with other 

cells during collective migration. These two types of interactions compete with each 

other and regulate the movement of cells (Burute & Thery 2012). In this chapter, I 



 65 

 

have discussed how the change of cell-surface adhesions affect migration of 

individual cells (Figure 4.1C), whereas, how the cell-surface adhesion changes the 

cell-cell adhesion and collective migration remains largely unknown. Thus, we 

imaged the early aggregation of Dictyostelium on surfaces with different chemical 

compositions. As mentioned in Chapter 2, Dictyostelium relay chemical signals by 

releasing cAMP at their back and in turn forming multicellular streams in a head-to-

tail fashion. The width of such multicellular streams varies from single cell wide to 

several cells wide, and cells are in contact with both surfaces and neighboring cells in 

these streams. Thus, the multicellular streams serve as a good model for studying the 

interplay of cell-cell and cell-surface adhesions. 

McCann and et al found that the collective migration patterns dramatically 

differed between surfaces during the transition from individual cells to multiple 

aggregates. Multicellular streaming was inhibited on cells that were plated on more 

adhesive surfaces, such as PLL and FCC, where cells preferred to adhere to each 

other than on surfaces (McCann et al. 2014). These findings suggest that cells with 

less cell-surfaces adhesion are likely to form a greater contact area with other cells, 

which promotes the formation of cell clumps instead of streams and in turn changes 

the migration pattern. 

Therefore, we further studied how the reduction of cell-surface adhesion alters 

collective migration patterns by imaging the migration of talin A null cells and WT 

cells (AX2).  Similar to AX3 cells (McCann et al. 2014),  AX2 cells formed distinct 

streaming territories on BSA and glass surfaces in 30 minutes and formed a small 

number of aggregates in 2 hours (Figure 4.5A). However, cells plated on PLL 
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surfaces formed many aggregates instead of streaming territories, and these small 

aggregates merged into larger aggregates in 2 hours. The difference in migration 

pattern suggests that cell streaming and aggregation are affected by chemical 

compositions of surfaces via cell-surface interactions, and AX2 cells form relatively 

stronger cell-cell adhesion on PLL surface.  

On the other hand, talin A null cells exhibited dramatically different migration 

behavior compared to AX2 cells. Talin A null cells formed small cell clumps and 

aggregated by slowly merging small clumps into large clumps. On all three tested 

surfaces, talin A null cells did not form distinct aggregation territories or large 

aggregates throughout the image recording time. Moreover, from images talin A null 

cells appear to form relatively larger cell clumps on PLL surface than on less 

adhesive surfaces: BSA and glass coated surfaces. One possible explanation is that, 

with cell-surface adhesion defect, talin A null cells prefer to adhere to each other with 

greater contact area than adhere to surfaces and aggregating by clumping rather than 

streaming allows cells to minimize their cell-surface contact area. Such preference is 

enhanced in cells on PLL surface, where they form even larger clumps.  
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Figure 4.5 – Surface Composition and talin A Affects Collective Cell Migration. (A) 

Montage of images of AX2 (WT) cells aggregating on the 3 different surfaces, shown at 

4 different times. (B) Montage of images of talin A null cells aggregate on the 3 different 

surfaces, shown at 4 different times.  

 

4.5 Discussion 
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Together, we found Dictyostelium cells regulate actin cortex and maintain 

optimal cell-surface adhesions to adapt to different extracellular substrates, revealing 

that such adaption does not require integrin-based adhesion. Inhibition of actin 

filaments with the drug (LatA) leads to distinct cell-surface adhesion on surfaces with 

different inherent adhesivity, suggesting untreated cells compensate such adhesion 

difference by actively regulating the actomyosin cortex. The actin-driven protrusion 

and the myosin II-mediated contraction are crucial for regulating actomyosin cortex. 

Actin polymerization is found to be significant for all tested surfaces. However, 

myosin II is found to mainly affect the cell-surface adhesion on highly adhesive 

surfaces, such as PLL and FCC surfaces, suggesting cell contractility is essential 

when cells detach from more adhesive surfaces. On the other hand, cells lacking talin 

A exhibit distinct cell-surface adhesion on less adhesive surfaces, such as BSA and 

glass surfaces. This is probably due to the fact that actin greatly reinforces cell-

surface adhesion on these surfaces, and talin A is the link connecting transmembrane 

adhesion molecules to actin filaments.  

Our finding shows individual cells can regulate cytoskeleton in response to 

the mechanical difference between surfaces, adhere optimally, and migrate similarly 

on them. In contrast to the individual migration, collective migration is strongly 

affected by surface composition or cell-surface adhesion defect as cell streams exhibit 

distinct contact areas on different surfaces (McCann et al. 2014). Multicellular 

streaming is greatly inhibited on highly adhesive surfaces, on which cell-surface 

adhesion is not preferred when competing with cell-cell adhesion. A more in-depth 
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study on the interplay between cell-surface and cell-cell adhesions will be discussed 

in the next chapter. 

 

4.6 Materials and Methods 

4.6.1 Cell Culture 

WT Dictyostelium (strain AX3 and AX2) and talin A null cells (talin A-) 

(Kreitmeier et al. 1995) were grown in HL-5 medium with density 4-5x106 cells/ml. 

Cells were developed 4.5 (WT) or 5 (talin A-) hours prior the microscopic imaging. 

The development and harvest procedures have described in detail in Chapter3.5.2. 

Cells were suspended in phosphate buffer at the end of harvest procedure and then 

processed according to the assay performed. Experiments requiring Latrunculin A 

treatment involved resuspending cells in PB with 5 M Latrunculin A (Invitrogen) 

for 5 minutes before placing them in a chamber in which the buffer contained 5 M 

Latrunculin A. For the Latrunculin A titration experiments, cells were resuspended in 

PB with different concentration of Latrunculin A (0 (only PB), 5 M, 1.5 M, 0.5 

M, 0.25 M) for 5 min before placing them in a chamber where the buffer contained 

the same concentration of Latrunculin A. 

4.6.2 Surface Preparation 

Lab-Tek 8-chamber slides (Lab-Tek, Nunc) were used in experiments in this 

Chapter. All chambers were pre-washed with 1 M HCl and then triple rinsed with 

water. To obtain BSA (Sigma) or PLL (Sigma) coated surfaces, chambers were 

incubated with 1% w/v BSA or PLL solution for 2 hours and then triple rinsed with 

water. FCC (tridecafluoro-1,1,2,2-tetra hydrooctyl dimethyl chlorosilane; Gelest 
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SIT8170.0) coated surfaces were obtained by placing chamber slides in a vacuum 

chamber filled with FCC vapor for 2 hours followed by triple rinsing with water.  

4.6.3 Microscopy  

Images from interference reflection microscopy (IRM) and images of F-actin 

staining were taken under a Zeiss Meta 510 microscope with a 40x (NA 1.3) objective, 

using a HeNe laser (488 nm). IRM samples were prepared by simply plating 

developed cells on pre-coated surfaces 30 minutes prior the imaging time. F-actin 

staining samples were prepared with the following protocol. Cells were allowed to 

migrate for 30 minutes, fixed in 2% formaldehyde and 0.2% glutaradehyde for 10 

min, and rinsed twice. Next, 2 M TRITC-phalloidin in 0.2% Triton was added to 

each well, and the samples were placed under aluminum foil to incubate for 30 min. 

Finally, the samples were rinsed 5 times with PBS (Pang et al. 1998). 

Self-aggregation assays were performed under a Zeiss Axiovert S100 

microscope with a 2.5x (NA 0.075) objective using an automated moveable stage. To 

facilitate automatic tracking, the height of the condenser was adjusted so that cells 

appeared bright and background appeared dark in images. Images were acquired 

every 90 seconds for at least 2 hours.  

4.6.4 Image Analysis 

The relative contact area was calculated by dividing the cell-surface contact 

area by the total area of the cell. Cell–surface contact area was measured from IRM 

images, which were pre-processed with bandpass filtering and thresholding in ImageJ 

(National Institutes of Health; http://rsbweb.nih.gov/ij/) and imported into a custom 

Matlab (The Mathworks, Natick, MA) code for measuring the binarized contact area. 

http://rsbweb.nih.gov/ij/
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The total cell area was measured from bright field images, on which tools of variance 

filter, thresholding, and binary erosion in ImageJ were applied. The same custom 

Matlab code was used to calculate the area of each cell based on binarized images.  
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Chapter 5: The Interplay of Cell-cell and Cell-substrate 

Adhesion in Collective Cell Migration 

 

This chapter is adapted from Wang, Chowdhury, Driscoll, Parent, Gupta, and Losert 

(Wang et al. 2014).Text and figures are reproduced here with permission. Chenlu 

Wang designed and performed the experiments and analyzed the data.  

 

5.1 Overview  

Collective cell migration often involves notable cell-cell and cell-substrate 

adhesions and highly coordinated motion of touching cells. We focus on the interplay 

between cell-substrate adhesion and cell-cell adhesion. We show that the loss of cell-

surface contact does not significantly alter the dynamic pattern of protrusions and 

retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but 

significantly changes their ability to adhere to other cells. Analysis of the dynamics of 

cell shapes reveals that cells that are adherent to a surface may coordinate their 

motion with neighboring cells through protrusion waves that travel across cell-cell 

contacts. However, while shape waves exist if cells are detached from surfaces, they 

do not couple cell to cell. In addition, our investigation of actin polymerization 

indicates that loss of cell-surface adhesion changes actin polymerization at cell-cell 

contacts. To further investigate cell-cell/cell-substrate interactions, we used optical 
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micromanipulation to form cell-substrate contact at designed locations. We find that 

both cell shape dynamics and cytoskeletal activity respond rapidly to the formation of 

cell-substrate contact.  

 

5.2 Background 

Cells collectively migrate to carry out key functions of life: from tissue 

formation and organ development, to immune response and wound healing. 

Collective migration may simply involve a large number of cells flocking towards a 

common attractant, e.g. as observed during immune response. Collective migration 

may additionally involve cohesive migration patterns, in which cells migrate in a 

coordinated manner. Examples of such collective migration include human mammary 

epithelial cells, which form cohesive migration sheets during wound healing (Friedl 

& Gilmour 2009), and posterior lateral line primordial cells, which migrate in 

cohesive clumps during the development of the mechanosensory lateral line organ in 

Zebrafish (Matsuda & Chitnis 2010). Both cancer cells and amoeboid cells often 

migrate as multicellular streams, in which cells move in a head-to-tail fashion using 

the same path within tissues (Alexander et al. 2008; Kriebel et al. 2003; Weijer 2009).  

Collective migration requires the coordination of cells during migration, and 

therefore the coordination of the cell cytoskeleton and chemical signaling (e.g., 

chemotactic signaling) that control that migration. The chemical signaling cues that 

guide collective migration have been extensively studied, and many pathways have 

been identified. For example, human breast cancer cells have been found to form 

invading streams in vivo that use paracrine and autocrine signaling loops (Dovas et al. 
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2012; Patsialou et al. 2009). Dictyostelium discoideum cells provide a valuable model 

system for collective migration, since they form head-to-tail multicellular streams 

during aggregation and are guided by the chemoattractant cyclic adenosine 

monophosphate (cAMP) (Kriebel et al. 2003; Kimmel & Parent 2003). 

In addition to chemical guidance of cell migration, cells are also guided by 

mechanical cues. Mechanical forces arise from the extracellular matrix (ECM) 

through cell-surface contact and from other cells through cell-cell contact. These 

forces regulate the motion of migrating cell groups (Ventre et al. 2012; Kim et al. 

2010). Cells are able to follow gradients in stiffness of the extracellular matrix (ECM), 

a phenomenon known as durotaxis (Roca-Cusachs et al. n.d.). In addition, cells can be 

guided by external physical forces exerted more locally by other cells or objects (Kim 

et al. 2010; Weber et al. 2012; Fujita et al. 2009). For example, it has been shown in 

vivo that fiber-like structures in the ECM can provide directional guidance and direct 

multicellular streams (Alexander et al. 2008; Ventre et al. 2012). We previously 

showed that cell-surface adhesion can also affect collective migration: Dictyostelium 

discoideum cells exhibit different collective migration patterns on surfaces with 

different inherent adhesivities (McCann et al. 2014). However, it is not well 

understood how cell-surface adhesion affects collective migration, or how touching 

cells achieve highly coordinated motion.  

This study focuses on the interplay between cell-cell and cell-substrate contact 

in migrating cells. Recent studies have shown that in epithelial cells these two 

adhesion systems spatially inhibit each other and use different mechanisms to 

regulate the cytoskeleton and to generate mechanical forces (Burute & Thery 2012). 
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Epithelial cells and many other mammalian cells adhere to each other and to the the 

substrate via integrins, the activation of which triggers signaling pathways that affect 

various cell behavior (Critchley 2000). On the other hand, some fast migrating cells, 

such as Dictyostelium discoideum, adhere to surfaces non-specifically, and therefore 

allow us to study the competition of adhesions in the context of non-integrin mediated 

adhesion.  

We begin our investigation of the competition between cell-cell contact and 

cell-surface contact by blocking the formation of cell-surface contact. Without cell-

surface contact, cells significantly change their collective migration pattern. However, 

the protrusions and retractions of individual cells are not significantly altered by 

inhibiting cell-surface contact, which is consistent with our previous observations of 

cells suspended in water (Driscoll et al. 2012). Next, we investigate how cell-surface 

coupling affects cell-cell coupling and the spatial distribution of actin polymerization. 

Further, we use optical tweezers to form controlled cell-substrate contacts, which 

allows us to systematically study how cell shape dynamics and the cytoskeleton 

respond to changes in cell-cell and cell-substrate contact. 

5.3 Results and Analysis 

5.3.1 Without cell-surface contact, D. discoideum do not stream in a head-to-tall 

fashion but instead aggregate by clumping. 

We used two complementary approaches of inhibiting cell-surface contact in 

order to evaluate the effects of cell-substrate adhesion on cell-cell adhesion. In our 

first approach, wild type cells (AX3) were plated and remained suspended on a 

polyethylene-glycol (PEG) coated surface (MicroSurface Inc., Missouri). PEG 
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coatings have previously been used to prevent cells from adhering to surface 

(Wischerhoff et al. 2008). Interference Reflection Microscopy (IRM) (Barr & Bunnell 

2009) was used to determine the actual cell-surface contact area. Bright-field and 

IRM images of AX3 cells on glass are shown in Figure 5.1A. As we previously 

reported (McCann et al. 2014), cells partially adhere to glass surfaces. (Regions of 

adherence appear dark in IRM images. See Figure 5.1A for an example.). On PEG-

coated surfaces, cells are less polarized and do not form regions of cell-surface 

adhesions as shown in Figure 5.1B (no dark region in the IRM image).  

With these two surfaces, we examine the migration of Dictyostelium 

discoideum cells. We investigate cells at an early aggregation stage, where cells are 

prone to signal and to each other and migrate collectively in a head to tail fashion. 

Cells were marked with the cytosolic stain Cell-Tracker Green (Invitrogen) to 

facilitate the imaging and analysis of dynamic changes in cell shape. Representative 

images are shown in Figures 5.1C. On glass, cells are initially uniformly distributed 

on the surface and move non-directionally. After the first 20 minutes, the cAMP 

secreted by cells facilitates the formation of multicellular streams. This process is 

well established as a key example of collective streaming (Kriebel et al. 2003). 

Collective streaming results in the formation of a few large cell aggregates.  

In contrast, cells plated on PEG-coated surfaces do not stream collectively. 

Instead, they move non-directionally and form small spherical aggregates (Figure 

5.1D). After several hours, these spherical aggregates merge into larger aggregates. 

Since cells remain suspended on PEG coated surfaces, their movement is largely 

affected by the convection and flows in the chamber. Therefore, cell movement is 
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actually the combination of passive movement that caused by environment factors 

and active movement that results from their aggregation motion. 

 

Figure 5.1 –On PEG-coated Surfaces, Cells Exhibit No Cell-Surface Contact and 

Aggregate by Clumping rather Than Streaming. (A) Bright-field and IRM images of 

AX3 cells show that cells plated on glass form cell-surface contacts. (Dark areas on the 

IRM image indicate regions of cell-surface contact.) (B) Bright-field and IRM images of 

AX3 cells plated on a PEG-coated surface show that cells do not form cell-surface 

contacts on PEG. (No dark areas are observed on the IRM image.) (C) Early 

aggregation of AX3 (WT) cells on glass; cells aggregate via multicellular streaming. (D) 

Early aggregation of AX3 (WT) cells on a PEG coated surface; cells aggregate by 

clumping instead of streaming.  

To distinguish between active movement and passive movement, we used a 

plugin in ImageJ software (National Institutes of Health; http://rsbweb.nih.gov/ij/) 

http://rsbweb.nih.gov/ij/
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called template matching to get rid of the passive movement of all cells. Then, a 

custom particle tracking Matlab (The Mathworks, Natick, MA) code was applied to 

obtain the movement of each cell or cell clump, from which we calculated the active 

movement of cells in the field of view. Figure 5.2 shows the comparison of the 

extracted motion tracks between overall cell movement (original movement) and the 

active cell movement (corrected movement). After subtracting the passive movement, 

corrected movement tracks clearly show the aggregation of cells towards an 

aggregation center.  

 

Figure 5.2 – Corrected Motion Tracks. Comparison of the extracted motion tracks 

between overall cell movement (original movement) and the active cell movement 

(corrected movement) on PEG coated surfaces. 

We found although the overall speed of cells with/without passive motion are 

similar. (14.9um/min for original motion; 14.6um/min for corrected motion), 

subtracting the passive flow made the speed more uniform over time (Figure 5.3). 

To observe actin polymerization dynamics, we transfected Lifeact-RFP 

plasmid into wild type Dictyostelium (AX3). Lifeact is a short peptide that fused with 
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RFP, and it can bind to filamentous actin so that the fluorescent intensity can infer the 

concentration of polymerized actin. Figures. 5.4A&B are higher magnification 

images of AX3-Lifeact-RFP cells, which illustrate that cells arrange in streams on 

glass surfaces and in spherical aggregates on PEG-coated surfaces. During collective 

streaming on glass, adherent cells align in a head-to-tail fashion in streams. However, 

suspended cells do not exhibit such alignment inside aggregates. Furthermore, cells 

that are adhered to a surface show enhancement of F-actin at cell-cell contacts, as 

shown in Figure 5.4A. In cells that are not adhered to a surface, actin is instead 

enhanced in the periphery of the aggregate, as shown in Figure 5.4B. 

 

 

 

Figure 5.3 – Speed of Cells during Aggregation. Speed of cells with both passive motion 

and active motion varies during aggregation, whereas the speed of cells with subtraction 

of passive motion remains steady during aggregation. 
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Figure 5.4- Alignment of Cells is Distinct on Different Surfaces. (A) A multicellular 

stream formed by AX3-Lifeact-RFP cells with cells aligned head-to-tail on glass. (B) A 

multicellular clump formed by AX3-Lifeact-RFP cells on a PEG coated surface.  

 

5.3.2 Inhibiting cell-cell contact results in significant collective streaming defect. 

We examined how cell-cell adhesion affects collective migration in the 

presence of cell-surface adhesion by utilizing the force of electrostatic repulsion 

between cells. This approach has previously been used and adapted by us to prevent 

adhesion between cells and glass coverslips (Socol et al. 2010). Since both cell 

membranes and glass are negatively charged, they repel one another. Under usual 

experimental conditions, these negative charges are screened by ions in the phosphate 

buffer (PB). Repulsion between cells increases as the ion concentration in the 

medium decreases. In pure water and medium with low ion concentration, this 

repulsion is strong enough to prevent or partially inhibit cell-cell and cell-surface 

adhesions. Although this experimental approach only works for our osmotic-shock-

resistant amoeboid cells and is not transferrable to mammalian cells, it allows us to 

tune the mechanical cell-cell contact and elucidate the potential role of cell-cell 

adhesion in collective migration.  
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In these experiments, cells were allowed to form cell-surface adhesion in 

diluted medium (6% PB) for 15 minutes. Then, the medium was adjusted to different 

concentration (from full medium (100% PB) to almost pure water (1% PB)) to tune 

cell-cell adhesion at different level. We found that diluted PB (3%~10%) greatly 

inhibits the formation of cell-cell contact but retains cell-surface contact and cell 

motility. Cells in the 100% PB form streams normally (Figure 5.5A); cells exhibit 

significant streaming defect and aggregate through very shorts streams when cell-cell 

contact partially inhibited (6% PB) (Figure 5.5B); cells in the medium with even 

lower ion concentration (3% PB) remain their motility but do not form multicellular 

streams due to the significant inhibition of cell-cell contact (Figure 5.5C); when we 

further dilute the medium to 1% PB, cell-surface adhesion is also inhibited and some 

cells detached from the surface (Figure 5.5D). Testing via internal reflection 

microscopy (IRM) revealed that cells form cell-surface contacts in the first 3 

conditions only (Figure 5.6). Therefore, these experiments demonstrate the 

importance of cell-cell adhesion for collective streaming migration: cells do not align 

in a head to tail fashion without cell-cell adhesion. 

We further study the extreme case in which both cell-cell and cell-surface 

adhesion are inhibited. Cells were placed in distilled (DI) water instead of ionized 

buffer (PB), in which condition, the electrostatic repulsion is strong enough to prevent 

any cell-cell and cell-surface adhesion. Cells suspended in DI water lose both cell-

surface adhesion and cell-cell adhesion. However, as shown in Figure 5.5E, these 

cells retain their polarity and motility (as well as their cytoskeletal activity, data is not 

shown).  
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Figure 5.5 –Inhibiting Cell-cell Contact Results in Significant Collective Streaming 

Defect. (A) Migration of AX3 (WT) cells on glass in 100% PB; cells aggregate via 

multicellular streaming. (B) Migration of AX3 (WT) cells on glass in 6% PB; cells 

aggregate with streaming defect due to the partially inhibition of cell-cell contact. (C) 

Migration of AX3 (WT) cells on glass in 3% PB; cells do not form streams or aggregate. 

(D) Migration of AX3 (WT) cells on glass in 1% PB; some cells lost cell-surface adhesion. 

(E) AX3 cells without cell-cell and cell-substrate adhesion exhibit dynamic and 

polarized morphologies. 
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Figure 5.6 –Cell-Surface Contact Area of AX3 Cells in Medium with Different Ion 

Concentration.  

 

Cells that are suspended on PEG-coated surfaces have cell-cell adhesion but 

no cell-surface adhesion. Although they retain their shape activities, they cannot form 

streams since they lose the head-to-tail alignment. On the other hand, cells that are 

adhered on surfaces display significant multicellular streaming defect when the cell-

cell adhesion is inhibited. Therefore, collective streaming requires both cell-cell 

adhesion and cell-surface adhesion. 

 

5.3.3 The loss of cell-surface contact does not significantly change the shape 

dynamics and actin activity of individual cells.  

Both cell-cell adhesion and cell-surface adhesion are important in collective 

migration. To understand their respective roles, we first observe cell-surface adhesion 

in the absence of cell-cell adhesion, i.e. how cell-surface adhesion impacts on 

individual cells. Since cell migration involves a careful interplay of protrusions and 

retractions, quantitative analysis is used to compare the motion of individual, 

adherent cells with the motion of individual, suspended cells. Our previously 
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developed approach represents the shapes and shape dynamics of cells in a way that 

provides a whole-cell perspective on the protrusive and retractive processes (Driscoll 

et al. 2012; Driscoll et al. 2011). Briefly, the outline of an individual adherent cell is 

extracted from a sequence of images. To visualize local protrusions, the curvature at 

each boundary point is calculated and represented as a different color (see Figure 

5.7A.). Red represents convex regions, whereas blue represents concave regions, i.e. 

invaginations. The shape dynamics of this cell can then be represented as a 

kymograph of the local boundary curvature. A representative case is shown in Figure 

5.7B. The shape at each time is represented by a vertical line of equal length that is 

colored by local curvature. The two horizontal red regions indicate the locations of 

the front and back (the two polarized ends) of the cell and the slanted red lines 

indicate protrusion waves traveling on the sides of the cell. We define the polarized 

end that protrusion waves initiate from as the “front” of the cell and the other end as 

the “back”. Figures 5.7C&D are a representation of the curvature outline and the cell 

shape dynamics of an individual cell that is suspended on a PEG-coated surface. 

From Figures 5.7B&D we can infer that both the adherent cell and the suspended cell 

are polarized, i.e., have a well-defined front and a back, with protrusion waves that 

travel from the front to the back of the cell. Protrusion waves, which are indicated by 

black dashed lines, are seen as slanted red lines that initiate at the cell front and 

propagate to the back. Polarized shapes and similar pattern of protrusion waves are 

observed on both adherent cells and suspended cells. Further analysis of protrusion 

waves finds that curvature waves on suspended cells are more frequent than those on 

adherent cells (Figure 5.8). 
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To investigate the intracellular processes that allow cells to maintain their 

polarity and motility, we visualize intracellular actin polymerization using Lifeact-

RFP. Actin polymerization is very dynamic at the leading edge of migrating cells. 

Polymerization bursts are very transient. F-actin dynamics is measured by analyzing 

the fluorescence intensity of Lifeact-RFP along the cell periphery. In Figures 5.7E&G, 

the color on the extracted outline represents the F-actin fluorescence intensity near 

each boundary point. Red represents high fluorescence intensity (high F-actin 

concentration), whereas blue represents low fluorescence intensity (low F-actin 

concentration). The kymographs in Figures 5.7F&H show the F-actin activity of 

representative individual cells that are migrating on a glass surface and are suspended 

on a PEG-coated surface, respectively. The red areas represent regions of high actin 

polymerization, which mainly occur at the front of the cell and travel in a wave-like 

fashion mostly along the sides of the cell that near the front (indicated by black 

dashed lines). Figures 5.7F&H suggest that both adherent and suspended cells 

dynamically and asymmetrically assemble actin to generate force on their boundary, 

so that to maintain their shape polarity and their leading edge, where the membrane is 

pushed outwards. 
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Figure 5.7 –Cells without Surface Contact Exhibit Similar Shape Dynamics and F-actin 

Activity as Cells with Surface Contact. (A) An image of a representative adherent AX3-

Lifeact-RFP cell with the cell boundary, colored by curvature, overlaid. Here, red 

represents regions of positive curvature, and blue represents regions of negative 

curvature. (B) A kymograph of boundary-point-curvature vs. time for an individual, 

adherent cell. (C) An image of a representative suspended AX3-Lifeact-RFP cell with 

the cell boundary, colored by curvature, overlaid. (D) A kymograph of boundary-point-

curvature vs. time for an individual, suspended cell. These kymographs illustrate that 

adherent and suspended cells have similar cell shape dynamics. Both of them have two 

horizontal red region (front & back of the cell) and slanted red lines start from the front 

red region and end at the back red region (indicated by black dashed lines), which 

correspond to curvature waves travel on cell boundary from cell front to the back. (E) 

An image of a representative adherent AX3-Lifeact-RFP cell with the cell boundary, 

colored by the intensity of nearby actin fluorescence, overlaid. Red represents region of 

high fluorescence intensity, and blue represents regions of low fluorescence intensity. (F) 

A kymograph of boundary-point-fluorescence-intensity vs. time for an individual 

adherent cell. (G) An image of a representative suspended AX3-Lifeact-RFP cell with 

the cell boundary, colored by the intensity of nearby actin fluorescence, overlaid. (H) A 

kymograph of boundary-point-fluorescence-intensity vs. time for an individual 

suspended cell. These kymographs illustrate that adherent and suspended cells show 

similar patterns of F-actin activity. Regions of high actin polymerization (shown red) 

mainly occur at the front of cells but sometimes travel in a wave-like fashion along the 

sides of cells (indicated by black dashed lines). 
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Figure 5.8- Comparison of frequency of protrusion waves that generated on individual 

adherent cells and individual suspended cells. Data averaged from over 10 cells on each 

condition. Error bar: standard deviation of the mean. 

 

5.3.4 The shape dynamics of pairs of cells is coupled in a manner that depends 

on cell-surface contact. 

Without cell-surface contact, Dictyostelium discoideum cells maintain their 

cell shape dynamics and cytoskeletal activity when they move as individuals. But, as 

shown earlier, large groups of cells cannot form normal collective migration patterns 

without cell-surface adhesion. We hypothesize that the loss of cell-surface contact 

changes the mechanical interaction between cells, which results in the differences in 

collective behavior. Thus, pairs of cells in direct contact were studied, as they 

represent the simplest case of cell-cell interaction. 

When two neighboring cells move in in a stream on glass, their cell 

boundaries are sometimes indistinguishable. To distinguish neighboring cells, a 

mixture of AX3 cells stained with either Cell-Tracker Green (Invitrogen) or Cell-

Tracker Orange (Invitrogen) was used. Figure 5.9A shows a neighboring pair of 
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differently stained cells migrating on glass. For this analysis, we term the cell that is 

ahead the ‘leading cell’, and the cell that is behind the ‘trailing cell’. The overall 

boundaries of pairs of cells were extracted. Figure 5.9B shows overlaid cell shapes 

from different points in time (6 seconds between shapes). It indicates protrusions 

travel in the same direction on both cells and cross cell-cell contact region. 

Protrusions near the cell-cell contact region are pointed out by colored arrows. 

Further, the shape dynamics of each pair was measured following the approach used 

for individual cells (see Figure 5.9C). Note that the two red horizontal lines represent 

the front of the leading cell (cell A) and back of the trailing cell (cell B), and the 

slanted red lines indicate protrusions traveling on the side of these cells. As observed 

for individual cells, traveling protrusions initiate at the front of the leading cell. For 

cell pairs, these protrusion waves travel across the contact region of the two cells 

(indicated by the purple arrow), and stop when they hit the back of the trailing cell. 

This suggests that membrane protrusion waves on both cells travel in the same 

direction and are synchronized in time, i.e., the shape dynamics of these two cells are 

coupled across the cell-cell contact. For further comparison, we sketch a simplified 

cartoon of the shape dynamics in Figure 5.9D. Overlapping extracted cell outlines 

indicate the generation of a membrane protrusion, and the arrows indicate the 

direction of protrusion propagation.  

Pairs of suspended cells exhibit different collective motion and shape 

dynamics than pairs of adherent cells (Figures 5.9E-G). Overlaid cell shapes (Figure 

5.9F) indicate that protrusions travel in opposite directions towards cell-cell contact 

region on pairs of cells. Coupled, suspended cells do not form cell-cell contact in a 
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head-to-tail fashion. Instead, they often form tail-to-tail contact, as shown in Figure 

5.9G. In this boundary curvature kymograph of a representative pair of cells, the two 

horizontal red lines represent the front of the two cells and the slanted red lines 

represent traveling protrusion waves. The cells touch back-to-back, and protrusion 

waves initiate at the fronts of both cells, travel laterally along the cells, and then stop 

at the region of cell-cell contact. A schematic of the dynamics of protrusions in 

suspended cells is shown in Figure 5.9H. In general, pairs of suspended cells generate 

new protrusions at the end that is farthest away from the region of cell-cell contact. 

Those protrusions propagate in opposite directions and do not travel across the cell-

cell contact. The comparison between pairs of adherent cells and suspended cells 

suggests that, without cell-surface contact, cells cannot form the head-to-tail cell-cell 

contact that helps them to synchronize their motion.   

To further investigate the response of suspended cells to contact with another 

object, we use controlled indirect optical-gripping of cells, a technique that we had 

previously developed and refined (Wang et al. 2013; Sagar Chowdhury et al. 2013; 

Thakur et al. 2014; S Chowdhury et al. 2013). In our sample applications, we 

demonstrated that assistant tools, such as glass beads, could be used to indirectly 

bring two cells in controlled contact, without directly exposing cells to the potential 

photo-damage from the laser. Surprisingly, we had found that two suspended cells 

that are brought into front-to-back contact do not retain that alignment but instead 

rapidly change the location of their leading edges (Wang et al. 2013). One possible 

reason is that the loss of cell-surface adhesion varies the adhesivity of the cell 

membrane, e.g., the leading edge or tail of cells become less sticky and so cells are 
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more likely to adhere at other positions. To analyze the role of cell-substrate contact 

in a controlled way, we move glass beads (5 μm in diameter, Bangs Laboratories, 

Fishers, Indiana) towards target cells using optical tweezers (Figure 5.9I). Once the 

cell-bead distance is small enough to form direct cell-bead contact, we release the 

bead from the laser trap. Therefore, there is no optical tweezer force that pushes or 

pulls the cell after the formation of cell-bead contact. When a glass bead is adhered to 

the leading edge of a suspended cell, the cell rapidly loses its polarity and generates a 

new leading edge far from the cell-bead contact region, consistent with our 

observations of suspended cell behavior in response to cell-cell contacts. Our 

observations suggest that cells actively alter their shape dynamics and leading edge 

locations when forming direct contact with other objects, such as beads or cells.  
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Figure 5.9 - Adherent cells exhibit coupled protrusion waves but suspended cells do not. 

(A) An image of a representative pair of AX3 cells that are head-to-tail aligned and 

migrating on glass. (Cells were cytosolically stained green and orange.) (B) Overlay of 

the shapes of this pair of cells, which shows that the protrusion waves in both cells 

travel in the same direction and cross the cell-cell contact region. Red outline is a cell 

shape extracted from an earlier frame, whereas blue outline is a cell shape extracted 

from a later frame. Protrusions are pointed out by arrows. (C) A kymograph of 

boundary-point-curvature vs. time for this pair of adherent cells. Cell boundaries were 

extracted from the overall boundary of the two cells. The kymograph shows that 

curvature waves, indicated by black dashed lines, travel along the same direction in 

these two cells. (D) A cartoon of the shape dynamics of a pair of adherent cells. 

Protrusion waves in different cells propagate in the same direction and travel from cell 

to cell. (E) An image of a representative pair of AX3 cells suspended over a PEG-coated 

surface. (Cells were cytosolically stained.) (F) Overlay of the shapes of this pair of 

suspended cells, which shows that protrusion waves travel in opposite directions along 

the two cells. (Protrusions are pointed out by arrows on both cells, from red to blue.) (G) 

A kymograph of boundary-point-curvature vs. time for this pair of suspended cells. Cell 

boundaries are extracted from the overall boundary of the two cells. The kymograph 

shows that the curvature waves (indicated by black dashed lines) travel in opposite 

directions along these two cells. (H) A cartoon of the shape dynamics of a pair of 

suspended cells, Protrusion waves in different cells propagate in opposite directions and 

do not travel from cell to cell. (I) Cell-substrate contact can induce a switch in cell 

polarity. Upon contact with a bead at its front, this cell rounds up, and then forms a new 

front away from the bead. 

 



 94 

 

5.3.5 The spatial patterning of actin polymerization in directly contacted cells 

varies with cell-substrate contact.  

We investigate how actin polymerization responds to changes in cell-cell 

contact, and how this response differs for adherent and non-adherent cells. The F-

actin concentration of a representative pair of cells migrating with front-to-back 

alignment on glass is shown in Figure 5.11A. Actin mainly polymerizes at the front of 

the leading cell and at the contact region of the two cells. The fluorescence in the 

contact region is mostly due to the enrichment of F-actin at the leading edge of the 

trailing cell, as shown in Figure 5.10. The kymograph of the fluorescence intensity 

near the boundary of this pair of cells indicates that this enrichment near the leading 

edge and at cell-cell contacts persists during migration (Figure 5.11B). Statistical 

analysis of the relative fluorescence intensity on the cell boundaries (Figure 5.11C) 

supports the observation that the cell-cell contact region exhibits significantly higher 

F-actin activity than the far edges (free ends) of either cell. (The colored rectangular 

boxes in Figure 5.11A indicate the regions that are analyzed in Figure 5.11C. The 

rectangular boxes in Figures 5.11D, F, G, I, J also indicate regions of analysis.)  
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Figure 5.10 - Cells Migrate on Glass Surface Mainly Polymerize Actin at Their Leading 

Edges. AX3 (WT) cells and AX3-Lifeact-RFP cells were evenly mixed and plated on 

glass surface. (A), Bright field, fluorescent, and composite images show a AX3 (WT) cell 

is migrating on glass surface, followed by an AX3-Lifeact-RFP cell, which has more F-

actin at its front. (B), Bright field, fluorescent, and composite images show an AX3-

Lifeact-RFP cell is leading an AX3 (WT) cell during migration. There is no notable F-

actin enrichment at the back of the AX3-Lifeact-RFP cell. 

 

Similarly, the F-actin concentration in pairs of suspended cells that display 

back-to-back alignment was investigated. In these cells, actin mostly polymerizes at 

the far edges (free ends) of both cells, with no significant F-actin enrichment in the 

cell-cell contact region. Kymographs of F-actin intensity (Figure 5.11E) and 

statistical analysis of relative fluorescence intensity (Figure 5.11F) further validate 

this observation.  

Our results suggest that, without cell-surface adhesion, cells organize their 

cytoskeleton differently when they adhere to other cells. From analysis of shape 

dynamics and F-actin activity, we find that in both adherent and suspended cells, 

actin polymerizes at the cell fronts, where protrusion waves are initiated. However, in 

pairs of suspended and adherent cells, the cell fronts occur in different locations. 

Adherent cells locate their fronts at the tails of other cells, whereas suspended cells 

locate their fronts away from other cells. 

Using optical micromanipulation as describe earlier in the paper, we next 

investigate how the introduction of controlled cell-surface contacts drives 

reorganization of the intracellular cytoskeleton. To simultaneously optically 
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manipulate beads and measure actin fluorescence, we built a florescence light path 

into our optical tweezers system. This allowed us to image the spatial distribution of 

F-actin within cells before and after beads were adhered onto cells via optical 

micromanipulation. The typical process of such manipulation is shown in Figures 

5.11G-I. We find that upon contact with a silica bead, F-actin is enriched away from 

the region of cell-bead contact. This is consistent with and provides a molecular 

explanation for our observation that protrusions occur away from regions of cell-bead 

contact. Further analysis of the F-actin intensity along a cell boundary is shown in 

Figure 5.11J. This analysis further validates that cells form a leading edge away from 

cell-surface contact and that F-actin is enriched at that leading edge. Intracellular 

actin polymerization actively responds to the adhesion of either a silica bead or 

another cell in a similar manner.  
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Figure 5.11 - The Spatial Distribution of F-actin in Pairs of Cells Responds to a New 

Cell-surface Contact. (A) A fluorescence image of two AX3-Lifeact-RFP cells in direct 
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contact on glass. Colored, rectangular boxes indicate the regions that are analyzed in 

(C). (B) A kymograph of boundary-point-fluorescence-intensity vs. time for this pair of 

adherent cells. F-actin is persistently enriched at cell-cell contacts. (C) Relative F-actin 

fluorescence intensity in different regions on the boundary for the pair of adherent cells. 

The cell-cell contact region (shown red) shows higher fluorescence intensity than the 

free ends of the cells (shown blue and yellow). (D) A fluorescence image of two AX3-

Lifeact-RFP cells in direct contact suspended on a PEG-coated surface. Colored 

rectangular boxes indicate the regions that are analyzed in (F). (E) A kymograph of 

boundary-point-fluorescence-intensity vs. time for this pair of suspended cells. No 

enrichment of F-actin is found at the cell-cell contact. (F) Relative F-actin fluorescence 

intensity in different regions on the boundary for the pair of suspended cells. The cell-

cell contact region (shown red) shows lower fluorescence intensity than the free ends of 

the cells (shown blue and yellow). (G) Bright-field and fluorescence images of a 

suspended AX3-Lifeact-RFP cell with a 5 μm silica bead nearby. (H) Using optical 

tweezers, the silica bead is adhered to a recently generated protrusion on the cell, and 

sticks on the membrane of the cell. (I) Bright-field and fluorescence images of the cell 

after manipulation show that, following contact with the bead, F-actin is enriched at the 

end of the cell opposite to the cell-bead contact region. (J) Relative F-actin fluorescence 

intensity in different regions on the boundary of a cell before and after the formation of 

cell-bead contact. (In C, F, J, to make intensity of each frame comparable, the average 

intensity of the whole cell boundary in each frame was normalized to be 1. Each 

analyzed region includes the same number of boundary points. Error bar: standard 

deviation. *: T-test P<0.001).  
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5.4 Discussion 

Our main result is that the presence of cell-surface contacts affects actin 

polymerization at cell-cell contacts, and that cell-surface contacts are important to 

facilitate head-to-tail collective migration. Even though the shape dynamics and 

internal actin polymerization dynamics of individual cells during amoeboid migration 

do not appear to depend on surface adhesion, we find that the loss of surface adhesion 

significantly alters the collective migration pattern. Our analysis suggests that this 

change in collective behavior is not simply due to the fact that cells are not able to 

move well without surface adhesion (though they are able to “swim” as reported by 

us and others in prior work (Driscoll et al. 2012; Barry & Bretscher 2010; Bae & 

Bodenschatz 2010)), but due to changes in the shape dynamics. 

The motor underlying this shape dynamics is studied through observing actin 

polymerization activity. Our results indicate that individual suspended cells display 

similar F-actin activity as adherent cells, but that actin polymerization in touching 

cells is only coordinated to facilitate motion in the same direction if a cell-surface 

contact is present. The loss of cell-surface contacts leads to a loss of the cell-cell 

mechanical coupling via protrusion waves and actin polymerization enrichment. To 

generate a controlled cell-substrate contact, and to image intracellular actin 

polymerization at the same time we adapted our optical micromanipulation system. 

We find that after forming controlled cell-substrate contacts cells respond to the 

additional contact points with enhanced actin polymerization.  

These observations from the optical manipulation experiments give us 

complementary insights into mechanotransduction in two aspects: (i), as previously 
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shown, motility or shape change can be stimulated by forming contact with objects 

that are coated with certain chemical components (e.g. cadherin, antibody, or other 

protein/protein complexes) (Weber et al. 2012; Guilluy et al. 2014; Wang et al. 2005). 

The mechano-chemical effects reported in these studies are specifically mediated by 

the chemical components that are coated on the objects. Whereas, since we used 

uncoated silica beads and Dictyostelium discoideum cells adhere to substrate non-

specificly, i.e., no integrin mediated adhesions, the changes in cell shapes dynamics 

and the reaction of actin activity we report in our study are not chemical component 

specific. (ii), forces in the range of hundreds of pN to hundreds of nN exerting on 

cellular structures appear needed to activate mechano-chemical signaling pathways, 

known as mechanotransduction pathways (Weber et al. 2012; Wang et al. 2005; 

Sniadecki 2010; Maruthamuthu et al. 2011). However, in our experiments, we 

observed changes of cell actin dynamics without the need to apply any external forces 

on cells, i.e., forming cell-surface contact can induce a change in intracellular 

dynamics. It would be interesting to test whether applying forces can induce different 

intracellular responds on this system. Such experiments require the use of different 

force spectroscopy that can exert higher forces than optical tweezer (e.g., magnetic 

tweezer or AFM), which can exert up to 10nN forces (Sniadecki 2010; Neuman & 

Nagy 2008). 

Collective aggregation is an important behavior of cell groups. Studies of 

collective migration generally focus on chemical signaling between cells, and the 

migration of cells in response to that signal. Our results indicate that, in addition, cell-

surface coupling can facilitate collective migration via coupling of actin 
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polymerization activity. On the other hand, when cells are not in contact with a 

surface, they are no longer able to migrate in a cooperative manner. Indeed we 

observe less polymerization activity at cell-cell contacts but instead protrusions and 

actin polymerization at the boundaries of the aggregate. Though this is a very distinct 

localization of mechanical activity, it also leads to aggregation of cells into larger 

groups, very similar to collective migration on an adhesive surface. Our findings 

suggest that aggregating cells do not simply utilize actin polymerization to develop 

protrusions in response to chemotactic signals. Our data suggest that actin 

polymerization dynamics is also coordinated by cell-cell adhesion and cell-surface 

adhesion in a way that facilitates collective behavior. The migratory machinery of the 

cell thus appears to weigh and balance of mechanical stimuli with chemotactic signals 

in yet unexplained ways to facilitate robust aggregation.    

 

5.5 Materials and Methods 

5.5.1 Model system 

To study the interplay between mechanical and biochemical signaling, we use 

a simple model system, the social amoebae Dictyostelium discoideum, which form 

multicellular streams during development (Kriebel et al. 2003). They do so by 

simultaneously chemotaxing towards and secreting adenosine 3’,5’-cyclic 

monophosphate (cAMP), thereby forming aggregates which eventually differentiate 

into fruiting bodies. When exposed to a gradient of cAMP, the cells quickly orient 

themselves up the gradient and migrate using F-actin based pseudopodial extensions 

of their front, coupled with myosin II-mediated contraction and retraction of their 
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sides and back. Cyclic AMP not only induces cells to migrate directionally, but also 

stimulates the cells to produce and release cAMP locally, which allows cells to relay 

the chemoattractant signal to distal cells and migrate collectively in a characteristic 

head-to-tail fashion.  

5.5.2 Tissue culture, differentiation and labeling 

Wild-type Dictyostelium discoideum (AX3) cells and the mutant AX3-Lifeact-

RFP cells were grown in HL-5 medium at 21°C to concentrations no higher than 

5*106 cells/mL (Sussman 1987). For experiments, cells were starved and developed 

for 5 hours in development buffer (DB: 5 mM KH2PO4; 5 mM Na2HPO4*7H2O; 2 

mM MgSO4; 0.2 mM CaCl2) and pulsed with 75 nM cAMP every 6 mins, as 

described in other papers (Devreotes et al. 1987; McCann et al. 2010). Developed 

cells were harvested after 5 hours by centrifugation of 500μL of the development 

liquid at 9000 rpm for 3 minutes. The cell pellets were washed twice and dissolved in 

500μL of phosphate buffer (PB: 5 mM KH2PO4; 5 mM Na2HPO4*7H2O ) or distilled 

water. In some experiments, cells were fluorescently stained with CellTracker Green 

CDMFA or CellTracker Orange CMTMR (Invitrogen) at concentrations of 18 μg/mL 

for 20 minutes, similarly to previously reported procedures (McCann et al. 2010). 

5.5.3 Microscopy 

The early aggregation of AX3-Lifeact-RFP cells was imaged for 2.5 hours 

every 6 seconds using a Leica SP2 confocal microscope with a 10X objective. 4*105 

cells were well mixed in 300 μl of phosphate buffer and added into a 2-well Lab-tek 

chamber 15 minutes prior to imaging to allow cells to adhere to the surface. The early 

aggregation assay experiments were repeated 3-5 time for each experimental 
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condition. Zoomed in confocal images of AX3-Lifeact-RFP Cells were taken every 

2.5 or 2 seconds using either a Zeiss 510 confocal microscope with a 40X objective or 

a Leica SP2 confocal microscope with a 100X objective.  

Optical manipulation images were taken using a Nikon inverted light 

microscope with a 60X objective, which is integrated with a Biorryx optical trapping 

system (Arryx Inc., Chicago, Illinois). Optical traps were generated with a 532 nm 

laser (Nd:YAG 5W, Spectra-Physics, Newport Inc., Irvine, California). A 

fluorescence system was also incorporated into the same microscope to facilitate 

fluorescence imaging (Ex: 540nm-580nm, Em: 620 nm-700 nm). Images were 

collected by a highly sensitive CCD camera (PCO. Edge, Kelheim, Germany).  

5.5.4 Image analysis 

Confocal images were processed by a custom shape analysis Matlab (The 

Mathworks, Natick, MA) program as described in previous publications (Driscoll et 

al. 2012; Driscoll et al. 2014). Shapes of individual cells or pairs of cells were 

extracted and 400 points on the boundary were obtained on each frame. All boundary 

points can be tracked by applying 1:1 mapping between points on each frame and the 

following frame. The mapping is based on the finding of the minimum sum of square 

distance between points. For each boundary point, the curvature was calculated by 

fitting a circle into this boundary point and two points that 10 points away from it. 

For visualization, the value of the curvature is scaled in color in the kymograph with a 

cut off at a maximum curvature magnitude (0.25). The color bars are normalized by 

the cut off (-2.5 to 2.5). For the fluorescent intensity measurement, we draw a circle 

(10 pixels in diameter) around each boundary point and calculate the average actin 
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intensity within that circle. Then, the value of the intensity of each points was 

normalized by the maximum intensity on the cell boundary and scaled in color in the 

kymograph. 

The shape analysis and fluorescent intensity analysis for individual adherent 

and suspended cells were repeated on 20-30 cells. Typical examples were shown in 

Figure 5.7. Similar analysis for pairs of adherent and suspended cells were repeated 

on 5-10 pairs of cells. Typical examples were shown in Figure 5.9 and 5.11. 
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Chapter 6: Suppression of Actin Waves Enables Collective Cell 

Migration 

 

 

This chapter is adapted from a manuscript under preparation by Wang, Parent, and 

Losert (Wang et al. in preparation). Chenlu Wang designed and performed the 

experiments and analyzed the data.  

 

6.1 Overview  

Cells are able to migrate in a coordinated manner in groups. The mechanism 

that regulates the cytoskeleton in response to the contact with neighboring cells 

remains largely unknown. To understand cell-cell coordination, we investigated the 

cell shape dynamics and the actin polymerization in multicellular streams. We found 

that protrusion waves traveling along cell boundaries connect from cell to cell. In 

contrast, actin polymerization waves are suppressed on streaming cells, and F-actin is 

exclusively distributed at the front of cells where cell-cell contacts are formed. By 

applying Principal Component Analysis (PCA) to the cell shape change and the actin 

activity, we found that, compared to individually migrating cells, collectively 

migrating cells exhibit more localized protrusions at their fronts, which we termed 

front narrowing. The coupling of protrusion waves and the front narrowing are 

associated with the restricted actin polymerization. Reducing actin polymerization 
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with Latrunculin A leads to the re-organization of actin cortex, the decrease of front 

narrowing, and the decoupling of protrusion waves. Our findings suggest that the cell-

cell coupling depends on the exclusive actin polymerization and the corresponding 

front narrowing behavior at cell-cell contacts.  

6.2 Background 

           Cell migration is a ubiquitous phenomenon in developmental biology, immune 

response, wound healing and cancer metastasis (Lammermann et al. 2013; Matsuda & 

Chitnis 2010; Friedl & Gilmour 2009). Migrating cells exhibit distinct morphology, 

motility, and migration patterns depending cell type, cues from the cellular micro-

environment, and signals from other cells (Weijer 2009; DuFort et al. 2011; Parent 

2004; Doyle et al. 2013). Some cells migrate individually, such as immune and 

leukemia cells. Other cell types migrate in multicellular groups as observed during 

development and wound healing. Group migration is a highly orchestrated process 

that requires the integration of multiple external signals and the transmission of the 

information to neighboring cells in order to coordinate motion and steer the migration 

of the group (Haeger et al. 2015; Menko et al. 2014; Mayor & Etienne-Manneville 

2016). 

During migration, eukaryotic cells actively deform their shape by extending 

pseudopods and contracting their plasma membrane (Lauffenburger & Horwitz 1996). 

The generation of actin-rich protrusions is regulated by external chemical cues and 

steers cells during chemotaxis (Van Haastert & Bosgraaf 2009; Rickert et al. 2000). 

In addition, cell-substrate binding provides anchor points that are essential for cell 

translocation (Lämmermann & Sixt 2009; Lauffenburger & Horwitz 1996; Parsons et 
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al. 2010). Therefore, the location and dynamics of protrusions largely determine the 

membrane motion and ultimately the direction of migration. Distinct protrusion 

activities have been observed in a variety of cells: some protrusions grow and retract 

locally on cell membrane, while others are more dynamically propagated along the 

cell membrane in a wave-like fashion, exhibiting rich diversity in size and speed 

(Machacek 2006; Driscoll et al. 2012; Van Haastert & Bosgraaf 2009).  

Active cellular shape changes are internally driven by the rearrangement of 

the actin cytoskeleton - a complex network formed by dynamically polymerizing and 

depolymerizing actin filaments. Indeed, the growth of actin filaments has been shown 

to exert sufficient force to push the cell membrane outward and generate membrane 

protrusions (Prass et al. 2006). Self-assembled actin polymerization waves traveling 

along the cell cortex have been measured in various cell types (Gerisch et al. 2004; 

Weiner et al. 2007; Rottner & Stradal 2011; Allard & Mogilner 2013). Moreover, it 

has been shown that the propagation of actin waves associates with membrane motion 

waves in migrating cells (Driscoll et al. 2015; Enculescu et al. 2010; Machacek 2006; 

Weiner et al. 2007). Similarly, signaling proteins that regulate actin polymerization, 

such as PIP3, also exhibit wave-like activities during cell migration (Gerisch et al. 

2012; Rickert et al. 2000).  

It was recently established that membrane protrusion waves couple between 

collectively migrating cells, such as in epithelial cells in a monolayer sheet or in 

directly associated pairs of amoeboid cells (Zaritsky et al. 2014; Wang et al. 2014; 

Zouani et al. 2014). However, the underlying mechanism regulating the coupling of 

membrane waves remains largely unknown. One intuitive hypothesis is that the 
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coupling of membrane protrusive waves between neighboring cells is mediated by 

traveling actin waves. Indeed, recent studies have shown that molecules that maintain 

cell-cell contacts often directly or indirectly connect with the intracellular 

cytoskeleton, which allows cells to rearrange their cytoskeleton in response to signals 

from neighboring cells and coordinate their group cell behaviors (Weber et al. 2012; 

Wu et al. 2014; Cai et al. 2014).  

We, therefore, sought to determine if migrating groups of cells couple their 

internal actin waves. We used the social amoebae Dictyostelium discoideum as a 

model system for our studies. Upon starvation, these cells enter a developmental 

program that leads to the formation of an aggregate that differentiates into a 

multicellular organism that can resist harsh environmental conditions. Aggregate 

formation is a highly organized process that occurs as cells chemotax towards self-

generated adenosine 3',5' cyclic monophosphate (cAMP) cues. As the cells migrate 

and relay cAMP signals to neighboring cells, they migrate in a head-to-tail fashion 

and form characteristic streams (Kriebel et al. 2003; Kimmel & Parent 2003). We 

previously showed that Dictyostelium cells extend leading edge membrane 

protrusions and propagate wave-like protrusions across head-to-tail contacts on pairs 

of cells, which are essential for streaming (Wang et al. 2014).  

In this report, we compared cell shape change and actin assembly in 

individual and streaming cells. Remarkably, while we found that membrane 

protrusion waves were coupled between streaming cells, waves of actin 

polymerization were significantly suppressed. In aligned cells, actin polymerization 

exclusively occurred in cell-cell contact regions instead of propagating along the cell 
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boundaries of individual cells. This restricted distribution of F-actin at cell-cell 

junctions led to a change in cell shapes and collective migration patterns. Our 

findings reveal that collectively migrating cells exhibit localized actin assembly, 

which helps them adapt their motion to migrate coordinately within groups.  

6.3 Results and Analysis 

6.3.1 Cells couple their motion in multicellular streams and suppress actin waves 

We used the under-agarose migration assay (Figure 6.1A) to observe cell 

shape change in a 2D environment, as well as to create a stable cAMP concentration 

gradient, which guides cells to form streams (Materials & Method) (Nelson et al. 

1975; Kriebel & Parent 2009). To follow the behavior of individual cells inside of 

streams, we mixed 70% of wild type (WT) AX3 cells with 30% of WT cells 

expressing lifeact-RFP, which labels F-actin (Riedl et al. 2008), and recorded time 

lapse fluorescent images of chemotaxing cells (Figure 6.1B, Figure 6.1C, left). By 

applying a custom shape analysis Matlab code (Mathworks, Natick, MA, USA) as 

previously reported (Driscoll et al. 2012) (Materials & Method), we tracked the 

movement of the geometry center of cells. Figure 6.1C shows a typical example of 

cell (green) accurately following the trajectories of an earlier cell (red) in the stream. 

During the migration of the green cell, we measured the minimum distance of it to the 

trajectory of the red cell. The trajectories of cells migrating in the same streams 

largely overlap, as the distance between trajectories remains below 2 μm (Figure 

6.1D), which is very small compare to the width of cell streams (3~5μm). We 

hypothesize that streaming cells so accurately coordinate their migration by 

exquisitely coordinating the movement of their shapes. 
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Figure 6.1: Cells accurately follow other cells in streams. (A) Cells migrate from one 

well to a signal (cAMP) containing well under-agarose. (B) AX3-lifeact-RFP cells mixed 

with WT AX3 cells form multicellular streams under agarose – overlay of bright-field 

channel and red fluorescent channel. (C) A typical multicellular stream (left) and 
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overlaid migratory trajectories of two cells (indicated with green/red stars) in the 

stream (right). (D) Minimum distance of one cell to the trajectory of an earlier cell in 

the same stream during its migration. Distance measurement of 11 cells plotted. Each 

curve represent one cell.  

 

We have shown that individually migrating cells extend protrusions at their 

front that travel to their back on the cell boundaries and that, most importantly, the 

dynamics of protrusions govern the migration of individual cells (Driscoll et al. 

2012)Wang et al. 2013). To get more insight into the behavior of cells in groups, we 

studied the travelling of protrusion waves on Dictyostelium cells migrating 

collectively in multicellular streams. We considered two streaming cells in direct 

contact as a unit and extracted their overall boundaries using the custom shape 

analysis Matlab code (Driscoll et al. 2012). A typical example is shown in Figure 

6.2A. Note that the front cell (cell A) is ahead of the second cell we analyze (cell B), 

but in the back of another cell that is not fluorescently labeled. The stream of cells 

migrates to the right (blue arrow), and the boundaries of cell A and B are extracted 

every 2.5 seconds. Figure 6.2B shows an overlay over select cell boundaries. 

Protrusions (arrow heads), appearing like small bumps on the cell boundaries, initiate 

at the front of cell A and propagate to cell B across the head-to-tail contact region 

(black dash line). 
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Figure 6.2: Cells couple their protrusion waves in streams. (A) Two touching AX3-lifeact-RFP 

cells migrate as part of a multicellular stream. The boundary of these two cells is extracted and 

colored to indicate local boundary curvature. (B) Overlaid shapes of two cells in contact 

illustrate the propagation of protrusions from one cell to its follower cell. Shapes are aligned by 

their front point. (C) 3D kymograph of the spatio-temporal evolution of boundary curvature of 

two cells in contact illustrates coupling of protrusion waves on two cells. Red represents high 

positive curvature, indicating convex area; and vice versa. (D) Cross correlation of curvature 

dynamics between boundary points quantifies the coupling of waves.(E-F) Two phase contrast 

images sequences show that membrane protrusive bumps (marked with blue stars, stationary 

reference markers) are stationary with respect to the substrate in streams of migrating cells. 

 

To quantify protrusion waves, we measured the curvature of cell boundaries (Figure 

6.2A, color indicates of curvature). A time sequence of curvature outlines then allows us to 

study the dynamics of cell shapes. As illustrated in Figure 6.2C, the front and back of cells 

display high curvature regions. In addition, the small positive curvature regions (yellow/red 

regions) on the cell periphery indicate lateral protrusions. One of those is generated in the 

front of cell A (purple arrow) and travels in a wave-like manner across the cell-cell contact 

region to the back of cell B. The correlation between protrusion waves traveling on the two 

cells was further studied by calculating the cross-correlation of curvature dynamics between 

boundary points. For this purpose, each point on the bottom side of the boundary (point 1 to 

point 200) was compared to a reference point (point 70) (see Figure 6.2A). There may be 

multiple protrusive bumps simultaneously traveling on the boundary. To ensure the maximum 
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correlation is found based on the same protrusive bump traveling through each compared 

point and the reference point, the reference point on cell A has to be close to cell B. Point 70 

is a point arbitrarily chosen from the back region of cell A. We tested other points from the 

same region, and they yielded similar correlation results. As shown in Figure 6.2D, the 

highest correlation is seen between point 70 and points surrounding it with a constantly 

increasing frame lag, suggesting that curvature dynamics of these points are highly coupled. 

The high correlation region (red dash box) starts at point 40 and extends to point 180, 

covering the bottom side of cell boundary. The protrusion dynamics on the other side of the 

boundary showed similar correlation (data not shown). We also found that the cross-

correlation heat plot exhibits periodic patterns, suggesting that the protrusion waves are 

periodic. Together, these findings reveal that coupled protrusion waves travel between 

streaming cells. However, after examining the location of membrane protrusions with respect 

to the substrate, we found that the protrusions are generated at the same location on 

successive cells as the stream migrates forward (Figure 6.2E&F). 

 

Since actin polymerization generates sufficient force to form protrusions and cells are 

capable of coupling their cytoskeleton through cell-cell contacts, we hypothesized that the 

coupled protrusion waves on cell streams are driven by coupled internal actin waves. We 

measured actin polymerization in WT cells expressing lifeact-RFP migrating either 

individually or within streams (Figure 6.3A, B & C). As shown in Figure 6.3D, individually 

migrating cells polymerize actin at their front, but the location of the polymerizing region 

along the cell boundary shifts continuously in a wave-like fashion which leads to slanted lines 
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in the kymograph (black dotted lines indicate the waves). This observation is consistent with 

our prior observations of actin waves along the leading edge of migrating Dictyostelium cells 

(Wang 2014). In contrast, as shown in Figure 6.3E, the location of actin polymerization 

appears stationary in cells that are following other cells in a stream.  F-actin is exclusively 

seen at cell-cell contact regions (indicated by arrows in Figure 6.3B and black dots in Figure 

6.3E), mostly at the front of cells. Thus coupled protrusion waves on streaming cells are not 

associated with traveling actin waves, but instead they appear associated with the ability of 

cells to accurately follow each other by polymerizing actin only at cell-cell contacts. This 

explanation is consistent with our observation that protrusions are stationary relative to the 

substrate (Figure 6.2E&F). Indeed, a recent study on the surface adhesion of pairs of cells 

reveals that the trailing cell uses the same adhesion sites as the leading cell (Bastounis et al. 

2016). We also observed that cells in the leading position of multicellular streams exhibit 

actin waves on their sides (Figure 6.3F), much like individual cells, suggesting that protrusion 

waves are coupled with actin waves on leading cells. It therefore appears that the initiation of 

protrusion waves in cell streams is driven by actin waves in leader cells and that the 

propagation of protrusion waves within a stream is not associated with actin waves. 
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Figure 6.3, Follower cells in streams exhibit distinct actin polymerization than 

individual cells and leading cells. (A) Image of an individual AX3-lifeact-RFP cell with 

its boundary outline. Color of the outline represents F-actin concentration near the 

boundary point. Red: high concentration; blue: low concentration. (B) Image of a 

streaming AX3-lifeact-RFP cell with its intensity outline. (C) Image of an AX3-lifeact-

RFP cell at the leading position of a cell stream with its intensity outline. (D) A 

kymograph illustrates the spatial-temporal evolution of F-actin distribution in an 

individual cell which exhibiting actin waves (black dotted lines). (E) A kymograph 

illustrates the spatial-temporal evolution of F-actin distribution in a streaming cell on 

which actin waves are suppressed. Black dots: cell-cell contact points. (F) A 

kymograph illustrates the spatial-temporal evolution of F-actin distribution in a 

streaming cell at the leading position of a cell stream on which actin waves are seen 

(black dotted lines). 

 

 

6.3.2 Complex cell shape change can be divided into simpler modes 

To understand how the distinct organization of the actin cytoskeleton in streaming 

cells alters the motion of cells, we set out to measure the progression of cellular shape 

change. Cells actively deform their shape during migration, involving protrusion, rotations, 

and contractions (Driscoll et al. 2014). These activities result in complicated shape change 

as shown in Figure 6.4A. To simplify the problem, we considered the cell shape change as a 

combination of different types of simpler shape changes, defined as shape change modes. 
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Each mode represents a certain feature of shape change. Shape change modes are calculated 

by applying principle component analysis (PCA) (Driscoll et al. 2014; Stephens et al. 2008; 

Keren et al. 2008) on a cell shape data set that is extracted from sequences of images 

containing individual and streaming cells under different experimental conditions (Materials 

& method). Shape change modes can be visualized as shape changes of an ellipse, as shown 

in Figure 6.4B. Black dotted ellipses represent the mean cell shape, and the red and blue 

outlines represent how each mode deforms the cell shape. Note that the red and blue 

outlines indicate the two signs of a single mode. For example, a positive mode 1 results in 

forward motion, whereas a negative mode 1 results in backward motion. Only the three 

most dominant shape change modes are plotted here. While one can identify as many modes 

as there are boundary points, each of which contributes independently to the actual shape 

change of cells, the actually observed shape changes are dominated by these three modes. 

Shape change modes are sequenced by the contribution of each mode to the overall shape 

changes of cells. The plot of cumulative contribution vs. the number of involved modes 

(Figure 6.5) confirms that only a few modes are required to describe cell shape changes: 

about 70% of cell shape change is contributed by the first three modes. In other words, a 

few important modes decide the main features of cell shape change, whereas others 

sculpture the detail features. 

 

Because we are essentially parameterizing cell shape change, the contribution of each 

mode to the overall shape change of a particular cell is represented as C1, C2,…, CN in the 

following equation: 
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The cell shape change is then reconstructed by adding up modes. Figure 6.4C shows the cell 

shape change at the leading edge of a cell. As shown in Figure 6.4D, the original shape 

(black outline) is changed by forward motion (mode 1, the grey dotted outline). Similarly, a 

contribution from mode 2 (C2) and a contribution from mode 3 (C3) are added, which brings 

the cell shape. By adding in more types of modes, the cumulative shape (grey dashed line) 

is approaching the real shape (grey dashed line in Figure 6.4C). Therefore, with values of 

three modes, the instantaneous changes in shape and thus motion of a cell can be well 

described. Since the shape change of every cell is represented by the same set of shape 

change modes, we can quantitatively compare shape change between frames and among 

cells and experimental conditions. Thus, we gathered 1000 shape change data from each 

experimental condition and perform statistical analysis.  

Boundary Motion on Cell Shape M = C1*Mode1+C2*Mode2+… … + CN*ModeN 
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Figure 6.4 –Approximating Shape Changes and Motion with Three Shape Change 

Modes. (A) Overlaid shapes extracted from two successive images of one cell. Black 

solid outline represents initial shape; gray dashed outline represents the shape taken 5 

seconds later. Lines connecting two shapes indicate cell shape change, colored by line 
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length. (B) The 3 primary shape change modes. Black dashed line: mean cell shape. 

Blue/Red lines: illustrations of how each shape change mode affects the cell shape. (C) 

Adding modes at the leading edge of a cell. (D) Cumulative motion is constructed by 

adding the 3 shape change modes. The magnitude of shape change mode N is CN. 

 

 

Figure 6.5 –Cumulated Contribution to The Shape Change Vs. Number of Shape 

Change Modes. Modes are sequenced by their contribution to the overall cell shape 

change. 

 

6.3.3 Streaming cells exhibit narrowing of front protrusions 

We first compared the shape change of individual and streaming cells. Typical 

schematic examples of shape change at the cell front are presented in Figure 6.6A for 

both positive and negative signs of each mode. The mean values are shown in Figure 

6.6B, and the distribution of values for each mode is presented in Figure 6.7. To 

interpret these results, we now provide a qualitative description of these automatically 

(via PCA) extracted modes. The first shape change mode can be interpreted as the 
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global motion of cells, where cells uniformly move forward or backward. Since cell 

shapes were realigned by their front point before performing PCA, most cells exhibit 

forward motion, i.e. most values of mode 1 (C1) are positive (Figure 6.7A). Hence, 

mode 1 is termed forward mode. Streaming cells exhibit higher forward motion than 

individual cells as the mean of C1 is higher (Figure 6.6B). This is consistent with 

independent cell tracking analysis performed on the same set of data (Figure 6.8). 

Note that when we included all streams in a prior analysis, including very thick 

streams multiple cells wide, we measured similar cell speeds inside and outside of 

streams (McCann et al. 2010). Streams multiple cells wide were excluded from the 

current analysis because we are currently focusing on front-back guidance.  

The second shape change mode can be interpreted as a turning mode. As 

shown in Figure 6.6C and Figure 6.7B, both individual and streaming cells show 

similar behaviors in this mode. Combined with our earlier observation that leader 

cells of streams exhibit left-and-right actin polymerization similarly to individual 

cells, we envision that turning decisions are made by leader cells within streams and 

transmitted to the rest of the cells in a stream, resulting in the similar turning behavior 

found on individual and streaming cells. The third shape change mode describes a 

more localized shape change at the leading edge of cells. Positive values lead to a 

narrower leading edge of the cell, while negative values result in a widening of the 

leading edge. We define these two shape change behaviors as front narrowing and 

front widening. The mean and the distribution of C3 indicate that streaming cells 

exhibit front narrowing, while in individual cells front widening dominates (Figure 

6.6D, right and Figure 6.7C). 
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Taken together, our findings show that the protrusive motion of streaming cells is 

localized at the cell front. Further analysis indicates that the front narrowing coincides 

with the region of contact with the leading cell, suggesting that leading cells 

effectively control the protrusive engine of their followers and that follower cells are 

able to accurately follow their leader. We envision that the coupling of protrusions 

waves between cells is enabled by the accurate following of protrusions from the 

leader cells, i.e., at cell-cell contact, the follower cell generates a protrusion at the 

same location as its leading cell.  

 

Figure 6.6 –Streaming cells exhibit front narrowing that can be reduced by Latrunculin 

A. (A) Schematic examples of shape change at the cell front for both signs of each mode. 

(B-D) Mean of value of individual and streaming cells changes when cells are treated 

with Latrunculin A. 
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Figure 6.7 –Distribution of Values for Shape Change Modes in Individual And 

Streaming Cells.  

 

Figure 6.8 –Mean Migration Speed of Individual and Streaming Cells. 

 

6.3.4 Reducing actin polymerization results in front widening 

Streaming cells exhibit strong localization of protrusions and actin 

polymerization at their front. To investigate whether the front narrowing that is also 

observed in the shape change modes is actin-dependent, we used Latrunculin A (LatA) 



125 

 

at concentrations where actin polymerization is partially inhibited and cell motility is 

retained (McCann et al. 2014). We focused on cells treated with 2.5μM and 3.5μM 

LatA and compared them with untreated cells under both individual migration and 

streaming conditions. Note that the LatA concentrations are estimated initial 

concentrations. Cells were exposed to increasing LatA concentration as they migrate 

toward the drug source (Materials & Method). The mean and distribution of values of 

the three most important shape change modes are plotted in Figures. 6.6B-D, 6.9. We 

found that the mean of the mode indicative of forward motion, C1, is reduced at 

higher LatA concentration (3.5μM), consistent with the known inhibition of motion at 

high LatA concentrations. In contrast, a widening of the front (C3) was the main 

change in the shape change modes observed as the turning motion (C2) was 

unaffected by LatA treatment.  

While the interpretation of the change in C3 is similar for both individual cells 

and cells in streams – i.e. the front widens – the magnitude of the mode increases for 

individual cells while it decreases for streaming cells. If the magnitude of shape 

change is distributed among more modes, the motion is more complex. This leads to 

an intriguing question: Do the changes in the magnitude of mode C3 indicate that the 

complexity decreases with LatA treatment for streaming cells while it increases for 

individual cells? We cannot answer this question with the modes we analyzed so far, 

as they are based on all six experimental conditions to allow for comparison of mode 

magnitudes. To assess the complexity of shape changes, we performed PCA 

independently for all six conditions (control plus 2 LatA concentrations for individual 

cells and streaming cells) and calculated the contribution of each mode to the overall 
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shape change within each group. We found that shape change of individual cells 

becomes more complex with LatA treatment as shown in the cumulative 

contributions of shape change modes in Figure 6.10A. In untreated cells, the first 4 

modes explain ~80% of cell shape change. For cells treated with 2.5μM or 3.5μM 

LatA, 6 and 8 modes are needed respectively to explain ~80% of cell shape change. 

The total contribution of the first 3 shape change modes decreases for individual cells 

upon LatA treatment (Figure 6.10B). In contrast, as shown in Figure 6.10A&B, the 

boundary motion dynamics can be explained with fewer modes for streaming cells 

treated with LatA. These findings reveal that individual and streaming cells respond 

differently to actin polymerization inhibition: individual cells migrate more 

irregularly with higher localized cell shape change, whereas streaming cells migrate 

with less complex motion. Taken together, these findings show that front narrowing 

of streaming cells is actin dependent as the reduction of actin polymerization 

decreases such localized shape change on these cells.  
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Figure 6.9 –Distribution of Values for Shape Change Modes in Individual and 

Streaming Cells with LatA Treatment. (A-B) Distribution of values of shape change 

mode 1 for individual cells and streaming cells under LatA treatment. (C-D) 

Distribution of values of shape change mode 2 for individual cells and streaming cells 

under LatA treatment. (E-F) Distribution of values of shape change mode 3 for 

individual cells and streaming cells under LatA treatment. 

 

Figure 6.10 –Individual and Streaming Cells Adopt Different Strategies to Migrate 

under F-actin Inhibition. (A) Cumulative fraction of shape change vs. Number of modes 

for individual and streaming cells under control and 2 LatA doses. (B) The total 

contribution of first 3 shape change modes on individual and streaming cells. 

 

6.3.5 Latruculin A treatment induces F-actin assembly on the side of streaming 

cells 

We next studied changes in the distribution of F-actin upon LatA treatment. 

The spatial distribution of F-actin was obtained by measuring normalized 

fluorescence intensity at the cellular boundaries of WT cells expressing Lifeact-RFP. 

Figure 6.11A illustrates an intensity distribution outline obtained by using the custom 
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shape analysis Matlab program (Driscoll et al. 2012). As we did for our shape change 

analysis, the F-actin distribution along the cell boundary can be analyzed as a sum of 

orthogonal modes of the intensity distribution. PCA was used to identify the intensity 

distribution modes of WT-Lifeact-RFP cells migrating under different experimental 

conditions. The F-actin distribution along each cell boundary can be parameterized 

using the same math as before, though the modes and mode values now represent 

distribution of F-actin concentration hence we use the subscript F: 

 

 

Values CF1, CF2, etc. indicate the contribution of each intensity mode to the overall 

intensity distribution along the cell boundaries. As illustrated in the left panel of 

Figure 6.11B, the boundary of a typical cell is initially colored according to the 

intensity distribution of mode F1. As expected this only partially recovers the actual 

intensity distribution of this cell (Figure 6.11A). The cumulative intensity distribution 

of the first 2 modes and the first 3 modes, respectively, approach the actual intensity 

distribution. As we did for cell shape changes, we can again compare the values of 

modes (CF1, CF2, CF3, etc) between cells from different experimental groups. Indeed, 

1000 sets of values were obtained from PCA for each group and statistically analyzed.  

We found that F-actin distribution is well represented by the first 3 intensity 

distribution modes, as 80% of intensity information is contained in these modes 

(Figure 6.12). The distributions of values of individual and streaming cells are shown 

in Figure 6.11C. Typical examples of intensity distribution on cells are shown under 

each corresponding distribution plot. Average cell shapes are shown (roughly 

F-actin distribution on cell cortex = CF1*ModeF1+CF2*ModeF2+… … + CFN*ModeFN 
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elliptical) and colors indicate the magnitude of intensity. Similar to shape change 

modes, there are two colored outlines for each mode, representing two opposite ways 

by which a mode can contribute to the intensity distribution, which are determined by 

the signs of the intensity values. As expected, the distribution of CF1 shows that, for 

both individual and streaming cells, the anterior of cells exhibit more F-actin than the 

rest of the cell boundaries. Yet, we found that about half of individual cells have F-

actin on the sides of cell boundaries, whereas only a few streaming cells are in that 

mode (pointed by the purple arrow in the distribution plot of CF2). This result further 

validates our observation in Figure 6.3, which showed that streaming cells suppress 

actin polymerization waves that travel along their sides. 

We further investigated how the F-actin distribution responds to actin 

polymerization inhibition. As shown in Figures 6.11D & 6.13, while the distribution 

of values (CF1, CF2, CF3) of individual cells does not significantly change upon LatA 

treatment, the distribution of F-actin is significantly enhanced on the sides of 

streaming cells, as more streaming cells are found in the region of C2 < 0 (Figure 

6.11E, red and blue dash line). Therefore, upon LatA treatment, the suppression of 

actin polymerization on the sides of streaming cells gradually disappears, suggesting 

that streaming cells re-organize their actin cytoskeleton to adapt to actin inhibition.  

 

 

 

 

 



131 

 

 

Figure 6.11 –The Restricted Distribution of Actin Polymerization nn Streaming Cells 

Disappears under LatA Treatment. (A) Image of an AX3-lifeact-RFP cell with extracted 

cell boundary. Color indicates F-actin concentration near each boundary point. Red: 

high concentration; blue: low concentration. (B) With contributions from 3 intensity 

distribution modes, the cumulative intensity distribution looks similar to the actual 

intensity distribution in (A). (C) Upper plots: Distribution of values of individual cells 

and streaming cells for the first 3 intensity distribution modes. Lower: schematic 

examples of intensity distribution on cell boundaries for corresponding intensity modes. 
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(D) Distribution of C2 for individual cells under LatA treatment. (E) Distribution of C2 

for streaming cells under LatA treatment. 

 

 

Figure 6.12 –Cumulated Contribution to the Lifeact-RFP Intensity Vs. Number of 

Intensity Modes. Intensity modes are sequenced by their contribution to the overall 

distribution of intensity.  
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Figure 6.13 –Distribution of Values for Intensity Modes in Individual and Streaming 

Cells with LatA Treatment. (A) Distribution of values of 3 intensity modes for 

individual cells under LatA treatment. (B) Distribution of values of 3 intensity modes 

for streaming cells under LatA treatment. 

 

6.3.6 Latrunculin A treatment alters wave coupling between cells 

How do cell-cell coupling and streaming change under the influence of LatA? 

Images of typical cellular streams under 2.5μM and 3.5μM LatA treatment are shown 

in Figure 6.14A&B. Despite the noticeable morphological change, LatA treated 

streams retained a certain level of motility and actin activity. The spatio-temporal 

evolution of boundary curvature of pairs of cells in streams are shown in Figure 

6.14C&D, where the curvature of each boundary point from successive images is 

plotted vertically and aligned along the time axis. The front of the leading cell 

exhibits high curvature, as do other regions on the cell boundaries. At low LatA 

concentration, some protrusions (yellow) originate at the leading cell and travel to the 

following cell across the cell-cell contact (Figure 6.14C). However, only few 

protrusions travel across cell-cell contacts with higher LatA treatment (Figure 6.14D). 

We next investigated how cell migration is globally influenced by LatA 

treatment by performing under-agarose assays with different LatA concentrations and 

taking time-lapse images. For these experiments, a 90%/10% mixture of WT and 

WT/Lifeact-RFP cells were allowed to migrate in a gradient of cAMP and LatA. This 

allowed the cells to migrate out of the well and be slowly exposed to higher 

concentration of LatA. Cell migration tracks were obtained from the RFP channel by 

using a previously developed cell tracking Matlab program (McCann et al. 2010). As 
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shown in Figure 6.15A, the average cell speed remained at a comparable level when 

actin polymerization is partially inhibited (LatA < 5μM). However, while the 

instantaneous speed of untreated cells levels off, the instantaneous speed of LatA-

treated cells is decreased as the cells migrated up the LatA gradient (Figure 6.15B). 

Interestingly, while moderately-inhibited cells (LatA < 5μM) retained significant 

motility throughout the experiment, the collective migration pattern significantly 

changed (Figure 6.14E). Indeed, the overall shape of the cell groups changed from the 

stream-like shapes shown in Figure 6.3 to cohesive cluster-like shapes. 

Concomitantly, head-to-tail cell-cell alignments were less obvious in LatA-treated 

conditions. These findings suggest that cells require localized shape change at cell-

cell contact regions to mechanically coordinate with neighboring cells and maintain 

multicellular head-to-tail streams.  
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Figure 6.14 –Lata Treatment Alters Cell-Cell Interactions. (A-B) images of multicellular 

streams formed by mixed AX3-lifeact-RFP cells and unlabeled AX3 cells under 2.5μM 

and 3.5μM LatA treatment, respectively. (C-D) 3D kymographs illustrate the spatial-

temporal evolution of curvature of two contacting cells under LatA treatment, 

indicating coupled protrusion waves reduce during LatA treatment. (E) The pattern of 

collective migration of Dictyostelium alters under the influence of LatA. 
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Figure 6.15 –The Mean and Instantaneous Speeds of Cells under LatA Treatment. (A) 

The average speed of cells under different does of LatA treatment. Black bars: average 

speed of all cells in the microscopic field of view; gray bars: average speed of cells that 

moving faster than a certain threshold. (B) Instantaneous speed of cells under LatA 

treatment. Selected cells were tracked from the beginning of the migration movies for 

the following 45 mins. 

 

6.3.7 The relay of chemical signal is similar inside and outside of streams 

It is well established that the relay of cAMP signals between cells is essential 

for streaming. The binding of cAMP to its specific receptor on the cell surface 

activates a series of intracellular signaling pathways that eventually lead to the 

synthesis and secretion of additional cAMP by the adenylyl cyclase (ACA), which is 

enriched at the back of cells (Dormann et al. 2002; Kriebel et al. 2003). The produced 

cAMP is secreted and relayed to neighboring cells. It has been shown that the 

distribution of ACA at the back of cells is essential for streaming (Kriebel et al. 2008; 

Kriebel et al. 2003). Using WT cells expressing ACA-YFP, we assessed ACA 

intensities in individual and streaming cells. Similar to the analysis of F-actin 
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distribution on cell boundaries, the distribution of ACA on cell boundaries is 

considered as a cumulative distribution based on a set of ACA intensity distribution 

modes. These modes were obtained by PCA from 1900 ACA distribution outlines for 

both individual and streaming cells. We found the distribution of ACA to be 

remarkably robust and simple as 74% of ACA distribution information was 

contributed by the first mode (Figure 6.16). For both individual and streaming cells, 

ACA was dominantly distributed at the back of cells (Figure 6.17). We found no 

significant distribution differences between individual and streaming cells, indicating 

that cells do not significantly change cAMP signaling upon the formation of cell-cell 

contacts in multicellular streams. 

 

Figure 6.16 –Cumulated Contribution to The ACA-YFP Intensity Vs. Number of 

Intensity Modes. Intensity modes are sequenced by their contribution to the overall 

distribution of intensity. 
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Figure 6.17 –Distribution of ACA is Similar in Individual and Streaming Cells. Upper: 

Distribution of values of individual cells and streaming cells for the first ACA 

distribution modes. Lower: Examples of ACA distribution on cell boundaries. 

 

6.4 Conclusion and Future Work 

Our main finding is the suppression of actin polymerization waves in 

collective cell migration. Actin polymerization waves, seen at the leading edge of 

individually migrating cells, disappear once cells follow other cells in a stream, and 

actin exclusively polymerizes at cell fronts where the cell-cell contact is formed.  

Further analysis of cell motion and migration indicate that the switch of actin 

behavior to the stable state enables the close coordination of cell motion in groups. 

PCA on cell shape change shows that individual cells migrate more irregularly as 

they require more shape change modes to describe boundary motion. Collectively 
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migrating cells exhibit less variety in their cell shape change, especially when the 

actin polymerization is globally reduced. Uniform forward motion is dominant in 

these cells. In addition, actin polymerization at cell-cell contacts enables the front 

narrowing in the same region, which may promote cells to accurately follow their 

leading cells and enable the coupling of their protrusions. Moreover, breaking up the 

stable state of the actin cortex by reducing F-actin with LatA decreases the coupling 

of protrusion waves between cells and leads to the disruption of collective migration. 

Finally, it is important to note that the leading cells of streams still exhibit 

wave-like actin assembly similar to individual cells and thus generate alternating 

protrusions on both sides of the cell. Since following cells in a stream polymerize 

actin at cell-cell contact, they are able to follow faithfully the footprint laid out by the 

leading cell down to the level of localized protrusions that persist from cell to cell 

shown in Figure 6.2C. One consequence of this faithful following of the leader cell is 

that the characteristics of motion of all cells in a stream are expected to be similar to 

the motion of the leader cell. In turn, that is similar to individual cells. Thus, our 

findings explain why cells in a stream exhibit the same directionality and cell speed 

as individual cells (McCann et al. 2010). 

  

6.5 Materials and Method 

6.5.1 Tissue culture and differentiation 

Wild-type Dictyostelium discoideum (AX3) cells, AX3-Lifeact-RFP cells, 

ACA-YFP AX3 cells, and PH-crac-GFP AX3 cells were cultured at 21°C in HL-5 

medium containing 50 μg/mL Hygromycin (for AX3-Lifeact-RFP cells) or 20μg/mL 
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G418 (for ACA-YFP AX3 cells and PH-crac-GFP AX3) at density no higher than 

5*106 cells/mL.(Sussman 1987) Cells were harvested 6 hours before imaging and 

developed for 5 hours in development buffer (5 mM KH2PO4; 5 mM Na2HPO4*7H2O; 

2 mM MgSO4; 0.2 mM CaCl2), following the differentiation procedure previously 

described in other papers.(Devreotes et al. 1987; McCann et al. 2010; Wang et al. 

2014) Then, developed cells were spin down at 9000 rpm and re-suspended in 

phosphate buffer (5 mM KH2PO4; 5 mM Na2HPO4*7H2O). Suspended cells were 

incubated with 2mg/mL caffeine for 30 minutes before added into wells of under-

agarose migration assay.   

6.5.2 Under-agarose migration assay 

The procedure of under-agarose assay experiments is adapted from a 

previously published protocol.(Kriebel & Parent 2009) For most experiment 2-well 

Lab-tek chamber slides (Lab-Tek, Nunc) were used. For experiments shown in Figure 

6.14E, 6-Well Glass Bottom Plates (Cellvis) were used. Chambers were pre-washed 

by 1 M HCL for 15 minutes and then triple rinsed with water. Then, each chamber 

was incubated with 2 ml 1% w/v of BSA (Sigma) for 2 hours. When it is done, BSA 

solution was aspirate and 1.2 ml 0.5% agarose (liquid) was added into each chamber 

(3 ml agarose for 6 well plates). Slides were left on the bench for curing at room 

temperate for 30 minutes before moving to the 4°C refrigerator to continue curing for 

another 30 minutes. 14.5 gauge hypodermic tubing was used to drill two wells (2 mm 

in diameter, 4mm center-center apart) through the cured agarose in each chamber. 

One well is filled with 1uM of cAMP, which diffuses in agarose gel and forms a 
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cAMP concentration gradient. The other well is filled 15 minutes later with caffeine-

treated cells which then migrated toward the first well guided by the cAMP gradient. 

For experiments with Latrunculin A treatment, a mixture of cAMP and LatA 

(0 (only DMSO for untreated), 5μM, 10μM, 25μM, 35μM, 50μM) was added into one 

well in the agarose, and cells were added into the other well 15 minutes later. A 

gradient of cAMP and LatA then build up in the agarose gel, which guide cells to 

migrate towards the higher gradient forming multicellular streams. During the 

migration, cells are treated by LatA with gradually higher concentration. Base on 

mathematical models, the concentration of LatA at the edge of the well of cell, where 

cells start to migrate, is about 10% of the concentration that added into the well of 

cAMP and LatA mixture, i.e., the actual initial doses of LatA treatment are: 0, 0.5μM, 

1μM, 2.5μM, 3.5μM, 5μM. Moreover, instead of being treated with a constant LatA 

dose, cells are exposed to a gradient of LatA with increasing concentration in the 

under-agarose migration assay.  

6.5.3 Microscopy 

Cell migration movies used in PCA analysis and shape analysis were taken 

under Zeiss 510 confocal microscope with a 60X objective for every 2.5 seconds. 

Cells were added into the under-agarose assay chamber 15 minutes prior to imaging 

to allow cells to migrate out of wells. Other cell migration movies, like ones shown in 

Figure 6.14E, were taken under Zeiss Observer.Z1 microscope (Zeiss, Goettingen, 

Germany) equipped with an automated moveable stage using a 10X objective. 

Movies for all experimental conditions were simultaneously taken with 1.5 minutes 

interval.  
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6.5.4 Imaging processing and shape analysis 

Since cells migrate above coverglass and under the agarose gel in the under-

agarose migration assay, they are in an environment that has limited space in the Z 

direction. Thus, cortex waves on cell boundary are well confined in the X-Y plane. 

We extracted 2D shapes of cells by a custom shape analysis Matlab program (The 

Mathworks, Natick, MA) as described in previous publications. (Driscoll et al. 2012; 

Wang et al. 2014) 400 points on each cell boundary are evenly chosen, and boundary 

points are 1:1 mapped between two successive shapes according to their front point. 

The front is defined in this way: each cell shape is fitted to an ellipse; there are two 

points at where the major axis of the ellipse meets the cell shape. The boundary 

motions around these two points are compared, and the point with larger outward 

motion is set to be point 0.  

Curvature around each boundary point is obtained by fitting the point and two 

nearby points into a circle and calculating the reciprocal of the radius of the circle. 

Boundary intensity is obtained by drawing a circle around each boundary point and 

calculating the average fluorescent intensity within that circle. Then, the value of the 

intensity of each point was normalized by making the maximum and minimum 

intensity value to be equal for every cell boundary.  

Besides individual and streaming cells, some cells migrate in bulk groups, 

where they form cell-cell contact on the side of cell boundaries. They are removed 

from our analysis because we mainly focus on the front-back guidance in the study. 

In other words, streaming cells only form front-back contact with other cells.  

6.5.5 Principal component analysis 
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Cell shape change modes and F-actin intensity modes are calculated by 

principle component analysis (PCA) based on the imaging data collected from AX3-

Lifeact-RFP cells. We collected sequences of images containing individually and 

streaming AX3-Lifeact-RFP cells under different experimental conditions, from 

which thousands of cell shapes are extracted and shape change and intensity are 

calculated. The shape change of cells can be gained by overlaying cell shapes 

extracted from two successive images and calculating the moving distance of each 

boundary point, as illustrated in Figure 6.4A. For the 1:1 mapping between the two 

shapes, they are aligned by front point (point 0), which is decided by cell orientation.  

Cell shape change data and intensity data are randomly selected (1000 shapes 

from each condition), and PCA was performed on these two data sets respectively 

using Matlab build-in function to find out modes. Intensity modes for ACA were 

calculated similarly based on imaging data collected from ACA-YFP AX3 cells. 1900 

from each condition are randomly selected for analysis respectively.  
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Chapter 7: Summary and Future Directions 

 

7.1 Summary  

This thesis has discussed how cells adapt their motion to neighboring cells and 

extracellular substrates by actively regulating the cytoskeleton and shape dynamics. 

Cells adhere to extracellular substrates and neighboring cells during collective 

migration and perceive various signals from their surrounding environment. These 

signals are further processed intracellularly via a complex signaling network, which 

has been extensively studied in the past decade (Devreotes & Horwitz 2015; Garcia & 

Parent 2008; Penela et al. 2014). This thesis focuses on understanding the output of 

this signaling network: the actin polymerization and the subsequent cell shape 

changes, both of which exhibit dynamic wave-like behaviors. In this thesis, I 

perturbed these waves by altering cell-substrate and cell-cell interactions and by 

active micromanipulation, which led to different actin polymerization, cell shape 

changes, and cell motion. These studies provide insights in how mechanical and 

intracellular waves govern collective cell migration. 

Much of my work aimed to understand how cells coordinate their motion 

during collective migration. As previously shown, the motion of individual cells is 

governed by wave-like cell shape dynamics. (Driscoll et al. 2012; Driscoll et al. 2011). 

Hence, I analyzed the shape dynamics of pairs of Dictyostelium cells migrating 

head-to-tail (Chapter 5). I found that protrusion waves travel across cell-cell contact 

on pairs of cells. Then, I expanded my studies to streams of cells and further 
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quantified protrusion waves (Chapter 6). I found that protrusion waves are highly 

coupled between streaming cells. I further studied how cell-cell coupling affects cells 

motion by applying principal component analysis (PCA) on cell shape data. PCA 

yields a set of shape change modes, each of which represents a particular feature of 

cell shape change, such as protrusion, rotation, etc. I found that compared to 

individual cells, streaming cells exhibit more localized anterior protrusive motion, 

which I termed front narrowing. Here, I propose that front narrowing, which occurs at 

the cell-cell contact region, is important for the coupling of protrusions between cells 

because it allows leading cells to efficiently guide the protrusive motion of the 

follower cell and the follower cell to accurately follow their leader cells. Such precise 

following is also reflected at the individual protrusion level, where a follower cell’s 

protrusion is generated at the same location as its leader cell’s protrusion.  

As indicated in previous studies, individually migrating cells exhibit actin 

polymerization waves that are associated with membrane protrusions (Gerisch et al. 

2004; Gerisch et al. 2009; Driscoll et al. 2015) . However, as described in Chapter 6, 

I found that actin polymerization waves are significantly suppressed in streaming 

cells, indicating that the coupling of protrusion waves in streaming cells is not 

governed by traveling actin polymerization waves. Note that the leading cells of 

streams exhibited actin polymerization waves, and associated alternating protrusions, 

suggesting actin polymerization is still associated with the initiation of protrusions 

seen on the sides of streams. My studies further showed that streaming cells 

exclusively produce F-actin at cell-cell contact regions, especially at cell fronts, 
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which enables front narrowing. With LatA treatment, which sequesters actin 

monomers and thus suppresses active actin polymerization, polymerized actin was 

found on the side of cells, which reduces front narrowing and in turn reduces 

coupling of protrusion waves. These results further support the conclusion that 

wave-like propagation of protrusions on the side of cell streams are not actin-driven.  

I observed the switch of actin polymerization from a wave-like state to a stable 

state upon the formation of cell-cell adhesion (chapter 6), which suggests that the 

actin cytoskeleton is a dynamic system. Indeed, previous studies indicate that the 

actin cytoskeleton exhibits distinct behaviors under different circumstances. The 

Losert lab has previously found that actin waves are guided by nanoscale ridges, 

which are very different with actin waves in migrating cells on flat surfaces (Wang 

et al. 2014; Driscoll et al. 2014). Stable actin polymerization is seen wrapping 

around nano-scale obstacles (ongoing research in Losert’s lab). Moreover, actin 

filament assembly significantly varies when cells are exposed to distinct 

microenvironments, and cells readily switch from one behavior to another as they 

enter a different extracellular matrix (Doyle et al. 2013). Together, these findings 

suggest that the actin cortex is a dynamic system that can quickly switch between 

states in response to external triggers.  

My studies also suggest that cell-surface adhesions are essential for the 

coupling between cells migrating collectively. As described in Chapter 4, the 

chemical composition of surfaces affects cell-cell adhesion, resulting in distinct 

collective migration patterns. Moreover, cells with a surface adhesion defect (Talin 
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A null cells) exhibit significantly different cell-cell interactions: they aggregate by 

clumping instead of by head-to-tail streaming. I examined another case, where cells 

were suspended on a surface coated with PEG, which prevents cell-surface adhesion 

(Chapter 5). The loss of cell-surface adhesion led to a different aggregation behavior 

compared to adherent cells. Suspended cells still exhibited wave-like protrusions, but 

the protrusions were not coupled between neighboring cells, suggesting that the 

coupling of protrusion waves is surface-adhesion-dependent. Indeed, the location of 

protrusions was stationary with respect to the surface when the whole cell streams 

migrated forward (Chapter 6). Thus, I hypothesize that protrusions on the sides of 

streaming cells are associated with cell-surface adhesions. This hypothesis is 

supported by a recent study showing that successive cells use the same surface 

adhesion sites (Bastounis et al. 2016). Thus, these results indicate that collective 

migration requires a balance between cell-cell and cell-surface adhesions. 

Such a balance is reached via the regulation of the cytoskeleton. My studies 

revealed how collectively migrating cells assemble their cytoskeleton in response to 

varying cell-surface adhesions. Chapter 4 showed that cells actively regulate their 

cytoskeleton to retain optimal cell-surface adhesions in response to different types of 

surfaces. Cells lacking the link between actin and surfaces (talin A null cells) could 

not retain optimal surface adhesions. Without cell-surface adhesions, shown in 

Chapter 5, cells assembled actin on the periphery of groups instead of in cell-cell 

contact regions. This distinct actin assembly pattern facilitated the aggregation of 

suspended cells by merging small cell clumps into larger clumps.  
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7.2 Future Directions  

This thesis reveals that cells migrate in a coordinated manner during the 

head-to-tail streaming process. The coupling between cells is enabled by front 

narrowing, i.e. protrusions that are confined to the cell-cell contact region, which is 

associated with exclusive actin filament assembly in the same region. The restricted 

F-actin assembly and coupling of protrusions is cell-surface adhesion-dependent. 

These findings raise many new questions:   

How does the restricted actin polymerization at cell-cell contacts drive 

local forces and motions to facilitate cell-cell coupling? 

This thesis shows that the coupling of protrusion waves is associated with 

specific actin polymerization at cell-cell contacts. However, how does actin 

polymerization generate forces, and in turn, drive the localized motion at cell fronts to 

facilitate the coupling of protrusions remains unclear. I found that the restricted actin 

polymerization exhibits an oscillating on-and-off manner at cell-cell contacts. I 

speculate that such oscillating behaviors are related to the periodic generation of 

protrusions at cell fronts. In the case that a protrusion travels to the back of a cell, the 

protrusion presents an obstacle to its follower cell. The obstacle may bring two 

possible consequences: (i) higher forces is required to push on the obstacle so that the 

actin polymerization is enhanced at the front of the follower cell. Recent studies 

provide evidence from molecular level showing the constraint or force applied on 

cells increases the density of actin filaments increases (Fletcher 2010; Bieling et al. 
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2016; Diz-Muñoz et al. 2013).(ii) the growth of actin filaments is constrained by the 

obstacle so that F-actin grows slightly sideway. Indeed, the packing of filaments 

changes when force is applied on cell membrane. Normally, new actin branches grow 

at 70 degrees with respect to the existing filaments, which determines the angle of 

filaments attacking cell membrane. This angle decreases when the external forces 

increases, reflecting some geometry change of actin network, such as the bending of 

actin filaments or branch-points made by Arp2/3 (Bieling et al. 2016).  

The change of actin network assembly leads to the generation of a new 

protrusion at the corresponding side of the follower cell’s front. This protrusion 

remains when the cell migrates forward. In this way, the protrusion of the follower 

cell accurately follows the protrusion of its leading cell. According to this hypothesis, 

cells cannot precisely follow their leading cells without constantly recruiting actin to 

their front, which explains the suppression of actin polymerization waves on 

streaming cells.  

To verify this hypothesis, direct measurements of forces and corresponding 

motions at the front of cells are required. Cell local motion can be assessed by 

measuring the change of cell shapes as previously described (Driscoll et al. 2011). 

The measurement of forces requires new experimental techniques. Traction force 

microscopy (TFM) has been applied to study force generation during cell migration 

with much success. Previous studies suggest that adherent migrating cells exert forces 

in the tens of nanonewtons per square micrometer range (Ricart et al. 2011; Bastounis 

et al. 2016), which is about the force resolution of TFM (Plotnikov et al. 2014; 
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Bergert et al. 2015). I could use TFM to measure forces generated by migrating cell 

streams and study how the forces are related to the overall cell shape change. 

However, TFM does not have enough force resolution for measuring localized actin 

forces, such as forces generated at cell-cell contacts, which are expected to be in the 

low piconewtons to hundreds of piconewtons per square micrometer range (Bergert et 

al. 2015; Ehrlicher 2007). Atomic force microscopy (AFM), which has the force 

resolution of ~10 piconewtons (Neuman & Nagy 2008), could be used to measure 

local actin forces at the front of cells. I could study the spatial-temporal evolution of 

the force generated at cell front and compare it to the actin polymerization and 

protrusion generation in the same region. I expect to see a strong correlation between 

force and actin polymerization, as well as between force and protrusions. I could also 

compare the force generated in a cell to the protrusion generated on its leading cell to 

determine whether the protrusion at the back of the leading cell induces actin 

polymerization, and in turn, force generation at the front of the follower cell. These 

studies would provide significant insights into the mechanism that regulate coupling 

of protrusion waves in collective cell migration.  

 

What is the molecular mechanism of cell-cell coupling?  

I proposed the above hypothesis from a mechanical perspective without 

considering molecules mediating cell-cell adhesions. Recent studies indicate that 

cadherins and their adapter proteins mediate cell-cell coupling through regulation of 

the cytoskeleton in mammalian cells (Case & Waterman 2011; Schwarz & Gardel 
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2012). Although the coupling of protrusion waves discussed in this thesis is not 

cadherin-dependent, as Dictyostelium does not express cadherins, there are some other 

types of cell-cell adhesion molecules identified in Dictyostelium, such as csA, 

DdCAD-1, TgrB1 and TgrC1 (Coates & Harwood 2001; Siu et al. 2011). Both csA 

and Tgr proteins are linked to the actin cytoskeleton (Sriskanthadevan et al. 2011; Siu 

et al. 2011; Bastounis et al. 2016) and are thereby expected to mediate the 

coordination of motion between cells. However, they exhibit distinct migratory 

phenotypes: cells lacking csA form head-to-tail streams, whereas cells lacking Tgr 

proteins cannot form stable streams (Harloff et al. 1989; Chen et al. 2013). These 

results suggest that cell-cell adhesion molecules play different roles in the 

coordination of cell motion through the cytoskeleton. I hypothesize that cells lacking 

Tgr proteins do not exclusively polymerize actin at cell-cell contacts, and these cells 

do not exhibit front narrowing and thereby coupling of protrusion waves between 

cells. On the other hand, I speculate that cells lacking csA are still able to exclusively 

recruit actin to their front at cell-cell contact regions and they exhibit coupled 

protrusion waves. I could verify this by applying the experimental and analytical tools 

developed in Chapter 6 to cells lacking cell-cell adhesion molecules and then 

comparing their shape dynamics and cytoskeletal behavior to wild type streaming 

cells. I expect to see that the unstable steaming behavior shown in cells lacking Tgr is 

related to the loss of restricted actin polymerization at the front of cells. Such studies 

would help to determine the way these adhesion molecules regulate the actin 

cytoskeleton and their distinct roles in collective migration.  
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Appendices 

 

 

This chapter provides supplemental methods for the work described in Chapter 3, 5, 

6. A.3 is adapted from Wang, Parent, and Losert (in preparation). Meghan Driscoll 

originally developed the shape analysis program and integrated it with a boundary 

finding program (snake algorithm). 

 

A.1 Shape Dynamics Analysis  

To better extract cell boundaries, I pre-processed images with ImageJ (NIH) 

to enhance the contrast of original fluorescent images and reduce background noise. 

After this step, the cell areas appear to be very bright in images. Then, I used a 

custom cell shape dynamics Matlab program that was previously developed in the 

Losert lab to extract cell boundaries and obtain the measurements (Driscoll, McCann, 

et al. 2012). The program implemented a snake algorithm to extract cell boundaries.  

The process can be broken into 3 steps: Step I, extracting cell boundaries from 

a sequence of images of fluorescently-labeled migrating cells via a snake algorithm. 

For each frame, the extracted cell boundary was interpolated to output 400 points that 

are equally distributed. This step is implemented by 4 functions in the shape 
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dynamics analysis code: readDirectory, findBoundaries, trackBlobs, findSnakes. 

Below are the values of parameters I chose in my analysis: 

findBoundaries(N, minRegionSize, noiseLevelAdd, adjustGammaPre, adjustGammaPost, 

erodeImage, dilateImage, dilateLargeCH, inDirectory, savePath); 

minRegionSize = 50;   %original 100      % the minimum size of a blob (in square pixels) 

noiseLevelAdd = 0.001;      % the maximum value of the uniform noise that is added to the 

image 

adjustGammaPre = 0.6;       % the adjusted gamma of the image prior to brightness-contrast 

adjustment 

adjustGammaPost = 0.4;      % the adjusted gamma of the image after brightness-contrast 

adjustment (deals with varying blob brightness) 

erodeImage = 2;             % number of pixels the binary image is eroded prior to labeling 

dilateImage = 2;            % number of pixels the binary image is next dilated prior to labeling 

(smooths the outline) 

dilateLargeCH = 3;          % number of pixels the binary image is dilated prior to finding the 

large convex hull 

 

trackBlobs(N, centerTravelThresh, areaChangeThresh, minRegionSize, maxRegionSize, 

minSolidity, minDuration, savePath); 

centerTravelThresh = 50;   % the maximum number of pixels that a centroid is allowed to 

travel between two frames 

areaChangeThresh = 50;    % the maximum percentage area change that a blob is allowed 

between two frames 

maxRegionSize = 10000;      % the maximum mean size of a blob (in square pixels) 

(2*sqrt(maxRegionSize/pi)/pixelsmm is the maximum diameter in microns) 

minSolidity = 0.5;         % the minimum mean solidity of a blob 

minDuration = 35;          % the minimum duration of a blob (in frames) 

 

findSnakes(N, paramsSnake, inDirectory, savePath); 

paramsSnake.mu = 0.1; 

paramsSnake.alpha = 0.002;            % alpha and beta are the snake tension and rigidity 

paramsSnake.beta = 0.005;             % 

paramsSnake.gamma = 1;                  % you probably don't want to change gamma and kappa 
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paramsSnake.kappa = 0.6;    

paramsSnake.dmin = 0.5;                 % the minimum number of pixels seperating boundary 

points after interpolation 

paramsSnake.dmax = 1.5;                 % the maximum number of pixels seperating boundary 

points after interpolation 

paramsSnake.NoGVFIterations = 80;       % the number of iterations used to calculate the 

gradient vector field of the image 

paramsSnake.EquidistantNum = 400;       % the number of boundary points per blob 

outputted by the 'posNum' variable (usually 400) (must be a multiple of 4 for measureMotion) 

paramsSnake.widthImageB = 6;            % the width, in pixels, of the border added to each 

frame (must be larger than widthCellB) 

paramsSnake.widthCellB = 5;             % the effective width, in pixels, of the border added to 

each blob's image 

 

paramsSnake.binLowerThresh = 0.7;       % the lower threshold when nearly binarizing the 

image (multiplied by the automatically calculated binarization threshold) 

paramsSnake.binUpperThresh = 1.1;       % the upper threshold when nearly binarizing the 

image (multiplied by the automatically calculated binarization threshold) 

paramsSnake.blobGamma = 0.4;            % the adjusted gamma of the nearly binarized image 

paramsSnake.numIterFirst = 40;          % the number of initial snake iterations 

paramsSnake.numIterEvery = 25;          % the number of subsequent snake iterations 

performed in every loop before checking convergence 

paramsSnake.convergeThresh = 3;         % the maximum area change, in pixels, per loop that 

is considered converged 

paramsSnake.runLimit = 250;              % the maximum number of iteration loops run 

 

Step II, mapping boundary points from frame to frame. The 1:1 mapping of 

400 pairs of points between every two successive frames is determined by a function 

initShape of the shape dynamics program (initMode = 'leastSquares').  The program 

goes through all 1:1 mapping possibilities, calculates the sum of the squared distance 
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between pairs of points, and chooses the mapping with the minimum squared 

distance.  

Step III, obtaining measurements on cell boundaries. Different types of 

measurements can be obtained from the shape dynamics program. I mainly used the 

measurements of curvature, intensity, and boundary motion. These measurements are 

calculated in the following ways: Curvature: the program fits each boundary point 

and two nearby boundary points to a circle and calculates the reciprocal of the radius 

of that circle as the curvature of that boundary point; Intensity: the program draws a 

circle around each boundary point and calculates average intensity in that circle. Note 

that the cell boundaries are extracted based on contrast-enhanced images, while the 

fluorescent intensity is measured based on original images. Boundary motion: the 

direction of boundary motion for each boundary point is perpendicular to the tangent 

line passing through that point. For each boundary point, the program finds the 



 

156 

 

corresponding point on the next shape and calculates the distance between these two 

points.  

This step is implemented by 3 functions in the shape dynamics analysis code: 

measureShape, measureMotion, measureIntensity. Below are the values of 

parameters I chose in my analysis: 

% measure shape parameters 

boundaryPoint = 25;         % number of boundary points curvature is found over  

curvatureThresh = 0.35;     % the maximum allowed value of the curvature measure 

 

% measure motion parameters  

frameDelta = 9;             % the number of frames over which motion is measured 

motionThresh = 22;           % the maximum allowed value of the local motion measure 

smoothMotion = 29;          % the number of boundary points over which motion is first 

smoothed %12 

smoothMotionAgain = 21;     % the number of boundary points over which motion is next 

smoothed 

smoothCentroid = 5;         % the number of frames the centroid position is smoothed over 

prior to calculating the velocity      

frameVelocity = 3;      %original 2    % the number of frames the centroid velocity is 

calculated over when finding velocity 

 

% measure intensity parameters  

intensityKernelRadius = 5; %10 (lifact - pcaIntensity is 6; phcrac=5) 

innerIntensityM = paramsSnake.EquidistantNum/8; 

 

All the calculated measurements are saved in shape.m file that is generated by 

the shape analysis program. Below is the list of outputs that I used in my study: 

shape                 

.area               - the area of the shape in every frame (uses snakeDist and polyarea)  

.perimeter          - the perimeter of the shape in every frame (uses snakeDist)  
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.centroid           - the centroid of the shape in every frame (uses snakeDist)  

.curvature          - the boundary curvature at each boundary point (uses snakeNum) Curvatures 

above or below a cutoff are given the magnitude of the cutoff 

.uncutCurvature     - the uncut boundary curvature at each boundary point (uses snakeNum)  

.aliCurvature       - the curvature for realignment (added by Chenlu) 

.uncutaliCurvature       - the uncut curvature for realignment (added by Chenlu) 

.orientation        - the orientation of the best fit ellipse (uses regionprops) 

.frontBack          - the boundary points closest to the front and the back of the shape, as 

measured by orientation (the back and front are not distinguished here) 

.motion             - the uncut local motion measure 

.alimotion          - the realigned motion measurment (added by Chenlu) 

.cutMotion          - the cut local motion measure 

.front              - the boundary point closest to the front of the shape (the front was determined 

by the orientation and average motion) 

.back               - the boundary point closest to the back of the shape 

.motionFront        - the local motion measure aligned so that the front is at (M-1)/2 

.motionBack         - the local motion measure aligned so that the back is at (M-1)/2 

.intensity          - the intensity at each boundary point 

 

I used two ways to present these results as shown in Figure A.1, taking 

curvature measurement as an example. Curvature measurement on the boundary of a 

single cell can be plotted in a kymograph with function imagesc (shape.curvature’) 

in Matlab (Figure A.1A), where the horizontal axis indicates time, the vertical axis 

indicates the position on cell boundary, and the color indicates the magnitude of 

curvature. Measurements also can be plotted in 3D with the function surf 



 

158 

 

(shape.curvature’) in Matlab (Figure A.1B). Both the third dimension and the color 

indicate magnitude of curvature, which makes the presentation more intuitive.  

 

Figure A.1- Presentations of Curvature Dynamics in 2D and 3D. 

 

A.2 Shape Dynamics Analysis on Pairs of Cells  

To analyze the shape dynamics of pairs of cells, I mixed wild type cells with 

AX3-Lifact-RFP cells and imaged the streaming process as discussed in Chapter 6. 

During the imaging acquisition, I intended to find the situation that two RFP-labeled 

cells migrate together and un-fluorescent labeled cells migrate before and after them 

in the stream. I applied shape dynamics analysis program to extract the overall 

boundaries of pairs of cells, found 400 evenly-spaced points on the overall 

boundaries, and obtained the measurements in a way similar to individual cells.  

 

A.3 Correlation Analysis and Calculation of Wave Frequency and Speed 

Correlation between boundary points 

To quantitatively compare the dynamics of different cells or different points 

on the same cell, I calculated the cross-correlation of measurements between cells or 
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points. Figure A2 shows how to find out the correlation of curvature between two 

points on a cell boundary. Black curve in A.2A indicates how the curvature of a 

boundary point change with time; red curve indicates how the curvature of another 

boundary point change with time. These two points are 20 boundary points apart. The 

cross-correlation of two measurements can be calculated with the following equation: 

 

Note, f, g are time evolution of curvature measurements of the two points. The 

equation calculates the correlation between f and g that is shifted with a lag “τ”. A 

Matlab built-in function xcorr was used to calculate it.  

 As shown in Figure A.2B, the maximum correlation is found when the lag is equal to 

-5. It indicates the red curve shown in Figure A.2A overlaps the most with the black 

curve when shifting the red curve to the left by 12.5 seconds 

(5frame*2.5second/frame). In other words, the curvature of these two points exhibits 

a 12.5 seconds time delay, which can be used to calculate the speed of curvature 

waves traveling between these two points. In addition, the peaks in Figure A.2B 

appear in a periodic pattern, suggesting curvature waves occur periodically.  
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Figure A.2- Calculation of Cross-correlation of Curvature Dynamics between Two 

Boundary Points. 

       

With this method, I compared the curvature dynamics of boundary points on one cell 

with those on the following cell, and found the curvature dynamics on two successive 

cells are highly correlated as discussed in Chapter 6. Below is an example of 

comparing the curvature dynamics between cells. First, choose a reference point on 

the leading cell. The reference point should be in the back region of the leading cell, 

and I usually use point 70. Next, compare all other points on the same side of cell 

boundary to the reference point. The example code is below: 

cref = shape.curvature(ref,:); 

for i = 1:200 

ci = shape.curvature(i,:); 

correlation(i,:) = xcorr(cref,ci); 

end 

imagesc(correlation); 

 

Calculation of wave frequency 
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The correlation was used to calculate the speed and period of curvature waves. 

The period of waves was calculated by auto-correlation, meaning the measurement 

was compared to itself, i.e., the f and g in the correlation equation were the same. The 

calculation can be broken into four steps:  

 

(i) Define the time evolution of the curvature of point x to be f(t) (Figure A.3A). 

(ii) For each point on the side of cells (point 50~150, 250~350), calculate the auto-

correlation of f(t). The maximum correlation is always found when lag is equal to 0 

frame because f(t) always overlaps with itself without any shifting. Other peaks are 

found when the lag is divisible by the wave period. (Figure A.3B) 

(iii) Represent the correlation of each point on one side of the cell in a kymograph. 

The magnitude of the correlation is indicated by color. Overall, all points on the same 

side of cell boundary exhibit similar period as the bright stripes are nearly vertical 

(Figure A.3C). 

(iv) Calculate the mean correlation over all points at different lags. The first 

maximum is always 0, and the position of next peak indicates the period. In this 

example, the lag is 17, so the period is 17*2.5sec = 42.5 seconds, suggesting, for 

every 42.5 seconds, there is a new curvature wave generated on this side of the cell 

boundary. Thus, the period of wave generation is about 20 seconds when considering 

both sides of the cell boundary. 

Below is an example code: 

for i = 1:200 

ci = shape.curvature(i,:); 

correlation(i,:) = xcorr(ci,ci); 
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end 

imagesc(correlation); 

collapse = mean(correlation); 

 

Figure A.3- Calculation of Period of Curvature Waves using Auto-correlation. 

 

Calculation of wave speed 

The speed of waves is obtained by calculating the cross-correlation between 

two points on the cell boundary. A typical example is shown in Figure A.4. Point 100 

and point 110 are two points on the cell boundary. I calculated the cross-correlation 

of the curvature dynamics between these two points. The position (lag) of the 

maximum correlation indicates the time delay when curvature waves traveling 

through these two points. Similar cross-correlation calculation was implemented for 

each pairs of points on the side of cell boundary (two points are 10 points apart), and 

results are plotted in 2D (Figure A.4B). Each horizontal line indicates how the 



 

163 

 

correlation of between a certain pair of points change with lag, and the vertical axis 

indicates the position of the anterior point in this pair. Next, the position of maximum 

correlation averaged over all points is obtained. Thus, the speed of waves passing 

through this region can be calculated by the following equation: 

 

Below is an example code: 

delta_p  % # of point2 - # of point 1, I used 10 

for i = 1:180 

ci = shape.curvature(i,:); 

cj = shape.curvature(i+delta_p,:); 

correlation(i,:) = xcorr(ci,cj); 

end 

imagesc(correlation); 

collapse = mean(correlation); 

 

Figure A.4- Calculation of Speed of Curvature Waves using Cross-correlation. 
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A.3 Principal Component Analysis 

Cell shape change modes and F-actin intensity modes are calculated by 

principal component analysis (PCA) based on the imaging data collected from AX3-

Lifeact-RFP cells. We collected sequences of images containing individual and 

streaming AX3-Lifeact-RFP cells under different experimental conditions, from 

which thousands of cell shapes are extracted and measurements of shape change and 

intensity are calculated. The shape change of cells can be measured by overlaying cell 

shapes extracted from two successive images and calculating the moving distance of 

each boundary point. For the 1:1 mapping between the two shapes, they are aligned 

by front point (point 0), which is decided by cell orientation.  

Since the data size varies, same amount of cell shape change data and 

intensity data are randomly selected (1000 shapes from each experimental condition) 

to build a data set that contributed equally from each experimental condition, and 

PCA was performed on these two data sets respectively using Matlab function 

princomp to find out principle components and their variance. Intensity modes for 

ACA were calculated similarly based on imaging data collected from ACA-YFP AX3 

cells. 1900 shapes from each condition are randomly selected for analysis 

respectively. 

The principle component analysis can be broken into four steps:  

(i), obtain measurements (boundary motion, intensity) from shape dynamics analysis 

program. 400 measurements along cell boundary are obtained for every two 

successive shapes for each cell.  
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(ii), realign these measurements making the point 0 is always the front of cells. All 

cell shapes were fitted into ellipses, and the long axis of ellipses intersects with each 

cell shape at two points. The point where cell exhibit more protrusive motion is the 

cell front.  

(iii), run princomp. Each row represents measurement on a cell at a certain time 

(frame); each column represents each boundary points on cells. Mathematically, 

principal component analysis is a linear transformation of original data into new 

orthogonal coordinates. Each dimension is a principal component, which is named 

mode. The function princomp provides the variance of each data point under each 

mode, i.e., the value of the analyzing measurement on a cell at a certain time under 

each mode. Variances are normalized under each mode, making the sum of the square 

of variances to be 1.  

(iv), measurements on all cells are represented by the same set of modes. Statistical 

analysis of the values under each mode provides insights in the difference between 

experimental groups. 

 

Steps i-iii are implemented by the function measurePCA in the shape dynamics 

analysis code. The inputs and outputs of the function is showing below. Note that 

only the output data “.toPCA” was actually used in further analysis.  

Inputs: 

N                        - the number of images 

M                       - the number of boundary points in each snake 

frameDelta         - the number of frames over which motion is measured 

savePath             - the directory that data is saved in 
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Output: 

pca  

 .pcaShape 

    .toPCA         - the realigned shape measurement for each boundary point 

    .pc                - the varience of each principal component for each cell shape  

    .zscores        - the total varience of each principal component 

    .latent           - eigenvalues of the covariance matrix of "toPCA" 

 

 .pcaCurvature 

    .toPCA         - the realigned curvature measurement for each boundary point 

    .pc                - the varience of each principal component for each cell shape  

    .zscores        - the total varience of each principal component 

    .latent           - eigenvalues of the covariance matrix of "toPCA" 

 

 .pcaMotion 

    .toPCA         - the realigned motion measurement for each boundary point 

    .pc                - the varience of each principal component for each cell shape  

    .zscores        - the total varience of each principal component 

    .latent           - eigenvalues of the covariance matrix of "toPCA" 

 

 .pcaIntensity 

    .toPCA         - the realigned intensity measurement for each boundary point 

    .pc                - the varience of each principal component for each cell shape  

    .zscores        - the total varience of each principal component 

.latent           - eigenvalues of the covariance matrix of "toPCA"     

 

Step iv is calculated separately based on the output of measurePCA, which is saved 

in the matlab data file: pca.m. Take the analysis of motion modes for example: 

First, select equal number of motion measurements from each experimental condition, 

and create a combined data set. In my analysis, motion measurement calculated by 

overlaying cell shapes with their successive shapes, and 1000 such measurements 



 

167 

 

were randomly selected from each experimental condition from the previously saved 

Matlab data file: pcaMotion.toPCA. Thus, all selected data was combined and is 

created to a combined data set. The PCA was performed on this combined data set: 

[pc,zscores,latent] = princomp(pcaMotion.toPCA); 

 

Inputs: 

number         - number of cell shapes of each experimental condition 

shapenum     - number of shapes selected into the combine data set 

 

Outputs: 

pcaMotion 

.pc                   - the varience of each principal component for each cell shape 

.toPCA            - the realigned motion measurement for each boundary point 

.zscores            - the total varience of each principal component 

.latent              - eigenvalues of the covariance matrix of "toPCA" 

.source            - cell label in the un-selected shape data  

.numofcells     - cell sample size of each condition 

.numofexpts    - times that experiments repeated for each condition 

 

Values of each cell under each condition were saved in pcaMotion.pc. Then, they 

were performed with statistical analysis on it. An example is showing below: 

Values of pc were divided into 6 groups, representing 6 experimental condition. 

Values of each condition under mode N can be extracted as following: 

Single_control = pcaMotion.pc(1:1000,N); 

Single_low = pcaMotion.pc(1001:2000,N); 

Single_high = pcaMotion.pc(2001:3000,N); 

Stream_control = pcaMotion.pc(3001:4000,N); 

Stream_low = pcaMotion.pc(4001:5000,N); 
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Stream_high = pcaMotion.pc(5001:6000,N); 

 

To compare untreated stream cells to single cells, I calculated mean and standard 

deviation of Single_control and Stream_control by using functions mean and std in 

Matlab, and plotted it accordingly. 
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