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Energy Conservation Measure (ECM) project selection is made difficult given real-world 

constraints, limited resources to implement savings retrofits, various suppliers in the market and 

project financing alternatives.  Many of these energy efficient retrofit projects should be viewed 

as a series of investments with annual returns for these traditionally risk-averse agencies.  Given 

a list of ECMs available, federal, state and local agencies must determine how to implement 

projects at lowest costs.  The most common methods of implementation planning are suboptimal 

relative to cost.   

 

Federal, state and local agencies can obtain greater returns on their energy conservation 

investment over traditional methods, regardless of the implementing organization. This 



 
 

dissertation outlines several approaches to improve the traditional energy conservations 

models. 

 

Any public buildings in regions with similar energy conservation goals in the United States 

or internationally can also benefit greatly from this research.  Additionally, many private 

owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New 

York City Energy Conservation Code requires any building, public or private, to meet the 

most current energy code for any alteration or renovation.  Thus, both public and private 

stakeholders can benefit from this research.    

 

The research in this dissertation advances and presents models that decision-makers can use to 

optimize the selection of ECM projects with respect to the total cost of implementation.  A 

practical application of a two-level mathematical program with equilibrium constraints (MPEC) 

improves the current best practice for agencies concerned with making the most cost-effective 

selection leveraging energy services companies or utilities.  The two-level model maximizes 

savings to the agency and profit to the energy services companies (Chapter 2).   

 

An additional model presented leverages a single congressional appropriation to implement 

ECM projects (Chapter 3).  Returns from implemented ECM projects are used to fund additional 

ECM projects.  In these cases, fluctuations in energy costs and uncertainty in the estimated 

savings severely influence ECM project selection and the amount of the appropriation requested.  

A risk aversion method proposed imposes a minimum on the number of “of projects completed 

in each stage.  A comparative method using Conditional Value at Risk is analyzed.  Time 



 
 

consistency was addressed in this chapter. This work demonstrates how a risk-based, stochastic, 

multi-stage model with binary decision variables at each stage provides a much more accurate 

estimate for planning than the agency’s traditional approach and deterministic models.   

 

Finally, in Chapter 4, a rolling-horizon model allows for subadditivity and superadditivity of the 

energy savings to simulate interactive effects between ECM projects.  The approach makes use 

of inequalities (McCormick, 1976) to re-express constraints that involve the product of binary 

variables with an exact linearization (related to the convex hull of those constraints). This model 

additionally shows the benefits of learning between stages while remaining consistent with the 

single congressional appropriations framework.   
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Chapter 1: Introduction 
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1.1. Background 

 

1.1.1. Definition of Federal, State and Local Agencies 
 

Federal agencies, as described in this work, are departments of the United States federal, 

government that operate within the Executive and Legislative branches or as independent 

establishments and government corporations.  The Congress and President of the United States 

delegate specific authority to government agencies and establishes the goals towards which the 

agency must work.  When the agency has rulemaking power, these agency rules or regulations 

have the power of federal law. 

 

Agencies that operate within the federal executive departments include the President's cabinet-

level departments and their subunits such as the Department of Defense and the Department of 

Housing and Urban Development (HUD). 

 

The independent agencies of the federal government, such as General Services Administration 

(GSA), exercise limited independence from the President's control.  The leadership of 

independent agencies are often appointed and usually agencies work together in groups, such as 

a commission, board or council. An example of this is the Federal Trade Commission (FTC), 

which is made up of three bureaus who mission is to protect consumers, and prevent 

anticompetitive business practices.  Independent agencies, as well as state agencies and even 

local agencies often function like the federal government with the authority to legislate to and 

enforce agency regulations. 
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These agencies are responsible for all aspects of their mission and program including the 

operation and maintenance of their physical infrastructure and energy use. 

 

1.1.2. Energy Consumption by Federal State and Local Agencies 
 

Energy consumption is the amount of energy consumed in a process, system or an organization.  

Despite a consistent decline in energy consumption, the federal government has consistently 

been one of the largest consumer of energy using almost 1.2 quadrillion BTUs (British thermal 

units) per year from all fuel sources in the United States.  The cost of meeting the federal 

government's facility energy costs had grown to $6.5 billion per year in 2007 (Energy, 2010).  

State and local governments spend an additional $10 billion a year on energy to provide public 

services and meet constituent needs.  

 

Federal agencies report energy used in three end-use sectors:  

• Buildings subject to statutory energy reduction requirements (goal buildings), 

• Buildings excluded from the energy reduction requirements (goal-excluded facilities),  

• Vehicles and equipment. 

 

During FY 2014, federal agencies reported using 0.9 quadrillion British thermal units (Btu) or 

“quads” of delivered energy across the three end-use sectors.1 In terms of primary energy, which 

also includes the energy used at utility plants to generate electricity and steam, federal agencies 

used 1.4 quads, which is approximately 1.4% of the 98.5 quads used in the United States. 

                                                 

1 Primary energy refers to energy used at the source including fuel input to electric power plants.  Delivered energy 
is not primary. 
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In FY 2014, 39% of all federal energy was consumed by federal facilities.   Energy consumed in 

federal government facilities has generally been declining over the past four decades.  However; 

the reduction stems from both the total square footage occupied by the federal government, 

which continues to fall from its peak in FY 1987, and from the energy consumed per square foot 

inside federal buildings, which has been declining since FY 1975 (EERE, 2016). 

 

Because of its energy use and other activities, the federal government emits approximately 82 

million metric tons of carbon dioxide equivalent (MMTCO2e) of greenhouse gas (GHG) 

emissions.  For those emissions targeted for reduction, the federal government reduced GHG 

emissions by 17.4%, from 51.4 million metric tons of  MMTCO2e in FY 2008 to 42.4 

MMTCO2e in FY 2014.  

 

Figure 1-1 below provides a comprehensive accounting of the government’s energy and water 

use, associated greenhouse gas emissions and other resource management data for FY 2014. 
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Figure 1-1: Total Energy Consumption by End Use Sector and Type, FY 2014 (EERE, 

2016) 

Energy conservation in the building end use sector is the primary focus of this research.  The 

federal, state and local agencies have continually issued regulations mandating focus on energy 

conservation in these sectors. The following regulation are discussed based on the connection 

with energy use by these agencies. 

 

1.1.3. Regulatory Drivers 
 

In 1978, the United States Congress signed The National Energy Conservation Policy Act 

(NECPA) into law.  This law is the basis for federal energy management goals and requirements 

in the United States.  The overall purpose of the law was to promote the conservation and the 

efficient use of energy and water, and the use of renewable energy sources by the federal 

government.  The resulting goals for energy performance were issued for federal buildings 
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mandated and it was mandated that each agency apply energy conservation measures (ECMs) 

and improve the design for construction so that the energy consumption per gross square foot 

was reduced (Congress, 1978).  The NECPA has been regularly updated and amended by 

subsequent laws and regulations.  One such regulation is the Energy Independence and Security 

Act of 2007 (EISA 2007), which established energy management goals and requirements while 

also amending portions of the NECPA.  

These Congressional Acts mandate specific goals and targets including: 

• Reducing energy intensity (Btu/ft2) by 15% by the end of FY 2010, compared to a FY 

2003 baseline and by 30% by the end of FY 2015; 

• Increasing renewable electric energy equivalent to at least 5% of total electricity use in 

FYs 2010-2012 and at least 7.5% in FY 2013 and beyond; at least half must come from 

sources developed after January 1, 1999; and 

• Achieving a 20% reduction in vehicle fleet petroleum use by 2015.  

 

 

Figure 1-2: Required Reduction in Energy Consumption 
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Overall, federal agencies must enhance efforts towards sustainable buildings and communities.  

Specifically, agencies must implement high performance sustainable federal building design, 

construction, operation, management, maintenance, and deconstruction by ensuring all new 

federal buildings, entering the design phase in 2020 or later, are designed to achieve zero net 

energy by 2030.2   

 

In FY 2014, federal agencies reported that buildings subject to the National Energy Conservation 

Policy Act’s energy intensity reduction goals collectively decreased energy use per gross square 

foot (Btu/GSF) by 21% relative to FY 2003. This falls short of the 27% reduction requirement 

for FY 2014. Although the rate of reduction in energy intensity slowed in FY 2013 and FY 2014, 

federal agencies achieved the FY 2014 reductions despite less favorable climatic conditions; 

heating degree daysincreased by 25.5% between FY 2012 and FY 2014.3 

 

While significant reductions in building energy intensity have been made, many more are 

required, while tougher challenges exist in funding energy conservation and renewable projects.  

Facility energy intensity fell short of the 27% goals of Executive Order 13423 and Energy 

Independence and Security Act to reduce energy intensity (Btu/GSF) with only a 21% reduction 

(Tremper, 2014).  The remaining conservation opportunities will require ingenuity to both fund 

and implement the projects and thus provides an impetus for this dissertation.   

                                                 

2 A zero net energy building is one with zero net energy consumption taking in to account any energy generated by 
the building itself.   
3 A heating degree day is the difference between the daily mean (assumed to be lower than 65°F) temperature and 

65° F. 
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Figure 1-3: Energy Reduction Goals Not Being Met (Tremper, 2014) 

 

President Obama signed Executive Order (EO) 13693, Planning for Federal Sustainability in the 

Next Decade on 19 March 2015.  The goal of EO 13693 is to maintain federal leadership in 

sustainability and greenhouse gas emission reductions.  Specifically, federal agencies shall 

promote building energy conservation, efficiency, and management by reducing agency building 

energy intensity measured in BTU/SF by 2.5% annually through year 2025.  The order began in 

fiscal year 2016 and savings were to be measured against the baseline of the agency's building 

energy use in fiscal year 2015.   Federal agencies are also required to ensure that a minimum 

percentage of the total building electric energy and thermal energy shall be clean energy, 

renewable electric energy or alternative energy of  

• not less than 10 percent in fiscal years 2016 and 2017;  

• not less than 13 percent in fiscal years 2018 and 2019;  
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• not less than 16 percent in fiscal years 2020 and 2021;  

• not less than 20 percent in fiscal years 2022 and 2023; and  

• not less than 25 percent by fiscal year 2025 and each year thereafter.  

 

Regulations such as EO 13693 also exist on the state and commercial levels.  For example, 

California’s Title 24, 2016 Building Energy Efficiency Standards specify requirements for 

manufacturing, construction, and installation of certain systems, equipment, appliances and 

building components (Comission, 2015).   

 

The central objective is clear; buildings must reduce their energy consumption.  However, the 

secondary objective of lowering spending on energy, while adding the cost of implementing 

energy savings measures complicates the directives.  Furthermore, low hanging fruit has been 

picked.  The remaining programs have longer simple paybacks while many are renewable 

programs with little or no payback.  These challenging problems require much more innovation 

to solve.  The mandates make the implicit assumption that methods of reducing energy 

consumption and lowering energy spending are known with certainty, easily quantified and 

energy conservation projects are optimally selected.  

  

1.2. Agency Approach 

 

Faced with the multitude of requirements with the ultimate objectives of conserving energy and 

lowering spending, many agencies’ facility and energy managers find themselves with a 

computational challenge.  There is a clear understanding of the extent to which energy efficiency 

must be achieved but a clear path to achieving these goals has not been dictated.  Fortunately, 
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there is an industry standard for best practice (EnergyStar, 2013).   The primary tool that the 

agency’s decision-makers use is the energy audit.  There are several types of audits, however; an 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) level II 

or III is most often used for planning and decision-making as defined and discussed in Chapter 2 

(Kelsey & Pearson, 2011).   

The audit is a comprehensive energy analysis and assessment of the building’s energy-using 

components such that a list of energy conservation measures can be proposed with the following 

attributes: 

• the proposed system or component description 

• each measure’s required  investment  

• the annual savings by fuel source 

• the annual cost savings in dollars  

• measure of such as simple payback ratio or savings to investment ratio 

 

The energy auditors have assessed the regulatory requirements and conducted an audit that 

recommends the projects necessary to save the requisite energy.  All projects must be completed.  

The agency’s approach to implementing these projects has been the naïve method, which 

involves sorting by cost/ benefit then selecting until the budget has been depleted.  They have not 

leveraged integer programming (or other optimization methods) that solves a resource allocation 

problem to choose a subset of projects to optimize savings (a “knapsack” problem) as discussed 

in Chapter 2.  Specifically, the costs are the investment costs of each ECM project.  The benefits 

are the annual savings realized from executing ECM projects in a previous stage.  
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1.3. Agency Options 

 

Given this list of ECMs, the agency’s decision-maker faces a series of strategic decisions.  Each 

project, from which the energy manager or decision-maker must select, saves energy or annual 

energy costs and, in most cases, federal agencies have three options to fund these energy 

conservation projects 

• Energy management programs funded by congressional appropriations4 

• Private financing through energy savings performance contracts (ESPCs)  

• Private financing through utility energy service contracts (UESCs)  

Agencies must use these three funding sources in the most effective manner to maximize energy 

savings and minimize life-cycle cost.   

 

During FY 2014, federal agencies used these three primary options for financing energy 

efficiency, water conservation, and renewable energy projects in buildings totaled approximately 

$1,712 billion.  Congressional appropriations accounted for approximately $900.6 million.  

Energy savings performance contract awards by agencies resulted in approximately $706.6 

million in project investment.  Approximately $105.2 million in project investment came from 

utility energy service contracts (Danielson, 2015). 

 

With the funding options available, the agency should select the timing of these projects as well 

as the implementing organization.  In general, simpler projects can often be implemented with 

in-house resources and staff.  Lower-cost projects can often be financed with internal operating 

                                                 

4 A Congressional appropriation is a designation of money for specific use, here, Energy and Water programs, by 
House and Senate Appropriations Committees. 
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budgets.  Using in-house budgets and resources may provide the best return on investment.  

These projects may also free up capital for further energy projects.  Higher risk, more difficult or 

projects that require large capital investment can be performed by energy service companies per 

the guidance first issued in NECPA.  However, the energy savings performance contracts  

completed by the energy services companies and utilities do not yield the cost savings that in-

house projects do as the cost savings are shared with the energy services companies  and utilities. 

 

The largest opportunity for energy conservation lies in the creation of an implementation plan 

that contains the appropriate timing of each ECM project   Optimization is needed to properly 

create a plan that maximizes the energy savings while identifying financing and firms available 

to implement the recommended measures.  The appropriate method of achieving these goals has 

not been regulated.  The standard method of creating this plan segments these agency and energy 

service company and/or utility decisions.   

 

If working with an energy service performance contract or utility energy service contracts, the 

agency traditionally selects the projects with the quickest paybacks.  Only the least desirable or 

most costly projects are left for energy services companies.  As a result, many agencies select a 

subset of projects to complete internally only to find that the remaining projects can no longer be 

completed with a decent payback for firms in the market.  Furthermore, in the current practice, 

the agency may leave a subset of projects incomplete assuming that energy services companies 

will complete them.  The current selection process can generate a mix of selected projects that 

might not maximize the agency’s share of the benefit (in dollars) of the energy saved.  Given the 

profit-maximization objectives for of these firms, it is possible that the agency will have chosen 
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to take care of projects themselves that will leave the remaining ones  unattractive to energy 

services companies and therefore the whole set of projects will be incomplete. Thus, the current 

procedure may be ineffective as it does result in the completion of all projects. 

 

If an agency is funding energy conservation through appropriations, the agency traditionally 

requests the total cost to execute all projects at the beginning of the program.  The agency knows 

that energy costs and forecasted energy savings can vary and assumes a risk-averse position.  As 

a result, agencies rarely ask for a smaller appropriation or plan to use existing savings to plan 

fund addition projects. The current procedure ensures that all projects are completed but may be 

overly conservative and cost-inefficient. 

 

It is important to note that the agency does not get to keep the energy savings.  The agency can 

save energy that saves money, which, in turn, should be used for energy-saving programs. 

 

Project selection approaches that optimize the agency’s value of the total energy saved continues 

to elude decision-makers.  Many approaches of this type of problem have been studied however; 

few have been applied to energy conservation.  

 

1.4. Dissertation Objectives 

 

The dissertation shows that agencies can obtain greater returns on their energy conservation 

investment over traditional methods regardless of implementing organization.  Innovative 

approaches to solving the agency project-selection problem allow for optimal resource allocation 

and the highest monetary savings and/or lowest investment required.  
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The objectives of this dissertation are threefold: 

1. to introduce novel optimization models that improve the traditional approaches to 

increase returns on energy conservation investment 

2. to model and find tractable solutions to a complex problem that have traditionally forced 

agencies to leverage inefficient heuristics in decision-making 

3. to present options and practical solutions to a common yet complicated problem that can 

be customized for each federal and state or local government’s budgets and risk appetite. 

 

Throughout this work, a consistent set of data are used so that the applications are practical and 

results can be compared.  The practical applications of the models are demonstrated using data 

from a college in the Southeastern, United States.  In 2011, EMG, a third party engineering 

consulting firm, conducted an ASHRAE Level II Energy Audit of a college campus comprised 

of 38 buildings categorized residential,  student,  academic, and administration.5  The campus 

covers over 1.04 million ft2.  There is one central boiler/chiller plant (physical plant) serving 11 

of the 38 buildings, while the other 27 buildings are served by local systems. 

EMG was contracted to perform a detailed energy audit and make energy saving 

recommendations on the physical plant and its connected 11 buildings.  As part of the study, 

EMG reviewed the buildings’ construction features, historical energy and water consumption 

with costs, envelope, heating ventilation and air conditioning (HVAC) equipment, heat 

distribution systems, lighting, and operating and maintenance practices.  In the numerical 

                                                 

5 Bill Champion was the Director of Asset Management Consulting at EMG at the time this dissertation was written.  
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examples, there are 48 ECMs with varying characteristics and project attributes as shown in 

Table A-1 of the Appendices. 

 

In models where energy savings performance contracts or utility energy service contracts are 

leveraged, the firms’ share of savings are varied, generally, between 60 and 80% and are taken 

from several firms (approximately 30) and market factors.  Similarly, industry rules of thumb 

generally add approximately up to 20% more savings when a large energy services company or 

equipment-related contractor implements ECM projects of specific types.  These arbitrary 

performance-related benefits attributed to specific implementers are applied through a matrix of 

quality factors. 

 

1.5. Dissertation Organization 

 

This balance of this dissertation is organized as follows.  Chapter 2 presents an improved model 

for those agencies seeking to meet regulatory goals with private financing through energy 

savings performance contracts (ESPCs) and/or utility energy service contracts (UESCs).  It is 

assumed that the agency will not seek Congressional appropriation.   

In that chapter, the objectives of maximizing energy savings while minimizing costs are served 

by solving a two-level optimization problem.  The agency has a budget, which is exhausted in a 

good-faith effort to make the best use of tax dollars.  This budget rarely covers all possible 

projects and the agency seeks private financing through energy savings performance contracts 

and/or utility energy service contracts to complete the balance of projects whose expenses 

exceed the budget.  The agency chooses projects and the utility or energy services companies to 

increase the energy savings, which also improves the monetary savings, thereby allowing the 
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agency to complete more projects in house.  The energy services companies compete on price 

and have specific internal rates of return.  The selection process is modeled as a two-level, 

single-stage, life-cycle problem in which the upper-level player (agency) chooses a subset of 

projects to self-perform with its own budget.  The upper level passes the balance of projects to 

the lower level, the energy services companies, and utility energy service contracts and/or 

outside firms.  These firms compete for projects while seeking to maximize their own profits.  In 

a shared-savings approach, these firms choose projects and share savings with the upper-level 

agency.  The shared savings are added to the agency’s budget for completing projects.    

 

In Chapter 3, energy conservation through the implementation of energy-efficient retrofit 

projects can be viewed as a series of investments with annual returns.  This chapter presents a 

model that assist agencies in meeting regulatory goals for buildings through funding projects by 

congressional appropriation. As in the two-level model from Chapter 2, returns can be used to 

fund additional projects.  However, planning for energy conservation in later years ignoring the 

fluctuations in energy costs and uncertainty in the estimated savings severely affects project 

selection and initial appropriation requests.  These impacts drive returns and influence the ability 

to implement future projects.  This third chapter demonstrates how a risk-based, stochastic multi-

period model with binary decision variables at each stage provides a much more accurate 

estimate for planning than traditional and deterministic models. This model is a one-level model 

as opposed to the one presented in Chapter 2.  This approach accounts for uncertainties while 

determining the proper budget request that minimizes risk of the expected or average loss if the 

worst-case threshold is ever crossed.   
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Chapters 4 also presents a model for meeting regulatory goals for buildings through funding 

projects by congressional appropriation.  Chapter 4 improves the multi-stage model by adding a 

longer planning horizon, which is consistent with the requirement of Executive Order 13693.  By 

examining the length of the planning and realizing that the uncertainty is directly proportional to 

the length of the model's planning horizon, an improved rolling-horizon model that updates 

energy-saving yields between specific stages is proposed (a learning effect).  This model is run 

using experimental cases showing its vast improvement in computational speed to solve, total 

stages required and total cost to implement all projects versus  a fixed-horizon, multi-stage 

model.  

Chapter 5 summarizes the work in the dissertation and provides some suggestions for future 

research directions. 
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Chapter 2: An Improved Strategic Decision-Making Model for Energy Conservation 

Measures 
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2.1. Introduction  

 

The federal government has consistently been the largest consumer of energy using almost 1.2 

quadrillion BTUs (British thermal units) per year from all fuel sources in the United States.  The 

cost of meeting the federal government's facility energy costs had grown to $6.5 billion per year 

in 2007 (Energy, 2010).  State and local governments spend an additional $10 billion a year on 

energy to provide public services and meet constituent needs.  

 

In 1978, the United States Congress signed The National Energy Conservation Policy Act 

(NECPA) into law.  This law is the basis for federal energy management goals and requirements 

in the United States.  The overall purpose of the law was to promote the conservation and the 

efficient use of energy and water, and the use of renewable energy sources by the federal 

government.  The resulting goals for energy performance were issued for federal buildings 

mandated and it was mandated that each agency apply energy conservation measures (ECMs) 

and improve the design for construction so that the energy consumption per gross square foot 

was reduced (Congress, 1978).  The NECPA also gave federal agencies the authority to enter 

into shared-energy savings contracts with private-sector energy service companies (ESCOs).  

The NECPA has been regularly updated and amended by subsequent laws and regulations.  One 

such regulation is the Energy Independence and Security Act of 2007 (EISA 2007), which 

established energy management goals and requirements while also amending portions of the 

NECPA.  
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 These Congressional Acts mandate specific goals and targets including: 

• Reducing energy intensity (Btu/ft2) by 15 percent by the end of FY 2010, compared to a 

FY 2003 baseline and by 30 percent by the end of FY 2015; 

• Increasing renewable electric energy equivalent to at least five percent of total electricity 

use in FYs 2010-2012 and at least 7.5 percent in FY 2013 and beyond; at least half must 

come from sources developed after January 1, 1999; and 

• Achieving a 20 percent reduction in vehicle fleet petroleum use by 2015.  

 

Overall, federal agencies must enhance efforts towards sustainable buildings and communities.  

Specifically agencies must implement high performance sustainable federal building design, 

construction, operation and management, maintenance, and deconstruction by ensuring all new 

federal buildings, entering the design phase in 2020 or later, are designed to achieve zero net 

energy by 2030. 6   

 

The central objective is clear; buildings must reduce their energy consumption.  However, the 

secondary objective of lowering spending on energy, while adding the cost of implementing 

energy savings measures complicates the directives.  Implicit to the mandates of reducing energy 

consumption and lowering energy spending is the assumption that both are known, easily 

measured and reported.   

 

                                                 

6 A zero net energy building is one with zero net energy consumption.  The total amount of energy used by the 
building on an annual basis is less than or equal to the amount of renewable energy created on site. 
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Faced with the multitude of requirements with the ultimate objectives of conserving energy and 

lowering spending, many agencies and property owners / managers find themselves with a 

computational challenge.  There is a clear understanding of the extent to which energy efficiency 

must be achieved but a clear path to achieving these goals has not been dictated.  Fortunately, 

there is an industry standard for best practice (EnergyStar, 2013).   The primary tool that the 

agency’s decision-makers use is the energy audit.  There are several types of audits, however; an 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) level II 

or 3 is most often used for planning and decision-making (Kelsey & Pearson, 2011).   

 

The audit is a comprehensive energy analysis and assessment of the building’s energy-using 

components such that a list of energy conservation measures can be proposed with the following 

attributes: 

• the proposed system or component description 

• each measure’s required  investment  

• the annual savings by fuel source 

• the annual cost savings in dollars  

• measure of such as simple payback ratio or savings to investment ratio 

 

The energy auditors have assessed the regulatory requirements and conducted an audit that 

recommends the projects necessary to save the requisite energy.  All projects must be completed.  

The agency’s approach to implementing these projects has been the naïve method, which 

involves sorting by cost/ benefit then selecting until the budget has been depleted.  They have not 

leveraged the integer programming approach that solves a resource allocation problem to choose 

a subset of projects to optimize savings (a “knapsack” problem).   
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Given this list of ECMs, the agency’s decision-maker faces a series of strategic decisions.  Each 

project from which the energy manager or decision-maker must select, saves energy or annual 

energy costs and, in most cases, both.  Simpler projects can often be implemented with in-house 

resources and staff.  Lower-cost projects can often be financed with internal operating budgets.  

Using in-house budgets and resources provide the best return on investment.  These projects also 

free up capital for further energy projects.  Higher risk, more difficult or projects that require 

large capital investment can be performed by Energy Service Companies per the guidance first 

issued in NECPA.  The energy performance contracts  or utility energy service contracts c do not 

yield the cost savings that in-house projects do as the cost savings are shared with the ESCOs 

and utilities.  Neither organization is fond of taking on projects with very long paybacks.  ESCOs 

generally have performance periods of 23 years while utilities prefer projects with paybacks of 

less than 10 years.7  

 

Still, many technical challenges are faced by each organization.  Inability for capacity expansion, 

building constraints and competing technologies provide key obstacles in today’s energy 

projects.  Risk of encountering the issues are often factored in as reductions to savings.  In some 

cases, these cost to address these issues could exceed all overall savings. 

 

The largest opportunity for energy conservation lies in the creation of the plan.  Optimization is 

needed to properly create a plan that maximizes the energy savings while identifying financing 

                                                 

7 The length of time that the ESCOs and utilities choose are generally a weighted average of the estimated useful 
lifetimes of the equipment installed.  
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and firms available to implement the recommended measures.  The appropriate method of 

achieving these goals has not been regulated.  The standard method of creating this plan 

segments these decisions.  The agency traditionally selects the projects with the quickest 

paybacks.  Only the least desirable or most costly projects are left for ESCOs.   As a result, many 

agencies select a subset of projects to complete internally only to find that the remaining projects 

can no longer be completed with a decent payback for firms in the market.  In contrast, many 

agencies allow the audit providers to choose the appropriate projects for them.  This selection 

process may not be aligned with the agency’s objectives.   

 

Furthermore, in the current practice, the agency may leave a subset of projects incomplete 

assuming that ESCOs will complete them.  The current selection process can generate a mix of 

selected projects that might not maximize the agency’s share of the benefit (in dollars) of the 

energy saved.  Most of the simpler projects have been completed in previous energy retrofit 

programs making remaining projects less attractive to both agency and firms.  Given the profit 

maximization objectives for of these firms, it is possible that the agency will have chosen to take 

care of projects themselves that will leave the remaining ones  unattractive to ESCOs and 

therefore the whole set of projects will be incomplete. Thus, the current procedure may be 

ineffective as it does result in the completion of all projects.    

 

2.2. Literature Review 

 

Project selection that optimizes the agency’s value of the total energy saved continues to elude 

decision-makers.  Many approaches of this type of problem have been studied however; none 
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have been applied to energy conservation. The agency selection problem is a related to the 

classical knapsack problem, which is described below.  

 

Dantzig described and demonstrated methods of solution to the knapsack problem (Dantzig, 

1957).  In this problem, for example, a person is planning a hike and has decided not to carry 

more than 70 lbs. of different items, such as a bedroll, Geiger counters, cans of food, etc.  The 

hiker would like to maximize his /her benefit of these items while remaining below the weight 

limit.  Dantzig noted that in these types of problems, extreme point solutions (to the 

corresponding linear program) might yield values that are neither one nor zero (which 

correspond to selection or omission of items).  In Dantzig, it was noted that extensions to two or 

more limitations, for example, one on total weight and another on total volume could be done, 

but there would be a considerable increase in the amount of computational work.  In the current 

context, the weights are the projects’ costs and the weight limitation is the budget (Dantzig, 

1957). 

 

Markowitz wrote that the process of portfolio selection (similar to some extent to project 

selection) may be divided into two stages: observation and experience, leading to beliefs about 

the future performances and the relevant beliefs about future performance leading to the choice 

of portfolio (Markowitz, 1952).  Selecting the highest anticipated return may leave projects 

undone and violate a key constraint.   The current problem should incorporate constraints on the 

purchases, mainly that the Energy Manager cannot maximize the agency’s share of savings 

without the profit maximization of lower-level firms such as ESCOs and Contractors.  
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In Gabriel et al., a multi-objective, integer-constrained optimization model with competing 

objectives for project selection was proposed in which probability distributions were used to 

describe uncertain costs (Gabriel, et al., 2006).  That model was novel since it integrated multi-

objective optimization, Monte Carlo simulation, and the Analytic Hierarchy Process. 

 

In Asadia et al., the authors present a multi-objective optimization model to assist stakeholders in 

the definition of measures aimed at minimizing the energy use in the building in a cost effective 

manner while satisfying the occupants' needs and requirements (Asadia, et al., 2012).  The set of 

retrofit actions in that study contained combinations of choices regarding windows, external wall 

insulation material, roof insulation material, and installation of solar collector to the existing 

building.  Only one retrofit action from each four set of actions could be selected for the building 

retrofit.  However, the model described in (Asadia, et al., 2012)  incorporates many subjective 

attributes that make the quantification of value difficult.  

 

A multi-criteria knapsack model was proposed to help designers to select the most feasible 

renovation actions in the conceptual phase of a renovation project in Alanne (Alanne, 2004).  

The paper asked which renovation actions should be selected in order to achieve the best 

possible improvement in the sustainability of the building that is to be renovated?  In that paper, 

a multi-criteria knapsack model was to help designers to select the most feasible renovation 

actions in the conceptual phase of a renovation project using case analysis concerning a real, 

Finnish apartment building also has been presented.   The additional criteria added some 

subjectivity as a feature of multi-criteria evaluation as to the model but the results were as 

expected.  The additive knapsack model presented in that study was based on linear 
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programming.  Methods like Branch-and-Bound now make it possible to solve the integer 

problem in minutes or even in seconds.  The problem faced by the agency discussed in this 

chapter is much more complex. 

 

Gustafsson used a mixed-integer, linear programming (MILP) model to minimize the life-cycle 

cost of retrofits subject to minimum space heating requirements (Gustafsson, 1998).   The author 

showed that a building’ heating system could be described mathematically in the form of a 

MILP.  The integrality constraint was very important because step increases (i.e., fixed charges 

or costs that do not vary with quantities over a finite ranges) in the cost functions could be 

defined but the author admitted that small changes in these steps might have resulted in different 

optimal solutions.  That paper had many similarities to the current research, as it is one of the 

few to incorporate life-cycle costing in its evaluation of building retrofits.  However, Gustafson’s 

approach is vastly different from the research presented in this chapter.  Gustafsson’s 

optimization determines which measure to select based on the reductions to the overall cost of 

energy consumption, i.e., electricity, heating fuel and demand (kW savings).   Because a savings 

in electricity may not lower the billed cost due to a higher demand charge, that measure would 

not be selected in Gustafsson (Gustafsson, 1998).  The primary objective of the research here is 

energy savings with cost being a secondary consideration as well as a two-level optimization 

approach to more accurately model the ECM decision process. 

 

Another paper, Caputoa et al., presented a methodology for optimal choice of safety measures in 

industrial plants.  The methodology used a set of easy-to-compute ratings in a cost/benefit type 



 

27 
 

fraction (Caputoa, et al., 2013).  The problem of choosing a set of safety measures was then 

formulated as a linear program. 

 That knapsack, linear programming model solved for an optimal portfolio of safety measures 

complying with a limited budget.  That linear program employed a simple additive weighting 

model.   Single scores representing the utility of an option were merely added to the scores of the 

other selected safety measures in order to compute the overall utility.  

 

Zhivov et al. (Zhivov, et al., 2012) described a net zero fossil fuel-based energy optimization 

process and illustrated it with an example based on the results of study conducted for a cluster of 

buildings at Fort Irwin, CA.  The integrated optimization process consisted of several 

optimization problems solved in series beginning with the optimization of each building to 

achieve the most cost effective energy efficient optimization of the building envelope and 

building systems that use energy.  Then, energy saving measures affecting the total building 

cluster were optimized, taking advantages of the diversification between energy intensities, 

scheduling, and waste energy streams utilization.  The energy demands of the resulting 

optimized cluster required the smallest size renewable energy systems needed to make the 

building cluster net zero.  The Zhivov et al. (Zhivov, et al., 2012) approach is a unique to energy 

conservation but is impractical in its objective.  The optimization in Zhivov et al. (Zhivov, et al., 

2012) essentially minimizes the energy needed in the future for a cluster of buildings by 

installing retrofits now.  The results showed that those energy saving projects would reduce the 

energy at a very high cost.  However, there are no cost constraints in the model.  In this chapter, 

we seek to save the most energy by spending the lowest possible costs in a two-level model, 

which essentially leads to the smallest investment. 
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In Ma et al., a systematic approach to the proper selection and identification of the best retrofit 

options for existing buildings is presented (Ma, et al., 2012).  That work highlights the generic 

building retrofit problem and key issues that are involved in building retrofit investment 

decisions.  Ma et al. discuss major retrofit activities such as energy auditing, quantification of 

energy benefits, economic analysis, and measurement and verification (M&V) of energy savings 

(Ma, et al., 2012). However, the authors also discuss building performance assessment and risk 

assessment, all of which are essential to the success of a building retrofit project.  An overview 

of the research and development as well as application of the retrofit technologies in existing 

buildings is also provided.  While there is no optimization here, the aim of that work is to 

provide building researchers and practitioners with a better understanding of how to effectively 

conduct a building retrofit to promote energy conservation and sustainability. 

 

Diakaki et al. investigated the feasibility of the application of multi-objective optimization 

techniques to the problem of the improvement of the energy efficiency in buildings, so that the 

maximum possible number of alternative solutions and energy efficiency measures may be 

considered (Diakaki, et al., 2008).  The authors recognized that several measures were available 

for the improvement of the energy efficiency of the buildings and the quality of their indoor 

environment, and that the decision-maker has to compensate environmental, energy, financial 

and social factors in order to select among them.  They noted that the problem of the decision-

maker is characterized by the existence of multiple and in several cases competing objectives 

each of which should be optimized against a set of feasible and available solutions that is 

prescribed by a set of parameters and constraints that should be taken into account.  The 
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decision-maker is facing a multi-objective optimization problem that is usually approached 

through simulation and/or multi-criteria decision-making techniques that focus on particular 

aspects of the problem.  Their results showed that no optimal solution exists for that problem due 

to the competing objectives of the involved decision criteria.  A simple example is used to 

identify the potential strengths and weaknesses of the proposed approach, and highlight potential 

problems that may arise.  In contrast, the current chapter limits the criteria and factors (energy 

and dollars saved) associated with the objective function in energy conservation measure 

selection. 

 

The current chapter presents a two-level optimization problem formulation, which is a special 

case of a more general mathematical program with equilibrium constraints (MPEC). The 

optimization problem that selects the proper conservation measures at the upper-agency level and 

properly aligns with the service provider at the lower level has not been studied before and thus 

this constitutes novel research.8    

 

One way to view the overall MPEC is as a two-level, knapsack problem in which the upper-level 

is the agency filling its knapsack (budget) with as many useful ECMs as possible, taking into 

account a lower-level set of providers as well.   This chapter’s focus lies in the intersection of 

energy conservation, the knapsack problem and two-level optimization (MPECs).  While there is 

a multitude of work that has been done on each of these topics individually; the treatment of 

                                                 

8 In the case of a lower-level solution set which is not a singleton, we have assumed that the lower-level players act 
in an “optimistic” fashion relative to the upper-level player as in Bard (Bard, 1998). 
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these three concepts together is new.   A few studies discuss combining two of the topics but fall 

short of the full analysis. 

MPEC Optimization Knapsack Problem

Energy Conservation Policy and Building 

Retrofits

This 

Research

 

Figure 2-1:  The Intersection of this Research 

 

For example, Ye and Daoli discuss a two-level optimization problem however, not specific to 

energy conservation (Ye & Daoli, 2010).  The authors discuss the classical approach to solving 

such a problem by replacing the lower-level problem by its Karush–Kuhn–Tucker (KKT) 

conditions and solving the resulting MPEC.  In Ye and Daoli, the classical approach is not valid 

for a non-convex bi-level programming problem so the author uses a value function to derive 

optimality in a very specific case (Ye & Daoli, 2010).  The current chapter builds on the classical 

approach by handling non-convexities through disjunctive constraints. 

 

Another paper, Fortuny-Amat and McCarl, presents a formulation for two-stage decision making 

processes; this formulation is a mathematical programming problem (master) containing other 

multilevel programs in the constraints (subproblems) (Fortuny-Amat & McCarl, 1981).  A two-

level problem is analyzed in detail and a solution procedure is developed that replaces the 

subproblem by its KKT conditions and then further transforms it into a mixed integer quadratic 
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programming problem by exploiting the disjunctive nature of the complementary slackness 

conditions.  The authors note that mixed integer quadratic program could be solved directly by 

using disjunctive constraints or special ordered sets (SOS).  One of the key differences between 

Fortuny-Amat and McCarl (Fortuny-Amat & McCarl, 1981) and the work in this chapter is that 

the latter includes additional complexity of the upper-level where integer programming was 

used, not to accommodate the complementary slackness conditions.  In this chapter, there are 

more constraints at both levels; however; careful selection of variables made the solution 

tractable using disjunctive constraints.   A final contrasting concept is that this novel approach to 

energy conservation highlights a significant improvement over a current common practice.   

 

In Siddiqui and Gabriel, SOS type 1 (SOS1) variables are used and a new a new method for 

solving MPECs where the lower level is a complementarity problem is demonstrated (Siddiqui & 

Gabriel, 2013).  An application of the method to an MPEC representing the United States natural 

gas market is given.  The first formulation, based on SOS1 variables, when solved to optimality 

provides a global solution to the MPEC. The second, penalty-based formulation is used to 

heuristically obtain local solutions to large-scale MPECs.  The advantage of these methods over 

disjunctive constraints for solving MPECs is that computational time is much lower, which is 

corroborated by numerical examples.   

 

In Gabriel, et al., a Stackelberg game for a network-constrained energy market using integer 

programming is solved where there is a single leader and the independent system operator acts as 

the follower (Gabriel & Leuthold, 2010).  The MPEC is reformulated as an MILP by using 

disjunctive constraints and linearization of bilinear terms.  The MILP formulation gives the 
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opportunity to solve the problems reliably and paves the way to add discrete constraints to the 

original MPEC formulation, which can be used in order to solve discretely-constrained 

mathematical programs with equilibrium constraints (DC-MPECs).  This approach was applied 

to a three-node and a fifteen-node network model of electricity markets for the Western 

European grid.   

 

This current chapter represents modeling efforts stemming from the convergence of the legal 

requirement for reduction of energy in government buildings, the desire for reducing costs and 

government spending, the advances in new energy savings technology and the large number of 

firms and financing methods available.   This optimization is now needed more than ever 

because traditional funding methods have ended with the American Recovery and Reinvestment 

Act (ARRA) but still funding is still authorized and available through secondary sources.  The 

amount of capital needed to fund these projects has grown because many of the no /low-cost 

Projects have all been completed in buildings across the United States.  Exotic new programs and 

funding sources become available daily and competition for these funds continue to grow.  Still, 

this funding only supplements activities required by law.   

 

2.3. Methodology   

 

A novel way to meet the objectives of maximizing energy savings while minimizing costs is by 

solving a two-level optimization problem (MPEC) as described earlier.  The audit returns the set 

of maximum energy savings projects.  Each agency has a budget that should be exhausted in a 

good faith effort to make the best use of tax dollars.  However, this budget rarely covers all 

possible projects.  If all projects recommended by the audit are not completed, then the 
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regulatory requirements will not be met.  Choosing an ESCO is a regulated way to complete the 

balance of projects whose expenses exceed the budget.   The choices of projects and the right 

ESCO can increase the energy savings, which also improves the monetary savings, thereby 

allowing the agency to complete more projects in house. 

 

This selection process is best modeled as a two-level problem in which the upper-level player 

(agency) chooses a subset of projects to self-perform with its own budget.  The upper level 

passes the balance of projects to the lower level, the ESCOs / outside firms.  The ESCOs 

compete for projects while seeking to maximize their own profit.  In a shared-savings approach, 

the ESCOs choose projects and share savings with the upper-level agency.  The shared savings 

are added to the agency’s budget for completing projects.9 

 

This strategic decision making-model is an improvement over the existing practice in which a 

single-level model minimizes the agency’s capital outlay.  The single-level model ignores the 

secondary object of earning the right to the saving generated by implementing energy 

conservation measures.  In addition, the existing practice does not incorporate the ESCO’s 

objectives nor does it predict the expected shared-shavings.  The model presented here includes 

both objectives allowing the agency and ESCO’s to work together.  This collaboration makes it 

possible for agency to use the shared-savings to invest in additional projects that can be 

implemented in-house, thereby driving additional savings. 

 

                                                 

9 It is important to note that the revenues are shared but the liability is owned by the ESCO. 
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The following is the notation, variables, and parameters used in the general statement of the 

ECM two-level problem. 

 

Sets 

F = set of firm types (ESCOs) with F = {1, 2,…nf} where nf = |F|  

P = set of ECM projects with P = {1, 2,…np} where np = |P|  
 

Main Primal Decision Variables 

 
x a vector of np binary variables representing selection of the projects; variable =1 if 

selected by the agency (upper-level variables) to be implemented with the agency budget, 
=0 otherwise 

 
q a two-dimensional set of np by nf, non-negative variables representing the percentage of 

the projects selected by each ESCO firm (0-100%) (lower-level variables) 
 
z a vector of np binary variables representing selection of the projects; variable =1 if 

selected by the agency (upper-level variables) to be implemented with third-party 
financing, =0 otherwise 

 
 

Intermediate Variables 
 
SSR The shared savings revenue returned to the agency 
 

Parameters 

ηp the estimated useful life in years of the equipment or retrofit 
B the budget in dollars for the agency’s in-house projects (capital, operating, stimulus, 

grants, etc.) 
D the cost of financing: 1 plus the current interest rate  
TF the present value of the investment dollars including financing cost needed by agency to 
 implement all projects  
MPf a minimum profit requirement in dollars, set by firm f 
αp the estimated annual savings in KBTU achieved by implementing project p  
θp the estimated annual savings in dollars achieved by implementing project p  
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φf the coefficient of the cost curve of firm f 10 
μp the percentage of project p’s initial cost estimate associated with material, labor and 
equipment 
 δp the estimated annual percentage savings degradation after implementing project p  
εp the present value factor of an estimated annual savings achieved by implementing project 
p 
γp the estimated investment in dollars needed to implement project p  
νpf the variable cost in dollars of project execution for firm f and project p 
ωpf the quality factor of project execution for firm f and project p 
ζf the rate of shared savings (percentage) to the firm, f agreed upon by firm and agency 
Δ the discount rate 
 

����:  �� =   
 + ��∆ − ��  �
 − �
 + ��
 + ∆ ��� (2a) 

 

This equation above employs the Lifecycle Costing Methodology, which calculates the Uniform 

Present Value, must be used to properly account for the time value of the money (savings) with 

the concurrent decrease in efficiency of the implemented measure.   The present value is used to 

properly scale the annual savings with the current financing needed for projects.   

 

Kf the exponent associated with cost curve of firm f  

 

The firms generally estimate their projects costs with a nonlinear curve.  The costs are nonlinear 

and lower at small q. As the share of a project increases, so does the cost due to the need for 

managing shared savings through contracting, maintenance and verification.  Thus, only K > 1 is 

considered. 

 

                                                 

10 Energy auditors provide estimates for project implementation which include labor, equipment, material and soft 
cost as well as overhead and profit.  The firms generally estimate their projects costs with a nonlinear curve with one 
coefficient of φf. 
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Upper-Level Problem 

 

The agency’s annual savings maximizing problem is given in (2b): 

max�,�,� � =  � ���� ∙ !"#$% + &#$%'()

�*+

+ � �!����,�,- − .�/�' ∙ !1 − 1-'(2

-*+ 3#$, 4% − 5 ∙ 67()

�*+  

(2b) 

 

Subject to: 

� /� ∙ "#$% ≤ 9()

�*+ +  ::; (2c) 

::; = � � 3#$, 4% ∙ !����,�,- − .�/�' ∙ !1 − 1-'(2

-*+
()

�*+  (2d) 

 

� /� ∙ &#$%()

�*+ = 67   (2e) 

"#$% + &#$% + � 3#$, 4% = 1 ∀$(2

-*+  (2f) 

 
 

The energy auditor submits an estimate of the project investment that includes labor, material, 

equipment and overhead and profit. An example of a bid-ready project estimate is shown 

below in Table 2-1.   
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Lighting Energy Conservation Measure Project 

Material $750 

Labor $100 

Equipment $50 

Overhead and Profit $100 

Total $1,000 

Table 2-1:  Typical Lighting ECM Project 

In this example, an energy audit reports that a lighting retrofit will require an estimated 

investment of $1,000 (/�%.  An ESCO’s profit should not include overhead and profit of $100 

because the ESCO’s profit is included in the total shared savings !����,�,- − .�/�'.   

 

The estimate prepared by the auditor assumes the projects will be completed by traditional 

contractors.  The ESCOs are leveraging the performance contracting method where they are 

paid through shared savings.  The shared savings includes the ESCO’s overhead and profit.  

When applying the auditors’ estimate to the shared savings amount, the overhead and profit 

must be removed to avoid double-counting.  This is done by reducing the project cost by the 

portion of the project that estimated for labor, material, and equipment,!.�'.   

 

The quantity !����,�,- − .�/�' is the total savings available to be shared.  The rate of shared 

savings (percentage) to the firm as agreed upon by firm and agency is 1-.  Therefore, the 

quantity !1 − 1-' is the agency’s share of that savings.   
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Constraint (2c) indicates that the cost (initial investments) of the projects selected by the 

agency, to be performed in-house cannot exceed the in-house budget (B) plus the shared 

savings (SSR).  Because only complete projects are taken on by the agency, there may be an 

amount of money left in the budget after projects are selected.   In addition, the budget is 

augmented by the shared savings amount (SSR) which is defined in (2d).  Constraint (2e) 

shows the cost invested in projects completed by the agency, but financed by other means 

(TF).   

 

Constraint (2f) stipulates that projects can only be selected by either the agency or the firms 

and that all projects must be selected to meet the mandated requirement.  Only projects that 

save energy or enable energy savings are considered.  The agency must select complete 

projects while the firms can work with the agency or with each other to complete projects, i.e., 

this means that q(p,f) can be fractional as shown in equations  (2g) and  (2h). 

 

 "#$%, &#$%  =>?  @AB=>C 

 

(2g) 

0 ≤ 3#$, 4%  ∀$ =BE 4 (2h) 

 
 

Note that 3#$, 4%  ≤ 1 ∀ $  and 4 is implied by (2f), (2g), and (2h). 
 
 

Lower-Level Problem 

 
The ESCOs compete for their profit-maximizing share of the projects not taken on by the 

agency’s in-house staff.  These heterogeneous firm types each represent different competencies 
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and services for each project.  These ESCOs fall into three separate categories, equipment-

affiliated, utility-affiliated and non-utility energy services companies.   For example, many firms 

are equipment-specific and are only capable of performing portions of projects within their 

competency.   

 

Likewise, each firm has a different cost model.   In general, each cost model has a fixed 

component of cost, which includes project management, contract administration and leasing.  

The variable component of their cost structure includes design, engineering, commissioning, 

maintenance, and verification (M&V).   Each firm becomes capacity-constrained as higher 

percentages of projects are implemented due to resource limitations.   

 

Adding to the heterogeneity of the firms, each ESCO category also has a quality level for each 

type of project.  This quality factor allows for firms with specialized skills to generate higher 

savings when implementing projects within their competency. 

 

Firm 4’s f’s   profit maximization objective function takes on the following form (2i).  

 

ESCO / Firms’ Profit-Maximizing Problem 

 

max� F- =  �G3#$, 4% ∙ !����,�,- − .�/�' ∙ !1-'()

�*+
− !H-!���� − .�/�' ∙ #3#$, 4% + 3#$, 4%IJ%'K 

(2i) 

Subject to:  
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�G3#$, 4% ∙ !����,�,- − .�/�' ∙ !1-'()

�*+
− !H-!���� − .�/�' ∙ #3#$, 4% + 3#$, 4%IJ%'K   ≥ MN-   

(2j) 

3#$, 4% ≤ 1   ∀ $ AB N  (2k) 

  

3#$, 4% ≥ 0 ∀ $ AB N  (2l) 

 

The objective function (A-3a) quantity, O#$, 4% ∙ !����,�,- − .�/�' ∙ !1-' represents the 

revenue gained by the ESCO in the form of shared savings by taking on q#p, f% percent of 

project, p.  The quantity !H-!���� − .�/�' ∙ #O#$, 4% + O#$, 4%S2%' represents the cost of 

implementing project, $ by firm, 4.  The parameter #ϕU% is the percentage of the shared savings 

that is attributed to material, labor and equipment costs.  

 

The lower-level optimization problems represents for 4 = 1. . B-, firm types, not necessarily a 

single firm.  Each firm type seeks to maximize profit as long as their internal rates of return met 

(minimum profit is achieved, see constraint (2j)).   As such, it is assumed that projects will be 

selected by all firm types given the large number and variety of energy conservation project 

types required by the agency.  If a firm type chooses not to select any projects or the number of 

projects available makes selection unattractive to the firms then the constraint (2j) should be 

removed to avoid infeasibility although without loss of generality, one can set this minimum 

profit just to be zero for feasibility reasons.  Furthermore, this parameter suitable adjusted, can be 

used in a sensitivity analysis. 
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The approach to solving this two-level problem is to use the Karush-Kuhn-Tucker (KKT) 

optimality conditions, apply them to the lower-level optimization problems and insert them into 

the upper-level problem as additional constraints.  In this way, the original two-level problem is 

reformulated as a single-level nonlinear optimization problem. In Appendix B, we show that 

under mild assumptions, these KKT conditions are both necessary and sufficient for optimality 

as well as the equivalent one-level problem to solve the MPEC given by (2b) and (2i). 

 

As discussed previously, results of the energy audit are presented to the agency.  The results 

contain specific attributes for each ECM recommended including the cost to implement the 

project and the projected savings.  The agency selects an optimal subset of projects to implement 

itself given a fixed budget in a knapsack problem-like fashion.  At the lower level, three types of 

ESCOs solve their profit-maximizing problems. The overall objective is to save the most energy 

possible by implementing the recommended ECMs at the lowest cost. 

 

2.4. Practical Application 

 

The model developed in Section 2.3, aligns the objective of saving energy while reducing cost 

with the understanding that the providers and financial agencies are also working to maximize 

profit.  A practical application of the model is demonstrated using data from a college in the 

Southeastern, United States.  

In 2011, EMG, a third party engineering consulting firm, conducted an ASHRAE Level 2 

Energy Audit of a college campus comprised of 38 buildings categorized residential,  student,  
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academic,  and administration.  The campus covers a total of over 1.04 million ft2.11  There is one 

central boiler/chiller plant (physical plant) serving 11 of the 38 buildings, while the other 27 

buildings are served by local systems. 

EMG was contracted to perform a detailed energy audit and make energy saving 

recommendations on the physical plant and its connected 11 buildings.  As part of the study, 

EMG reviewed the buildings’ construction features, historical energy and water consumption 

with costs, envelope, heating ventilation and air conditioning (HVAC) equipment, heat 

distribution systems, lighting, and operating and maintenance practices. 

 

EMG identified forty-eight energy conservation measures.  The following paragraphs describe a 

typical ECM, “Decommissioning of Central Steam Boilers and Installation Individual High 

Efficiency Condensing Boilers.” 

 

The central boiler in the central utility plant currently serves nine buildings on campus.  The 

steam from the boilers is piped to the individual buildings.  The central plant currently has two 

inefficient Continental steam boilers and an aging chiller plant.  A significant amount of energy 

is spent raising boiler temperature from 55°F to 220°F in order to evaporate the boiler feed 

water, instead of  the normal 185°F to 220°F because more than 75% of condensate return is 

fresh, unheated water.  Based on the observations and analyses, the audit proposes a new chiller 

plant along with new boilers with thermal operating efficiency of 92-96% in contrast to the 

current boiler thermal efficiency of 60%.  The hot water circulation pumps and variable 

frequency drives will save additional electrical consumption.  This project will also result in an 

                                                 

11 Bill Champion is the Director of Asset Management Consulting at EMG.  
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annual water savings currently being drained into the city sewer due to lack of proper condensate 

return system. 

 

The total savings annual saving for the ECM will be $80,023.  The table below summarizes the 

attributes of this proposed ECM project. 

 

There are 48 such ECMs with varying characteristics and project attributes.  The model 

presented earlier is applied to the real data follows. 

nf =|3|  
np =|48| 
γp = 90%  
Δ =3% 
ζf shown in the third column of Table 1-4. 
ωpf shown in Table 1-5, below. 
 
Below is a sample of the actual ECM data characteristics from the energy audit.  Please see 

Appendix C for the complete dataset. 

 
Investment 

Cost ($) 

Annual Energy 

Savings (KBTU) 

Energy 

Rate 

($/KBTU) 

Annual 

Cost of 

Energy 

Saved ($) 

Degradatio

n / 

Escalation 

Rate 

Estimated 

Useful Life 

Payback 

Ratio 

project 1 710,354 5,334,857 0.015 80,023.00 1.50% 30 years 8.877 

Table 2-2:  Typical ECM Project Attributes 
        

 
Investment Cost 

($) 

Annual Energy 

Savings (KBTU) 

Energy Rate 

($/KBTU) 

Annual Cost of 

Energy Saved 

($) 

Degradatio

n / 

Escalation 

Rate (%) 

Estimated 

Useful Life 

(Years) 

Payback 

Ratio (Years) 

P γp αp   δp n  

project1  $              710,354             5,334,857   $    0.015   $              80,023  -1.50% 30 8.88 

project2  $              637,975             1,849,047   $    0.033   $              61,019  -1.00% 23 10.46 

project3  $              468,071             1,768,079   $    0.023   $              40,666  -2.00% 30 11.51 
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 Provider Type Shared savings % (to 

Firms) 

Firm (f) 
 ζf 

1 Non-utility ESCO 67.5% 

2 Utility Affiliated ESCO 70.0% 

3 Equipment Affiliated 

ESCO 
65.0% 

Table 2-4:  Practical Application Table of Firms 

 
It should be noted that the firms’ share of savings can vary, generally, between 60 and 80% and 

is dependent on several firms (approximately 30) and market factors.  The numbers used in Table 

2-4, represent typical firms in each of the ESCO types.  Similarly, industry rules of thumb 

generally add approximately up to 20% more savings when a large ESCO or equipment-related 

contractor implements ECM projects of specific types.  A sample of the quality factors are 

tabulated below in Table 2-5. Please see Appendix C for the complete dataset. 

 
Baseline Project Quality, ωpf                                                         Note, ωpf =1 as executed by Agency 

Project Firm 1 Firm 2 Firm 3 

project1 1.06 1.10 1.05 

project2 1.06 1.01 1.05 

project3 1.05 1.09 1.07 

project4 1.06 1.01 1.09 

project4  $                40,368                 445,600   $    0.010   $                4,456  -1.38% 30 9.06 

project5  $                  8,557                 213,025   $    0.012   $                2,556  -1.50% 15 3.35 

project6  $                15,328                 124,584   $    0.023   $                2,865  -0.75% 9 5.35 

project7  $                55,207                 287,971   $    0.027   $                7,775  -2.50% 15 7.10 

project8  $                59,355                 416,045   $    0.022   $                9,153  -2.00% 15 6.48 

Table 2-3:  Sample of ECM Data in Practical Application 
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project5 1.05 1.10 1.04 

project6 1.10 1.15 1.05 

project7 1.04 1.15 1.05 

project8 1.10 1.08 1.03 

Table 2-5:  Sample of Practical Application Table of ESCO Quality Factors (ωpf) 

 
 
 

2.5. Numerical Results  

 

The mixed-integer nonlinear program (MINLP) shown in Appendix A and derived from the 

above discussions, was programmed in GAMS Rev 23.6 using a 64-bit MS Windows machine 

and the SBB solver.   The model statistics included 1,465 single equations and 1,221 single 

variables with 435 binary variables, most supporting the disjunctive constraints (see Appendix A 

for a discussion of disjunctive constraints).  The MINLP model was solved using a maximization 

format and arrived at an integer optimal solution after 355 branch and bound nodes were 

evaluated.  For the practical example, with a budget of $200,000, the resulting value of the model 

is apparent given the additional $1,374,794 in savings to the agency as compared to the current 

method of sorting by payback and having ESCOs perform the balance (Industry Practice).  The 

key component of the additional savings comes from the ability of the upper level agency to 

anticipate what the lower level will perform and use this feedback to plan for the shared savings.  

The upper level uses this shared savings to invest in implementing its own projects.  These 

projects are those funded by the agency through shared savings from ESCOs.   
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Figure 2-2:  Comparison among Approaches 

In Figure 2-2, the Industry Practice savings is composed of three quantities.  The first of these 

quantities ($713,440) is the savings through agency funding which are achieved by 

implementing projects (5, 23, and 28) whose investments are below the budget (of $200,000).  In 

this case, x(5), x(23) and x(28) =1 and all other x(p) =0.  The second quantity ($4,613,333) 

represents the savings achieved through projects implemented by ESCOs (all other projects).  

The third quantity, ($1,955,290) is the savings in dollars returned to the agency from the ESCO.  

This quantity is the agency’s share of the shared savings and is essentially a refund and not 

reinvested for funding additional projects.  These quantities can be seen in the other two stacked 

bars in Figure 2-2 with the addition of the savings from projects funded by the agency through 

shared savings.   For example, in the ESCO-managed method where the agency outsources 100% 
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of the projects, $5,904,226 represents the savings from projects implemented by ESCOs.  The 

amount $2,226,519 is the savings in dollars returned to the agency from the ESCOs.  In the Two-

level MINLP Method, the amount $4,127,824 represents the agency’s savings from projects 

completed with existing budget ($200,000) supplemented by the shared savings returned (now 

$1,303,978, not shown). The agency can use this refund combined with its initial budget to 

invest in additional projects that generate savings.  It is important to note that ten projects were 

completed by the agency (see Figure 2-5), more than the three in the case of the Industry 

Practice.   

The driver of the optimization is the federal regulation that requires the percentage reduction in 

energy savings.  All of the projects must be completed to meet that objective.  The agency’s 

decision-maker needed only to select which projects would be completed “in-house” and which 

would be implement by an ESCO.  Figure 2-3, below shows the “Industry Practice” selections 

made by the decision–maker.  The standard practice instructs the agency to sort by payback and 

select projects until the budget is exhausted.   In this case, the decision-make selects three 

projects to remain below the budget.  The balance of the projects is given to the ESCOs for 

implementation.  The shared savings from ESCO-completed projects are returned to the agency.  

However, having already selected the projects that maximize the payback (the single-level 

approach); the agency has no projects left to implement.  This naïve or greedy approach leaves 

the agency with $1,955,290 in shared savings (returned to agency by the ESCOs), whereas the 

two-level approach gives the agency $1,303,978, which the agency uses to select the optimal 

project mix and generates $4,127,824 in savings.  This gives the agency an additional $1,374,794 

in cost savings.  The individual projects selected by each approach are shown in Figures 2-3 to 2-

5. 



 

48 
 

 

 

Figure 2-3: Lifecycle Savings of $7,282,063 to the agency achieved by selecting three 

projects and Shared savings returned by ESCOs from projects completed. 
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Figure 2-4: Lifecycle Savings to the agency of $8,130,745 through Shared savings from 

projects completed by ESCOs. 

 

It should be noted that in the model in which ESCOs perform all projects, shown in Figure 2-4, 

the minimum profit constraint becomes binding for firm 3.  Here, without the impact of the 

upper-level savings maximization, the lower-level profit is maximized by the two firm types that 

keep a highest percentage of the shared savings, as expected. 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

p
ro

je
ct

2
8

p
ro

je
ct

2
3

p
ro

je
ct

5
p

ro
je

ct
3

9
p

ro
je

ct
3

5
p

ro
je

ct
1

8
p

ro
je

ct
4

2
p

ro
je

ct
6

p
ro

je
ct

3
1

p
ro

je
ct

4
1

p
ro

je
ct

2
7

p
ro

je
ct

1
3

p
ro

je
ct

4
8

p
ro

je
ct

1
5

p
ro

je
ct

8
p

ro
je

ct
4

0
p

ro
je

ct
7

p
ro

je
ct

1
0

p
ro

je
ct

3
4

p
ro

je
ct

3
3

p
ro

je
ct

2
2

p
ro

je
ct

3
8

p
ro

je
ct

4
4

p
ro

je
ct

2
5

p
ro

je
ct

4
3

p
ro

je
ct

4
5

p
ro

je
ct

1
7

p
ro

je
ct

1
6

p
ro

je
ct

4
7

p
ro

je
ct

2
1

p
ro

je
ct

3
7

p
ro

je
ct

1
p

ro
je

ct
3

0
p

ro
je

ct
4

p
ro

je
ct

1
1

p
ro

je
ct

3
2

p
ro

je
ct

2
9

p
ro

je
ct

9
p

ro
je

ct
2

p
ro

je
ct

2
4

p
ro

je
ct

1
4

p
ro

je
ct

2
6

p
ro

je
ct

3
p

ro
je

ct
1

2
p

ro
je

ct
3

6
p

ro
je

ct
1

9
p

ro
je

ct
2

0
p

ro
je

ct
4

6

Y
e

a
rs

All Projects Completed through ESCO Shared savings

ESCO completed projects Agency-selected Projects



 

50 
 

 

Figure 2-5:  Two-level MINLP lifecycle saving to the agency of $8,656,857  

 
 
Figure 2-5, above, shows the model presented in this chapter.  This model provided the lifecycle 

saving to the agency of $8,656,857 through a combination of agency-completed projects and 

shared savings from projects completed by ESCOs.  

 

The problem statement assumes that all projects need to be completed to meet the 30% 

consumption of energy requirement mandated by the regulation.  No other projects would be 

completed.  All projects have been evaluated in present value amounts to allow for comparison.   

This is modeled after the common practice of large capital and renovation projects, which 

generally take place once in several-year intervals.  The estimated useful lives (EULs) of 
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equipment and financing terms are usually between 10 and 30 years and often drive the same 

renovation patterns.   

 

The practical application had an agency-operating budget of $200,000 for energy projects.  The 

optimization yielded an optimal selection strategy to complete ECMs 4, 10, 18, 23, 28, 35, 38, 

39, 41, and 48.   None of the projects required financing which is the least-cost effective option.  

It should be noted that the lower level returns $1.3 M to the upper level for budgetary use (the 

shared amount that goes to the agency).  Without this insight and communication afforded by the 

two-level problem, the upper level would have only completed ECM projects 5, 23 and 28.  The 

balance of the projects is left for the execution by ESCOs.  In this case, the project mix and the 

magnitude of the savings to share are lucrative enough for the ESCOs to complete the balance 

without hardship meeting the minimum profit levels). 

 

The three types of ESCOs split the remaining projects for a maximum energy saved of 63.0 M 

KBTU annually and a total savings of $4,260,222 to the agency.   

 
 Agency Firm 1 Firm 2 Firm 3 Totals 

 "#�% 3#�, 
% 3#�, W% 3#�, X%  

Total Projects 10 9.61 26.277 2.113  

Total Profit  $615,865 $1,848,516 $100,000  

Table 2-6:  Practical Application Results at $200K Budget 

 
Please see Appendix C for the complete set of results showing project allocations by agency 
and/or firm. 
 

2.6. Discussion 
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The results of the practical application show that the value of the optimization is almost $1.4M 

($1,374,794 in savings to the agency as compared to the current method of sorting by payback 

and having ESCOs perform the balance (Industry Practice)).  This optimal strategic value 

represents the lifecycle savings difference between the industry standard practice and the two-

level optimized model presented, as realized by the agency.   

 

The industry standard method instructs the agency’s decision-maker to order projects by payback 

and select projects until the budget is exhausted.  That method leaves as subset of projects for 

execution by ESCOs.  In applying that method to this data, the project mix and the magnitude of 

the savings shared are lucrative enough for ESCOs to complete the balance without hardship.   

However, at higher initial budgets or higher minimum profit requirements by the ESCOs, the 

industry standard method runs the risk of leaving undesirable projects incomplete.   This result is 

due to the luxury that the additional budget provided allows the agency to choose a larger set of 

the lucrative projects without regard for the ESCOs.  Likewise, as the ESCOs’ minimum-profit 

requirements increase, fewer of the less lucrative projects would be accepted. The federal 

requirements cannot be met if any projects are left undone.    

 

In practice, once the agency identifies project scopes for outside firms, the ESCOs or utilities 

perform additional assessments that are similar to the level II or III energy audit as defined by 

ASHRAE.  The firms assess their ability to achieve these savings targets and begin their 

contracting phase.  More aggressive estimates of savings usually drive more terms, conditions 

and lengthy contract / negotiation phases. 
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It should be noted that the Industry Practice method provides a “rule of thumb” that is very easy 

to apply.  While these methods save energy, much of the additional benefit of reducing 

consumption, namely lowering the cost of energy, are lost to ESCOs, improper assignment, and 

poor implementation strategies.   

 

While regulation, stewardship and many other factors drive energy conservation, there has not 

been much direction on how to achieve high efficacy of those actions.  Today, many of the 

model and tools are not readily available to the casual energy manager.  As energy conservation 

becomes more integrated with building management, operations and finance, the level of 

sophistication will rise.  The intrinsic benefit of teaching energy managers and in-house staff 

how to select and implement these projects is also essential for the long-term viability of 

building management energy and sustainability.   

 

2.7. Conclusions 

 

The current industry practice selects projects based on suboptimal criteria such as, payback, 

savings to investment ratio or ease of implementation.   Once those projects are implemented, the 

agency seeks financing or EPCs for the balance of projects.  This segmentation of the timing two 

decisions by the agency, the different objectives of agency and the ESCOs, and the inability of 

the leader, the agency, to leverage the knowledge of how the lower level firms will respond, 

make the entire process suboptimal.  This suboptimal selection process can waste millions of 

taxpayer dollars through inefficient allocations while not providing any additional profit to the 

ESCOs.  There is also the risk of the agency selecting too many of the profitable projects, 

thereby leaving only undesirable projects for ESCO.  Many of these projects are currently being 
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left undone while agencies struggle to meet their mandated conservation goals.  The agency must 

then finance these projects, which is least cost effective option. 

 

 The two-level model maximizes savings to the agency and profit to the ESCO industry.  While 

the EnergyStar guidance provides “rules of thumb” that may simplify the selection, this process 

does not make the best use of the dollars and options for project execution.   

 

The benefits of the of the two-level optimization are apparent when comparing these results to 

both the standard practice and even a single level optimization problem.  Giving the agency’s 

ability to select projects while evaluating the implementation and financing mechanisms 

available to them, make them the best stewards of taxpayers' money.   
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Chapter 3: Energy Conservation Project Selection using Risk-based, Multistage, Stochastic 

Programming 
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3.1. Introduction  

 

In 2009, the United States Congress issued Executive Order (EO) 13514, “Federal Leadership in 

Environmental, Energy, and Economic Performance.” EO 13514 introduced new greenhouse gas 

(GHG) emissions management requirements, expanded water reduction requirements for federal 

agencies, and addressed waste diversion, local planning, sustainable buildings, environmental 

management, and electronics stewardship.  In addition, EO 13514 retained the energy reduction 

requirements of EO 13423, directing agencies to set a percentage target for reducing their Scope 

1 and Scope 2 greenhouse gas (GHG) emissions in absolute terms by fiscal year (FY) 2020, 

relative to an FY 2008 baseline.  

 

EO 13514 required that federal agencies must enhance efforts towards sustainable buildings and 

communities.  Specifically agencies must implement high performance sustainable federal 

building design, construction, operation and management, maintenance, and deconstruction by 

ensuring all new federal buildings, entering the design phase in 2020 or later, are designed to 

achieve zero net energy by 2030.12   

 

Federal agencies have been relying on Congressional appropriations to fund the energy projects 

needed to meet federal requirements.  Supplemental funding options have included energy 

savings performance contracts, utility energy service contracts, power purchase agreements, and 

                                                 

12 A zero net energy building is one with zero net energy consumption or in other words, the total amount of energy 
used by the building on an annual basis is less than or equal to the amount of renewable energy created on site. 
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energy incentive programs.  This often means combining Congressional appropriations and 

project funding mechanisms (United States Department of Energy, 2013). 

 

Agency energy and facility managers have the objective of conserving energy, with limited 

budgets in many buildings that require costly retrofits.  The agency leverages the industry 

standard for best practice in order to identify potential projects (EnergyStar, 2013).   The primary 

tool that the agency’s decision-makers use is the energy audit.  There are several types of audits, 

however, an American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) Level II or III is most often used for planning and decision-making (Kelsey & 

Pearson, 2011).  A Level II audit is an energy building survey and energy analysis that assesses 

the energy use within the building.  A Level II energy audit identifies and provides the savings 

and cost analyses of all practical measures that meet the agency’s constraints and economic 

criteria, along with a discussion of any changes to operation and maintenance procedures.  It also 

provides a listing of potential capital-intensive improvements that require more thorough data 

collection and engineering analysis and a judgment of potential costs and savings.  A Level III 

energy audit is a detailed analysis of capital-intensive modifications that involves more detailed 

field data gathering and a more rigorous engineering analysis.  It provides detailed project cost 

and savings calculations with a high level of confidence sufficient for major capital investment 

decisions (American Society of Heating, 2004). 

 

The audit is an onsite assessment and comprehensive energy analysis of the building’s energy-

using components resulting in a list of proposed energy conservation measures (ECM) which 

include the following attributes: 
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• the proposed system or component description 

• an estimate of the investment required to implement the measure 

• an estimate of annual savings  

• the annual cost savings in dollars  

• a performance measure such as simple payback ratio or savings to investment ratio 

 

A typical set of these measures are shown below in Table 3-1. 

 

 

 

 

 

 

 

 

The energy auditors have to assess the regulatory requirements and conduct an audit to 

recommend the projects necessary to save the requisite energy.  All projects must be completed.  

Projects that do not fulfil specific "savings to investment" ratio criteria are not considered.  The 

agency’s approach to implementing these projects is ultimately risk-averse.  The agency requests 

a budget in an early time period and seeks to fund the required energy conservation projects. 

 

Given this list of ECMs, the agency’s decision-maker faces key strategic decisions.  The agency 

can chose to execute these energy conservation projects in-house with or with supplemental 

methods.  The highest return is in executing the projects in-house.  Each project that the energy 

manager or decision-maker implements in-house, saves energy or annual energy costs and, in 

most cases, both.  The traditional approach used by the agencies is to complete the projects in-

house with an initial capital outlay.  However, projects that when implemented in-house, 

Project 

Description 

Investment 

Cost ($) 

Annual 

Energy 

Savings 

(KBTU) 

Energy 

Rate 

($/KBTU) 

Annual Savings 

($) 

Estimated 

Useful Life 

(years) 

Payback 

Ratio 

(years) 

Lighting project  50,000 625,000 0.015 9,375.00 30 5.33 

Table 3-1:   Simple Example of ECM Data in the Agency’s Decision-making 

Process 



 

59 
 

generate cost savings, also free up capital that can be used to fund additional energy projects.   

This practice is not common as most agencies are risk-averse and lack the ability to model 

uncertainty.  The largest opportunity for energy conservation lies in the selection strategy.  

Optimization is needed to properly create a plan that maximizes the expected energy savings 

while identifying financing available to implement the recommended measures.   

 

A preferred method of energy conservation project selection has not been regulated, however; a 

method that includes fluctuations in the energy prices and uncertainty in savings estimates would 

be much more accurate.  Project selection that minimizes the agency’s initial investment and 

leverages annual savings to fund future projects is complicated by selections that must be made 

today but realized in future years.  Many approaches of this type of problem have been studied 

however; fewer have been applied to energy conservation. 

 

Overall, the need for energy conservation is required, however; no formal approach can 

prescribed beyond the identification of measures that meet the reduction goals.  This chapter 

presents a formal method to achieve the best implementation plan while including both 

uncertainties and risk.  Again, this method 

• is the application of stochastic optimization (as opposed to deterministic selection) to a 

common energy conservation problem to more realistically capture hedging effects, 

• includes of a measure risk, beyond a single scalar variable, which is not considered 

mathematically in agency planning, 

• is unlike portfolio theory, where securities can be excluded, minimizes risk even with a 

constraint requires that all projects be selected. 
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While none of previous works includes all three of these key points, it is beneficial to review the 

prior work that is related and/or has addressed some of these concepts.   

 

3.2. Literature 

 

The current work represents the convergence of stochastic programming, risk-based project 

selection and the importance of cost energy conservation issues.  While stochastic programming 

is not a new or unstudied concept, but the inclusion of risk in the current energy conservation 

setting makes this novel.  The literature review chosen reflects stochastic programming works in 

relevant applications.  The literature pertaining to risk represents a much smaller subset of the 

field.  Applications to this specific energy conservation problem were limited in the stochastic 

programming and risk literature. 

 

3.2.1. Stochastic Programming with Risk Literature 
 

Beginning with (Dantzig, 1955), (Beale, 1955), and (Charnes & Cooper, 1959) stochastic 

programming has grown into a very important subfield of mathematical programming with well-

established theoretical developments. Research on algorithms and applications has also been 

very active, especially in recent years. There has been a growing number of specialists in the 

area, and knowledge is widespread among the leaders of the field.   Research on algorithms and 

applications of stochastic programming, the study of procedures for decision-making under 

uncertainty over time, has been very active in recent years.  There are many applications in areas 

such as production, supply chain and scheduling, gaming, environmental and pollution control, 

financial modeling, telecommunications, and electricity (Ziemba & Wallace, 2005).  The current 
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work furthers multistage stochastic programming with an application to energy conversation 

project selection. 

 

The following papers (below) were specifically studied, while developing the current work 

because they include viable risk approaches, however; they lack the energy conservation 

application above.  The ability to compare random outcomes based on the decision-makers risk 

preferences is imperative when modeling problems with uncertainty.  The objective here is to 

model optimization problems that feature risk appetite as constraints.  Risk measures including 

semi-deviations, quantiles (value-at-risk) and conditional value-at-risk (CVaR) and properties of 

risk measures, such as law invariance and coherence, were introduced (Artzner, et al., 1999).  

Shortly after, Rockafellar and Uryasev (2000) introduced an approach to optimizing a portfolio 

to reduce the risk of high losses. Value-at-Risk (VaR) had a role in the approach, but the 

emphasis is on Conditional Value-at-Risk (CVaR), which is known also as Mean Excess Loss, 

Mean Shortfall, or Tail VaR.  By definition with respect to a specified probability level, the VaR 

of a portfolio is the lowest amount such that, with probability the loss will not exceed whereas 

the CVaR is the conditional expectation of losses above that amount.  Although VaR is a very 

popular measure of risk, it has undesirable mathematical characteristics such as a lack of 

subadditivity and convexity.   

 

Further, in Pflug (2000) it was proved that CVaR is a coherent risk measure having the following 

properties: transition-equivariant, positively homogeneous, convex, monotonic with respect to 

stochastic dominance of order 1, and monotonic with respect to monotonic dominance of order 2.  

Because a coherent risk measure of a stochastic convex function is also convex as shown in 
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(Ruszczynski & Shapiro, 2006), CVaR is more popular in stochastic convex optimization.  In 

Sarykalin et al. (2008), the authors show that conditional Value-at-Risk has a clear engineering 

interpretation and measures outcomes that improve the overall objective.   However, CVaR 

optimization can be represented via convex programming, in some cases as linear programming 

(i.e., for discrete distributions). 

 

In Conejo et al. (2010), the authors presented several methods to avoid unfavorable outcomes in 

spite of favorable expected objective function values using risk functions.  These risk functions 

assign a real number associated with the risk of that project to the random variable.  These 

functions could be added to the objective function or the constraints.  Upon review of several 

methods, the use of Conditional Value-at-Risk appears to be most applicable to the current work 

in this chapter due its advantages of being a coherent risk measure and its ability to quantify tails 

beyond the Value at Risk. 

 

3.2.2. Project Selection Literature 
 

Markowitz (1952) wrote that the process of portfolio selection (similar in some extent to project 

selection) may be divided into two stages: observation and experience, leading to beliefs about 

the future performances and the relevant beliefs about future performance leading to the choice 

of portfolio.  This concept is used in the decisions-makers’ problem, here in multiple stages.  The 

experience leading to the beliefs about the future are of the focus of this current research.  The 

current problem in which the agency must select projects is made difficult by beliefs on where 

energy prices and the uncertain outcome of planned work may be in the future.  
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In Raifee et al. (2014), the joint problem of project selection and project scheduling in an 

uncertain environment is formulated, analyzed, and solved by multistage stochastic 

programming. A general mathematical formulation that can address several versions of the 

problem is presented. A multi-period project selection and scheduling problem is introduced and 

modeled by multistage stochastic programs, which are effective for solving long-term planning 

problems under uncertainty. A set of scenarios and corresponding probabilities is applied to 

model the multivariate random data process (costs or revenues, available budget, chance of 

success). Then, due to computational complexity, a scenario tree of the resulted scenarios is 

constructed by scenario-reduction algorithms. Finally, assuming resources of the projects to be 

limited and renewable, the present worth of the profit of the projects is maximized. Eventually, a 

case study is introduced and solved, and the results are presented. The effectiveness of the 

proposed algorithm is shown by the numerical results. 

 

Shi et al. (2011) addressed a risk-loaded, stochastic model evaluating objectives to optimize 

synergies among the various procurement means.  This model was also able to produce optimal 

results in profit while mitigating risk.  The implementation of this portfolio approach was based 

on a multistage stochastic programming model in which replenishment decisions were made at 

various stages along a time horizon.  The replenishment quantities were determined by 

simultaneously considering the stochastic demand and the price volatility of the spot market.  

The model attempted to minimize the risk exposure of procurement decisions measured as 

conditional value-at-risk. The integrated framework proposed in the current work allows the 

various risks involved to be holistically considered and dealt with while the performance of the 

portfolio is measured in terms of the expected profit for specific timing and project selection.  
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In Huang (2008), variance, semivariance and probability approaches to risks are presented.  An 

alternative definition of risk for portfolio selection and proposes a new type of model based on 

this definition. A hybrid algorithm is employed to solve the optimization problem in general 

cases.  A model that integrates both severity levels of loss and the corresponding occurring 

probabilities of these losses is presented.  While Huang’s definition of risk presents a new model, 

it still relies upon symmetric distributions not found in the returns on energy projects. A 

symmetric distribution in these cases would imply that the likelihood of energy price increases 

are equivalent to price decreases.  In the United States, energy prices increases have steadily 

increased annually. 

 

Federal agencies have not been completely remiss in addressing building improvements and how 

to predict outcomes and include risk in the selection of energy conservation projects.  In 

Committee (2012) the authors addresses the ways to identify and mitigate the risk incurred by 

not funded specific projects in any given year.  The recommendations here are to ensure that the 

most critical requirements rise to the top of the funding requests and that the senior decision-

makers are made aware of the implications of not funding these projects.  The authors 

recommends the use of the Analytical Hierarchy Method (ASTM 1765-07e1) to allow for 

consideration in the decision-making criteria in the priority-setting process.  The Committee’s 

interpretation of risk involves ensuring the most important projects are selected as defined by the 

method.  The model to be presented in this chapter removes this subjectivity by using reducing 

the multiobjective nature of the problem down to quantitative outcomes (total amount of savings 
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achieved in dollars).  It also includes constraints that state all project must be completed to meet 

energy consumption reduction goals with a risk-based objective function. 

 

Real options were developed as a result of the dissatisfaction with traditional capital budgeting 

techniques such as the discounted cash flow (DCF) method of valuation.  Stochastic methods and 

multiple scenarios have been used to deal with uncertain variables in the DCF, however; 

calculating the DCF, investors rest on a series of simplifying assumptions. 

 

In the presence of certain types of uncertainty about the future costs and benefits of capital 

investments, investors have to estimate the likelihood of various future scenarios, calculate the 

DCF in each of these futures, and sum to find the average expected DCF across the possible 

futures. These real options are attributed to Myers, who first identified investments in real assets 

as mere options (Myers, 1977).  

 

As in the current research, a real option is an opportunity with different value at different periods 

to undertake some business decision, typically an option to make, abandon, alter or switch a 

capital investment.  For example, an opportunity to delay investment in a specific energy 

conservation project is a real option.  Similarly, the agency has a single discrete investment 

opportunity despite fluctuations between stages.  If using a real options approach, the annual 

savings that are used to fund additional projects could be modeled (approximated) as an implicit 

dividend (Dixit & Pindyck, 1994).  An equivalent real options approach may be developed if 

constraints, such as the ability observe actual fluctuations to invest in later stages are removed 

are added to the real options approach.   
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However, in this dissertation, analytic solutions may not exist and it may not be possible to 

determine the partial differential equations describing the underlying stochastic processes 

particularly in risk averse cases (Trigeorgis, 1997).   Limitations of the real options approach 

include the lack of a time derivative in discrete-time or continuous-time stochastic processes.  In 

this dissertation, the key uncertain components are fluctuations in annual savings.  The 

interaction and grouping of projects to generate annual savings to fund future projects would 

present a challenge in the real options approach since the nodes in the tree do not recombine.  

Specifically, nonanticipativity requires that values of the budget and the decision variables 

chosen at stage t, depend on the data available up to time t, but not future observations. This 

limitation makes the multistage stochastic model more attractive.  Further, the ability to apply 

varying approaches to risk and allowable recourse actions provide a more flexible model for this 

application.  

 

The value of the current work is the application of stochastic programming / risk modeling to 

energy conservation which, to our knowledge, an unstudied area.  The proposed research 

provides significant value to agencies and energy managers as it allows more efficient selection 

with varying options for risk tolerance.  The stakeholder that will benefit are federal agency 

decision-maker, energy managers and ultimately U.S. taxpayers. 

 

3.3. Model  

 

A way to meet U. S. energy independence and sustainability objectives by using existing savings 

to fund future projects while accounting for uncertainty in implementation yields and energy 

prices is presented here.  The audits return the set of maximum energy savings projects.  Each 
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agency has a limited budget, which is requested then granted from tax dollars.  If all projects 

recommended by the audit are not completed, then the regulatory requirements will not be met.  

The traditional approach used by the agencies Projects requires that all projects be completed 

with the initial capital outlay.  

However, the choices of projects, the amount of annual savings, and the timing of selection can 

minimize the budget requested by the agency to complete and fund future projects. 

 

This selection process can be modeled as a multistage stochastic problem where the agency has a 

single opportunity to request capital budget (Y in later examples) at t=0 for projects and the 

timing of the selected energy conservation project to be implemented.  In particular, the agency 

receives the budget at t =1 to implement projects and selects projects based on the belief of 

future energy prices and estimate of annual savings.  The agency implements projects at times t= 

1…NT but without injecting additional capital budget. The agency’s annual energy operating 

budget is fixed and does not account for energy savings pursued by the agency.   Beyond the 

initial period (t=1), the agency see realize fluctuations in both energy price and energy savings 

forecasts (for example, in Table 3-1, the annual savings in dollars is the product of annual energy 

savings (KBTU) and the energy cost ($/KBTU).   

 

 

In practice, after the initial period, the energy costs may change.  Another uncertain factor is the 

annual energy savings.  The energy auditors estimate these values without specific design 

conditions and/or knowledge of the interactive effects of other project implemented.  Of the two 

factors (energy cost and energy savings forecast), the inaccuracy of the estimate of savings 
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dominates (larger deviation from expectation) making the overall savings (energy savings in 

KBTU x energy rate in $/KBTU) generally less than anticipated.  This problem allows the total 

savings to be modeled as a single random variable.13   

 

As discussed previously, results of the energy audit are presented to the agency.  The results 

contain specific attributes for each ECM recommended including the cost to implement the 

project and the projected savings.  The agency selects an optimal subset of projects, today, to 

implement with some schedule of later projects in the future.  The overall objective is to 

minimize the budget needed to complete all projects, while leveraging future energy savings 

when projected savings are uncertain.  

 

The data for three-phase, five-project clarifying example is shown below in Table 3-2.  Given the 

projects, the agency must request the capital budget now and implement the projects in the first 

phase.  The balance of the projects must be implemented from the remaining capital budget 

(budget left over after implementing first-phase projects), an annual operating budget and the 

annual savings from the implemented project, to avoid the agency’s cash flow falling below zero.  

The clarifying example is deterministic therefore, the annual savings are certain and singular 

(there are not multiple scenarios with associated probabilities).  The decision variables (xp and 

yp
t) are binary representing selection of the project p; equaling 1, or 0 otherwise.  The resulting 

values for the binary decisions variables (xp and yp
t) for each project representing selection are 

shown in Table 3-2. 

                                                 

13 Energy Rates have remained flat over the last 7 years with slight increases in electricity rates and slight reductions 
in natural gas (Administration, 2016).  
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With a deterministic optimization model, minimizing total cost to complete all projects, the 

agency determines that it should request $85,800 at t=0.  From Table 3-2, it can be seen that the 

agency implements projects 1, 3 and 4 in the first phase (t=1) at a cost of $80,000.  The agency 

ends up with a positive cash flow of $5,800 at the end of that phase.  In phase two (t=2), the 

agency leverages the $5,800 surplus, receives $25,000 from the operating budget (Ot, as an 

exogenous factor) and $6,200 in savings, generated from projects implemented in the first phase.  

The total budget available for that phase is thus $37,000 (5,800 + 25,000 + 6,200).  The agency 

uses the $37,000 and implements a project (project 2) at a cost of $20,000 at t=2.  The agency 

leaves that phase (phase 2) with a positive cash flow of $17,000.  In phase three, the agency 

leverages the $17,000 surplus, the $25,000 from the operating budget (exogenous factor) and the 

$8,000 ($6,200 + 1,800) in savings generated from projects implemented in the first two phases 

and uses that $50,000 to complete the final project (project 5) at a cost of $50,000.  Key 

observations are 

 
Investment 

Cost ($) 

Annual 

Energy 

Savings 

(KBTU) 

Energy Rate 

($/KBTU) 

Annual Cost of 

Energy Saved 

($) 

Payback Ratio 

(Years) 

project1  10,000 50,000 0.02 1,000 10.0 

project2  20,000 45,000 0.04 1,800 11.1 

project3  30,000 40,000 0.06 2,400 12.5 

project4  40,000 35,000 0.08 2,800 14.3 

project5  50,000 30,000 0.10 3,000 16.7 

Table 3-2:  Clarifying Example of ECM Data in the Agency’s Decision-

Making Process 
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• The request in the first phase exceeds the cost of projects implemented in the first phase. 

• The savings from those projects implemented in the final phase cannot be used to fund 

any additional projects. 

• There is a strict constraint that does not allow the cash flow to go below zero in any 

phase. 

• The cash flow at the final phase is zero. 

 

 xp yp
t PHASE 1 PHASE 2 PHASE 3 

Investment Cost ($) 

project1 11 0  10,000 0 0 

project2 0 12
2 0  20,000 0 

project3 13 0  30,000 0 0 

project4 14 0  40,000 0 0  

project5 0 15
3    50,000 

Annual Cost of Energy Saved ($) 

project1 11 0 1,000 0 0 

project2 0 12
2 0 1,800 0 

project3 13 0 2,400 0 0 

project4 14 0 2,800 0 0 

project5 0 15
3  0 3,000 

Cash Flow ($) 

Capital Budget (C, a one-time request) 
                  

85,800  0  0  

Operating Budget (Ot, annually) 0      25,000      25,000 

Saving from Previous Phase Projects  0      6,200      8,000  

Surplus from Previous Phase 0 5,800 17,000 

Total Budget for Phase (sum of Capital Budget, Savings and Surplus) 85,000      37,000      50,000 

Total Invested in Implementing Projects (difference between Total Budget for Phase and 

Cost of Projects Implemented  

                

(80,000)   (20,000)   (50,000) 
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Figure 3-1, below, shows the source of the budget used in the clarifying example.  Note the fixed 

operating budget and varying contributions from executed projects and prior period surpluses. 

 

 

 

Figure 3-1:  Components of Annual Budgets Available for Projects in the Clarifying 

Example 

 

 

The safe-haven year project (project 5) does not contribute the $3,000 (the annual cost of energy 

saved by implementing project 5) to the annual budget.  There is also no surplus value at t=3 in 

this clarifying example. 

$85,800 

$25,000 

$25,000 

$6,200 

$8,000 

$5,800 

$17,000 

 $-

 $10,000

 $20,000

 $30,000

 $40,000

 $50,000

 $60,000

 $70,000

 $80,000

 $90,000

 $100,000

Phase 1 Phase 2 Phase 3

Components of Annual Budgets

Capital Budget Requested Operating Budget (annual to Agency)

Saving from Previous Phase Projects Surplus from Previous Phase

Cash 

                    

5,800.00      17,000  

                    

0   

Table 3-3:  Agency Cash flow Statement with Selections by Phase 
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Figure 3-2:  Components of Cash flow with Annual Cost of Projects 

 

The clarifying example above does not include the stochastic yields recognized at each phase for 

the sake of simplicity.  A much more realistic approach is model by adding scenarios, (ω) with 

associated probabilities, π(ω) as in Figure 3-3, below.   
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Figure 3-3:  Adding Yield Scenarios to Clarifying Example 

 

Below, we present a second clarifying example (a simplifying example).  Adding stochasticity to 

the example above requires the addition of both ψp
t(ω), the yield of the annual savings at each 

stage as realized through each project’s annual savings and π(ω), the probability of the discrete 

energy price at each stage t.  For the simplifying stochastic example, a four-stage model best 

shows the nodes, leaves and scenarios. 
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Probability, πt(ω)  Rate / Yield Factor, ψp

t(ω)  14
 

Scenario 1 (ω1) 0.33 0.65 

Scenario 2 (ω2) 0.33 0.95 

Scenario 3 (ω3) 0.33 1.25 

Table 3-4:  Probability of Annual Saving Fluctuation 

based Energy Price and Savings Yield for Simplifying 

Example 

 
The probabilities and yields shown in Table 3-4 were derived from review of observation of 

approximately 120 maintenance and verifications (M&V) studies. 

 

In addition, the second clarifying example requires nonanticipativity constraints where 

realizations of the stochastic processes and value of the decisions are the same up to stage t.  

Decisions on project selections at stage, t do not depend on the scenario realization Shapiro et al. 

(2009). 

 

 The resulting solution with and objective function of -$140,769 is shown below.  The perfect 

information objective is -$138,870. 

 

PHASE 1 (first stage variable – 

selection) 

PHASE 2 PHASE 3 PHASE 4 Ω 

 
project2 project4 

 1 

 
project2 project4 

 2 

 
project2 project4 

 3 

                                                 

14 The Rate / Yield Factor (x Annual Savings), ψp
t(ω) are arbitrary for illustrative purposes. A value of 0.65 means 

that the implementation of the project returns 65% of the estimated annual savings. 
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Table 3-5:  Agency cash flow statement with selections by Stage 

 

The stochastic optimization model presented in the current work includes risk.  The method 

employed was Conditional Value-at-Risk (CVaR) as this approach resulted in a convex program 

(Conejo et al., 2010).   As stated previously, the agency’s unwillingness to fund future projects 

with savings is a direct result of the weak definition or interpretations of risk. 
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The following is the notation, variables, and parameters used in the general statement of the 

stochastic multistage problem. 

Sets 

p  set of ECM projects with P = {1, 2,…np} where np = |P|  

t a set of time periods T (typically years) = {1, 2,…nT} where nT = |T|, J ≡ T  

Main Primal Decision Variables 

Projects selected at t=1: 

 

x1, x3, x4 = 1 

 

Project not selected at t=1 

 

x2, x5 = 0 

 

 

Projects selected at t=2 
 
y2

2(1) = 1 
y2

2(2) = 1 
y2

2(3) = 1 
y2

2(4) = 1 
y2

2(5) = 1 
y2

2(6) = 1 
y2

2(7) = 1 
y2

2(8) = 1 
y2

2(9) = 1 
 
 
Projects not selected at t=2 
y1

2(ω), y3
2(ω), y4

2(ω), y5
2(ω) 

= 0 for all ω in Ώ 
 

OR 0 otherwise 

 
 

Projects selected at t=3 
 
y4

3(1) = 1 
y4

3(2) = 1 
y4

3(3) = 1 
 
y2

3(10) = 1 
y4

3(10) = 1 
y2

3(11) = 1 
y4

3(11) = 1 
y2

3(12) = 1 
y4

3(12) = 1 
 
y2

3(19) = 1 
y4

3(19) = 1 
y2

3(20) = 1 
y4

3(20) = 1 
y2

3(21) = 1 
y4

3(21) = 1 
 
 

Projects selected at t=4 
 
y4

4(4) = 1 
y4

4(5) = 1 
y4

4(6) = 1 
y4

4(7) = 1 
y4

4(8) = 1 
y4

4(9) = 1 
 
y2

4(13) = 1 
y4

4(13) = 1 
y2

4(14) = 1 
y4

4(14) = 1 
y2

4(15) = 1 
y4

4(15) = 1 
y2

4(16) = 1 
y4

4(16) = 1 
y2

4(17) = 1 
y4

4(17) = 1 
y2

4(18) = 1 
y4

4(18) = 1 
 
y2

4(22) = 1 
y4

4(22) = 1 
y2

4(23) = 1 
y4

4(23) = 1 
y2

4(24) = 1 
y4

4(24) = 1 
y2

4(25) = 1 
y4

4(25) = 1 
y2

4(26) = 1 
y4

4(26) = 1 
y2

4(27) = 1 
y4

4(27) = 1 
 

Table 3-6:  Decision Variables for Simplifying Example  
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xp a first-stage binary variable representing selection of the project p; variable = 1, if 

selected by the agency to be implemented at t=1, = 0 otherwise 
 
yp

t(ω) a t-stage binary recourse variable representing selection of the projects for scenario (ω); 
variable = 1, if selected by the agency to be implemented in stage t>1, = 0 otherwise 

 
From the example above, the following are the variable values for x and y.  
 
 

Intermediate Variables 

 

 
s(ω) is a continuous non-negative variable equal to the maximum of CVaR and 0 
η is an auxiliary variable related to CVaR 
Bt(ω) the budget in dollars for implementing the agency’s projects at stage t > 0 
 

Parameters 

 
C A scalar representing the capital budget requested at t=0 by the agency in dollars for 

implementing the agency’s projects at stage t = 1 
Ot the operating budget in dollars prescribed for the agency’s at stage t 
θp the estimated annual savings in dollars achieved by implementing project p, = energy 

savings in dollars equal to the product of annual energy savings (KBTU) and energy rate 
($/KBTU) 

ρt the minimum number of projects that can be completed in each year 

γp the estimated investment in dollars needed to implement project p  
ω the scenario with given probability, πt(ω)  
ψp

t(ω)  the yield of the annual savings at each stage as realized through each project’s annual 
savings  

π(ω) the probability of the discrete energy price at each stage t  
β a weighting parameter between 0 and 1, (tradeoff between the risk-neutral and upper 
CVaR cost of projects).  β = 0 is risk neutral, β = 1, risk averse at the given confidence level 
α confidence level for CVaR 
 
 

General Formulation 

 

The specific objective function can be written as: 

 (3a) 
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max�,Z#[%,\,]#[%,^ _−Y −  � /�"�
(`

�*+ −  � F#,% � � /�a�b #,%(c
d*e

(`
�*+[∈g h 

 

Subject to:  

"� + � a�b
ij

b*W #,% = 1 ∀$ ∈ P, ∀ , ∈ Ω    (3b) 

  

9d#,% ≥ 0      ∀m ∈ 6, ∀, ∈ Ω    (3c) 

  

� /�a�b #,% ≤  9d#,%      ∀m ∈ 6, ∀ , ∈ Ω  ()

�*+  (3d) 

 

9d#,%  = � � n�d #,% �� o"� + a�p #,%qdr+
s*e

(`
�*+ + td + 9dr+#,% −  � /�a�br
#,%(`

�*+  ∀m
∈ 6, ∀ , ∈ Ω    

 

(3e) 

� � a�b #,%(u
[*+

(`
�*+  ≥  v  ∀m ∈ 6 (3f) 

 

a�b #,%  =  a�b #,w%    ∀ ,, ,w  ∈  x1 … Ωz  
9d#,%  =  9d#,w%   ∀ ,, ,w  ∈  x1 … Ωz 

9d#,%  =  9d#,w%   ∀ ,, ,w 4{> |ℎA~ℎ �d#,% = �d#,w%, m = 2 … 6  
(3g) 



 

79 
 

a�d #,%  =  a�d #,w%   ∀ ,, ,w 4{> |ℎA~ℎ �d#,% = �d#,w%, m = 2 … 6  
|ℎ?>? �d#,%  A� = B{E? = �m=�?, m =BE �~?B=>A{, , 

 

"� , a�b #,%  @AB=>C (3i) 

  

This model allows agencies to prescribe their risk tolerance.  A risk-neutral agency would choose 

β=0, whereas a risk-averse agency would choose β=1 in Equation 3a.  Tolerances can be adjusted 

between the two approaches. 

 

For equation 3g, the values of the decision variable C�d#,% and variable 9d#,% chosen at stage t, 

depend on the data �davailable up to time t, but not future observations.  This is the basic 

requirement of nonanticipativity (Wets, 1974).  Using the tree diagram, Figure 3-3, for the 

clarifying example, the information observed at T=3, nodes 5-7, must be the same as they are all 

successors of Node 2 at T=2. 

 

In the later sections, we will contrast the current model with the traditional and deterministic 

approaches.  In the traditional approach, the agency funds all projects in the first stage with the 

initial capital outlay. 

Y =  � /�"�
(`

�*+  

 

"� = 1 ∀$ ∈ P   
 

In the deterministic approach, the nonanticipativity constraints in 3g are relaxed (i.e. removed). 
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3.4. Case Study 

 

The model described above aligns the objective of selecting projects to save energy at the lowest 

cost using future savings to complete more projects.  A practical application of the model is 

demonstrated using data from an agency’s campus of buildings in the southeastern United States.  

 

Recall from Chapter 2, EMG, a decision intelligence and engineering consulting firm, conducted 

an ASHRAE Level 2 Energy Audit of a college campus comprised of 38 buildings categorized 

residential, student, academic, and administration.15   The campus covers a total of over 1.04 

million ft2.  EMG was contracted to perform this detailed energy audit and make energy saving 

recommendations on the physical plant and connected 11 buildings.  As part of the study, EMG 

reviewed the buildings’ construction features, historical energy and water consumption with 

costs, envelope, heating ventilation and air conditioning (HVAC) equipment, heat distribution 

systems, lighting, and operating and maintenance practices. EMG identified forty-eight energy 

conservation measures.  The following paragraphs describe a typical ECM, “Decommissioning 

of Central Steam Boilers and Installation Individual High Efficiency Condensing Boilers.” 

 

There is one central boiler/chiller plant (physical plant) serving 11 of the 38 buildings, while the 

other 27 buildings are served by local systems. The central boiler in the central utility plant 

currently serves nine buildings on campus.  The steam from the boilers is piped to the individual 

buildings.  The central plant currently has two inefficient Continental steam boilers and an aging 

chiller plant. A significant amount of energy is spent in raising its temperature from 55°F to 

                                                 

15 Bill Champion is the Director of Asset Management Consulting at EMG.  
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220°F in order to evaporate the boiler feed water, instead of  the normal 185°F to 220°F because 

more than 75% of condensate return is fresh, unheated water.  Based on the observations and 

analyses, the audit proposes a new chiller plant along with new boilers with a thermal operating 

efficiency of 92-96% in contrast to the current boiler thermal efficiency of 60%.  The hot water 

circulation pumps and variable frequency drives will save additional electrical consumption.  

This project will also result in an annual water savings currently being drained into the city sewer 

due to lack of proper condensate return system. 

 

The total savings annual saving for the ECM will be $80,023.  The table below summarizes the 

attributes of this proposed ECM project. 

 
Investment 

Cost ($) 

Annual Energy 

Savings (KBTU) 

Energy 

Rate 

($/KBTU) 

Annual 

Cost of 

Energy 

Saved ($) 

Estimated 

Useful Life 

(years) 

Simple 

Payback 

(years) 

project 1 710,354 5,334,857 0.015 80,023.00 30  8.877 

Table 3-7:  Typical ECM Project Attributes Revisited 
        

 

In the numerical example, there are 48 such ECMs with varying characteristics and project 

attributes.  The model presented earlier is applied to these data as follows.  

np =|48| 
ζp shown in the fourth column of Table 3-9 
θp

T shown in the fifth column of Table 3-9. 
Ψp

t(ω) the annual savings fluctuation at each stage is realized through each project’s annual 
savings as shown in Table 3-8, below.  
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Probability, πt(ω) Rate / Yield Factor, ψp

t(ω)16
 

Scenario 1 (ω1) 0.33 0.65 

Scenario 2 (ω2) 0.33 0.90 

Scenario 3 (ω3) 0.33 1.05 

Table 3-8:  Probability of Annual Saving Fluctuation 

based Energy Price and Savings Yield at Each Stage, t 

 
 
Below are the actual ECM data characteristics from the energy audit. 

                                                 

16 The Rate / Yield Factor (x Annual Savings), n�d #,% are arbitrary for illustrative purposes. 

 
Investment Cost 

($) 

Annual Energy 

Savings (KBTU) 

Energy Rate 

($/KBTU) 

Annual Cost of 

Energy Saved 

($) 

Estimate

d Useful 

Life 

(Years) 

Payback 

(Years) 

P γp αp ζp θp N  

project1  $              710,354             5,334,857   $    0.015   $              80,023  30 8.88 

project2  $              637,975             1,849,047   $    0.033   $              61,019  23 10.46 

project3  $              468,071             1,768,079   $    0.023   $              40,666  30 11.51 

project4  $                40,368                 445,600   $    0.010   $                4,456  30 9.06 

project5  $                  8,557                 213,025   $    0.012   $                2,556  15 3.35 

project6  $                15,328                 124,584   $    0.023   $                2,865  9 5.35 

project7  $                55,207                 287,971   $    0.027   $                7,775  15 7.10 

project8  $                59,355                 416,045   $    0.022   $                9,153  15 6.48 

       

project9  $                84,738                 559,247   $    0.015   $                8,389  30 10.10 

project10  $              188,994                 801,565   $    0.033   $              26,452  40 7.14 

project11  $              142,377                 660,074   $    0.023   $              15,182  30 9.38 

project12  $              186,520                 440,470   $    0.033   $              14,536  30 12.83 

project13  $              165,932             2,243,077   $    0.012   $              26,917  15 6.16 

project14  $              169,521                 650,787   $    0.023   $              14,968  20 11.33 

project15  $                95,238                 554,558   $    0.027   $              14,973  15 6.36 

project16  $              220,871             1,366,652   $    0.019   $              25,966  15 8.51 
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project17  $              201,577                 793,782   $    0.030   $              23,813  30 8.46 

project18  $              119,351                 724,725   $    0.033   $              23,916  23 4.99 

project19  $              152,286                 488,525   $    0.023   $              11,236  30 13.55 

project20  $                95,631                 632,278   $    0.010   $                6,323  30 15.12 

project21  $                53,495                 518,592   $    0.012   $                6,223  15 8.60 

project22  $              276,920             1,551,851   $    0.023   $              35,693  20 7.76 

project23  $                94,078             1,135,237   $    0.027   $              30,651  20 3.07 

project24  $              228,071                 784,038   $    0.026   $              20,385  15 11.19 

       

project25  $              236,862             2,103,902   $    0.014   $              29,455  10 8.04 

project26  $              438,530             1,678,580   $    0.023   $              38,607  23 11.36 

project27  $              558,439             3,212,065   $    0.029   $              93,150  12 6.00 

project28  $                84,237             2,054,672   $    0.020   $              41,093  10 2.05 

project29  $                18,149                 138,751   $    0.013   $                1,804  26 10.06 

project30  $                64,378                 420,774   $    0.017   $                7,153  20 9.00 

project31  $              387,393             2,743,397   $    0.026   $              71,328  15 5.43 

project32  $              266,812                 937,263   $    0.030   $              28,118  25 9.49 

       

project33  $              185,099             2,236,000   $    0.011   $              24,596  20 7.53 

project34  $              205,145             1,664,432   $    0.017   $              28,295  10 7.25 

project35  $              195,433             3,599,559   $    0.014   $              50,394  23 3.88 

project36  $              184,600                 750,238   $    0.019   $              14,255  28 12.95 

project37  $              110,377             1,045,732   $    0.012   $              12,549  23 8.80 

project38  $              252,736             1,533,356   $    0.021   $              32,200  37 7.85 

project39  $              157,354             2,043,132   $    0.020   $              40,863  18 3.85 

project40  $              247,218             1,573,358  $    0.028   $              44,054 20 5.61 

       

project41  $              256,421             1,806,445   $    0.024   $              43,355  25 5.91 

project42  $              152,886             2,399,913   $    0.012   $              28,799  28 5.31 

project43  $              455,000             2,448,183   $    0.022   $              53,860  36 8.45 

project44  $              473,225             3,500,838   $    0.017   $              59,514  33 7.95 

project45  $              127,011                 883,506   $    0.017   $              15,020  14 8.46 

project46  $              492,782             1,802,085   $    0.016   $              28,833  32 17.09 
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project47  $              266,790             1,010,352   $    0.031   $              31,321  10 8.52 

project48  $              115,006                 741,117   $    0.025   $              18,528  20 6.21 

       

Totals  $        10,402,698           66,372,316    $        1,351,279   

Table 3-9:  ECM Data in Practical Application Revisited 
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3.5. Numerical Results  

 

The mixed-integer program (MIP) shown and derived from the above discussions, was 

programmed in GAMS Rev 23.6 using a 64-bit MS Windows machine and the XPRESS solver.   

The model included 15,521 single equations and 16,672 single variables with 15,552 binary 

variables.  The optimality tolerance percentage (optcr) was set to 0.0%.17 The MIP model was 

solved using a minimization format and arrived at integer optimal solution in 2:03:16:348.   

 

Resource usage is the amount of CPU time (in seconds) taken by the solver, as well as the time 

limit allowed for the solver.  The optcr in this model is set at 0.0% which forces the application 

to solve to optimality.  As such, the maximum CPU time (in seconds) was kept at the default 

value of 1,000.  The iteration count and the iteration upper limit was set at 2,000,000,000.  The 

results can be seen in Table 3-10, below. 

 

Beta Solver Status Model Status Objective Value CPU Time (seconds) Relative Gap 

0.0 Normal Completion Optimal 9,663,282 357.164 0.00 

Table 3-10:  Solve Summary  

 

For the 48-project, 5-stage model, the minimum capital outlay to complete all projects was 

$9,663,282 (a cost) in the risk-neutral approach.    

 

3.6. Discussion 

 

                                                 

17 In general, optcr is not set for 0.0%.  This was set for 0.0% in this case having that an exact solution was possible.  
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Recall that the traditional approach used by the agency requires that all projects be completed 

with the initial capital outlay.  Table 3-10, above, shows the resulting model’s objective function 

in the risk neutral approach.  The results of the model show a vast improvement on the traditional 

approach.   

 

In the traditional approach, the agency funds all projects in the first stage with the initial capital 

outlay. 

Y =  � /�"�
(`

�*+  

 

"� = 1 ∀$ ∈ P   
 

In the deterministic approach, the nonanticipativity constraints in 3g are relaxed. 

 

There are three major observations from the results of this model.  They are: 

 

1. The results of the stochastic approach with risk spreading, using an annual minimum 

number of projects, reduces risk of a back end loaded shortfall. 

2. The proposed approach exceeds the traditional and deterministic Approaches 

3. Using CVaR in all cases except for the risk neutral case yields a time inconsistent policy.  

A more practical hedging approach spreads project implementation throughout the 

horizon.  
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Each of these results are discussed in detail below. 

 

Key Result: The Current Approach Exceeds Traditional and Deterministic Approaches 

 

The first key result of this approach is that its results (the objective function: total cost, and 

corresponding initial capital outlay) exceed those of both the deterministic approach and the 

agency’s approach.   The traditional agency approach does not allow for anticipated use of 

energy savings to fund future projects because of agency discomfort with risk.  Adding risk to 

the model should serves as a mechanism for even the most risk-averse agencies to determine 

their acceptable tolerance.   

In the traditional agency approach, the agency would be forced to fund all projects at a cost of 

$10,402,698.  This is both the total cost to complete all projects and the initial capital outlay 

requested at t=0.  In contrast, the model presented in this chapter results in a complete funding 

cost of $9,666,282 and an initial capital outlay of $5,885,967.   

The risk-neutral approach gives an optimal objective function value of $9,663,282 for the 48-

project, 5-stage model.  The expected value deterministic solution is $9,644,413.  These 

quantities result in a value of the stochastic solution (VSS) of $18,869.  The Expected Value of 

Perfect Information (EVPI) is therefore $476,735 for the risk-neutral scenario.     

The risk-neutral approach of the current work is chosen for comparison because the agency’s 

general approach to risk has been only to ensure that critical projects are included as early as 

possible.  Agencies have interpreted that direction in many different ways resulting in an 

absolutely zero risk policy being adopted.  This is the agency’s traditional approach.  The 

constraints in this work, specifically, that all projects must be completed and the five-year time 

horizon accounts for these agency practices. 
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In contrast, the deterministic approach requires less to complete all projects ($9,686,834) and the 

smallest capital outlay of less than $5.0M.  This is found by relaxing the nonanticipativity 

constrains and is equivalent to the “perfect information” approach.  Therefore, in many stages 

and scenarios the agency could be left without enough funding for projects thereby violating a 

key objective of the regulation (unacceptable solutions where equations 3b and 3c are not met).  

The current stochastic model requires less total cost to complete all projects but more initial 

capital than the deterministic approach.  While the overall total cost to complete all projects in in 

these two approaches are close (within $25K), the agency’s initial capital request and project 

selection vary greatly.  This initial capital outlays vary by almost $900K.   

 

These results, the traditional, deterministic and stochastic approaches vary by total costs to 

complete all projects, cost requested for initial capital to fund projects and the projected selected 

in initial phase (see Table 3-11, below).   

 Traditional Agency Model:  

Projects Completed with 

Initial Capital Outlay  

Deterministic Approach:  

Projects Completed 

leveraging Expected 

Savings and Initial Capital 

Outlay  

Stochastic Model:  Projects 

Completed with Approach 

(Risk-neutral) with 

Recourse Savings and 

Initial Capital Outlay  

Total Cost of Projects $10,402,698 $9,644,413 $9,663,282 

Initial Capital Outlay 

Needed 
$10,402,698 $4,986,524 $5,885,967 

Initial Period Projects 

Selected 

project1       project2       

project3       project4       

project5       project6 

Project7       project8       

project9       project10     

project11     project12     

project13     project14     

project15     project16     

project17     project18 

project19     project20     

project21     project22     

project5       project6       

project8       project10     

project13     project15   

project18     project22     

project23     project25     

project27     project28 

project31     project33     

project34     project35     

project38     project39   

project40     project41     

project6       project7       

project8       project10     

project13     project15  

project16     project17     

project18     project21     

project22     project23  

project25     project27     

project28     project31      

project33     project34    

project35     project37     
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Table 3-11 above only show the first stage projects. As projects are executed, savings are 

realized in the following year and every year thereafter.  An additional risk based model was 

developed to more closely at later time periods. 

 

The results of the stochastic approach with risk spreading, using an annual minimum 

number of projects, reduces risk of a back end loaded shortfall. 

 

In the model, costs and number of projects increase between years 2 and 5.  This is a result of the 

model’s use of annual savings to fund projects.  Projects with the worst simple payback ratio are 

executed in stage 5 where their lower annual savings does not contribute to earlier budgets, 

which were used to fund projects.  This result can be seen in Figure 3-4, below. 

 

In order to account for more risk averse approaches, equation (3f) was added.  This equation 

addresses the risk neutral behavior of delaying all possible projects while stockpiling annual 

Project23     project24     

project25     project26     

project27     project28     

project29     project30  

project31     project32     

project33     project34     

Project35     project36     

project37     project38     

project39     project40     

project41     project42  

project43     project44     

project45     project46     

project47     project48  

project42     project43     

project44     project48 

project38     project39     

project40     project41  

project42     project43     

project44     project47     

project48 

Table 3-11:  Agency’s Traditional, Deterministic, and Risk Neutral Approaches  
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savings. Results without the measure, where there is no minimum to the amount of projects 

implemented in each year, are shown below. 

Figure 3-4, Project Selection by Stage without Risk Measure, ρ=0 

 

The agency requests $7.4M capital and executes 36 projects for a cost of $7.4M.  The agency 

then relies solely on annual savings and operating budgets over the next four stages.  In the fifth 

stage, the agency will implement six projects (more projects than it has completed in the 

previous three stages).  It may also my possible that the agency experiences a shortfall (the 

agency does not have enough budget to fund the remaining projects).   

 

The annual minimum project model combats this concern.  This model reduces risk by spreading 

projects throughout the horizon.  The success of the overall energy program will not be as 

heavily weighted on the Stage 5 realizations.  The agency will be aware much more quickly if a 

shortfall is experienced. 
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Results are shown below when the agency must complete at least five projects per year to reduce 

the risk of a delayed shortfall. 

 

Figure 3-5, Project Selection by Stage with Five Project Minimum, ρ=5 

 

This approach allows the Agency to minimize the risk of a shortfall in year 5, by spreading 

project throughout the time horizon. 

 

In Figure 3-6, below illustrates an interesting result.  Even the minimum projects are raised to ten 

for stages 2-5, the cost of project are preserved, that is, much higher cost are expending the first 

stage, followed by lower costs and increasing through the fifth stage. 
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Figure 3-6, Project Selection by Stage with Minimum Number of Projects, ρ=10 

 

The corresponding objective function (total cost to complete all projects), capital requesting and 

projects completing in first stage at several minimum projects are shown in figure 3-7, below. 
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Figure 3-7, Cost at Varying Number of Minimum Projects Required 

 

After the minimum number of projects is raised to six projects, the capital request exceeds the 

cost of projects complete in the first stage.  It is at this level the agency must request capital to 

execute projects and save for projects that must be executed in later stage where annual savings 

will not suffice. 

 

Using CVaR Provides Expected Results But May Yield A Time Inconsistent Policy 

 

The CVaR model was run for comparison of risk measures.  

 

The conditional Value-at-Risk can be written as 
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Y�=;#�, �% = max �� − 11 − �  �[maxx� − 4#�, ,%, 0zz  

 

∀  � ∈ #0,1% 

 

 

For a given α ∈ (0, 1), the conditional value-at-risk, CVaR, is defined as the expected value of 

the profit smaller than the (1 − α)-quantile of the profit distribution. If all profit scenarios are 

equiprobable, CVaR(α, x) is computed as the expected profit in the (1 − α) × 100% worst 

scenarios. This is also known as mean excess loss or average value-at-risk (Conejo et al, 2010).  

 

Specifically in the CVaR model the objective function was written as: 

max�,Z#[%,\,]#[%,^#1 − �% _−Y −  � /�"�
(`

�*+ −  � F#,% � � /�a�b #,%(c
d*e

(`
�*+[∈g h

− � �� − 11 − � � F#,%�#,%[∈g  � 

(3j) 

and included constraint:  

� − _−Y −  � /�"�
(`

�*+ − � F#,% � � /�a�p #,%(�

s*e
(`

�*+[∈g h  ≤ �#,% , ∀, ∈ Ω, ∀m ∈ 6      (3k) 

�#,% ≥ 0 , ∀ , ∈ Ω     (3l)  

  

The model derived from the above discussions, was programmed in GAMS Rev 23.6 using a 64-

bit MS Windows machine and the XPRESS solver.   The model included 15,521 single equations 

and 16,672 single variables with 15,552 binary variables.  The optimality tolerance percentage 
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(optcr) was set to 0%. The MIP model was solved using a minimization format and arrived at 

integer optimal solution in 2:12 (7,920 seconds) on average.  

Resource usage is the amount of CPU time (in seconds) taken by the solver, as well as the time 

limit allowed for the solver.  The optcr in this model is set at 0.00 which forces the application to 

solve to optimality.  As such, the maximum CPU time (in seconds) was kept at the default value 

of 1,000.  The iteration count and the iteration upper limit was set at 2,000,000,000.  The results 

can be seen in Table 3-12, below. 

The following results were given. 

Beta Solver Status Model Status Objective Value CPU Time (seconds) Relative Gap 

0.0 Normal Completion Optimal 9,663,282 357.164  

0.1 Normal Completion Optimal 9,737,228 584.271  

0.2 Resource Interruption Integer Solution 9,811,173 1000.512 0.000005 

0.3 Normal Completion Optimal 9,885,106 575.909  

0.4 Resource Interruption Integer Solution 9,959,057 999.623 0.000002 

0.5 Normal Completion Optimal 10,032,997 584.271  

0.6 Resource Interruption Integer Solution 10,106,946 1000.996 0.000006 

0.7 Resource Interruption Integer Solution 10,180,886 1000.684 0.000009 

0.8 Normal Completion Optimal 10,254,821 596.937  

0.9 Normal Completion Optimal 10,328,760 480.701  

1.0 Normal Completion Optimal 10,402,698 0.952  

Table 3-12:  Risk-based Solve Summary   

 

Minimizing only the Conditional Value-at-Risk (Beta=1.0), yields a higher capital outlay to 

complete all projects.  The total budget required using this risk-averse approach is $10,402,698.  

The total cost needed to complete all projects increases between cost minimizing (expressed as 

maximization) Beta = 0.0 and Beta = 1.0 weightings as can be seen in table 3-11, above. 
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Figure 3-7:  Number of Projects Implemented in Each Stage in Risk Neutral and Risk 

Averse Approaches 

 

As expected, the number of projects selected for implementation generally increases in later 

years, beyond the initial time period, for both approaches.  The key result is that risk (reducing 

risk by increasing the weight of the Conditional Value-at-Risk) requires a larger capital outlay 

and compounds the ability to fund future projects.   

 

However, upon examination, the risk averse model appears to overestimate the risk. Evidence of 

this can be seen in the results of Table 3-13.  The total investment cost of all projects are 

$10,402,698.   In the risk averse model, the objective function and the capital requested are both 

$10,402,698.  While this represents the most conservative approach possible, it completely 

discounts any annual savings.  This result is similar to the traditional approach where the agency 

executes request the total investment cost of all projects immediately and possible to avoid the 

expected lower yields in future years.  However, this model delays several projects and assumes 

savings to make up the balance.  The gap between this model’s solution and an optimal one is at 
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least $850,000, the difference between total investment costs of all projects and all the annual 

savings at the lowest yield.  The model returns an objective function that is at least 8% from 

optimal from a truly risk averse case. 

 

It should be noted that number of projects appear similar, however; the projects selected vary 

greatly between the risk neutral approach and among all other approaches.  This is illustrated in 

the table below. 

 Traditional Agency 

Model:  Projects 

Completed with Initial 

Capital Outlay  

Deterministic Approach:  

Projects Completed 

leveraging Expected 

Savings and Initial Capital 

Outlay  

Stochastic Model:  

Projects Completed with 

Approach (Risk-neutral) 

with Recourse Savings 

and Initial Capital Outlay  

Stochastic Model:  

Projects Completed with 

Approach (Risk-averse) 

with Recourse Savings 

and Initial Capital Outlay 

Total Cost 

of Projects 
$10,402,698 $9,644,413 $9,663,282 $10,402,698 

Initial 

Capital 

Outlay 

Needed 

$10,402,698 $4,986,524 $5,885,967 $6,990,197 

Initial 

Period 

Projects 

Selected 

project1       project2       

project3       project4       

project5       project6 

Project7       project8       

project9       project10     

project11     project12     

project13     project14     

project15     project16     

project17     project18 

project19     project20     

project21     project22     

Project23     project24     

project25     project26     

project27     project28     

project29     project30  

project31     project32     

project33     project34     

Project35     project36     

project37     project38     

project5       project6       

project8       project10     

project13     project15   

project18     project22     

project23     project25     

project27     project28 

project31     project33     

project34     project35     

project38     project39   

project40     project41     

project42     project43     

project44     project48 

project6       project7       

project8       project10     

project13     project15  

project16     project17     

project18     project21     

project22     project23  

project25     project27     

project28     project31      

project33     project34    

project35     project37     

project38     project39     

project40     project41  

project42     project43     

project44     project47     

project48 

project1       project2       

project3       project4        

project9       project10     

project11     project12     

project14     project16     

project17     project20     

project21     project22     

project24     project25     

project26     project29     

project30     project32     

project33     project34     

project36     project37     

project38     project43     

project44     project45     

project47      
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This suboptimal solution is most likely due to a time inconsistent policy.  Time consistency is the 

requirement that that at every state of the system, the optimal decisions should not depend on 

scenarios which cannot happen in the future.  This time consistency requirement is closely 

related to Bellman's principle used to derive dynamic programming equations (Shapiro, 2009).  

The standard risk neutral formulation of multistage stochastic programming problems satisfies 

this principle, however; in this case, the risk neutral formulation does not. 

 

3.7. Conclusions 

 

 

The option to choose all 48, any subset or no projects at all in the initial phase, gives the agency 

248, over 281 trillion options at 5 phases, each with 3 possible realizations. The possibilities at 

each of the periods yield another billion scenarios in the tree after the initial capital outlay.  It is 

important to note that the realizations of energy prices in the fifth year are not included in the 

model as there are no longer projects to fund in the fifth year. 

  

The results of the practical application show that the value of the stochastic solution is limited by 

the number of constraints and recourse actions taken upon the realization of the random variable, 

which are energy prices and yields.   The annual minimum project model provides positive 

project39     project40     

project41     project42  

project43     project44     

project45     project46     

project47     project48  

Table 3-13:  Agency’s Traditional, Deterministic, Risk Neutral Approaches and Risk 

Averse but Time Inconsistent Approach 
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results while allowing agencies to spread risk throughout the horizon rather than waiting for the 

Stage 5 where the lower saving projects are mostly to be encountered. If a shortfall is 

encountered, it will be earlier in the horizon.  Meanwhile, in the CVaR model, risk aversion 

increases with Beta, and as a result, the capital outlay required increases.  Risk-neutrality 

provides the lowest capital outlay but comes with a higher chance of a shortfall.  A combination 

of taking on more risk with additional recourse actions may prove to be a more practical but 

complex model. 

 

The traditional approach used by the agency requires that all projects be completed with the 

initial capital outlay.  This does not allow the agency to accurately predict savings that could be 

used to fund future projects.   However, the results of the deterministic model, is the key 

deterrent for agency’s considering the use of future savings to fund projects.  Using the attractive 

results of the deterministic model may leave the agency with a shortfall in later periods where 

capital budget cannot be requested.  The agency is then forced to seek outside sources for project 

funding.  This causes the agencies to assume risk-averse stances.  This improvement provided by 

this work adds both stochasticity and allows the agency to select their risk tolerance. 

 

These model proposed in the current work is preferred because savings can be used to fund 

additional programs while incorporating the seemingly random fluctuations in energy prices and 

incorporates proposed energy savings that may return lower estimates.  It further expounds upon 

the advent of taking on uncertain outcomes with the inclusion a risk measure.  The lower risk 

comes at higher costs. 
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In the practical applications presented in this chapter, the value of performing the optimization is 

compared to the agency’s traditional approach by including the ability to leverage the existing 

savings and understanding the impact of the energy price and forecast of future savings.  In this 

case, the optimized value to the agency is more realistic and superior to both the traditional and 

deterministic model.   
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Chapter 4: A Multistage Stochastic Energy Model with Rolling Horizons and 

Endogenous Learning 

  



 

102 
 

 

 

4.1. Introduction  

 

The federal government buildings are one of the largest energy consumers in the world.  In FY 

2014, 39% of all federal energy was consumed by federal facilities.   Energy consumed in federal 

government facilities has generally been declining over the past four decades.  However; the 

reduction stems from both the total square footage occupied by the federal government, which 

continues to fall from its peak in FY 1987, and from the energy consumed per square foot inside 

federal buildings, which has been declining since FY 1975 (EERE, 2016).  While significant 

reductions in building energy intensity have been made, many more are required, while tougher 

challenges exist in funding energy conservation and renewable projects.  Facility energy 

intensity fell short of the 27% goals of Executive Order 13423 and Energy Independence and 

Security Act to reduce energy intensity (Btu/GSF) with only a 21% reduction (Tremper, 2014).  

The remaining conservation opportunities will require ingenuity to both fund and implement the 

projects.  However, funding energy conservation continues to follow a lengthy multiple-year 

planning process. 

 

There are many approaches to the implementation of an energy or renewable project but most 

comprehensive energy programs begin with an assessment of current consumption and energy 

conservation opportunities at the individual building level.   The initial assessment is the 

ASHRAE Level 2 Energy Audit.  The audit is an onsite assessment and comprehensive energy 

analysis of the building’s energy-using components resulting in a list of proposed energy 

conservation measures (ECMs) which include the following attributes: 
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• the proposed system or component description 

• an estimate of the investment required to implement the measure 

• an estimate of annual savings  

• an estimate of the annual cost savings in dollars  

• a performance measure such as simple payback ratio or savings to investment ratio 

A typical set of these measures are shown below in Table 1. 

 

 

 

 

 

 

The energy auditors determine the appropriate regulatory requirements as part of their scope of 

work in the contract with the agency.  The energy auditors then conduct audits to recommend the 

projects necessary to save the required energy.  Projects that do not meet specific savings-to-

investment ratios are not considered.  All reported projects must be completed.  The agency 

requests a conservative budget from direct appropriated funding in the first stage and seeks to 

fund the required energy conservation projects. 18   (Note that a stage is a one-year time period in 

the current research.) agencies would greatly benefit from innovation and novel approaches to 

assist in project implementation, funding and timing. 

 

The technical and financial performance of these projects are uncertain and often managed by a, 

“wait- -and-see” approach.  Here we present more original approaches that request reasonable 

                                                 

18 Financing energy projects through appropriations allows federal agencies to own their projects and immediately 
benefit from the cost savings. This type of financing should be an agency's first consideration in pursuit of its 
renewable energy goals given the hierarchy of action items in Executive Order 13693 (Obama, 2015). 

Project 

Description 

Investment 

Cost ($) 

Annual 

Energy 

Savings 

(KBTU) 

Energy 

Rate 

($/KBTU) 

Annual Savings 

($) 

Estimated 

Useful Life 

(years) 

Payback 

Ratio 

(years) 

Heating project  250,000 2,375,000 0.011 26,125.00 30 9.57 

Lighting project  50,000 625,000 0.015 9,375.00 15 5.33 

Table 4-1:  Typical Energy Conservation Projects Attributes 
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budgets and allow for recourse actions.  The savings from implemented projects are used for 

investment in future projects.  However, anticipated energy savings, varying energy costs, and 

interaction between energy projects affect the ability of these models to predict future savings.  A 

rolling-horizon model that updates the optimization model's inputs and optimal decision variable 

values for past stage is presented.  This model is run in experimental cases showing its vast 

improvement over the fixed-horizon, multistage model.  These improvements are:  

• a reduction in the total number of stages required to implement all projects 

• the total cost to implement all projects 

the computational speed to solve a model with many decision and auxiliary variables 

 

The remainder of this chapter is presented as follows.  Section 2, discusses the current landscape 

project selection, stochastic optimization and rolling-horizon methodologies, as well as provides 

context and highlights novelty of the current research.   Section 3 presents the model formulation 

and Section 4 applies the model to experimental yet practical examples.  Sections 5 and 6 

continue with discussion of the results and conclusions, respectively. 

 

4.2. Literature and Context 

 

A novel way to meet U. S. reduction and renewable goals is by using existing savings to fund 

future projects while accounting for uncertainty in implementation yields and energy prices.  

This requires selecting energy projects in a method that allow agencies to account for and reduce 

uncertainty associated with long planning horizons.  An applicable method must address 

subadditivty and superadditivity of energy savings but be computationally solvable.  Many of 
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these concepts have been studied individually but this chapter considers them simultaneously 

resulting in an improved energy project selection model.  

 

4.2.1. Project Selection 
 

The goal of the current research is to develop a model that selects projects that optimizes the 

agency’s value of the energy conservation program, minimizing the total cost of the program by  

maximizing the annual savings to fund additional projects.  The model is developed to optimally 

select energy conservation projects and applied to project selection for energy conservation.  In 

this approach, annual savings from projects selected in prior periods become investments in 

projects in future periods.  

 

Markowitz  illustrated that the process of portfolio selection, similar to project selection and thus 

relevant here,  was based on available information and beliefs about the future performances of 

individual securities (projects) and their returns (Markowitz, 1952).   In that work, the variance 

of expected return is minimized.  By contrast, in the current research, the observations are made 

in the first stage while experience or realizations are made in later stages.  The current research 

leverages annual savings in theses later stages from projects previously implemented which is 

analogous to the securities in Markowitz’s work.  The current problem also incorporates 

constraints on the cost of selecting projects, whereas the cost of the securities were not 

specifically limited in that earlier work. 

 

Many approaches of this type of problem (a problem where projects must all “fit” into the 

program) have been studied however as applied to energy conservation, such research has to our 
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knowledge not been overly active.  The agency selection problem is related to the classical 

“knapsack problem”.  Dantzig  described and demonstrated methods of solution to the knapsack 

problem (Dantzig, 1957).  In this problem, for example, a person is planning a hike and has 

decided not to carry more than 70 lbs. of different items, such as a bedroll, Geiger counters, cans 

of food, etc.  The hiker would like to maximize his / her benefit of these items while remaining 

below the weight limit.  Dantzig noted that in these types of problems, extreme point solutions 

(to the corresponding linear program) might yield values that are neither one nor zero (which 

correspond to selection or omission of items).  Since that original publication, the knapsack 

problem has become a classical formulation in operations research.   A recent example of a 

project selection knapsack problem is (Gabriel, et al., 2006).  In this paper, a multi-objective, 

integer-constrained optimization model with competing objectives for project selection was 

proposed in which probability distributions were used to describe uncertain costs.  That model 

was novel since it integrated multi-objective optimization, Monte Carlo simulation, and the 

Analytic Hierarchy Process.   The connection with the knapsack problem was that the budget for 

funding all the projects was the knapsack and the projects the items to go into the knapsack.  

 

In (Asadia, et al., 2012)  the authors present a multi-objective optimization model to assist 

stakeholders in the definition of measures aimed at minimizing the energy use in the building in 

a cost effective manner while satisfying the occupants' needs and requirements.  However, the 

model described  incorporates many subjective attributes, which make the quantification of value 

difficult.   A multi-criteria knapsack model was proposed to help designers to select the most 

feasible renovation actions in the conceptual phase of a renovation project (Alanne, 2004).The 

additive knapsack model presented in that study was based on linear programming.  The current 
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research and the problem is much more complex.  Gustafsson used a mixed-integer, linear 

programming (MILP) model to minimize the life-cycle cost of retrofits subject to minimum 

space heating requirements (Gustafsson, 1998).   The author showed that a building’s heating 

system could be described mathematically in the form of a MILP.  The primary objective of the 

research here is energy savings with cost being a secondary consideration as well as a two-level 

optimization approach to model the ECM decision process more accurately.  A two-level 

optimization approach is modeled in (Champion & Gabriel, 2015).  However, in the current 

research, the budgets are funded by direct appropriation, which is best modeled by a single 

objective function.  The above are just a small sample of some project selection papers that have 

relevance to the current work. For further details, see Models and Method for Project 

Management (Graves & Ringuest, 2003).  

4.2.2. Stochastic Programming 
 

When some aspects of the objective or constraints functions or other data in the problem are not 

known with certainty, stochastic optimization can be used (Vajda, 1972).  Stochastic 

programming models can be of the recourse type where some here-and-now decisions are made 

at the current time period and other recourse (corrective) actions appear later (Birge & 

Louveaux, 1997).  Alternatively, chance- constrained programs have no recourse but seek to 

optimize in the presence of probabilistic constraints.  There are other variations of stochastic 

optimization such as stochastic dynamic programming, worse-case analysis, etc. (Puterman, 

1994), (Birge & Louveaux, 1997). 

 

Stochastic programming for project selection has been well-studied with early developments in 

(Dantzig, 1955), (Beale, 1955), and (Charnes & Cooper, 1959). In (Cano, et al., 2014), a decision 
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supports system to manage energy sub-systems in a more robust energy-efficient and cost-

effective manner is presented. In this paper, a two-stage stochastic model is proposed, where 

some first-stage decisions regarding investments in new energy technologies have to be taken 

before uncertainties are resolved. Later recourse (second-stage decisions) on how to use the 

installed technologies are taken once values for uncertain parameters become known, thereby 

providing a trade-off between long- and short-term decisions.  Developments continue with 

application in many areas as production, supply chain, scheduling, gaming, financial modeling, 

telecommunications, and electricity (Ziemba & Wallace, 2005).  The current work furthers 

applications in multistage stochastic programming concentrating on energy conservation project 

selection and building on the work in (Champion & Gabriel, 2015), (Yu, et al., 2003), (Shapiro, 

et al., 2009) . 

 

4.2.3. Subadditivity and Superadditivity for Energy Conservation Measures 
 

Subadditivity and superadditivity for energy conservation projects can be explained by the 

interactive effects of these projects in terms of energy savings or costs.19  For example, an energy 

conservation project that retrofits lighting may decrease the electricity consumption but also 

reduce the heat gain to the building.  This project, in return, makes the building’s boiler work 

harder to provide the additional heat load to the building.  The resulting savings of the projects 

together will be lower than if only one project was implemented.  Using the typical set of these 

measures from Table 4-1, consider for example that the agency will implement projects 

expecting to spend the total cost of $300,000 and get repeating annual savings of $35,500.   

                                                 

19 It should be noted that other factors such usage patterns and changes in rates based on time of day impact 
additivity. These are not modeled as this chapter as this is a strategic decision making model. 
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However, in specific cases, the results of Table 4-2 overestimate the total annual savings. The 

agency may only realize annual repeating savings of $26,625 as shown in Table 4-3, below. 

 

 

Similarly, superadditive effects of energy conservation projects are also possible.  An example of 

this can be observed with the selection of an energy management system or controls projects in 

combination with higher-efficiency heat or cooling generation equipment.  For example, a 

controls project has a long payback and, generally, is proposed for the existing generation 

equipment.  A second project’s scope could replace the existing generation equipment with 

newer, higher-efficiency equipment. The higher-efficiency heat or cooling generation equipment 

will use less energy when operating while the controls will minimize operating heating and 

cooling times based on demand for the load.  The combined energy savings of these two projects 

will be greater than their individual savings.  Table 4-4, provides an example of superadditivity 

in energy conservation project selection. 

Project Description Investment Cost ($) Annual Energy 

Savings 

(KBTU) 

Energy Rate 

($/KBTU) 

Annual 

Savings ($) 

Estimated 

Useful Life 

(years) 

Payback 

Ratio (years) 

Heating project  250,000 2,375,000 0.011 26,125 30 9.57 

Lighting project  50,000 625,000 0.015 9,375 15 5.33 

TOTAL  
Expected Additive 

Savings  

300,000 3,000,000 0.012 35,500  8.45 

Table 4-2:  Additivity: No interactive effects on Energy Conservation Projects 

Attributes 

Project Description Investment Cost ($) Annual Energy 

Savings 

(KBTU) 

Energy Rate 

($/KBTU) 

Annual 

Savings ($) 

Estimated 

Useful Life 

(years) 

Payback 

Ratio (years) 

Heating project  250,000 2,375,000 0.011 26,125 30 9.57 

Lighting project  50,000 625,000 0.015 9,375 15 5.33 

TOTAL  
Subadditive Savings  

300,000 2,250,000 0.012 26,625  11.27 

Table 4-3:  Subadditivity: Interactive effects on Energy Conservation Projects 

Attributes 
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In the current research, all projects are evaluated for subadditivity and superadditivity by 

comparing all combinations of projects selected in each stage.  For example, Table 4-5, below 

gives attributes for four projects that are available for selection.   

 

Table 4-6, below gives attributes and totals with no interactive effects for the three projects that 

are selected in this stage.  Note that the total savings are simply the sum of savings for each 

project. 

 

 

 

 

 

 

 

 

 

Project Description Investment Cost ($) Annual Energy 

Savings 

(KBTU) 

Energy Rate 

($/KBTU) 

Annual 

Savings ($) 

Estimated 

Useful Life 

(years) 

Payback 

Ratio (years) 

Heating project  250,000 2,375,000 0.011 26,125 30 9.57 

Controls project 100,000 50,000 0.015 750 15 133 

TOTAL  
Subadditive Savings  

300,000 2,700,000 0.012 32,400   9.26 

Table 4-4:  Superadditivity: Interactive effects on Energy Conservation Projects 

Attributes 

Project Description Investment Cost ($) Annual Energy 

Savings 

(KBTU) 

Energy Rate 

($/KBTU) 

Annual 

Savings ($) 

Estimated 

Useful Life 

(years) 

Payback 

Ratio (years) 

Heating project  250,000 2,375,000 0.011 26,125 30 9.57 

Lighting project  50,000 625,000 0.015 9,375 15 5.33 

Insulation Project 150,000 125,000 0.09 11,250 50 13.33 

Controls project 100,000 50,000 0.13 6,500 20 15.38 

Table 4-5:  Additivity: Conservation Projects Attributes for Simplifying Example 

Calculation 

Project Description 

Investment Cost ($) Annual 

Savings ($) 

xproject Savings Generated 

($) 

   (=1 if 
selected) 

(xproject * annual 
Savings) 

Heating project  250,000 26,125 1 26,125 

Lighting project  50,000 9,375 1 9,375 

Insulation Project 150,000 11,250 0 0 

Controls project 100,000 6,500 1 6,500 

Additive Total 

   42,000 

Table 4-6:  Additivity of Projects Selected 
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Next consider possible subadditivity and super additivity for energy conservation annual savings.  

The comparison of each project for additivity is achieved by creating an alias for the set of 

projects, here called “project prime” or just “prime.”  Subadditivity or superadditivity is possible 

when both projects are selected or when �$ = �$′ = 1 for this stage.  (Note, just two projects at a 

time are considered but one could imagine three or more relevative to subadditivity or 

superadditivity).  The product of the pairwise comparison of the selection of one project and 

another becomes the binary variable for the possibility of subadditivity or superadditivity, with 0 

turning off and 1, turning on.  The combination of the product and the discount / premium (Κ�,�w 
matrix, below) determines subadditivity or superadditive effect on that project. 

��,�w =  
���
�� 0 . 8 1 1.2 . 9. 8 0 . 7 1 11 . 7 0 1.1 11.2 1 1.1 0 1. 9 1 1 1 0 ���

��
 

Figure 4-1:  Sample K matrix of Subadditive and Superadditive Multipliers 

 

The sum of all “Per Project Additivity” is the total subadditivity or superadditivity for the 

projects selected in that stage.  The total annual savings in this stage are $43,306.25 ($42,000 

from Table 5 + $1306.25 from Table 6) which is greater than the sum of the individual annual 

savings. 

 

The key benefits of this approach are  

• all projects are compared for the potential of subadditivity or subadditivity,  

• subadditivity and superadditivity are addressed at the individual project level allow 

interactions to be additive with other projects, 
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• and this approach allows the comparison to be made and the discount and or premium to 

be calculated in each stage.  Annual savings will become subadditive or superadditive as 

they are selected in later stages. 

However, adding the interactive functionality to the model for the sake of realism, results in 

additional complexity.  The complexity lies in Column J of Table 6, above.  The product of 

variables makes the problem nonlinear and potentially harder to solve without some sort of exact 

linearization which is described next via the McCormick inequalities (McCormick, 1976). 

4.2.4. McCormick Inequalities 
 

Subadditivity of stochastic processes as discussed above are the key organizing principle driving 

problems of nearly intractable difficulty (Steele, 1997).  Further solving models as proposed in 

the current research may not provide global optima with nonlinear models.  McCormick  

developed a method for convex / concave relaxations of factorable functions that allow for vast 

improvements in goal finding and CPU speed to solve (McCormick, 1976).  In some cases, like 

the one below, the linearization resulting from these inequalities is exact. 

 

An alternative to McCormick’s relaxation is McCormick’s auxiliary variable method (AVM) 

that employs auxiliary variables for each factor involved.  More precisely, instead of relaxing the 

functions, the nonconvex optimization problem is relaxed.  The nonconvex problem is 

reformulated introducing auxiliary variables in such a way that the intrinsic functions are 

decoupled and can be relaxed one by one. A lower bound to the nonconvex problem is calculated 

via a relaxed NLP or linear program (Tsoukalas & Mitsos, 2014).   
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The current research leverages this AVM which addresses the problem of characterizing the 

convex envelope (the smallest convex set that covers a set of points) of the bilinear function as in 

(Sherali & Alameddine, 1990). 20  Specifically, �$  ∙ �$′ ≡ �$,$′ which collapses the decision 

variables into a single variable allows multiplication by data and parameters, from Table 6, 

above.  Additional constraints on the auxiliary variable,�$,$′, establishing upper and lower 

bounds are discussed in Section 3. 

 

4.2.5. Rolling-Horizon Approach 
 

Budgeting for the entire planning horizon with perfect foresight can be overly optimistic.  Perfect 

foresight assumes that the yields and budgets from savings are known for all stages, perfectly, 

when making the first-stage decisions.  Models that assume perfect foresight of the time horizon 

have perfect information for the entire time horizon.  In deterministic, perfect foresight models, 

parameters are assumed to be known with 100% certainty.  Perfect foresight models while useful 

as base cases are less realistic than ones that allow for stochastic elements and/or some rolling-

horizon foresight (Devine, et al., 2016).   

 

In reality, energy project selection is often made under uncertainty with hedging of worst-case 

scenarios.  Scenario-based models include non-anticipativity constraints (Birge and Louveaux, 

1997) to ensure that the worst yields and the budgets scenarios are included and observed to be 

the same at all successor nodes. In the rolling-horizon approach which is more realistic than 

                                                 

20 A bilinear function is a function of two variables that are  linear with respect to each other, for example 4#�, C% =�C. 
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perfect foresight, decisions are taken one stage at a time, realizing and possibly updating the 

parameters between these stages.    

 

In a multistage problem, decisions made in the current stage influence the recourse decisions 

made in later stages.  Rolling-horizon approaches solve multistage problems with a planning 

horizon of nT = |T|, by looking at smaller rolling-horizons, ��  that models subsets of the full 

problem.   Rolling-horizon models have been considered since at least (Baker, 1977).  That 

experimental study was designed to investigate the efficiency of decisions obtained from 

optimizing a finite, multistage model and implementing those decisions on a rolling basis. The 

results of the study suggest that rolling schedules are quite efficient.   

 

The typical practice with a rolling-horizon policy calls for establishing the “master schedule” for 

a certain number of future stages, known as the planning horizon, based on the currently 

available relevant information e.g. demand forecasts, available capacity, inventory and backlog 

records, etc. (As’ad & Demirli, 2010) , (Sethi & Sorger, 1991).  This terminology is used in the 

current research.  In the current research, the demand is established in the first stage by the 

auditor after a review of the applicable regulations.  This is a one-time activity for the program 

and as such is not continually forecasted.  Further, in this research, the model is updated as more 

data (project performance) and variables (budgets) become available.  

 

 A rolling-horizon approach as presented below only considers a smaller future set of stages and 

allows for learning in between each "roll" of the horizon.  As such, the approach can be 

computationally quicker as well as more realistic.   Additionally, such a rolling-horizon approach 
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also allows for learning (in between rolls) for the decision-maker and thus can be used to model 

“endogenous probabilities”.  Endogenous uncertainty problems are described as discrete event 

dynamic systems where the underlying stochastic process depends on the optimization decisions 

(Pflug, 1990).  Thus, for example, a scenario tree with probability p for one of the nodes really 

depends on the values of the optimal decision variables.  As an example, consider (Dupacova, 

2014), that describes project selection with endogenous variables for exploration of new oil 

fields.  The possibility of investment for these projects may be initiated in each stage.  The 

probability distributions of the uncertain characteristics of projects are discrete, within each 

scenario, but the capacity and delivery are realized only after the optimal decisions are made.  In 

the current research, projects are also selected in each stage but the endogenous variables affect 

the returns determines future project selection similar to (Dupacova, 2014). 

 

Stochastic programming models can be classified into two broad categories (Jonsbraten, 1998): 

exogenous uncertainty where stochastic processes are independent of decisions that are taken 

(e.g. demands, prices), and endogenous uncertainty where stochastic processes are affected by 

these decisions.  Decisions can affect the stochastic processes by altering the probability 

distributions (type 1) or determining the timing when uncertainties in the parameters are resolved 

(type 2) (Goel & Grossman, 2006). A number of planning problems that involve very large 

investments at an early stage have endogenous (technical) uncertainty (type 2) that dominates the 

exogenous uncertainty (Gupta & Grossman, 2014).  In the current research, the endogenous 

uncertainty is modeled because decisions regarding timing of projects selected severely impact 

the overall objective through the realization of the yields. 
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Devine, et al. (2016) present improvements that come with rolling-horizons for mixed 

complementarity problems (MCP) in the context of natural gas market equilibria (Devine, et al., 

2016). For example, one advantage is that each roll is a separate solving of an MCP, which 

allows the opportunity to adjust inputs in between these rolls.  For example, a new scenario tree 

for the next roll can be endogenously changed, by one or more players, based on a solution from 

the previous roll so that the model has endogenous probabilities.   That novel approach is 

adopted in this research but is applied to multistage stochastic programming rather than MCPs.   

 

 

 

 

 

a)  Multistage stochastic model with all scenarios b) Rolling-horizon model with fixed improvemnt 

Figure 4-2: Comparison on Multistage Stochastic Program and of Rolling Horizon Approach 
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Figure 4-2, above illustrates the comparison between the models presented in the current 

research.  In Figure 4-2a, the multistage stochastic model shows the probability of each 

scenario#,%, Fm#,%, and yield, n$m #,%.  The yield is a low, medium or high return coefficient 

related to the estimated annual savings.  In the multistage stochastic model, all decisions are 

made with information known in this first stage.  At every stage beyond the first, the agency has 

a set of fixed recourse decisions, with fixed probability and yields. This results in three possible 

nodes at m = 2 and nine nodes at m = 3.  The model also contains non-anticipativity, which does 

not allow the agency to anticipate what node they will arrive at before recourse actions are taken.  

The improvement in Figure 2b, comes from realizing the node from which to start the next roll 

and update with endogenous learning.  In Figure, 4-2b, the agency makes a decision for the 

planning horizon, here four years, however, after the first year, then realizes the actual node, 

Fm#,%, and yield, n$m #,%.  However, the model assesses its position in the tree, here, a�b #�?E% 

taken as a representative example because it represents the expected value.  This results in three 

possible nodes at m = 2 and only three nodes at m = 3 and so forth.  At each stage, the agency 

reruns the model assuming a horizon of ����.  The resulting treatment of the Fm#,% for each model 

are illustrated in Table 4-7, below.  Note that the endogenous learning in model presented in 

Figure 4-2b, also updates the yields, n$m #,% in each stage per Table 4-7, below.  

 

 T=2 T=3 T=4 

Figure 2a, 

Multistage 

Stochastic Model 

Fe#1% = 0.33 Fe#2% = 0.33 Fe#3% = 0.33 

n�e#1% = 0.65 n�e#2% = 0.90 n�e#3% = 1.05 

F¢#1% = 0.33 F¢#2% = 0.33 F¢#3% = 0.33 

n�¢#1% = 0.65 n�¢#2% = 0.65 n�¢#3% = 0.65 

 

Not Shown in Figure 

Fe#4% = 0.33 Fe#5% = 0.33 Fe#6% = 0.33 

Fe#4% = 0.33 Fe#5% = 0.33 Fe#6% = 0.33 

Fe#4% = 0.33 Fe#5% = 0.33 Fe#6% = 0.33 

n�¢#4% = 0.90 n�¢#5% = 0.90 n�¢#6% = 0.90 

Fe#7% = 0.33 Fe#8% = 0.33 

Fe#7% = 0.33 Fe#8% = 0.33 

F¢#7% = 0.33 F¢#8% = 0.33 

n�¢#7% = 1.05 n�¢#8% = 1.05 
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Fe#9% = 0.33 Fe#9% = 0.33 F¢#9% = 0.33 n�¢#9% = 1.05 

Figure 2b, 

Rolling-horizon 

model 

Fe#¤{|% = 0.33 Fe#�?E% = 0.33 Fe#ℎA�ℎ% = 0.33 

n�e#¤{|% = 0.65 n�e#�?E% = 0.90 n�e#ℎA�ℎ% = 1.05 

F¢#¤{|% = 0.33 F¢#�?E% = 0.33 F¢#ℎA�ℎ% = 0.33 

n�¢#¤{|% = 0.70 n�¢#�?E% = 0.90 n�¢#ℎA�ℎ% = 1.00 

F¥#¤{|% = 0.33 F¥#�?E% = 0.33 F¥#ℎA�ℎ% = 0.33 

n�¥#¤{|% = 0.75 n�¥#�?E% = 0.90 n�¥#ℎA�ℎ% = 0.95 

Table 4-7: Probability and Yields by Model Type 

 

4.3. Model  

 

The value of the current work is the novel application and combination of several concepts such 

as multistage stochastic programming and subadditivity and superadditivity of energy 

conservation projects using McCormick Inequalities (McCormick, 1976) at several stages to 

improve on the current industry practice.  The agency seeks to minimize the total cost of 

implementing all the energy conservation projects that it is considering.  The inclusion of the 

four key concepts are discussed later in this section. 

The following is the notation, variables, and parameters used in the general statement of the 

stochastic multistage energy conservation model (SM-ECM). 

Sets 

  ¦  set of ECM projects with P = {1, 2,…np} where np = |P|, P’ ≡ P j a set of stages T (typically years) = {2,…nT} where nT = |T|, T’ ≡ T  § set of scenarios with given probability, πt(ω),  ω = {1, 2,…nω} where nω = |Ω| 
  

Main Primal Decision Variables 

 "� a first-stage binary variable representing selection of the project p; variable = 1, if 

selected by the agency to be implemented at t=1, = 0 otherwise a�b #,% a t-stage (T = {2,…nT}) binary recourse variable representing selection of the projects for 

scenario (ω); variable = 1, if selected by the agency to be implemented in stage T = 
{2,…nT} , = 0 otherwise 

 
 

Intermediate Variables 
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 ¨b#,% the budget in dollars for implementing the agency’s projects at stage t > 0 ©�,�′ McCormick envelope auxiliary variable for initial stage variables xp and xp’  ©�,�′ = "�"�′ ª�b #,% McCormick envelope auxiliary variable for first- and recourse-stage variables (xp + 

yp
t(ω)) and  (xp’ + yp’

t(ω)) 
 

Parameters 

 Y A scalar representing the capital budget requested through direct appropriation by the 
agency for implementing the agency’s projects in the first stage, in dollars ($) tm

 the operating budget prescribed for the agency at stage t, in dollars ($) �$ the estimated annual savings in dollars achieved by implementing project p, the energy 

savings, in dollars ($) which is equal to the product of annual energy savings (KBTU) 
and energy rate ($/KBTU) /$ the estimated investment needed to implement project p in dollars ($)   n$m #,% the yield of the annual savings at each stage as realized through each project’s annual 

savings  Fm#,% the probability of the discrete energy price at each stage t  
  Κ$,$′ an np x np matrix for pairwise comparison and multipliers of yield 

 

General Formulation 

  
 

The formulation of the stochastic multistage energy conservation model (SM-ECM) is as 

follows.  The objective function minimizes the total cost to complete all energy conservation 

measures.  The objection function is composed of the following terms: 

 Y :  The capital budget requested through direct 

appropriation by the agency for implementing 

the agency’s projects for the entire planning 

horizon, in dollars ($)  

(4a) 
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� /$"�
BN

$=1  
:  The estimated first-stage investment cost to 

implement the agency-selected projects   
(4b) 

� Fm#,% � � /$a�b #,%B6
m=2

BN
$=1,∈Ω  

:  The estimated second- and later-stage 

investment cost to implement the agency-

selected projects   

(4c) 

 

The agency, by choosing the timing of when it undertakes each energy conservation project, p, is 

trying to minimize the sum of these three terms. The terms are costs in the problem solved when 

the objective function is maximized and, as such, are negated when presented in the 

minimization form of the problem as shown below. 

 

−Y −  � /�"�
(`

�*+ −  � Fd#,% � � /�a�b #,%(c
d*e

(`
�*+[∈g  (4d) 

 

The first constraint faced by the agency is that all projects must be selected. 

 

"� + � a�b
ij

b=W #,% = 1 ∀$ ∈ P, ∀ , ∈ Ω    (4e) 

 

The second constraint states that the nonnegative available budget at the time, m, for scenario, ,, 

9m#,% is the sum of: 

� � n$m #,% �$ «"� + a�b′#,%¬m−1
m′=2

BN
$=1  

:  The estimated savings for energy 

conservation measures from all prior stagess 

in dollars ($) 

(4f) 

tm   :  The operating budget in dollars ($) (4g) 
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9m−1#,% :  The budget from the previous stage in 

dollars ($) 
(4h) 

− � /�a�br
#,%(`
�*+  ∀m ∈ 6, ∀ , ∈ Ω    :   the cost of projects implemented in the 

prior stage in dollars ($) 
(4i) 

− � � � Κ�,�­
dr+
dw*e

()­

�­*+
()

�*+
⋅  n�d #,% �� ¯o"�
+ a�bw#,%q «"�­
+ a�­bw #,%¬° o"� + a�bw#,%q 

:  The subadditivity or superadditivity of the 

product of energy savings and rates of all 

projects chosen in dollars ($) 

(4j) 

The following constraints state that the investment in any stage must below within the budget.  

The sum of all projects starting at t=2 must not exceed the budget. 

� /$a�b #,% ≤  9m#,%      ∀m ∈ 6, ∀ , ∈ Ω  B$
$=1  (4k) 

 

The following constraints enforce non-anticipativity of the model (Rockafellar & Wets, 1976).  

a�b #,%  =  a�b !,′'    ∀ ,, ,′  ∈  x1 … Ωz  9m#,%  =  9m!,′'   ∀ ,, ,′  ∈  x1 … Ωz 9m#,%  =  9m!,′'   ∀ ,, ,′ 4{> |ℎA~ℎ �m#,% = �m#,′%, m = 2 … 6  a$m #,%  =  a$m !,′'   ∀ ,, ,′ 4{> |ℎA~ℎ �m#,% = �m#,′%, m = 2 … 6  |ℎ?>? �d#,%  A� mℎ? B{E? =m �m=�?, m =BE �~?B=>A{, ,  
(4l) 

 

For equation 3j, the values of the decision variable C$m #,% and variable 9m#,% chosen at stage t, 

depend on the data �m
available up to time t, but not future observations.  This is the basic 

requirement of non-anticipativity (Wets, 1974).   

 

The budget must remain nonnegative (no loans). 
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9m#,% ≥ 0      ∀m ∈ 6, ∀ , ∈ Ω (4m) 

 

The initial budget is zero. 90#,% = 0 91#,% = Y 
(4n) 

 

The decision variables are binary. "� , a�b #,%  @AB=>C (4o) 

 

 

As discussed in Section 4-2, the model adds elements making this approach innovative yet 

practical for application. 

 

 

4.3.1. Subadditivity and Superadditivity 
 

The model above is modified to include the possibility of subadditivity or superadditivity.  It 

begins by noting that the key impact is to the annual savings in the example of Table 4-2.  In the 

model, the annual savings are repeating every year after project implementation (selections by 

"� {> a�b #,% = 1) and formulated in the budget equation as term (3j). 

 

The term in (4j), above determines the budget by multiplying the yield n$m #,% by the estimated 

annual saving  �$ if the project is chosen «"� + a�p #,%¬ = 1.  However, for subadditivity and 

superadditivity, we compare two projects p and p’ at a time.  Letting Κ$,$′ be a B$ @C B$′ matrix 

of pairwise multipliers for yields,  n$m #,% equal to the energy annuals saving interactive effect. 
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The addition of subadditivity (as opposed to super-additivity) best models the practical approach 

to energy conservation measures.  However,  this change results in a mixed integer non-linear 

program (MINLP) which is computationally much more challenging and thus less likely that 

agencies will use it to find a global optimal solution.  By contrast, the (exact) linearization via 

the McCormick inequalities shown below, is a computational tool that makes solving such 

problems easier. 

 

4.3.2. McCormick Envelopes 
 

In order to transform the nonlinearities introduced by the subadditivity of the model, we apply 

the auxiliary variable model (McCormick, 1976).   This is achieved by letting = =
o"� + a�bw#,%q and letting @ = o"�w + a�wbw #,%q as discussed in Section 2 where p and p’ are 

indices for two distinct projects. 

The linearization of the product of the terms a and b is given as follows.  First, let W=ab and note 

that W=1 if and only if a=1 and b=1.  

Consider the following McCormick inequality constraints: 

Let ± =  =e@ where ± ≥ 0  ± ≥ @ + = − 1 ± ≤ @ ± ≤ = 

(4p) 

Note that in (4p) if a=1 and b=1 then the second inequality forces W to be greater than or equal 

to 1.  The last two inequality provide 1 as an upper bound for W so taken together imply that 

W=1.  Conversely, if W=0 then the second inequality shows at most one of a or b can be equal to 
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1 (other an infeasibility).  The last two inequalities are still valid in this case.  Thus, the nonlinear 

equation of W=ab has been exactly linearized in (4p). 

The budget equation below replaces terms (4f) – (4j)  

 

9m#,%  = � � n$m #,% �$ «"� + a�p #,%¬m−1
m′=2

BN
$=1 + tm + 9m−1#,%

− � /$a�b−
#,% −BN
$=1 � � � Κ$,$′ ⋅ n$m #,% �$

m−1
m′=2

B$′

$′=1
B$

$=1 ∙ ±$m #,%   ∀m ∈ 6, ∀ , ∈ Ω    
(4q) 

  

The following additional constraints are added. 

 ±$m #,%  ≥ 0  
±$m #,% ≥ «"� + a�b #,%¬ + «"�′ + a�′b #,%¬ − 1 

±$′m #,% ≤ «"�′ + a�′b′ #,%¬ 

±$m #,% ≤ «"� + a�b′#,%¬ 

(4r) 

 

The terms and equations above complete the model in its entirety. 

 

4.3.3. Rolling-Horizon 
 

The rolling-horizon method involves making first-stage decisions, based on a stochastic 

forecast/estimation.  At the beginning of the second stage, the first-stage decisions are apparent. 

In order to make these decisions, forecasts for additional stages into the future are required.  In 

addition, existing forecasts can be revised or updated.  This procedure repeats for every stage 

justifying the term rolling-horizon decision making for the practice. Here, the term "horizon" 
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refers to the number of stages in the future for which the forecast is made.  It is this horizon, that 

is "rolled over" each stage (Sethi & Sorger, 1991). 

In this model and chapter the endogenous learning is applied as such. 

n�d #¤{|% = ²n�dr+#¤{|% ∗ 1.00,   0 ≤ C�dr+#¤{|% < 1  n�dr+#¤{|% ∗ 1.04,   1 ≤ C�dr+#¤{|% < 3 n�dr+#¤{|% ∗ 1.06,   3 ≤ C�dr+#¤{|%  (4s) 

n�d #�?E% = ²n�dr+#�?E% ∗ 1.00,   0 ≤ C�dr+#�?E% < 1  n�dr+#�?E% ∗ 1.02,   1 ≤ C�dr+#�?E% < 3 n�dr+#�?E% ∗ 1.04,   3 ≤ C�dr+#�?E%  (4t) 

n�d #ℎA�ℎ% = ²n�dr+#ℎA�ℎ% ∗ 0.98,   0 ≤ C�dr+#ℎA�ℎ% < 1  n�dr+#ℎA�ℎ% ∗ 1.00,   1 ≤ C�dr+#ℎA�ℎ% < 3 n�dr+#ℎA�ℎ% ∗ 1.01,   3 ≤ C�dr+#ℎA�ℎ%  (4u) 

n�µ#ℎA�ℎ% = 0.00 

n�+#ℎA�ℎ% = 0.65 

n�+#ℎA�ℎ% = 0.90 

n�+#ℎA�ℎ% = 1.05 

(4v) 

 

The energy conservation  model described above  is run as follows: 

1. The rolling horizon ��  for a subset of the total time periods is specified. 

2. The �� − year model is run  

3. At the end of year 1, first-stage decisions become input parameters for stage 2.21 

a. The budget is reduced by the cost of projects implemented in the previous phase. 

b. The budget is increased based on annual savings realized in year 1. 

c. The endogenous learning adjustment is applied to yields, n$2#,% per the learning 

above. 

                                                 

21 Recall that a stage is a one-year time period in the current research. 
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d. The probability of the yields, Fe#,% can also be adjusted.  In these cases, the 

uniform distribution will remain (there is an equal likelihood of all discrete 

yields). 

4. The �� − year 2, the model is rerun 

a. the budget is reduced by the of cost of project in the previous stage 

b. budget is increased based on annual savings realized in stage 1 and stage 2 

c. The endogenous learning adjustment to yields, n$3#,% 

d. The probability of the yields, F¢#,% can also be adjusted.  The uniform 

distribution will remain.  

5. Repeat until the end of year B6 − ��  where the final ��  - year model is run or all projects 

are complete. 

 

A flow chart for a 4-year rolling-horizon is shown below in Figure 4-3. 

 

Figure 4-3: Rolling-Horizon Approach with Update Rules 

 

4.4. Experimental Example 
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The model described above seeks the objective of selecting the lowest-cost energy program (all 

projects must be completed).  The lowest-cost program will make the most efficient use of the 

annual savings realized by implementing projects in prior stages.  A practical application of the 

model is demonstrated using data from an agency’s campus of buildings in the southeastern 

United States (Champion & Gabriel, 2015).  

 

In the numerical example, there are 48 ECMs with varying characteristics and project attributes 

as shown in Table D-1 of the Appendices.  The model presented earlier is applied to these data as 

follows.  

B$ =|48|, the total number of ECMs 1$ Energy Rate in $/KBTU as shown in the third column of Table D-3 in the Appendices �$m  Annual Cost of Energy Saved in dollars ($) as shown in the fourth column of Table D-3 

in the Apendices n$m #,% the static annual savings fluctuation at each stage is realized through each project’s 

annual savings as shown in Table 4-8, below.  

 

 Probability, Fm#,% Rate / Yield Factor, n$m #,%22
 

Scenario 1 (ω1) 0.33 0.65 

Scenario 2 (ω2) 0.33 0.90 

Scenario 3 (ω3) 0.33 1.05 

Table 4-8:  Probability of Annual Saving Fluctuation 

based Energy Price and Savings Yield at t=1 

 

Endogenous learning (updates) were modeled using three possibilities for the distribution of 

yields.  The “medium” of the low, medium and high discrete distribution (Probability Fm#,%% was 

kept constant in all cases.  The details of the endogenous learning (Rate / Yield Factor changes) 

are shown in Table D-2 of the Appendices.  

 

4.4.1. Multistage Results 

                                                 

22 The Rate / Yield Factor (x Annual Savings), n�d #,% are arbitrary for illustrative purposes. 
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The Multistage Stochastic 7-year MIP model was run for a 48-project model in GAMS Rev 

23.6.5 on an x86 64bit Microsoft Windows machine.  This model includes the subadditivity of 

the energy conservation savings in equation (4j), and the McCormick envelopes for variables 

"� and a�b #,% in (4r).  The reported model statistics are:  

 

Blocks of Equations 6,618 Single Equations 2,895,041 

Blocks of Variables 36 Single Variables 2,155,824 

Non Zero Elements 9,994,223 Discrete Variables 210,000 

Table 4-9, Multistage Stochastic Energy Program Results at the Planning Horizon 

 

The resulting solver status was 1, “Normal Completion” with a model status of 8, “Integer 

Solution.”  The Resource Usage was 540.559 and the Iteration Count was 326,664.  It should be 

noted that models with interactive effects affecting just 5 of the 48 projects took over 72 hours to 

solve and thus represents a large-scale instance of the problem described above given 48 total 

projects and 7 years considered. 

 

The optimal objective function is $9,912,042 which satisfies the relative optimality tolerance of 

0.0 .  This means that the total cost to complete all projects from all sources except the annual 

budget is $9,912,042.  The capital requested in the first year is $6,731,889, which funds 32 

projects, leaving the balance of 16 projects to be funded through annual savings.  The details of 

the results can be viewed in Table D-3 of the Appendices. 

 

4.4.2. Rolling-Horizon Results 
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The summarized results of the experimental model at several horizons are shown below in Table 

4-10.  Detailed results are shown in Table D-4 in the Appendices. 

 

  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

Multistage 
Capital Outlay $9,912,042 NA NA NA NA NA NA 

Projects Completed 32 Projects 0 Projects 0 Projects 0 Projects 0 Projects 0 Projects 16 Projects 

Case 1 
Capital Outlay $10,204,280 $1,234,959 

All Projects Completed 
Projects Completed 43 Projects 5 Projects 

Case 2 
Capital Outlay $10,204,280 $1,271,557 

Projects Completed 43 Projects 5 Projects 

Case 3 
Capital Outlay $10,099,872 $2,087,085 $1,337,466 $1,314,253 

All Projects Completed 
Projects Completed 39 Projects 3 Projects 5 Projects 1 Project 

Case 4 
Capital Outlay $10,099,872 $2,191,840 $1,321,871 $1,406,161 

Projects Completed 39 Projects 5 Projects 3 Projects 1 Project 

Case 5 
Capital Outlay $6,970,456  $939,454 NA NA NA NA NA 

Projects Completed 34 Projects 4 Projects 0 Projects 0 Projects 0 Projects 0 projects 10 Projects 

Case 6 
Capital Outlay $6,970,456 $952,661  NA NA NA NA NA 

Projects Completed 34 Projects 4 Projects 0 Projects 0 Projects 0 Projects 0 projects 10 Projects 

Table 4-10: Resulting Projects at “Med” Yield and Remaining Budget 

 

Table 4-10 illustrates the comparison between the multistage stochastic model and the rolling-

horizon model. The tradeoffs involving the shorter length of the horizon for the costs of the 

overall program are apparent.  The endogenous learning was not impactful in the shortest 

horizons.  

4.5. Discussion 

 

The experimental examples were run for both two, four and six-year rolling-horizons.  There 

were three major finding from the results of the practical application and the several cases 

observed.  These are: 

1. Early selection of projects by the rolling horizon approach limited the ability to spread 

projects throughout the planning horizon 

2. The benefit of the year-over-year savings are lost in shorter horizons 
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3. The impact of the rolling-horizon length is greater than that of the endogenous learning 

4. Subadditivity and superadditivity becomes intractable when over 5 projects interact 

5. The rolling-horizon model only outperforms (requires a lower total cost than) the 

multistage models with longer horizons regardless of learning 

 

Early selection of projects limited the ability to spread projects throughout the planning horizon. 

This is best observed in cases 1 and 2, where the first rolling horizons compressed the selection 

of all projects into two years.  As a result, most projects were implemented in the first stage.  The 

model could not anticipate additional rolls.  All six cases were heavily influenced by the model’s 

early selection of projects.  This result is apparent in Tables 4-10 and D-3 where more projects 

were selected in the first stage than any other stage, in all cases.  This result can be explained by 

observing the projects returns.  Greater than 60% of the projects listed in Table D-1 have a 

simple payback greater than the planning horizon (7 years).  This means that most projects could 

not fund themselves within the planning horizon, let alone a shorter one.   The model selects 

projects early, as shorter horizons will not generate enough savings to fund many additional 

projects.  If the projects could generate significant savings within the rolling horizon, their 

selections would be delayed and therefore available for later stages.   

 

The benefit of the year-over-year savings are lost in shorter horizons.  This key result is one of 

the disadvantages of the rolling-horizon approach.  In many cases, the multistage model provides 

a better model as it spans the length of the planning horizon.  The annual savings are cumulative 

over time.  Likewise, compressed horizons do not allow for most of the learning to make a 

significant impact.  Most projects are completed in the earliest stages prior to the endogenous 

learning taking effect, reducing the ability to provide a significant impact.  A relatively smaller 

subset of projects benefit for the learning in the prior stages. 
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Cases 3 and 4 present the most profound and meaningful results.  The rolling-horizon model 

implements all projects in four years (the years shorter than that of the planning horizon).  In the 

fourth year, case 3 (no learning) completes one project (project 20).  In the same year, Case 4 

(endogenous learnings) completes one project as well (project 24).  The learning allows larger 

projects to be selected in later stages even with the cumulative annuals savings of the multistage 

model. 

 

Cases 5 and 6 provide the best results of all cases as these cases are only the only ones that 

outperform the multistage model.  The cost of the overall program is $7,909,910 and saves the 

agency over 23%. This result is attributable to the 6-year model’s ability to leverage five years of 

the repeated annual savings and the impact of endogenous learning.   

An alternative application of the rolling-horizon was modeled in Case 7.  The last roll should 

have been in year 2, however; allowing additional rolls have only improved the model.  If 

allowed to extend beyond the planning horizon, the model will attempt to delay the final 

project’s completion in order to take full advantage of year over year savings over implemented 

projects.  This result violates the constraints of the model.  If that project were forced to 

complete in the final year of the planning horizon (i.e. force project 5 to be completed in stage 7) 

then this model would be superior to cases 3 and 4.  

The rolling-horizon model is superior to the multistage model in specific cases.  The savings can 

be greater than 20% in these cases.   

 

4.6. Conclusion 
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In this research, we introduced the concept of rolling-horizons with fixed improvement and with 

additivity.  We incorporated McCormick’s auxiliary variable model to make this problem 

solvable.  The subadditivity and superadditivity provided challenges with regard to the size of 

the problem.  This model was compared to several experimental cases to a multistage stochastic 

program for energy project selection.   

 

While there are improvements to the results of the model from improved yield in each stage, the 

larger impacts to the objective were made by selecting the appropriate length of the horizon.  The 

rolling-horizon selected should start with the length of the planning horizon and reduced until the 

objective exceeds that of a comparable multistage model.  Shorter horizons will allow for more 

endogenous learning but in these application of this research, cumulative savings outweigh the 

ability to learn and better estimate yields.   

 

This model provides great improvement over the comparable stochastic model in the longer 

rolling-horizons.  The three main benefits are improved objective functions (greater than 20% 

lower cost to implement all projects), adaptability, which allow agencies to choose their risk 

tolerance and speed allowing subadditivity and superadditivity to be solved in less than a few 

hours.  Federal, state and local agencies will greatly benefits from this model in their strategic 

decision making and energy project selection. 
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Chapter 5: Summary and Conclusions 
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The new approaches presented in the research give the agencies the ability to save millions of 

dollars while implementing more energy-conservation measures and paying for them most cost-

efficiently.  Each model is a vast improvement over the agencies’ current approaches for each of 

the implementation and funding methods.  It is hoped that agencies embrace the use of the novel 

optimization models and these practices become the default approaches. 

 

The dissertation asserted that agencies could obtain greater returns on their energy conservation 

investments over traditional methods, regardless of funding and the particular implementing 

organization. The first objective of this dissertation was to introduce novel optimization models 

that provide improvements above the traditional approaches through increased returns on energy 

conservation investment.  The traditional approach for agencies leveraging energy savings 

performance contracts and/or utility energy service contract is to sort by paybacks and 

implement ECM project until the budget is exhausted. The agency then turns to firms to 

complete the balance of ECM projects.  The traditional approach for agencies completing all 

projects through congressional appropriation is to fund the full cost of projects without 

reinvestment of annual savings.  The models and case studies in Chapters 2-4 demonstrate 

savings of over 6% in each case.  These summary results are illustrated in Table 5.1 below. 

 Two-Level Mathematical 

Program with Equilibrium 

Constraints  

Multi-Stage Risk Model with 

minimum project per stage 

(#v = 0% 

Multi-Stage Risk Model with 

minimum project per stage 

(#v = 5% 

Rolling-horizon Method with 

Endogenous Learning   

 Chapter 2 Chapter 3 Chapter 3 Chapter 4 

Savings Increase Over 

Traditional Model 
18.9% 6.83% 6.60 23.9% 
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Initial Capital Outlay 

Reduction  
0.00% 28.5%23 28.0% -17.2%24 

CPU Run time (seconds)25 93 813 876 19 

Table 5-1: Dissertation Results: Agency Savings of Models 

 

The additional objectives of the dissertation were 

1. to model and find tractable solutions to a complex problem that has traditionally forced 

agencies to leverage inefficient heuristics in decision making 

2. to present options and practical solutions to a common yet complicated problem that can 

be customized for each federal, state or local government’s budgets and risk appetites. 

 

These objectives were met in Chapters 2-4 of the dissertation. 

 

In Chapter 2, the current industry practice (traditional approach) of selecting projects based on 

suboptimal criteria such as, payback, savings to investment ratio or ease of implementation were 

discussed.   Once those projects were implemented, the agency sought energy savings 

performance contracts or utility energy service contracts for the balance of projects.  This 

separation of the two decisions by the agency, the different objectives of agency and the energy 

services companies, and the inability of the leader, the agency, to leverage the knowledge of how 

the lower level firms will respond, made the entire process suboptimal.  The suboptimal selection 

process most often results in inefficient allocations while not providing any additional profit to 

the energy services companies.  There was also the risk of the agency selecting too many of the 

                                                 

23 In the traditional approach the appropriation was equal to the initial capital outlay 
24 There was a 17.2% increase in the initial congressional appropriation sought in this model. 
25 Run times are in seconds and are the average of three runs. 
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profitable projects, thereby leaving only undesirable projects for energy services companies.  

Many of these projects were currently being left undone while agencies struggle to meet their 

mandated conservation goals.  The agency must then finance these projects, which is a least cost-

effective option. 

 

The two-level model presented in Chapter 2 maximized savings to the agency and profit to the 

energy services industry.  While the EnergyStar guidance provides “rules of thumb” that may 

simplify the selection, this process does not make the best use of the dollars and options for 

project execution.   

 

The benefits of the of the two-level optimization were apparent when comparing these results to 

both the standard practice and even a single-level optimization problem.  Giving the agency’s 

ability to select projects while evaluating the implementation and financing mechanisms 

available to them, made them the best stewards of taxpayers' money.   

 

In Chapter 3, the traditional approach used by the agency required that all projects be completed 

with a single appropriation.  The traditional, deterministic approach does not allow the agency to 

predict savings that could be used to fund future projects accurately.  The results of deterministic 

models are the key deterrents for agencies considering the use of future savings to fund projects.  

Using results of the deterministic model may leave the agency with a shortfall in later periods 

where additional capital budget cannot be requested.  In these cases, the agency is then forced to 

seek outside sources for project funding.  This causes the agencies to assume risk-averse stances.   
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The proposed model in Chapter 3 added stochasticity in energy savings and allowed the agency 

to select their risk tolerance.  The results of the proposed multistage, risk-loaded model showed a 

value of the stochastic solution (VSS) of $18,869 in a practical application.  As risk-aversion 

increased, the required capital outlay (the total cost to complete all projects) increased.  Risk-

neutrality without the minimum project per year constraining provided the lowest capital outlay.   

 

The model proposed in the Chapter 3 is preferred to the traditional model because savings can be 

used to fund additional programs while incorporating the seemingly random fluctuations in 

energy prices and addressing proposed energy savings that may return lower estimates.  The 

lower risk is a tradeoff that comes at a higher cost. 

 

In the practical application presented with this model, the value of the optimization is compared 

to the agency’s traditional approach by including the ability to leverage the existing savings and 

understanding the impact of the energy price and forecast of future savings.  In this case, the 

optimized value to the agency is more realistic and superior to both the traditional and 

deterministic model.   

 

Chapter 4 introduced the concept of rolling horizons with endogenous learning and 

supplemented this model with subadditivity and superadditivity of energy savings.  This model 

incorporated McCormick’s auxiliary variable method to replace constraints involving the product 

of variables with an exact linearization for computational improvement.  The subadditivity and 

superadditivity provided computational challenge, presumably with due to the nonconvexities in 

the problem.    When comparing this model to an extended multi-stage model as in Chapter 3, 
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there was great improvement in the objective function (the total cost implement all ECM 

projects) when the rolling-horizons greater than half the length of the planning horizons. The 

major findings from the results of the practical application and several cases observed.  The 

rolling-horizon model outperformed the multistage models by 20% (20% less cost to implement 

all projects) with longer rolling horizons regardless of learning.  However, there was a 17% 

increase in the initial congressional appropriation sought in this case as shown in Table 5.1.  

 

While there is great innovation in the use endogenous learning, larger impacts to the objective 

function were made by selecting the appropriate length of the rolling horizon.  The longer rolling 

horizons selected yielded better results (improved objective functions).  Shorter horizons will 

allow for more endogenous learning but in this application of this research, cumulative savings 

achieved by projects implemented in prior stages outweighed the ability to learn and better 

estimate the yields.   

 

The three main benefits of the rolling-horizon model were an improved objective function 

(greater than 20% lower cost to implement all projects as compared to a multistage stochastic 

model), adaptability, which allow agencies to choose their risk tolerance and speed allowing 

subadditivity and superadditivity of energy savings to be solved in less than a few hours.  

Federal, state and local agencies will greatly benefit from this model in their strategic decision-

making and energy project selection.  These methods but also have far-reaching implications for 

international agencies as well as commercial owners both domestic and abroad.   
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The methods and models presented in this research each have unique approaches and simulate 

the real-world challenges and the options available to the agencies.  Each method is an 

improvement on what is currently being done today as the so-called best practice.  These models 

can be easily implemented and provide immediate benefit to every agency that is consuming 

energy in buildings.  It is proposed that these methods become the standard for federal, state and 

local ECM project selection before outside parties (ESCOs and utilities) adopt these approaches 

and assume the available savings. 
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6. Appendix  

  

6.1. Appendix A 

 

Upper-Level Problem 

The agency’s annual savings maximizing problem presented earlier, is repeated here and is given 

in (A-1): 

max�,�,� � =  � ���� ∙ !"#$% + &#$%'()

�*+

+ � �!����,�,- − .�/�' ∙ !1 − 1-'(2

-*+ 3#$, 4% − 5 ∙ 67()

�*+  

(A-1a) 

 

Subject to: 

� /� ∙ "#$% ≤ 9()

�*+ +  ::; (A-1b) 

::; = � � 3#$, 4% ∙ !����,�,- − .�/�' ∙ !1 − 1-'(2

-*+
()

�*+  (A-1c) 

 

� /� ∙ &#$%()

�*+ = 67   (A-1d) 

"#$% + &#$% + � 3#$, 4% = 1 ∀$(2

-*+  (A-1e) 

 "#$%, &#$%  =>?  @AB=>C 

 

(A-1f) 



 

141 
 

0 ≤ 3#$, 4%  ∀$ =BE 4 (A-1g) 

 
 

with 3#$, 4% solving the lower-level problem which is the solution set of the following 
optimization problems for ESCO firm f (f=1,…,nf). 

 

 

6.2. Appendix B 

 

Lower-Level Problem 

ESCO / Firms’ Profit-Maximizing Problem 

 

max� F- =  �G!����,�,- − .�/�' ∙ !1-'3#$, 4%()

�*+
− !H-!���� − .�/�' ∙ #3#$, 4% + 3#$, 4%IJ%'K 

(B-2a) 

Subject to:  

�G!����,�,- − .�/�' ∙ !1-' ∙ 3#$, 4%()

�*+
− !H-!���� − .�/�' ∙ #3#$, 4% + 3#$, 4%IJ%'K   ≥ MN-   

(B-2b) 

3#$, 4% ≤ 1   ∀ $ AB N  (B-2c) 

3#$, 4% ≥ 0 ∀ $ AB N  (B-2d) 

 
Note that: 

• the quantity !����,�,- − .�/�' ∙ !1-' ∙  O#$, 4% represents the revenue gained by the 

ESCO in the form of shared savings by taking on O#$, 4% percent of project, p.  For 

simplicity, let ~#$, 4% be the shorthand for the objective function coefficient !����,�,- − .�/�' ∙ !1-'. 
• the quantity !H-!���� − .�/�' ∙ #O#$, 4% + O#$, 4%S2%' represents the cost of 

implementing project, p where the parameter H- is the percentage of the shared savings 
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that is attributed to material, labor and equipment costs.   For simplicity, let E#$, 4% be 

the shorthand for the objective function coefficient H-!���� − .�/�'. 

Then, the lower-level problem for firm f can be more succinctly written as follows with the ¶ 

values in parentheses the corresponding Lagrange multipliers to each constraint: 

min� t9¹-#O% ≜ ∑ G−~#$, 4%3#$, 4% + E#$, 4% ∙ #3#$, 4% + 3#$, 4%IJ%K()�*+    (B-3a) 

Subject to:  

�+-#O% ≜ MN- − �G~#$, 4%3#$, 4% − E#$, 4% ∙ #3#$, 4% + 3#$, 4%IJ%K()

�*+
≤ 0  #¶+-%  

(B-3b) 

�e�-#O% ≜ 3#$, 4% − 1 ≤ 0   #¶e�-%   ∀ $ AB N  (B-3c) 

�¢�-#O% ≜ −3#$, 4% ≤ 0   #¶¢�-%∀ $ AB N  (B-3d) 

 

 
 
The approach to solving this two-level problem is to use the Karush-Kuhn-Tucker (KKT) 

optimality conditions, apply them to the lower-level optimization problem and insert them into 

the upper-level problem as additional constraints.  In this way, the original two-level problem is 

reformulated as a single-level nonlinear optimization problem.  The KKT conditions for 

optimality of the lower-level problem are shown below noting that the Lagrange multiplier ¶¢�- 

has been substituted away. 

 ¼ ≤ G−~#$, 4% + E#$, 4% + E#$, 4%IJ#3#$, 4%IJr
%K
+ !¶+-'G−~#$, 4% + E#$, 4% + E#$, 4%IJ#3#$, 4%IJr
%K + 

!¶e�-' ⊥ 3#�, J% ≥ ¼, ∀� ∈ 

¦, J ∈ 7 

 

(B-4a) 
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0 ≤ −MN- + �G~#$, 4%3#$, 4% − E#$, 4% ∙ #3#$, 4% + 3#$, 4%IJ%K()

�*+ ⊥   #¶+-%
≥ ¼, ∀ 

J ∈ 7 

 

(B-4b) 

0 ≤ −3#$, 4% + 1   ⊥   !¶e�-' ≥ ¼, ∀� ∈ 

¦, J ∈ 7 

 

(B-4c) 

The KKT optimality conditions are sufficient for solving problem (B-3) if the objective function 

is convex in the vector q, and each of the inequality constraint functions �+- , �e�- �¢�- g are 

convex in q (Bazaraa et al. (Bazaraa, et al., 2006)).  To see that the objective function is convex, 

given that the first part −~#$, 4%3#$, 4% is linear, it suffices to check that the second part E#$, 4% ∙ #3#$, 4% + 3#$, 4%IJ% is convex in q.  But of course E#$, 4% ∙ 3#$, 4% is linear as well so 

that only E#$, 4% ∙ 3#$, 4%IJ needs to be shown to be convex in q.  Note that the Hessian matrix 

of the objective function in (B-3a) relative to the vector of variables q is just a diagonal matrix 

with diagonal entries given by the second derivative of 3#$, 4% ∙ 3#$, 4%IJ relative to the scalar 

variable q(p,f)  or just �-#�- − 1%E#$, 4% ∙ 3#$, 4%IJrW.  Under Assumption B-1 shown below, 

this second derivative is nonnegative implying that the Hessian matrix of the objective function 

is positive semi-definite, equivalent to the objective function being convex (Bazaraa, et al., 

2006). 

Assumption  B-1 

The cost function for each firm f, E#$, 4% ∙ #3#$, 4% + 3#$, 4%IJ% has the property that: 

a. E#$, 4% = H-!���� − .�/�' ≥ 0 for all p, f 

b. �-!�- − 1'E#$, 4% ∙ 3#$, 4%IJrW ≥ 0 for all p, f 

Condition a. is reasonable because the firms’ costs are non-negative.  
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Condition b. is satisfied for example if E#$, 4% is nonnegative (condition a.) and �- ≥ 1 when 

the nonnegative variable q(p,f) takes on a positive value (if it's equal to zero no constraints are 

needed).  Varying values of �- ≥ 1 were shown earlier. 

 

Consequently, we have the following result. 

 

Theorem B-1 

 

Under Assumption B-1, the KKT conditions for problem (B-3) are sufficient for optimality. 

Proof.  Given the above analysis for the convexity of the objective function (B-3a), it suffices to 

check that each inequality constraint function g is convex.  Since �e�- , �¢�-are both linear, 

hence convex functions, only �+-needs to be shown to be convex.  However, �+-#O% ≜ MN- +t9¹- which in light of MN- being a constant, renders this constraint function convex given the 

above convexity analysis for t9¹-.  

QED 

 

The next result is to show when these KKT conditions are also necessary.  First, note that the 

linearity constraint qualification (CQ) often used to show necessity of the KKT conditions is 

invalid for (B-2b) given the polynomial form of the cost function (Bazaraa, et al., 2006). 

Likewise, the linear independence CQ may also fail at an optimal solution.  To see this consider 

that at a solution q of (B-3), one or more of the constraints �+-, �e�- , �¢�- are may be binding.  

However, given the form of the functions, both �e�- , �¢�- can’t be binding at the same time.  

For sake of discussion and without loss of generality suppose that �+-#O% = 0, �e�-#O% = 0 for 

all p, f  so that the set of binding indices ¾ = x1,2z.  In that case, the gradients of the binding 

indices are: 

∇�+-#O% = _ −~#1, 4% + E#1, 4% + E#1, 4%�-O#1, 4%S2r+⋮−~!B�, 4' + E!B�, 4' + E!B�, 4'�-O#B�, 4%S2r+h = _ Á#1, 4%⋮Á!B�, 4'h = Á 
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∇�e�-#O% =
Â
ÃÃÄ

0⋮10⋮0Å
ÆÆÇ , $ = 1, … , B� with a 1 in the pth position.  Clearly in this case we see that 

∇�+-#O% = Á = � Á#$, 4%∇�e�-#O%�  

invalidates the linear independence constraint qualification (Bazaraa, et al., 2006) However, as 

shown below, the Slater’s constraint qualification (Bazaraa, et al., 2006) does hold for the 

problem at hand. 

 

Slater’s CQ  

Consider the optimization problem min 4#�% �. m. �È#�% ≤ 0, A = 1, … , � ℎs#�% = 0, É = 1, … , ¤ � ∈ Ê 

Then, for a local solution �̅ let ¾ = xA: �È#�̅% = 0z be the binding set of indices. 

Slater’s CQ is then the following set of conditions: 

1. The set X is open. 

2. Each �È for A ∈ ¾ is pseudoconvex at �̅. 

3. Each �È for A ∉ ¾ is continuous at �̅. 

4. Each ℎs  for É = 1, … , ¤ is quasiconvex, quasiconcave, and continuously differentiable at �̅. 

5. Each Íℎs#�̅% for É = 1, … , ¤ are linearly independent. 

6. There exists an � ∈ Ê such that �È#�% < 0, ∀A ∈ ¾ and  ℎs#�% = 0, É = 1, … , ¤ 
 

Given the inequality-only form of the constraints for the lower-level problem (B-2), the fact that 

all the inequality constraint functions under Assumption B-1 are convex (hence pseudoconvex) 

and continuous, and that the set X is Rn, hence open, Slater’s CQ reduces to the following: 

1. There exists an � ∈ Rn such that �È#�% < 0, ∀A ∈ ¾ . 
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The following assumption then leads to the result for necessity of the KKT conditions to the 

overall MPEC. 

Assumption B-2 

There exists a value of the vector q so that 

1. 0<q(p,f)<1 for all p, f 

2. ∑ G~#$, 4%3#$, 4% − E#$, 4% ∙ #3#$, 4% + 3#$, 4%IJ%K()�*+ > MN- 

These conditions amount to saying that there is a strictly fractional assignment of the projects to 

the ESCOs where each firm makes more than the minimum profit.  If this minimum profit is 

zero, then it just says that this fractional assignment is profitable for all firms.  For the given 

data, this assumption holds for a minimum profit of $0. 

 

With Assumptions B-1 and B-2, the overall equivalent formulation for the overall MPEC 

problem is then just the optimization problem (B-1) and conditions (B-4) inserted as constraints 

into the upper-level problem (B-4) as the KKT conditions (B-4) are both necessary and sufficient 

to optimality of the lower-level problem.  If just Assumption B-1 is in force, then the KKT 

conditions are only guaranteed to be sufficient for optimality but still useful for the given 

approach.   

 

The complementarity conditions given by " ⊥" in (B-4) can be replaced by disjunctive 

constraints Fortuny-Amat and McCarl (Fortuny-Amat & McCarl, 1981), Gabriel and Leuthold, 

(Gabriel & Leuthold, 2010) using the following illustrative example. 

Instead of 

 0 ≤ −3#$, 4% + 1   ⊥   !¶e�-' ≥ ¼   

or equivalently 

 0 ≤ −3#$, 4% + 1  , !¶e�-' ≥ ¼, #−3#$, 4% + 1%!¶e�-' = ¼ 

 

these conditions can be replaced by their disjunctive-constraints equivalent form 

 0 ≤ −3#$, 4% + 1 ≤ M@ ,0 ≤ ¶e�- ≤ M#1 − @%, @ ∈ x0,1z 
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Here @ is a binary variable and M is a large positive constant.  Thus, the equivalent problem that 

was solved in this chapter was the original MPEC is (B-1) with the disjunctive-constraints form 

of the conditions (B-4) inserted as constraints.  
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6.3. Appendix C 

 

 
Below are the actual ECM data characteristics from the energy audit. 

 
Investment Cost 

($) 

Annual Energy 

Savings (KBTU) 

Energy Rate 

($/KBTU) 

Annual Cost of 

Energy Saved 

($) 

Degradatio

n / 

Escalation 

Rate (%) 

Estimated 

Useful Life 

(Years) 

Payback 

Ratio (Years) 

P γp αp   δp n  

project1  $              710,354             5,334,857   $    0.015   $              80,023  -1.50% 30 8.88 

project2  $              637,975             1,849,047   $    0.033   $              61,019  -1.00% 23 10.46 

project3  $              468,071             1,768,079   $    0.023   $              40,666  -2.00% 30 11.51 

project4  $                40,368                 445,600   $    0.010   $                4,456  -1.38% 30 9.06 

project5  $                   8,557                 213,025   $    0.012   $                2,556  -1.50% 15 3.35 

project6  $                15,328                 124,584   $    0.023   $                2,865  -0.75% 9 5.35 

project7  $                55,207                 287,971   $    0.027   $                7,775  -2.50% 15 7.10 

project8  $                59,355                 416,045   $    0.022   $                9,153  -2.00% 15 6.48 

        

project9  $                84,738                 559,247   $    0.015   $                8,389  -1.50% 30 10.10 

project10  $              188,994                 801,565   $    0.033   $              26,452  -1.00% 40 7.14 

project11  $              142,377                 660,074   $    0.023   $              15,182  -2.00% 30 9.38 

project12  $              186,520                 440,470   $    0.033   $              14,536  -1.38% 30 12.83 

project13  $              165,932             2,243,077   $    0.012   $              26,917  -1.50% 15 6.16 

project14  $              169,521                 650,787   $    0.023   $              14,968  -0.75% 20 11.33 

project15  $                95,238                 554,558   $    0.027   $              14,973  -2.50% 15 6.36 

project16  $              220,871             1,366,652   $    0.019   $              25,966  -2.00% 15 8.51 

        

project17  $              201,577                 793,782   $    0.030   $              23,813  -2.00% 30 8.46 

project18  $              119,351                 724,725   $    0.033   $              23,916  -1.38% 23 4.99 

project19  $              152,286                 488,525   $    0.023   $              11,236  -1.50% 30 13.55 

project20  $                95,631                 632,278   $    0.010   $                6,323  -0.75% 30 15.12 

project21  $                53,495                 518,592   $    0.012   $                6,223  -1.50% 15 8.60 

project22  $              276,920             1,551,851   $    0.023   $              35,693  -0.75% 20 7.76 
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project23  $                94,078             1,135,237   $    0.027   $              30,651  -2.50% 20 3.07 

project24  $              228,071                 784,038   $    0.026   $              20,385  -2.00% 15 11.19 

        

project25  $              236,862             2,103,902   $    0.014   $              29,455  -1.38% 10 8.04 

project26  $              438,530             1,678,580   $    0.023   $              38,607  -1.50% 23 11.36 

project27  $              558,439             3,212,065   $    0.029   $              93,150  -1.50% 12 6.00 

project28  $                84,237             2,054,672   $    0.020   $              41,093  -1.50% 10 2.05 

project29  $                18,149                 138,751   $    0.013   $                1,804  -2.00% 26 10.06 

project30  $                64,378                 420,774   $    0.017   $                7,153  -1.50% 20 9.00 

project31  $              387,393             2,743,397   $    0.026   $              71,328  -1.50% 15 5.43 

project32  $              266,812                 937,263   $    0.030   $              28,118  -2.00% 25 9.49 

        

project33  $              185,099             2,236,000   $    0.011   $              24,596  -2.50% 20 7.53 

project34  $              205,145             1,664,432   $    0.017   $              28,295  -1.00% 10 7.25 

project35  $              195,433             3,599,559   $    0.014   $              50,394  -2.50% 23 3.88 

project36  $              184,600                 750,238   $    0.019   $              14,255  -1.38% 28 12.95 

project37  $              110,377             1,045,732   $    0.012   $              12,549  -1.50% 23 8.80 

project38  $              252,736             1,533,356   $    0.021   $              32,200  -1.50% 37 7.85 

project39  $              157,354             2,043,132   $    0.020   $              40,863  -2.00% 18 3.85 

project40  $              247,218             1,573,358  $    0.028   $              44,054 -2.50% 20 5.61 

        

project41  $              256,421             1,806,445   $    0.024   $              43,355  -2.00% 25 5.91 

project42  $              152,886             2,399,913   $    0.012   $              28,799  -2.00% 28 5.31 

project43  $              455,000             2,448,183   $    0.022   $              53,860  -1.38% 36 8.45 

project44  $              473,225             3,500,838   $    0.017   $              59,514  -2.50% 33 7.95 

project45  $              127,011                 883,506   $    0.017   $              15,020  -1.00% 14 8.46 

project46  $              492,782             1,802,085   $    0.016   $              28,833  -1.50% 32 17.09 

project47  $              266,790             1,010,352   $    0.031   $              31,321  -1.00% 10 8.52 

project48  $              115,006                 741,117   $    0.025   $              18,528  -2.50% 20 6.21 

        

Totals  $        10,402,698           66,372,316    $        1,351,279   7.75 
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Table C-1:  ECM Data in Practical Application 
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Baseline Project Quality, ωpf 

Note, ωpf =1 as executed by Agency 

 

Project Firm 1 Firm 2 Firm 3 

    

project1 1.06 1.10 1.05 

project2 1.06 1.01 1.05 

project3 1.05 1.09 1.07 

project4 1.06 1.01 1.09 

project5 1.05 1.10 1.04 

project6 1.10 1.15 1.05 

project7 1.04 1.15 1.05 

project8 1.10 1.08 1.03 

    

project9 1.09 1.04 1.01 

project10 1.08 1.03 1.01 

project11 1.10 1.09 1.01 

project12 1.06 1.06 1.03 

project13 1.05 1.10 1.01 

project14 1.07 1.12 1.05 

project15 1.04 1.10 1.04 

project16 1.07 1.08 1.03 

    

project17 1.06 1.15 1.03 

project18 1.09 1.01 1.02 

project19 1.10 1.09 1.01 

project20 1.06 1.01 1.03 

project21 1.15 1.10 1.04 

project22 1.07 1.15 1.01 

project23 1.09 1.10 1.05 

project24 1.07 1.08 1.01 
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project25 1.06 1.06 1.05 

project26 1.10 1.01 1.09 

project27 1.05 1.05 1.07 

project28 1.04 1.10 1.01 

project29 1.15 1.08 1.03 

project30 1.05 1.03 1.10 

project31 1.01 1.10 1.15 

project32 1.09 1.04 1.05 

    

project33 1.09 1.08 1.10 

project34 1.04 1.03 1.09 

project35 1.01 1.01 1.01 

project36 1.06 1.05 1.07 

project37 1.06 1.10 1.12 

project38 1.03 1.01 1.05 

project39 1.04 1.09 1.10 

    

project40 1.20 1.06 1.06 

project41 1.11 1.06 1.07 

project42 1.15 1.07 1.09 

project43 1.10 1.15 1.10 

project44 1.04 1.01 1.05 

project45 1.07 1.13 1.02 

project46 1.08 1.04 1.02 

project47 1.01 1.03 1.04 

project48 1.05 1.02 1.05 

Table C-2:  Practical Application table of ESCO Quality Factors (ωpf) 

 

 
 Agency Firm 1 Firm 2 Firm 3 Totals 

 "#�% 3#�, 
% 3#�, W% 3#�, X%  
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Project 1   100%  100% 

Project 2  100%   100% 

Project 3   100%  100% 

Project 4 100%    100% 

Project 5    100% 100% 

Project 6   100%  100% 

Project 7   100%  100% 

Project 8   100%  100% 

      

Project 9  100%   100% 

Project 10 100%    100% 

Project 11   100%  100% 

Project 12   100%  100% 

Project 13   100%  100% 

Project 14   100%  100% 

Project 15   100%  100% 

Project 16   100%  100% 

      

Project 17   100%  100% 

Project 18 100%    100% 

Project 19   100%  100% 

Project 20  100%   100% 

Project 21  100%   100% 

Project 22   100%  100% 

Project 23 100%    100% 

Project 24   100%  100% 

      

Project 25   100%  100% 

Project 26  100%   100% 

Project 27   100%  100% 

Project 28 100%    100% 

Project 29  100%   100% 



 

154 
 

Project 30   0.356% 0.644% 100% 

Project 31   0.921% 0.079% 100% 

Project 32  100%   100% 

      

Project 33   100%  100% 

Project 34   100%  100% 

Project 35 100%    100% 

Project 36   100%  100% 

Project 37   100%  100% 

Project 38 100%    100% 

Project 39 100%    100% 

Project 40  100%   100% 

      

Project 41 100% 0.61%  0.039% 100% 

Project 42     100% 

Project 43   100%  100% 

Project 44   100%  100% 

Project 45   100%  100% 

Project 46  100%   100% 

Project 47   100%  100% 

Project 48 100%    100% 

      

Total Projects 10 9.61 26.277 2.113  

Total Profit  $615,865 $1,848,516 $100,000  

Table C-3:  Practical Application Results at $200K Budget 

 

 

Objective Function 
$9,691,951         

Capital Requested $7,431,260      

low limit (ρ) 0      

Stage 1 2 3 4 5 

Projects 36 1.333 2.222 2.444 6 
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Cost of Projects $7,431,260 $246,276 $572,507 $633,008 $1,519,646 

Objective Function $9,691,951         

Capital Requested $7,431,260      

low limit (ρ) 1      

Stage 1 2 3 4 5 

Projects 36 1.333 2.222 2.444 6 

Cost of Projects $7,431,260 $246,276 $572,507 $633,008 $1,519,646 

Objective Function $9,692,199         

Capital Requested $7,434,242      

low limit (ρ) 2      

Stage 1 2 3 4 5 

Projects 34 2 2.444 2.778 6.778 

Cost of Projects $7,434,242 $253,163 $570,111 $750,616 $1,339,828 

Objective Function $9,694,605         

Capital Requested $7,442,357      

low limit (ρ) 3      

Stage 1 2 3 4 5 

Projects 32 3 3 3 7 

Cost of Projects $7,442,357 $249,460 $569,252 $630,950 $1,510,678 

Objective Function $9,699,283         

Capital Requested $7,447,207      

low limit (ρ) 4      

Stage 1 2 3 4 6 

Projects 27 4 4 4 4 

Cost of Projects $7,447,207 $259,952 $570,433 $681,170 $1,450,926 

Objective Function $9,714,788         

Capital Requested $7,488,979      

low limit (ρ) 5      

Stage 1 2 3 4 5 

Projects 27 5 5 5 5 

Cost of Projects $7,488,979 $253,163 $570,111 $750,616 $1,339,828 
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Objective Function $9,758,849         

Capital Requested $7,604,352      

low limit (ρ) 6      

Stage 1 2 3 4 5 

Projects 24 6 6 6 6 

Cost of Projects $7,431,260 $269,036 $616,400 $836,582 $1,076,327 

Objective Function $10,340,195         

Capital Requested $7,919,242      

low limit (ρ) 7      

Stage 1 2 3 4 5 

Projects 20 7 7 7 7 

Cost of Projects $7,204,331 $461,673 $689,589 $922,142 $1,115,963 

Objective Function $11,226,727         

Capital Requested $8,243,148      

low limit (ρ) 8      

Stage 1 2 3 4 5 

Projects 16 8 8 8 8 

Cost of Projects $6,384,099 $799,424 $847,195 $1,014,415 $1,357,565 

Objective Function $12,277,923         

Capital Requested $8,612,434      

low limit (ρ) 9      

Stage 1 2 3 4 5 

Projects 12 9 9 9 9 

Cost of Projects $5,402,328 $1,219,183 $1,069,348 $1,107,323 $1,604,516 

Objective Function $13,549,186         

Capital Requested $9,032,876      

low limit (ρ) 10      

Stage 1 2 3 4 6 

Projects 8 10 10 10 10 

Cost of Projects $4,183,239 $1,729,338 $1,346,013 $1,227,097 $1,917,011 

Table C-4:  Objective Function, Capital Requested and Cost of Projects at Varying 

Projects Required. 
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6.4. Appendix D 

 
Below are the actual ECM data characteristics from the energy audit. 

 
Investment Cost 

($) 

Annual Energy 

Savings (KBTU) 

Energy Rate 

($/KBTU) 

Annual Cost of 

Energy Saved 

($) 

Estimate

d Useful 

Life 

(Years) 

Payback 

(Years) 

P γp αp ζp θp N  

project1  $              710,354             5,334,857   $    0.015   $              80,023  30 8.88 

project2  $              637,975             1,849,047   $    0.033   $              61,019  23 10.46 

project3  $              468,071             1,768,079   $    0.023   $              40,666  30 11.51 

project4  $                40,368                 445,600   $    0.010   $                4,456  30 9.06 

project5  $                   8,557                 213,025   $    0.012   $                2,556  15 3.35 

project6  $                15,328                 124,584   $    0.023   $                2,865  9 5.35 

project7  $                55,207                 287,971   $    0.027   $                7,775  15 7.10 

project8  $                59,355                 416,045   $    0.022   $                9,153  15 6.48 

       

project9  $                84,738                 559,247   $    0.015   $                8,389  30 10.10 

project10  $              188,994                 801,565   $    0.033   $              26,452  40 7.14 

project11  $              142,377                 660,074   $    0.023   $              15,182  30 9.38 

project12  $              186,520                 440,470   $    0.033   $              14,536  30 12.83 

project13  $              165,932             2,243,077   $    0.012   $              26,917  15 6.16 

project14  $              169,521                 650,787   $    0.023   $              14,968  20 11.33 

project15  $                95,238                 554,558   $    0.027   $              14,973  15 6.36 

project16  $              220,871             1,366,652   $    0.019   $              25,966  15 8.51 

       

project17  $              201,577                 793,782   $    0.030   $              23,813  30 8.46 

project18  $              119,351                 724,725   $    0.033   $              23,916  23 4.99 

project19  $              152,286                 488,525   $    0.023   $              11,236  30 13.55 

project20  $                95,631                 632,278   $    0.010   $                6,323  30 15.12 

project21  $                53,495                 518,592   $    0.012   $                6,223  15 8.60 

project22  $              276,920             1,551,851   $    0.023   $              35,693  20 7.76 

project23  $                94,078             1,135,237   $    0.027   $              30,651  20 3.07 

project24  $              228,071                 784,038   $    0.026   $              20,385  15 11.19 

       

project25  $              236,862             2,103,902   $    0.014   $              29,455  10 8.04 

project26  $              438,530             1,678,580   $    0.023   $              38,607  23 11.36 

project27  $              558,439             3,212,065   $    0.029   $              93,150  12 6.00 

project28  $                84,237             2,054,672   $    0.020   $              41,093  10 2.05 

project29  $                18,149                 138,751   $    0.013   $                1,804  26 10.06 

project30  $                64,378                 420,774   $    0.017   $                7,153  20 9.00 

project31  $              387,393             2,743,397   $    0.026   $              71,328  15 5.43 

project32  $              266,812                 937,263   $    0.030   $              28,118  25 9.49 

       

project33  $              185,099             2,236,000   $    0.011   $              24,596  20 7.53 

project34  $              205,145             1,664,432   $    0.017   $              28,295  10 7.25 

project35  $              195,433             3,599,559   $    0.014   $              50,394  23 3.88 

project36  $              184,600                 750,238   $    0.019   $              14,255  28 12.95 

project37  $              110,377             1,045,732   $    0.012   $              12,549  23 8.80 

project38  $              252,736             1,533,356   $    0.021   $              32,200  37 7.85 

project39  $              157,354             2,043,132   $    0.020   $              40,863  18 3.85 

project40  $              247,218             1,573,358  $    0.028   $              44,054 20 5.61 

       

project41  $              256,421             1,806,445   $    0.024   $              43,355  25 5.91 

project42  $              152,886             2,399,913   $    0.012   $              28,799  28 5.31 

project43  $              455,000             2,448,183   $    0.022   $              53,860  36 8.45 

project44  $              473,225             3,500,838   $    0.017   $              59,514  33 7.95 

project45  $              127,011                 883,506   $    0.017   $              15,020  14 8.46 

project46  $              492,782             1,802,085   $    0.016   $              28,833  32 17.09 

project47  $              266,790             1,010,352   $    0.031   $              31,321  10 8.52 

project48  $              115,006                 741,117   $    0.025   $              18,528  20 6.21 
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Totals  $        10,402,698           66,372,316    $        1,351,279   

Table D-1:  ECM Data in Practical Application 
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