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The structure of an animal’s eye is determined by the tasks it must perform. While vertebrates 

rely on their two eyes for all visual functions, insects have evolved a wide range of specialized 

visual organs to support behaviors such as prey capture, predator evasion, mate pursuit, flight 

stabilization, and navigation. Compound eyes and ocelli constitute the vision forming and 

sensing mechanisms of some flying insects. They provide signals useful for flight stabilization 

and navigation.  In contrast to the well-studied compound eye, the ocelli, seen as the second 

visual system, sense fast luminance changes and allows for fast visual processing. Using a 

luminance-based sensor that mimics the insect ocelli and a camera-based motion detection 

system, frequency-domain characterization of an ocellar sensor and optic flow (due to 

rotational motion) are analyzed. Inspired by the insect neurons that make use of signals from 

both vision sensing mechanisms, complementary properties of ocellar and optic flow estimates 

are discussed. 
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Chapter 1: Introduction 

Motivation 

The design of sensing mechanisms for small unmanned aircraft systems (sUAS) has many trade-offs 

due to limited budgets for power consumption, size, weight, and the need for both speed and accuracy 

in a wide range of operating conditions. Traditionally, inertial measurement units (gyroscopes and 

accelerometers) are used to obtain velocity and position data. There has been a rapid evolution of these 

sensor systems in recent years toward integrated accelerometer and gyroscope packages that include 

both digitization and signal conditioning (e.g. filtering). As the vehicle sizes have continued to 

decrease, faster sensing is needed due to the increased susceptibility of the aircraft to even tiny 

disturbances.  

Looking to nature, several species of flying insects have been demonstrated to possess exceptional 

stability and acrobatic capabilities that match the types of missions that engineers are trying to 

accomplish. They provide examples of robust stability given similar limitations of sensing and 

processing. The insect body is a multimodal sensor network. Information from visual, proprioceptive, 

tactile and inertial receptors is collected to provide information about the state of the insect  with 

respect to its environment [1]. Instead of the digital architecture used in traditional sUAS, insects have 

analog connections between their sensory systems and their flight motor neurons. Analog architecture 

makes them capable of closing feedback loops at high speeds, becoming very useful for fast 

stabilization for sudden disturbances. Bio-inspired sensing techniques based on these species present 

an attractive way for micro aerial vehicle sensor design.  

Many flying insects employ two visual systems, the compound eyes and the ocelli (simple eyes). From 

the behavioral and electrophysiological experiments cited in the next chapters, the compound eyes and 

ocelli are thought to work together. Overall, compound eyes are sensitive to a wide-range of 

information, such as proximity to obstacles, relative velocity and rotation rate [5, 6, 20]. These tasks 



 

 

2 

 

increase the information processing time for the compound eyes, making them unable to provide fast 

responses for sudden disturbances. Insects have to balance themselves fast to survive. Ocelli, 

responsible for less number of tasks in compared to compound eyes, have less processing time [58,60], 

which makes them favorable to detect sudden disturbances. Inspired by the complementary nature of 

ocelli and compound eyes, this thesis attempts to characterize the frequency response of an ocellar 

sensor and optic flow, and ultimately proposes the fusion of two sensors for low-cost, wide-field, 

visual rotational motion sensing. 

Contributions 

The contributions of this thesis are listed as follows. 

1. The comparative open-loop frequency characterization of optic flow and a luminance-

dependent analog rotation rate sensor that is thought to mimic insect ocelli was conducted. 

2. Sensitivity analysis was done to analyze the parameters that affect the optic flow and ocellar 

sensor performance in rotational motion. 

3. The usability of ultraviolet intensity was analyzed to extend the usage of ocellar sensor to 

outdoors (Appendix A) 

Outline of Thesis 

Chapter 2 summarizes background information for compound eye, ocelli, previous engineering 

implementations of luminance-based sensors, chapter 3 demonstrates the frequency response 

characteristics of ocellar and optic flow sensing, chapter 4 discusses the complementary characteristics 

of optic flow and ocellar sensor and presents a complementary fusion from low-quality optic flow data 

and ocellar sensor data, chapter 5 presents conclusion & future work. 

Additionally, appendix B discusses an ultraviolet vision approach and presents experimental data to 

understand the sky-ground discrimination in ultraviolet wavelengths. 
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Chapter 2: Background 

 

Figure 1: Insect Compound Eye and Ocelli (image from [2]) 

 

Structure and Function of Compound Eye 

The compound eyes and ocelli are shown in Figure 1, head of a flying insect (Polistes).  The structure 

of compound eyes (large, two on the sides) is seen in Figure 2. The compound eyes are composed of 

units called ommatidia. Each ommatidium unit functions as a separate visual receptor, consisting of a 

lens, cornea, a crystalline cone, light sensitive visual cells and pigment cells (Figure 3). There may be 

up to 30000 ommatidia in a single compound eye. The image perceived is a combination of inputs 

from ommatidia pointing at slightly different directions (as seen in Figure 2, ommatidia units make up 

a conic surface). A mosaic-like vision of the environment is rendered [5, 6]. 
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Figure 2: Structure of Compound Eye (image from [3]) 

 

Figure 3: Structure of Ommatidium (image from [4]) 

 

 

Figure 4: Ommatidia to Brain 

Vision process starts at ommatidia. Ommatidia photoreceptors capture patterns of luminance from the 

visual environment. The captured signal is conditioned through lamina plate. The output of lamina is 
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thought to be the input to medulla [7,8]. The medulla outputs optic flow-like patterns to lobula, and 

lobula processes these outputs [9, 10, 11, 12, 13]. Figure 4 shows an illustration from ommatidia to 

lobula plate. The output signals of lamina neurons are segregated into different pathways, performing 

functions such as color discrimination, motion detection and intensity encoding. Neurons responding to 

motion are found in lobula. They are thought to receive inputs from hypothetical neural elements 

called Reichardt Detectors, or (elementary motion detectors (EMDs)) residing in medulla and 

calculating motion from the pixel-based information with a mechanism called Reichardt correlation 

[14]. This hypothetical mechanism is proposed to understand how a neuron, which is only receiving 

luminance input, is able to compute motion. The key components of this algorithm are two inputs (red, 

as photoreceptors), a time delay on one input (d), and multiplication on correlated signals. 

 

Figure 5: Schematic of Elementary Motion Detector (image from [15]) 

 

1. Photons from a visual scene move from left to right. 

2. Photons activate the first receptor 

3. The signal from the first receptor is delayed with d as the photons move to the second receptor 

4. Photons activate the second photoreceptor. Both delayed signal (from first receptor) and un-

delayed signal (from second receptor) converge simultaneously onto a multiplication stage, 

producing a signal related to direction of motion. Conversely, photons passing from right to 
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left will output zero for the opposite direction, since there is no delay component that will 

delivers simultaneous inputs to multiplication stage. 

Structure and Function of Ocelli 

Ocelli differ from the compound eye in having only a single lens covering an array of photoreceptors, 

seen in Figure 6. Ocelli are found in the frontal surface of the head of many insects. Ocelli tend to be 

larger in flying insects (bees, dragonflies, locusts). They are typically found as a triplet. Two lateral 

ocelli are found in the left and right of the head, while a median ocellus is directed frontally. 

 

Figure 6: Ocellus Cross Section (image from [16]) 

Various studies have been conducted to reveal the function of ocelli, for different insects. Although it 

is called an ‘eye’, ocellus is claimed to be under-focusing the image, hence showing hardly any image 

details for a locust. In contrast to the ‘under-focusing’ information for locust,  [17] suggests that 

dragonfly ocellus, which is believed to have a highly evolved ocellus, is able to detect some image 

details.  

It is also suggested that the temporal and spatial filtering characteristics of locust ocelli neurons are 

well suited to detect instability in flight [18, 19]. The stabilization in flight studies were summarized in 

[20], most of which are conducted by releasing dragonflies with ablated ocelli. Dragonflies show 

unstable flight attitudes without ocelli.  [21] evaluates the flight behavior of bees with and without 

occluded ocelli, stating that normal bees (without occlusion) show quicker flight behaviors. 
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Another characteristics of ocellus is reported as the higher photic sensitivity, compared to compound 

eye ( 18] for locusts and [22] for bees). This information is useful if we think of the ocelli as 

integrators of the overall intensity or a blurred visual field. If the photic sensitivity is high, small 

changes in light intensity will be sensed. Taking into account that the images sensed by the ocelli are 

highly blurred, ocelli should be concerned with the overall image intensity. [23, 24] for dragonflies and 

[25] for locusts claim that ocelli are rotation detectors important for gaze stabilization. [26] also shows 

gaze stabilization cues by the ocelli. The beginning and end of daily activities of insects depend on 

light intensity. [22] for bees, [27] for crickets, and [28, 29,30] for moths claim that the ocelli perceive 

low light intensity to control daily activities. 

Compared to ocelli, compound eyes offer a panoramic field of view and high temporal resolution, with 

optic flow computation abilities [31, 32, 33]. These features are beneficial for tasks like visually 

guided navigation, e.g. obstacle avoidance, landing strategy, saccade response, hovering strategy 

clutter response, collision response and  fixation strategy, each of which are described in [34] with 

specific test setups for bees and drosophilae. 

Prior Work Inspired by Insect Ocelli  

Because of the prominent computation advantages, simplicity and applicability to small-scale world, 

ocelli-inspired vision sensors have been developed by many groups. These implementations mainly 

focus on closed-loop attitude control, outputting pitch and roll angle. [35] presents a simulation model 

of an autonomous agent flying through a virtual environment with a daylight sky model. It uses over 

two hundred receptors to detect local intensities. These receptors are distributed evenly between 

adjacent directions on agent body coordinate system. The average intensity difference between two 

directions are computed to estimate the roll angle. Subsequently, a simulation of an eye model with a 

special receptor distribution was presented in a virtual environment in [36]. The ocelli-like ‘wide-field 

measurement units’ that use a locally weighted intensity as receptor response are subtracted in adjacent 

directions. Using elementary motion detector (described in Compound Eye section) and ocelli outputs, 
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optimal receptive fields for attitude estimation, yaw rotations and nearness are derived. [37] 

implements ocelli, haltere (an organ responsible for balance in flying insects), optic flow and magnetic 

flow sensors for a micromechanical flying insect. These sensors were used to estimate body attitude 

relative to a fixed frame, body rotational velocities, obstacle avoidance and heading adjustment, 

respectively. The ocelli consist of four photodiodes, arranged in a pyramidal configuration. The two 

output signals are obtained by subtracting the opposite photodiode outputs. [38] uses this 

implementation and proposes a stabilizing attitude control law for a sinusoidal intensity function. [39] 

demonstrates an embedded implementation of ocelli-like sensor. It uses the difference between 

ultraviolet and green photodiode signals to obtain attitude estimation, stating that this reduces the 

biasing effect of clouds and the sun.  [40] uses a camera to track a reference heading point and 

performs gaze stabilization by using the difference between reference and instantaneous heading 

signal. [41] uses camera images that are classified by the intensity information in YUV (luminance, 

blue, red)  channel into sky and ground regions to estimate roll and pitch angles. [42] uses four 

ultraviolet/green photodiode pairs to detect attitude angle and demonstrates roll attitude tracking on an 

aircraft. [43] proposes an ocelli-based sensor, which is also used in this work, to output roll and pitch 

rate, rather than angle. This sensor is used for the frequency characterization in chapter 3. 
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Chapter 3: Frequency Domain Characterization of An Ocellar 

Sensor and Optic Flow 

Introduction 

Gremillion et al. [43] present experimental data that utilizes the complementary response of an analog 

ocellar sensor and a commercial optic flow sensor. Inspired by this complementary response 

information and cues from insect ocelli and compound eye complementary task mechanism, we 

designed a test platform that generates rotational motion to characterize the frequency-domain 

response of both optic flow and an ocellar sensor, and gathers information from different sources such 

as motor controller, microcontroller and gyroscope. The optic flow is computed using the images 

collected by a camera and fisheye lens. A MEMS gyroscope and a ViconTM motion detection system 

are used as ground truth. This chapter discusses the ocelli and optic flow frequency response 

characteristics and the performance parameters for the ocelli and optic flow computation. 

Ocellar Sensor 

The ocellar sensor (based on work by Gremillion et al., [43]) gives roll and pitch rate estimates using 

the luminance change sensed by right-left or front-back photodiode pairs. The luminance signals from 

left (aft) and right (front) photodiodes are band-pass. The high-pass filter portion serves as the 

differentiator element, to estimate rate information introduced by luminance change. The high-

frequency cutoff was added to reject the flickering noise for indoors usage. The filtered signals from 

the photodiodes are antagonistically subtracted from each other (left-right or front-back), to obtain roll 

and pitch rate estimates. The overall circuit schematics are shown in Figure 7 and the circuit 

components are listed in Table 1. 
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Figure 7: Circuit schematics of the three stage ocellar sensor. TSL14S photodiode outputs are band-pass filtered 

and antagonistically subtracted. Pitch rate (front-back) is inverted for sign change. 
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Table 1: Circuit Components 

Component Value/Part Number 

R1,3,9,11 1.1kΩ 

R5,6,7,8,13,14,15,16,17,18,19,20 1 kΩ 

R2,4,10,12 20 kΩ 

C1,3,6,8 1μF 

C2,4,7,9 470nF 

Operational Amplifier ISL28208 

Photodiode TSL14S 

Vdd 5V 

 

The circuit consists of three stages:  

1. Light-to-Voltage Conversion 

Light-to-voltage conversion by a TSL14S optical sensor [91] that combines a photodiode and a trans-

impedance amplifier. The sensor has a wide-band spectral response characteristics between 320-1050 

nm. Its peak output is at 640nm. The output voltage from this element is the electrical equivalent of 

luminance seen by the photodiode. 

2. Band-Pass Filtering 

This stage consists of an active band-pass filter with a designed high-pass cutoff at 17 Hz and low-pass 

cutoff at 145 Hz (See Figure 8). 
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Figure 8: Band-pass filter, with high-pass cutoff at 17 Hz and low-pass cutoff at 145 Hz. 

 

The input-output relationship of a high-pass filter is modeled as: 

𝑉𝑜(𝑡) = −𝑅𝑓𝐶𝑠
𝑑

𝑑𝑡
(𝑉𝑖(𝑡))            (1) 

The input voltage is the luminance value from TSL14S package. The output voltage approximates the 

luminance time rate of change. The function of the low-pass filter is to attenuate high-frequency noise. 

The final band-pass filter transfer function is in equation (2). 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=

𝑠𝐶𝑠𝑅𝐹
𝑠2𝐶𝐹𝑅𝐹𝐶𝑆𝑅𝑆 + 𝑠(𝐶𝐹𝑅𝐹 + 𝐶𝑆𝑅𝑆)+ 1

               (2) 

 

The characteristic quantities of this second order transfer function are the low-pass cutoff frequency 

𝜔𝐿, high-pass cutoff frequency 𝜔𝐻 and maximum input-output gain 𝐴𝑚𝑎𝑥, specified in Table 2. 

Table 2: Band-Pass Filter Characteristics 

𝜔𝐿 =
1

𝑅𝐹𝐶𝐹
 

106 rad/s (16.9 Hz) 

𝜔𝐻 =
1

𝑅𝑆𝐶𝑆
 

909 rad/s (145 Hz) 
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𝐴𝑚𝑎𝑥 =
−𝑅𝐹
𝑅𝑆

 
-18.2 

 

3. Linear combination stage:  

This stage includes a difference amplifier to subtract right-left filter outputs and front-back filter 

outputs. The difference amplifier output from the right-left inputs estimates the roll rate. The difference 

amplifier output from the front-back inputs is inverted (for sign change) by an inverting amplifier. 

Inverting amplifier output estimates the pitch rate (See the blocks in Figure 9). 

 

Figure 9: Subtractor and inverter: Subtractor is used for antagonistic subtraction of filtered signals. Inverter is used 

for sign change for pitch rate. For equal resistors in both blocks, direct subtraction and direct inversion is satisfied. 

For R1,2,3,4,5,6 =1kΩ, the outputs Vo_diff and Vo_inv  are modeled as: 

𝑉𝑜_𝑑𝑖𝑓𝑓 = 𝑉𝑖2 −𝑉𝑖1         (3) 

𝑉𝑜_𝑖𝑛𝑣 = −𝑉𝑖                   (4) 

The band-pass filter was simulated (Figure 10) using the macro model of the ISL28208 operational 

amplifier in the Tina TI SPICE-based simulation program. The simulated circuit and AC transfer 

characteristics for frequencies between 1 mHz and 1 Megahertz is seen in Figure 11. According to the 

simulation (due to the zero in the denominator of the transfer function) the amplitude is increases by 

20dB/decade until it hits the first pole. The high-pass -3dB frequency is seen as 13 Hz. The maximum 

amplitude is 5.58dB around 55 Hz. The low-pass -3dB frequency is seen as 175 Hz.  
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Figure 10: Simulated circuit in TI TINA Simulation Software. 

 

 

Figure 11: Band-pass filter simulation results: 13.78 Hz high-pass cutoff and 174 Hz low-pass cutoff is observed. 

Phase starts at -90⁰ at 1 mHz and reaches to -270⁰ at 100 kHz. 

Mathematical Model for the Ocellar Sensor 
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Figure 12: Mathematical Model and Assumptions: Photodiode in rotational motion sees the arbitrary luminance 

pattern as its azimuthal angle varies. 

 

With reference to Figure 12, the variables used to explain the ocellar sensor are as follows: 

𝛾: 𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑎𝑛𝑔𝑙𝑒 of the photodiode. 

𝜑: 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

∅: 𝑃ℎ𝑜𝑡𝑜𝑑𝑖𝑜𝑑𝑒 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 

𝜗 =
𝑑𝛾

𝑑𝑡
= 𝛾̇: 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑒𝑒𝑑 

𝐿(𝛾): 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒, 𝑎𝑠𝑠𝑢𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐  

𝛼: 𝐿𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 

The test setup has a DC spotlight source, which acts as ‘the sun’. For simplicity, luminance is modeled 

as a rectangular function with fixed edges from - 𝛼/2 to 𝛼/2. Photodiode field of view is also modeled 

as a rectangular function with edges at field of view edges, −∅/2 to ∅/2 

ℎ(∅, 𝛾): 𝑃ℎ𝑜𝑡𝑜𝑑𝑖𝑜𝑑𝑒 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑑𝑒𝑙𝑒𝑑 𝑎𝑠 𝑎 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑖𝑙𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑒𝑑𝑔𝑒𝑠 𝑎𝑡

− ∅/2 𝑎𝑛𝑑 ∅/2  
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𝜌: 𝑃ℎ𝑜𝑡𝑜𝑑𝑖𝑜𝑑𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑡𝑜 𝑏𝑎𝑛𝑑𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟) 

∗: 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

The photodiode integrates the luminance in its field of view, as ℎ(∅, 𝛾) 

𝜌 = ∫ 𝐿(𝛾)𝑑𝛾 = 𝐿(𝛾)  ∗ ℎ(∅, 𝛾) = 𝐿ℎ(𝛾)        (5)
𝐹𝑂𝑉

 

Let 𝐿ℎ(𝛾) be a photodiode output taken at the azimuth angle 𝛾. While the circuit is in rotational motion 

with angular speed 𝜗, this photodiode output becomes  𝐿ℎ(𝛾 − 𝜗𝑡) at time t. Thus, the photodiode 

output encodes both spatial (𝛾) and temporal (𝜗𝑡) information.  

𝐿ℎ(𝛾) → 𝐿ℎ(𝛾 − 𝜗𝑡)            (6) 

Since the photodiode output is in two domains, the Fourier transform with respect to both spatial and 

temporal variables should be taken in order to express it in Fourier domain. 

𝐿ℎ(𝛾, 𝑡): 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 

𝐿ℎ̂(𝑓𝛾, 𝑓𝑡): 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝐿ℎ(𝛾, 𝑡)  

𝐿ℎ(𝛾 − 𝜗𝑡)
𝐹𝑇𝛾,𝑡
⇔  𝐿ℎ̂(𝑓𝛾, 𝑓𝑡)       (7) 

Properties used: 

Shifting property in time/space and Fourier domain: 

𝑥(𝛾 − 𝛽)
𝐹𝑇𝛾
⇔ 𝑋̂(𝑓𝛾)𝑒

−𝑗2𝜋𝑓𝛾𝛽      (8) 

Convolution: 

𝑥(𝛾) ∗ 𝑦(𝛾)
𝐹𝑇𝛾
⇔ 𝑋̂(𝑓𝛾)𝑌̂(𝑓𝛾)      (9) 

 

1) Taking the Fourier transform with respect to spatial variable 𝛾: 

𝐿ℎ(𝛾 − 𝜗𝑡)
𝐹𝑇𝛾
⇔ 𝐿ℎ̂(𝑓𝛾)𝑒

−𝑗2𝜋(𝜗𝑓𝛾)𝑡          (10) 

2) Then, taking the Fourier transform with respect to temporal variable t gives the frequency 

domain of a rotational motion: 

𝐿ℎ̂(𝑓𝛾, 𝑓𝑡) = 𝐿ℎ̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)          (11) 

 

𝑇ℎ𝑢𝑠, 

 

𝐿ℎ(𝛾 − 𝜗𝑡)
𝐹𝑇𝛾,𝑡
⇔  𝐿ℎ̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)          (12) 
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This means that all the energy of the rotating photodiode output is contained in a plane of the spatio-

temporal frequencies domain  [44,45]. The equation of this plane is: 

𝑓𝑡 + 𝜗𝑓𝛾 = 0         (13) 

Figure 13 shows a representation of a rectangular luminance function 𝐿ℎ(𝛾 − 𝜗𝑡)~𝑟𝑒𝑐𝑡(𝑥, 𝑡) with 

space and time axis (𝛾 x). A rectangular pulse in space rect(x) has sinc form in frequency domain: 

𝑟𝑒𝑐𝑡(𝑥)
𝐹𝑇𝑥
⇔ 
sin(𝜋𝑓𝑥)

𝜋𝑓𝑥
         (14) 

The corresponding frequency spectrum of this moving pulse is given as the black curve in the figure 

13. It appears as a cut of spatial spectrum 
sin (𝜋𝑓𝑥)

𝜋𝑓𝑥
 by a wall of Dirac situated in the direction of  𝑓𝑡 +

𝜗𝑓𝑥 = 0  (for this case, 𝑓𝑡 + 𝜗𝑓𝛾 = 0) 

 

Figure 13: Frequency spectrum of a rectangular in spatio-temporal domain:  (Left) Example of a moving 1-D 

spatial rectangular shape, moving in the spatio-temporal domain. (Right) Its spatio-temporal frequency spectrum  

(black curve) as a ‘cut’ of the purely spatial Fourier transform of the rectangle by a ‘Wall of Dirac’. Image taken 

from [46]] 

Overall, 

𝐿ℎ̂(𝑓𝛾 , 𝑓𝑡) = 𝐿ℎ̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)           (15) 

(15) represents the photodiode output given as input to the band pass filter in the circuit. Band-pass 

filtering  is a temporal process, thus the band pass function has only temporal variable. Let the band 

pass filter transfer function in time and Fourier domain be defined as: 

𝐵𝑃𝐹(𝑡)
𝐹𝑇𝑡
⇔ 𝐵𝑃𝐹̂(𝑓𝑡)  𝑜𝑟 𝐵𝑃𝐹̂(𝑠)           (16)    

From the ocellar sensor section 𝐵𝑃𝐹̂(𝑠) is defined as 
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𝐵𝑃𝐹̂(𝑠)  =  
𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=

𝑠𝐶𝑠𝑅𝐹
𝑠2𝐶𝐹𝑅𝐹𝐶𝑆𝑅𝑆 + 𝑠(𝐶𝐹𝑅𝐹 + 𝐶𝑆𝑅𝑆) + 1

             (17) 

The output of the band pass filter can be written as: 

𝐿ℎ,𝐵𝑃𝐹(𝛾, 𝑡) = 𝐿ℎ(𝛾 − 𝜗𝑡) ∗ 𝐵𝑃𝐹(𝑡)             (18) 

The Fourier transform of the output becomes: 

𝐿ℎ,𝐵𝑃𝐹(𝛾, 𝑡)
𝐹𝑇𝛾,𝑡
⇔  𝐿ℎ,𝐵𝑃𝐹̂(𝑓𝛾, 𝑓𝑡)            (19) 

𝐿ℎ(𝛾 − 𝜗𝑡) ∗ 𝐵𝑃𝐹(𝑡)
𝐹𝑇𝛾,𝑡
⇔   𝐿ℎ̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)𝐵𝑃𝐹̂(𝑓𝑡)           (20)  

This output represents the luminance output filtered by one photodiode. Assume another photodiode is 

has a different azimuth angle, 𝛾 − 𝛽, offset by 𝛽 from the first photodiode. The luminance perceived 

by it will be: 

𝐿ℎ,𝛽(𝛾 − 𝛽 − 𝜗𝑡)
𝐹𝑇𝛾,𝑡
⇔   𝐿ℎ,𝛽̂(𝑓𝛾 , 𝑓𝑡 , 𝛽)           (21) 

𝐿ℎ,𝛽,𝐵𝑃𝐹(𝛾, 𝑡, 𝛽) 
𝐹𝑇𝛾,𝑡
⇔  𝐿ℎ,𝛽,𝐵𝑃𝐹̂ (𝑓𝛾 , 𝑓𝑡 , 𝛽)           (22) 

𝐿ℎ,𝛽̂(𝑓𝛾, 𝑓𝑡 , 𝛽) = 𝐿ℎ,𝛽̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)𝑒
−𝑗2𝜋𝑓𝛾𝛽           (23) 

After band pass filtering, the Fourier transform of the second output becomes: 

𝐿ℎ,𝛽,𝐵𝑃𝐹̂ (𝑓𝛾, 𝑓𝑡 , 𝛽) = 𝐿ℎ,𝛽̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)𝑒
−𝑗2𝜋𝑓𝛾𝛽𝐵𝑃𝐹̂(𝑓𝑡)            (24) 

The difference amplifier implements direct subtraction between two band pass filter outputs as the roll 

rate estimation. Let the roll rate be denoted as p(𝛾,t) 

p(𝛾, t) = 𝐿ℎ,𝐵𝑃𝐹(𝛾, 𝑡) − 𝐿ℎ,𝛽,𝐵𝑃𝐹(𝛾, 𝑡)           (25) 

p(𝛾, t)
𝐹𝑇𝛾,𝑡
⇔  P̂(𝑓𝛾, 𝑓t)           (26) 

P̂(𝑓𝛾 , 𝑓t) = 𝐿ℎ,𝐵𝑃𝐹̂(𝑓𝛾, 𝑓𝑡) − 𝐿ℎ,𝛽,𝐵𝑃𝐹̂ (𝑓𝛾, 𝑓𝑡 , 𝛽)

= 𝐿ℎ̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)𝐵𝑃𝐹̂(𝑓𝑡) − 𝐿ℎ,𝛽̂(𝑓𝛾)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)𝑒
−𝑗2𝜋𝑓𝛾𝛽𝐵𝑃𝐹̂(𝑓𝑡)

= 𝐵𝑃𝐹̂(𝑓𝑡)𝛿(𝑓𝑡 + 𝜗𝑓𝛾)[𝐿ℎ̂(𝑓𝛾) − 𝐿ℎ,𝛽̂(𝑓𝛾)𝑒
−𝑗2𝜋𝑓𝛾𝛽]           (27) 

Thus, the circuit output depends on: 

 Photodiode field of view 
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 Band pass filter characteristics 

 Luminance function 𝐿(𝛾) 

 Photodiode angular separation 𝛽 

The photodiode field-of-view and band pass filter characteristics are inherent in the circuit under test 

and these variables are fixed. We have control of the luminance function 𝐿(𝛾) and photodiode angular 

separation 𝛽. The luminance function is also dependent on the light intensity (or, the input power given 

to light source).  

Optic Flow Computation 

Optic flow is an approximation of apparent motion of brightness patterns observed when an observer 

(i.e. camera) is moving relative to the objects it images. Optic flow methods try to calculate where  a 

pixel in image A goes to in a consecutive image B. In two-dimensions (2-D), optic flow specifies how 

much a pixel of an image moves between adjacent series [47]. The basis of optic flow is the brightness 

constancy equation, which eventually forms the 2D motion constraint.  

Assume that I(x,y,t) is the intensity of pixel positioned at location (x,y) in a frame taken at time t. In 

the frame taken at time (t+Δt), this pixel moves to the location (x+Δx, y+Δy) (See Figure 14). 

 

Figure 14: Optic flow vector for a pixel between two consecutive frames 

 

Assuming the brightness of the pixel does not change over time; 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡)           (28) 

Performing 1st order Taylor Series expansion about I (x, y, t): 
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𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) = 𝐼(𝑥, 𝑦, 𝑡) +
𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠      (29) 

Assuming very small motion and ignoring the higher order terms, 

𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡 = 0         (30) 

Dividing everything by ∆𝑡: 

𝜕𝐼

𝜕𝑥

∆𝑥

∆𝑡
+
𝜕𝐼

𝜕𝑦

∆𝑦

∆𝑡
+
𝜕𝐼

𝜕𝑡

∆𝑡

∆𝑡
= 0        (31) 

Denoting: 

𝜕𝐼

𝜕𝑥
= 𝐼𝑥 ,   

𝜕𝐼

𝜕𝑦
= 𝐼𝑦 ,   

𝜕𝐼

𝜕𝑡
= 𝐼𝑡            (32) 

∆𝑥

∆𝑡
= 𝜗𝑥          

∆𝑦

∆𝑡
= 𝜗𝑦 

               𝐼𝑥𝑉𝑥 + 𝐼𝑦𝑉𝑦 + 𝐼𝑡 = 0            (33) 

Here, 𝑉𝑥  and 𝑉𝑦 are the x and y components of optic flow (for the motion described in Figure 14). The 

equation can be written more compactly as:  

(𝐼𝑥 , 𝐼𝑦) ∙ (𝜗𝑥 , 𝜗𝑦) = 𝐼𝑡            (34) 

∇𝐼 ∙ 𝜗 = −𝐼𝑡      (35) 

where ∇𝐼 = (𝐼𝑥 , 𝐼𝑦) is the spatial intensity gradient and 𝜗 = (𝜗𝑥, 𝜗𝑦) is the velocity of the pixel (x,y) at 

time t. Equation 35 is called the 2D motion constraint equation. This equation has two unknowns 

(𝜗𝑥, 𝜗𝑦), which relates to the aperture problem. If the motion detector’s aperture is much smaller than 

the contour it observes,  it can be only sensitive to the component of the contour’s motion that is 

perpendicular to the edge of the contour. It is blind to any motion parallel to the contour. This is 

because the movement in this direction will not change the appearance of anything within the aperture. 

To find optic flow vectors, additional equations are needed. Many optic flow computation methods 

focus on additional constraints that attempt to recover the optic flow vectors. [48] assumes that the 

displacement of the image contents between two frames is constant within a neighborhood of a point 
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under consideration. [49] assumes smoothness in the flow over the whole image and prefers solutions 

which show more smoothness.  

For the Lucas-Kanade motion algorithm [48], the 2D motion constraint equation is assumed to hold for 

all pixels within a window centered at p. This means that the motion constraint equation holds for all 

the pixels in a window with the same unknowns  𝜗 = (𝜗𝑥, 𝜗𝑦). This set of equations bring an over-

determined system that has more equations than unknowns: 

𝐼𝑥  (𝑞1) 𝜗𝑥 + 𝐼𝑦  (𝑞1) 𝜗𝑦 = −𝐼𝑡  (𝑞1) 

𝐼𝑥  (𝑞2) 𝜗𝑥 + 𝐼𝑦  (𝑞2) 𝜗𝑦 = −𝐼𝑡  (𝑞2) 

……                 ……               …… 

……                 ……               …… 

……                 ……               …… 

𝐼𝑥  (𝑞𝑛) 𝜗𝑥 + 𝐼𝑦 (𝑞𝑛) 𝜗𝑦 = −𝐼𝑡  (𝑞𝑛) 

Where  𝑞1, 𝑞2, …..𝑞𝑛 are the pixels inside the window. In matrix form: 

𝐴𝜗 = 𝑏 where, 

𝐴 =

[
 
 
 
𝐼𝑥  (𝑞1) 𝐼𝑦 (𝑞1)

𝐼𝑥  (𝑞2) 𝐼𝑦 (𝑞2)

⋮ ⋮
𝐼𝑥  (𝑞𝑛) 𝐼𝑦  (𝑞𝑛)]

 
 
 

 

𝜗 = [
𝜗𝑥
𝜗𝑦
] 

𝑏 = [

−𝐼𝑡  (𝑞1)
−𝐼𝑡  (𝑞2)
⋮

−𝐼𝑡  (𝑞𝑛)

] 

Least squares principle can be applied to solve this over-determined system: 

𝐴𝑇𝐴𝜗 = 𝐴𝑇𝑏            (36) 

𝜗 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏           (37) 
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[
𝜗𝑥
𝜗𝑦
] =

[
 
 
 
 ∑𝐼𝑥  (𝑞𝑖)

2

𝑖

         ∑𝐼𝑥  (𝑞𝑖)𝐼𝑦  (𝑞𝑖)

𝑖

       ∑ 𝐼𝑦 (𝑞𝑖)𝐼𝑥(𝑞𝑖)

𝑖

∑𝐼𝑦 (𝑞𝑖)
2

𝑖 ]
 
 
 
 
−1

[
−𝐼𝑥  (𝑞𝑖)𝐼𝑡  (𝑞𝑖)

−𝐼𝑦  (𝑞𝑖)𝐼𝑡  (𝑞𝑖)
]       (38) 

Optic flow vectors 𝜗𝑥 and 𝜗𝑦 are searched in a tracking window and the best match is found using the 

least squares method. This system is solvable if 𝐴𝑇𝐴 is invertible. The eigenvalues of 𝐴𝑇𝐴 

(𝜆1, 𝜆2 𝑤ℎ𝑒𝑟𝑒 𝜆1 > 𝜆2 ) should not be too small, and 𝐴𝑇𝐴 should be well-conditioned (
𝜆1

𝜆2
 should not be 

too large), so 𝜆1 > 𝜆2 should be somewhat similar to each other in magnitude. In other words, very 

small eigenvalues are interpreted as ‘flat surfaces’, eigenvalues 𝜆1 ≫ 𝜆2 or 𝜆1 ≪ 𝜆2 are interpreted as 

‘edges’. Optimum eigenvalues should be large enough and have similar amplitude [50]. 

One drawback of the Lucas-Kanade algorithm is that it theoretically fails for large motions. If the 

motion is too large, higher order terms may dominate the equation (29) (The 1st order Taylor Series 

Expansion). Reducing the image resolution may solve this issue. A pyramidal approach is available to 

convert large motions to small motions [51] 

Different optic flow computation methods can be described as either ‘dense’ and ‘sparse’. From a 

performance point of view, dense computation methods (e.g. [49] and [52]) that process all of the 

pixels in the image are slow for real-time applications. Instead, sparse techniques (i.e. [48]) only 

process the pixels of interest. For real-time applications that use optic flow computation to feed the 

current state of an object back to a control loop, sparse techniques may be preferred over dense 

techniques due to faster computational performance (and thus higher sampling rate). In practice, we 

achieved 60 frames-per-second (fps) using the Lucas-Kanade algorithm but only 13 fps for the 

Farneback algorithm (376*240 pixels 8-bit monochromatic image sequence). For this work, the Lucas-

Kanade algorithm is used with pre-defined feature points distributed over the imagery. The feature 

points are the center pixel points to run the Lucas Kanade algorithm for determining an optic flow 

vector. As the number of feature points increase, the number of optic flow vectors increase. The x-

component of optic flow vectors are summed to obtain a single optic flow value. 
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Experimental Setup 

In general, from Figure 15, the optic flow experienced by an imager is [34]:  

𝑂𝑝𝑡𝑖𝑐 𝐹𝑙𝑜𝑤 = −𝜔 + (𝑉/𝐷) 𝑐𝑜𝑠𝜃           (39) 

where 𝜔 is the angular and 𝑉 is the translational velocity of the vehicle, D is the distance to an object, 

𝜃 is the angle between direction of travel and direction of object. If the translational component (V) is 

zero, optic flow is proportional to the angular velocity.  

 

 

Figure 15: Optic flow during rotational and translational motion: Without translational component (V), optic flow 

is an estimate of only angular velocity (ω). 

A mechanism was constructed to characterize optic flow and ocellar sensor over 0.1-10Hz rotational 

mechanical input. Figure 16 shows the illustration of the test setup; Figure 17 shows the scene the 

camera sees; Table 3 shows the system components and Figures 18 and 19 show the general and close-

up view of the components. The block diagram of the system is shown in Figure 20. 

 



 

 

24 

 

 

Figure 16: Illustration of Test Setup: Light source has its own DC supply to avoid issues of flickering. Information 

from camera, MCU, gyro, ADC are transferred to the host computer via a USB hub. 

 

Figure 17: Camera scene (376*240 pixel image).  DC light source is not in the field of view of the camera. 

Camera is moving along the x-direction 

 

Table 3: Experiment Components 

Equipment Model/ Manufacturer 

Light Source LED1 OOWA-56 LED Video Light 
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Light Source Supply GW-Instek-PSW-8027 Programmable Switching DC Power Supply 

Motor Animatics Smartmotor SM2340D 

Motor Supply PS42V6AG-110, 251 W, Moog, Animatics 

Signal Generator Tektronix AFG3252 

Camera UEYE UI-1221LE-M-GL USB 2.0,752x480, CMOS mono, 87.2 fps, 8-bit 

Lens Sunex DSL227 Miniature Superfisheye Lens, 180⁰ Field of view (FOV) 

Microcontroller Arduino UNO 

ADC MCP3008 8-channel 10-bit ADC with SPI 

USB Hub Hosa Technology 

Gyroscope Pololu MinIMU-9 v3 chip contains L3GD20H 3-axis gyro 

 

 

Figure 18: Overall test setup: Ocellar sensor is positioned in front of light source. Motor is giving rotational 

motion to the setup along its shaft axis.  The motor shaft is in vertical orientation, moving the components on it. 
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Figure 19: Test setup components: Camera sees the scene shown in Figure 17. Camera on the right is not used due 

to performance issues. 

All data is stored in a laptop running Ubuntu 14.04 environment. Robot Operating System (ROS) 

environment us used to implement robot software. ROS is an open-source network for writing robot 

software, including a collection of tools, libraries and conventions. It allows for compact storage and 

data publishing from multiple peripherals. For this system, each component is represented by a 

different ROS ‘node’, that allows for the compilation of multiple C++ files and stores data in a ‘bag’ 

file. Once the data is collected, the bag file is ‘unbagged’ and parsed to extract the data. 

To record the ocellar sensor analog voltage outputs, an analog-to-digital converter (ADC) board is 

used. For ground truth, an 16-bit gyroscope is also used. The ADC board (MCP3008) communicates 

with the Arduino UNO microcontroller via serial peripheral interface (SPI). Gyroscope communication 

is through inter-integrated circuit technology (I2C). The microcontroller is programmed in C language. 

It reads ADC and gyroscope outputs, parses the values into most significant (MSB) and least 

significant (LSB) bytes. Each sample consists of one MSB and one LSB (i.e., a two byte word). A 

message is created (See Figure 21) with two header bytes to be sent to the laptop via serial 
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communication at 115200 bps. A 15 microsecond delay is added between each byte sent to allow  the 

receiver buffer to be cleared to avoid overwriting. 

 

Figure 20: System block diagram: All the data collected is stored in laptop. 

 

Figure 21: Serial message structure from ocelli to microcontroller: It includes two header, ocelli data and gyro data 

bytes. 

The servo motor can be operated in either position or velocity mode. Velocity mode does not offer 

control in position. Motor is controlled by sending serial messages in Ani-Basic language. The 

command information and serial communication are specified in [53].  For both position and velocity 

modes, specific trajectory files are created in Matlab that include velocity/position trajectory (e.g. sine 

wave, square wave), and acceleration information. These trajectories are recorded as text files and read 

by a C++ code that communicates with the motor in Ani-Basic Language via serial communication at 

115200 bps. The commanded position, velocity, acceleration and real-time position, velocity, 

acceleration values can be read back from the motor controller. Reading the motor values allowed us to 

validate the gyroscope output and to see whether the ocelli circuit is in desired position or not. To  
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measure frequency response characteristics, concatenated sine waves are sent as velocity trajectory at 

different frequencies at velocity mode. To understand the ocellar sensor validity (explained in the next 

section), step inputs are sent at position mode. 

After storing the gyro, ocelli, ViconTM and raw imagery data in a bag file, post-processing is 

summarized in Figure 22. Using the raw imagery in the bag file, optic flow field vectors are computed 

with another C++ code, using OpenCV Lucas- Kanade Algorithm. A text file is generated that includes 

the time stamps and optic flow x & y vectors for each image. For the other data, the bag file is 

unbagged and parsed to extract the ocelli, gyro, ViconTM, motor data and related timestamps. Optic 

flow vectors generated from Lucas Kanade algorithm are  also parsed. The text file contains 60 fps 

optic flow information. To obtain lower frame rate results, the optic flow values are down-sampled to 

factors of 60. Since we have data coming from different sources at different sampling rates, 

synchronization is necessary using a common time vector. A common time vector for all data is 

created with the lowest sampling time possible, which is the microcontroller sampling time, 0.003 

seconds. All data is interpolated using this time vector.  

Since the communication modules are developed for embedded platforms, it will not take much effort 

to transfer this system to on-board computers used on quadrotor helicopters (quadcopters) through 

Secure Shell (SSH). The time synchronization can be carried out with firmware that force one 

computer’s clock to follow another one (e.g. ‘chrony’ synchronization for ROS). 
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Figure 22: Post-processing block diagram: Optic flow vectors are computed and extracted as a text file. The bag 

file is parsed, interpolated and processed for data analysis. 

Magnitude-Squared Coherence 

The spectral coherence is a measure that can be used to examine the relation between two signals (or 

data sets). It is commonly used to estimate the power transfer between the input and output of a linear 

system. The magnitude-squared coherence between two signals x(t) and y(t) is defined as: 

𝐶𝑥𝑦(𝑓) =
|𝐺𝑥𝑦(𝑓)|

2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
     (39) 

Where 𝐺𝑥𝑦(𝑓) is the cross-spectral density between x and y, and 𝐺𝑥𝑥(𝑓), 𝐺𝑦𝑦(𝑓) are the auto-spectral 

density of x and y, respectively. If the signals are ergodic (statistical properties can be deduced from a 

sufficiently long process) and the system function linear, the magnitude-squared coherence function 

estimates the extent to which y(t) may be predicted from x(t) by an optimum linear least squares 

function [92]. The transfer functions and operations described for mathematical model of the system 

itself and ocellar sensor transfer characteristics are linear. Thus, we expect the system to be linear. The 

magnitude-squared coherence is added to the frequency response plots as a performance parameter 

showing linearity. 

For an ideally linear system: 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) ↔ 𝑌(𝑓) = 𝑋(𝑓)𝐻(𝑓)      (40) 

𝐺𝑦𝑦(𝑓) = |𝐻(𝑓)|
2𝐺𝑥𝑥(𝑓)        (41) 
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𝐺𝑥𝑦(𝑓) = |𝐻(𝑓)|
2𝐺𝑥𝑥(𝑓)       (42) 

𝐶𝑥𝑦(𝑓) =
|𝐻(𝑓)𝐺𝑥𝑥(𝑓)|

2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
=
|𝐻(𝑓)𝐺𝑥𝑥(𝑓)|

2

𝐺𝑥𝑥(𝑓)
2|𝐻(𝑓)|2

= 1        (43) 

 

Where ℎ(𝑡) is the impulse response and 𝐻(𝑓) is its Fourier Transform. 

Values of coherence satisfy 0 ≤ 𝐶𝑥𝑦(𝑓) ≤ 1. If there is perfect linear relationship between x and y at a 

given frequency, 𝐶𝑥𝑦(𝑓) = 1. If 𝐶𝑥𝑦 is less than one but greater than zero, it is an indication that either 

noise is an inherent component of the system measurement, that the assumed function relating x(t) and 

y(t) is not linear, or that y(t) is producing output due to input x(t) as well as other inputs. If the 

coherence is equal to zero, it is an indication that x(t) and y(t) are completely unrelated. 

In physical world, a perfect linear relationship is rarely realized. In practice, coherence values higher 

than 0.5 are acceptable for testing linear systems. For the experiments below, the coherence values dip 

down at specific frequencies, around 1-2 Hz, for all measurements. Although the input sine waves 

includes these frequencies, it is believed that the motor was not successful at implementing these 

frequencies. All of the final measurements include coherence values higher than 0.5, to be in a 

practically acceptable region. 

Ground Truth 

The first consideration for ground truth was the ViconTM motion detection system. However, its 

cameras strobe at frequencies 50-100Hz and use reflected infrared light that is strobed from a ring of 

LEDs surrounding each camera. The band-pass filter circuit is able to pick up these frequency 

components of the infrared light, resulting in the corruption of the output signal. Alternative ground 

truth options are the velocity readout from the servo motor controller and the gyroscope sensor. To 

choose one as ground truth, a chirp signal between 0.1 to 10 Hz was given to the motor as velocity 

input and the comparative responses of motor velocity readout and gyroscope were verified, with 

respect to the ViconTM system as input. The ideal response should be a flat curve. As seen in Figure 23, 
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the gyroscope provides a more flat magnitude very close to 0 dB, and less phase delay than motor 

velocity. The magnitude-squared coherence plot indicates a linear input-output relationship at an 

existing frequency. The gyroscope coherence is higher than motor velocity across all test frequencies, 

therefore, it is is regarded as ground truth for further analysis. The curves are shown up to 15 Hz to 

show the coherence decay outside the test frequencies. 

 

Figure 23: Motor velocity and gyro frequency response, as seen by ViconTM motion detection system as input: 

Frequencies after 10 Hz were shown to prove the decrease in coherence out of controlled motion frequencies. 

Gyroscope shows a flatter magnitude response and higher coherence than motor velocity, therefore it was chosen 

to be the ground truth. 

Understanding Ocellar Sensor ‘Valid Range’ 

The ocelli circuit is assumed to work under a specific luminance pattern to be an angular rate sensor. 

Assuming a bright sky and dark ground, when the photodiodes are looking to the sides, each of them 
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see a different horizon. One photodiode sees a brighter patch, while the other one sees a darker patch. 

For this algorithm to work, the luminance gradient from the sky to the ground should be constant and 

negative. We use a light source with a diffuser to create this artificial sky and horizons. The diffuser 

prevents the DC source from acting as a point source, by helping to distribute the light intensity along 

the diffuser surface. This way, light source acts as the sky, rather than the Sun. The photodiodes should 

see the two edges of the source as two horizons. This way, when a rotational motion is applied, 

brighter-darker patch assumption will be satisfied. The photodiodes should be bent towards the source 

to intersect their field of views. To understand whether an intersection is created, the azimuthal 

position of the motor is varied and the photodiode outputs are checked if they share an overlapping 

field of view. Figures 24 and 25 show the unbent and bent raw photodiode outputs, with respect to the 

azimuthal position of the motor. A partially overlapping field of view was achieved by bending the 

photodiodes towards the light source. 
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Figure 24: Unbent photodiode output vs. motor shaft azimuthal position: Photodiode outputs increase as they pass 

by the light source. Field of views are not overlapping. 
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Figure 25: Bent photodiode output vs. motor shaft azimuthal position: Photodiode field of views are partially 

overlapping, which is required for the ocellar sensor to work. In this (incorrect) configuration, there are angles 

where simulated roll motions do not produce any change in the photodiode outputs. 

 

Due to the small size of the light source and small field of view of the photodiodes (around 90⁰ each), 

the maximum swing of the motion stimulus needs to be small enough to ensure that the photodiode 

outputs are changing symmetrically with respect to each other. To understand the dynamic range 

circuit’s velocity, the azimuth was varied with small steps. For each position value, a target velocity 

was given to the motor and the circuit output was compared to the gyro output. For the region outside 

the light source dominance, the circuit outputs are not reliable. 
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Figure 26 shows a valid region (azimuthal position changes from -0.2 to 0.2 radians). In this range, 

photodiode outputs are symmetric to each other and the ocelli output directionally matches the gyro 

output. 

Figure 27 shows an invalid region (azimuthal position changes from -1.4 to -0.2 radians). In this range, 

photodiode outputs are not symmetric to each other. Ocelli is not in agreement with gyro. Using this 

data, the maximum displacement for the ocellar circuit is determined to be 1 radian. All of the 

following characterizations are done in this valid region. 

 

Figure 26: Ocelli in valid range: (Above) Symmetric photodiode raw output. (Below) Gyro and ocelli output for 

motor azimuthal position (-0.2 to 0.2 radians). Ocelli output is in agreement with gyro in this range. 
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Figure 27: Ocelli in invalid range: (Above) Asymmetric photodiode raw output. (Below) Gyro and ocelli output 

for motor azimuthal position (-1.2 to 0.2 radians). Ocelli output is not in agreement with gyro in this range. 

Ocellar Sensor Frequency Characterization 

Frequency characterization is done in two ways. First, to confirm the proper operation of the band-pass 

circuit, the raw photodiode output is used as input and filtered signal is used as output. Although the 

band-pass circuits can operate up to higher frequencies, the motor stimulus is limited to 10 Hz, only 

0.1-10Hz data is obtained for circuit’s motion characterization. To demonstrate that the photodiode and 

band-pass filter combination can operate at higher frequencies, an LED was driven by a signal 

generator between 3-100 Hz. 
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A second frequency characterization was done to compare the optic flow and ocelli outputs with the 

gyro as ground truth.. This provided us with information about how well the sensors operate within the 

motion frequencies, in comparison to each other with the same inputs. 

 

Circuit Frequency Characterization 

A chirp signal is given as a motor velocity command. Figure 28 shows the simulated circuit output, 

Figures 29 shows the right and left circuit frequency responses. Between 0.1-10Hz, the circuit 

simulation shows 20dB/decade increase in magnitude, starting from -38dB to 1 dB. The phase delay 

starts from -90 degrees and reaches to -125 degrees at 10 Hz. The data from both photodiodes show the 

similar response. Right circuit magnitude starts from -38dB and reaches to -2dB. Left circuit starts 

from -38dB and reaches to 0dB. Phase response reaches to -140 and -124 degrees for right and left, 

respectively, after starting from -90 degrees. 

 

Figure 28: Band-pass filter simulated AC transfer characteristic between 0.1-10 Hz: Magnitude increases with 20 

dB/decade. Phase drops from -90⁰ to -125⁰ at the end of 10 Hz. 
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Figure 29: Right and left band-pass filter measured AC transfer characteristics between 0.1-10 Hz: Magnitude and 

phase plots are in agreement with simulation (Figure 28). 

To demonstrate that the photodiode and band-pass filter combination can operate at higher frequencies, 

an LED was taped to one photodiode (See Figure 30). Electrical signal (sine wave, voltage-controlled) 

from signal generator is swept between 3-100 Hz. Figure 31 shows the AC characteristics simulation 

between 3-100 Hz. The gain starts from -8.59dB and reaches to 5.6dB at 50 Hz, then it decreases to 

4.74dB at 100 Hz. The phase starts from -101 degrees at 3 Hz, decreasing to -205 degrees at 100 Hz. 

Figure 32 shows the frequency response of the circuit from the photodiode input from LED to the 

filtered output. The magnitude response starts from -10.25 dB and reaches to -0.29dB at 50 Hz. Then it 

decays to -1.281dB at 98.6 Hz. The phase response starts from -105.8 degrees at 3 Hz, decreasing to -

180.5 degrees at 98.76 Hz. Qualitatively, circuit simulation is close to actual data. Circuit simulation 
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results in 103 degrees phase delay, data results in 75 degrees phase delay. The circuit gain increases by 

14 dB up to 50 Hz, real data gain increases by 10 dB. 

 

Figure 30: LED sweeping: LED was taped to photodiode and power supply signal is swept between 3-150 Hz. 

 

 

Figure 31: Right and left band-pass filter simulated transfer characteristics between 1-100 Hz: Simulation is 

shown to compare with LED sweeping results in Figure 32. 
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Figure 32: Right band-pass filter measured transfer characteristics in response to LED chirp between 3-100 Hz: 

Magnitude increases 20 dB/decade. Phase drops from -105⁰ to -180⁰. (In agreement with simulation in Figure 31). 

Sensor vs. Ground Truth Frequency Characterization 

To characterize ocellar sensor frequency response with respect to the gyroscope (acting as the ground 

truth velocity), concatenated sine waves were given as velocity input. The operation was performed in 

the valid angle range described above. The ocelli output is a voltage value. Its magnitude is scaled to 

match with gyro. This frequency response is from gyroscope as input, to the full ocellar sensor as 

output. Within the test frequencies, the ocellar sensor shows a relatively stable magnitude around 0 dB. 

The phase response is degrading over the frequency range. Figure 33 shows the ocellar sensor 

frequency response. Between 0.1- 1 Hz, there is almost no phase delay between ocelli and gyro. After 

1 Hz, ocelli shows a phase delay of approximately 15 degrees. The data after 10 Hz was not taken into 

account, since the input stimulus cannot exceed 10 Hz. The components at higher frequencies are due 
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to mechanical noise inherent in the motor. Coherence dips are happening at the same frequencies with 

the other experiments, therefore it is believed that the motor was not able to implement those 

frequency components. Ocelli always shows a coherence above 0.5, which is practically acceptable. 

 

Figure 33: Ocelli frequency response with respect to gyro as input: Frequencies after 10 Hz were shown to prove 

the decrease in coherence out of controlled motion frequencies. Ocellar magnitude is relatively flat, showing 

around 1dB difference from beginning to end. Phase delay reaches to -15⁰ at 10 Hz. 

Optic Flow Frequency Characterization 

Figure 34 shows the time-domain signals comparing gyro, ocelli, and optic flow in 0.5Hz, 1Hz, 5Hz 

and 10 Hz windows, respectively. The outputs of optic flow and ocelli are scaled to match gyro output 

(rad/s) at each window. The ocelli and optic flow are in agreement with gyro signal at each frequency 

window. 
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Figure 34: Time signals of gyro, ocelli and optic flow in 0.5, 1, 5, 10 Hz windows: All sensor outputs are scaled to 

match gyro (rad/s) at each window. 

 

Figure 35 shows the optic flow frequency characterization for 60 fps data, using Lucas- Kanade with 

25 pixels window size and 16 feature points (4*4). The entire magnitude response is very close to flat. 

There is almost no phase delay until 1 Hz, then it reaches to -35 degrees at 10 Hz. Taking into account 

that this optic flow data is obtained with the highest frame rate, the magnitude response is expected to 

degrade as the frame rate decreases. Although the optic flow frequency response remains 

approximately flat with these settings, the frequency response is related to the motion algorithm, frame 

rate and window size, as will be seen next. Varying these parameters, a worse high-frequency response 

will be obtained, which is the real-life case with flying vehicle on-board computers. All in all, this data 

shows the maximum bandwidth the optic flow can achieve within the test limitations.  
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Figure 35: Frequency response of optic flow with respect to gyro as input: Overall magnitude decrease is 1.42dB. 

Phase delay reaches to -35⁰ at 10 Hz. 

Ocellar Sensor – Gyro Voltage-Velocity Mapping 

To understand the expected ocelli output (in volts) for a given gyro (rad/s) value. The data for ocelli 

and gyro across 1-10 Hz test frequencies was combined. With 0.005 rad/s intervals, expected ocelli 

output (V) and gyro (rad/s) values were calculated (16 data points for both). These points were fitted to 

a line of equation 

𝑓(𝑥) = 𝑝1 ∗ 𝑥 + 𝑝2    (44) 

where 𝑝1 = 0.164 and 𝑝2 = 2.489, R2=0.9902. Figure 36 shows the mapping plot. It shows that the 

ocelli output is monotonically increasing with increasing gyro amplitude, implying linearity. The 
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standard deviation (error bars) are big because of the discretization limit of the ADC. ADC has 4.8mV 

resolution, the overall motion is within 140 mV. 

 

Figure 36: Ocelli - gyro mapping plot. It shows the expected ocelli output (V) for a given gyro measurement 

(rad/s). Ocelli output is monotonically increasing with increasing gyro values. (The leftmost error bar is very 

small, not visible as compared to others). 

Performance-Related Parameters 

Frame Rate 

Frame rate is the frequency at which the camera displays consecutive images. From equation 2, Lucas- 

Kanade algorithm extensively uses spatial and temporal derivatives, using numerical differentiation. 

To give an example, let f be a given function that is only known at a number of isolated points. The 
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problem of numerical differentiation is to compute an approximation of the derivative f’ of f by 

suitable combinations of the known values of f.  

Assuming that function f is differentiable, the derivative f’(a) for some real number a is defined as: 

𝑓′(𝑎) = lim
ℎ→0

(
𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
)    (45) 

For very small h, this derivative can be approximated by: 

𝑓′(𝑎) ≈
𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
      (46) 

This approximation involves error and this error increases as h increases. To demonstrate this, one can 

use f(x)=sinx, f’(x)=cosx and compute the error between f’(x)=cosx and f’(x)~ 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
. The error 

will increase as the h values increase.  

Figure 37 shows the frequency response of 60, 30 and 20 frames-per-second (fps) optic flow results 

from gyro as input and optic flow as output. As frame rate decreases, optic flow magnitude response 

rolls off steeper and reaches to -2.64, -4.92 and -9.62dB at 10 Hz  for 60, 30, and 20 fps, respectively. 

For all frame rates, the phase delay remains constant. For 0.1-1.1 Hz, there is almost no phase delay 

between optic flow and gyroscope. After 1.1 through 10 Hz, the phase delay increases and reaches to -

35 degrees. The coherence of 20 fps measurement is the worst, increasing frame rate increases the 

coherence as well. 
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Figure 37: Optic flow frequency response with different frame rates, as seen by input gyro: As the frame rate 

decreases, roll-off at higher frequencies is steeper. Higher frame rate results in better coherence. Phase delay does 

not change due to frame rate. 

Besides numerical differentiation error, another explanation lies under the Taylor series approximation 

used to derive the motion constraint equation. Taking only the first order components assumes that the 

change in motion is small. However, when the change is larger, the second order components will 

come into play and the motion constraint equation will no longer hold. When the motion is too fast for 

a given frame rate, the spatial/temporal estimate assumption breaks down. In practice, this resulted in 

an optical flow measurement of erroneously low magnitude.  

Aliasing is another way to look at this roll-off.  When the frame rate decreases, there are less optic 

flow vectors to sample the given sine wave. These vectors may be computed at random points of the 
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sine wave, not exactly catching the peak amplitudes. If the frame rate is higher, more optic flow points 

will result in a more accurate sine wave, catching the peaks.  

[54] studies the optic flow outputs as the angular rate changes. According to their findings for two 

different optic flow algorithms, optic flow matches with real rate for slow motions, for a specific 

resolution. As the rate increases, optic flow cannot capture images often enough to get an accurate 

estimate of angular rate. Optic flow first draws a unity line with real rate, then this line starts showing a 

fixed rate, then it rolls completely off to zero.  

To overcome this, one may increase the frame rate, or, use a smaller image (e.g. binned by 2) to double 

the frame rate. With the current setup, 752*480 pixels image can go up to 20 fps. When the image is 

binned by 2, the frame rate increases to 60 fps for 376*240 pixels image. This solution will result in 

losing maximum image resolution. 

Window Size 

Lucas- Kanade algorithm assumes that the motion is the same for all pixels in a window of w by w 

pixels. This tracking window size determines the number of equations (hence optic flow vector 

candidates) to be used in the least squares method. Assuming constancy in motion, more optic flow 

vectors will give more data points to determine the best fit for optic flow. However, if the window is 

too large, a point may not move like its neighbors. 

Figures 38 and 39 show the window size vs. the optic flow frequency response. Changing window 

sizes significantly affected the coherence plot. Phase delay remained the same for all window sizes. 

Magnitude is the most erroneous for 10 and 20 pixels (10*10, 20*20) window size, however it stays 

relatively the same for the rest. The coherence is the worst using 10 pixels. It improves as the window 

size increases from 20 to 40 pixels, remains the same after 40 pixels through 70 pixels.  
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Figure 38: Optic flow frequency response with different window sizes (w=10,20,30,40), as seen by input gyro: 

Very small windows (10*10px) result in erroneous magnitude response. Magnitude response and coherence 

improves as window size increases, phase delay remains the same. 
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Figure 39: Optic flow frequency response with different window sizes (w=50, 60, 70), as seen by input gyro: After 

50*50px window, magnitude, phase, and coherence plots do not change. 

 

Feature Points 

Feature points are the number of center pixels located on each image. Around these center pixels, optic 

flow vectors are calculated within the window size. The number of feature points determines the 

number of optic flow vectors computed. The plotted optic flow is only the x component of average 

optic flow field. The feature points are equally distributed over x and y dimensions of the image. The 

spacing between them is: 

𝑥 (𝑜𝑟 𝑦)𝑠𝑝𝑎𝑐𝑖𝑛𝑔 =
𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ(𝑜𝑟 ℎ𝑒𝑖𝑔ℎ𝑡)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑙𝑜𝑛𝑔 𝑥 (𝑜𝑟 𝑦)
    (47) 
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x feature points are referred to as x-by-x center pixels. Figures 40 and 41 show the image scene with 

10-by-10 and 4-by-4 feature points, respectively. 

 

Figure 40: Camera scene (10*10 feature points). 

 

Figure 41: Camera scene (4*4 feature points). 

Figure 42 shows the optic flow frequency response with respect to different number of future points. 2-

by-2 feature points result in the most erroneous optic flow magnitude. The magnitude response 

improves after 2-by-2 and stays relatively the same from 4-by-4 to 15-by-15 feature points. Similar to 

window size result, the change in phase remains the same between feature points. The coherence is the 

worst using 2-by-2 feature points. Increasing the feature points improves the coherence, however 

coherence remains the same after 8 feature points. This means that sufficient number of optic flow 

vector data points are accumulated to make the best fit for optic flow with 8*8 feature points. More 

feature points bring redundant data points. 
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Figure 42: Optic flow frequency response with different number of feature points (f), as seen by input gyro: 2*2 

feature points result in erroneous magnitude plot. As the feature points increase, magnitude and phase plots do not 

show much change, however coherence improves. 

Luminance Intensity 

DC light input power is varied to understand how the luminance intensity changes the ocellar circuit 

output. The circuit outputs at the same frequency were compared. Figure 43 shows the peak-to-peak 

amplitudes with respect to input power, for 10 Hz motion. As the power increases, amplitude 

increases, as expected. The fitted line has coefficients of p1=0.088, p2=0.006. This brings a necessity 

for ‘adaptive gain’ for different luminance values in the environment. 
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Figure 43: Light source input power vs. ocelli peak-to-peak amplitude: Luminance increase linearly increases the 

peak-to-peak amplitude. DC light source is specified in Table 3. 

Photodiode Bending 

The photodiodes should be bent towards the light source to share an intersecting field-of-view (FOV) 

and to satisfy that one’s output is increasing while the other’s is decreasing. The bending determines 

how much their field of views intersect and how much they are seeing the edges of the light source as 

two different horizons. The reference for bending is seen in Figure 44. If β=0⁰, no common luminance 

is shared. If β=90⁰, their field of views completely intersect and no symmetric change with respect to 

each other is observed. Assumption is satisfied for β values between 0-45⁰, specifically β=30⁰, 40⁰,45⁰ 

raw outputs are observed to be symmetric to each other. For β~90⁰, same sine wave shape is seen at 

the same instant. 
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Figure 44: Bending illustration: The photodiodes should share an intersecting field-of-view (FOV) towards the 

light source  for the sensor to operate. Bending values 30⁰<β<45⁰ were observed to give symmetric photodiode 

outputs. β=90⁰ completely overlaps the field of views, without distinct horizons for each photodiode. 

Test Setup Limitations 

The maximum motion frequency achieved with the motor is around 10 Hz for velocity mode. For 

position mode, the frequency is even lower, 2 Hz. Above these frequencies for related modes, the 

motor does not follow the input position/velocity. The higher frequency components in the plots are 

from inherent mechanical vibrations of the motor, and the flickering of laboratory lights at 60 Hz or its 

harmonics at 120-180Hz. The camera used has a theoretical claim of 87 fps frame rate. However, when 

this frame rate is used, frame drops are observed. Optic flow calculation is highly corrupted by frame 

drops. Frame drops were minimized with 60 fps frame rate.  

Also, using two cameras for covering more field was the first try. This configuration needs triggering 

to satisfy that the cameras are taking photo at the same time. Triggering was achieved with two PX-4 

Inertial Measurement Units working as master and slave. However, data transfer limitation from USB 

port brought lower frame rate problem again, hence frame drops stopped after switching to one 

camera, at the same frame rate. To allow for triggering, frame rate had to be decreased to 20 fps, which 

limited the optic flow bandwidth. To show the maximum achievable bandwidth for optic flow with this 

configuration, only one camera is used with 60 fps, 376*240 pixels image.   
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Chapter 4: Sensor Fusion 

As described in chapter 3, ocellar sensor shows a relatively stable magnitude across the test 

frequencies. Optic flow frequency response can keep up with the ocellar sensor for 60 fps data. As the 

frame rate decreases, optic flow magnitude plot rolls off. At high motion frequencies (where the optic 

flow information degrades), it is possible to use the ocellar circuit. This chapter first presents the 

biological background for sensor fusion in insect compound eyes and the ocelli. Then the general 

fusion approaches from the literature are discussed. Finally, the optic flow and the ocellar sensor data 

are fused to demonstrate the high-frequency roll-off compensation of optic flow, using the ocellar 

sensor. 

Biological Background for Sensor Fusion 

From the behavioral studies, ocelli and compound eyes are thought to work together for flight 

stabilization abilities, [21, 23, 25]. In blowfly, it is previously studied that lobula plate tangential cells 

estimate the self-motion by taking local motion information from compound eyes. One of the cells that 

are reported to respond optic flow information is a tangential cell, called V1 [55]. [56] reports that V1 

responds to ocelli stimulus as well. The response increases with the rate at which the light intensity 

changes, implying that V1 might be encoding angular velocity information, as well as optic flow 

information. [57] experiments that a prominent descending neuron called DNOVS1 receive input from 

two sources: From the photoreceptors of compound eye via large-field motion sensitive cells, and from 

photoreceptors of ocelli via ocellar interneurons.  [58] reports that lobula plate neurons combine inputs 

from both ocelli and compound eyes. Ocellar responses encode information in three axes, whereas, 

compound eyes encode in nine. This reveals that ocelli are only able to detect rotation around three 

axes, thus less specificity with respect to compound eye. If we assume a direct summation of ocelli and 

compound eye neuronal signals, this might help the flight behavior in three axes (since there will be 

more information for three axes, from both compound eyes and ocelli). However, for the other six 

axes, ocelli might output ‘zero’ and the fused response from both compound eye and ocelli might 
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degrade the flight behavior, which seems like counterintuitive.  [58] suggests that each VS neuron is 

tuned to the ocellar axis closest to its compound eye axis, combining the speed of ocelli with the 

accuracy of compound eyes, without compromising either. 

Having said that ocelli are faster than compound eyes, what is the quantitative difference between 

these latencies? The response latency depends strongly on experimental parameters, such as contrast 

and frequency of a moving stimulus. For example, with increasing contrast and high frequency, latency 

decreases. Moreover, temperature changes and the age of the fly affects the latency [59]. [60] reports 

that motion sensitive neuron H1 (compound eye neuron) transmits signals in 20-30ms.  [58] measures 

6ms for ocellar latency, which indicates a significant reduction when compared to compound eyes. For 

high frequency disturbances, low-latency ocellar neurons will be needed.  

Fusion Approaches 

In motion detection and control systems, especially in flight control and inertial navigation, different 

kinds of sensors are used on one platform. When measuring a particular variable, a single type of 

sensor may not be able to meet all the required performance specifications.  For example, both 

accelerometer and gyroscope data can be used to compute angles. Since accelerometer gives 

acceleration, angles can be reconstructed from accelerometer output by two-fold integration. Similarly, 

gyroscope gives velocity information and one integration would be enough. Accelerometer is known to 

be good for ‘long-term’, meaning that it does not drift. Gyroscope is good for ‘short-term’, is known to 

have poor drift characteristics, however it is able to give fast response. An ideal combination would be 

a fast transient response with no drift, by combining good qualities from two measurements. 

Theoretically, if a time varying signal is applied to both a low-pass and high-pass filter with unity gain, 

the sum of the filtered signals should be identical to the input signal. (See Figure 45). Assume that x 

and y are noisy measurements of some signal z, x employing low-frequency noise and y employing 

high-frequency noise. z’ is the estimate of the signal z produced by the complementary filter.  
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Figure 45: Illustration of complementary filter. 

Practically, complementary and Kalman filters provide the fusion of two signals. Kalman filter, 

working in time domain, needs statistical description of the noise corrupting the signals. This noise is 

assumed to be Gaussian white noise. Complementary filters approach the problem from the frequency 

domain, and they are generally used for the fusion systems that do not deal with noise. For digital 

implementation, the complementary filter has considerable advantage over Kalman filter, because 

Kalman gains are not computed for each state. Therefore, after determining the filter coefficients for 

complementary filter, the update rate of complementary filter can be higher than Kalman filter for each 

loop. This is an important consideration for the applications in which high-rate loop closure is 

necessary.  

Previous Sensor Fusion Implementations 

Sensor fusion is governed by complementary and Kalman filtering in the literature, generally for 

virtual reality applications in computer vision and attitude control. Vision-based information helps 

avoiding the errors resulting from integrating the inertial sensors over time. [61] fuses two 

accelerometers and three gyroscopes for an indoor mobile robot to obtain attitude information using 

extended Kalman filter. [62] fuses gyroscopes and inclinometer for head-tracking using Kalman filter. 

[63] integrates high-frequency stable gyroscope and low-frequency stable vision-based tracking using 

Kalman filter for an augmented reality. [64] uses extended Kalman filter that takes information from 

camera images, inertial measurement unit and magnetometers to estimate the pose of the vehicle. [65] 

fuses accelerometer, gyroscope and vision sensors to obtain position, velocity and attitude information 

for UAV, using a nonlinear complementary filter framework.  [66] uses extended Kalman filter to fuse 

vision-based output for slow movements and inertial sensor output for fast movements for virtual 



 

 

57 

 

reality applications. [67] uses Kalman filter to fuse data from three accelerometers and three 

gyroscopes with a position sensor, for UAV navigation. Position sensor input is either from GPS, when 

GPS is available, or from vision system (feature tracking) when GPS is not available. [68] fuses GPS 

data, inertial sensor data and camera image data for global pose information for augmented reality. 

Inertial and GPS data is fused using Kalman filter. [69] uses extended Kalman filter to fuse air pressure 

sensor and vision framework (computationally expensive) with inertial sensor data to handle the fast 

movements and disturbances of the MAV. [70] proposes a complementary filter to fuse magnetometer, 

accelerometer and gyroscope for attitude estimation. In this chapter, the time domain signal of both 

ocellar and optic flow outputs are combined to extend the optic flow frequency response. 

Ocellar Sensor-Optic Flow Fusion Approach 

Previous results show that optic flow shows roll-off at high frequency motion. On the other hand, 

ocellar sensor shows a relatively flat response at high frequencies. This experiment uses a camera 

capable of 87 fps in theory, and a high-speed Ubuntu laptop. Even with this configuration, the real 

frame rate obtained from the camera becomes 60fps, because of data transfer limitations of USB 

busses. The frame rates higher than 60fps result in dropped frames and corrupts the optic flow output.  

Commercially available single-board computers (e.g. [71]) allow for lower frame rates. Practically, 

Raspberry Pi 2 is limited to 15-20 fps for the same Lucas- Kanade algorithm used in this experiment. 

A more expensive model, Odroid XU4 [72], is capable of 60 fps, however its cost doubles Raspberry 

Pi ($75 vs. $35). A relatively cheap single-board computer will have a limited optic flow computation 

bandwidth. On the other hand, ocellar sensor offers a fast, cheap and low-power alternative to optic 

flow computation. It has a relatively flat magnitude and phase response, it is an attractive alternative 

for rotational motion. However, its performance is highly dependent on the luminance. It assumes a 

constant luminance gradient from sky to ground. Optic flow computation does not have such an 

assumption, it only needs a texture around it. Moreover, this setup uses a 180⁰ field-of-view lens to 

obtain wide-field motion. To have more field-of-view, the number of cameras may be increased, 
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however this will bring a necessity for simultaneous triggering of the two cameras. When this setup is 

used with two cameras, the triggering reduces the camera frame rates down to 20 fps. This reduction is 

expected to be more using a cheaper configuration. Lower frame rate will introduce a lower optic flow 

bandwidth, making the optic flow sensing incapable of performing at high frequencies. To compensate 

for the high-frequency roll-off of optic flow, ocellar sensor data is fused with optic flow. The optic 

flow data is low-pass filtered with a 4th order Butterworth filter. The inverse of this filter, a 4th order 

Butterworth high-pass filter with the same cutoff frequency is used to high-pass filter the ocelli data. 

The reason to use for 4th order Butterworth filter, instead of single-pole high and low-pass filters is that 

it resulted in a better coherence. Single-pole filter combinations decreased the coherence values at high 

frequencies. The fusion operation increased the bandwidth and decreased the phase delay of optic flow.  

 

Figure 46: Frequency response ocelli , optic flow, and their complementary fusion: 4th order Butterworth filter was 

used to high-pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept very small to 
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make use of ocelli’s relatively plat magnitude and less-delayed phase. Fused response shows coherence is better 

than optic flow’s. 

An even more direct way is taking the weighted average of optic flow and ocelli. While this approach 

will not give a fully low-pass filtered optic flow and  high-pass filtered ocelli, if the ocelli weight is 

kept high, the result will be very similar to optic flow. Figure 47 shows another fusion that 

implements: 

𝑎 ∗ 𝑜𝑐𝑒𝑙𝑙𝑖 + (1 − 𝑎) ∗ 𝑜𝑝𝑡𝑖𝑐 𝑓𝑙𝑜𝑤   (48) 

Where a=0.9. Magnitude, phase and coherence plots result in-between ocelli and optic flow, very close 

to ocelli. 

 

Figure 47: Frequency response ocelli , optic flow, and their weighted-average fusion: Ocelli and optic flow time-

domain signals are combined to obtain a result close to ocelli. 
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However, complementing both ocelli and optic flow readings gives a result close to ocelli. It assumes 

that the ambient luminance distribution is as calibrated in this experiment. We know that the ocelli 

magnitude increases with increasing luminance. This peak-to-peak amplitude is a linear function of 

input light source power, as seen in Chapter 3. Additionally, ocellar sensor has to be in a ‘valid range’. 

All in all, optic flow is immune to luminance intensity. It gives a flat magnitude response at low 

frequencies. Ocelli, however, is vulnerable to luminance intensity and it does not show a roll-off in 

magnitude as optic flow shows. It would be ideal to combine the good properties of both 

measurements real-time. Ocelli magnitude plot with respect to increasing luminance intensity should 

result in a plot like Figure 48. Optic flow magnitude plot shows a low-pass characteristics.  

 

Figure 48: Magnitude response of ocelli with different luminance values and optic flow at 30 fps: Increasing 

luminance implies higher magnitude for ocelli (L1< L2< L3< L4< L5). Ambient luminance change brings adaptive 
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gain necessity. Upper figure is the magnitude-scaled versions of ocelli response, not derived from real luminance 

values. 

A mechanism that allows for switching from one mode to another is desired to decide which sensor to 

use. This switching mechanism may be gyroscope. The gain adjustment may be done with a feedback 

from ocelli output that is continuously compared with gyroscope/optic flow output. If a valid region for 

ocelli is found, ocelli is preferred over optic flow due to its high-speed. A hypothetical iterative 

approach is shown in Figure 49. First, ocelli gain is adjusted with the use of a lookup table and the 

error between ocelli and gyro is computed. If this error is below a threshold, the gain adjustment is 

satisfied. After this, the validity of ocelli output is confirmed by computing the error between gyro and 

optic flow. If these comparisons allow, ocelli is preferred to be used for closed-loop rate stabilization. 

If not, either gyro or optic flow is used. Ocelli gain can be adjusted with digital potentiometers and an 

operational amplifier. The digital potentiometers are controlled from microcontroller. For a gain<1, a 

voltage divider reduces the ocelli output. For a gain>1, a non-inverting amplifier increases the ocelli 

output. This output is continuously fed back to the microcontroller to compare the gyroscope and ocelli 

error, to find a new gain value from the lookup table and adjusting the potentiometers accordingly. 

Figure 50 shows the possible circuit configuration and connections with microcontroller. 
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Figure 49: Sensor decision approach: Adjust ocelli gain by continuously computing error between gyro/OF and 

ocelli, check if ocelli is valid to use by comparing gyro/OF, use ocelli of comparisons allow. 
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Figure 50: Ocelli gain adjustment approach: Gains>1 are tuned by non-inverting op-amp. Gains<1 are tuned by 

voltage divider. The tuned outputs are compared with lookup table and microcontrollers iteratively tune the digital 

potentiometers until error threshold is low enough. 

Chapter 5: Conclusion and Future Work 

Conclusion  

Frequency-domain characterization of optic flow and ocellar sensors are presented. The advantages 

and disadvantages for both sensing mechanisms are discussed. In summary: 

1. Ocellar sensor shows a relatively flat magnitude response and less phase delay than optic 

flow. 

2. Ocellar sensor is attractive for high-rate loop closure since it is cheaper and faster from high-

quality cameras. 
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3. The displacement dynamic range of the ocellar sensor is observed to be 1 radian with this 

setup, due to the small size of the light source. Using a bigger light source, higher 

displacements may be achieved. 

4. The frequency dynamic range of ocellar sensor is observed to be up to 10 Hz with motion, 

and up to low-frequency cutoff without motion. 10 Hz is a limitation from mechanical test 

setup, higher motion frequencies are expected due to the circuit simulation and LED 

experiment results. For outdoor experiments, the low-frequency cutoff of the band-pass circuit 

can be eliminated, since there is no flickering issue outdoors. 

5. Ocellar sensor magnitude shows a linear relationship with luminance intensity. Since it is 

highly luminance-dependent, an adaptive gain calibration is necessary for usage with different 

luminance levels. 

6. Ocellar sensor shows monotonic increase with increasing gyro values. 

7. Optic flow magnitude rolls off at high frequencies. Specifically, 60 fps can keep up with 

ocelli response. 30 and 20 fps show roll-off at 7 Hz. Less frame rate shows steeper roll-off. 

Phase delay increases with increasing frequency. All frame rates tested show the same phase 

delay across all frequencies.  

8. Optic flow algorithm parameters (feature points, window size) affect the coherence. No 

significant change in magnitude and phase plots is observed, except for erroneous magnitudes 

for extremely small window sizes or feature points. 

Future Work 

 Several potential directions may be taken to extend the work of this thesis. Taking the characterization 

results, performance parameters and hypothetical sensor fusion suggestions into account, a closed-loop  

optic flow and ocellar-based fusion may be implemented to perform real-time stabilization and 

disturbance rejection. Multiple ocellar sensors with lenses may be placed in an array-like fashion on a 
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flying vehicle to extend the current field-of-view of the ocellar sensor. The outputs of ocellar sensor 

may be matched with pre-defined patterns to inform where exactly the disturbance occurs. 

The combination of optic flow computations and ocellar sensor gives both slow and fast alternatives 

for horizon detection and angular-rate sensing.  

The coherence in ocellar sensor and optic flow frequency response plots show dips at specific 

frequencies. The reason for these dips could not be identified during the experiments. If these dips 

were caused form the motor mechanical noise, both the gyroscope and the ocellar sensor should be 

able to pick the mechanical noise up, resulting in the same motion for both of them. Also, the motor 

resonance and gyroscope resonance possibilities have been eliminated after confirming the time-

domain signals with the ground truth. It is presumed that the ocellar sensor may be slightly modulating 

the input sine wave at these frequencies. The experiments can be repeated by using another ocellar 

sensor board and/or another motor. 

To compensate for optic flow’s slow rate, another direction might be converting the optic flow-ocelli 

system to a fully analog scheme. Combining both sensors in analog domain might give the 

complementary approach in a compact, fast and lightweight way. While digital optic flow computation 

has the freedom of easy adaptation and reconfiguration with different, sophisticated, and robust 

algorithms; sub-threshold analog VLSI optic flow designs are much smaller, lightweight, low-power 

and faster. One may argue that the one-board computers are already lightweight. However, decrease in 

size and weight are extremely important factors for micro aerial vehicle design. VLSI allows the 

photodiodes and computation circuitry to be fabricated on a piece of silicon, therefore it is very 

suitable for vision-based sensing. 

Appendix B includes spectral sensitivities of different insect ocelli. Insect ocelli are highly responsive 

to ultraviolet wavelengths. A completely different direction might be taking the ocellar sensor outside, 

using the sky-ground discrimination in ultraviolet wavelengths. The wide-band photodiodes in current 

circuit can be replaced with ultraviolet photodiodes. A detail to consider is the ultraviolet intensity 

difference in sky and ground in different times of the day and different weather conditions. On a sunny 
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day, the results show that sky is brighter than ground in ultraviolet. On a cloudy day, it can be the 

opposite. While the constant and negative luminance gradient may not be satisfied for all cases, 

specific weather conditions (e.g. sunny day, no clouds) can allow for outdoor use.  We have built the 

ultraviolet version of the ocellar sensor and tested outside. A main problem is the uneven ultraviolet 

intensity coming to both ultraviolet photodiodes. On cloudy days, there is nearly no ultraviolet 

difference between sky and the ground, it is thought that the clouds are blocking the ultraviolet portion 

in the sunlight. On sunny days, one photodiode should not see the high intensity created by the sun, 

and should only have the portion coming from the sky. The instantaneous displacement of the clouds 

and the wind are also factors that create the uneven ultraviolet intensity on both photodiodes. While 

these cases make it hard to test outside, we have seen with some datasets that agrees with gyroscope 

output.  
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Appendix A:  Code Information 

C++ Codes 

Communication with Camera  

 Optic Flow Computation 

Communication with Motor 

Communication with Microcontroller 

  

Matlab Codes 

Chirp Trajectory 

Sine Trajectory  

Bag File Extraction & Data Parsing 

Arduino Code 

Communication with MCP3008 ADC 

Communication with Gyro 
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Appendix B: Sky-Ground Discrimination in Ultraviolet 

Wavelengths 

Introduction 

We attempt to explore the usability of ultraviolet light for vision sensing. In other words, ‘Does 

ultraviolet vision provide useful information about the separation of sky and ground?’ 

First, insect responsiveness to ultraviolet and near-ultraviolet light is discussed. Second, ocelli spectral 

responses from several species are listed from the literature. Third, photos taken with ultraviolet filter 

are analyzed. Lastly, experimental data measured with an analog ultraviolet sensor in different weather 

conditions is analyzed. 

Biological Background 

The light emitted from sources and reflected from objects contain different wavelength information. A 

very general classification can be made based on the fact that light coming from sources (e.g. sun, 

moon or sky) is characterized by its high content of UV and near-UV wavelengths. However, light 

coming from objects or soil lacks UV wavelengths. [73] suggests that this distinction between direct 

and reflected light might be a cue, which allows an animal to navigate itself in its natural habitat, such 

as differentiating between open spaces, shadowed areas or hiding places. 

Unlike humans, insects are able to make use of UV light. They are sensitive to a broad range of 

wavelengths from UV to red. Color sensitivity in UV spectrum is believed to play an important role in 

insect navigation and mate selection in both flying and terrestrial invertebrate animals. The response to 

UV leads to different reactions. When insects are exposed to light, they may show positive or negative 

phototaxis (they may go towards or fly away from the illuminator). Interestingly, even the lethal 

effects of UV and near-UV wavelengths are being used against the insects for pest management [74, 

75]. 
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[76] experiments that flies can discriminate relative motion of an object and its background, even when 

the object and background texture are identical, provided that there is relative motion between the 

object and ground. A fly follows a black object (on a white background), while the object is moving 

with a constant angular velocity. The tracking angle is related to the angular velocity of the object and 

the contrast between object and the background. Especially the contrast difference is important for the 

tracking angle. [77] studies the computation of this effect experimentally, concluding that the outputs 

of neighboring movement detectors interact in a multiplication-like fashion. [78] studies the neuronal 

circuitry used in this phenomenon with electrophysiological studies and models a circuitry for this 

purpose. [79] further investigates this effect with electrophysiological and behavioral experiments, 

stating that only one cell type (Horizontal Cells) cannot be used for object-ground discrimination on 

their own. Additional output cells of optic lobes with different functional properties are required to 

accomplish this task. [25] conducts behavioral experiments on locusts with a simulated horizon. 

Horizon motion results in motion in animal’s head during flight. When the ocelli are surgically ablated, 

the compound eyes are able to mediate visual head stabilization and flight steering behavior over a 

wide range of conditions. However, the operation introduces latency. It also suggests that ocelli 

increase the amplitudes of visual response. Another point to note is that, when there are sharp borders, 

only compound eyes are able to provide visual responses. However, when the border is not sharp 

enough, this is not the case and ocelli are needed. It is suggested that ocellus may be averaging 

illumination intensity over its field of view. The increase and decrease in overall illumination intensity 

results in a visual response.  

There is no known insect species that have only ocelli. Ocelli are not known to exist independently 

from compound eyes. Moreover, from the information above, we know that some flies are able to 

continue their head and steering movements without ocelli. This information might suggest that ocelli 

are only helpers to compound eyes for better flight abilities. However, the functional dominance of 

ocelli over compound eye may vary among species. For example, dragonfly, employing both 

compound eyes and ocelli, is known to have exceptional aerodynamic maneuvers and ability to 
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stabilize its flight for sudden motions. [23] suggests that, for dragonfly ocelli, compound eyes and 

ocelli help equivalently to the flight behavior. The ocelli uses second order neurons, whereas 

compound eyes use higher order neurons, introducing a time delay in information processing. Ocelli, 

by employing less neuron hierarchy, eliminates this time delay effect and allows for quick information 

processing for sudden disturbances, which is crucial for dragonfly flight. 

Previous Sky-Ground Separation Implementations 

[80], inspired by the high responsiveness of desert ant ocelli to ultraviolet and green wavelengths, collects 

outdoors images in visible, ultraviolet and green wavelengths with a standard camera. It is suggested that 

the segmentation of the sky using only UV is significantly more accurate and consistent than visible 

wavelengths over a wide range of locations, times and weather conditions. Performance is the worst using 

visible light, as sky and ground are not easily separable when clouds are present. In contrast, sky and 

ground naturally separate along the UV dimension, giving robust segmentation in UV and UV-Green 

images. [81] shows a statistical comparison in five spectral channels: Ultraviolet, red, blue, green, near-

infrared. It is suggested that contrasts with large differences in the wavelength of two channels (e.g. 

UV+IR, blue+IR, UV+red) yield the best separation. Among single channels, the best separation is 

obtained in ultraviolet light. [82] presents a panoramic vision-based attitude determination a CCD camera, 

ultraviolet filter and panoramic mirror-lens. However, the comparison between UV and any other 

wavelength was not reported.   

Besides from using ultraviolet, [83] suggests a polarization-based segmentation approach for attitude 

estimation. [84] suggests combining red, green and blue (RGB)  components of each pixel value into a 

single pixel with the formula 3B2/(R+G+B), using horizon video. This formula is the product of blue 

component of the image B/(R+G+B) with the mean overall RGB intensity value (R+G+B)/3. [85] 

validates this method with a helicopter platform, using a catadioptric camera. 
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[86] suggests converting the RGB values of images into a single color component with a specific equation. 

They determine a threshold by applying a score to each color value, based on histogram data, then estimate 

altitude. Also, [87] proposes segmentation using thermal infrared band with thermopile sensors.  

Ocelli Spectral Sensitivities 

Studying the insect color vision is rewarding due to the highly diverse color receptors across species, 

offering great evolutionary adaptation. [88] suggests that insects may perceive landmarks as a silhouette, 

against a skyline as the background.  

Table B1 summarizes the peak spectral responsiveness of several insect ocelli. We acknowledge Air Force 

Office of Scientific Research to provide us with this table, hence most of the references are very old and 

hard to find online, or are not open to school network. For these experiments held from 1950s to 2000s, 

electro-retinography (ERG) was used to measure the electrical responses of ocelli photoreceptors. Among 

22 species, 16 show peak responsiveness at ultraviolet and near-ultraviolet wavelengths (300-400 nm). 1 

show peak at blue (~475nm) and 1 show peak at orange (~600nm). 18 show peak responsiveness at green 

wavelengths (~510nm). From the very general assumption that light coming from the sources contain 

more UV content, it seems reasonable to ask whether the insect is using this ultraviolet content to separate 

sky from ground or landmarks. 
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Table B1: Spectral sensitivities of different insect ocelli 

 

 

Class Order Family Binomial Common Name UV 

NEAR -

UV BLUE GREEN YELLOW ORANGE RED SOURCE 

Branchiopoda Anostraca Artemiidae  Artemia Salina Brine Shrimp   410           Hertel, 1972 

Hydrozoa Anthomedusae Polyorchidae 

Polyorchis 

penicillatus          530       Weber, 1982a 

Hydrozoa Anthoathecata Corynidae Sarsia tubulosa Sarsia-Medusa       540       Weber, 1982b 

Insecta  Blattodea Blattidae 

Periplaneta 

americana American Cockroach       500       

Goldsmith & Ruck, 

1958 

Insecta Coleoptera  Lamprydae Luciola cruciata Japanese Firefly       530       Hariyama, 2000 

Insecta Coleoptera  Lamprydae Luciola leteralis  Japanese Firefly       530       Hariyama, 2000 

Insecta  Diptera Culicidae Aedes Aegypti 

Yellow Fever 

Mosquito 370     520       Seldin et al, 1972 

Insecta  Diptera Drosophilidae 

Drosophila 

melanogaster  House Fly 

350-

370 445           Hu et al, 1978 

Insecta Hymenoptera  Apidae Bombus hortorum Bumble Bee 353     519       

Meyer-Rochow, 

1980 

Insecta  Hymenoptera Apidae Apis mellifera  Western Honey Bee 

335-

340   490         

Goldsmith & Ruck, 

1958 

Insecta  Lepidoptera  Noctuidae Trichoplusia ni Cabbage Looper Moth 360     530       Eaton, 1976 

Insecta Lepidoptera  Pieridae Pieris brassicae Cabbage Butterfly 370 460       600   

Land & Nilsson pg. 

29 

Insecta Lepidoptera  Pieridae Pieris rapae Small White Butterfly 360 425/453           

Warrant & Nilsson 

pp.30 

Insecta Lepidoptera  Sphingidae  Deilephila elpenor Elephant Hawk Moth 345 440   520       Hardie & Stavenga  

Insecta Lepidoptera  Sphingidae Manduca sexta Goliath Worm  360     520       

Eaton & Pappas, 

1978 

Insecta Mantodea Mantidae Tenodera sinensis Praying Mantis 370     510-520       Sontag, 1971 

Insecta Odonata Anisoptera  Anax junius  Green Darner  360 440   500       

Chappell & DeVoe, 

1975 

Insecta Odonata Anisoptera  Aeshna tuberculifera Black Tip Darner 360     500       

Chappell & DeVoe, 

1975 

http://en.wikipedia.org/wiki/Artemiidae
http://en.wikipedia.org/wiki/Sphingidae
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Ultraviolet Photography Analysis 

We tried taking ultraviolet photos with black light bulb pieces and HOYA U340 [89] UV-passing and 

visible-absorbing filter using a Canon professional camera. However, we could not succeed due to the 

internal UV and IR blocking filters of the camera. HOYA U340 lens has a little transmittance in near-

IR region, the photos obtained had only red component in them with black background. We greatly 

acknowledge Dr. Enrico Savazzi from Uppsala University for providing us the UV photos. They have 

been recorded with a variety of filters with transmission windows approximately in the 320-390nm 

range and 300-380nm range, mostly with the Baader U-Filter, which has its peak at 360-370 nm. These 

images are false colored images. The blue and violet correspond to long UV wavelengths near the 

visible spectrum (~390-400nm). Red is around 380nm, yellow is around 365nm, green is around 320-

340nm. 

 

 

Figure B51: Ultraviolet photo 1 

Insecta Odonata Anisoptera  Libellula pulchella 

Twelve-Spotted 

Skimmer  360     500       

Chappell & DeVoe, 

1975 

Insecta Odonata Corduliidae  Hemicordulia tau  Emerald Dragonfly 360 440   510       Mizunami, 1994 

Insecta Orthoptera  Acrididae Locusta migratoria Migratory Locust  370     500       Wilson, 1978 

Insecta Orthoptera  Gryllidae Gryllus firmus  Field Cricket        520       Lall & Trouth, 1989 

Tubellaria  Tricladidae Planariidae Planarian (family) Flatworm       508       Brown et al, 1968 

             

http://en.wikipedia.org/wiki/Corduliidae
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Figure B52 

From the landscape in Figures B1 and B2, it can be said that sky is homogeneously separated from the 

ground. The difference between the vegetation (trees in black in Figure B1, stones in Figure B2) and 

sky is noteworthy, however, the textures on the ground can lead to false labeling (e.g. sky-like gas 

station signs in Figure B1 and bright signs on textures in Figure B2).  

Figure B3 shows a sky-ground separation without texture on the ground, which suggests that there is a 

brightness difference between ground and sky UV components. 

Figure B5 introduces a cloudy sky as background. In compared to its possible visible equivalent, 

clouds seem to introduce a more homogeneous sky brightness. Although there is significant brightness 

difference between the chateau and the sky, the light texture in the garden has a comparable brightness 

value with the sky, which again, may lead to false labeling. 

 

Figure B53 
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Figure B54 

 

 

Figure B5 
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Figure B6 

Figure B6 includes cloudy sky, water scene, vegetation and asphalt. Although there is brightness 

difference between sky and ground components, the reflection from the water creates a comparable 

brightness with the sky, suggesting a possible false sky labeling. 

 

Figure B7 

Figure B4 has a sky with saturated brightness. The sky is homogeneously saturated, resulting in a single 

brightness level. The buildings introduce a notably homogeneous and different brightness level in 

compared to the sky. The bright sides of the buildings, probably resulting from the UV reflectance from 

the sun, seem to be separable from the sky. However, a few buildings show comparable brightness levels. 

Figure B7 shows an unsaturated cloudy sky with vegetation and white tombstones as surroundings. The 

vegetation employs homogeneous brightness level, which again simplifies its identification. Although not 

saturated as in Figure B4, the cloudy sky shows a more homogeneous color distribution in compared to 
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its visible equivalent. However, the tombstones on the ground also make only UV-based sky-ground 

separation questionable.  

From these photos, without any reflective/bright textures in the ground, it may be suggested that UV-

based sensing may provide a better sky-ground segmentation, with constrained environments that contain 

only vegetation and sky (e.g. forests). 

Ultraviolet Sensor Response Analysis 

We present experimental data taken from an analog-based UV intensity sensor in different environmental 

conditions, with the aim to extend the usage of the current analog ocellar sensor to outdoors. 

Figure B8 shows the test setup used to measure the ultraviolet intensity. An analog-based UV intensity 

sensor [90] and an amplifier circuit are used to take intensity measurements along an arc, in different 

weather conditions. The gain of the amplifier is varied due to different brightness levels in different days. 

LM324N general purpose operational amplifier was used with discrete resistors, soldered on a printed 

circuit board. The spectral responsivity of the UV sensor varies between 240-380 nm, showing peak 

responsivity at 360 nm. The field of view of the sensor is restricted by a thin tube. For every 10°, analog 

sensor measurements are sent to Arduino Uno’s 10-bit 10kHz analog-to-digital converter (ADC) and 

data is recorded from the usb-serial port, for three times. For the same angle, around 100 data points are 

taken and the average is calculated. The measurement is limited by Arduino UNO’s ADC, which has a 

resolution of 4.9 mV.  
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Figure B8: UV intensity test setup and the non-inverting amplifier configuration 

Figure B9 shows UV sensor output versus angle on a cloudy day. Test scene and the arc are seen in the 

photo above the graph. The sensor output is recorded between -140° to +140°. Sun is coming from the 

left of the photo. The borders between the vegetation and the sky are -95° and +90° on the left and right, 

respectively. Sensor starts around 1500mV while seeing the vegetation on the left. The output starts to 

increase when the sensor view leaves the vegetation. The non-homogeneous distribution of the clouds 

and the sunlight causes two peaks, both of which are significantly separable from the vegetation effect. 

Because of the decrease in brightness and the different height of the trees, the output decreases down to 

600 mV. A third peak is introduced at 900 mV, which may be from the reflectance due to the sunlight 

coming from the left onto the trees. 

+
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Figure B9: Ultraviolet measurement on a cloudy day 

 

Figure B10 shows the measurement on a sunny day at 12 PM. The sun is at the right of the photo. The 

sky shows an opposite effect in compared to Figure B9 results. UV light coming from the sky is less 

than the one reflected from the vegetation. The arc leaves the vegetation at -60°, from which the UV 

output starts to decrease. It comes as low as 800-1000 mV at +15°, then starts to increase. The arc leaves 

the sky at around +65°, after which the output seems to be stabilized around 1500 mV. The output 

difference between the left and the right side of the vegetation may be due to the reflectance, hence the 

location of the sun. The sun, coming from the right back, illuminates the left side more than the right 

side. 
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Figure B10: Ultraviolet measurement on a sunny day 

 

Figure B11 shows the measurement on a sunny day at 1 PM, with a different scene. The sun is just above 

the photo. Different reflections from the lake and the vegetation complicates the measurement results, 

however, UV coming from the sky is again less than the one reflected from the surroundings. The arc 

enters to the sky at -80°and leaves the sky at +80°. 
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Figure B11: Ultraviolet measurement on a sunny day, different scene 

 

Figure B12 shows the measurement in a sunny weather at 6 PM. The sun comes from the left back of 

the photo. The arc leaves the vegetation at -75°, from which the output starts to decrease. It becomes as 

low as 300 mV at -10°, then starts to increase. It leaves the sky at +50° and meets the vegetation. The 

output seems to be stabilized at around 600 mV. 
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Figure B12: Ultraviolet measurement on a sunny day, 6PM 

Discussion 

As reported in the above measurements, our argument ‘The sky is brighter than ground in ultraviolet’ 

is not a generalizable argument. Sky-ground separation cannot solely rely on ultraviolet intensities 

alone. Different weather conditions (e.g. cloudy vs. sunny) give different relative ultraviolet intensities.  

The brightest levels are at least two times brighter than the darkest levels. For a single dataset, e.g. 

cloudy weather at 12 pm, a threshold could be defined that would assign a separation line between sky 

and ground. This threshold value would not be reliable, since there is different ultraviolet intensities in 

different times of the day. From the data, the reason of this change seems to be related to several 

parameters: Location of the sun, reflection from the ground and the vegetation, clouds hiding 

ultraviolet coming from the sun.  

If ultraviolet is used with a “local” threshold (e.g. a threshold value range for only cloudy weather), 

this mechanism will bring a necessity for adjustable threshold. An optimal threshold, lying between the 

brightest and the darkest points in the sky, varies over a range of almost four magnitudes. A possible 
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reference point may come from measuring the intensity in zenith, however, it is questionable if such a 

reference would work under inhomogeneous sky. 

Another point worth mentioning is that, water points, seen in Figure B6, will not be distinguishable 

with a threshold method. If the navigation is around a large lake, the lake may bring a false horizon. 
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