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Social network sites (SNS), such as Facebook, Google+ and Twitter, have

attracted hundreds of millions of users daily since their appearance. Within SNS,

users connect to each other, express their identity, disseminate information and form

cooperation by interacting with their connected peers. The increasing popularity

and ubiquity of SNS usage and the invaluable user behaviors and connections give

birth to many applications and business models. We look into several important

problems within the social network ecosystem. The first one is the SNS advertise-

ment allocation problem. The other two are related to trust mechanisms design in

social network setting, including local trust inference and global trust evaluation.

In SNS advertising, we study the problem of advertisement allocation from

the ad platform’s angle, and discuss its differences with the advertising model in

the search engine setting. By leveraging the connection between social networks

and hyperbolic geometry, we propose to solve the problem via approximation using

hyperbolic embedding and convex optimization. A hyperbolic embedding method,



HyperCubeMap, is designed for the SNS ad allocation problem, and several com-

ponents are introduced to realize the optimization formulation. We show the advan-

tages of our new approach in solving the problem compared to the baseline integer

programming (IP) formulation.

In studying the problem of trust mechanisms in social networks, we consider

the existence of distrust (i.e. negative trust) relationships, and differentiate between

the concept of local trust and global trust in social network setting. In the problem

of local trust inference, we propose a 2-D trust model. Based on the model, we

develop a semiring-based trust inference framework. In global trust evaluation, we

consider a general setting with conflicting opinions, and propose a consensus-based

approach to solve the complex problem in signed trust networks.
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CHAPTER 1: SOCIAL NETWORK MODELING

Social network sites (SNS) such as Facebook, Google+ and Twitter have at-

tracted hundreds of millions of daily users since their appearance [1]. Within SNS,

users connect to each other, express their identity, disseminate information and form

discussions and cooperations by interacting with their connected peers. SNS brows-

ing constitutes a large amount of time that people spent on the Web [2], dominating

other kinds of online activities, meanwhile generating a huge amount of information

on user behaviors and relationships. The increasing popularity of SNS has been

generating data, demands, as well as new markets. Several social network-based

applications have been built by leveraging the characteristics of social networks.

1.1 Characteristics of Social Networks

Social networks are playing an increasingly significant role in the information

transmission, critical to the commerce and society of the current age. Due to such

importance in economy and social life, a considerable amount of attention has been

devoted to the computational analysis of social network structures.

A social network can be denoted as a graph G(E, V ), where V is the set of

vertices (nodes) representing the entities in the network, and E is the set of edges
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connecting vertices in V . An element vij in V represents a connection (possibly

weighted and/or directed) between node i and node j, where i, j ∈ V . Without loss

of generality, the default setting in our work is that the network is undirected.

The large dimension of social networks is a key aspect. In fact, they represent

an incredible source of information on a large-scale. These large-scale complex

networks, however different in terms of application scenarios, share several common

topological features on the graphs which represent these networks [3, 4].

There are several characteristics that commonly appears in most social net-

works, which are discussed and applied in modeling social networks.

1.1.1 The Small-World Effect

The “Small-World”effect on Social Networks was proposed by Milgram et al

[5, 6]. Despite their big dimension, social networks usually show a common feature

of small diameter: there exists a relatively short path connecting any pair of nodes

within the network. Most nodes are not neighbors of each other, but could reach

each other by a small number of hops.

The diameter l, that determines the “Small World”property, scales propor-

tionally to the logarithm of the dimension of the network, which is formalized as

l ∝ log |V | (1.1)

where |V | means the cardinality of V . Many complex networks other than SNS also

have the property of ”Small World”, such as Internet.
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1.1.2 Scale-Free Degree Distributions

Another important feature of social networks is degree distribution of nodes.

Recent empirical results shows that the degree distribution follows a power-law, i.e.

P (k) ∝ k−γ (1.2)

where k is the degree, and γ is the power-law coefficient determined by the network

topology which mostly ranges between 2 and 3.

Scale-free networks are a class of power-law networks where the high-degree

nodes tend to be connected to other high-degree nodes, which have been discussed in

detail by Li et al. [7]. Mislove et al. [3] showed that common online social networks

display power-law distributions thus present scale-free properties as well.

1.1.3 Community Structure

Social networks contain community structure. The extent of such a “cluster-

ing”effect varies among different situations. The more this structural characteristic

is evident, the higher a network tends to divide into groups of nodes whose connec-

tions are denser among entities belonging to the given group and sparser otherwise.

The emergence of community structures in social networks has been supported by

theoretical analysis [8] and verified by empirical experiment [3].
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1.1.4 Social Influence

Everyone in a social network has their own influence over the network due to

their connections with other nodes in the network. A user’s behavior or perspective

has explicit or implicit effect on her neighbors connecting to her in the network and

there is a probability that her neighbors would imitate her behavior. Due to the

mutual-influence nature, social network plays a fundamental role as a medium for the

spread of information, ideas, and influence among its members. Two basic diffusion

models, i.e. the Linear Threshold Model [9] and the Independent Cascading Model

[10] are proposed to describe the influence diffusion process in a social network.

How to leverage social influence of people in digital marketing led to the influence

maximization problem [11–13], which is an optimization problem.

In order to build applications within social network, it is necessary to capture

the influence effect embedded in the network.

1.2 Statistical Models

A series of models have been proposed in order to capture the features of social

networks, including the Poisson Random Graph Model, the Exponential Random

Graph Model, the Small World Model, and the Preference Attachment Model.

Poisson Random Graph model (Erdos-Renyi model [14]) and Exponential Ran-

dom Graph models [15] have been widely adopted in social network analysis due to

their simplicity. However, the series of models using random graph do not prop-

erly reflect the structure of real-world large scale networks because of un-power-law
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degree distribution and lack of community structures in the network [4]. Small

World model proposed by Watts and Strogatz [16] also fails in capture the power-

law degree distribution within social networks even if the community structure is

well represented [17]. The Preferential Attachment Model proposed by Barabasi

and Albert [18], unlike the random graph models and small world model, offers the

power-law like distribution of degrees, however, it does not support a meaningful

community structure of the network [4].

1.3 Social Network and Hyperbolic Geometry

Hyperbolic space is a non-Euclidean geometrically smooth space that general-

izes the idea of Riemannian manifolds with negative curvature without the parallel

postulate [19]. Basic properties of the hyperbolic space include negative curva-

ture, infinite number of parallel lines, thin triangles and the smoothness of the

space [20,21].

u

v

Figure 1.1: Poincaré disc model
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There are several hyperbolic space models which are related by transforma-

tions. In our formulation, we use Poincaré disc model shown in Fig. 1.1. The disc

D = {z ∈ C | |z| < 1} is called the Poincaré disc. The circle ∂D = {z ∈ C | ‖z‖ = 1}

is called the circle at ∞ or boundary of D. The advantage of using the Poincaré

disc model is the hyperbolic distance d(u, v) between two points u, v ∈ D can be

calculated with the following equation easily:

d(u, v) = arcosh(1 +
2‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)
) (1.3)

Hyperbolic geometry rests in negative curvature, which has a generalization in the

context of metric space. A metric space can be defined as follows:

Definition. Metric Space: A metric space (X; d) is a set X of points with a distance

function d : X2→ R+ satisfying the following conditions:

for ∀u, v, w ∈ X:

d(u; v) = d(v;u)

d(u; v) = 0⇐⇒ u = v

d(u; v) ≤ d(u;w) + d(w; v)

(1.4)

A metric space (X; d) is (Gromov) δ-hyperbolic if for ∀u, v, w, x ∈ X:

d(u, v) + d(w, x) ≥ d(u, x) + d(w, v) ≥ d(u,w) + d(x, v) (1.5)

and ∃ δ, such that:

D(u, v, w, x) = d(u, v) + d(w, x)− d(u, x)− d(w, v) ≤ 2δ (1.6)

then we call δX,d = sup{D(u, v, w, x)/2,∀u, v, w, x ∈ X} the hyperbolicity of the

metric space (X; d).
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Euclidean plane is not hyperbolic (i.e. the corresponding δ → ∞), while the

hyperbolic plane (e.g Poincaré disc) is constantly hyperbolic.

1.3.1 Hyperbolicity of Complex Networks

As a geometric space that generalizes the idea of Riemannian manifolds with

negative curvature, hyperbolic space has raised increasing attention due to its ap-

plication in network modeling and analysis [22–25].

The connection between complex network and hyperbolic space can be shown

via Gromov’s δ-hyperbolicity of a metric space.

In terms of a complex network, the undirected connected graph G = (V,E)

can be viewed as a metric space (V, dG) with standard graph distance metric dG, e.g.

shortest path length between u, v ∈ V [26]. Similarly, δ(G) = δV,dG can be used to

describe the hyperbolicity of the network. The δ-hyperbolicity of a graph is shown

as a measure of its “tree-likeness” [27,28]. For example, δ(G) of a tree is 0, whereas

a cycle of size n is O(n)-hyperbolic. Montgolfier et al. [27] shows that the δ(G) of

the Internet is very small which reflects it is a tree-like structure, and that small

hyperbolicity is a natural property of power law random graphs, which is a simple

complex network model capturing many structural properties of complex networks.

1.3.2 Application of Network Hyperbolicity

Among the related work, there are two major branches in applying hyperbolic

geometry to model complex networks [26]. One, proposed by R. Kleinberg [22], is

7



based on the concept of hyperbolicity of complex networks (e.g. social networks).

The other is proposed by Krioukov et al. [25] based on the connection between

characteristics of complex networks and hyperbolic geometry.

Kleinburg’s model [22] is related to the tree-likeness of the networks. Tree

structure is showed to have hyperbolicity [22,26,29] and can perfectly be embedding

into a hyperbolic space. To embed a complex network (e.g. WSN, social network)

in hyperbolic space of 2-D Poincaré disc, a spanning tree is generated from the

network and used to map into the space. With such embedding, each node has

a virtual coordinate in hyperbolic space and a greedy routing algorithm can be

conducted in the network [22,24].

Krioukov et al. [25, 30] showed that hyperbolic geometry underlies complex

networks (e.g. social networks), and the heterogeneous degree distributions and

strong clustering in complex networks emerge naturally as simple reflection of the

negative curvature and metric property of hyperbolic geometry. Correspondingly, a

network would have an effective hyperbolic geometry underneath if the network has

some metric structure and degree distribution is heterogeneous within the network.

By utilizing the relation between hyperbolic geometry and properties of complex

networks, Krioukov et al. further designed a hyperbolic embedding scheme that

maps a complex network into the hyperbolic space of 2-D Poincaré disc according

to degrees of nodes in the network [23, 31]. The node density and expected degree

distribution are both well-defined after mapping into the Poincaré disc.

These two different ideas are both useful in different applications. Currently

hyperbolic embedding has been applied in navigability analysis [32], routing algo-
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rithms design [24,33] and link prediction [23,30,31] in complex networks.

1.4 Contributions of The Dissertation

With the increasing popularity and ubiquity of online social networks (SNS)

usage and the invaluable data on user behaviors and connections, the problem of

social network modeling and social-aware applications has received increasing at-

tention from both industry and academia.

In this dissertation, we work on three major areas that are related to social

network, namely SNS advertising, local trust metric design, and global trust eval-

uation. We build models and develop solutions to these problems discussed in this

dissertation.

1.4.1 Social Network Advertising

In the problem of SNS advertising, we first study the social network adver-

tising problem with pay-per-mille impression model and show its difference with

the AdWords model [34] in Chapter 2. With the connection between social net-

works and hyperbolic geometry, we propose to solve the problem of social network

advertisement allocation via hyperbolic embedding (HyperCubeMap) and con-

vex optimization, with the aim of reducing dimensionality and solving the problem

efficiently. We analyze the advantages of our formulation compared to the base-

line approach. In Chapter 3, we further discuss several possible extensions based

upon our current optimization framework, and evaluate the performance of our so-
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lution via experiments, illustrating the optimality of our approach and the runtime

improvement in multiple orders of magnitude over the baseline IP formulation.

1.4.2 Trust Evaluation in Social Networks

Regarding the problem of trust mechanisms design in social networks, we start

from a investigation on research literature in the domain of trust metric evaluation

and trust management in Chapter 4. We differentiate between the concept of lo-

cal trust and global trust. Considering both trust and distrust (i.e. positive and

negative trust) relationships within social networks, we then introduce an approach

for local trust inference based on a semiring framework (distrust-semiring) in Chap-

ter 5. In Chapter 6, we consider global trust evaluation in a general case where

communities of conflicting opinions exist in the trust network. In the signed trust

network, we formulate global trust evaluation as a bipartite consensus problem. We

reach some results based on the property of structural balance in signed networks.
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CHAPTER 2: SNS AD ALLOCATION BASED ON HyperCube-

Map

With the increasing popularity and ubiquity of online social networks (SNS),

a large number of advertisers choose to post their advertisements within social net-

works and SNS advertising has grown rapidly in the past few years and is now a

billion-dollar business.

In the SNS advertising model, advertisers participating in SNS advertisement

(ad) campaigns benefit from the effects of viral marketing and network diffusion.

Modern SNS serve as advertising agents, and take the advantage of network diffusion

to attract advertisers and charge for the cascading impressions. The optimal ad

allocation task is the problem of choosing the ad allocation plan that maximizes the

revenue for the SNS.

Considering that users in SNS have diffusion abilities and limited daily impres-

sions, and advertisers have various bidding prices and budget concerns, a feasible

plan that obeys the constraints is difficult to find. The solution to this problem lies

in the space of N|Ads|×|User|0 , which makes direct optimization unattractive.

In this chapter, we study SNS advertising business models and formulate the

SNS ad allocation problem. We show its connection with hyperbolic embedding,
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and discuss how the SNS ad allocation problem can be formulated as a linear pro-

gram on region allocation in hyperbolic space based on hyperbolic embedding of

the social network. We consider a general and complex setting with multiple target

groups for different advertisers. Accordingly, we develop a new embedding algorithm

HyperCubeMap along with the optimization framework that allow for dimension

reduction. Our proposed method is able to reduce the dimensionality of the original

problem significantly.

2.1 Advertising in SNS

Social network sites (SNS) such as Facebook, Google+ and Twitter have at-

tracted hundreds of millions of daily users since their appearance. SNS browsing

constitutes a large amount of the time that people spend on the Web, dominating

other online activities [2]. In modern SNS, users expose many personal behaviors

and connect to each other based on real world relationships, which makes SNS ideal

for targeted advertising [35]. SNS advertising has grown rapidly in the past years.

For example, Facebook has more than 1 million advertisers and 100 billion hits per

day [36,37], which contributes 90% of its revenue.

Ad agents (e.g. Facebook) allocate each ad to user impressions (i.e the behav-

ior of user visiting the site). The advertising mechanism used by online advertis-

ing platforms, including social network websites, is essentially large-scale auctions

where advertisers place bids on user impressions, and specify their daily or total

budget [34].
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As shown in Fig. 2.1, to perform a marketing campaign in an SNS such as

Facebook or Twitter, advertisers first find an agent (which typically is the SNS

site itself), choose target audience by specifying desirable user profiles (for instance,

graduate students in US, or female, like movie), and provide their advertisements

(ads) with bidding prices and budgets. Then the ad agent allocates the ads to

the set of users whose profiles match the advertisers’ targeting requests. For each

impression (page view) of a user, the agent chooses one or several ads whose target

audience include the user. Now the user can see and engage with the ad, for example

‘like’ in Facebook, ‘+1’ in Google+, and ‘retweet’ in Twitter, and then her friends

may see the ad and further engage. For example, in Fig. 2.1, Alice is a graduate

student in US and is allocated for ad1. Alice and Bob are friends. The ad that Alice

liked may be shown as a sponsored story in Bob’s news feed in Facebook setting.

Alice

Bob

SNS Users

1. bidding

ad

Alice

ad1

BobAd

ad1 200

Budget

female, like 
movie

Target Group

5

Bid

ad2 2 100

graduate 
students in US

Advertisers

ad1

Agents

2. allocation

4. engagement

3. impression

5. more impression

news feed

news feed sponsor

pane

4

3

2
2

1

3

Figure 2.1: SNS ad campaign and allocation

For SNS advertising campaigns, instead of keywords, the advertisers bid for a

target group of users’ actions, which can be mille impressions (often referred as cost
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per thousand impressions or CPM), engagements (e.g. click, retweet, comment),

or actions (e.g. mobile application installation, product purchase). The agents run

large auctions using the bids and charge advertisers by the user actions. There

are associated billing policies, such as pay-per-mille, pay-per-click, pay-per-action,

pay-per-engagement [38]. The pay-per-mille model is the default and most popular

policy in Facebook, where the ad agent receives commission for one thousand user

impressions displaying the ad. We will assume this policy throughout the paper.

The SNS ad allocation problem, to maximize the agent’s revenue by allocat-

ing ads to user impressions while respecting the advertisers’ requirements (targeting

criteria, bidding method, and budget constraint etc.), is a central problem for ad-

vertising agents. An important component of the problem is the concept of paid

social influence, which distinguishes it from standard ad allocation problem (Ad-

Words [34]) and influence maximization problem [12] in complex networks.

Previous research mainly focused on search engine settings, where the impres-

sion is ad-hoc and associated with search queries. As a state of the art approach,

AdWords [34, 39, 40] was proposed by Mehta et al. to solve the advertising allo-

cation problem in the search engine setting of Google. The ad platform allocates

impressions resulting from search queries to advertisers, with each advertiser having

a budget constraint on the total spend. Each bidder puts in a set of bids for different

keywords relevant to the ad. Once an advertiser’s budget is exhausted, it cannot be

allocated any more queries. The objective is to maximize the total efficiency of the

matching, which is equivalent to maximizing the total amount of money (budget)

spent by the advertisers. The offline algorithm is formulated as a bipartite matching
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problem and solved via integer programming (IP) [39]. Due to incomplete informa-

tion, and more importantly the size of the problem, the AdWords problem is solved

as an online optimization problem in practice. For the online problem, Mehta et

al. [34, 39,40] achieved near 1-1/e optimality for the worst case.

In the SNS setting, each advertiser bids for a target group of users instead of

keywords, each advertiser Ai ∈ A = {A1, ..., A|A|} bids pi for all users in the target

group. The agent assigns user impressions to Ai before exhausting its budget bi,

with the allocation problem being to maximize the total amount of money (budgets)

spent by advertisers. The impression of the user in this case is by no means of unit

value, and is no longer ad-hoc. When a user is engaging with an ad (e.g. “like”in

Facebook), her friends in the ego-network can see the ad and potentially engage

with it as well.

Comparing with AdWords, although ad allocation in SNS have similar objec-

tives, there are several key differences. First, in the AdWords problem, advertisers

bid on a set of ad-hoc search query keywords, whereas in the SNS ad allocation prob-

lem, advertisers bid on active users. Moreover, as the substantial role of information

diffusion in SNS [41], in SNS ad, the users allocated to a particular ad is allowed

to engage with the ad and diffuse it to her neighbors, generating more impressions

of the ad. The advertisers pay all the impressions. When using the AdWords ap-

proach directly without considering the paid social influence in the optimization, an

advertiser’s budget will be easily run out hence valuable user impressions will be

wasted. Furthermore, the advertising agent (i.e. SNS provider) may need to define

and consider the domain constraints of the ad allocation. For example, there may
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be a constraint on fairness (i.e. users allocated to advertisers have similar influence

distributions).

On the other hand, note that since the advertisers need to pay for all the

impressions, the problem differs from the influence maximization problem in which

one hopes to pay the best fixed size seed set of users to maximize the final number

of influenced users she can reach by cascading. In our setting, each advertiser is

interested in a user category satisfying certain search criteria, and she pays equally

for all users’ impressions including the ones via user engagement. In our work, we

focus on the exact optimization of the SNS ad allocation problem, which is often

conducted offline.

2.2 The SNS Ad Allocation Problem

How to allocate user impressions to a set of advertisers with bidding constraints

while considering the social influence and possibly even the domain constraints is

not well-studied. In this work we focus on offline optimization of advertisement

allocation in SNS, which is approachable as the daily impression of users assigned

to ads can be derived from their usage history. The offline optimization result

is also meaningful for the online algorithm, since it suggests how to leverage social

connections to improve revenue, and gives guidance in designing online optimization

algorithms. It also serves as reference for advertisers on which groups of users they

should choose, how big their target groups should be, and how much they should

bid over the target groups.
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To formulate this problem, let A denote the set of advertisers, and U be the

set of users. Each user u ∈ U has a daily impression Iu, 1-hop friends (neighbors) set

Fu, and a social influence function P (u) which we define in Eq. 2.2. Each advertiser

Ai ∈ A has a target user group xi ⊆ U , a budget bi and bidding price pi.

Example 1. In Fig. 2.1, the impression of Alice, Iu=′Alice′ , is 4, which shows how

many times she views a refreshed Facebook page per day, while her social influence,

P (′Alice′), is when an ad is shown to her, how many other users will see that ad

eventually via her engagement and diffusion. On the other hand, ad1 ’s target user

group xad1 are all graduate students in US, pad1 = $5, and bad1 = $200.

In Facebook’s case, there are seven major user attributes to define the target

group xi of ad Ai [42], including “location”, “age”, “gender”, “language”, “inter-

ests”, and “more categories”(e.g. family status), forming roughly 106 combinations.

When an advertiser bids a selected target group, Facebook shows how many users

satisfying that criteria in its network. If the number of users for a bid is too small,

it is discouraged and a warning is generated.

Without loss of generality, we assume each advertiser has only one ad, and on

a user’s one impression, one ad is allowed to be displayed in the sponsor pane. Our

proposed method can be extended by adding scalars in practice case. Notice that in

a user’s impression, her friends’ ad engagement (e.g. liked, retweet, +1) is treated

as common friends’ updates which are displayed anyway with other updates in the

news feed.

The solution of the allocation problem decides for each ad what is the initial

17



set of users to be displayed by considering their influence ability. Let the decision

variable be I ∈ N|A|×|U |0 . For each user u and ad Ai, one dimension in the decision

variable Iu,i ∈ N0 represents how many impressions of u to be assigned to Ai (i.e.

the impression allocation strategy in the network). The optimization problem is

to find the allocation that maximizes the ad agent’s total revenue, which can be

formulated as an integer program (IP):

max
I

∑
Ai∈A

pi
∑
u∈xi

Iu,i(1 + P (u)) (revenue)

subject to pi
∑
u∈xi

Iu,i(1 + P (u)) ≤ bi ∀Ai ∈ A (budget)

∑
Ai∈A

Iu,i ≤ Iu ∀u ∈ U (impression)

Iu,i ∈ N+, ∀u ∈ U,Ai ∈ A (nonegative integer)

(2.1)

where Ai ∈ A is an ad with bid pi and u is a node (i.e. user) in the social

network with daily impression value Iu. The social influence function based on

1-hop neighborhood information about user u is:

P (u) =
∑
ν∈Fu

wmin{Iu, Iν} (2.2)

with w the expected engagement probability (click-through rate). The min{Iu, Iν}

in Eq. 2.2 means regardless the engagement probability, the user u’s engagement

can be seen by her friend ν ∈ Fu, min{Iu, Iν} times. If Iu > Iν , it is bounded by the

daily impression her friend ν has. If Iu ≤ Iν , the user u at most engages Iu times.

As mentioned earlier, in practice, the engaged ad will be shown in her friends’ news
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feed, we assume her friend can always see the engagement if it happens when visiting

her news feed. The reasons are two folds, a) recent Facebook study [43] shows that

a user’s normal post can be read by 35% of her friends, and 61% of them over a

month, b) the news feed is ordered by proprietary ranking algorithm [44], which may

treat ads and posts differently. We also assume 1-hop influence, as w is often small

(0.3%) in real SNS and network cascading is known to be shallow in general [45,46].

With more conditions being considered, P (u) can be adjusted. We discuss more in

Sec. 3.2.

In the baseline formulation for SNS ad allocation described in Eq. 2.1, the

decision variable I ∈ N|A|×|U |0 lies in high dimension as much as 1016 when considering

1 million advertisers, and billion users daily in Facebook. This makes the direct

optimization impractical.

In order to make the offline optimization more tractable, we propose an ap-

proximation scheme. The key idea of our method exploits the concept of target

group by using hyperbolic embedding for complex networks [23, 25]. Notice that

in an advertiser Ai’s target group xi, all users are considered the same by the ad-

vertiser. The only difference of choosing users in a target group is their different

influence capability. If we can represent the user level impression allocation results

and calculate the corresponding revenue with influence considered on target group

level rather than on user level, we will be able to eliminate several orders of mag-

nitude dimensions for the problem. Considering 109 users and 103∼5 categories in

a real world SNS, we can reduce the dimension around 104∼6, which makes the

optimization much more attractive.
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2.3 Our Approach and Techniques

We develop the optimization process by using hyperbolic embedding and a

decomposition method that divide the problem into a series of smaller and simpler

ones without introducing strong assumptions.

Hyperbolic embedding is a geometric mapping from a complex networkG(V,E)

to a set of points and segments in a hyperbolic space D = {z ∈ C| |z| < 1} (Poincaré

disc model). The hyperbolic space is continuous and hyperbolic embedding is able

to map arbitrary size complex networks into a bounded area where each node is

assigned a coordinate. If we embed the social network and target group properly,

we can use one or multiple regions in the hyperbolic space to express the allocation

of a subset of users for an ad Ai ∈ A, in other words, we could approximate the

revenue from Ai as calculating integral of the user’s influence function over a certain

region Ri ⊂ D:

∑
Ai∈A

pi
∑
u∈xi

Iu,i(1 + P (u)) ∼=
∑
Ai∈A

pi

∫
r

∫
θ

I(Ri(r, θ))dθdr (2.3)

As we can use very few variables to describe the set of users assigned to Ai with reg-

ular shapes such as fan and round, we can reduce dimensions of the original problem

significantly (in the order of O(U)). On the other hand, region-wise advertisement

allocation on hyperbolic embedding is a convenient framework for representing and

visualizing domain constraints.

Example 2. In Fig. 2.2, we show the idea using data in Fig. 2.1. Two shapes on

the base area represent two target groups: the left fan for ‘graduate students in US’,
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Figure 2.2: Hyperbolic embedding example

while the right round for ‘female, like movie’. Each user is assigned to a coordinate

in her group, e.g. Alice is assigned to the left fan. The influence function defines

the top surface. Note the impressions defines a different surface which is not shown.

To derive an embedding algorithm that fits the problem and allows integration

is challenging, especially for the multiple target group setting where one needs to

map different groups properly onto the hyperbolic space with smooth node density

and influence function. Moreover, geometric shape design, region overlapping and

impression distribution further make it even more difficult.

In order to make the idea possible, we develop an hyperbolic embedding algo-

rithm, HyperCubeMap, for solving the SNS ad allocation problem under multiple

user target group setting. Based on HyperCubeMap, we discuss approximating

the SNS ad allocation problem as a hyperbolic space region allocation problem, and

propose the corresponding optimization framework. The novel formulation is able

to reduce the dimensionality of the problem to a large scale.
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2.4 Preliminaries on Hyperbolic Embedding

Due to the hyperbolicity of complex networks (e.g. social networks), several

research work has been done on network analysis in the framework of hyperbolic

geometry [22,24–26,30]. Among related works, there are two major directions [26]:

one proposed by Kleinberg [22] is for geometric routing by embedding the minimum

spanning tree of the graph into the hyperbolic space, the other one is proposed by

Krioukov et al. [23, 25], in which they use hyperbolic embedding to describe the

topology and characteristics of complex networks. Our method is closely connected

to the later line of work.

By assuming a hyperbolic geometry underlies complex networks (e.g. social

networks), Krioukov et al. [25, 30] studied the connection between topology of hy-

perbolic geometry and the characteristics of complex networks. They showed that

power law degree distributions and strong clustering in complex networks can be

understood as reflection of the negative curvature property of the underlying hy-

perbolic geometry. They also showed that the hyperbolic geometry is able to ac-

commodate complex networks of arbitrary size. By utilizing the connection, they

further design a mapping scheme between hyperbolic space geometric framework

and statistical mechanics of complex networks via the Poincaré disc mode, which

successfully captures most important features in the complex network, i.e. small

world effect, power law degree distribution (scale-free) and community structure.

Hyperbolic embedding has been applied in in several areas, including navigability

analysis [32], routing algorithms design [24, 33] and link prediction [30] in complex
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networks.

2.5 HyperCubeMap: Hyperbolic Embedding for SNS Ad Alloca-

tion

The hyperbolic space is continuous and hyperbolic embedding on the Poincaré

disc D is able to map arbitrary size social network into a fixed area by assigning

each node to a coordinate (r, θ). Our approximation idea on the embedding (shown

earlier in Sec. 2.3 and Fig. 2.2) essentially proposes to approximate the sum over

the set of users to an integral function over a column assigning to an advertiser Ai.

In SNS ad allocation, the advertisers bid on heterogeneous user groups cus-

tomized for their campaigns, and the users have different impressions and influence

capability. Thus the hyperbolic embedding of a social network onto the Poincaré

disc should have the following properties in order to apply it for dimension reduction

of the problem:

• Both node density and degree distribution should be well-defined along angular

and radial axises to support integrals in areas within the Poincaré circle.

• The social influence function defined on a point (r, θ) in D should be continuous

on the Poincaré disc. As the cascading effect only happens when a user’s

friend engages with an allocated ad campaign, we can describe the influence

as a function of users’ degree accordingly.

• The embedding method should embed users within the same targeting group
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onto connected regions, otherwise an allocation strategy for an advertiser tar-

geting at particular user group have to be described by a collection of discrete

points and the dimension reduction would not be achieved.

To the best of our knowledge, the existing embedding methods [22, 23, 25] do

not obey all these prerequisites. In [23], Papadopoulos et al. propose an embedding

scheme to map a complex network onto hyperbolic plane, where the node density

Pn(r) ∝ er and the expected value of degree E[d(r)] ∝ e−
r
2 along the radial coor-

dinate are well-defined. The method satisfies the first prerequisite, however, their

model does not help SNS ad allocation as the target groups, impression, and in-

fluence are not taken into considerations. The MLE step used in [23] to arrange

angular coordinates is also computational expensive, where embedding a hundred

thousand node network takes days to finish, which should be avoid when embedding

real world SNS.

For SNS ad allocation in multiple target group scenario, we propose Hyper-

CubeMap embedding algorithm. By extending [23], it first ensures the node density

and degree are well-defined along radial axis:

ρ(r) = aer (node desnity)

ω(r) = ce−r/2 (degree distribution)

(2.4)

where a and c are constants derived from embedding.

Our embedding strategy further organizes the Poincaré disc into dimension re-

duction feasible grids (Sec. 2.5.1), calculates the minimal number of groups to boost

dimensions reduction effectiveness (Sec. 2.5.2), and gives a hyperbolic embedding
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method (Sec. 2.5.3) that satisfies all three prerequisites. To improve precision, we

also propose uniform node density embedding which is easier to tune the perfor-

mance (Sec. 2.5.4).

2.5.1 Isolated Cubes and Degree Spectrum

As mentioned in Sec. 2.1, an advertiser specifies the target user group for a

particular campaign and sets bidding price and budget. The agent (i.e. Facebook)

can only allocate and charge for the qualified users’ impressions.

To enable this, the agent often provides a set of categorical filters, each

of which has fixed number of options, for example, location, gender (M/F), age

(0/20/30/40+), language and interests. The target user group of a campaign is de-

fined by a selection of some or all of the given options, for instance, male and adult

(20/30/40+) users in all states. The cardinality of option profiles are not very large,

Degree Spectrum

Isolate Cube: graduate students in US

Fan-Shaped

Allocation

(Targetable

User Group)

Figure 2.3: Isolated cubes and degree spectrum
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e.g. Facebook has common option profiles upper bounded by 106 and discourages

advertisers from using too fine-grained filters by warnings during bidding [42]. Fur-

thermore, users targeted by the different campaigns can be grouped together and

result in many fewer groups for the matching process.

When embedding, the allocation rule should be considered, otherwise the same

group of users will separate apart, so one needs to sum up over all discrete points

representing the qualified users, which does not lead to dimension reduction. On

the other hand, allocating the users together on the Poincaré disc may break the

requirement on node density mentioned above or leave complicated shapes which

are difficult to calculate in the optimization.

To capture these aspects of our problem, we propose the concept of iso-

lated cube to express user similarities and groupings, and degree spectrum to divide

Poincaré disc into finer and more regular shapes which eases the calculation and

improves the precision, as shown in Fig. 2.3.

Definition. Isolated Cube: An isolated cube is a set of unit targetable user groups

having the same set of campaigns.

In other words, users in the same isolated cube are shared by the same set of

campaigns. Any two users in an isolated cube are interchangeable in an allocation

solution to the advertiser. Note the opposite is not true: the campaigns sharing an

isolated cube are not interchangeable in the allocation solution, as one campaign

can target many isolated cubes. For instance, assuming we only have two adver-

tisers, {a, b}, each of which starts a campaign, campaign ca targets on ‘graduate
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student living in US’, cb targets on ‘all male graduate student’. By definition ‘male

graduate student in US’ is an isolated cube, ic0, and within this cube, a and b share

the impressions, which introduces necessary decision dimensions in the unknown.

However, ‘female graduate student lives in US’ (ic1), ‘all male graduate student not

living in US’ (ic2) are other isolated cubes targeted by each campaign exclusively,

which implies one dimension is enough in the allocation.

As the isolated cubes are related to dimension reduction performance, the fewer

isolated cubes, the better potential performance we can benefit from the embedding.

The following lemma gives the worst number of isolated cubes:

Lemma 2.5.1. Considering that the ad agent defines F categorical filters with each

f ∈ F has vf distinct options, there are at most
∏

f∈F vf isolated cubes.

As one can envision, the population in each user group may vary a lot, not to

mention the degree distributions in each of them, which means different isolated cube

can result in very different shapes on the Poincaré disc. To make the embedding

useful and ensure the accuracy, we introduce the concept of degree spectrum to

regularize the embedding shape.

Definition. Degree Spectrum: A degree spectrum Λ is a series of annuli centered

at (0, 0) on 2-D Poincaré disc. Each annulus λ ∈ Λ has a range (rs, re), representing

all the users with degrees in the range of (ω(rs), ω(re)].

Recall in Eq. 2.4, ω(r) is the degree distribution function which maps radius

r to corresponding degree d.
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As shown in Fig. 2.3, all the annuli constitute the degree spectrum. Within

each annulus, isolated cubes are allocated in grids with areas proportional to their

sizes. Each ad Ai targets at a set of isolated cubes, ICi, each of which has locations

in some or all annuli in the spectrum Λ, thus the allocation can be represented by

at most |ICi| · |Λ| dimensions for Ai comparing with |{u|u ∈ xi}| dimensions in the

baseline formulation (recall xi ⊆ U is Ai’s target user group in Eq. 2.1).

Due to Lemma 2.5.1, |ICi| in practice is no more than 106. Moreover, user

groups of different criteria can be combined together when they are targeted by

the same set of ads, making the dimensions be reduced even lower. On the other

hand, the cardinality of the spectrum |Λ| is an independent tuning parameter of

our method, which can be tuned by fixing the degree range d. In the extreme case,

d = 1, each annulus only contains the users with the same degree. |Λ| is very small

compared to the user set size.

2.5.2 Optimal Isolated Cubes

As the size of isolated cubes is important in the dimension reduction perfor-

mance, we show how to get the minimal set of isolated cubes given all the advertisers’

target user groups.

Assume the ad agent designs a set of filters F , where each f ∈ F has a set of

possible values, v. Each advertiser Ai selects targeting values (f, vi) for each filter,

denoted by Oi = {(f, vi)|f ∈ F}, which defines a set of target users Ti = {u|(f, vi) ∈

Oi, u[f ] ∈ vi}. Given all advertisers A and their targeting profiles O, we can cluster
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Algorithm 1 Optimal Isolated Cube

Let uc be an map of isolated cube and its bidding advertisers

for each advertiser (Ai, (f, vi)) ∈ O do

uc(f, vi) ∪ = {Ai}

end for

Let opt ic be an map of hash key and clustered uc

for each ((f, vi), A
′) ∈ uc do

opt ic(hash(A′)) ∪ = {(f, vi)}

end for

return all targetable user group sets in opt ic

targeted users together and derive the optimal isolated cubes, which gives the best

dimension reduction performance in the hyperbolic embedding.

Definition. Optimal Isolated Cubes: The optimal isolated cubes is the smallest set

of isolated cubes, s.t. all targeted users by the same set of advertisers are clustered

together.

In Alg. 1, we give the clustering method to calculate optimal isolated cubes

in O(O) time. It first goes through all possible unit targetable user groups in O

bid by the advertisers A, and groups advertisers by targetable user group. Then, it

clusters targetable user groups together into individual sets if they share the same

set of advertisers.

Lemma 2.5.2. Given filter F , advertisers A and their targeting profiles O, Alg. 1

gives the optimal isolated cubes.
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Proof. First, Alg. 1 outputs valid isolated cubes by definition, all targetable user

groups with the same hash key share the same set of advertisers. Second, since any

subset of different hash key targetable user groups cannot be merged to be a valid

isolated cube, its output is the smallest set of isolated cubes.

2.5.3 The HyperCubeMap Algorithm

After generating the optimal isolated cubes, we embed them onto the Poincaré

disc in a proper way to satisfy the three prerequisites mentioned in the beginning of

Sec 2.5. Here we introduce HyperCubeMap, a hyperbolic embedding algorithm

for SNS ad allocation, which is given in Alg. 2. Given a social network G(U,E),

advertisers A, targeting profile O and a spectrum design Λ, HyperCubeMap places

each user u ∈ U to (ru, θu).

In Alg. 2, it first generates the optimal isolated cubes opt ic, and then for each

spectrum annulus λ(rs, re), it assign each ic ∈ opt ic a range of angular coordinate

(θs, θe). To ensure the uniform node density along angular axis, the range assignment

is proportional to the ic’s target user size portion in this spectrum annulus. Then,

Alg. 2 begins to assign users virtual coordinates on the hyperbolic plane. In order to

let the node density and degree distribution be well-defined and in accordance with

the requirements, we modify the method proposed by Papadoupolous et al. [23] on

the assignment of angular coordinate. To ensure the same targetable user groups

are allocated together, we assign the angular of each user according to its associated

isolated cube ic. It is worth noting that in Alg. 2, ζ is the parameter related to
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the curvature K of the hyperbolic plane, with ζ =
√
−K. We set ζ to be 1 in our

experiment. β is a mitigating factor determined by the power law exponent γ with

β = 1
γ
; γ can be found for a given social network. The complexity of this algorithm

is linear given a user set sorted by degree.

The embedding algorithm HyperCubeMap produces an embedding that sat-

isfies our prerequisites. On the Poincaré disc, the degree distribution and node den-

sity are well-defined along angular and radial axises, with node density ρ(r) = aer,

and correspondingly expected degree ω(r) = ce−r/2, r ∈ [0, R). On the other hand,

the same targeting group users are embedded into connected regions. By using a

continuous social influence function definition, we can use the output of this algo-

rithm to reformulate the SNS ad allocation problem as an region allocation problem

with much reduced dimensions for the decision variable.

2.5.4 Uniform Node Density Embedding

From Alg. 2 we can notice that the inner area of the Poincaré disc is very sparse

due to the exponential node density along the radius, which effects the optimality

of approximation and makes it difficult for parameter tuning and allocation scheme

design. Thus, corresponding to our application scenario, we propose to adjust the

node density and make it uniform along the radius by moving nodes inside. The

degree distribution is also adjusted accordingly.

Suppose for a previous point at (r, θ) in the Poincaré disc by HyperCube-

Map, its new coordinate is (r′, θ), then the uniform density function ρ′(r′) can be
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Algorithm 2 HyperCubeMap

Let opt ic be the Optimal Isolated Cube output by Alg. 1

Let each annulus λ(rs, re) ∈ Λ and its user size be Na

θs = 0

for each λ(rs, re) ∈ Λ do

for each ic ∈ opt ic do

Let isolated cube ic’s user size be ic.na

θe = θs + 2π · ic.na/Na

Let ic’s angular range icang[λ] = (θs, θe)

θs = θe

end for

end for

Sort U by degree in descending order d1 > d2 > · · · > dn and break ties arbitrarily.

Let u’s degree be du

Let r1 = 0, and θ1 is chosen randomly in [0, 2π]

for u from 1 to n− 1 do

Let ru = β 2
ζ

log u+ (1− β)2
ζ

log n

Find spectrum λ′(rs, re), satisfying ru ∈ λ′(rs, re)

Find isolated cube ic satisfying u[f ] ∈ vic,∀(f, vic) ∈ ic

Let u’s angular coordinate θu be chosen randomly from icang[λ
′]

end for
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derived as follows:

ρ′(r′) =

∫ R
0

∫ 2π

0
ρ(τ)dθdτ

πR2
=

2a(eR − 1)

R2
(constant) (2.5)

and the cumulative distribution function:

CDF(r′) =
πr′2

πR2
=

∫ r
0

∫ 2π

0
aeτdθdτ∫ R

0

∫ 2π

0
aeτdθdτ

=
er − 1

eR − 1
(2.6)

thus the mapping between r and r′ is:

r′ = ψ(r) =

√
R2 · (er − 1)

(eR − 1)
= R

√
er − 1

eR − 1
(2.7)

and

r = ψ−1(r′) = ln(r′2eR − r′2 +R2)− 2 ln(R) (2.8)

Then the expected degree at new coordinate (r′, θ) is:

ω′(r′) = ω(r)|r=ψ(r′) =
cR√

r′2eR − r′2 +R2
(2.9)

With the uniform node density, the expected degree along the radius is still

well-defined. We can use the new node density and corresponding degree distribution

to formulate the region allocation problem mentioned above similarly.

2.6 SNS Ad Allocation as Region Allocation in Hyperbolic Space

Using the hyperbolic embedding of a social network by HyperCubeMap, we

can reformulate the ad allocation problem as a region allocation problem on the

2-D Poincaré disc. Each ad Ai ∈ A, bids on a set of isolated cubes denoted as

Ti = {ic1, ic2, ..., icn}, where |Ti| is the number of Ai’s isolated cubes. T = ∪Ti are
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the optimal isolated cubes (opt ic) generated by Alg. 1. Given the degree spectrum

Λ, the allocation profile for Ai is defined as Si = {Sλ,ci |λ ∈ Λ, c ∈ T}, where λ

denotes the annulus in the degree spectrum, c specifies the isolated cube. In other

words, each Sλ,ci in the allocation profile Si for Ai specifies a set of users embedded

in the particular cube (λ, c). By specifying the allocation region shape as fan shape

as shown in Fig. 2.3, Sλ,ci can be determined by the start angle θλ,ci,s and the end angle

θλ,ci,e , with Si ∈ R2|Λ|×|T |. We can then cast the optimal SNS ad allocation problem

as follows:

Problem. Optimal Region Allocation: On the 2-D Poincaré disc with interior rep-

resenting the users embedded by HyperCubeMap algorithm, each user u ∈ U is

placed at (ru, θu) in polar coordinates, with expected degree du = ω(ru) = ce−ru/2

and impression Iu ∈ I. Given a set of ads A, where Ai ∈ A has a budget bi and

bidding price pi on target users (its isolated cubes Ti).

The ad agent designs an allocation profile Si for each advertiser Ai. Si is a

set of fans {(θλ,ci,s , θ
λ,c
i,e )}, each of which describes how to allocate users in an isolated

cube c in a degree spectrum annulus λ. The optimal region allocation is to derive

an allocation profile S for A to maximize the revenue of the agent and, at the same
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time, respect the budget and impression constraints:

max
S

∑
Ai∈A

pifi(S, I)

subject to Si ⊂ Ti ∀Ai ∈ A

fi(S, I) ≥ 0 ∀Ai ∈ A

pifi(S, I) ≤ bi ∀Ai ∈ A

φu(S, I) =
∑
Si∈S

φu(Si, I) ≤ Iu ∀u ∈ U

θλ,ci,s ≥ θλ,cs ∀c ∈ T, λ ∈ Λ

θλ,ci,e ≤ θλ,ce ∀c ∈ T, λ ∈ Λ

(2.10)

where fi(S, I) isAi’s actual sum of impressions considering social influence. φu(Si, I)

is the amount user u’s impressions assigned to Ai. T is the set of optimal isolated

cubes, and Ti is the target set of Ai. Λ is the degree spectrum.

As we can see, comparing with the original optimization problem, now a set

of users is assembled as a fan-shaped region on the Poincaré circle, which reduces

the dimensions significantly. On the other hand, angular coordinates are continu-

ous value instead of discrete value as before. If we can give closed forms for each

advertiser Ai’s assigned impression fi(S, I) and each user u’s allocated impression

φu(S, I), then we can solve the problem directly. In order to do so, we need to

specify how to incorporate with social influence, and address two major challenges:

a) the impression distribution may not be well-defined and may be uncorrelated

with degree and density, b) the overlapping fans. The first issue prevents us to

apply integral, while the second issue makes the optimization problem much more
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complicated.

2.6.1 Incorporating Social Influence

As is defined above, fi(S, I) is the sum of actual impressions assigned to ad-

vertiser Ai. The actual impressions resulted from user u is different from Iu due to

her social influence in the network. All exposed qualified impressions will have a

cost, thus actual profit that the ad agent can get from allocating the advertisement

Ai at a user u is:

pi · Iu · (1 + P (u)) (2.11)

where P (u) is the function describing the influence of user u due to her engagement

of the campaign (Sec. 2.2). Assuming P (u) is proportional to her 1-hop degree, then

the Eq. 2.11 can be rewritten as:

pi · Iu · (1 + w · du) (2.12)

where du is the degree of node u, and w is a constant presenting the engagement

rate. After embedding the SNS using HyperCubeMap, its expected degree at

(ru, θu) is:

du = ω(ru) = ce−ru/2 (2.13)

Thus, the influence function of user u is:

P (u) = P (ru, θu) = w · ce−ru/2 (2.14)

under uniform node density, the influence function can be denoted as:

P ′(u) = P (r′u, θ
′
u) = w · cR√

r′2eR − r′2 +R2
(2.15)
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which are both continuous functions, and can be used in integral to express fi(S, I)

over the Poincaré disc.

In Eq. 2.12, we essentially assume that the cascading is up to 1-hop of u. As

mention in Sec. 2.2, diffusion is shallow [45, 46] and driven by simple contagion via

social influence [41], and the engagement rate w is small in practice (0.3%) [47],

so the effect of multi-hop cascading is negligible and we argue it is a reasonable

assumption. In general, as long as the approximate influence function is continuous

about (ru, θu), our method can be used. We discuss it in detail in Sec. 3.2.

2.6.2 Challenges

Uncorrelated Impressions : Function fi(S, I) not only depends on S but also

depends on user impressions I. It is important to note that in a social network, users

have different impressions and degrees. After hyperbolic embedding, although the

degree distribution is well-defined, the distribution of user impressions is not known,

and may not be correlated with the influence. For example, President Obama who

has about 40 million followers on Facebook may visit SNS seldomly, while a teenager

having moderate number of friends uses SNS heavily everyday. As I has unknown

distribution in the mapped hyperbolic space, without introducing strong assump-

tions, it requires optimizing over the combinations of users’ impressions in the cor-

responding isolated cube in T , which significantly increases the dimensions.

Overlapping Fans : The allocation areas of different ads may overlap, as a user

could be assigned to different ads. Due to multiple impressions that a user may
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have, fans assigned to different advertisers inevitably have intersection regions in

the Poincaré disc, which makes the fi(S, I) calculation and the overall optimization

problem more difficult.

To address these issues, we propose a novel unit-impression based decomposi-

tion method which preserves the advantages of the hyperbolic space mapping, and at

the same time derives an optimal solution without introducing strong assumptions

or high complexity constraints.

2.6.3 Unit Impression Decomposition

The unknown user impression distribution after the hyperbolic embedding of

the SNS significantly affects our formulation. Complex region intersection may not

have an analytical expression or convexity. Also the unknown impression distribu-

tion forces us to discretize fi and inevitably increase the complexity. We’d like to

avoid this in order to maintain the attractiveness of our formulation.

We introduce a novel decomposition called Unit Impression Decomposition

to avoid these two issues without introducing strong assumptions (e.g. disallow

overlapping, enforce well-defined impression distributions). We first introduce the

unit impression graph, and then use it to develop our optimization algorithm.

Definition. Unit Impression Graph: Given a social network graph G(U,E), where

U represents users, E shows relationships between users. Each u ∈ U has an im-

pression value Iu. G is called a Unit Impression Graph if Iu = 1, ∀u ∈ U .

Given an SNS, we can induce a set of unit impression graphs. For example
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if a user visits SNS 3 times a day (i.e. 3 impressions, or 3 chances to engage with

a campaign), she can appear in 3 different graphs of unit impression, which means

her impressions can be potentially assigned to 3 ads. The number of impressions in

each unit impression graph now is 1, and there cannot be any intersections (i.e. one

impression cannot be shared by advertisers). A sub step optimization problem can

be conducted with a unit impression graph by adding a non-overlap constraint, and

more importantly fi(S, I) can be formulated as fi(Si), as the volume (impressions)

assigned to Ai is independent from others.

Example 3. Following up the example shown in Fig. 2.1, each graph in Fig. 2.4

is a Unit Impression Graph decomposed step by step from the original graph. The

number in red beside the vertex shows the residual impressions of a user. As G(1) is

a Unit Impression Graph, all its node have impression of 1. Then an optimization

is performed in G(1). Assuming all users are allocated, G(2) shows the next unit

impression graph. The residual impressions are updated by subtracting 1 from each

node. Notice that v5 has zero impression, it is not included in the graph G(2).

In other words, if a user does not have impressions anymore, her friend’s engaged

campaign will not influence her any more on that day. In G(3), v3 and v6 are removed.

The decomposition and optimization process ends at G(4), as no one in the network

has impressions any more.

Corresponding to Fig. 2.4, the general algorithm for unit impression decom-

position is shown in Alg. 3.

With the Unit Impression Decomposition, we can solve the original problem
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Figure 2.4: Unit impression graph transformation

using a multi-stage optimization process. It finishes when all impressions are allo-

cated or all budgets are used. In the mth stage, given the unit impression graph

G(m), we apply HyperCubeMap to embed G(m) in the hyperbolic space. The op-

timization problem regarding a unit impression graph G(m) only considers ads with

nonzero budgets A(m) = {Ai | b(m)
i > 0},and is given in Eq. 2.16.

max
S(m)

∑
Ai∈A(m)

pifi(S
(m)
i )

subject to S
(m)
i ⊂ T

(m)
i ∀Ai ∈ A(m)

fi(S
(m)
i ) ≥ 0 ∀Ai ∈ A(m)

pifi(S
(m)
i ) ≤ b

(m)
i ∀Ai ∈ A(m)

S
(m)
i ∩ S(m)

j = ∅ ∀Ai, Aj ∈ A(m) ∧ i 6= j

A(m)⋃
Ai

S
λ,c(m)
i ≤ Sλ,c(m) ∀c ∈ T (m), λ ∈ Λ(m)

(2.16)

We then solve the non-overlapping problem stated in Eq. 2.16, and record its

optimal solution S(m)∗ and optimal value
∑

Ai∈A(m) fi(S
(m)∗
i ). If all ads’ budgets are

reached, the whole optimization ends. Otherwise the budget vector is updated as
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Algorithm 3 Unit Impression Decomposition

Put users with impressions into the first graph G(1).

Let the maximum impression in the network be Imax.

for k from 2 to Imax do

Decrement impressions of all users in G(k−1) by one.

for each u ∈ U (k−1) do

if the impression of u, Iu > 0 then

Add u into G(k)

end if

end for

end for

return {G(k)|k ∈ {1, ..., Imax}}

b
(m+1)
i = b

(m)
i − pi · fi(S(m)∗

i ). Then the (m + 1)th graph is generated with residual

impressions, with zero impression users removed from the graph. The whole process

ends when all advertisers’ budgets are used, or all the impressions are exploited.

The unit impression decomposition process largely simplifies the optimization

problem in each stage. The original problem of solving multi-location ad allocation

with overlapping can be transformed to a multi-stage ad allocation problem with no

overlapping.
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2.6.4 Optimal Ad Allocation Strategy

As mentioned above, the area Sλ,ci that is assigned to ad Ai in an isolated cube

c in a degree spectrum annulus λ can be described by (θλ,ci,s , θ
λ,c
i,e ). With well-defined

node density and degree distribution, the allocation fi(S
λ,c
i ) can be calculated as:

fi(S
λ,c
i ) = fi(θ

λ,c
i,s , θ

λ,c
i,e )

=

∫ rλe

rλs

∫ θλ,ci,e

θλ,ci,s

ρ(τ)(1 + P (τ, θ))dθdτ

= a

∫ rλe

rλs

eτ (1 + wce−
τ
2 )

∫ θλ,ci,e

θλ,ci,s

dθdτ

= a(θλ,ci,e − θ
λ,c
i,s )(2wce

rλe
2 − 2wce

rλs
2 + er

λ
e − erλs )

= ∆λθ
λ,c
i

(2.17)

where ∆λ = a(2wce
rλe
2 − 2wce

rλs
2 + er

λ
e − erλs ) is a constant related to the annulus

λ on the degree spectrum Λ, and θλ,ci = θλ,ci,e − θ
λ,c
i,s is the angle range of the region

Sλ,ci . From Eq. 2.17, we notice that

If we apply the uniform node density transform, then fi can be calculated with
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a different boundary (r′λs , r
′λ
e ), and the expression for fi(S

λ,c
i ) is:

fi(S
λ,c
i ) = fi(θ

λ,c
i,s , θ

λ,c
i,e )

=

∫ r′λe

r′λs

∫ θλ,ci,e

θλ,ci,s

ρ′(τ ′)(1 + P ′(u))dθdτ ′

(variable substitution with τ = ψ(τ ′) using Eq. 2.8)

= a

∫ ψ−1(r′λe )

ψ−1(r′λs )

eτ (1 + wce−
τ
2 )

∫ θλ,ci,e

θλ,ci,s

dθdτ

= a(θλ,ci,e − θ
λ,c
i,s )(2wce

ψ−1(r′λe )

2 − 2wce
ψ−1(r′λs )

2 +

eψ
−1(r′λe ) − eψ−1(r′λs ))

= ∆′λθ
λ,c
i

(2.18)

where ∆′λ = a(2wce
ψ−1(r′λe )

2 − 2wce
ψ−1(r′λs )

2 + eψ
−1(r′λe ) − eψ

−1(r′λs )), which is also a

constant related to the annulus λ on the degree spectrum Λ.

Combining the newly introduced impression decomposition and fan-shaped

allocation strategy with HyperCubeMap, we can elaborate the optimal region

allocation problem stated in Eq. 2.16 as follows:

max
Θ(m)

∑
Ai∈A(m)

pi
∑

λ∈Λ(m)

∆λ

∑
c∈T (m)

i

θ
λ,c(m)
i

subject to θ
λ,c(m)
i ≥ 0

pi
∑

λ∈Λ(m)

∆λ

∑
c∈T

θ
λ,c(m)
i ≤ b

(m)
i

∑
Ai∈A(m)

θ
λ,c(m)
i ≤ θλ,c(m)

e − θλ,c(m)
s

∀Ai ∈ A(m), c ∈ T (m)
i , λ ∈ Λ(m)

(2.19)

where the decision variable Θ ∈ R|A|×|Λ|×|T |, pi is the bidding price and b
(m)
i is the

budget of Ai at stage m. ∆λ is the constant related to annulus a in Eq. 2.17. The
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expression for uniform node density setting can be derived accordingly by replacing

∆λ to ∆′λ (shown in Eq. 2.18).

With the unit impression decomposition under fan-based allocation strategy,

the optimization problem can be solved by a series of linear programs like Eq. 2.19.

If the optimization is stopped after n stages, then the allocation of advertiser Ai is

the aggregation of optimal solutions: ∪nm=1S
(m)∗
i . It’s worth pointing out while in

one iteration there are no overlaps, the finally aggregated regions combining results

from all n stages do have overlaps among ads, as each iteration is conducted on

a different unit impression graph embedded on the Poincaré disc. This framework

simplifies the optimization without strong assumptions.

The decomposition is easy to produce and finite, because the expected impres-

sion Iu of each user u is known beforehand and Iu is upper-bounded (due to limited

time a normal user can spend on social websites). It is also computationally efficient

as HyperCubeMap is linear to the size of users (Sec 2.5.3).

Comparing with the original formulation introduced in Sec 2.1, the dimension-

ality of unknown Θ in our formulation in the worst case is |A|×|Λ|×|T |, which is the

number of campaigns multiplied by the degree spectrum and the optimal isolated

cubes. In comparison, the original optimization problem has |A| × |U | dimensions,

i.e. the product of ad campaigns and users. This improvement is significant as |A|

is around one million [48], but |U | is in billions.
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2.7 Summary

In this chapter, we develop HyperCubeMap, a novel formulation for the SNS

ad allocation problem via hyperbolic embedding. We introduce HyperCubeMap,

a new hyperbolic embedding method which extends previous methods and addresses

the requirements of SNS ad allocation in multiple target group setting. We introduce

components like unit impression decomposition in order to handle the challenges

such as uncorrelated impression distribution and region overlapping issues in the

embedding. With the hyperbolic embedding and unit impression decomposition

process over the social graph, the original integer program can be approximated by

a series of linear programs for hyperbolic space region allocation, which successfully

and largely reduces the dimensionality and complexity of the optimization problem,

enabling its application in real-world SNS with billion users.

45



CHAPTER 3: EXTENSIONS & EVALUATION OF THE HyperCubeMap-

BASED SNS AD ALLOCATION APPROACH

To incorporate more real-world requirements and demonstrate the generality

of our framework, we discuss two important extensions of our method. We first

discuss the implications of different shape designs and compare with the fan shape

that we use in HyperCubeMap. We show how to formulate the fairness constraints

using different shapes in the Poincaré circle. Next, we discuss how to handle more

complex social influence requirements with respect to P (u). We extend it to multi-

hop cases, as well as handling selectivity constraints on the users according to real

world billing policies.

In order to evaluate the performance of our approach, we conduct a series

of experiments and compare our HyperCubeMap-based LP formulation with the

baseline IP approach. Compared to the baseline approach, our proposed method

runs two to four orders of magnitude faster, and reaches 95% of the optimal solution.

3.1 Accommodating Domain Constraints via Shape Design

Within the ad platform, there may be additional domain constraints besides

the basic ones introduced in Eq. 2.19. Among all these domain constraints, fairness
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is an important one [49,50]. In SNS, the ad agent may want to distinguish between

different advertisers, and assign set of users with different impression quality. The

impression quality of a user set can be represented by its degree demographics.

Intuitively in an allocation strategy, assigning an ad to one user with 1M friends is

different from assigning it to 1M users all with one friend. When the ad platform

wants to keep the game fair, the user sets assigned to different ads can admit similar

distribution of user impression quality.

To formulate the concept of fairness, we classify the fairness-related domain

constraints into three major categories, namely fairness model, priority model as

well as partial fairness model based on the differences of allocated user influence

demographics among ads.

1. Fairness model : Fairness model requires the user influences (degree) demo-

graphics among advertisers to be similar. Formally, the constraint for fairness

model over the allocation strategy S in the optimization problem can be ex-

pressed as:

var(φ(S)) ≤ η (3.1)

where φ(S) = (φ(S1), · · · , φ(S|A|)) is the fairness measure of user demograph-

ics over the vector of optimal allocation; greater φ(·) corresponds to higher

ratio of influential users. Here we use variance to reflect the demographics

difference, with η as the threshold.

2. Priority model : Contrary to the fairness model, the priority model requires

more influential users allocated to advertisers of higher priority (e.g. with
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higher bids). The allocation constraint for the priority model can be described

as:

φ(Si) ≤ φ(Sj) ∀Ai, Aj ∈ A, ρi ≤ ρj (3.2)

where ρj is ad Aj’s priority, and greater value represents higher priority.

3. Partial Fairness model : Partial Fairness model (Hybrid model) is between the

two extremes mentioned above. If we want both fairness and priority to co-

exist in advertisement allocation (i.e. an ad with a low bid is allowed to have

some highly influential users), then the allocation strategy should consider

both sides:

var(φ(S)) ∈ [η, η]

φ(Si) ≤ φ(Sj) ∀Ai, Aj ∈ A, ρi ≤ ρj

(3.3)

where η and η are the lower and upper bounds for the variance.

In the HyperCubeMapbased optimization framework discussed in Sec. 2.6,

there is no restriction on which annulus, or isolated cube that an ad should be as-

signed, so the optimal solution admits no difference between areas in the hyperbolic

space that correspond to isolated cubes in different annuli. Thus fairness constraints

are not reflected in such setting.

Here we show the connection between the three fairness models and different

shape designs. We discuss Fan, Ring, Circle, and other general shapes. We analyze

the impact of different allocation strategies w.r.t. convexity, efficiency, and fairness.

For ease of discussion and without loss of generality, we look at a simplified setting

where the ads all target the whole social network (i.e. single target group), and
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illustrate how to incorporate fairness constraints. we consider this problem on a unit-

impression graph reached via impression decomposition, thus there is no intersection

between regions allocated to different ads.

3.1.1 Fan

We propose the Fan-shaped ad allocation strategy for the fairness model dis-

cussed above, where each ad is assigned a fan area, as shown in Fig. 5. The allocation

area Si for ad Ai is a fan (or pie) of angle θi in the Poincaré circle of network. Such

allocation strategy reflects the fairness model described in Eq. 3.1, as the user de-

gree distribution (i.e. influence demographics) are similar among fan areas assigned

to ads due to uniform expected degree distribution in the Poincaré circle along the

angular axis. Similar to Eq. 2.17, the corresponding volume function fi(Si) is:

fi(Si) = fi(θi) = a

∫ R

0

eτ
∫ θi

0

(1 + w · δ(τ)))dαdτ

= a · θi(2wc(e
R
2 − 1) + eR − 1) = α · θi

(3.4)

with α = a(2wc(eR/2 − 1) + eR − 1) a constant. Integrating the unit impres-

sion decomposition and fan-shaped allocation strategy, the optimization problem in

Eq. 2.16 can be reformulated as a linear programming problem like Eq. 2.19.

Via the Fan-shaped allocation strategy, the fairness model is well-supported,

since areas allocated to different ads have similar demographics due to well-defined

node density and expected degree distribution. In Eq. 3.4, fi(·) is a linear function

about θi, and leads the optimization problem a linear programming (LP) one, which

is another advantage of such allocation strategy. Additionally, fans of different ads
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(a) Fan allocation 2D (b) Fan allocation 3D

Figure 3.1: Fan allocation strategy

can be arranged tightly close to each other and impressions can be completely uti-

lized in each round of optimization with enough budgets, thus number of iterations

are minimized. Furthermore, residual graphs can be generated independently, thus

all iterations can run in parallel with careful budget arrangement.

3.1.2 Ring

When considering the priority model (i.e. Eq. 3.2) by assigning more influen-

tial users to higher priority bidders, we propose to use the Ring shaped allocation

strategy (Fig. 6). Let ri,s and ri,e be the starting and ending radius, and ρi be the

priority value of Ai, the expression for fi over the ring [ri,s, ri,e) in Poincaré disc is

a function of ri,s and ri,e:

fi(Si) = fj(ri,s, ri,e) = a

∫ ri,e

ri,s

eτ
∫ 2π

0

(1 + w · δ(τ)))dαdτ

= 2πa (2wc · e
ri,e
2 − 2wc · e

ri,s
2 − eri,s + eri,e)

(3.5)
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(a) Ring allocation 2D (b) Ring allocation 3D

Figure 3.2: Ring allocation strategy

The optimization can be formulated as:

max
S

|A|∑
i=1

pifi(ri,s, ri,e)

s.t. pifi(ri,s, ri,e) ≤ bi ∀i ∈ {1, 2, ..., |A|}

0 ≤ ri,s ≤ ri,e ≤ R ∀i ∈ {1, 2, ..., |A|}

ri,e ≤ rj,s ∀ρj ≤ ρi

(3.6)

where the last constraint abstracts the priority model, that ads of higher priority

are arranged in inner area. Decision variable ((r1,s, r1,e), · · · , (r|A|,s, r|A|,e)) ∈ R2|A|.

Ring-shaped allocation strategy represents the priority model, in the sense

that ads of different priorities are assigned different demographical population in

terms of social influence. As we can see in Eq. 3.5, the volume function fi(ri,s, ri,e)

for the ring-shaped allocation strategy is nonlinear in ri,e and ri,s. Similar to the

fan shape case, rings of different ads can be arranged tightly and impressions can

be completely utilized in each round of optimization, thus sub-step iterations are
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(a) Circle allocation 2D (b) Circle allocation 3D

Figure 3.3: Circle ad allocation strategy

minimized.

3.1.3 Circle

Using circle as the allocation region, as shown in Fig. 7, is a potential solution

to incorporate the partial fairness model mentioned in Sec. 2.4. The circle allocation

strategy for Ai can be represented using center position and radius (xi, θi, ri). fi(Si)

therefore is:

fi(Si) = fi(xi, θi, ri) = a

∫ ri

0

eτ
∫ 2π

0

(1 + w · δ(dis(xi, τ, α)))dαdτ (3.7)

where dis(xi, τ, α) =
√
xi2 + τ 2 − 2xiτcos(α) is the distance between a point (τ, α)

from xi and the disc center.
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Using such allocation strategy, the optimization problem can be written as

max
x,θ,r

|A|∑
i=1

fi(xi, θi, ri)

s.t. fi(xi, θi, ri) ≤ bi, ∀i ∈ {1, 2, ..., |A|}

0 ≤ xi, rj ≤ R, ∀i ∈ {1, 2, ..., |A|}

xi + ri ≤ R, ∀i ∈ {1, 2, ..., |A|}

(xi)
2 + (xj)

2 − 2xixjcos(θj − θi)

≥ (ri + rj)
2 ∀i, j ∈ {1, 2, ..., |A|}

(3.8)

The circle allocation strategy can reflect the partial fairness model, since circles

of similar sizes and similar distances to the center have similar influence demograph-

ics, while circles at different positions with different radii have different demograph-

ics. It can be tuned by adding size and position constraints. From Eq. 3.7 we can

see that fi is not convex in θi. As for efficiency, impressions cannot be fully utilized

in each iterations thus more iterations are needed.

3.1.4 General Allocation Strategies

As shown in previous sections, shape design is a powerful and intuitive way

to represent domain constraints, such as the fairness model. Table. 3.1 summarizes

the characteristics w.r.t. convexity, efficiency and corresponding fairness constraint,

of different shape-based ad allocation strategies. In addition, it’s worth discussing

the general allocation strategy to incorporate other domain constraints and show

the limitation of our method.
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Shape Convexity Efficiency Fairness Constraints

Fan Linear Full space utilization Fairness model

Ring Nonlinear Full space utilization Priority model

Circle Nonconvex White space between circles Partial fairness model

Table 3.1: Features of the three shapes discussed

a) Convexity: Convex problems have prominent advantages in solvability, re-

liability and efficiency. To have convexity, we can design shapes of convex volumes

about radial coordinate r and angular coordinate θ. Non-convex volume expressions

have many local optima, and require advanced optimization frameworks.

b) Efficiency: Another important factor of runtime is the number of unit

impression graphs, which implies the number of sub-step optimization routines.

The less unallocated area in one iteration, the fewer iterations needed. In a shape

design, if all areas can be allocated in each iteration, then we can generate all unit

impression graphs regardless of the optimization result, which makes it possible to

execute in parallel with careful budget arrangement.

c) Domain constraint: As we showed above, the fairness constraint is defined

over the user influence demographics. Because it is well-defined over the Poincaré

disc, we are allowed to use fan, ring or circle to specify different fairness models.

Other business rules that have well-defined metrics over the graph’s degree also have

the potential to apply in our framework.
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3.1.5 Extension to Multiple Target Groups

If we extend the idea discussed above to the general setting where there are

multiple target groups within the SNS, the domain constraints can be imposed

into the optimization framework by introducing additional constraint functions in a

similar way.

For the fairness model, we can combine the areas that correspond to the same

isolated cube at all annuli:

∆c =
∑
λ

∆λ(θ
λ,c
e − θλ,cs ) (3.9)

where ∆λ is same as the one in Eq. 2.17. Then the optimization can be re-formulated

as:

max
Γ

∑
Ai∈A

pi
∑
c∈Ti

∆cγ
c
i

subject to γci ≥ 0

pi
∑
c∈Ti

∆cγ
c
i ≤ bi

∑
Ai∈A

γci ≤ 1

∀Ai ∈ A, c ∈ Ti

(3.10)

where the optimization variable γci is the proportion of area on the isolated cube c

assigned to ad Ai.

For priority model, similar to the last constraint in Eq. 3.6, we can add one

more constraint function in Eq. 2.19 requiring that the annuli assigned to ads of
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higher priority should be inner than those of lower priority:

min {λ|θλ,ci > 0} ≤ min {λ|θλ,cj > 0}

∀ρi ≥ ρj, Ai ∈ A, c ∈ Ti

(3.11)

3.2 Social Influence Models

In previous sections, we mainly consider 1-hop neighbors and model it as a

linear function of engagement rate and degree, by assuming the influence is shallow

[49]. In real world, different ad format may have different influence impact and more

complex influence functions may be needed. For example, recent work [51] shows the

cascading of popular photos in SNS may not be shallow. If applying HyperCubeMap

on ads with non-shallow ad format, our model need to be adjusted. When the click-

through rate is too high to neglect the influence of a user’s activities (e.g. clicking

an ad) over her multiple-hop friends (e.g. 2-hop ones), the social influence function

P (u) is required to be modified to reflection the multi-hop influence. Meanwhile, in

real-world SNS ad campaign, the users reached via social diffusion may not lie in

ads’ target groups, which is related to the concept of effectiveness in users’ social

influences.

3.2.1 Multi-Hop Influence

For a user u of degree du in the network, if we consider the k-hop influence

within the network in the IP formulation, the expression of her social influence can
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be written as:

P (u) = w
∑
v1∈Fu

(min{Iu, Iv1}+ P (u, v1))

P (u, v1) = w
∑
v2∈Fv1

(min{Iu, Iv1 , Iv2}+ P (u, v1, v2))

· · ·

P (u, v1, · · · , vk−1) = w
∑

vk∈Fvk−1

min{Iu, Iv1 , · · · , Ivk}

(3.12)

As an approximation, in the LP formulation, we can use the expected multi-

hop neighbor set size of a isolated cube in each annulus to represent the value of a

certain user in the cube to make the social influence expression integrable.

P (u) = P (ru, θu) = w · ce−ru/2 +
k∑
l=2

(wlnλ,l) (3.13)

where nλ,l is the expected l-hop neighbor size of the isolated cube in annulus λ that

u belongs to:

nλ,l = Ev∈icλ [nv,l]
∣∣∣
u∈icλ

≈
∑

v∈icλ nv,l

|icλ|

∣∣∣∣
u∈icλ

(3.14)

Note that since the second part in Eq. 3.13 is a constant, putting Eq. 3.13 into

Eq. 2.19, the optimization is still a linear program.

3.2.2 Effectiveness in Billing Models

In real world SNS ad billing models, there is a concept of effectiveness in users’

social influences. For example, for a user in one isolated cube, her neighbors are not

necessary having the same target group w.r.t. the current isolated cube. If a billing

policy enforces to charge only for the influences over the same target group, the way
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(a) Selectivity for a single user (b) Selectivity for a target group

Figure 3.4: Selectivity of multi-hop friends

to calculate the budget in both formulations need to be updated. Our framework

can easily be extended to handle this case. To incorporate this, we introduce the

term selectivity as a measure of effectiveness within an isolated cube, which can be

defined as the probability that users an ad reaches via social influences are still in

the same target group. Fig. 3.4 is an illustration of selectivity of multi-hop neighbors

(friends) in the SNS graph.

In order to introduce selectivity into current optimization framework, we can

use ψλ,c,k to denote the k-hop selectivity of the isolated cube c in annulus λ, which

can be calculated via the proportion of k-hop neighbors of the isolated cube that is

still in the cube. By such definition, the linearity of the social influence function is
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well-kept:

P (u) = P (ru, θu) = w · ce−ru/2ψλ,c +
k∑
l=2

(wlnλ,lψλ,c,l) (3.15)

where ψλ,c = ψλ,c,1 the selectivity of 1-hop neighbors.

Placing Eq. 3.15 into Eq. 2.19, we can adjust our LP formulation to handle

this type of billing constraints, and the modified formulation is still a LP.

3.3 Evaluation

In order to show advantages of our formulation over the original IP formula-

tion, we conduct experiments on our hyperbolic embedding-based approach and the

baseline IP (SnsIP) on synthetic data using IBM CPLEX optimizer (v12.6). We

implement HyperCubeMap, the hyperbolic embedding algorithm mentioned in

Sec. 2.4, and the unit graph impression optimization routine in Alg. 3. We discuss

the experimental results on the optimization framework that is developed based on

HyperCubeMap, followed by the results regarding shape design in a simplified

setting of single target user group.

3.3.1 Dataset Description

We construct our dataset using distributions observed from public available

real world advertising datasets. On the advertiser side, we look at keyword bidding

and budget distributions from the Yahoo! Webscope dataset A1 [52] and open

advertising dataset collected from Google AdWords used in [53]. We find that

campaign bidding prices fit well with the lognormal distribution, and the advertiser
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budget follow Pareto distribution approximately. On SNS activity side, we use

the Stanford Network Analysis Platform (SNAP) 2.2 [54] to generate power law

networks by setting α = 2.2 [55] and varying the network size. In addition to

degree distribution, we also need to assign daily impression to each node. The real

impression distribution of well-known SNS is not available to the public to the best

of our knowledge. To generate it, we argue a real user’s SNS usage is bounded by

her daily time, thus we model user impressions using a Poisson distribution, which is

also reported in real advertising network study [56]. To cluster users with different

profiles into targetable user groups of different sizes, we use |GR| to represent the

group/user ratio, and use a Dirichlet prior to generate a multinomial distribution

over group size. We then apply HyperCubeMap to embed the generated network

with default spectrum width d = 10. Finally, to generate bidding from campaigns

to users, we use |AR| as the advertiser/user ratio and use bipartite preferential

attachment with two Zipfian distributions to represent the nodes popularity. The

list of parameters and the default values are shown in Table 3.2. Then we vary the

number of users from 10K to 100M, apply Alg. 1 to derive the optimal isolated cubes,

and summarize the data in Table 3.3. All data and codes are available online1.

3.3.2 Performance of HyperCubeMap

In the following, we refer HembExp to the linear program of exponential

node density distribution in Eq. 2.19, and HembUni to the one using uniform node

density distribution in Eq. 2.18. As hyperbolic embedding is essentially an approx-

1http://www.cs.umd.edu/˜hui/code/hypercubemap
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Name Default Description

|NU | 10,000,000 Number of User

|AR| 0.001 Advertiser/User ratio

|GR| 0.0005 Isolated Cube/User ratio

d 10 Spectrum degree width

w 0.003 Click through rate

λ 10 Poisson for user impression

(K, ~α) (|NU | · |GR|, ~1) Dirichlet prior for isolated cube size

(µ, σ) (−1, 1) Lognormal for advertiser bid

α 1.2 Pareto I for advertiser budget

Table 3.2: Parameters of dataset generation

|NU | edge |A| ic optic
∑

u Iu

5M 13.1M 5000 2500 1462 50M

10M 26.8M 10K 5000 2722 100M

50M 137.0M 50K 25K 11308 500M

100M 276.2M 100K 50K 21063 1B

Table 3.3: Summary of Dataset

imation algorithm through dimension reduction, our experiments aim at showing

the advantages of hyperbolic embedding over the original IP formulation in terms of

runtime, scalability and optimality. We also show the degree spectrum parameter d

tuning to trade-off between runtime and optimality. All experiments run on a linux
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Figure 3.5: Run time by varying problem size

Figure 3.6: Approximation factor

server with two 2.66 GHz 6-core Xeon X5650 CPUs and 128G memory. The CPLEX

optimizer is configured to utilize all 24 threads; for the IP, we fix the MIPSearch

parameter to use the branch and cut. The time metric are in seconds and collected

via CPLEX timer representing actual CPU time used in the optimization.

We first show the runtime performance by varying network size in Fig. 3.5. In

general, hyperbolic embedding methods HembExp and HembUni finish the opti-

mization process two to four orders of magnitude faster than the baseline SnsIP. In
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Figure 3.7: Accumulated time and revenue

the 10M networks, SnsIP takes 7 to 8 CPU hours on average to finish, while Hemb-

Exp and HembUni use less than 100 CPU seconds in the optimization. HembExp

and HembUni runtime performance are similar, even in real world size networks

(100M). Besides runtime, the HyperCubeMap-based methods require much less

memory than the baseline IP. Networks of size 50M and 100M cannot run under

SnsIP, as they run out of memory. In comparison, HembExp and HembUni only

use 2G memory for network 100M, due to the dimension reduction in our approach.

Next in Fig. 3.6, we show the optimality result using approximation factor P,

for instance, in HembExp case:

PHembExp =

∑max iter
i=1 OPTHembExp

OPTSnsIP
(3.16)

As IP cannot run on 50M and 100M network, we omit those SnsIP data

points. The solution of HembExp and HembUni reach about 90% of the original

IP solution on average, and when network size increases, hyperbolic embedding

methods have better solutions. In our experiments, the minimum value of P is
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85.97% while the maximum is 96.07%. Also HembUni always performs better than

HembExp with little additional cost. The exponential node density distribution

makes the embedding coefficient less accurate in the center regions, where the users

have higher social influences. If the engagement rate w becomes larger, the difference

between PHembExp and PHembUni will become larger as well.

In Fig. 3.7, we show the accumulated revenue and time in the unit decomposi-

tion optimization process in the HembUni experiment on 100M network; HembExp

has very similar performance. The left y axis in red is accumulated time percentage,

and the right y axis in blue is accumulated optimal objective value. Our optimiza-

tion process spends most time on the early iterations which also contribute similar

percentages in revenue. This observation has practical meanings when the advertiser

demand is high: we can decompose the whole graph into small number of unit im-

pression graphs without deducting the budgets in the optimization sequence. These

early iteration graphs can be prepared and run in parallel, and the aggregates are

good enough to use as an estimate of optimal solution.

Figure 3.8: Effect of tuning degree spectrum width d
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Next we show the parameter tuning of our hyperbolic approach. The degree

spectrum width d affects dimensions reduction directly and is independent from the

SNS itself. We vary d in {1, 5, 10, 50, 100, 500, 1000} to see its impact with respect

to runtime speedup and the approximation factor. In the extreme case, d = 1,

each annulus only contains the users with the same degree. As shown in Fig. 3.8,

increasing d reduces more dimensions, thus the speedup (left y axis) increases, and

HembExp and HembUni have similar benefit. On the other hand, the approxima-

tion becomes less accurate, and the approximation factor decreases. As expected, it

is easier to tune d in HembUni than HembExp, and it’s worth pointing out when

d = 1, PHembUni is greater than 1. From speedup and approximation factor aspects,

we suggest to set d around 10, which is where the two curves intersect.

As shown in the experimental results, HyperCubeMap has prominent ad-

vantage in efficiency while reaching solutions close to the optimal values.

3.3.3 Experimental Results on Fairness Constraints

In this section, we evaluate the performance of our extensions on fairness

constraints, aiming to compare the impacts of additional fairness constraints towards

the optimization results.

We used SNAP 2.2 to generated graphs of power-law degree distribution and

sizes to be 1, 000, 10, 000 and 100, 000. User impressions follow a Poisson distribu-

tion with mean λ = 10. As shown in Table. 3.4, we fixed the number of ads to be

10, each aj bids pj ∼ N (0.1, 0.01). For the three graphs, we generated the bud-
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|NU | |A| ad bids distr. ad budgets distr.

1k 10 N (0.1, 0.01) N (15, 25)

10k 10 N (0.1, 0.01) N (150, 2500)

100k 10 N (0.1, 0.01) N (1, 500, 250k)

Table 3.4: Summary of the dataset

gets of ads from normal distributions N (15, 25), N (150, 2500), N (1, 500, 2.5×105)

accordingly. Both baseline IP and our novel approach are based on the same impres-

sion decomposition procedure. Without loss of generality, we compare both models

via the optimization over the first graph G(1) after the impression decomposition

operation.

To model the fairness constraints in the IP formulation, we added the following

constraints in Eq. 2.1:

1. Fairness model: We define the linear constraint as:

|
∑

u∈Si du

|Si|
− dV | ≤ η, ∀Ai ∈ A (3.17)

where du is the degree of u, dV is the average degree of the whole network

graph, η is the threshold to measure the deviation of the user influence demo-

graphics.

2. Priority model: We define the linear constraint as:

du ≤ dv, ∀u ∈ Si, v ∈ Sj, Ai, Aj ∈ A, s.t. ρi ≤ ρj (3.18)

where ρi is the quantized priority of ad Ai. The constraint enforces advertisers
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Network size 1,000 10,000 100,000

Revenue

Baseline IP 108 1157 11703

Baseline IP (Priority) 108 1157 11700

Baseline IP (fairness) 108 1157 11703

Fan shape allocation 108 1156 11669

Table 3.5: Optimal values reached via different approaches

with higher bid have the users with higher influence (i.e. larger degree) in the

model.

3. Partial fairness model: The partial fairness model can be formulated as a

combination of the first two models described in Eq. 3.17 and Eq. 3.18.

∑
u∈Si

du ≤
∑
v∈Sj

dv, ∀Ai, Aj ∈ A, s.t. ρi ≤ ρj

|
∑

u∈Si du

|Si|
− dV | ≤ η, ∀Ai ∈ A

(3.19)

Other models can formulate constraints accordingly.

In order to explore the influence of additional fairness constraints in optimiza-

tion, we compare the optimal values reached by the baseline IP formulations with

or without additional fairness constraints and the fan-shape allocation under var-

ious network sizes. The results are shown in Table 3.5, from which we notice the

followings:

• Different fairness constraints lead to different optimal solutions, but they reach

similar optimal values, i.e. the maximum profit that the ad agent can earn via

67



ad allocation. This result is corresponding to the pay-per-mille model applied

in the optimization setting, where impressions are charged instead of clicks.

• The new approach has good performance in approaching the optimal value.

This is consistent with the results shown in Sec. 3.3.2, that HyperCubeMap

can reaching solutions close to the optimal values.

3.4 Summary and Future Direction

In this chapter, we propose extensions to the HyperCubeMap-based opti-

mization framework. First we discuss how to incorporate the fairness constraints

using different shape designs and their algorithmic complexities. As in Hyper-

CubeMap, the influence surface is uniform along angular axis, different influence

domain constraints, such as fair or prioritized assignment strategies among adver-

tisers can be represented using different shapes on the isolated cubes of different

annuli (layers) to the ads. Furthermore, in addition to the 1-hop model applied in

the formulation, we show multi-hop models for the social influence function P (u) and

possible approximations, in order to incorporate non-shallow cascading ad format in

real world applications. In general, HyperCubeMap works well with minor mod-

ifications. We also conducts a series of experiments to evaluate the performance of

the new hyperbolic embedding-based approach. Experimental results show that the

new approach largely reduces the runtime and simplifies the optimization problem,

enabling finding the optimal solution fast and robustly.

Though our algorithm is for offline purpose, it has the potential to be applied
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online. For online usage, we need to solve the issue of network and bidding updates.

Users with attribute updates can be simply assigned to different isolated cubes,

while users with friends change or new users will be embedded using the current

algorithm. For bids updates, the optimal isolated cubes need to be split or merged

smartly without re-calculating. Periodical adjustments need to be performed as well

in order to ensure the performance. We will leave it as future work.
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CHAPTER 4: TRUST IN SOCIAL NETWORKS

With the fast development of Internet and IT technologies, online social net-

work services (SNS) such as Facebook and Twitter are gaining tremendous popu-

larity. Via exposing personal behaviors and connecting to each other, hundreds of

millions of users interact and exchange information over these platforms [57]. The

sharply increasing amount of information flowing in SNS brings a significant benefit

to the users in SNS as they could make decisions via collecting and combining infor-

mation from different sources (i.e. other users) in the network. Such a phenomenon

opens a promising market for SNS-based applications. For example, in recommender

systems, the preference of a user towards a product/service can be predicted based

on the information about users with similar tastes [58], and the recommendations

can be further personalized based on the social context [59–61].

Trust in social network setting can be seen as the preference of a user towards

her neighbors (e.g. friends) in the social network and provides a guideline for the

user to interact and make decisions [62]. Information on trust relationships in social

networks is very important for the success of many SNS-based applications.
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4.1 Concept of Trust

The concept of trust has been noticed and raised attention for a long time,

recognized as an relationship aligned with human interaction. Trust, as defined

in the Merriam-Webster dictionary, is the “belief that someone or something is

reliable, good, honest, effective, etc” [63]. In modern age, with the fast development

and wide application of information and communication technologies, trust has been

largely extended from physical interactions between humans to a much wider range

of domains, from e-commerce to smart grids, from recommender system to sensor

networks. Research on trust now stands at the crossroads of several distinct research

communities, including sociology, economics, computer science, and so on.

The wide application of trust makes it an umbrella term with multiple inter-

pretations in different contexts. Trust can be defined in a quantifiable way so that

it can be measured, evaluated and applied in computational tasks. In [64], Jøsang

et al. discussed two common definitions of trust used among various scenarios,

which are reliability and decision trust. Reliability trust can be interpreted as the

probability held by the evaluating individual a (truster) that the target individual b

(trustee) would perform a given action on which a’s welfare depends. On the other

hand, decision trust links to the extent to which an agent (i.e. the truster) is willing

to depend on another one (trustee) in a given situation for decision making, with a

feeling of similarity, closeness or security.

In the Public Key Infrastructure (PKI), trust is used for authentication and

secure transactions [65, 66]. In P2P network, a global trust is evaluated to regulate
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the interactions among users in the network [67]. Trust is also an important concept

for security in Ad Hoc Networks, influencing processes like intrusion detection and

access control [68, 69]. In these settings, trust is in the flavor of the reliable trust

discussed above, as it is seen as a measure of integrity or level of confidence about

other entities in cooperation, from past experiences, knowledge about the entities

and/or recommendations from trusted entities. Trust applied in these scenarios can

be categorized as reliability trust.

In the case of social network scenario, trust is interpreted in a more subjective

way, and the notion of decision trust is applied. Here trust is directed and is a

compound of integrity, preference/taste similarity, and social closeness (subjective

similarity). It can be defined as, in a certainty domain (context), the extent to which

a truster will consider the trustee’s opinions in such domain. Such a definition makes

trust a domain-specific concept that is quantifiable and tailored for social network

scenarios. In discussing trust, there are several dimensions [70], including :

• Trust measure: The range of the trust measure can be from complete distrust

over a neutral trust measure to full trust. The more a trustee is trusted, the

higher the trust measure should be.

• Trust certainty : The confidence of the truster in her estimated trust value

about the trustee.

• Trust context : The context of domain within which people reach their trust

statements, when defining trust in a fine-grained manner. A context can be

different categories.
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• Trust directions : Based on different interpretations of the reciprocity in trust,

trust relationships can be defined as direct and indirect ones.

• Trust dynamics : A trust relationship may change dynamically along time with

increasing amount of evidence and change of trustee’s personality.

4.2 Modeling Trust in Social Networks

The trust relationship between users in SNS is very important in decision

making as well as the success of many SNS-based applications like recommender

systems. When modeling trust in social networks, it is natural to think of the trust

relationships as potentially asymmetric. For example, in a social network, Alice likes

Bob but Bob may not like Alice in the same extent. The network of trust can be

formed based on the trust relationships that connect people in the social network.

4.2.1 Trust and Distrust Relationships

In social network scenario, trust relationship is based on the social connection

between truster and trustee.

In describing the trust relationship between the evaluating agent (truster) and

the target agent (trustee), there are three different types of trust, namely real, direct

and evaluated trust, that we need to distinguish.

• Real trust : the real state of the target node’s trust value (reputation).

• Direct trust : the trust opinion that the truster holds about the trustee that is

reached via direct interactions.
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• Evaluated trust : the trust value derived from the pre-defined evaluation rule.

Most of the time, the evaluated trust values are derived through trust propa-

gation and aggregation.

Direct trust can be either expressed explicitly (e.g. ratings provided by users

in an SNS), or derived from interactions with the target node based on certain

definition of policies, either using deterministic models or stochastic approaches. In

the rest of this thesis, we assume that direct trust are provided explicitly.

There are various ways to quantitatively represent trust [64,71–73]. The trust

value domain T is application dependent. For instance, it can be a set of discrete

labels {0, 1} or a continuous range like [0, 1]. It can have both positive values

and negative values, and can even be a multi-dimensional vector space. When T

contains negative trust values, it can be used to differentiate unknown users (e.g. of

trust value 0) from ones that are not trusted (with negative trust values). Various

representations of trust exist in related literature. Some work define trust values

as real numbers in certain intervals like [1, 1] (e.g. [74, 75]), or probabilities in [0, 1]

as [70, 76, 77]. Others use discrete values, like the binary representation used by

Jiang et al. [78] and the four discrete-valued setting introduced in [79].

The negative trust relationship is also called distrust. While theories on trust

is increasingly established, the use and modeling of distrust remains relatively un-

explored. Although recent research work [72, 73, 80] shows an emerging interest

in modeling the notion of distrust, models that take into account both trust and

distrust are still limited. Most approaches completely ignore distrust, or consider
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trust and distrust as opposite ends of the same continuous scale. However, there

is a growing body of opinion that distrust cannot be seen as the equivalent of lack

of trust [62, 81]. Introducing distrust makes the trust model complex as the non-

negativity of trust values no long exists, and the linearity of trust aggregation is

hard to argue. This can be especially challenging for many trust-based approaches

such as matrix factorization [82].

Trust relationships that connect people in the social network form a trust

network.

4.2.2 Trust Network

Based on the trust relationships among people in a social network (SNS), a

trust network can be established. The main aim in setting up the trust network is

to allow agents to form trust opinions on unknown agents or sources by asking for

trust opinions from acquainted agents in the social network. The trust network is

usually described as a directed graph, with each vertex as a person and each edge

denoting the directed trust relationship. A weight can be attached to the edge to

represent the level of trust placed upon the trustee by the truster. In such setting,

the symmetric situation can be seen as having two reciprocal and equally weighted

edges on both directions between the two vertices (nodes).

Referring to previous work [59,62,72,73,81,83,84], we define the trust network

in social network setting as follows.

Definition. Trust Network : A trust network G(V,E, te) is a directed and weighted
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graph based on the trust relationships in a social network, where V is the set of

nodes (i.e. users) with |V | = N size of the graph. E is the set of connections

(i.e. trust links) denoting the directed trust relationships, ∀ directed edge eij =

(vi, vj) ∈ E, vi, vj ∈ V , is a directed trust link from node vi towards vj. te : E 7→ T

is a mapping from an edge to the trust value placed on the edge. Trust links are

not necessarily symmetric. Ni = {vj|eij ∈ E} is the neighbor set of node vi.

In the defined trust network, a directed path of length k is a sequence of distinct

nodes, {v1, v2 · · · , vm+1}, such that {vi, vi+1} ∈ E,∀i ∈ 1, 2, · · · ,m. Between two

nodes in the network, there might be multiple distinct paths.

Figure 4.1: An example of trust network

Fig. 4.1 gives an example of trust network, where V = {v1, v2, · · · , v6}. There

are 12 directed edges, each representing the trust relationship between truster (tail)

and trustee (head). For node v3, its neighbor set is N3 = {v2, v5, v6}.

Trust networks are challenged by two major issues regarding trust opinion
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formation towards unknown nodes. Firstly, the trust network is naturally sparse;

in a large network it is likely that many agents do not know each other, hence

there is an abundance of ignorance. Secondly, because of the lack of a central

authority, different agents might provide different and even contradictory opinions,

hence inconsistency may occur.

4.2.3 Transitivity in Trust

Trust transitivity describes how a trust rating can be passed through a chain

of people, and is the foundation of most trust inference models. It allows the truster

to acquire information about the trustee from her friends and theirs’ (“word of

mouth”) [85]. For example, as shown in Fig. 4.2, if node v1 and v3 are not directed

connected, but if v1 trusts v2, and v2 trusts v3, then v1 can use such trust evidence

to infer its opinion about v3 using (possibly partial) transitivity.

As trust is a mental phenomenon, it is barely possible to reach an objective

definition for trust transitivity, which leads to different interpretations in different

trust models. Four types of trust transitivity models were mentioned in [81], namely

direct propagation, co-citation, transpose trust and trust coupling. Among these

four categories, direct propagation is mostly considered and can be seen as the

classical transitivity. It can be defined as:

〈vi, vj〉trust ∧ 〈vj, vk〉trust ⇒ 〈vi, vk〉trust

∀vi, vj, vk ∈ V
(4.1)

Based on the assumption of transitivity (may be partial), trust can propagate

along the paths between two nodes in the network and their trust relationship can
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Figure 4.2: Transitivity of trust relationships

be inferred. When multiple paths exist, a combination scheme is needed to derive

the trust value. Due to the subjective nature, conflicts may happen in such occasion

and need to be resolved.

Transitivity becomes more complex when considering distrust relationships

[86]. For example, the trust relation between node v1 and v3 is not obvious if v1

distrusts v2 and v2 distrusts v3. The conflict resolution is also much more difficult

with distrust.

4.2.4 Reciprocity

Trust reciprocity describes the extent of symmetry in directed trust relation-

ships between two users (i.e. nodes) in the social network. Similar to Eq. 4.1, we

can write the following expression for reciprocity.

〈vi, vj〉trust ⇒ 〈vj, vi〉trust (trust reciprocity)

〈vi, vj〉distrust ⇒ 〈vj, vi〉distrust (distrust reciprocity)

∀vi, vj ∈ V

(4.2)

As shown in [83, 87], trust relationships are asymmetric in terms of values

(especially magnitude) in social network scenarios, thus most trust evaluation ap-
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Figure 4.3: Reciprocity in trust relationships

proaches don’t consider reciprocity. However, by relaxing the condition in Eq. 4.2 to

only sign agreement of positive trust relationships, partial reciprocity can be defined.

As we will show in Sec. 5.10.1, the partial reciprocity exists in the Epinions trust

network dataset. The partial reciprocity between nodes may be useful in inferring

indirect trust in some circumstances.

4.3 Evaluating Trust in Social Networks

In literature, two classes of trust metrics have been studied, which are local

trust metrics [83,88–90] and global ones [67,91–93]. Local trust (AKA personalized

trust value) refers to the subjective trust opinions of each agent about her neighbors

in the network, which provides a personalized trust value that depends on the point

of view of the evaluating agent (e.g. node). Global trust of a node in the social

network is a unique trust value assigned to her, independently of the evaluating

agent. The ground truth for global trust corresponds to the real trust mentioned in

Sec. 4.2.1, and is also called as reputation in many cases. Global trust is a quantity

derived from the underlying social network, and is globally visible to and generally

accepted by members of the network.
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4.3.1 Local Trust Evaluation

Evaluation of local trust depends on past interactions between the truster and

the trustee, and on the transitivity (“word of mouth”) model that allow the truster

to acquire information about the trustee from her friends and theirs [85]. There

have been a series of research work on the evaluation of local trust.

Golbeck proposed TidalTrust [83,94] for inferring trust relationships between

people with no direct connection based on shortest trust paths between them within

the trust network. The algorithm aggregates the weighted trust values between

neighbors to reach indirect trust. In the following work [95], trust paths of different

length are considered. MoleTrust [96, 97] proposed by Avesani et al. is similar to

TidalTrust, but considers all raters up to a fixed maximum-depth given as an input.

Jøsang et al. [89] used a subjective logic framework for local trust reasoning.

Trust and distrust are treated as two separate concepts, and several probabilistic

trust aggregation operators are proposed according to different transitivity models.

DuBois et al. [98] designed a probabilistic approach to infer the trust relation-

ship between users in social networks and applied it in network clustering. In their

following work [86], they further considered distrust in the network and introduced a

modified spring-embedded algorithm for trust inference. Kuter et al. [99] developed

the SUNNY algorithm for trust inference based on probabilistic confidence models.

Huang et al. [100] used a probabilistic soft logic framework for trust prediction.
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4.3.2 Global Trust

The global trust of a node in the trust network is a general proposition about

the node’s integrity, reliability, and quality, which is based on and comes from the

reputation of the trustee within the community. An individual’s global trust is esti-

mated using the information from the complete trust network [71]. The converged

global trust can be reached via combination of local trust opinions gathered from

all the agents within the network.

The most basic approach is to take average over all trust opinions about the

target node in the trust network. Such a straightforward approach has been applied

in many SNS as well as e-commerce platforms with minor modifications. Despite

the efficiency of the method, a lot of information contains in the trust network may

be lost due to the low-pass filtering effect of the averaging operation.

The game theory-based research introduced in [101, 102] lays the foundation

for research on online reputation systems and provides interesting insight into the

complex behavioral dynamics. Mui et al. [103] also give a review summarizing

existing works on reputation across diverse disciplines, including distributed artificial

intelligence, economics, and evolutionary biology.

Many global trust metrics applied the idea of the PageRank algorithm [104]

used for web page ranking. For example, Kamvar et al. [67] developed a PageRank-

like algorithm to evaluate global trust of peers in P2P network via aggregating local

trust values. The issue of malicious nodes is addressed by computing trust value on

other peers and majority voting. Richardson et al. [88] proposed an algorithm similar
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to PageRank for global trust evaluation in the semantic web. These approaches

imply that nodes should be ranked higher when pointed by nodes of better ranks.

4.4 Study Objectives

In the following chapters, we will discuss our work regarding trust evaluation

and application in social network environment in two directions, covering both local

and global trust evaluation.

In Chapter 5, we discuss local trust inference in social network setting. We

model the trust relationships among users in SNS as a 2-dimensional vector, in order

to present the information contained in trust relationships. In the trust model,

both trust and distrust (i.e. positive and negative trust) are considered. Based

on the trust model, we introduce distrust semiring, which is a semiring structure

for trust propagation and aggregation, and develop a trust inference framework in

social network scenario. We evaluate the performance of the semiring-based trust

inference method with a real-world dataset.

In Chapter 6, we consider the scenario of opinion divergence within social

networks, and propose a method to reach different global trust values between groups

of users with controversial opinions in the network. We model the global trust

opinion formation in discrete-time dynamics and introduce bipartite consensus as

the approach to establish global trust in such circumstances. We first discuss such

approach under the condition of structural balanced trust network, where non-trivial

global trust can be reached within the network. We then extend the results to more
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general situations where eventual positivity applies. The global trust reached via our

scheme can guide users’ social behaviors, and support many SNS-based applications.
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CHAPTER 5: SEMIRING-BASED LOCAL TRUST INFERENCE

IN SOCIAL NETWORK SCENARIO

In this chapter, we model the trust relationship between users in SNS as a 2-

dimensional vector containing both trust and certainty information, and propose a

semiring-based framework to combine trust evidences for inferring trust relationships

in social network setting. In our approach, both trust and distrust (i.e., positive

and negative trust) are considered, and opinion conflict resolution is supported by

the trust inference framework. We evaluate the proposed approach on a real-world

dataset. Experimental results show that our trust inference framework has high

accuracy and is capable of handling ;ocal trust inference in large networks.

5.1 Introduction

Local trust inference in social network scenario faces several challenges:

• Sparse social connections, due to the scale-free property of social networks

• Inconsistency and conflicts in trust opinions, because of the subjective

nature of local trust

• Trust data availability, as online users tend not to expose trust to others
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explicitly

To address these challenges, there has been a line of study regarding trust

inference in social network setting, which can generally be categorized in two groups.

One group focuses on theoretical studies regarding trust metrics and their properties

[64, 73, 81, 89, 105]. The other group proposes effective data-driven approaches for

inferring trust, such as graph-theoretic models [59, 60, 83, 88, 94, 96] and machine

learning approaches [106].

Graph-theoretic models generally have good performance in terms of efficiency

and reasoning. However, as most work applies linear weighted averaging over trust

opinions from neighbors, nonlinearity in human decision making and interaction

between trust and distrust may not be fully captured. The path-based design is

also sensitive to the connection sparsity in the trust network, since the trust path

will not exist if some edges in between are missing. These defects restrain the

accuracy of the models. On the other hand, machine learning methods can solve the

data sparsity, sometimes with better label prediction accuracy. However, machine

learning methods are usually slower in speed and have weak interpretation on how

trust is inferred.

It is ideal if there exist a method which addresses most challenges at the same

time. In this chapter, we propose a trust inference method based on a semiring

model. The basic idea is to build up a nonlinear trust aggregation rule that can

handle both trust and distrust information, and offer conflict resolution in the opin-

ion combination process.
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We model the trust opinion between two nodes (i.e. truster and trustee)

as a 2-dimensional vector, containing both trust and certainty information. By

making trust level take values in the range of [−1, 1], distrust (i.e. negative trust) is

considered. Based on the trust model, we propose distrust semiring and accordingly

develop a semiring-based trust inference framework. We propose certainty models,

and discuss several properties of the trust inference framework. In order to further

improve the coverage and accuracy of our proposed trust metric, we introduce trust

iteration in the framework and exploit the information from partial reciprocity.

Apart from the flexibility in modeling, this approach has the advantages of

efficiency inherited from graph-theoretic models and better accuracy due to an iter-

ative component and optimization over parameters. We evaluate our model using a

real-world dataset, and show that our approach can achieve the accuracy to about

95%.

In the following sections, we first introduce semiring structure. We then give

our model of 2-D trust opinion vector, and develop distrust semiring accordingly.

Based on the propagation and aggregation rules defined upon semiring operations,

we propose a trust inference framework with certainty models. We evaluate our

approach using the Epinions dataset.

5.2 Semiring Structure

A semiring is an algebraic structure, consisting of a set and two binary oper-

ations, addition (⊕) and multiplication (⊗), with several conditions over the oper-
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ations. It can be defined as follows.

Definition. Semiring : A semiring is a tuple 〈A, ⊕, ⊗, τ, 1〉 such that

• A is a (possibly infinite) set with two special elements 0,1 ∈ A

• ⊕, called the additive operation, is commutative and associative, with 0 as

the unit element, such that

a⊕ b = b⊕ a

a⊕ (b⊕ c) = (a⊕ b)⊕ c

a⊕ 0 = a = 0⊕ a

∀a, b, c ∈ A

• ⊗, the multiplicative operation, is associative, with 1 as the unit element and

0 as absorbing element, such that

a⊗ (b⊗ c) = (a⊗ b)⊗ c

a⊗ 1 = a = 1⊗ a

a⊗ 0 = 0 = 0⊗ a

∀a, b, c ∈ A

• ⊗ distributes over ⊕, i.e.

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

∀a, b, c ∈ A
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A semiring 〈A, ⊕, ⊗, 0, 1〉 is called an ordered semiring if there exists a partial

order relation “�” that is monotone with both operators:

a � b and a′ � b′ ⇒ a⊕ a′ � b⊕ b′ and a⊗ a′ � b⊗ b′

Semiring is similar to ring algebra structure, but it doesn’t require an additive

inverse for each element (e.g. a and −a). An example of a semiring is the set of

nonnegative integers N, with the usual addition (+) and multiplication (×).

The operations used in a semiring structure can be seen as a generalization

of addition and multiplication. Different realizations of semirings can be designed

and applied in different application scenarios. With careful design, The semiring

operations are possible to capture the nonlinearity in trust evaluation. Theodor-

akopoulos et al. [68, 107] modeled trust opinion in an Ad Hoc network as a 2-D

vector of (trust, confidence), and proposed two semiring frameworks, namely path

semiring and distance semiring, as trust metrics. [108] uses a semiring model similar

to path semiring for multi-trust evaluation within a trust network.

However, despise its potential in modeling trust, the set A in most semiring

models for trust evaluation only have nonnegative elements (e.g. the range of [0, 1])

[68]. In order to accommodate negative trust values (i.e. distrust), a modification

on the semiring model is needed.

5.3 Trust Model

The main aim in setting up trust networks is to allow agents to form trust

opinions on unknown agents or sources by asking for trust opinions from acquainted
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agents. While trust has been studied for a long time, the use and modeling of dis-

trust remains relatively unexplored. Although recent research works [72, 73] show

an emerging interest in modeling the notion of distrust, models that take into ac-

count both trust and distrust are still scarce. Most approaches completely ignore

distrust, or consider trust and distrust as opposite ends of the same continuous

scale. However, there is a growing body of opinion that distrust cannot be seen as

the equivalent of lack of trust [62,81].

5.3.1 Trust Opinion Vector

As discussed in Sec. 4.1, trust is domain-specific in SNS. People hold different

levels of trust towards others in different domains (contexts); it’s common that

people trust others in some domains instead of others. Here for simplicity, we

consider the case of unified context, without considering the differences of trust

opinions in multiple domains.

As pointed out in [83], in social network setting, there are two dimensions in

trust. One describes the opinion of the truster on trustee’s quality in providing

messages of integrity, which can be used in evaluating confidence on the trustee’s

introducing other people to establish trust relationship (i.e. certainty). The other

describes the weight that the truster puts on trustee’s opinion in domain-specific de-

cision making (i.e. trust). In order to capture both certainty and trust information,

we define the trust opinion as a 2-dimensional vector.

Definition. Opinion Vector : In our trust model, trust is defined as a 2-dimensional
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opinion vector τij ∈ T = [−1, 1]× [0, 1] from truster i towards trustee j:

τij = (tij, cij) (5.1)

where tij ∈ [−1, 1] is the trust level representing how much i trusts (likes)/distrusts

(dislikes) the opinions (taste) of j in the current domain. cij ∈ [0, 1] is the certainty

level which shows how much i believes in the integrity of j.

By making trust levels take values in the range of [−1, 1], distrust is considered

along with trust. Trust level tij < 0 corresponds to a distrust relation between

truster and trustee, and that there is to some extent a disagreement/opposition

in preference/taste. tij = 1 means “totally agree”or “like”, while tij = −1 means

“totally disagree”or “dislike”. Certainty is orthogonal to trust value, it denotes the

quality and accuracy of the trustee’s opinion. cij = 1 shows an extreme certainty

on j’s integrity. While a high trust value may be because of similarity in taste or

preference, a high certainty value may be due to direct connection with the truster

or large number of connections (i.e. high degree). Certainty determines if the

opinion will be considered, and opinions with a high certainty value are more useful

in making trust inference. As both trust level and certainty level about the trustee

are considered in the opinion vector, more complicated situations can be modeled

and analyzed.

The initial trust relationship can be established based on the information in

the social network. For instance, both explicit ratings, or extraction from user

interactions (e.g. ‘like’ and ‘dislike’) can be sources of directed trust opinions.

Note that though defining trust as a 2-D vector is similar to [68,107], which ap-
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ply trust in Ad Hoc networks, the interpretation of trust and the way trust is applied

are different. Here in a social network setting, trust is used as a measure of prefer-

ence and certainty is a measure of propagation credibility, instead of a representation

of identity in the Ad Hoc network case. In our model, the trust component takes

values in [−1, 1] where a value of −1 means opposite taste/preferences, while in [68]

trust is in the range of [0, 1] and a value of 0 is used to denote zero-trustworthiness.

5.3.2 Trust Network

As discussed in Sec. 4.2.2, based on the trust relationships among people in

SNS, a trust network can be established, with each edge representing a directed

trust opinion.

Definition. Trust Network : A trust network based on the set T of trust opinions is

a directed and weighted graph G(V,E, te), te : E 7→ T , where V is the set of users.

E is the set of trust relationships. For ∀eij = (vi, vj) ∈ E, vi, vj ∈ V , te associates

it with an opinion vector τij = (tij, cij) ∈ T , indicating the trust and certainty that

node vi holds on vj. Trust links are directed. Ni = {vj|eij ∈ E} is the neighbor set

of node vi.

5.4 Distrust Semiring

In order to tackle the issue of sparse trust relationships and opinion conflict,

in our trust model, we propose a local trust metric based on a semiring that can

handle both trust and distrust in opinion propagation and aggregation. Specifically,
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propagation uses a multiplication operator (⊗) and aggregation process is conducted

via an addition operator (⊕).

According to our application scenario where both trust and distrust are needed

to be considered in trust evaluation, we propose a novel semiring structure, which

is called Distrust Semiring.

Definition. Distrust Semiring : A distrust semiring is a 2-dimensional semring de-

fined on the trust opinion set T , such that

• A = T = [−1, 1] × [0, 1] the set of trust opinion vectors, with two special

elements 0 = (0, 0),1 = (1, 1)

• The additive operation ⊕ is defined as

(ta, ca)⊕ (tb, cb) = (t, c) (5.2)

with c = max{ca, cb}, and

t =



ta ca > cb

tb cb > ca

sign(ta + tb) ·max{|ta|, |tb|} ca = cb

(5.3)

• The multiplicative operation ⊗ is defined as

(ta, ca)⊗ (tb, cb) = (t, c) (5.4)

where c = cacb, and

t =


0 ta < 0, tb < 0

tatb otherwise

(5.5)
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The additive operation (⊕) depends on the certainty level of the two opinions

vectors. When the two vectors have the same certainty level, the trust level t after

operation equals to the trust level of the opinion that has the larger magnitude. This

is an optimistic definition since trust opinions of higher magnitude will be selected

in such setting. In the multiplicative operation (⊗), if the two opinions both have

negative trust values (which corresponds to distrust relationships), then the trust

after operation goes to 0, meaning that the transitivity is cut in this case.

5.4.1 Trust Properties Reflected in Distrust Semiring

As its basic properties in social network setting, trust information diminishes

and becomes noisy in propagation, and increases when aggregating neighborhood

values [89]. Distrust semiring essentially defines an algebraic way to calculate trust,

thus we first need to show whether the basic operations, addition used in trust ag-

gregation and multiplication used in trust propagation, satisfies the commonsense.

By defining a partial ordering, we show that the semiring framework is intuitive

and consistent with requirements for trust propagation and aggregation.

Definition. A partial order relation � can be defined upon two 2-D opinion vectors

τa = (ta, ca) and τb = (tb, cb):

τa � τb (5.6)

if and only if

ca ≤ cb, or |ta| ≤ |tb| and ca = cb ∀ τa, τb ∈ T
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Theorem 5.4.1. The distrust semiring structure satisfies the following two condi-

tions,

1. the multiplication operation is non-increasing:

∀τa, τb ∈ T , τa ⊗ τb � τa ∧ τa ⊗ τb � τb (5.7)

2. the addition operation is non-decreasing

∀τa, τb ∈ T , τa � τa ⊕ τb ∧ τb � τa ⊕ τb (5.8)

Proof. Let τa ⊗ τb = (t, c). As ca, cb ∈ [0, 1], and ta, tb ∈ [−1, 1], based on

the definition of the multiplication operation, it is easy to see that c = cacb ≤ ca,

c = cacb ≤ cb. For the trust value, if both ta and tb are negative, then t = 0 < |ta|, |tb|.

Otherwise, |t| = |tatb| = |ta||tb| ≤ |ta|, and |t| = |tatb| ≤ |tb|. Thus Eq. 5.7 holds,

and the non-increasing property of the multiplication operation is proved.

The non-decreasing property of trust aggregation can be shown in a similar

way. In aggregation, τ = (t, c) = τa ⊕ τb. based on definition, c = max{ca, cb} ≥

ca, cb. Thus the first condition is satisfied, and the non-decreasing property of the

additive operation is proved.

The non-increasing property of the multiplication operation is in accordance

with the requirement for trust propagation process, whereas the non-decreasing

property of the addition operation connects to the trust aggregation process. Thus

the two operations in distrust semiring can be used in defining trust propagation

and aggregation rules.
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5.5 Certainty Models

In the context of social networks, though trust data may be available, the cer-

tainty information is generally implicit and contained in user interactions. Without

certainty data, it is infeasible to apply the 2-D semiring model for trust inference. In

practice, certainty may be derived by sentiment analysis or other natural language

processing pipelines. However, NLP toolboxes are not light-weight and require rich

text data in the SNS. Here we consider the situation when only SNS connections

and trust data are available, and propose two ways to model certainty. One is based

on length of the trust path, the other one is degree-oriented.

Path-based certainty models : Based on the fact that neighbors which are reach-

able via a longer trust path carry less valuable trust information [60], we come up

with a path-based certainty model. We model the certainty value of user vs about

vt as a function of hops (i.e. the length of the shortest path) between the two.

cst = g(dists,t) = αdists,t (5.9)

where a ∈ (0, 1] is a hyperparameter and can be seen as the decay factor, and dists,t

represents the shortest trust path length between vs and vt. When α = 1, the

decay disappears and nodes of all distances are considered equally. Such definition

is equivalent to introducing a 1-hop decay of magnitude α at each hop. Instead of

calculating cst, we consider the decay at node vi in the middle:

ci = g(vi) = α (the decay factor) (5.10)

then along pathst from vs to vt, cst =
∏

vi∈pathst
ci In this simple model, the relative
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certainty between two paths is stable for ∀a ∈ (0, 1), i.e. the trust evaluation result

is α-invariant.

Degree-based certainty models : Another way to model certainty in social net-

work setting is based on node degree, with the hypothesis that nodes of higher

degree are more reliable and their trust opinions have more certainty. The certainty

function of a node vs can be accordingly denoted as

g(vs) = g(ds) (5.11)

where ds is the degree of vs.

We consider two realizations for g(ds), a linear model and an exponential

model. The linear model can be written as

g(ds) = min(β + γds, 1) (5.12)

and the exponential model can be described by

g(ds) = 1− ηds (5.13)

The coefficients β, γ, and η are tunable. Given the trust metric, an optimiza-

tion problem over the parameters can be formulated accordingly to maximize its

performance.

5.6 Trust Inference Based on Distrust Semiring

With the corresponding certainty models discussed above, a trust inference

framework can be developed. Trust propagation and aggregation, as the two building

blocks of the framework, can be defined using the distrust semiring structure.
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5.6.1 Trust Propagation

Propagation of trust opinion is based on transitivity, and is defined using the

⊗ operator. The transitivity in trust and distrust are handled differently.

Definition. Trust Propagation: In the trust metric, the trust relationship between

two nodes vs and vt with no direct connection can be estimated via the multiplicative

operation ⊗ of trust values on edges along each path pathst between the two nodes.

(tst, cst) =
∏

⊗,eij∈pathst

(tij, cij) (5.14)

When there are multiple paths between the two nodes, the trust opinions

reached along all paths should be aggregated together.

Considering the decay of influence along the path, a maximum hop value λ

can be introduced in order to stop early and accelerate the calculation. As shown

later in Sec. 5.10, a 4-hop setting has already reached about 95% accuracy.

5.6.2 Trust Aggregation

The trust aggregation component in the trust metric is to combine trust infor-

mation from different sources (i.e. paths). It can be defined based on the additive

operator ⊕ in distrust semiring:

(t, c) =
∑

⊕,{a|patha∈P}

(ta, ca) (5.15)

where P is the set of trust paths considered in aggregation, and each (ta, ca) with

patha ∈ P is the trust vector along that trust path a.
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Figure 5.1: An example trust network for trust propagation and aggregation

As an example, for the trust network shown in Fig. 5.1, there are three paths

from node v1 to v5. For the left path, when multiply τ12 and τ25 using ⊗, we have

τ1 = τ12 ⊗ τ25 = (0.36, 0.56). Similarly, the middle path has τ2 = (0.12, 0.25) and

the right one τ3 = (−0.15, 0.56). When combining τ1, τ2, τ3, we can use ⊕ defined in

distrust semiring and have combined opinion τ = τ1 ⊕ τ2 ⊕ τ3 = (0.36, 0.56).

5.6.3 Overall Trust Inference Framework

A trust metric can be developed based on the trust propagation and aggre-

gation rules defined above. Given a pair of users vs (truster) and vt (trustee), the

proposed trust inference method is a function f : V × V 7→ T , such that

(tst, cst) = f(vs, vt) =
∑
⊕,vj∈Ns

(tsj, csj)⊗ (tjt, cjt) (5.16)

where Ns is the neighbor set of vs. In order to save computation resources, a

threshold for trust value (σt) and certainty value (σc) can be introduced. When
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below the thresholds, the trust opinion will not be considered in aggregation, i.e.

(tst, cst) =
∑

⊕,vj∈Ns,(σt,σc)�τsj⊗τjt

(tsj, csj)⊗ (tjt, cjt) (5.17)

The way that the trust metric is applied to trust inference is shown in Alg. 4.

The algorithm is to evaluate the trust opinion (tst, cst) of vs (truster) about vt

(trustee), with λ the maximum hop number, σt and σc the lower bounds for trust

and certainty value respectively. One can interpret the algorithm as follows: vs asks

her neighbors for their trust opinions about vt. Each neighbor vi ∈ Ns provides

her opinion about vt (i.e. tit and cit), either directly or estimated using the trust

inference algorithm recursively. At each hop forward, λ, the maximum hop number,

will decrease by 1 until reaching 0. Then vs aggregates all the evidence and reach

(tst, cst) about vt.

In such a trust inference framework, both trust and distrust (i.e. negative

trust) are taken into consideration for trust inference. As paths above the thresh-

olds are all integrated into the calculation, trust information are fully exploited in

this approach for better coverage. When aggregating trust opinions along different

propagation paths, we apply First Aggregate Then Propagate (FATP) scheme. At

each node, the trust information along different paths is first aggregated together

and then propagation to the node as a unified trust opinion. Such 1-hop propagation

before aggregation scheme can reduce the noise during trust propagation process and

improve the inference quality. The possible conflicts among opinions are handled

in a non-trivial way with the introduction of certainty value and nonlinear addition

operation (⊕).
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Algorithm 4 Semiring-based trust inference algorithm, f(vs, vt, λ, σt, σc)

Mark vs as visited

if λ = 0 then

return (0, 0)

end if

cs ← g(vs)

if tst exists then

return (tst, cs)

end if

tst ← 0

cst ← 0

for each vi ∈ Ns, the neighbor set of node vs do

if (vi visited) or (|tsi| < σt) or (cs < σc) then

continue

end if

(tit, cit)← f(vi, vt, λ− 1, σt
|tsi| ,

σc
cs

)

if (tsi < 0 and tit < 0) or (tit = 0) then

continue

end if

(tst, cst)← (tst, cst)⊕ ((tsi, cs)⊗ (tit, cit))

end for

return
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5.7 Iterative Trust Evaluation

Alg. 4 is built on the trust paths between two users. In real-world data, the

trust information is often sparse, thus the coverage of trust inference method is

limited by the amount of trust data present. In order to address the sparsity issue,

we propose to introduce the collective method used in network analysis. Itera-

tive method is a type of collective approaches in classification problem [109]. Such

method is used when the data contains interconnection and correlation between

objects, such as webpages and SNS, and has been shown to be very effective over

network data [110]. The method treats the independent inference as a joint inference

problem, and uses an iterative approach to predict labels; the new labels predicted

in the previous iterations are used in the following iterations.

In the trust inference problem, as trust relationships among users are inter-

correlated, we introduce iterative trust evaluation in our trust inference framework

(Alg. 5) to improve the performance. The basic idea of the design is to iteratively

evaluate the trust opinions associated with the edges in the test dataset, conditioned

on the both ground truth and current predictions. Initially, the knowledge base is

the training dataset, and the result set is empty. While running, the error in Alg. 5 is

used to measure the difference of results between two iterations. The iteration ends

when convergence on local predictions is reached or maximum number of iterations

has finished.

101



Algorithm 5 Iterative trust evaluation

Let E: set of edges to evaluate, K: max number of iterations

knowledge base← trust relationships in training dataset

result set← ∅

for i : 1 to K do

error ← 0

for edge ej ∈ do

knowledge base← knowledge base \ (tj, cj)

calculate trust metric f(ej)

if ((tj, cj) /∈ result set) then

error ← error + 1

else

error← error + ‖f(ej)− (tj, cj)‖

result set← result set \ (tj, cj)

end if

(tj, cj)← f(ej)

result set← result set ∪ (tj, cj)

knowledge base← knowledge base ∪ (tj, cj)

end for

if (error < ε) then

return result set

end if

end for

return result set
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5.8 Exploiting Reciprocity in Trust

As discussed in Sec. 4.2.4, (partial) reciprocity can be added into the trust

inference algorithm to improve both coverage and accuracy. We extend the trust

inference algorithm (Alg. 4) by introducing partial reciprocity in a careful way.

Apart from considering trust evidences from neighbors, the truster also treat the

direct trust opinion about herself from the trustee as a source of information, as

a reflection of partial reciprocity. In order to reduce the error due to asymmetry

in trust relationships, we only consider positive reciprocity (i.e. the reciprocity in

positive trust relationships), and the certainty value in a trust opinion reached using

reciprocity has a smaller magnitude compared the one reached through transitivity-

based propagation.

5.9 Optimistic vs Pessimistic Semirings

In Sec. 5.6.3, the trust metric takes an optimistic definition for trust aggrega-

tion; the binary operation ⊕ takes the larger magnitude of the two and its sign as

the combined trust value when the certainty levels are the same. This definition is

based on the hypothesis that extreme opinions weigh more than neutral ones [60,94].

In a pessimistic model, when ca = cb, the addition operation for trust aggregation

(Eq. 5.3) can be modified as

t = sign(ta + tb) ·min{|ta|, |tb|} (5.18)

Such definition is “pessimistic”, as the aggregated trust value conservatively
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Table 5.1: The Epinions trust network statistics

Statistics Value

User size 91053

Edge amount 841372

Trust relationships 717667

Distrust relationships 123705

picks the smaller magnitude between the two incoming trust values. With such

model, trust aggregation is not non-decreasing any more.

When the addition operation is defined as the normal “add” (+) on real set R,

the trust metric evolves to a PageRank-like definition with 1-step trust propagation.

5.10 Performance Evaluation

In order to verify the model and evaluate the performance of our semiring-

based approach, we conduct experiments on the Epinions trust network dataset

[111]. The dataset contains both direct trust connections (with edge weight of +1)

and distrust ones (with edge weight of −1), and form the trust network G(V,E, te)

where te : E 7→ T = {−1, 1}. To the best of our knowledge, it is the largest dataset

available online that contains both explicit trust and distrust information marked

in a binary (+1 and −1) format. The dataset has 91.053 users with 841,372 edges,

717,667 trust relationships and 123,705 distrust relationships.

Some statistics about the dataset is shown in Table 5.1.

In order to evaluate our trust metric, we first verify the transitivity and reci-

procity of trust relationships using the Epinions dataset.
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5.10.1 Transitivity and Reciprocity in The Data

Inspired by previous works, we investigate the transitivity phenomenon. For

transitivity, we count the number of triangles represented by triplets (i, j, k) such

that

vi, vj, vk ∈ V, eij, ejk, eik ∈ E (5.19)

and tijtjktik > 0 (structural balance) (5.20)

Based on this definition, among all triangles that satisfy Eq. 5.19, 92.7%

(10229847 out of 11033232) are transitive. We also zoom in and look at the case

when vi distrusts vj, vj distrusts vk (i.e. tij < 0 and tjk < 0), what the relationship

between vi and vk is. It turns out that ≈ 50% situations have tik < 0 with another

half having tik > 0, which endorses the setting “the enemy of your enemy is actually

unknown” in our trust metric.

We also evaluate the reciprocity of trust relationships in Epinions dataset. We

consider reciprocity of trust relationships as symmetry on signs, i.e. we consider

pairs (vi, vj) that have reciprocal trust relationships when both eij and eji exists

and tijtji > 0.

Based on the experimental results, we notice that (partial) reciprocity com-

monly exists between nodes in the network. Among all 259,751 pairs of nodes having

bi-directional relationships, 254,345 (≈ 98%) are reciprocal relationships (both di-

rections are of the same sign, either positive or negative), and 98% of reciprocal ones

are of positive connections, which corresponds to the concept of partial reciprocity

that we discussed in Sec. 4.2.4.
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However, as both trust and distrust relationships are single-valued, the sym-

metry on magnitude of trust relationships is unable to be evaluated.

5.10.2 Experimental Design

In the Epinions dataset, all trust values in the training dataset are in the set

T = {−1, 1}. Based on the definition of our trust metric model, though certainty

value of each predicted edge varies in [0, 1], the set for predicted trust values will be

Tp = T ∪ {0} = {−1, 0, 1}, where the value of tst = 0 represents the case when no

enough information available for predicting the trust relationship associated with

the edge est. Unlike linear approach such as [81], no rounding is needed for predicting

discrete trust values.

To evaluate the performance of our trust evaluation approach, we measure

and compare accuracy and coverage. Accuracy is the fraction of correctly predicted

trust relationships among all nonzero ones in the test data:

accuracy =
‖{eij ∈ Stest | tij = t′ij}‖
‖{eij ∈ Stest | tij 6= 0}‖

(5.21)

where Stest is the test edge set, tij is the trust value reached using our trust inference

algorithm, and t′ij is the ground truth trust value. The denominator in Eq. 5.21 only

take edges that have nonzero predictions.

Coverage is defined as the number of edges predicted over the number of edges

predictable in test data:

coverage =
‖{eij ∈ Stest | tij 6= 0}‖

‖{eij ∈ Stest | ∃k, l ∈ V s.t. eik, elj ∈ Strain}‖
(5.22)

where an edge is predictable if both of its vertices are present in the training set.
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We partition the Epinions dataset to generate training and test data. As

the dataset is a network with vector edges, partition edges in different ways may

have non-trivial impact on the graph connectivity. Our data partitioning uses two

schemes, one randomly drop a certain percentage ρ of edges. Instead of dropping

edges randomly, another scheme uses the timestamp in the dataset. The dataset

generated this way is referred as the time-ordered dataset. We conduct experiments

on datasets of two sizes, and refer the test dataset generated with ρ = 0.5% as the

small test dataset, while the one using ρ = 5% as the large test dataset. We use the

trust metric developed above for trust evaluation on the two datasets respectively.

5.10.3 Experimental Results

Training/test data ratio: The experimental results for the large test dataset

and the small one are shown in Fig. 5.2(a) and Fig. 5.2(b) respectively. From the

results, we see that the performance of our approach is better on the smaller dataset,

in terms of both accuracy and coverage. The major reason is that the training data

size is larger for the small test dataset case, which means the trust network used

for prediction is more connected and has more trust evidence for prediction. Thus,

the performance of our approach is positively correlated with the training/test data

ratio.

Varying trust path length λ: As discussed in previous literature [59, 83], the

longer the trust path in graphical trust evaluation models, the more noise may be

introduced. While the introduction of distant friends improves the coverage of the
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Figure 5.2: Evaluation results of the Star trust inference framework

social recommendation algorithm, it affects its accuracy. As the average shortest

path length in Epinions dataset is about 4, in the experiment, we set the maximum

hop length λ as 2, 3 and 4 respectively, and evaluate the performance of our trust

metric under different settings.

In Fig. 5.2(a) and Fig. 5.2(b) we can see that, the coverage of our approach is

better with paths of more hops considered, as more nodes are reachable and used
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in trust evaluation. However, though the variation is subtler compared to coverage

change. The accuracy result is still decreasing with an increasing maximum hop

length parameter.

Iterative trust evaluation and the additional partial reciprocity information: Apart

from data size and maximum hop length, we also evaluate the impact of these two

addition components. We compare our base model for trust inference (Alg. 4) versus

the model applying iterative trust evaluation and exploiting the additional partial

reciprocity information. As shown in Fig. 5.2(c) and (d), introducing an iterative

trust evaluation method improves the performance in both coverage and accuracy.

By getting trust information based on partial reciprocity for trust evaluation, the

coverage and accuracy of the trust inference algorithm are even higher. By applying

collective methods and partial reciprocity, more trust evidence can be used in the

trust metric.

When applying iterative approaches in classification problem [109], the or-

dering of value updates in the iterative trust evaluation may affect the predictive

accuracy and convergence rate. Here, in order to investigate the influence of order-

ing in trust iteration over test data, we randomize the order of the node pairs for

prediction, and compare the experimental results. We list the results for the 4-hop

case in Table 5.2. According to the results, the application of iterative approach for

the trust metric in social recommender system setting is fairly robust to randomized

orderings of the test dataset.

Parameter tuning in certainty : As discussed in Sec. 5.5, we proposed two tun-

able models for certainty based on degree. Here we vary the values of the parameters
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Table 5.2: Performance of iterative trust evaluation using random-ordered test data

random set Accuracy Coverage

1 0.9314 0.9895

2 0.9314 0.9899

3 0.9328 0.9895

4 0.9314 0.9899

5 0.9319 0.9895

and investigate the influence of parameter tuning/ optimization towards model per-

formance.

In the linear model (Eq. 5.12), there are two parameters, β and γ. β is in

the range of [0, 1], and γ is dependent on β and the cut-off degree (i.e. maximum

degree). The exponential model described in Eq. 5.13 has one parameter η ∈ [0, 1].

In the experiment, we fix maximum degree value used in linear model to be 5, 10

and 15, and let β and η both vary from 0 to 1 with step change to be 0.05.

Results are shown in Fig. 3, where ∆ represents maximum degree value. From

the plots we can see that the linear model leads to lower accuracy and coverage, while

the exponential model doesn’t change very much with varying parameter values.

Using exponential model for certainty with a relatively small η around 0.2 would be

a good setting for trust inference.

5.10.4 Comparison with Other Approaches

The performance of our semiring-based trust inference method can reach as

small as 5.8% error rate and as good as 98.3% coverage rate. As a fair comparison,

the graph-theoretic linear approach based on matrix operations [81] has an optimal
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(a) Accuracy variation (b) Coverage variation

Figure 5.3: Performance with parameter change

prediction error rate of 6.4%. The machine learning approach introduced in [106]

can reach an accuracy about 0.934 (i.e. ≈ 6.7% error rate). For [86] which used

probabilistic confidence models for trust inference, it achieved an accuracy of 89%

using Epinions dataset. From comparison, we can see an improvement on accuracy

can be obtained using our semiring-based approach.

5.10.5 Discussion

Because the trust (and distrust) relationships in the dataset are binary (+1

and −1), a lot of nuance and variance in the trust relationships are lost. This

prevents us from conducting some evaluations. For example, since the trust values

are not continuous in [−1, 1], the deviation of evaluated results from ground-truth

values (e.g. RMSE) is difficult to measure and analyzed.

On the other hand, the high accuracy of our approach on this dataset shows

its flexibility and power in trust evaluation for social recommendation.
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5.11 Summary and Future Direction

In this chapter, we discuss local trust inference in social network setting. We

model the trust relationships in SNS as 2-dimensional vectors consisting of both

trust and certainty information. Trust and distrust (i.e. negative trust) are con-

sidered in our model. Accordingly, we propose a novel semiring structure, distrust

semiring, for trust propagation and aggregation over the trust network, where tran-

sitivity of trust and distrust are handled differently. Based on the distrust semiring

structure and certainty models, we develop a trust inference framework. In order

to validate the model and evaluate the performance of our approach, we conduct

a series of experiments using the Epinions dataset. The experimental results show

that the semiring-based trust inference approach has advantages in both accuracy

and coverage.

As pointed out in [81], there are more than one possible types of transitivity

within the trust network. In our future work, we will consider other transitivity

models in our framework of trust inference and explore its influence over the perfor-

mance. As discussed in Sec. 5.9, an optimistic definition is used for trust aggregation.

We will evaluate other possible definitions of the operation in a semiring structure

and compare with our current settings. As trust is domain specific and people may

have different trust ratings for the same user over different contexts, we will also in-

vestigate how trust network forms and trust inference operates in the multi-domain

case.
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CHAPTER 6: GLOBAL TRUST EVALUATION WITH CONFLICT-

ING OPINIONS

In this chapter, we consider reaching global trust (reputation) of nodes in a

social network under the scenario of opinion divergence. In such a general setting,

the evaluation of global trust suffers from the curse of opinion divergence in the

network, as simple aggregation of controversial opinions can hardly offer meaningful

insights about users’ reputation. We propose a method to reach different global

trust values between groups of users with controversial opinions in the network. We

model the global trust opinion formation in discrete-time dynamics and introduce

bipartite consensus as the approach to establish global trust in such circumstances.

Such approach works upon the property of structural balance, and can be extended

to more general situations where eventual positivity applies. Via our approach, non-

trivial global trust can be reached within the network, which can guide users’ social

behaviors, and support many SNS-based applications.

6.1 Introduction

In social networks, both traditional ones and SNS, trust is seen as a critical

social feature and plays an important role in social interactions between nodes in
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the network. It provides a guideline for nodes to interact and make decisions [62],

and is fundamental in many SNS-based applications, e.g. social recommender and

personalized services [60,83,112].

As discussed in Sec. 4.3, within social networks, the concept of trust has two

levels, namely local and global. Local trust refers to the subject trust opinions

that each user holds about her neighbors in the network. Global trust, also called

as reputation, is a combination of local trust opinions gathered from users within

the network, and represents the public perspective about the target entity’s identity.

The value of global trust is considered as a measure of the credibility and homophily

within the population. As a more objective measure compared to local trust, global

trust is very important in network security, decision making processes as well as

improving the quality of SNS-based applications.

There has been significant work on trust metrics and inference for local trust

evaluation, for example [72, 81, 83, 88, 89, 107]. However, the research on evaluation

of global trust is limited and is still at its early stage [113]. A classic approach is

via aggregation of local trust opinions of users in the network, e.g. the ratings of

users on Ebay. This scheme works when users in the network are homophily and

malicious users do not exist [114]. When considering a more general situation where

users may have distrust relationships due to controversial opinions or existence of

malicious users, the aggregation of nodes’ local trust opinions for global trust would

suffer from the curse of opinion divergence in the network. Simple average over

population with controversial opinions can hardly offer meaningful insights about

true reputation. The case of two-party political system would be a good example.
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It’s a community with two sub-communities that have similar opinions within the

group but controversial ones between groups. The true global trust (reputation) of

each node cannot be reached by simple combination of opinions from both groups.

Recent research shows the limitation of global trust evaluation when consider-

ing distrust (i.e. negative trust). Kamvar et al. proposed to use EigenTrust [67], a

PageRank-like algorithm to evaluate global trust of peers in P2P network. The issue

of malicious nodes is addressed by computing trust value on other peers and ma-

jority voting. Li and Wang [113] proposed a subjective probability based approach

for global trust evaluation in service-oriented computing (SOC). However, distrust

is not well-modeled in both approaches, and the clustering of controversial opinions

within the network cannot be captured. This renders both approaches ineffective

for global trust evaluation in SNS scenarios. In [114], DeFigueiredo et al. discussed

trust between users in online interactions, and they concluded that applying single

universal trust ratings (i.e. global trust) is vulnerable to manipulation by malicious

users.

The problem of consensus in signed networks has attracted increasing interest

in research community [115–118]. Shi et al. [115] studied opinion dynamics over

signed social graphs, where phase transition phenomena is discussed. In [116–118],

Altafini et al. discussed bipartite consensus in networks with antagonistic interac-

tions (signed networks), where consensus can be reached separately in each antago-

nistic group.

In this chapter, we propose to solve the problem of global trust evaluation in

social network setting. We consider a general case where both trust and distrust
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relationships exist within the social network. The trust network established on the

trust and distrust relationships is modeled as a directed, signed and weighted graph.

The direction of an edge in the graph represents a directed trust relationship, with

the signed weight implying the level of trust (distrust) associated with the edge.

We formulate the problem of global trust evaluation in social network set-

ting as an bipartite consensus problem in the directed and signed trust network.

We first consider reaching bipartite consensus for global trust in networks that are

structurally balanced; we further extend the results to a more general setting with

the notion of eventual positivity. Based on such global trust evaluation approach,

user reputation and grouping information are both available for decision making in

social network environment and can be used to boost social-aware applications.

The rest of this chapter is arranged as follows. In Sec. 6.3, we discuss some

preliminaries. We then propose our bipartite consensus formulation for global trust

evaluation in social network setting in a discrete-time dynamical system, considering

the existence of distrust relationships (Sec. 6.3). In Sec. 6.4, we consider reaching

bipartite consensus for global trust under the condition of structural balance, and

further extend the results to a more general case. We discuss the integration of

global trust in SNS-based applications in Sec. 6.5. We conclude our work in Sec. 6.6

and highlight the future research directions.
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6.2 Preliminaries

In the following of this chapter, all vectors are column vectors and denoted

by lower case letters, and matrices are denoted by upper case letters. For a square

matrix M , MT denotes its transpose and Mk denotes its k-th power, and the ij-entry

of M is denoted as Mij.

6.2.1 Graph Theory

In this work, we utilize the concept of weighted signed graphs.

Definition. A weighted signed graph G can be denoted by a triple G = {V , E ,A},

where V is a finite set of vertices (nodes), E ∈ V × V is the set of edges, and

A ∈ Rn×n is the adjacency matrix of the signed weights of the edges in graph G.

For A: Aij 6= 0⇔ (vi, vj) ∈ E .

For simplicity, we use G(A) to represent a weighted signed graph with adja-

cency matrix A. We call a graph undirected if the order of the nodes is irrelevant in

representing edges, and the matrix is symmetric A = AT . For a directed graph (i.e.

digraph), the edge (vi, vj) ∈ E is directed, where vi is the tail and vj is the head of

the edge. In a digraph, the pair of edges between the same nodes is called a digon.

A digraph is digon sign-symmetric if AijAji ≥ 0 for all i, j ∈ {1, · · · , n}, i 6= j.

Fig. 6.1 is a weighted signed digraph with V = {v1, v2, v3}, E = {(v1, v2), (v1, v3),

(v2, v1), (v2, v3), (v3, v2)}, and
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Figure 6.1: An example of weighted signed digraph

A =


0 0.6 0.8

0.9 0 0.7

0 −0.5 0



A (directed) path of length k is a sequence of distinct nodes, {v1, v2 · · · vk+1},

such that {vm, vm+1} ∈ E , m ∈ {1, · · · , k}. A (directed) cycle is a path beginning

and ending with the same node. We say that the graph is strongly connected if for

any vi, vj ∈ V , there exists a path {vi, · · · , vj} in G.

We say matrix A ∈ Rn×n is nonnegative (A ≥ 0) by meaning Aij ≥ 0 for

∀i, j ∈ {1, · · · , n}, and A 6= 0; we say A is positive (A > 0) when Aij > 0 for

∀ i, j ∈ {1, · · · , n}.

sp(A) = {λ1(A), · · · , λn(A)} denotes the spectrum of A, where λi(A), i ∈

{1, · · · , n} are the eigenvalues of matrix A. The spectral radius ρ(A) of A is the

smallest real positive number such that ρ(A) ≥ |λi(A)|,∀ i ∈ {1, · · · , n}.
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6.2.2 Structural Balance

Based on [119], the structural balance property of a signed network can be

defined as follows.

Definition. A signed network is structurally balanced if it admits a bipartition of V

into V1,V2, where V1 ∪ V2 = V , and V1 ∩ V2 = 0, such that Aij ≥ 0, for vi, vj ∈ Vm,

and Aij ≤ 0, for vi ∈ Vm and vj ∈ Vn, m 6= n, m,n ∈ {1, 2}.

The sign of a cycle is the product of all edges’ signs; a (directed) cycle is

positive if it contains even number of negative edges, and is negative otherwise. It

can be shown that a signed graph is structurally balanced if and only if all the cycles

in the graph are positive [116,119]. As an extension, a signed digraph is structurally

balanced when all directed cycles are positive [116].

6.2.3 Perron-Frobenius Property

Following [120], we give a definition of the Perron-Frobenius property:

Definition. A real square matrix A ∈ Rn×n is said to have the Perron-Frobenius

Figure 6.2: Structural balance
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property if ρ(A) is an eigenvalue of A (i.e. Perron-Frobenius eigenvalue), with

corresponding nonnegative left and right eigenvectors. When A nonnegative and

regular,

• ρ(A) is a simple positive eigenvalue,

• The eigenvector corresponding to ρ(A) can be chosen to be positive (called a

Perron vector),

• No other eigenvalue has the same modulus, i.e. for any other λ an eigenvector

of A, λ < ρ(A).

We use PFn to denote the set of matrices in Rn×n satisfying the Perron-

Frobenius property.

Definition. A real square matrix A ∈ Rn×n is eventually positive if ∃ k0 ∈ N+

such that Ak > 0 , ∀ k ≥ k0, k ∈ N+.

The smallest k0 in Definition 6.2.3 is called the power index of A. We follow

the notation in [117,121] and denote eventually positive matrices as A
∨
> 0.

Although Perron-Frobenius property is defined on nonnegative square matri-

ces, it is show in [117, 122] that eventually positive matrices, as well as their trans-

Figure 6.3: Structural unbalance
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pose, also have the Perron-Frobenius property. As discussed in [117], the Perron-

Frobenius property can be used for adjacency matrices with eventual positivity to

evaluate the formation of unanimous opinions, by introducing the concept of hold-

ability [123]:

Definition. Holdability : for a discrete-time dynamical system with x0 ∈ Rn as the

initial state, a set S ⊂ Rn is holdable if for ∀ x0 ∈ Rn, limk→∞ dist(x(k), S) = 0,

where dist(x(k), S) = infy∈S‖x(t) − y‖ with a certain norm in Rn, and ∃ko ∈ N+

such that x(k) ∈ S, for ∀k ≥ k0.

6.3 Problem Formulation

Based on the trust relationships between users in the social network, there is

an associated trust network. Referring to the discussion in Sec. 4.2.2, we define the

trust network used in our formulation as follows:

Definition. Trust Network : A trust network in SNS can be represented as a directed

weighted signed graph GT (V , E ,A) established via social interactions, where V is the

set of nodes (i.e. users), E is the set of directed edges (i.e. trust links), and A the

matrix of signed edge weight. eij = (vi, vj) ∈ E , vi, vj ∈ V , is a directed trust link

from node vi to vj, and its value (weight) is an entry Aij of A. Ni = {vj|eij ∈ E} is

the neighbor set of node vi.

Remark : Here Aij ∈ [−1, 1] indicates the extent of trust that vi has on vj.

Aij = 1 means vi “totally agrees with”or “likes”vj, while Aij = −1 means vi “totally

disagrees with”or “dislikes”vj. Weights are not necessarily symmetric.
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Figure 6.4: An example of signed trust network

6.3.1 Distributed Scheme for Global Trust Evaluation

Global trust evaluation in SNS is typically very challenging. Due to lack of a

central authority, different agents may provide different or even contradictory infor-

mation in the evaluation process, and a unanimous global trust opinion is difficult to

compute. In order to tackle the challenge and obtain meaningful results for global

trust in SNS settings, we consider reaching opposite global trust opinions between

groups of controversial opinions. We introduce the idea of bipartite consensus in

signed networks and formulate our problem of global trust evaluation in SNS as

a bipartite consensus problem over the signed trust network. In this formulation,

opinion divergence between two antagonistic groups is well-handled.

Consider a strongly connected trust network GT (V , E ,A). We assume that

the bipartite consensus for global trust is evaluated via distributed opinion update
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scheme on GT through a discrete-time linear dynamic system:

x(k + 1) = W (k)x(k) (6.1)

where vector x(k) = (x1(k), · · · , xn(k)) is the temporary trust opinion held by nodes

in V at time k. The update matrix W (k) can be decomposed into 2 parts:

W (k) = Σ(k) + F (k) (6.2)

where matrix F (k) at time k is the off-diagonal matrix used in integrating opinions

from neighbors, and Σ(k) is a diagonal one describing the influence that users put on

themselves. A starting point for F (k) would be a static matrix in accordance with

A of the trust graph GT (A), and Σ(k) can be arranged correspondingly such that

users put a trust value of 1 on themselves. Note that in order to reach consensus on

global trust, W (k) = W is normalized in the system (6.1) as follows:

wij =
Aij

1 +
∑

j∈adj(i) |Aij|
(6.3)

such that
∑

j∈V |wij| = 1 for any i ∈ {1, · · · , n}.

The monotonicity of (6.1) can be defined on a partial orthant order [124]. A

partial orthant order in Rn is a vector:

σ = [σ1, · · ·σn]T , σi ∈ {1,−1}, ∀ i ∈ {1, · · · , n} (6.4)

where σi = 1 denotes the natural order, and σi = −1 denotes the opposite.

Corresponding to σ, we define the matrix Dσ = DT
σ = diag(σ) ∈ Rn×n as the

gauge transformation matrix [116, 118]. Dσ can be used to define an orthant

Kσ = {x ∈ Rn|Dσx ≥ 0}. The partial order σ can be indicated by “≤σ”:

x1 ≤σ x2 ⇔ x1 − x2 ∈ Kσ (6.5)
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which can be used to change the orthant order in Rn.

Dσ = 1 = [1, · · · , 1]T ∈ Rn (6.6)

The set of all gauge transformation matrices is D = {D = diag(σ), σ =

[σ1, · · ·σn]T , σi ∈ 1,−1} ⊂ Rn×n.

The discrete-time system (6.1) is called monotone w.r.t σ if for any initial

conditions x1(0), x2(0) s.t. x1(0) ≤σ x2(0),

x1(t) ≤σ x2(t) ∀t > 0 (6.7)

The monotonicity of the system (6.1) can be verified using the off-diagonal

matrix F ; the system is monotone w.r.t σ if and only if:

σiσjFij ≥ 0 ∀i, j ∈ 1, · · · , n, i 6= j (6.8)

A gauge transformation matrix can be applied to the adjacency matrix of a

trust graph to change the sign of the edges as well as opinions held by nodes in the

graph. As an example, Fig. 6.5 shows applying gauge transformation to a signed

trust digraph. For the trust network on the left, its adjacency matrix has negative

weighted entriesA21 andA13. After a gauge transformation withD = diag(−1, 1, 1),

all the entries in the gauge transformed matrix A′ = DAD are positive. The system

is monotone w.r.t σ = [−1, 1, 1]. Accordingly, the opinion held by v1 changes from

O1 to O′1 = −O1.
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Figure 6.5: Gauge transformation

6.4 Main Results

In order to evaluate a node’s global trust value within a trust network of

controversial opinions, we formulate it as a bipartite consensus problem with the

goal of calculating the node’s global trust information. We start from the case

where the trust network is of structural balance, and extend the result to a trust

network of approximate structural balance in the next section.

Remark : By bipartite consensus for global trust, we mean that the global trust

of users have the following convergence result:

lim
k→∞
|xi(k)| = c > 0 ∀i ∈ {1, · · · , n} (6.9)

Additionally, if the final state is

c =
1

n
|ωTx(0)| (6.10)

for some constant weight vector ω, then we say that all the agents in the network

reach bipartite consensus.
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6.4.1 Global Trust Evaluation in Structurally Balanced Networks

A structurally balanced signed social network, as discussed in Sec. 6.2, can be

partitioned into two disjoint antagonistic groups, where each group contains only

friends, while any two individuals from different groups are adversaries. The dynam-

ics of opinion forming in structurally balanced communities obeys monotonicity.

Given the trust network GT (A), which is a digraph, We have the following

lemma for structural balance.

Lemma 6.4.1. For the trust network GT (A) that is strongly connected and digon

sign-symmetric, it is structurally balanced if and only if either of the following holds:

1. All directed cycles of GT (A) are positive;

2. ∃ a gauge transformation matrix D ∈ D, such that the adjacency matrix A′ =

DAD is nonnegative;

Proof : 1) This comes from the definition of structurally balanced network as

discussed in Sec. 6.2.

2) From Definition 6.2.2, for the node set V of graph GT which is structurally

balanced, it can be partitioned into V1 and V2 such that all and only the neg-

ative edges connect nodes in V1 and V2. If we choose a partial orthant order

σ = [σ1, · · · , σn], where σi = 1 when vi ∈ V1 and σi = −1 if vi ∈ V2, then through

the gauge transform matrix Dσ = diag(σ), the adjacency matrix A would satisfy

that A′ = DσADσ is nonnegative. For the sufficient condition, it can be proved via

contradiction. Suppose there doesn’t exist such orthant order σ and corresponding
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matrix Dσ = diag(σ) such that DAD is nonnegative, then for any bipartition of

V = V1∪V2, from the proof of the necessary condition, V1 and V2 can not satisfy the

condition that all and only negative edges connect the two set, which is equivalent

to structural unbalance. �

Based on Lemma 6.4.1, we have the following theorem:

Theorem 6.4.2. For the strongly connected trust network GT (A) that is directed

and digon sign-symmetric, the discrete-time system in (6.1) can reach a bipartite

consensus on global trust, if GT (A) is structurally balanced.

Proof : From Lemma 6.4.1, we know that for GT (A) that is strongly connected

and digon sign-symmetric, there exists a gauge transformation matrix D = diag(σ),

such that A′ = DAD ≥ 0. If in system (6.1), we choose the off-diagonal matrix

F (k) = F = CA, and the diagonal matrix Σ(k) = Σ = CI = C, where C =

diag(c1, · · · , cn) is the normalization matrix with ci = 1/(1 +
∑

j∈adj(i) |Aij|) ≥

0,∀i ∈ {1, · · · , n}, then for the same D, we have:

W ′ = DWD = D(C + CA)D = C + CA′ ≥ 0 (6.11)

The solution y∗ = Dtx
∗ would be the result of a usual consensus problem

over a strongly connected unsigned graph, where the unsigned graph is the trust

network GT (A) after the gauge transformation on A. After reaching the consensus

y∗ = limk→∞ y(k) = c = [c, · · · , c] ∈ Rn, the bipartite consensus on the original

graph GT (A) can be evaluated using

x∗ = D−1y∗ = Dy∗ (6.12)
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which is the bipartite global trust reached by the users in the trust network with

controversial opinions.

Based on the bipartite consensus result,the node set V can be partitioned into

V1 = {vi ∈ V|x∗i = c, i ∈ {1, · · · , n}} and V2 = {vj ∈ V|x∗j = −c, j ∈ {1, · · · , n}},

which is the corresponding clustering due to structural balance. �

Remark : As mentioned above, the bipartite consensus solution is in the form

of Eq. (6.9).

Corollary 1. As the consensus result, limk→∞ x(k) = νTDx(0)D1, where D is the

gauge transformation s.t. DAD nonnegative, and ν is the normalized nonzero left

eigenvector of W = DWD s.t. νT1 = 1.

Proof : From Theorem 6.4.2, y∗, a standard consensus can be reached on

the gauge transformed graph G(DAD). According to [125], y∗ = limk→∞ y(k) =

νTy(0)1, ν is the normalized nonzero left eigenvector of DLD s.t. νT1 = 1. Thus

x∗ = D−1y∗ = Dy∗ = (νTDx(0))D1. �

Similarly, when GT (A) is weight balanced, the consensus result would be

limk→∞ x(k) = (1/n)1TDx(0)D1.

6.4.2 Extension Based on Eventual Positivity

In real cases, structural balance can rarely be satisfied. By combining eventual

positivity with the gauge transformation used in Sec. 6.4.1, the approach can be

extended to cases where structural balance property is not satisfied.
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Definition. Matrix A ∈ Rn×n has the signed Perron-Frobenius property [117] if the

following are satisfied:

1. Spectral radius ρ(A) is a real positive eigenvalue of A

2. ρ(A) > λ, ∀λ ∈ sp(A), λ 6= ρ(A)

3. All elements in vr, the right eigenvector corresponding to ρ(A), are nonzero,

i.e. vr,i 6= 0,∀i ∈ {1, · · · , n}

We denote the set of matrices of signed Perron-Frobenius property as SPFn,

and have the following proposition:

Proposition 1. For the matrix A ∈ Rn×n of a directed trust graph GT (A), ∃ an

orthant order σ and D = diag(σ) s.t. DAD
∨
> 0, iff A ∈ SPFn, AT ∈ SPFn, and

the left eigenvector vl and the right eigenvector vr of A satisfies:

1. vl,ivr,i > 0, ∀i ∈ {1, · · · , n}, or

2. vl,ivr,i < 0, ∀i ∈ {1, · · · , n}

Proof : If there exists a gauge transformation such that A′ = DAD
∨
> 0, then

from Sec. 6.2.3 and [117, 122], we know that A ∈ PFn,AT ∈ PFn, and therefore

ρ(A′) > 0 and strict larger than all other eigenvalues. As sp(A) = sp(A′), sp(AT ) =

sp(A′) according to [116], thus ρ(A) = ρ(A′) is positive and such that ρ(A) >

λ, ∀λ ∈ sp(A), λ 6= ρ(A). From Definition 6.2.3, we can find positive v′r and v′l the

right and left eigenvectors (Perron vectors), such that:

DADv′r = A′v′r = ρ(A′)(v′r)

(v′l)
TDAD = (v′l)

TA′ = ρ(A′)(v′l)T
(6.13)
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as D2 = I and ρ(A) = ρ(A′),

Avr = ρ(A)vr,

vTl A = ρ(A)vTl

(6.14)

where vl = Dv′l, and vr = Dv′r.

Obviously both vl and vr have no elements of 0. Thus from Definition 6.4.2

about signed Perron-Frobenius property, we know that A ∈ SPFn, AT ∈ SPFn.

Note that vl,ivr,i = (Dii)
2v′l,iv

′
r,i = v′l,iv

′
r,i. If we choose both v′l and v′r to be positive,

the condition (1) is satisfied. Similarly, if choose one of the two vectors to be negative

(multiply it by −1), and the other to be positive, then the second condition can be

satisfied.

The sufficient condition can be proved in a similar way. �

Lemma 6.4.3. Consider the system (6.1), where the normalized weight matrix

W = Σ + F with diagonal matrix Σ = diag(c1, · · · , cn) and off-diagonal matrix F .

If ∃ d ≥ 0 s.t. F +D
∨
> 0 with D = Σ− dI, then system (6.1) holds to R{−,+}.

Proof : Let B = F +D, then W can be written as:

W = Σ + F = dI +D + F = dI +B (6.15)

Since B = F +D
∨
> 0, then from Proposition 1 and [122], B,BT ∈ SPFn, and

ρ(B) is a positive real eigenvalue of B that strictly larger than other eigenvalues. Let

vl and vr be left and right eigenvectors of B, then d > 0 implies that W must have

d+ρ(B) ∈ R+ as the largest eigenvalue, and vl and vr as left and right eigenvectors,
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as

vTl W = vTl d+ vTl B = (d+ ρ(B))vTl

Wvr = dvr +Bvr = (d+ ρ(B))vr

(6.16)

Therefore, W,W T ∈ PFn and W
∨
> 0, and we have:

x∗ = lim
k→∞

x(k) =
vTl x0vr
vTl vr

(6.17)

If vTl x0 > 0 then x∗ ∈ int(Rn
+)∪∅, similarly vTl x0 < 0 leads to x∗ ∈ int(Rn

−)∪∅.

From Definition 6.2.3 about holdability, it can be shown that the system (6.1) holds

to Rn
{−,+}. �

Based on Proposition 1 and Lemma 6.4.3, we have the following theorem for

a relaxed bipartite consensus on global trust within a trust network of eventual

positivity.

Theorem 6.4.4. For the strongly connected trust network GT (A) that is described

by system (6.1), if there exists d ≥ 0 such that proposition 1 holds for F +D, where

D = Σ− dI, then the system (6.1) holds to the orthant pair Rn
{−σ,+σ}.

Proof : For the system (6.1) that describes the trust dynamics of GT (A), we

have the normalized weight matrix W = Σ + F with diagonal matrix Σ = CI = C

and off-diagonal F = CA, where C = diag(c1, · · · , cn) is the normalization matrix

with ci = 1/(1 +
∑

j∈adj(i) |Aij|) ≥ 0,∀i ∈ {1, · · · , n}.

Let B = F +D, then W = dI+B, B,BT ∈ SPFn, with vl and vr the left and

right eigenvectors of identical signs. From Proposition 1, we know that there exists

an orthant order σ and a corresponding gauge transformation D = diag(σ) ∈ D s.t.
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B′ = DBD
∨
> 0. Let y = Dx, then the system w.r.t. y is:

y(k + 1) = D(dI +B)Dy(k) = (dI +B′)y(k) (6.18)

Thus from Theorem 6.4.3, the system (6.18) holds to orthant pair Rn
{−,+}.

Since x = D−1y = Dy, we know that the system (6.1) holds to Rn
{−σ,+σ}. �

As shown above, via relaxing bipartite consensus for global trust in SNS as

bipartite opinions holdable in two opposite orthants, structural balance is no longer

required, instead it only requires eventual positivity after gauge transformation.

Such extension makes our global trust evaluation approach available to more general

case.

6.5 Application of Global Trust in Social Network Environment

6.5.1 Clustering Effect for System Security

The bipartite consensus of global trust comes naturally with clusters of contro-

versial opinions within the trust network. When the opinion differences come from

different tastes, the clusters represents two communities of opposite preferences.

However, it is also possible that one of the clusters is formed due to the identity of

adversary, in which case the global trust evaluation process plays the role of clus-

tering adversaries within social network based on the distrust relationship between

users. The level of system security can be improved by implementing global trust

evaluation for adversary detection in the network.
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6.5.2 Distrust Filtering in Recommender System

Along with the popularity of recommender systems, there are various types of

attacks towards the system, e.g. random attack and bandwagon attack [126].

In order to enforce the integrity of the recommendation, the global trust in-

formation can be integrated in the system to filter out users of low reputation [112]

. If a user’s global trust value is lower than the threshold (e.g. negative), her rating

will not be considered in rating prediction.

When applying global trust into recommender system, the classic user-based

collaborative filtering (CF) [127] can be modified as:

r̃ik = bik +

∑
uj∈S(k;i),wj≥η sij · (rjk − bjk)∑

uj∈S(k;i) sij
(6.19)

where S(k; i) is the neighbor set of ui about item ok, with sij the similarity between

ui and uj. wj is the reputation of uj and η is the threshold. bik and bjk are the

baseline estimates for rik and rjk respectively, and rjk is the rating of uj about ok.

This means that only people of global trust values above threshold (e.g. positive)

are considered as a source of reference for item recommendation. Note that here

because of bipartite global trust, users of the same cluster in global trust evaluation

will mark each other with positive global trust values, and the opposite if the users

are from two groups of controversial opinions.

Apart from these mentioned above, there are more scenarios in social network

setting that can apply users’ global trust information to improve service quality.

For example, when seeding advertisements, users’ global trust (reputation) can be
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interpreted as as a measure of quality and influence in information diffusion, and

can be considered as an additional constraint in SNS advertisement allocation [128].

6.6 Summary and Future Direction

In this chapter, we investigate the problem of global trust evaluation in SNS

with controversial opinions. We consider both trust and distrust relationships in the

associated trust network, and propose to reach different global trust between antag-

onistic groups. We introduce the approach of bipartite consensus in signed graphs

and formulate the problem of global trust evaluation in SNS as bipartite consen-

sus for global trust with controversial opinions. We use a discrete-time dynamical

system to describe the distributed evaluation process. Under the condition of struc-

tural balance, we prove that the dynamic system considered in our formulation can

reach a bipartite consensus for global trust. In order to further extend the result

of bipartite consensus for global trust to a more general case, the concept of even-

tual positivity is introduced and the definition of bipartite consensus is accordingly

adjusted to be holdable cones. Finally we discuss the application of global trust

reached via our approach for system security in SNS and recommendation integrity

in social recommender systems.

In the future we will consider time-varying adjacency matrix in the dynamical

system and explore its influence on reaching bipartite consensus for global trust.

We will also discuss the robustness of the system. Meanwhile, we are interested in

structural balance approximation, which would connect the ideal case of structural
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balance and general cases in solving the problem of global trust evaluation in SNS.

We will apply global trust in more SNS-based scenarios.

135



Bibliography

[1] Facebook. Facebook Key Facts. https://newsroom.fb.com/key-Facts. [On-
line; accessed 16-Feb-2014].

[2] Sharad Goel, Jake Hofman, and M. Irmak Sirer. Who does what on the
web: Studying web browsing behavior at scale. In Proceedings of the 6th
International Conference on Weblogs and Social Media (ICWSM 2012), 2012.

[3] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel,
and Bobby Bhattacharjee. Measurement and analysis of online social net-
works. In Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, pages 29–42. ACM, 2007.

[4] Emilio Ferrara and Giacomo Fiumara. Topological features of online social
networks. arXiv preprint arXiv:1202.0331, 2012.

[5] Stanley Milgram. The small world problem. Psychology today, 2(1):60–67,
1967.

[6] Jeffrey Travers and Stanley Milgram. An experimental study of the small
world problem. Sociometry, 32(4):425–443, 1969.

[7] Lun Li, David Alderson, John C Doyle, and Walter Willinger. Towards a
theory of scale-free graphs: Definition, properties, and implications. Internet
Mathematics, 2(4):431–523, 2005.

[8] Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[9] Mark Granovetter. Threshold models of collective behavior. American journal
of sociology, 83(6):1420, 1978.

[10] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A
complex systems look at the underlying process of word-of-mouth. Marketing
letters, 12(3):211–223, 2001.

136

https://newsroom.fb.com/key-Facts


[11] Pedro Domingos and Matt Richardson. Mining the network value of cus-
tomers. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 57–66. ACM, 2001.

[12] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of
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