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A diverse T cell receptor (TCR) repertoire is a prerequisite for effective viral 

clearance. However, knowledge of human TCR repertoire to defined viral antigens is 
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have revolutionized the study of human TCR repertoires to different types of viruses. 

In collaboration with the laboratory of Dr. Nan-ping Weng (National Institute on 

Aging, NIH), we applied unique molecular identifier (UMI)-labelled HTS, single-cell 

paired TCR analysis, surface plasmon resonance, and X-ray crystallography to 

exhaustively interrogate CD8+ TCR repertoires specific for cytomegalovirus (CMV) 

and influenza A (Flu) in HLA-A2+ humans. Our two CMV-specific TCR-pMHC 

structures and two Flu-specific TCR-pMHC structures provide a plausible 

explanation for the much higher diversity of CMV-specific than Flu-specific TCR 

repertoires in humans. Our comprehensive biochemical and structural portrait of two 

different anti-viral T cell responses may contribute to the future development of 

predictors of immunity or disease at the individual level. 
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Chapter 1  

Introduction 

Our immune system is elegantly designed to fight against pathogenic invasions 

throughout our entire lives. Three lines of defense are built to battle with pathogens from the 

surface of the skin to deep inside organs. External physical barriers, including skin, mucous 

membranes, anti-microbial peptides, cilia and fluid flow represent our first line of immune 

defense. Once the pathogens breach the first line, they encounter various types of innate immune 

cells, including macrophages, neutrophils, natural killer cells and dendritic cells. These cells 

recognize microbial components such as bacteria lipoproteins, flagella or nucleic acids by 

different types of pattern recognition receptors (PRR). These interactions initiate a series 

downstream signaling events and eventually lead to inflammatory cytokine secretion and 

antigen-presenting cell (APC) migration to secondary lymph nodes. APC migration and 

cytokines awaken the adaptive immune system, which includes T cell and B cells. Compared to 

the rapid but much less diverse innate immune system, the adaptive immune system is slow but 

extremely variable. Through gene rearrangement mechanisms, T cell and B cells can recognize 

virtually all antigens. Meanwhile, the adaptive immune system can develop memory for antigens 

so it can react much more effectively if the same pathogens invade again. Whereas B cells 

recognize antigens directly, T cells recognize processed peptide antigens presented by major 

histocompatibility complex (MHC) molecules. During thymic development, T cells generate T 

cell receptors (TCRs) through somatic recombination of V(D)J gene segments. The theoretical T 

cell diversity is 10
15

 (Nikolich-Zugich et al., 2004). Thus, it is reasonable to believe that different 

individual should possess distinct TCR repertoires. However, when encountering certain antigens 
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(e.g. influenza, CMV and EBV), TCRs are heavily biased toward certain V(D)J combinations 

and present uniform solutions that are shared across large populations. This apparent loss of 

randomness and diversity is called the T cell public response (Venturil et al., 2008). 

Understanding the molecular basis of public TCR generation and its interaction with cognate 

peptide-MHC (pMHC) ligands would help in developing better vaccines for pandemic viral 

infections.  

 

1.1  T cell-mediated immune response 

Adaptive immune responses are mediated by both B cells and T cells. Unlike antibody 

secretion by B cells, T cells protect the host by killing pathogen-infected cells or cancer cells via 

direct contact (Zheng and Bevan 2011). Each T lymphocyte generates one TCR heterodimer that 

can recognize self or non-self-peptides presented by MHC molecules. During the late stages of 

maturation, T cells either express CD8 or CD4 molecules on their surface.  CD8 corresponds to 

cytotoxic T cells that recognize pMHC class I, whereas CD4 corresponds to helper T cells that 

recognize pMHC class II. In order to fully activate a T cell response, three types of signals are 

required: (1) TCR-pMHC interactions; (2) costimulatory signals from B7-CD28 interaction; and 

(3) instructive cytokine secretion from APCs. Once T cells are fully activated, CD8+ T cells start 

to secrete cytotoxins, such as perforin and granules for direct killing of target cells; CD4 T cells 

undergo further differentiation into Th-1, Th-2, Th-17 or Tfh cells (Zhu et al., 2010). Each 

subtype of T helper cell secretes different kinds of cytokines to assist other types of immune cell 

function, such as B cell activation and maturation in germinal centers requiring Tfh-B cell 
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interaction, clearance of viral infection requiring Th-1 cell INFγ secretion, and anti-microbial 

responses requiring IL-17 secretion by Th-17 cells (Figure 1.1).  

 

 

 

Figure 1.1: T cell development. 

Immature precursor T cells derived from bone marrow migrate to the thymus and mature into 

CD8+ or CD4+ T cells. CD8+ T cells mediate cytotoxic killings. CD4+ T cells undergo further 

differentiation to various subtypes of helper T cells. Both CD8+ and CD4+ T cell activation 

require TCR-pMHC interactions and costimulatory signals. (www.lymphomation.org) 

 

1.2  How T cells recognize pMHC  

1.2.1 Structure of pMHC molecules 

In the immune response, antigenic peptides generally are displayed to αβ T cells via class 

I or class II MHC molecules. Both class I and class II MHC molecules share similar structures  
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Figure 1.2: Structures of MHC class I and class II molecules. 

(A) Ribbon diagram of a human MHC class I molecule, HLA-A2, bound to a 9-residue viral 

peptide, NLV (PDB code: 3GSO) (Gras et al., 2009). The heavy chain of HLA-A2 

(shown in orange) contains three domains. β2-microglobulin is gray and the peptide is 

magenta.  

(B) Top view of the NLV-HLA-A2 complex. The surface of HLA-A2 is orange, with the 

bound NLV peptide (magenta) shown as a stick model. The two ends of the peptide-

binding groove are closed, which constrains the peptide length for MHC class I 

molecules.  

(C) Ribbon diagram of a human MHC class II molecule, HLA-DR2a, bound to a 20-residue 

myelin basic protein (MBP) peptide (PDB code: 1FV1) (Li et al., 2000). Both the α (gray) 

and β (orange) chains of HLA-DR2a contain two domains.  

(D) Top view of the MBP-HLA-DR2a complex. Compared to MHC class I, both ends of the 

peptide-binding groove in MHC class II molecules are open, which allows peptides of 

varying length to bind. 
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and are heterodimers. MHC class I molecules are expressed on almost all kinds of cells. Their 

peptide-binding groove is constructed from the α1and α2 domains of the heavy chain. β2-

microglobulin molecule forms a tight complex with the heavy chain α3 domain (Figure 1.2-A). 

In contrast to MHC class I , expression of MHC class II molecules is restricted to professional 

APCs, such as dendritic cells, macrophages or B cells. MHC class II proteins are assembled from 

two heavy chains (α1α2 and β1 β2) (Figure 1.2-C). The overall architecture is similar to that of 

MHC class I, whereby the binding groove is constructed by a seven-stranded β-sheet forming the 

floor and two long α helices forming the walls. Polymorphic residues are usually located within 

and around the binding groove. Sequence variation provides the structural and chemical basis for 

the peptide specificity of individual MHC alleles.  

MHC class I molecules often present endogenous peptides produced by protease-

degraded proteins. The peptide length ranges from 8 to 10 residues (Figure 1.2-B). Different 

MHC class I alleles offer different pockets to accommodate peptide anchor residues. Longer 

peptides may bind by extension at the C-terminus or adopt bulged conformations, providing 

additional TCR interacting hot spots. In some rare cases, MHC class I molecules are also able to 

present exogenous peptides and be expressed on restricted sets of APCs. This mechanism is 

called cross-presentation. MHC class II molecules often present exogenous peptides derived 

from the environment directly. The binding groove is open on both ends so that the bound 

peptide has no length restriction. The length of MHC class II-bound peptides can range from 13-

25 residues (Figure 1.2-D) (Stern and Wiley, 1994). The peptide backbone in MHC class II sinks 

deeper into the binding groove than for MHC class I. Thus, the peptide presents more hot spots 

for TCR recognition in MHC class I due to the bulging conformation. This may explain the 

overall higher affinity of MHC class I-restricted TCRs than MHC class II-restricted TCRs 
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measured up to date. However, the MHC class II termini, particularly the N-terminal extension, 

may play a major role in TCR recognition.  

In humans, MHC molecules are often referred to as human leukocyte antigens (HLA). 

Each person carries one set of HLA-A, HLA-B and HLA-C as HLA class I molecules, and HLA-

DP, HLA-DR and HLA-DQ as HLA class II molecules (Lefranc et al., 2009). The products of 

individual HLA alleles can differ from one another by up to 20 amino acids. This polymorphic 

nature allows HLA molecules to present virtually any kind of peptide in their pocket and 

eventually drive extremely diverse T cell responses (Rudolph et al., 2006).  

 

 

 

 

 

 

 

Figure 1.3 Structures of TCR and Fab fragment of an IgG. 

(A) Ribbon diagram of the first human TCR structure, TCR A6 (PDB code: 1QSF) (Ding et 

al., 1999). The α- and β-chains are cyan and green, respectively. The individual domains 

are labeled.  

(B) Structure of the Fab fragment of an anti-HCV antibody, HC33.4 (PDB code: 5FGB) 

(Keck et al., 2015). The light chain is cyan and the heavy chain is green. The individual 

domains are labeled.  
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1.2.2 Structure of the T cell receptor 

The very first event of T cell activation requires TCR-pMHC engagement. Crystal 

structures of TCRs in the Protein Data Bank (PDB) have revealed great structural similarity 

between TCRs and antibody Fab fragments (Figure 1.3). Each TCR is composed of an α chain 

and a β chain linked by a disulfide bond in the constant domain (Rudolph et al., 2006). In the 

human genome, 70 TRAVs and 61 TRAJs are encoded in chromosome 14, and 52 TRBVs, 2 

TRBDs and 13 TRBJs are encoded in chromosome 7 (Lefranc et al., 2009). During T cell 

development in the thymus, αβ TCR generation requires random gene rearrangements of variable 

(V) and joining (J), and random gene rearrangement of V, D and J segments from the TCRα and 

TCRβ loci, respectively (Figure 4). As in the case of antibodies, random V(D)J combinations, as 

well as random insertion, deletion and mutation in the joining regions, generate three 

complementary-determine regions (CDRs) in each α chain and β chain. Gene rearrangements are 

carried out by the lymphoid specific proteins RAG1 and RAG2, as well as by non-lymphoid 

specific proteins, such as DNA repair enzymes (Swanson, 2004). The random addition, mutation 

or deletion of nucleotides further increases repertoire size (Matthews and Oettinger, 2009; 

Tillman et al., 2004). The processed β chain is first paired with a pre-Tα chain and expressed on 

the cell surface. Pre-TCR signaling is important for T cell maturation and potentially determines 

the size of T cell repertoires. In later stages of T cell maturation, a rearranged α chain is paired 

with the β chain and the  heterodimer eventually associates with CD3 molecules to produce a 

fully functional TCR-CD3 complex.  

In the canonical orthogonal docking mode, TCR engages MHC molecule with CDR1s 

and CDR2s, while peptide specificity is mediated by CDR3s.  Interestingly, antibody CDRs are 

able to recognize virtually any type of antigen, whereas TCRs are solely designed for pMHC 
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interactions (Rudolph et al., 2006). This pMHC restriction is partially explained by conserved 

germline encoded-interactions of CDR1 and CDR2 with the MHC α helices. However, recent 

studies have demonstrated that germline-encoded interactions are not always energetically 

favored (Piepenbrink et al., 2013). Moreover, a quadruple mouse 

 

Figure 1.4 Gene rearrangements of TCR α- and β-chains.  

TCR gene rearrangements are DNA recombination events that occur in early T cell development 

stages. After the V regions are formed by rearranged V(D)J segments, the selected genes are 

transcribe into mRNA, followed by splicing the V regions to connect with the C regions. It is 

notable that α and β gene rearrangements take place at different stages of T cell development. 

TCR β gene rearrangement occurs in the “double-negative” stage when each TCR β chain pairs 

with an invariant α chain (pre-Tα). TCR α gene rearrangement occurs in a later “double-positive” 

stage. The matured α chains then replace the pre-Tα to assemble fully functional αβTCR surface 

molecules. (Janeway’s immunobiology 8
th

 edition) 
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model (MHCI-/-, MHCII-/-. CD8-/- and CD4-/-) is able to generate TCRs without pMHC bias 

that directly bind antigenic proteins (Tikhonova et al., 2012).  

 

1.3  Public and private T cell responses 

The total theoretical diversity of TCRs is ~10
15

, but each human only has ~10
8
 T cells (Li 

et al., 2015; Qi et al., 2014; Robins et al., 2010). Thus, in theory, any two individuals are 

unlikely to share the same TCRs. The unique T cell clones only present in one individual are 

called private T cell responses. However, in some cases, a T cell has lost randomness and 

diversity, with the response biased toward certain V(D)J combination. Such clones are highly 

represented in multiple individuals. This apparent loss of randomness and diversity is called the 

public T cell response. Public TCRs that dominantly use certain amino acid sequence are 

considered an unusual phenomenon. Sequence conservation has suggested selective pressure 

during thymic selection and exposure to the environment. Studies have revealed that public T 

cell responses are important in various types of disease, such as acute viral infections, persistent 

viral infections, and autoimmune and allo-reactive responses (Venturil et al., 2008).  

The phenomenon of public T cell responses has been partially explained by structural 

studies of different TCR-pMHC complexes (Rossjohn et al., 2015). Initial insights into T cell 

public responses came from studies of HLA-B*08:01 individuals presenting an Epstein Barr 

virus (EBV) dominant epitope (named FLR). In a corresponding TCR-pMHC structure, P7-Tyr 

protruded into a pocket formed by the CDR3 loops (Kjer-Nielsen et al., 2003).  In another case, 

HLA-B3508 presented the EBV BZLF peptide with 12 amino acids (Tynan et al., 2007). The 

unusually long peptide presented by HLA class I resulted in a “bulged” conformation and limited 
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the structural solutions for a TCR to bind the pMHC. In addition, HLA-A2 presenting the 

influenza virus GIL peptide has only one amino acid substantially exposed to solvent (Stewart-

Jones et al., 2003). This featureless peptide has also limited structural solutions for TCRs to 

recognize pMHC.  

 

1.4  Virus-specific T cell responses 

1.4.1 Cytomegalovirus-specific T cell response 

Human cytomegalovirus (CMV) is a ubiquitous and persistent virus that infects 60%-90% 

of the population worldwide and has co-evolved with its mammalian hosts over a million years. 

Usually, CMV infections are well controlled in healthy individuals but can cause life-threatening 

cases when one’s immune system is compromised. Moreover, even in healthy individuals, 

persistent CMV infection may impact host innate and adaptive immune responses. For instance, 

individuals carrying CMV have substantial CMV-specific CD8+ T cell memory pools through 

aging (La Gruta and Turner, 2014). The most dominant CMV peptides are derived from HCMV 

65kDa phosphoprotein (pp65) and 55 kDa immediate-early protein 1 (IE1). Individuals 

expressing the HLA class I molecules HLA-A2 (*0201) and HLA-B7 produce CD8+ T cells that 

recognize the immunodominant pp65 epitope NLVPMVATV (NLV) and the immunodominant 

IE1 epitope KARAKKDEL, respectively (Wills et al., 1996). The total population of CMV-

specific T cell response in different individuals range from 5% to 30%.  The reasons underlying 

different magnitudes of CD8+ T cell responses in different individuals are not well understood. 

Studies also have shown that elderly individuals tend to have higher CD8+ T cell responses than 

younger individuals.  
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The NLV-specific T cell repertoire is characterized by a high prevalence of TCRs that are 

frequently observed in multiple unrelated individuals. These public TCRs feature identical, or 

nearly identical, CDR3α and/or CDR3β sequences. TCRs expressing public CDR3α motifs may 

pair with different CDR3β motifs (and the reverse), giving rise to highly diverse NLV-specific 

TCR repertoires. These CDR3s, in addition, can pair with different variable regions. Thus, this 

interchangeability of TCR V regions and CDR3 motifs permits multiple structural solutions to 

binding an identical pMCH ligand, and thereby the generation of a clonally diverse public T cell 

response to CMV (Day et al., 2007; Koning et al., 2014; Neller et al., 2015; Nguyen et al., 2014; 

Peggs et al., 2002; Trautmann et al., 2005).  

 

1.4.2 Influenza-specific T cell response  

Influenza virus is also a ubiquitous virus and infects hosts seasonally. The typical 

symptoms of flu infections can be annoying, including coughing, sneezing, sore throat or fevers. 

Usually, influenza virus is cleared by the host immune system within several weeks. However, in 

1918-1919, a pandemic influenza outbreak called “Spanish flu” took millions of lives worldwide. 

During influenza virus invasions, respiratory tract epithelial cells are not only infected but also 

serve as the first line of defense. Infected cells are able to secrete type I interferons (IFN), 

inflammatory cytokines, and chemokines to recruit innate and adaptive immune cells. CD8+ T 

cells are able to destroy infected cells by perforin/granzyme secretion or FasL-Fas mediated 

apoptosis. CD8+ T cells also cooperate with innate immune cells by secreting various 

proinflammatory cytokines, such as, IFN-γ and TNF-α. Regulatory cytokines such as IL-10 are 
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secreted by various sources to prevent excess CD8+ T cell-mediated cell destruction (Kim et al., 

2011).  

HLA-A2+ individuals are able to present the dominant M1 peptide GILGFVFTL (GIL) 

that is recognized by CD8+ T cells bearing public TCRs (Gotch et al., 1987; Moss et al., 1991; 

Lehner et al., 1995; Griffiths et al., 2015). Almost 80% of M1-specific TCRs use TRBV19 and 

associate with CDR3β containing the conserved IRSS motif (Gil et al., 2015; Gotch et al., 1987; 

Moss et al., 1991). In a study analyzing primary CD8+ T cell responses to GIL-HLA-A2 in very 

young children, T cells showed no signs of bias to TRBV19 but this  chain gradually become 

dominant during the first few years of life (Lawson et al., 2001). Thus, it is believed that in 

HLA-A2+ humans TRBV19 TCR is selected during the first influenza infection and reinforced 

during subsequent infections. In addition, GIL-specific TCR α chains are more diverse than β 

chains, indicating the importance of the β chain for interacting with GIL-HLA-A2.  

 

1.4.3 High-throughput DNA sequencing and single T cell sorting isolate novel 

NLV/GIL-specific TCRs 

Recent advances in high-throughput DNA sequencing (HTS) and single-cell sorting have 

revolutionized the study of human TCR repertoires in response to infection with CMV and 

influenza virus (Shugay et al., 2014). To date, several hundred distinct TCRβ and TCRα 

sequences have been reported for both CMV and influenza virus T cell response. However, it 

remains to be determined whether these numbers adequately represent the full diversity of these 

antigen-specific TCR repertoires in individuals and in populations. Dr. Nan-ping Weng (National 

Institute on Aging, NIH), with whom we collaborated on this project, has applied unique 
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molecular identifier (UMI)-labelled high-throughput sequencing (HTS) and single-cell paired 

TCR analysis to exhaustively interrogate virus-specific CD8
+
 T cell repertoires in humans. His 

laboratory identified thousands of new NLV- and GIL-specific TCRα and TCRβ sequences, as 

well as dozens of distinct CDR3α and CDR3β consensus motifs. This diversity is substantially 

greater than previously described for T cell responses to single viral epitopes, both for private 

and public TCR clonotypes. In collaboration with the Weng laboratory, we obtained both NLV- 

(C7, C25, D12, C31, C32, C34) and GIL- (F5, F6, F8, F22, F26, F50) specific paired αβ TCR 

sequences from sorted single T cells. These TCRs, which include public α with private β, private 

α with public β, and dual public  and  chains, provide unique molecular insights into the 

clonal diversity of the public T cell response to CMV and Flu viral epitopes.  

 

1.5  Biophysical and structural studies of MHC class I-restricted antigen   

recognition by TCRs 

1.5.1 Peptide binding by MHC class I molecules 

Peptides presented by MHC class I molecules are stabilized at both ends of the peptide-

binding groove. The free N- and C-termini of the peptide provide the major anchor points for 

peptide-MHC class I complexes. Synthetic peptide analogs lacking N- or C-terminal amino acids 

fail to bind MHC class I molecules. Peptides presented by MHC class I molecules are usually 8-

10 amino acids long (Rudolph et al., 2006). Longer peptide may also be accommodated in the 

peptide-binding pocket via bulged conformations. This is different from peptide binding to MHC 

class II molecules, which impose has no length restriction (Rudolph et al., 2006). The interaction 

between peptide and MHC class I molecules provides a broad peptide-binding  
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Figure 1.5 Peptide binding by MHC class I molecules.  

(A)  NLV peptide electron density in the NLV-HLA-A2 complex interface (PDB code: 3GSO). 

Density from the final 2Fo-Fc map at 1.6 Å resolution is contoured at 1σ. Each peptide 

residue is labeled from P1 to P9. Magenta, NLV peptide (stick diagram); orange, HLA-A2.  

(B) Five viral peptide presented by HLA-A2 molecules. Green, HIV RTase peptide (PDB 

code: 1HHG); cyan, HTLV Tax peptide (PDB code: 1HHH); magenta, influenza A virus 

M1 peptide (PDB code: 1HHI); yellow, HIV gp120 peptide (PDB code: 1HHJ); tints, 

HBV nucleocapsid peptide (PDB code: 1HHK). The MHC anchoring residue P2 and P9 

are labeled. The TCR interacting residue P5 and P7 are labeled. 
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specificity. In addition, MHC molecules are highly polymorphic and some of polymorphism is 

located in the peptide-binding groove or TCR interacting  helices. Thus, different MHC 

molecules have different peptide preferences that ultimately shape the T cell repertoire.  

Among all human HLA class I molecules, HLA-A2 is the most common. The structural 

and biophysical properties of different peptides presented by HLA-A2 molecules have been 

studied extensively (Bjorkman et al., 1987; Madden et al., 1993; Rudolph et al., 2006). The P2 

and P9 residues are the most important anchor points; tight peptide-MHC complex formation is 

further reinforced by the P1, P3 and P7 residues (Figure 1.5-A). A structural study of five 

distinct viral peptides presented by HLA-A2 has revealed the overall similarity among all 

complexes, with nearly identical HLA-A2 conformations (Madden et al., 1993). However, 

although peptide residues P2 and P9 are bound similarly in all five cases, the main chain and side 

chain conformations of each peptide are strikingly different in the center of binding sites; these 

differences are accessible to direct TCR recognition (Figure 1.5-B). Thus, the distinct T cell 

responses against different viruses are likely attributable to the viral peptides rather than MHC 

molecules.  

 

1.5.2 Structural basis of TCR-pMHC-I recognition 

The first crystal structures of an αβ TCR-pMHC class I complex, solved twenty years ago, 

provided enormous information on the T cell recognition event (Figure 1.6-A) (Garcia et al., 

1996).  The TCR sat above the long axis of the peptide binding groove in a diagonal mode 

(Figure 1.6-B). The CDR3 loops interacted with peptide, whereas the germline-encoded CDR1 

and CDR2 loops mediated MHC interactions. The complex interface featured low shape  
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Figure 1.6 Structure of TCR-pMHC class I complex. 

(A) Overview of the complex of 2C TCR and H-2K
b
 bound to a self-peptide, dEV8 (PDB 

code: 2CKB) (Garcia et al., 1996). 

(B)  Top view of the structure. The Cα and Cβ domains of 2C TCR, as well as the α3 and β2-

microglobulin domains of H-2K
b
, are removed for clarity. The dEV8 peptide is shown as 

magenta sticks.  

(C) Side view of the interaction of two CDR1 loops and two CDR3 loops with the HA 

peptide. 
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complementarity, which corresponds well to the relatively low affinity of the interaction. The 

CDR3 loops showed considerable flexibility and underwent conformational change upon pMHC 

binding. The flexible CDR3 loops provided the first clue of inherent TCR cross-reactivity 

(Figure 1.6-C).  

After the first structures, many TCR-pMHC complexes have revealed the structural basis 

for key immunological concepts, such as TCR cross-reactivity, TCR alloreactivity, autoimmune 

reaction, allergies, T cell development and maturation, MHC restriction, MHC class I 

polymorphism and MHC class I self-tolerance (Rossjohn et al., 2015). To date, more than 30 

TCR-pMHC-I complex structures have been determined. All these structures present an overall 

similar docking topology in which Vα interacts with the MHC α2 helix and Vβ interacts with the 

MHC α1 helix. In TCR-pMHC-II complexes, Vα is positioned over the MHC β1 helix and the 

Vβ is positioned over the MHC α1 helix. This canonical diagonal docking solution is attributed 

to different factors by two theories: 1. The co-evolution theory of germline-encoded TCR V 

residues with MHC residues. 2. The co-receptor theory of bringing CD8 or CD4 molecules 

proximate to CD3 molecules for effective TCR signaling. However, one study recently has 

shown that TCRs isolated from regulatory T cells are able to engage pMHC-II in a reversed 

docking orientation (Beringer et al., 2015). Whether this reverse TCR docking applies more 

generally or these TCRs simply are outliers remains unknown. Further investigations to find 

more reverse-docking TCRs, as well as fully characterizing the function of T cells bearing 

reverse TCRs, are essential.  

 

1.5.3 Structural basis for RA14 TCR recognition of NLV-HLA-A2 
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Figure 1.7 Structure of TCR RA14-NLV-HLA-A2 complex. 

(A) Overview of the complex of RA14 TCR and HLA-A2 bound to a CMV pp65 peptide, 

NLV (PDB code: 3GSN) (Gras et al., 2009). 

(B)  Top view of the structure. The Cα and Cβ domains of RA14 TCR, as well as the α3 and 

β2microglobulin domains of HLA-A2, are removed for clarity. The NLV peptide is 

shown as magenta cartoon representation.  

(C) Side view of the interaction between the CDR1α, CDR3α and CDR3β loops and the NLV 

peptide. The NLV peptide is shown as magenta sticks. 
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Prior to this study, the only TCR-NLV-HLA-A2 structure available in the PDB was RA14 TCR 

complexed with NLV-HLA-A2 (Figure 1.7-A) (Gras et al., 2009). RA14 was originally isolated 

from CMV-seropositive healthy donors as well as immunosuppressed organ transplant recipients 

(Trautmann et al., 2005). The specific αβ pair (TRAV24-TRAJ49/TRBV6-5-TRBJ2-7) was one 

of the most abundant TCR pairs isolated from multiple donors. RA14 features extensive peptide 

readout via docking over NLV-HLA-A2 with a relatively acute angle (29⁰) (Figure 1.7-B). 

Different from most TCR-pMHC class-I structures, TCR RA14 mediates peptide binding not 

only with somatically-generated CDR3s, but also with germline-encoded CDR1s. In addition, 

The RA14-HLA-A2 germline-encoded interactions are distinct from previous TCR-pMHC 

structures. The particular focusing of Tyr48β and Asp56β on the Gln72H is different from 

previous structures in which these two well-conserved residues interact with Arg65H. This slight 

shift is partially explained by the acute docking angle made by RA14 and indicates that TCR-

pMHC germline interactions are not necessarily hardwired by limited residues on TCR and 

MHC. The NLV-HLA-A2 structure in the RA14-bound and unbound states are overall the same. 

Upon RA14 binding, NLV peptide residues Met P5 and Thr P8 lose some mobility, as evident by 

weak side chain electron density in the RA14 non-bound structures.  

The affinity of WT RA14 bound to NLV-HLA-A2 is slightly weaker for a typical TCR-

microbial peptide-MHC interaction (KD = 28 μM). NLV peptide point mutations have been made 

at the P4, P5 and P8 positions. The mutations M5S, T8A and T8V led to undetectable responses. 

The affinity results correspond well with RA14 T cell clone activation experiments, in which 

non-interacting peptides require highest peptide concentration to trigger T cell response. The 

RA14-NLV-HLA-A2 structure has revealed several compelling features of how a public TCR 

engages a viral dominant peptide. The most striking feature of the NLV-HLA-A2-specific T cell 
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response is its large clonal diversity. This is different from the restricted T cell repertoire against 

several other viruses (e.g. Flu and EBV). Thus, the RA14-NLV-HLA-A2 complex alone is 

unlikely to provide a full picture of the structural basis for the diverse NLV-HLA-A2-specific T 

cell repertoire.  

 

1.5.4 Structural basis of JM22 TCR recognizing GIL-HLA-A2 

 The JM22-GIL-HLA-A2 complex represents the only available Flu-specific TCR-pMHC 

structure to date in the PDB (Stewart-Jones et al., 2003). Notably, JM22-GIL-HLA-A2 is also 

the highest resolution (1.4 Å) TCR-pMHC structure reported to date. The resolution of TCR-

pMHC complexes rarely exceeds 2.5 Å. TCR-pMHC interfacial contacts are dominated by the 

JM22 β chain, which contains a unique CDR3β motif “XRSS”.  The side chain of Arg98β is 

inserted into a notch between the peptide and HLA-A2 complex, forming 3 hydrogen bonds with 

Ala150H and Q155H. These hydrogen bonds are further reinforced by 14 van der Waals contacts 

and 2 water-mediated bridges. The importance of Arg98β was confirmed by surface plasmon 

resonance (SPR) affinity measurements, as an Arg-to-Ala mutation completely abrogated the 

interactions between JM22 and GIL-HLA-A2. Thus, this unique solution has enabled JM22 to 

interact with GIL-HLA-A2 with high affinity (KD = 3 μM), even though the GIL peptide is 

essentially featureless. The structure along with the biophysical experiments provided an 

explanation for the restricted T cell response against influenza virus.  

Recently, high-throughput sequencing and single-cell αβ paired analysis have been 

applied to interrogate virus-specific CD8+ T cell repertoires. Hundreds of new GIL-specific TCR 

α and β chains, as well as dozens of distinct CDR3α and CDR3β consensus motifs, have been  
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Figure 1.8 Structure of TCR JM22-GIL-HLA-A2 complex. 

(A) Overview of the complex of TCR JM22 and HLA-A2 bound to a flu matrix protein 

peptide, GIL (PDB code: 1OGA) (Stewart-Jones et al., 2003). 

(B)  Top view of the structure. The Cα and Cβ domains of JM22 TCR, as well as the α3 and 

β2-micrglobulin domains of HLA-A2, are removed for clarity. The GIL peptide is shown 

as magenta cartoon representation.  

(C) Side view of the interaction between the CDR3α, CDR1β, CDR2β and CDR3β loops and 

the GIL peptide. The GIL peptide is shown as magenta sticks. 
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identified. Along with the sequencing results, several questions are brought to the fore: 1. How 

are TRBV19 TCRs able to associate with multiple TRAV chains? 2. How do different CDR3α 

loops affect TCR-GIL-HLA-A2 interactions? 3. How do non-TRBV19 TCRs engage GIL-HLA-

A2? 4. Why are non-TRBV19 TCR populations small compared to TRBV19 TCRs? To answer 

these and related questions from a structural perspective, structures of non-TRBV19 GIL-

specific TCRs, and of TRBV19 GIL-specific TCRs paired with different α chains, need to be 

determined in complex with GIL-HLA-A2.  

In order to reveal the structural mechanisms of distinct public T cell response for NLV 

and GIL epitope in HLA-A2+ population, I crystallized and determined two NLV-specific TCR-

NLV-HLA-A2 and two GIL-specific TCR-GIL-HLA-A2 complex structures. In this thesis, I will 

discuss NLV/GIL-specific TCR and NLV/GIL-HLA-A2 expression and purification protocols in 

chapter 2. The surface plasmon resonance experiments to study NLV/GIL-specific TCR and 

NLV/GIL-HLA-A2 interactions are discussed in chapter 3. The crystallization and structure 

determination of two NLV-specific TCR-NLV-HLA-A2 complexes and two GIL-specific TCR-

GIL-HLA-A2 complexes in chapter 4 and chapter 5, respectively.  
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Chapter 2  

Protein expression and purification of NLV-specific TCRs, GIL-specific TCRs, 

NLV-HLA-A2, and GIL-HLA-A2 

 

Summary  

Various methods and protein expression systems can be used to express large quantities of high 

quality proteins for macromolecule crystallographic studies. In my protocols, we apply in vitro 

folding to produce NLV-specific TCRs, GIL-specific TCRs, NLV-HLA-A2, and GIL-HLA-A2. 

For TCR production, we engineered an interchain disulfide bond in the Cα and Cβ domains to 

promote α/β chain association. For NLV/GIL-HLA-A2, the initial protocols which used a rapid 

dilution method for in vitro folding failed to yield sufficient amounts of proteins. An improved 

protocol via dialysis produced milligrams of NLV/GIL-HLA-A2. In summary, both TCRs and 

pMHC can be produced in large quantity and high quality.  
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2.1 Background 

 Macromolecule crystallography usually requires large quantities of proteins to obtain 

crystals suitable for X-ray diffraction experiments. To set up a 96 well crystal screen, at least 0.2 

mg of protein is required. Therefore, the ability to produce proteins at the milligram level is 

absolutely prerequisite for carrying out hundreds of crystal screens. For our NLV/GIL-specific 

TCRs and NLV/GIL-HLA-A2, we produced these proteins in soluble form.  

 Due to a variety of applications, pMHC complexes are not just produced for 

crystallographic studies but also can be used for biophysical characterization, 

immunofluorescence, or antigen-specific T cell sorting by flow cytometry. pMHC-I can be 

produced from various sources ranging from prokaryotic to eukaryotic cells (Bjorkman et al., 

1987; Fremont et al., 1992; Garboczi et al., 1992). The most common way to produce 

homogenous pMHC-I molecules is in vitro folding from bacterial inclusion bodies, with yields of 

about 0.5-1 mg/L. Compared to pMHC-I, pMHC-II molecules are generally more challenging to 

produce due to relatively weak α/β chain association. pMHC-II can be produced via refolding 

from bacterial inclusion bodies (Arimilli et al., 1995), as for pMHC-I, or from eukaryotic cells, 

such as Sf9 or Hi5 insect cells (Dessen et al., 1997; Bolin et al., 2000). The first peptide-HLA-

A2 crystals were produced by releasing membrane bound peptide-HLA-A2 by papain from 

homozygous human lymphoblastoid cell lines (Bjorkman et al., 1987). This glycoprotein led to a 

3.5 Å dataset and revealed a tremendous amount of information regarding the bound peptide and 

TCR recognition.  At the same time, a peptide-HLA-A28 structure also was determined 

(Bjorkman et al., 1987). Polymorphic residues were located within the binding groove and 

provided insight into how MHC polymorphism could mediate peptide specificity. However, the 

heterogeneity of peptide loading and differential glycosylation of HLA-A2 prevented crystals 
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from diffracting to higher resolution. Many residues were omitted or truncated to alanine due to 

the lack of clear electron density.  

Later protocols employed prokaryotic expression systems and produced the HLA-A2 

heavy chain and β2-microgolubilin separately as bacterial inclusion bodies (Garboczi et al., 

1992). The inclusion bodies were dissolved in 8 M urea and rapidly diluted into refolding 

mixture. Unlike recombinant pMHC-II molecules in which the peptide is covalently linked to the 

β subunit via a flexible hydrophilic linker, MHC-I antigenic peptide are chemically synthesized 

and directly added to the refolding mixture. The folding mixture was concentrated after 48 hours 

incubation at 4 
o
C and subjected to gel filtration and ion exchange purification. The purified 

protein reached 99% purity, as judged by SDS-PAGE. Homogenous peptide loading and lack of 

glycosylation led to formation of high quality peptide-HLA-A2 crystals. Nowadays, the majority 

of pMHC-I molecules are produced similarly to this protocol. The typical resolution for pMHC-I  

structures ranges from 1.5-2.5 Å. The vast improvement of resolution greatly expanded our 

knowledge of various immunological concepts, such as MHC polymorphism and MHC peptide 

specificity.  

TCR molecules also can be produced using either prokaryotic or eukaryotic systems.  The 

first αβTCR-pMHC complex crystals were grown using a TCR from insect cells (Garcia et al., 

1996). This protocol is still widely used by different labs today for various purposes. However, 

the TCR αβ heterodimer may gradually fall apart within a week. This instability and heavy 

glycosylation of the protein from insect cells are unattractive characteristics for macromolecule 

crystallization. However, insect cell production is still a viable approach for γδTCRs that are 

challenging to refold (Adams et al., 2006). To overcome the unstable nature of αβ heterodimer 

association, various strategies have been developed. For example, a single  
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Figure 2.1 Structure of interchain disulfide bonded engineered TCR and wide type TCR.  

(A) Structure of the interchain disulfide bonded engineered C25 TCR (PDB code: 5D2N) 

(Yang et al., 2015). The red star marks the engineered disulfide bond in C25 TCR Cα and 

Cβ region. 

(B) Structure of wide type JM22 TCR (PDB code: 1OGA) (Stewart-Jones et al., 2003). The 

red star marks the original Cα Thr and Cβ Ser amino acids.  
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chain form of TCR (scTCR) was designed by connecting the Vα and Vβ domains via a flexible 

linker (Schodin et al., 1996). However, by eliminating the Cα and Cβ domains, the solubility of 

the scTCR is greatly reduced. Aggregates generally form throughout the purification process and 

the final yields are usually not high, which limits the usefulness of scTCRs for potential 

applications.  

 Another method involves covalently linking the TCR α and β ectodomain via an 

interchain disulfide bond formed by a pair of cysteine residues engineered in the middle of the C 

domains (Figure 2.1) (Boutler et al., 2003). This artificial disulfide bond has dramatically 

enhanced the stability of αβ TCRs and improved overall yields. In addition, this introduced 

disulfide bond does not change the biochemical properties of the TCR. Currently, many labs 

have adopted this engineered version of the TCR and most TCRs produced from in vitro folding 

contain this engineered disulfide bond.  

 In order to produce NLV/GIL-HLA-A2 and NLV/GIL-specific TCRs in large quantity 

with great purity, we applied in vitro folding for both pMHC and TCRs. For TCRs, we used the 

constructs contain the engineered disulfide bond to promote efficient αβ chain association.  

 

2.2 Results 

2.2.1 Production of NLV-HLA-A2  

 CMV-specific cytotoxic T lymphocytes (CTLs) recognize the immunodominant epitope 

pp65 495—503 (NLVPMVATV) presented by HLA-A2. Initially, the magnitude of the pp65 

CTL response was compared with responses to Immediate Early gene product I (IE1) and 
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glycoprotein B (gB). The pp65 CTL response is substantially higher than to the other two 

antigens and a 15-mer (ARNLVPMVATVQGQN) was identified in HLA-A2+ donors as the 

antigenic peptide. The 15-mer was further simplified as a 10-mer containing P2 leucine and P9 

valine (NLVPMVATVQ). The CTL responses to the 15-mer and 10-mer were essentially 

identical. Subsequent studies identified a 9-mer (NLVPMVATV) as the immunodominant 

epitope. We directly synthesized this 9-mer peptide (referred to here as NLV) and refolded it 

with HLA-A2 heavy chain and β2-microglobulin inclusion bodies.  

i. Low yield of NLV/GIL-HLA-A2 via rapid dilution 

The chemically synthesized NLV and GIL peptides were dissolved in deionized water 

and dimethyl sulfoxide (DMSO), respectively. The peptides were added to a 1 L refolding 

mixture containing 100 mM Tris (pH 8.0), 400 mM L-arginine-HCl, 2 mM EDTA, 5 mM 

reduced glutathione, and 0.5 mM oxidized glutathione. Subsequently, 21 mg HLA-A2 heavy 

chain and 10 mg β2-microglobulin inclusion bodies were added to the refolding mixture and 

incubated in 4 C⁰ for 3 days. Correctly folded NLV/GIL-HLA-A2 was purified by three 

consecutive purification steps and the protein was concentrated to 10 mg/ml. However, the 

overall yield ranged from 0.5-1.0 mg/L, which is lower than the expected yield based on 

previous reports.  

ii. Satisfactory yield of NLV/GIL-HLA-A2 via dialysis  

To produce NLV-HLA-A2 in larger quantity, we needed to modify our refolding protocol. 

The rationale is that HLA-A2 heavy chain inclusion bodies aggregated before they could fold 

correctly. Therefore, we switched to a protocol that could slow down the refolding process. We  
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Figure 2.2 Protein purification profile of NLV/GIL-HLA-A2. 

(A) Size exclusion chromatography of NLV/GIL-HLA-A2 using a Superdex-200 column. 

The arrow indicates the fraction containing the folded protein. 

(B) Anion exchange chromatography of NLV/GIL-HLA-A2 using a MonoQ column. The 

arrow indicates the fraction containing the folded protein.  

(C) SDS-PAGE electrophoresis of the fraction containing the folded protein. The higher 

molecule weight band is the HLA-A2 heavy chain and the lower molecule weight band is 

β2-microgolubulin.  
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Figure 2.3 Purification of NLV/GIL-specific TCR.  

(A) Size exclusion chromatography of NLV/GIL-specific TCR using a Superdex-200 column. 

The arrow indicates the fraction containing the folded protein. 

(B) Anion exchange chromatography of NLV/GIL-specific TCR using a MonoQ column. 

The arrow indicates the fraction containing the folded protein.  

(C) SDS-PAGE electrophoresis of the fraction containing the folded protein. Lane 1 is the 

engineered TCR in non-reducing conditions. Lane 2 is the engineered TCR in reducing 

conditions.  
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added 5 M urea to the 1 L refolding buffer before adding our dissolved inclusion bodies and then 

dialyzed the 1 L refolding buffer against 10 L of deionized water. After 3 days of incubation, we 

concentrated our folding mixture and subjected it to size exclusion and anion exchange 

chromatography. The final product was concentrated to 10 mg/ml and the overall yield was 2-3 

mg/L. Typical NLV/GIL-HLA-A2 Hitrap Q, S200 gel filtration, Mono Q anion exchange 

chromatography, and SDS-PAGE profiles are shown in Figure 2.2. 

 

2.2.2 Production of NLV/GIL-specific TCRs  

 NLV/GIL specific TCRs were also produced via in vitro folding. All the TCRs contained 

the engineered artificial disulfide bond in the C domains. The overall yield of the TCRs ranged 

from 2-9 mg/L. The high quality of these recombinant molecules was demonstrated by SDS-

PAGE. Briefly, 45 mg of α chain and 35 mg of β chain inclusion bodies were mixed prior to 

refolding. The 1 L refolding solution contained 5 M urea, 100 mM Tris (pH 8.0), 400 mM 

arginine-HCl, 2 mM EDTA, 5 mM reduced glutathione, and 0.5 mM oxidized glutathione. The 

refolding solution was further dialyzed into 10 L of deionized water for 3 days and concentrated 

for gel filtration and anion exchange chromatography purification. The final product was 

concentrated to 10 mg/ml and stored at -80 C⁰. Typical S200 gel filtration, MonoQ anion 

exchange chromatography, and SDS-PAGE profiles are shown in Figure 2.3.  

 

2.3 Discussion 
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 There are many approaches to producing large quantities of pMHC and TCR molecules 

from eukaryotic and prokaryotic systems. For crystallization purposes, we prefer to use 

prokaryotic systems for two reasons: 1. Both pMHC and TCR are glycoproteins and eukaryotic 

systems carry out glycosylation during protein expression. All glycosylation sites are distal from 

TCR-pMHC interface thus are unlikely to affect the biochemical and biophysical nature of TCR-

pMHC interactions. Therefore, the heterogeneity of glycosylation may impede us from getting 

well-diffracting complex crystals. 2. Overall protein purity is very high after extensive inclusion 

bodies wash cycles. As result, no purification tags need to be added to the proteins and no 

subsequent protease digestion steps are required to remove these tags.  

 The initial low yield of peptide-HLA-A2 molecules produced via rapid dilution could be 

attributed to HLA-A2 heavy chain aggregation. Indeed, we observed white aggregates within 30 

min after adding inclusion bodies, as well as large quantities of β2-microgolobulin monomers 

during purification. This excess β2-microgolobulin suggested that the majority of refolded β2-

microgolobulin molecules were not able to associate with the HLA-A2 heavy chain. In the 

improved protocol, we included 5 M urea in the 1 L refolding buffer to prevent rapid folding of 

the denatured protein. Dialysis against 10 L deionized water gradually reduced the high 

concentration of urea in the refolding mixture. We added 10 mM Tris (pH 8.0) every 12 hours to 

maintain the optimal pH, as well as to dilute excess of urea and L-arginine. After 3 days, we 

were not able to observe white protein aggregates, indicating that the efficiency of HLA-A2 

heavy chain folding and β2-microgolobulin association had greatly improved. MHC-I molecules 

have wide applications for studying immunological questions. Therefore, being able to produce 

high quality MHC-I molecules in large quantity is highly desirable. We believe our improved 
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protocol could potentially be applied to other pMHC-I complexes, as well as to non-classical 

MHC-I molecules. 

 TCR production exhibits a wide range of yields, ranging from 2-9 mg/L. The different 

yields are likely attributable to specific TCR αβ sequences. The length of CDR3s and the amino 

acid composition may affect the pairing of α chain and β chain. Several NLV/GIL-specific TCRs 

did not associate as αβ heterodimers, instead only ββ homodimers were purified even though we 

tried using different α:β molar ratios. Therefore, eukaryotic expression systems may be required 

to produce these problematic TCRs instead of in vitro folding. Nevertheless, in vitro folding 

combined with an artificial disulfide bond represents a robust way to produce large quantities of 

homogeneous TCR molecules.  Although there are more than 30 TCR-pMHC-I structures in the 

PDB, the structural basis of public T cell response to dominant viral epitope was only revealed 

for EBV-specific responses (Rudolph et al., 2006; Rossjohn et al., 2015). For the more clinically 

relevant pathogens such as HCMV and influenza A, only one TCR-pMHC-I complex is currently 

available for each viral epitope. Thus, it is necessary to expand the structural database of public 

TCR-NLV/GIL-HLA-A2 complexes. Such structural information may help us refine vaccine 

design strategies for these viruses.  
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Chapter 3 

NLV/GIL-specific TCRs exhibit wide ranges of binding affinities for 

NLV/GIL-HLA-A2 

 

Summary 

TCR-pMHC affinities are typically weak with KDs ranging from 1-200 μM. Anti-microbial 

TCRs expressed on CD8+ T cells generally bind to their cognate ligands at the higher end of this 

range. The relatively tight binding of anti-microbial TCR is likely attributable to the antigenic 

peptide. It is evident that the tighter binding facilitates better killing of infected cells and also 

promotes clonal expansion. To characterize interactions between TCR-NLV-HLA-A2 and TCR-

GIL-HLA-A2, we performed steady state binding assays using surface plasmon resonance (SPR). 

We immobilized our biotinylated NLV/GIL-HLA-A2 ligand on streptavidin (SA) chips and 

flowed different concentrations of TCR sequentially. The results showed that NLV/GIL TCRs 

are able to bind their ligands with a wide range of affinities that generally corresponded well 

with T cell population sizes in peripheral blood.  
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3.1 Background  

 The initiation of TCR signaling is a key step that triggers T cell activation and 

proliferation (Brownlie and Zamoyska 2013). Early events in TCR signaling can differentiate 

between invading agonist and self-ligands with remarkable selectivity (Weiss 2014). The 

mechanism of the TCR’s extraordinary sensitivity to extremely low concentration of antigenic 

peptide is still a mystery and many studies are going-on. Currently, there are several ways to 

directly quantify TCR-pMHC engagement, including: 1. Affinity calculations when TCR-pMHC 

interactions reach steady state equilibrium; 2. Using kinetic parameters (kon and koff) to derive 

association constants. Previous investigations showed the KDs of TCR-pMHC interactions to fall 

in the 1-200 μM range via the steady state equilibrium approach. Kinetic studies have revealed 

relatively short half-lives of TCR-pMHC interactions.  

 Whether the affinity or the dissociation rate is better correlated to T cell triggering is still 

a hot topic and there are lines of evidence supporting both parameters. On one hand, it has been 

demonstrated that T cell stimulation and magnitude of expansion are closely related to binding 

affinity (Lyons et al., 1996). On the other hand, kinetic studies demonstrated that TCR-pMHC 

affinity is mainly derived from koff values (Kersh et al., 1998), suggesting that longer half-life 

may prolong TCR-pMHC interactions thus triggering downstream signaling events. In addition, 

studies have shown that TCR-pMHC complexes with similar affinities but disparate half-lives 

were able to differentiate TCR signaling. Whether TCR-pMHC complexes with similar half-lives 

but different affinities can trigger similar TCR signaling remains to be tested. Nevertheless, the 

affinity and half-life of a given TCR to its cognate pMHC are important criteria for 

characterizing TCR-pMHC interaction. Such information is particularly useful for guiding TCR-

pMHC complex crystallization.  
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Figure 3.1 Example of an SPR sensorgram.  

In this experiment, the injection of analyte was started at time 0. Association of the analyte to the 

ligand on the chip surface caused an increase in the resonance signal. Injection was stopped at 

300 sec, which marked the start of the dissociation phase. The association curve is highlighted in 

green, and the dissociation curve is highlighted in red.  
 

 

 

 SPR, usually carried out with a Biacore instrument, is one of the most common 

techniques to characterize protein-protein interactions. There are several advantages in using 

SPR to studying TCR-pMHC interactions compared to other techniques such as isothermal 

titration calorimetry (ITC), analytical ultracentrifugation (AUC), and fluorescence stopped-flow. 

First, SPR can provide both kinetic and thermodynamic parameters, whereas ITC and AUC 

cannot obtain kinetic results. Second, SPR usually only requires nanogram amounts of protein to 

immobilize on a sensor chip and microgram amounts of protein to flow over the chip. This is 
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particularly suitable for analyzing TCR-pMHC interactions, whose KDs are usually in the 1-100 

μM range. To characterize such low affinity interactions by ITC or AUC, 10 mg of proteins for 

each partner are usually required. Third, in order to characterize several TCRs at once, pMHC 

ligands are usually immobilized on the chip and TCRs with different concentrations are flowed 

over the chip. The chip surface can be regenerated after the runs and be fully capable of another 

experiment. In contrast, materials from ITC and AUC cannot be regenerated and always need to 

replenished for new experiments. This is very important for characterizing public TCRs-pMHC 

interactions since multiple TCRs all recognize the same pMHC antigen.  

 In a typical SPR experiment, one molecule (pMHC) is immobilized onto a sensor chip 

surface and another molecule (TCR) flows over the chip (Figure 3.1). During the association 

phase, TCR binding will increase the SPR signal, which is expressed as Response Units (RU). 

After a period of contact time, buffer will flow over the surface and decrease the SPR signal. 

This is called the dissociation phase. For a 1:1 binding reaction like TCR:pMHC, the association 

and dissociation phases can be described by equations. Here, the concentration of TCR-pMHC 

complex can be replaced by RU. The total concentration of pMHC is equivalent to the maximum 

concentration of TCR-pMHC and can be represented as RUmax. These two equations are used to  

represent the association and dissociation curves for Biacore sensorgram. The concentration of 

TCR is known and input by the operator. Thus, kon, koff and RUmax are fitted according to the 

equation (Eq 3.1).  

Due to instrumental limitations, measureable kon and koff rates are within 10
3
-10

8 
M

-1
s

-1 

and 10
-5

-10
-1

 s
-1

, respectively (Cole et al., 2007). The available kinetic parameters for TCR-

pMHC interactions feature fast kon (10
4
-10

5
 M

-1
s

-1 
) and koff  (10

-2
-10

-1 
s

-1
). In addition, these 

kinetic parameters were obtained for relatively tight TCR-pMHC binding (KD =1-10 μM); for 
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weaker binding, these parameters were often unmeasurable. To screen large numbers of TCR-

pMHC interactions, obtaining affinity values from equilibrium analysis is much more practical. 

By flowing serial concentrations of TCR over a sensor chip immobilized with pMHC ligand, 

SPR signals at the plateau are recorded. By using the equation, RU and TCR concentrations were 

fitted as two variables to obtain KDs.   

𝑅𝑈 =
[𝑇𝐶𝑅]

𝐾𝐷+[𝑇𝐶𝑅]
𝑅𝑈𝑚𝑎𝑥                      (Eq 3.1) 

                                      𝑇𝐶𝑅 + 𝑝𝑀𝐻𝐶 ⇌ 𝑇𝐶𝑅 · 𝑝𝑀𝐻𝐶                 (Eq 3.2)       

                                                   𝐾𝐷 = 𝑘𝑜𝑓𝑓 𝑘𝑜𝑛⁄                               (Eq 3.3) 

                                       𝐻𝑎𝑙𝑓𝑙𝑖𝑓𝑒 (𝑡1
2⁄ ) = 𝑙𝑛2 𝑘𝑜𝑓𝑓⁄                       (Eq 3.4) 

             
𝑑𝑅𝑈

𝑑𝑡
= 𝑘𝑜𝑛[𝑇𝐶𝑅](𝑅𝑈𝑚𝑎𝑥 − 𝑅𝑈) − 𝑘𝑜𝑓𝑓[𝑇𝐶𝑅 · 𝑝𝑀𝐻𝐶] (Eq 3.5) 

                                                 
𝑑𝑅𝑈

𝑑𝑡
= −𝑘𝑜𝑓𝑓𝑅𝑈                               (Eq 3.6) 

 

The relatively tighter binding of public TCRs to pMHC ligand is likely attributable to the 

greater expansion of public T cells. Thus, we are interested in characterizing affinities of our 

newly isolated public TCRs for comparison with previously reported public TCRs. TCR RA14, 

(specific for NLV-HLA-A2) and TCR JM22 (specific for GIL-HLA-A2) both bind their cognate 

ligand strongly. We hypothesized that our newly identified NLV-specific TCRs should have 

comparable affinities with RA14 and that less expanded GIL-specific TCRs should have weaker 

affinities compared to JM22.  
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Figure 3.2 Experimental design for SPR analysis of the binding between NLV/GIL-specific 

TCRs and NLV/GIL-HLA-A2. 

Biotinylated NLV/GIL-HLA-A2 was directly immobilized onto a streptavidin SA-chip. In this 

way, the NLV/GIL-HLA-A2 ligand was directionally immobilized, which effectively reduces 

signal noise caused by heterogeneous immobilization. NLV/GIL-specific TCRs are then flowed 

in different concentrations to generate SPR sensograms for equilibrium analysis.  
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3.2 Results 

3.2.1 Immobilization of NLV/GIL-HLA-A2 onto a biosensor chip 

 To achieve directional immobilization of NLV/GIL-HLA-A2, we obtained biotinylated 

NLV/GIL-HLA-A2 monomers from the NIH Tetramer Core facility located at Emory University. 

The Avitag peptide sequence was fused to the C-terminus of the HLA-A2 heavy chain. The final 

biotinylated products were concentrated to ~2 mg/ml and shipped to our lab. An SA chip pre-

immobilized with streptavidin was docked into a Biacore T100 instrument; 2-4 μg of pMHC 

were used to produce 1000-1500 RU of immobilized NLV/GIL-HLA-A2. Such moderate RU 

can maximize SPR signal upon TCR binding, as well as prevent steric hindrance due to large 

amounts of immobilized ligand (Figure 3.2).  

 

3.2.2 Equilibrium measurements of six NLV-specific TCRs and six GIL-

specific TCRs   

 A series of concentrations of TCRs were flowed over immobilized NLV-HLA-A2 for 

equilibrium analysis. Under equilibrium conditions, KDs were obtained and listed in figures. The 

NLV-specific TCRs C7, C25 and D12 bound NLV-HLA-A2 with KDs of 4.7±0.3 μM, 5.2±0.2 

μM and 10±1 μM, respectively (Figure 3.3). These affinities are at the high end of the range for 

TCR-pMHC interactions, indicating that these TCRs are equally effective regardless their 

distinct V(D)J usage and α/β pairing (Cole et al., 2007; Rudolph et al., 2006; van der Merwe and 

Davis, 2003). TCRs C31, C32 and C34 showed no detectable binding even at 200 μM  
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Figure 3.3 SPR analysis of TCR C7, C25 and D12 binding to NLV-HLA-A2. 
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concentration. Several reasons likely account for the lack of binding by these TCRs: 1. The 

TCRs were sorted by NLV/GIL-HLA-A2 tetramers. This avidity enhancement may promote 

non-specific binding of pMHC tetramers. 2. Sequencing errors could be introduced from RT 

PCR because reverse transcriptase fidelity is not as high as for DNA polymerase. 3. Obtaining 

correct TCR α/β pairing information from single T cells is extremely challenging. During cell 

lysis and mRNA extraction, contamination or RNA degradation may occur. In addition, one T 

cell may bear two α chains and lead to incorrect of TCR α/β pairings.  

 A similar protocol was applied to GIL-specific TCRs for equilibrium measurements. F5, 

F22 and F26 bound GIL-HLA-A2 with KDs of 15±1.5 μM, 3.2±0.2 μM and 1.9±0.2 μM, 

respectively. Notably, these TCRs all express identical or almost identical Vβ chains as well as 

identical CDR3α motifs. The strongly biased TCR usage and high affinities of these TCRs 

suggest that restricted Vβ usage is probably due to a limited number of structural solutions to 

recognizing GIL-HLA-A2. We also tested two non-TRBV19 GIL-specific TCRs (F8 and F50). 

Both exhibited much weaker binding to GIL-HLA-A2 (200±17 μM and 70±6 μM, respectively). 

Indeed, T cells bearing F8 or F50 TCRs are much less expanded. Finally, we tested a TCR (F6) 

which is almost identical to F5 (JM22) except the CDR3α and Jα usage. Interestingly, F6 

exhibited weak binding (150±15 μM), suggesting that CDR3α may play a critical role in 

recognition of GIL-HLA-A2 (Figure 3.4).  
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Figure 3.4 SPR analysis of TCR F5, F6, F8, F22, F26 and F50 binding to GIL-HLA-A2. 
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3.3 Discussion 

 Public T cell responses have long been a focus of immune repertoire studies. However, 

the exact mechanism by which public T cells are selected and expanded in different individuals 

is still elusive. A structural explanation suggests that public TCR are selected based on the 

‘shape’ of peptide-MHC complexes. On one hand, ‘bulged’ peptide conformations have been 

observed; such protruding conformations allow limited TCR access (Tynan et al., 2005). Limited 

TCR access results in limited structural solutions, leading to biased public TCR expansion. On 

the other hand, a ‘featureless’ peptide also can restrict TCR access and result in few public TCRs 

being preferentially expanded (Turner et al., 2003 Stewart-Jones et al., 2003). In support this 

notion, different nucleotide sequences usually give rise to identical or nearly identical amino acid 

sequences in the public TCRs, suggesting that selection pressure more likely operates on a 

structural rather than genetic level.  

 The widely accepted definition of a successful public TCR structural solution is usually 

based on how well the TCR binds its cognate ligand. The relatively tight binding of sequence 

unrelated TCRs C7, C25 and D12 to NLV-HLA-A2 suggests that multiple structural solutions 

are equally effective. Sequence analysis of T cell repertoires also revealed the dominant α and β 

chain usage of C7, C25 and D12 in NLV-specific response. Thus, the high affinities of these 

TCR agree well with their dominant presence in human T cell repertoires. For TCRs C31, C32 

and C34, undetectable SPR signals could be attributed to the technological challenge of sorting 

single T cells. Most single cell sorting studies reported to date are not coupled with biochemical 

or biophysical validation of TCR-pMHC interactions (Wang et al., 2013; Nguyen et al., 2014). 

Thus, our affinity experiments revealed the necessity to confirm actual TCR-pMHC complex 
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formation and should be included in future single T cell sorting experiments and antigen-specific 

TCR repertoire analyses.  

 GIL-specific TCRs feature highly restricted usage of TRBV19-TRBD2-TRBJ2-7, as well 

as a conserved CDR3 ‘RSS’ motif. Previous structural study of JM22, a GIL-specific TCR, has 

revealed the dominant role of Vβ in engaging GIL-HLA-A2. F5, F22 and F26 all share the 

identical or nearly identical Vβ regions as JM22 and all bind to GIL-HLA-A2 strongly. This 

probably suggests that the TRBV19-TRBD2-TRBJ2-7 combination is the best structural solution 

our immune system can come up with because GIL-HLA-A2 lacks protruding peptide side 

chains for TCR binding. JM22 TCR employs Arg residues in the CDR3β RSS motif to occupy a 

notch between HLA-A2 and the GIL peptide. Mutation of this Arg into Ala completely abrogates 

the interaction between JM22 and GIL-HLA-A2 (Ishizuka et al., 2008). It is reasonable to expect 

TCRs F5, F22 and F26 to interact with GIL-HLA-A2 similarly to JM22. However, F5, F22 and 

F26 have totally different TRAV usage. This reflects the minimal contribution of CDR1α and 

CDR2α to interacting with GIL-HLA-A2 and allows GIL-specific TCR α chain diversity. The 

hypothesis that TRBV19-TRBD2-TRBJ2-7 may be the best solution for recognizing GIL-HLA-

A2 is further supported by two non-TRBV19 TCRs binding to GIL-HLA-A2 with much weak 

affinity. In addition, the tight binding of TRBV19 GIL-specific TCRs, such as F6, may also be 

affected by the TCRα chain, particularly by CDR3α length. Notably, although F6 binds to GIL-

HLA-A2 with much lower affinity than JM22, F6 TCRα (TRAV27-TRAJ37) usage in deep 

sequencing analyses reveals a dominant role in GIL-specific T cell repertoires. This discrepancy 

can be explained by the CDR3α of F6 being different from other TRAV27-TRAJ37 TCR 

CDR3α. Also, it is important to keep in mind that SPR, although a powerful technique to study 

protein-protein interactions, may not reflect physiologically relevant conditions for membrane 
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proteins. Indeed, it has been reported that TCRs with very different SPR affinities showed no 

differences in more physiological 2D affinity measurements (Huang et al., 2010).  In the end, we 

selected TCRs that showed binding to their cognate pMHC ligands for crystallization trials.  
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Chapter 4  

Structural studies of NLV-specific TCRs recognizing NLV-HLA-A2 

Summary 

 Crystal structures of the C7-NLV-HLA-A2 and C25-NLV-HLA-A2 complexes were 

determined to resolutions of 2.1 Å and 3.5 Å, respectively. The completely distinct V(D)J 

combination and CDR3s of C7 and C25 lead to totally different structural solutions of NLV-

HLA-A2 recognition by these TCRs. C25 sits on NLV-HLA-A2 with an orthogonal docking 

mode and peptide specificity is heavily biased on the center of NLV peptide. By contrast, C7 

docks on NLV-HLA-A2 with a more diagonal mode and allows the TCR to interact with the 

entire NLV peptide. NLV P5 Met protrudes from the peptide-binding cleft of HLA-A2 and 

serves as a hot spot for recognition by both TCRs. Interestingly, although C25 and C7 CDR3s 

adopt different conformations to accommodate NLV P5 Met, both TCRs are equally effective in 

binding NLV-HLA-A2.  
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4.1 Background 

 As discussed in previous chapters, CMV is a ubiquitous and persistent human pathogen 

that is kept in check by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I 

molecule HLA-A2 produce cytotoxic T lymphocytes bearing TCRs that recognize the 

immunodominant CMV epitope NLVPMVATV (NLV). The NLV-specific T cell repertoire is 

characterized by a high prevalence of TCRs that are frequently observed in multiple unrelated 

individuals (Trautmann et al., 2005; Wang et al., 2013; Nguyen et al., 2014). These public TCRs 

feature identical, or nearly identical, CDR3α and/or CDR3β sequences. The TCRs may express 

public CDR3α motifs alone, public CDR3β motifs alone, or dual public CDR3αβ motifs. In 

addition, the same public CDR3α motif may pair with different CDR3β motifs (and the reverse), 

giving rise to highly diverse NLV-specific TCR repertoires.  

 Despite the great diversity of NLV-specific T cell repertoire, the structural database is 

still too limited to understand the molecular basis for such a diverse T cell response. A previous 

study of the NLV-specific RA14 TCR bound to NLV-HLA-A2 revealed important structural 

features that are distinct from other public T cell responses (Gras et al., 2009). For instance, 

RA14 docks over NLV-HLA-A2 with a crossing angle of 35⁰. This diagonal docking mode 

differs from that of other public TCRs which feature a more orthogonal docking mode. The 

diagonal docking position of RA14 allows the CDR1 and CDR2 loops to participate in peptide 

recognition and maximizes the peptide readout. P4 Pro, P5 Met and P8 Thr from NLV peptide 

are hot spots for RA14 binding. Mutating these residues, especially P5 Met, destabilized the 

RA14-NLV-HLA-A2 complex and rendered the peptide ineffective in activating RA14 T cells. 

The RA14-NLV-HLA-A2 structure also highlighted distinct RA14 germline-encoded residues 

interacting with HLA-A2. For instance, Asn29α and Tyr31α are exclusively expressed in 
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TRAV24 or TRAV21. In addition, RA14 TRBV6-5 features a hydrophobic CDR2β sequence 

that makes multiple van der Waals contacts with the ligand. Notably, CDR2 β residues Tyr48β 

and Asp56β are found in other NLV-specific β chains, suggesting a similar hydrophobic 

interaction pattern in these TCRs. RA14-NLV-HLA-A2 structural characteristics explained in 

part the dominance of RA14 in the response to NLV-HLA-A2. Thus, the relatively high affinity 

and maximum peptide readout of RA14 enables this TCR to recognize CMV-infected cells. 

However, RA14-NLV-HLA-A2 structure alone could not account for the diverse nature of the 

NLV-specific T cell response.  

To investigate the structural underpinnings of NLV-specific T cell clonal diversity, we 

determined crystal structures of two public TCRs (C7 and C25) in complex with NLV-HLA-A2. 

These TCRs utilize completely different CDR3α and CDR3β motifs that, in addition, can 

associate with multiple variable α and variable β regions in NLV-specific T cell repertoires. 

Through detailed structural analysis and comparison of the C7-NLV-HLA-A2 and C25-NLV-

HLA-A2 complexes, we found that these two TCRs exhibit divergent footprints on pMHC such 

that C25 is more focused on the central portion of the NLV peptide than is C7. These structures 

explain in part how the public CDR3α motif of C25 may associate with different variable α 

regions and how the public CDR3α motif of C7 may pair with different CDR3β motifs. This 

interchangeability of TCR V regions and CDR3 motifs permits multiple structural solutions to 

binding an identical peptide-MHC ligand and thereby the generation of a clonally diverse public 

T cell response to CMV (Yang et al., 2015). 

 

4.2 Results 
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4.2.1 Crystallization of TCRs C7 and C25 bound to NLV-HLA-A2 

 The C7 and C25 expression constructs contain an artificial disulfide bond in the TCR C 

region. HLA-A2 heavy chain and β2-microglobulin are wild-type constructs and the NLV 

peptide was synthesized by GenScript. Both TCRs and NLV-HLA-A2 were produced via in vitro 

folding from bacterial inclusion bodies. Initial crystallization screenings of the C7-NLV-HLA-

A2 and C25-NLV-HLA-A2 complexes were carried out using Rigaku Wizard I, II, III and IV 

kits. Crystals of the C7-NLV-HLA-A2 complex grew in drops containing 30% PEG 400 (w/v), 

0.1 M Tris-HCl (pH 8.0), and 0.2 M MgCl2. The crystals were cryoprotected with 35% PEG 400 

(w/v) solution prior to flash-cooling.  Crystals of the C25-NLV-HLA-A2 complex grew initially 

in drops containing 20% PEG 3000 (w/v), 0.1 M Hepes (pH 7.5), and 0.2 M calcium acetate. 

However, these crystals diffracted poorly.  Further improvement was carried out by screening 

with a matrix of PEG 3000 combined with 12 salts and 8 buffer systems. Eventually, crystals that 

diffracted to satisfactory resolution grew in 10-15% PEG 3000 (w/v), 0.1 M imidazole, and 0.2 

M calcium acetate. The crystals were cryoprotected with 30% of glycerol (v/v) and flash-cooled. 

The D12-NLV-HLA-A2 complex has not yet produced well-diffracting crystals.   

 

4.2.2 X-ray crystallographic data collection, structure determination and 

refinement 

 Diffraction datasets were collected at beamline 22ID of the Advanced Photon Source, 

Argonne National Laboratory with a MAR 300 CCD detector. The data were indexed, integrated, 

and scaled with the HKL2000 program. Data collection statistics are presented in Table 4.1 The 

C7-NLV-HLA-A2 complex dataset was processed to 3.5 Å resolution with Rmerge= 20%. The 
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overall completeness value for the dataset is 99.5% (95.0% for the highest resolution shell), 

which facilitated molecular replacement (MR). There are an estimated five complexes in one 

asymmetric unit. However, we were never able to locate the fifth C7 TCR or NLV-HLA-A2 

molecule. We thus concluded that only four C7-NLV-HLA-A2 complexes were in the 

asymmetric unit. The high solvent content is consistent with the relatively low resolution of the 

X-ray dataset. We also tried crystal dehydration at different time point but the diffraction quality 

was either not improved or the crystals deteriorated after a 12 h dehydration period.  

 To determine the C7-NLV-HLA-A2 complex structure via MR, a gliadin-specific TCR 

(PDB accession code: 4OZF) and NLV-HLA-A2 (PDB accession code: 3GSN) were used as 

initial search models. The CDRs of the TCR and the NLV peptide were removed. Three complex 

molecules were located first; the fourth was found according to non-crystallographic symmetry. 

Structural refinement was performed using rigid body and simulated annealing via the Phenix 

program. The model was further refinement by manual model building with Coot based on 2Fo-

Fc and Fo-Fc maps with the NLV peptide omitted in the initial refinement. The final Rwork and 

Rfree values for the C7-NLV-HLA-A2 complex are 27.0% and 35.5%, respectively.  

 The C25-NLV-HLA-A2 complex dataset was processed to 2.1 Å resolution with an 

overall Rmerge= 8.4%. The resolution of C25-NLV-HLA-A2 complex is one of the highest among 

all the TCR-pMHC-I and TCR-pMHC-II structures reported to date. The overall completeness 

value for the dataset is 99.2% (97.1% for the highest-resolution shell). To determine the C25-

NLV-HLA- A2 complex structure via MR, an EBV-specific TCR LC13 (PDB accession code: 

1MI5) and NLV-HLA-A2 (PDB accession code: 3GSO) were used as initial search models. Two 

complex molecules were located in one asymmetric unit based on solvent content. Initially, one 

of the C25 TCR model was located in a different asymmetric unit. 
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TABLE 4.1  

Data collection and structure refinement statistics 

 
C7–NLV–HLA-A2                                     C25–NLV–HLA-A2 

Data Collection 

 

 

  Space group C2221 
P212121 

  Cell dimensions 

 

 

  a (Å) 151.8 84.3 

  b (Å) 366.6 124.9 

  c (Å) 152.0 193.8 

  , ,  (
o
) 90, 90, 90 90, 90, 90 

  Resolution range (Å)
a
 49.5–3.51 (3.64–3.51) 40.7–2.10 (2.17–2.10) 

  Unique reflections
a
 52,979 (4,991) 119,101 (11,500) 

  Rmerge (%)
a,b

 20.3 (89.0) 8.4 (59.4) 

  Mean I/(I)
a
 10.7 (2.4) 22.6 (3.6) 

  Completeness (%)
a
 99.5 (95.0) 99.2 (97.1) 

   

Refinement 

  Resolution range (Å)
a
 

  Rwork(%)/Rfree(%)
a,c

 

49.5–3.51   

26.8 (30.9)/35.5 (37.4) 

 

40.7–2.10 

20.1 (26.2)/25.4 (29.6) 

  No. of protein atoms 25,304 13,250 

  No. of water molecules 54 814 

  Rms deviations from ideality 

 

 

     Bond lengths (Å) 0.009 0.016 

     Bond angles (
o
) 1.59 1.15 

  Ramachandran statistics (%) 

 

 

     Most favored  87.3 96.0 

     Allowed  12.2   3.9 

     Disallowed   0.5   0.1 
a
Values in parentheses are statistics for the highest resolution shell.  

b
Rmerge = |Ij – <I>|/Ij, where Ij is the intensity of an individual reflection and <I> is the average intensity 

of that reflection.  
c
Rwork = ||Fo| – |Fc||/|Fo|, where Fc is the calculated structure factor. Rfree is as for Rwork but calculated for 

a randomly selected 5.0% of reflections not included in the refinement. 
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A new search model was generated by deleting that TCR and placing a TCR opposite the located 

NLV-HLA-A2 molecule. Two C25-NLV-HLA-A2 complexes were then found by Phaser. 

Structure refinement was performed using rigid body and simulated annealing via the Phenix 

program. The model was further refinement by manual model building with Coot based on 2Fo-

Fc and Fo-Fc maps with NLV peptide omitted in the initial refinement. The final Rwork and Rfree 

values for the C7-NLV-HLA-A2 complex are 20.1% and 25.4%, respectively. Refinement 

statistics are summarized in Table 4.1. Stereochemical parameters were evaluated by 

PROCHECK.  

 

4.2.3 Overview of the C25-NLV-HLA-A2 and C7-NLV-HLA-A2 complexes 

 Both the C25-NLV-HLA-A2 and C7-NLV-HLA-A2 complexes showed unambiguous 

electron density for two (C25-NLV-HLA-A2) (Figure 4.1-A and B) or four (C7-NLV-HLA-A2) 

(Figure 4.1-C and D) complex molecules in the asymmetric unit. The root mean square 

difference (r.m.s.d) in α-carbon positions for TCR VαVβ and MHC α1α2, including the peptide 

is 0.4 Å for two C25-NLV-HLA-A2 complex molecules. The r.m.s.d of four C7-NLV-HLA-A2 

complex molecules ranges from 0.5-0.83 Å. Based on such close similarities, the following 

description applies to all C25-NLV-HLA-A2 or C7-NLV-HLA-A2 complex molecules in 

asymmetric units.  

 Both C25 and C7 sit symmetrically over NLV-HLA-A2 in a canonical diagonal 

orientation. The crossing angles of C25 TCR and C7 to pMHC are 61⁰ and 29⁰, respectively.  
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Figure 4.1. Structure of TCR–NLV–HLA-A2 complexes. 

 

(A) Side view of the C25–NLV–HLA-A2 complex (ribbon diagram). TCR  chain, cyan; TCR 

 chain, green; HLA-A2 heavy chain, orange; 2-microglobulin (2m), gray; NLV peptide, 

magenta.  

(B) Electron density in the interface of the C25–NLV–HLA-A2 complex. Density from the final 

2Fo – Fc map at 2.1 Å resolution is contoured at 1.  

(C) Side view of the C7–NLV–HLA-A2 complex.  

(D) Electron density in the interface of the C7–NLV–HLA-A2 complex. Density from the final 

2Fo – Fc map at 3.5 Å resolution is contoured at 1. 
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Figure 4.2 Comparison of TCR footprints on NLV–HLA-A2.  

 

(A) Positions of CDR loops of TCRs C25 and RA14 (PDB accession code: 3GSN) (27) on 

NLV–HLA-A2 (top view). CDRs of C25 are shown as numbered red loops. CDRs of 

RA14 are green. HLA-A2 is gray. The NLV peptide is blue.  

(B) Positions of CDR loops of TCRs C7 and RA14 on NLV–HLA-A2. CRDs of C7 are 

orange. CDRs of RA14 are green.  

(C) Footprint of TCR C25 on NLV–HLA-A2. The top of the MHC molecule is depicted as a 

gray surface. The areas contacted by individual CDR loops are color-coded: CDR1, 

green; CDR2, red; CDR3, blue; CDR1, magenta; CDR2, orange; CDR3, cyan.  

(D) Footprint of TCR C7 on NLV–HLA-A2.  
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Upon binding NLV-HLA-A2, C25 and C7 bury 89% (272 Å
2
) and 86% (314 Å

2
) of the peptide 

solvent-accessible surface, respectively. These percentages are at the higher end of the range for 

TCR-pMHC-I complexes, which varies from 60 to 91% in other structures. Extensive peptide 

burial enables C25 and C7 to maximize readout of the NLV peptide. Such extensive peptide 

burial is also a salient feature of the RA14-NLV-HLA-A2 complex. However, C25 and C7 

recognize NLV-HLA-A2 in distinct fashion.  

 The footprints of C25 and C7 on the pMHC surface showed that both TCRs contact the 

N-terminal half of the NLV peptide mainly via the CDR1α and CDR3α loops, whereas the 

CDR3β loop mainly contacts the C-terminal half (Figure 4.2-A and B). The germline-encoded 

residues of C25 CDR1α and CDR2α mainly interact with HLA-A2 α2 helix, whereas all three 

CDRs from Vβ interact with the HLA-A2 α1 helix. Most contacts between Vβ and the HLA-A2 

α1 helix are mediated by CDR2β (57 out of 74 total) (Figure 4.2 C). In contrast to C25, C7 

interacts with HLA-A2 in a more Vα-dominant fashion, such that Vα CDRs mediate 74% of 

interactions with HLA-A2 (Figure 4.2 D).  

 

4.2.4 Interaction of TCR C25 with HLA-A2 

 The total buried solvent-accessible surface for the C25-NLV-HLA-A2 complex is 1857 

Å
2
, comparable to that in other TCR-pMHC complexes. Vβ buries considerably greater surface 

area (516 Å
2
, 60%) than Vα (333 Å

2
, 40%). Such dominance by Vβ is unusual among all the 

TCR-pMHC-I complex structures reported to date, in which Vα and Vβ typically bury equal 

amount of surface area. Indeed, only three other TCR-pMHC-I complexes displaying a  
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Figure 4.3. Interactions of TCR C25 with HLA-A2 and the NLV peptide.  
 

(A) Interactions between CDR2 (green) of C25 and the HLA-A2 1 helix (orange). The 

side chains of contacting residues are drawn in stick representation with carbon atoms in 

green (CDR2) or orange (HLA-A2), nitrogen atoms in blue, and oxygen atoms in red. 

Hydrogen bonds are indicated by red dashed lines.  

(B) Interactions between CDR1 (cyan) of C25 and the HLA-A2 2 helix (orange).  

(C) Interactions between C25 and the NLV peptide (magenta). Peptide residues are identified 

by a one-letter amino acid designation followed by position (P) number. CDR3 (cyan) 

and CDR3 (green) form a pocket that accommodates the side chain of P5 Met. The 

sulfur atom of P5 Met is yellow.  

(D) Conformational stabilization of CDR3 of C25 by a dense network of eight intraloop 

hydrogen bonds.  

R75H Q72H 
R65H 

N50β 

E52β 

Q55β Y51β 

A 

A150H H151H 

Y31α 

G28α 
T29α 

A158H 

Y159H 

N93α 

N92α 

N91α 
T100β T101β 

G99β 

P4P 

V6P 

A7P 

T8P 

M5P 

N102β 

D90α 

N91α 

N92α 

N93α 
D94α 

M95α 

B 

C D 



59 
 

similar degree of Vβ dominance as C25-NLV-HLA-A2 have been reported, involving the HLA-

A2 restricted TCR JM22 (67%), the H-2K
b
 restricted TCR BM3.3 (63%), and the HLA-E-

restricted TCR KK50.4 (61%). Overall, 69 van der Waals contacts are made by Vβ to HLA-A2 

and these contacts were further reinforced by 5 hydrogen bonds. Consistent with smaller solvent-

accessible surface burial, only 15 van der Waals contacts and 3 hydrogen bonds are made by Vα. 

All these contacts are mediated by 8 Vβ and 4 Vα residues and involve 15 MHC residues, of 

which 10 are contacted by RA14 and 7 by C7.  

 Excluding the NLV peptide, CDR1α, CDR2α and CDR3α contribute 18%, 13% and 6% 

total buried surface on HLA-A2, compared with 1%, 37% and 28%, respectively for CDR1β, 

CDR2β and CDR3β. Hence, CDR2β of TCR C25 contributes more to the binding interface with 

MHC than any other CDRs. The extraordinarily large contribution of CDR2β to the C25-HLA-

A2 interface (37%) is highlighted by a comparison with 34 other TCR-pMHC-I structures, in 

which CDR2β accounts for only 12% of the buried surface. Residues Asn50β, Glu52β, and 

Gln55β of CDR2β form a dense network of five side-chain-side-chain hydrogen bonds linking 

C25 to residues Arg65, Gln72 and Arg75 on the HLA-A2 α1 helix. These hydrogen bonds are 

further reinforced by 56 van der Waals contacts that stabilize the interaction of CDR2β with the 

α1 helix (Figure 4.2- A and Table 4.2).  

 Notably, the HLA-B-restricted EBV-specific TCR LC13 expresses nearly the same 

Vα/Vβ gene pair (TRAV26-2/TRBV7-8) as C25 (TRAV26-2/TRBV7-6), resulting in the same 

CDR1α, CDR2α, and CDR1β, and a very similar CDR2β. In addition, LC13 mediates similar 

germline-encoded interactions with MHC as C25. This is in agreement with the hypothesis that 

the canonical diagonal docking orientation of TCR on MHC observed in TCR-pMHC complexes 

is at least partly the result of co-evolution of TCR and MHC molecules. Tyr31α, Gln50β and  
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TABLE 4.2 

Interactions between TCR and MHC molecules in the C25–NLV–HLA-A2, 

RA14–NLV–HLA-A2 complexes 

 

 Hydrogen bond van der Waals 

contacts 

Hydrogen bond Van der Waals 

contacts 

HLA-A2 C25 C25 RA14 RA14 

E63H     

R65H R65H(O)  Q55β(N
ε2

)   Q55β  T94α 

K66H    N29α 

A69H  Q55β A69H(O)  N96α(N
δ2

) G95α 

N96α 

Q72H Q72H(O
ε1

)  N50β(N
δ2

) 

Q72H(N
ε2

)  Q55β(O
ε1

) 

 

N50β 

Q55β 

Q72H(O
ε1

)  N96α(N
δ2

) 

Q72H(N
ε2

)  Y48β(O
η
)  

Q72H(N
ε2

)  D56β(O
ε1

)      

Y48β 

V50β 

T73H  P98β   

R75H R75H(N
η1

)  E52β(O
ε1

)         

R75H(N
η2

)  E52β(O
ε2

) 

Y51β 

E52β 

 I54β 

V76H  V30β  V50β 

I54β 

K146H  T101β K146H(N
ζ
)  E30β(O

 ε2
) V96β 

W147H  T101β    

A149H   A149H(O)  Y101β(O
η
) Y101β 

A150H A150H(O)  Y31α(OH) Y31α 

T100β 

T101β 

 Y101β 

H151H H151H(O)  Y31α(OH) Y31α   

V152H  T100β   

E154H E154H(O
ε1

)  T51α(O
γ1

) L50α   

Q155H  L50α 

T100β 

 Y31α 

T51α 

I100β 

A158H  G28α  L52α 

Y159H  T29α   
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Glu52β of LC13 make hydrogen bonds with Arg 151, Gln 72 and Arg 75, respectively, of HLA-

B. Structurally equivalent hydrogen bonds in the C25-NLV-HLA-A2 complex are: C25 Tyr31α 

OH-O His151H HLA-A2, C25 Asn50β Nδ2-Oε1 Gln72H HLA-A2, and C25 Glu52β Oε2-Nη1 

Arg75H HLA-A2. However, LC13 and C25 have unrelated CDR3 sequences, which explains 

their different specificities.  

 C25 contacts the HLA-A2 α2 helix through CDR1α and CDR2α. In particular, the side 

chain of CDR1α Tyr31 binds to a site formed by HLA-A2 α2 residues Ala150H and His151H, in 

a manner resembling that observed for other MHC-I-restricted TCRs bearing a CDR1α 

Tyr/Phe31 motif (Figure 4.3-B and Table 4.2). The CDR3 loops of C25 do not engage MHC, 

except for some minor contacts involving CDR3β. Thus, MHC recognition by C25 is almost 

exclusively germline-encoded.  

 

4.2.5 Peptide recognition by TCR C25 

 Except for a few contacts between CDR1α Thr30 and P4 Pro of NLV peptide, all 

interactions between C25 and the NLV peptide are mediated by the somatically generated CDR3 

loops, with CDR3α and CDR3β accounting for 16 and 29 contacts, respectively. Peptide 

specificity is conferred mainly by shape complementarity, since the C25-NLV interface includes 

only two hydrogen bonds: C25 Thr100β Oγ1-O P5 Met and C25 Thr100β N-O P6 Val. Nearly 

all solvent-exposed NLV residues (P4 Pro, P5 Met, P6 Val, P7 Ala, P8 Thr) are engaged by C25 

with the primary focus on P5 Met (Table 4.3). The CDR3 loops of C25 accommodate P5 Met by 

forming a hydrophobic pocket and account for 50% of all contacts with the NLV peptide (Figure 

4.3-C and Figure 4.4-A). The conformation of CDR3α is locked by eight main-chain-side-chain 
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hydrogen bonds within the Asp 91-Asn92-Asn 93-Asn 94-Asp 95-Met 96 (DNNNDM) motif at 

the tip of this loop, suggesting a very restricted CDR3α conformation (Figure 4.3-D). Nonpolar 

interactions dominate the C25-NLV interface and only one van der Waals contact is made with 

P8 Thr.  

 

TABLE 4.3 

Interactions between TCR and NLV peptide in the C25–NLV–HLA-A2, RA14–

NLV–HLA-A2 complexes 

 

 Hydrogen bond Van der Waals 

contacts 

Hydrogen bond Van der Waals 

contacts 

NLV C25 C25 RA14 RA14 

V3P    Y31α 

P4P  T30α 

N91α 

N92α 

 N29α 

F30α 

Y31α 

M5P M5P(O)  T100β(O
γ1

) N91α 

N92α 

N93α 

G99β 

T100β 

N102β 

M5P(S
δ
)  N96α(N) Y31α 

G95α 

G98β 

G99β 

I100β 

V6P V6P(O)  T100β(N) G99β 

T100β 

 G98β 

A7P  T100β 

T101β 

 T97β 

G98β 

G99β 

T8P  T101β T8P(N)  T97β(O)     

T8P(O
γ1

)  E30β(O
 ε1

) 

T8P(O
γ1

)  T97β(O) 

T8P(O
γ1

)  T97β(N) 

E30β 

T97β 
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Figure 4.4 Comparison of interactions between TCRs and the NLV peptide.  

 

(A) Interactions between TCR C25 and NLV. Hydrogen bonds are red dotted lines; van der 

Waals contacts are blue dotted lines.  

(B) Interactions between TCR RA14 (27) and NLV.  

(C) Interactions between TCR C7 and NLV.  
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4.2.6 Interaction of TCR C7 with HLA-A2 

 The C7-NLV-HLA-A2 complex buries a total solvent-accessible surface of 2103 Å
2
, 

significantly more than the C25-NLV-HLA-A2 complex (1857 Å
2
). Unlike the C25-NLV-HLA-

A2 complex, in which Vβ dominates NLV-HLA-A2 surface burial, Vα (559 Å
2
, 55%) of C7 

contributes more than Vβ (463 Å
2
, 45%). C7 expresses the same Vα region as RA14 (TRAV24) 

and has a nearly identical CDR3α sequence, ITGNQF, compared with NTGNQF for RA14, a 

public CDR3α motif. However, these two TCRs utilize unrelated Vβ regions (TRBV7-2 for C7; 

TRBV6-5 for RA14) and CDR3β sequences (SQTQLWETQ for C7; SPVTGGIYGY for RA14). 

Because the CDR3β sequences of C7 has not been identified as a public CDR3β motif, C7 

belongs to the category of NLV-specific TCRs, comprising 34% of the total repertoire 

characterized so far, that uses either CDR3α or CDR3β public motifs, but not both. Because of 

the same Vα region usage, the overall docking mode of C7-NLV-HLA-A2 and RA14-NLV-

HLA-A2 is quite similar, with crossing angles of TCR to pMHC of 29⁰ and 39⁰, respectively. 

However, the detailed interactions with HLA-A2 made by C7 are considerably different from 

RA14, even for the shared Vα chain.  

 All six C7 TCR CDRs except CDR1β are involved in interacting with HLA-A2. Similar 

to RA14, C7 utilizes CDR1α, CDR3α and CDR2β to recognize the HLA-A2 α1 helix. Vα 

contribute many more contacts than Vβ, as well as three out of four hydrogen bonds: C7 Asn29α 

Nδ2-Oδ2 Glu63H HLA-A2, C7 Asn29α Oδ1-Nζ Lys 66H HLA-A2, and C7 Asn96 Nδ2-Oε1 

Gln72H HLA-A2 (Figure 4.5 A and Table 4.4). Although the first two of these hydrogen bonds 

are not present in the RA14-NLV-HLA-A2 structure, both C7 and RA14 utilize CDR3α Gly95 

and Asn96 from the XTGNQF motif to interact extensively with the HLA-A2 α1 helix.  



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Interactions of TCR C7 with HLA-A2 and the NLV peptide.  
 

(A) Interactions of CDR1, CDR3 and CDR2 with the HLA-A2 1 helix. The side chains 

of contacting residues are drawn in stick representation with carbon atoms in cyan 

(CDR1 and CDR3), green (CDR2) or orange (HLA-A2), nitrogen atoms in blue, and 

oxygen atoms in red. Hydrogen bonds are indicated by red dashed lines.  

(B) Interactions of CDR1, CDR2 and CDR3 with the HLA-A2 2 helix. The side chains 

of contacting residues are drawn with carbon atoms in cyan (CDR1 and CDR2), green 

(CDR3) or orange (HLA-A2).  

(C) Interactions of CDR1, CDR3 and CDR3 with the NLV peptide. The side chains of 

contacting residues are drawn with carbon atoms in cyan (CDR1 and CDR3), green 

(CDR3) or magenta (NLV).  

(D) Close-up of interactions between C7 and P5 Met.  
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TABLE 4.4 

Interactions between TCR and MHC molecules in the C7-NLV-HLA-A2, RA14–

NLV–HLA-A2 complexes 

 

 Hydrogen bond Van der Waals 

contacts 

Hydrogen bond Van der Waals 

contacts 

HLA-A2 RA14 RA14 C7 C7 

E63H   E63H(O
δ2

)  N29α(N
δ2

)  

R65H  T94α   

K66H  N29α K66H(N
ζ
)  N29α(O

δ1
) 

 

N29α 

A69H A69H(O)  N96α(N
δ2

) G95α 

N96α 

 G95α 

N96α 

Q72H Q72H(O
ε1

)  N96α(N
δ2

) 

Q72H(N
ε2

)  Y48β(O
η
)  

Q72H(N
ε2

)  D56β(O
ε1

)      

Y48β 

V50β 

Q72H(O
ε1

)  N96α(N
δ2

) 

Q72H(N
ε2

)  D56β(O
ε1

)      

N96α 

P55β 

T73H    N96α 

R75H  I54β   

V76H  V50β 

I54β 

  

K146H K146H(N
ζ
)  E30β(O

 ε2
) V96β  T97β 

W147H     

A149H A149H(O)  Y101β(O
η
) Y101β   

A150H  Y101β A150H(O)  W100β(N
ε1

) E101β 

H151H     

V152H    W100β 

E154H    L52α 

Q155H  Y31α 

T51α 

I100β 

 Y31α 

T51α 

W100β 

A158H  L52α   
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 (Figure 4.5-B and Table 4.4). However, the specific interactions made by these two residues in 

the C7-NLV-HLA-A2 and RA14-NLV-HLA-A2 complexes are considerably different due to the 

different CDR3α conformations. C7 interacts with the HLA-A2 α2 helix through CDR1α, 

CDR2α and CDR3β. A side-chain-main-chain hydrogen bond (C7 Trp100β Nε1-O Ala150H 

HLA-A2), not present in the RA14-NLV-HLA-A2 complex, provides additional stabilization.  

 

4.2.7 Peptide recognition by TCR C7 

 TCR C7 mediates peptide recognition through CDR1α, CDR3α, and CDR3β via five 

hydrogen bonds. Similar to RA14, C7 engages nearly all solvent-exposed NLV residues (P1 Asn, 

P4 Pro, P5 Met, P6 Val, P7 Ala, P8 Thr), thereby burying 331 Å
2
 of surface at the C7-NLV 

interface and enabling maximum readout of the peptide sequence. In contrast to C25, C7 engages 

the NLV peptide extensively at both the N- and C-termini, especially P8 Thr. P4 Pro is wedged 

between the side chains of CDR1α Asn29 and Tyr31, with which it establishes multiple 

hydrophobic contacts. The side chain of P5 Met alone accounts for 36% of all contacts with C7, 

mainly through CDR1α and CDR3α. In addition to extensive hydrophobic interactions with 

CDR1α Tyr31, CDR3α Asn96, and CDR3β Trp100, P5 Met forms a hydrogen bond through its 

sulfur atom with the main-chain nitrogen of CDR3α Asn96 (Figure 4.5-C and D). This hydrogen 

bond is also visible in the RA14-NLV-HLA-A2 complex. Four additional hydrogen bonds 

further stabilize C7-NLV interaction: C7 Asn29α Oδ1-Nδ2 P1 Asn, C7 Gly95α N-O P4 Pro, C7 

Gln98β Oε1-N P8 Thr, and C7 Gln98β Oε1-Oγ1 P8 Thr. Thus, P5 Met appears to be the most 

critical peptide residue for TCR recognition, with P1 Asn, P4 Pro and P8 Thr also serving as 

interaction hot spots (Figure 4.4 and Table 4.3). 
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TABLE 4.5 

Interactions between TCR and NLV peptide in the C7-NLV-HLA-A2, RA14–

NLV–HLA-A2 complexes 

 

 Hydrogen bond Van der Waals 

contact 

Hydrogen bond Van der Waals 

contact 

NLV RA14 RA14 C7 C7 

N1P   N1P(N
δ2

)  N29α(O
 δ1

)     N29α     

V3P  Y31α   

P4P  N29α 

F30α 

Y31α 

P4P(O)  G95α(N) N29α 

F30α 

Y31α 

G95α 

M5P M5P(S
δ
)  N96α(N) Y31α 

G95α 

G98β 

G99β 

I100β 

M5P(S
δ
)  N96α(N) Y31α 

I93α 

G95α 

N96α 

W100β 

V6P  G98β  W100β 

A7P  T97β 

G98β 

G99β 

 Q98β 

W100β 

T8P T8P(N)  T97β(O)     

T8P(O
γ1

)  E30β(O
 ε1

) 

T8P(O
γ1

)  T97β(O) 

T8P(O
γ1

)  T97β(N) 

E30β 

T97β 

T8P(N)  Q98β(O
ε1

) 

T8P(O
γ1

)  Q98β(O
ε1

) 

Q98β 

 

4.2.8 Influence of CDR3β on CDR3α loop conformation in TCR C7 

 Since TCRs C7 and RA14 use almost identical Vα regions to bind NLV-HLA-A2, the 

CDRα conformations are expected to be the same, or at least very similar. Indeed, CDR1α and 

CDR2α display nearly identical conformations in the two complexes: r.m.s.d. in α-carbon 

positions of 1.0 Å and 1.3 Å for residues SSNFY of CDR1α and TLNGD of CDR2α, 

respectively. However, the CDR3α conformations of C7 and RA14 are substantially different, 

with an r.m.s.d. in α-cabon positions of 2.3 Å for residues TGNQ. As a consequence, CDR3α 

engages pMHC through a somewhat different set of contacts in the C7-NLV-HLA-A2 and 

RA14-NLV-HLA-A2 complexes.  
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 The different conformations of CDR3α observed in C7 and RA14 are induced by the 

CDR3β loops of these TCRs, which differ in both sequence and length (SQTQLWETQ for C7; 

SPVTGGIYGY for RA14). These structural differences in CDR3β are transmitted to CDR3α via 

interactions between these loops in the TCR binding site. In RA14, the tip of CDR3β points 

toward CDR3α, with which it makes several van der Waals contacts and a main-chain-side-chain 

hydrogen bond (CDR3β Gly98 N-Oδ1 Asn96 CDR3α) (Figure 4.6). These interactions, which 

are absent in C7 due to an unrelated CDR3β structure, effectively draw CDR3α toward CDR3β 

in RA14, resulting in a displacement of 2.8 Å in the α-carbon position of CDR3α Asn96 relative 

to its position in C7.  

 

 

 

 

 

 

FIGURE 4.6 Influence of CDR3 on the conformation of CDR3 in TCR C7.  

 

Conformation of CDR3 and CDR3 loops in superposed C7–NLV–HLA-A2 and RA14–NLV–

HLA-A2 complexes (TCR C7, pink; C7-bound NLV–HLA-A2, cyan; TCR RA14, green; RA14-

bound NLV–HLA-A2, orange). In RA14, but not in C7, the tip of CDR3 points toward CDR3, 

resulting in interactions that draw CDR3 close to CDR3 in RA14. These interactions are 

absent in C7, whose CDR3 sequence (SQTQLWETQ) is unrelated to that of RA14 

(SPVTGGIYGY).  
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4.3 Discussion 

 Previous structural studies of TCR recognition of immunodominant viral peptides 

presented by MHC-I molecules have focused mainly on EBV (Kjer-Nielsen et al., 2003; Tynan 

et al., 2005). Interestingly, comparison of three public TCRs in complex with a bulged EBV 

peptide presented by HLA-B8 revealed two distinct binding modes: one in which the TCR 

accommodates the bulged peptide but makes few contacts with MHC, and one in which the TCR 

focuses on the N-terminus of the peptide and leaves the bulged part untouched. In contrast to 

EBV, knowledge of TCR recognition of CMV has so far been limited to the RA14-NLV-HLA-

A2 complex. The structural mechanism of how different TCRs are able to bind the same pMHC 

ligand is particularly relevant in light of a growing appreciation for the surprising diversity of 

public TCR response to certain viral epitopes revealed by advanced new approaches to T cell 

repertoire analysis.  

 In the case of the CMV NLV-specific TCR response, seven public CDR3α and seven 

public CDR3β motifs have so far been identified, including one additional public CDR3β motif 

reported here (Wang et al., 2013). Although public CDR3α motifs often pair with public CDR3β 

motifs, pairings between public and private CDR3α/CDR3β motifs occur with equal frequency. 

In addition, even among NLV-specific TCRs expressing dual public CDR3α/CDR3β motifs, the 

same public CDR3α motif may pair with different public CDR3β motifs (and the reverse). 

Importantly, this striking flexibility of CDR3α/CDR3β pairing is not unique to NLV-specific 

TCRs, as it has now also been documented among TCRs specific for the influenza NP366 epitope, 

which had previously been thought to elicit a narrow TCR repertoire comprising only a few 

clonotypes.  



71 
 

A comparison of the C7-NLV-HLA-A2 and RA14-NLV-HLA-A2 structures reveals how 

the same public CDR3α motif (XTGNQF) can pair with multiple unrelated CDR3β motifs, one 

private (SQTQLWETQ for C7) and the other public (SPVTGGIYGY for RA14) yet still remain 

equally effective in binding NLV-HLA-A2 (KD=5.1 μM for C7; 28 μM for RA14). We have 

shown that CDR3α adopts different conformations in C7 and RA14 to accommodate large 

structural differences in CDR3β, which abuts CDR3α in the TCR binding site. Nevertheless, the 

core of the XTGNQF CDR3α motif maintains key interactions with the HLA-A2 α1 helix and P5 

Met of NLV via Gly95α and Asn96α. As the result, the common Vα domain of C7 and RA14 are 

able to docking over NLV-HLA-A2 in the almost same way despite their pairing with totally 

unrelated Vβ domains in the TCR heterodimer. Based on our structural comparison of C7-NLV-

HLA-A2 and RA14-NLV-HLA-A2, we predict other CDR3β sequences that have been found to 

pair with the XTGNQF CDR3α motif should dock over NLV-HLA-A2 in a similar fashion. 

More generally, our study reveals how the malleability of protein-protein interfaces permits 

preservation of function (in this case, pMHC specificity) through accommodation of structural 

changes in the binding partners.  

The C25 TCR provides a different structural solution to binding NLV-HLA-A2 than C7, 

yet is as effective as C7 with an essentially identical KD: 4.7 μM for C25 versus 5.1 μM for C7. 

These relatively high affinities support an antigen-driven selection process for both public TCRs. 

However, unlike C7, whose Vα domain contributes more buried surface to the interface with 

pMHC than Vβ (55 and 45%, respectively), the opposite is true for C25 (Vα, 40%; Vβ, 60%). In 

addition, the C25-NLV-HLA-A2 and C7-NLV-HLA-A2 complexes exhibit divergent TCR 

footprints on pMHC due to distinct crossing angles of 61⁰ and 29⁰, respectively. The more acute 
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crossing angle of C7 enables this TCR to contact both N- and C-termini of the NLV peptide, 

whereas C25 is decidedly more focused on the peptide center, primarily P5 Met.  

The public CDR3α motif of TCR C25 (XNNNDM) has been shown to pair with multiple 

public and private CDR3β motifs that vary in both sequence and length, including 

SISDLAKNIQ, QLQGHTEA, SVSDVANTEA, SLEGYTEA, and SLAPGATNEKL. The 

CDR3α structure is rigidified by eight intraloop hydrogen bonds in the C25-NLV-HLA-A2 

complex, making it difficult to alter loop conformation. Thus, these CDR3β loops must likely 

adapt to the CDR3α XNNNDM motif in much the same way as C25 CDR3β.  

CMV was recently shown to boost the immune response of young, healthy individuals to 

influenza. Similarly, mice infected with CMV were found to be resistant to infection with the 

bacterial pathogens Listeria monocytogenes and Yersinia pestis. These and related observations 

have led to the hypothesis that the ubiquity of CMV infection in human and many other species 

might be beneficial to the host. Although the underlying mechanisms of CMV-mediated cross-

protection are elusive, one possibility is that CMV-specific TCRs may cross-react with epitopes 

from other pathogens. Indeed, a degree of cross-reactivity of CD8+ T cell epitopes between 

CMV and influenza has been reported. The promiscuity of TCRs, whereby a single receptor can 

recognize many different peptides, coupled with structural diversity of CMV NLV-specific 

TCRs described here, further support the notion of cross-reactivity as a possible mechanism to 

help explain CMV-mediated heterologous immunity to influenza and other microbial pathogens.  
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Chapter 5  

Structural studies of GIL-specific TCRs recognizing GIL-HLA-A2 

Summary 

 The crystal structures of the F6-GIL-HLA-A2 and F50-GIL-HLA-A2 complexes were 

solved to resolutions of 2.1 Å and 1.7 Å, respectively. Due to the overall sequence similarity 

between JM22 and F6, these two TCRs dock over GIL-HLA-A2 similarly. Both TCRs exhibit 

Vβ dominance in recognizing GIL-HLA-A2, as well as conserved key interactions by the 

CDR3β ‘RSS’ motif. However, F50 utilizes a completely different α/β pair thus binds GIL-HLA-

A2 in a manner distinct from F22 and F6. Our results revealed the structural basis for the 

restricted clonal diversity of the GIL-specific CD8+ T cell response. 
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5.1 Background  

 As discussed in previous chapters, influenza virus is a ubiquitous human pathogen 

responsible for seasonal outbreaks. Individuals expressing the HLA-A2 molecule produce 

cytotoxic T lymphocytes bearing TCRs that recognize the immunodominant M1 epitope 

GILGFVFTL (GIL). GIL-specific T cell responses are characterized by highly restricted 

TRBV19 gene usage, as well as by a highly conserved ‘IRSS’ CDR3β motif (Moss et al., 1991; 

Lehner et al., 1995). Of these residues, arginine at position 98 (R98) and serine at position 99 

(S99) are most conserved among TRBV19 TCRs. The residues encoding CDR3s are encoded by 

the joining region of V(D)J gene rearrangements with random addition or deletion of nucleotides. 

Thus, it is puzzling why GIL-specific responses are heavily biased to TRBV19 TCRs with 

extremely conserved CDR3β sequences. In an analysis of young children, GIL-specific TCRs 

showed no bias toward TRBV19 at the beginning, but TRBV19 gradually become dominant over 

the years. This suggests that TRBV19 is selected during influenza virus infections in HLA-A2+ 

populations. The dominance of T cell clones possessing TRBV19 also indicates that Vβ is more 

important than Vα in recognizing GIL-HLA-A2. Indeed, deep sequencing of HLA-A2+ GIL-

specific TCR repertoires revealed that Vα usage is not as restricted as Vβ usage (Gil et al. 2015).  

 A previous structural study of the JM22 TCR-GIL-HLA-A2 complex revealed distinct 

mechanisms for recognizing the featureless GIL peptide (Stewart-Jones et al., 2013). The 

resolution of JM22-GIL-HLA-A2 structure (1.4 Å) is the highest among all the TCR-pMHC 

complexes reported to date. The JM22 TCR sits over GIL-HLA-A2 in canonical docking mode. 

Interestingly, the Vβ domain of JM22 buries 67% of the total solvent-accessible surface and 

mediates more than 70% of total interactions. In contrast, the Vα domain shows only limited 

involvement in contacting GIL-HLA-A2. The extremely conserved CDR3β ‘RSS’ motif is 
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critical for linking the GIL peptide and HLA-A2 to the TCR. The arginine at position 98 (R98) 

of JM22 Vβ occupies a notch between the GIL peptide and HLA-A2. This allows JM22 to 

efficiently contact the GIL peptide, which lacks solvent-exposed residues. Mutating R98 to other 

residues completely abrogated the interaction between JM22 and GIL-HLA-A2. By contrast, 

mutating S99 to alanine had no impact on JM22-GIL-HLA-A2 complex formation. Considering 

that both arginine and serine can be generated from multiple codons, the conserved CDR3β ‘RSS’ 

motif may be selected under both structural and nucleotide pressure. The JM22-GIL-HLA-A2 

complex recruits 10 water molecules to mediate water bridges that reinforce tight binding 

between TCR and pMHC. Such interfacial waters are rarely observed in other TCR-pMHC 

complexes. This could be an effective strategy to promote TCR binding to featureless peptides. 

Alternatively, these other TCR-pMHC structures may simply lack interfacial waters due to 

relatively low resolutions. To address this question, additional TCR-pMHC structures involving 

featureless peptides need to be determined to high resolution.  

 Recent advances in high-throughput sequencing and single-cell paired analysis have 

allowed immunologists to exhaustively interrogate GIL-specific T cell repertoires.                                       

Many new GIL-specific TCR α and β clonotypes have been identified, as well as new CDR3α 

and CDR3βs motifs. Although TRBV19 TCRs are still the largest population, other α/β pairs are 

observed. Whether these non-TRBV19 TCRs are as effective as TRBV19 TCR in recognizing 

GIL-HLA-A2 remains to be determined. In addition, the TRBV19 β chain can either pair with 

non-TRAV27 α chains or with TRAV27 α chains with different CDR3αs. Such α chain 

swapping increases the total diversity of GIL-specific TCR repertoires. It remains unclear 

whether swapping different TRAVs or different CDR3αs can impact TCR-pMHC complex 
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formation. To address these questions, we crystallized three GIL-specific TCR (F22, F6 and F50) 

in complex with GIL-HLA-A2. 

 

 

5.2 Results 

5.2.1 Crystallization of TCRs F6 and F50 bound to GIL-HLA-A2 

The constructs for expressing F6 and F50 contained an artificial disulfide bond in the 

TCR constant region. The HLA-A2 heavy chain and β2-microglobulin are wide-type constructs. 

The GIL peptide was chemically synthesized (GenScript). Both TCRs and GIL-HLA-A2 are 

produced via in vitro folding from bacterial inclusion bodies. Initial crystallization screenings of 

the F6-GIL-HLA-A2 and F50-GIL-HLA-A2 complexes were carried out using Rigaku Wizard I, 

II, III and IV kits. Because no crystals were obtained with these kits, we developed an in-house 

crystallization screen. The F6-GIL-HLA-A2 grew plate-like crystals in 10-15 % (w/v) of PEG 

3350, 0.1 M imidazole (pH 8.0). The crystals were cryoprotected with 25% glycerol (w/v) 

solution prior to flash-cooling. The F50-GIL-HLA-A2 grew plate-like crystals in 10-15% (w/v) 

of PEG 3350, 0.1 M imidazole (pH 8.0), and 0.2 M sodium malonate. The crystals were 

cryoprotected with 25% glycerol (w/v) solution prior to flash-cooling.  

 

5.2.2 X-ray crystallographic data collection, structure determination and 

refinement 

 Diffraction datasets were collected at beamline 24ID-E of the Advanced Photon Source, 

Argonne National Laboratory with an ADSC Q315 CCD detector. Data were indexed, integrated, 

and scaled with the HKL2000 program. Data collection statistics are presented in Table 5.1. The 
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overall completeness of the F6-GIL-HLA-A2 and F50-GIL-HLA-A2 datasets are 99.9% and 

95.6%, respectively. The F6-GIL-HLA-A2 dataset was processed to 2.1 Å resolution; the F50-

GIL-HLA-A2 dataset was processed to 1.7 Å resolution. 

 

TABLE 5.1  

Data collection and structure refinement statistics 

 F6–GIL–HLA-A2 F50–GIL–HLA-A2 

Data collection   

   Space group P1211 P1211 

   Cell dimensions    

   a (Å) 134.7 66.3 

   b (Å) 54.1 71.1 

   c (Å) 149.3 100.7 

   α, β, γ (
o
) 90, 116.6, 90 90, 96.2, 90 

   Resolution range (Å)
a
 120.5–2.10 (2.18–2.10) 37.9–1.7 (1.76–1.7) 

   Unique reflections
a
 113,074 (11,231) 100320 (9832) 

   Rmerge
a,b 

0.144 (1.678) 0.055 (0.647) 

   Mean I/σ(I)
a 

11.7 (1.3) 7.52 (1.2) 

   Completeness (%)
a 

99.9 (99.8) 98.1 (96.6) 

   

Refinement    

   Resolution range (Å)
a
 120.5–2.10  37.9–1.7  

   Rwork (%)/Rfree (%)
a,c

 22.9 (34.2)/28.1 (38.5) 19.1 (28.9)/21.3 (28.0) 

   No. of protein atoms 13,037 6662 

   No. of water molecules 397 808 

   r.m.s.d from ideality   

     Bond lengths (Å) 0.010 0.013 

     Bond angles (
o
) 1.29 1.18 

   Ramachandran statistics (%)   

     Most favored 95.0 98.0 

     Allowed 4.9 2.0 

     Disallowed 0.1 0.0 
a
Values in parentheses are statistics for the highest resolution shell.  

b
Rmerge = |Ij – <I>|/Ij, where Ij is the intensity of an individual reflection and <I> is the average intensity 

of that reflection.  
c
Rwork = ||Fo| – |Fc||/|Fo|, where Fc is the calculated structure factor. Rfree is as for Rwork but calculated for 

a randomly selected 5.0% of reflections not included in the refinement. 

 

 

  



78 
 

To determine the F6-GIL-HLA-A2 complex structure via MR, JM22 TCR (PDB 

accession code: 1OGA) and GIL-HLA-A2 (PDB accession code: 1OGA) were used as initial 

search models. The CDR3α of JM22 TCR and the GIL peptide were removed. Initially, one of 

the F6 TCR models was located in a different asymmetric unit. A new search model was 

generated by deleting that TCR and placing a TCR opposite the located GIL-HLA-A2 molecule. 

Two F6-GIL-HLA-A2 complexes were then found by Phaser. Structural refinement was 

performed using rigid body and simulated annealing via the Phenix program. The model was 

further refined by manual model building with Coot based on 2Fo-Fc and Fo-Fc maps with the 

NLV peptide omitted in the initial refinement. The final Rwork and Rfree values for F6-GIL-HLA-

A2 complex are 22.9% and 28.1%, respectively (Table 5.1). 

 The F50-GIL-HLA-A2 complex crystal dataset was processed to 1.7 Å resolution with an 

overall Rmerge= 5.3%. To determine the F50-GIL-HLA-A2 complex structure via MR, the HIV-

specific TCR T36-5 (PDB accession code: 3VXU) and GIL-HLA-A2 (PDB accession code: 

1OGA) were used as initial search models. Only one complex molecule was in one asymmetric 

unit based on solvent content. Indeed, one F50-GIL-HLA-A2 complex was found by Phaser. 

Structural refinement was performed using rigid body and simulated annealing via Phenix. The 

model was further refined by manual model building with Coot based on 2Fo-Fc and Fo-Fc maps 

with the NLV peptide omitted in the initial refinement. The final Rwork and Rfree values for F50-

GIL-HLA-A2 complex are 19.0% and 25.4%, respectively (Table 5.1). Refinement statistics are 

summarized in Table 5.1. Stereochemical parameters were evaluated by PROCHECK. 
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Figure 5.1. Structure of TCR–GIL–HLA-A2 complexes. 

 

(A) Side view of the F6–GIL–HLA-A2 complex (ribbon diagram). TCR  chain, cyan; TCR  

chain, green; HLA-A2 heavy chain, orange; 2-microglobulin (2m), gray; GIL peptide, 

magenta.  

(B) Electron density in the interface of the F6–GIL–HLA-A2 complex. Density from the final 

2Fo – Fc map at 2.1 Å resolution is contoured at 1.  

(C) Side view of the F50–GIL–HLA-A2 complex.  

(D) Electron density in the interface of the F50–GIL–HLA-A2 complex. Density from the final 

2Fo – Fc map at 1.7 Å resolution is contoured at 1. 
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Figure 5.2 Comparison of TCR footprints on NLV–HLA-A2.  

 

(A) Positions of CDR loops of TCRs F6 and JM22 (PDB accession code: 1OGA) (27) on 

GIL–HLA-A2 (top view). CDRs of F6 are shown as numbered red loops. CDRs of JM22 

are green. HLA-A2 is gray. The GIL peptide is blue.  

(B) Positions of CDR loops of TCRs F50 and JM22 on GIL–HLA-A2. CRDs of F50 are 

orange. CDRs of JM22 are green.  

(C) Footprint of TCR F6 on GIL–HLA-A2. The top of the MHC molecule is depicted as a 

gray surface. The areas contacted by individual CDR loops are color-coded: CDR1, 

green; CDR2, red; CDR3, blue; CDR1, magenta; CDR2, orange; CDR3, cyan.  

(D) Footprint of TCR F50 on GIL–HLA-A2.  
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5.2.3 Overview of the F6-GIL-HLA-A2 and F50-GIL-HLA-A2 complexes 

Both the F6-GIL-HLA-A2 (Figure 5.1-A and B) and F50-GIL-HLA-A2 (Figure 5.1-C 

and D) complexes showed unambiguous electron density for two (F6-GIL-HLA-A2) or one 

(F50-GIL-HLA-A2) complex molecules in the asymmetric unit. The r.m.s.d. in α-carbon 

positions for the TCR VαVβ and MHC α1α2 modules, including the GIL peptide, is 0.2 Å for the 

two F6-GIL-HLA-A2 complexes. Of note, the resolution of the F50-GIL-HLA-A2 complex (1.7 

Å) is the second highest reported for any TCR-pMHC-I or TCR-pMHC-II complex, the highest 

(1.4 Å) being for the JM22-GIL-HLA-A2 complex.   

Both F6 and F50 sit symmetrically over NLV-HLA-A2 in a canonical diagonal 

orientation. The crossing angles of F6 TCR and F50 to pMHC are 69⁰ and 29⁰, respectively. 

Upon binding GIL-HLA-A2, F6 and F50 bury 85% (258 Å
2
) and 73% (215 Å

2
) of peptide 

solvent-accessible surface. The percentage for F6-GIL-HLA-A2 is at the higher end of the range 

for TCR-pMHC class I complexes, which varies from 60 to 91% in other structures. Extensive 

peptide burial enables F6 to maximize readout of the GIL peptide. Such extensive peptide burial 

is also a salient feature of the JM22-GIL-HLA-A2 complex.  

 

5.2.4 Interaction of TCR F6 with HLA-A2  

 The F6-GIL-HLA-A2 complex buries a total solvent-accessible surface of 1475 Å
2
, 

which is at the lower end of the range for TCR–pMHC complexes (1240– 2400 Å
2
), but 

comparable to that in the JM22–GIL–HLA-A2 complex (1560 Å
2
). In the F6–GIL–HLA-A2  

 



82 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.3 Interactions of TCRs F6 with the GIL peptide and HLA-A2. 

(A) Direct and water-mediated interactions between TCR F6 (green) and the GIL peptide 

(magenta). The HLA-A2 α1 helix is orange. The side chains of contacting residues are 

drawn in stick representation with carbon atoms in green (CDR1β and CDR2β) or 

magenta (GIL), nitrogen atoms in blue, and oxygen atoms in red. Water molecules are 

depicted as red spheres. Hydrogen bonds are indicated by red dashed lines. Peptide 

residues are identified by a one-letter amino acid designation followed by position (P).  

(B) Interactions between CDR3β (green) of F6 and GIL–HLA-A2, showing hydrogen bond 

network mediated by Arg98β and Ser99β. The guanidinium group of Arg98β inserts into 

a shallow pocket between the GIL peptide (magenta) and the HLA-A2 α2 helix (orange).  

(C) Interactions between CDR3α (cyan) of F6 and GIL–HLA-A2.  

(D) Interactions between CDR3α (cyan) of JM22 (Stewart-Jones et al., 2003) and GIL–HLA-

A2. 
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complex, the buried surface area on Vβ (424 Å
2
, 58%) is considerably greater than on Vα (314 

Å
2
, 42%). This Vβ dominance is also a salient feature of the JM22–GIL–HLA-A2 complex. As 

discussed in a previous chapter, such dominance by Vβ is unusual among TCR-pMHC class I 

complexes, in which Vα and Vβ typically contribute roughly equal buried surfaces. Indeed, only 

four other TCR-pMHC class I complexes displaying a similar degree of Vβ dominance as F6-

GIL-HLA-A2 have been reported, involving the HLA-A2 restricted TCR JM22 (67%), the H-

2K
b
 restricted TCR BM3.3 (63%), HLA-E-restricted TCR KK50.4 (61%), and HLA-A2 

restricted TCR C25 (60%).   

 Of the total buried surface on HLA-A2, excluding GIL peptide, CDR1α, CDR2α and 

CDR3α contribute 7%, 10% and 24%, respectively, compared with 2%, 28% and 27%, 

respectively, for CDR1β, CDR2β and CDR3β. Compared to JM22 TCR, which utilizes the 

TRAV27-TRAJ42 and TRBV19-TRBD2-TRBJ2-7 combination,  F6 utilizes the TRAV27-

TRAJ37 and TRBV19-TRBD2-TRBJ2-7 pair. Thus, TCRs JM22 and F6 share nearly the same 

sequences, except for CDR3α. The JM22 CDR3α (AGAGSQGNLI) is three amino acids shorter 

than the F6 CDR3α (AGAIGSSNTGKLI). The shorter CDR3α of JM22 results in a considerably 

smaller buried surface area (11%) compared to F6 (24%), given that both complexes have 

similar total buried surfaces. As expected from the larger buried surface area on Vβ, Vβ made 

significantly more contacts (44 contacts in total) than Vα (19 contacts in total) to HLA-A2. 

Because of F6 uses the same TRBV19-TRBD2-TRBJ2-7 combination as JM22, almost all 

contacts made by JM22 Vβ to HLA-A2 are maintained in the F6-GIL-HLA-A2 complex, 

including hydrogen bonds involving both germline-encoded (Asn51β-Arg75H) and somatically-

generated (Arg98β-Ala150H and Arg94β-Gln155H) TCR residues. Moreover, water-mediated 
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contacts between JM22 Vβ and HLA-A2 are also preserved in the F6-GIL-HLA-A2 complex, 

including Asp52βO-H2O-Arg65HO, V50βO-H2O-Q72HO, and  

Table 5.2 

Interactions between TCR and MHC in the F6–GIL–HLA-A2 and JM22–GIL–HLA-A2 complexes 

 Hydrogen bonds Van der Waals 

contacts 

Hydrogen bonds Van der Waals 

contacts 

HLA-A2 F6 F6 JM22 JM22 

R65H    Q58β 

K66H  N98α   

K68H    D56β 

A69H  D56β  D56β 

Q72H  V54β 

N55β 

 I53β 

N55β 

T73H    I53β 

R75H  N55β  N55β 

V76H    I53β 

A149  Y101β  Y101β 

A150H A150H(O) R98β(N
ε
) 

A150H(O) R98β(N
η2

) 

I97β 

R98β 

Y101β 

A150H(O) R98β(N
ε
) 

A150H(O) R98β(N
η2

) 

R98β 

Y101β 

H151H  V51α 

R98β 

Y101β 

 V51α 

R98β 

Y101β 

V152H  R98β  R98β 

E154H    S31α 

V51α 

Q155H Q155H(N
ε2

) T99α(O) 

Q155H(O
ε1

) R98β(N
η1

) 

Q155H(O
ε1

) R98β(N
η2

) 

S31α 

R98β 

S100β 

Q155H(O
ε1

) R98β(N
η1

) 

Q155H(O
ε1

) R98β(N
η2

) 

S31α 

G94α 

R98β 

S100β 

A158H  G95α   

Y159H  N98α   

T163H  P96α  

N98α 

  

 

Table 5.3 

Water bridges between TCR and MHC in the F6–GIL–HLA-A2 and JM22–GIL–HLA-A2 

complexes 

HLA-A2 Water  F6 B factor Water JM22 B factor  

E154H(O) S117 R70α(N
η1

) 37.1 S60 R70α(N
η1

) 25.2 

R65H(N
ε
)    S123 Q96α(N

ε2
) 33.3 

K66H(N
ζ
) S149 N98α(N) 37.0 S135 Q96α(N

ε2
) 27.5 

R65H(O) S184 D56β(O
δ1

) 33.2 S150 D56β(O
δ1

) 

D56β(O
δ2

) 

33.4 

Q72H(O
ε1

) 

Q72H(O) 

S69 V54β(O) 

N55β(O
δ1

) 

37.6 S601 V54β(O) 

N55β(O
δ1

) 

28.7 
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N51βN-H2O-Q72HO (Figure 5.3-A and B, Table 5.2 and 5.3). The largest structural change in 

HLA-A2 upon F6 binding involves a 2.2 Å shift in the position of the Gln155H side chain. This 

reorientation, which was also identified in JM22-GIL-HLA-A2 structure, opens a notch that 

accommodates the Arg98β side chain. Remarkably, Gln155H in F50-GIL-HLA-A2 structure is 

reoriented to face the TCR and completely open the notch between HLA-A2 and the GIL peptide. 

Thus, it is evident that Gln155H has great flexibility to adapt to different TCRs, which may 

permit a more diverse T cell response. Unlike JM22, whose CDR3α only makes one direct 

contact with HLA-A2, F6 CDR3α makes 9 contacts with HLA-A2, including one hydrogen bond 

between Thr99αO and Gln155HN and one salt bridge between Asn98αN and Lys66HN (Figure 

5.3-C and D, Table 5.2 and 5.3). Thus, the TRAV27-TRAJ37 combination is able to provide 

more interactions with HLA-A2 than TRAV27-TRAJ42. This may be advantageous in cases 

where TRAV27-TRAJ37 pairs with Vβs other than TRBV19-TRBD2-TRBJ2-7.  

   

5.2.5 Interaction of TCR F6 with the GIL peptide  

 Upon binding to GIL-HLA-A2, F6 buries 85% (258 Å
2
) of accessible surface of the GIL 

peptide, indicating maximum readout of the peptide. Peptide recognition is evenly distributed 

between Vα (23 contacts) and Vβ (21 contacts). All the contacts made by Vα are solely 

contributed by F6 CDR3α. In contrast, the 21 contacts made by Vβ are distributed among all 

CDRβs, but mostly CDR2β (12 contacts). Thus, peptide recognition by F6 is both germline and 

somatically governed. Although JM22 also makes 21 contacts to GIL via Vβ, only 15 contacts 

are made by Vα. The fewer contacts made by JM22 Vα are mainly due to its shorter CDR3α 

comparing to F6 CDR3α. Five polar contacts to the GIL peptide (Asn98αOD1-N P4Gly, 
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Asn98αND2-N P2Ile, Asp28βO-OG1 P8Thr, Gln48βOE1-O P6Val and Ser95βOG-O P6Val) are 

made upon F6 TCR binding. Additionally, Asn98α makes two hydrogen bonds with P2Ile and 

P4Gly backbone nitrogens. These interactions are absent in the JM22-GIL interface due to the 

shorter CDR3α. The five polar contacts are further reinforced by 39 van der Waals contacts and 

6 water-mediated hydrogen bonds (Figure 5.3 C and D; Table 5.4 and 5.5). Thus, although the 

GIL peptide only has P8Thr substantially exposed in solvent, F6 TCR combines several 

strategies to achieve maximum peptide readout.  

 The high resolution of the F6–GIL–HLA-A2 complex permitted the inclusion of many 

ordered water molecules in the structure, including ones in the interface between TCR and 

pMHC (Figure 5.3; Table 5.3 and 5.5). In particular, eight water molecules are mostly or 

completely buried in the interface, where they mediate hydrogen bonding interactions between 

F6 and the GIL peptide.  In addition to forming an intricate solvent network linking TCR and 

pMHC, these and other bound waters contribute significantly to interfacial shape 

complementarity, based on calculations of the shape correlation statistic (Sc). Thus, the Sc value 

for the F6–GIL–HLA-A2 complex with interfacial waters is 0.61 (Sc = 1.0 for interfaces with 

perfect geometrical fits), but only 0.54 without interfacial waters. The corresponding Sc values 

for the JM22–GIL–HLA-A2 complex are 0.77 with interfacial waters versus 0.64 without such 

waters. The substantially greater shape complementarity of the JM22–GIL–HLA-A2 interface 

likely contributes to the higher affinity of TCR JM22 compared to F6, as discussed below. 

Notably, most bridging water molecules are conserved in the F6–GIL–HLA-A2 and JM22–GIL–

HLA-A2 complexes, even though they crystallized under different conditions and in different 

space groups. This conservation underscores the intrinsic importance of interfacial waters to 

complex stabilization. Besides the lower shape complementarity of the F6-GIL-HLA-A2 than the  
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Table 5.4 

Interactions between TCR and GIL peptide in the F6–GIL–HLA-A2 and JM22–GIL–

HLA-A2 complexes 

 Hydrogen bonds Van der Waals 

contacts 

Hydrogen bonds Van der Waals 

contacts 

GIL F6 F6 JM22 JM22 

I2P I2P(O) N98α(N
δ2

) N98α   

L3P  N98α   

G4P G4P(N) N98α(O
δ1

) 

G4P(O) Q52β(N
ε2

) 

N98α 

G100α 

Q52β 

G4P(O) Q52β(N
ε2

) S95α 

Q96α 

Q52β 

F5P  T99α 

G100α 

Q52β 

R98β 

S99β 

 S95α 

G97α 

Q52β 

R98β 

S100β 

V6P V6P(N) Q52β(O
ε1

) 

V6P(O) S99β(O
γ
) 

Q52β 

S99β 

V6P(N) Q52β(O
ε1

) 

V6P(O) S99β(O
γ
) 

Q52β 

S99β 

T8P T8P(O
γ1

) D32β(O
δ2

) D32β 

I53β 

T8P(O
γ1

) D32β(O
δ2

) D32β 

I53β 

 

 

Table 5.5 

Water bridges between TCR and GIL peptide in the F6–GIL–HLA-A2 and JM22–GIL–

HLA-A2 complexes 
GIL Water  F6  B factor Water  JM22 B factor 

V6(O) S4 Q52β(O) 

S99β(N) 

21.6 S1 Q52β(O) 

S99β(N) 

17.2 

V6(O) S8 R98β(N
η1

) 

S99β(O
γ
) 

22.0 S6 R98β(N
η1

) 

S99β(O
γ
) 

18.4 

G4(O) S350 Q58β(N
ε2

) 40.5 S10 Q58β(N
ε2

) 20.5 

G4(N)    S14 S95α(O) 19.0 

T8(N) S14 D32β(O
δ1

) 21.6 S19 D32β(O
δ1

) 18.7 
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JM22-GIL-HLA-A2 interface, another factor that could contribute to the lower affinity of F6 

may be the entropic cost of reducing the conformational mobility of the F6 VαCDR3 loop upon 

complex formation, which would at least partially offset any enthalpy gained from contacts made 

by this loop. This entropic cost may be higher for F6 than for JM22 due to the greater length, and 

presumably greater flexibility, of F6 VαCDR3.  

 

5.2.6 Interaction of the TCR F50 with HLA-A2  

 The F50-GIL-HLA-A2 complex buries a total solvent-accessible surface of 1760 Å
2
, 

comparable to other TCR-pMHC complexes. Vα and Vβ bury 46% (333 Å
2
) and 54% (391 Å

2
) 

of HLA-A2 surface area, respectively. This roughly equal contribution by the Vα and Vβ chains 

is distinct from JM22, which features a dominant Vβ (67%) in engaging HLA-A2. Of the total 

buried surface on HLA-A2, excluding GIL, CDR1α, CDR2α and CDR3α contribute 6%, 22% 

and 19%, compared with 9%, 20% and 28% for CDR1β, CDR2β and CDR3β, respectively. Both 

the CDR2α and CDR2β buried surfaces are significantly higher than average for TCR-pMHC 

complexes (11% and 12%, respectively), highlighting the extensive germline-encoded 

interactions made by F50 to HLA-A2. In particular, CDR2α of JM22 only contributes 7% of the 

buried surface on HLA-A2. Unlike JM22 and F6, F50 does not recruit water molecules to the 

interface with HLA-A2. Of 52 total contacts, 27 are made by Vα and 25 by Vβ. Such equal 

distribution of TCR-MHC interactions is distinct from that of TCRs expressing TRBV19. 

Residues Asn32α, Ser53α, and Asn54α of F50 Vα form three side- chain-side-chain hydrogen 

bonds to residues Glu154H and Gln155H on the HLA-A2 α2 helix (Figure 5.4-B). 
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Table 5.6 

Interactions between TCR and MHC in the F50–GIL–HLA-A2 and JM22–GIL–HLA-A2 

complexes 
 Hydrogen bonds Van der Waals 

contacts 

Hydrogen bonds Van der Waals 

contacts 

HLA-A2 F50 F50 JM22 JM22 

R65H    Q58β 

K66H  N98α   

K68H    D56β 

A69H  I96β  

G99β 

 D56β 

Q72H  M50β 

G99β 

 I53β 

N55β 

T73H    I53β 

R75H    N55β 

V76H  M50β  I53β 

T80H A80H(O
γ1

)N51β(N
δ2

) N51β   

Y84H Y84H(OH)E30β(O
ε2

) E30β   

K146H  L95β   

A149H    Y101β 

A150H  R52α  

L96β  

W99β 

A150H(O) R98β(N
ε
) 

A150H(O) R98β(N
η2

) 

R98β 

Y101β 

H151H  R52α  V51α 

R98β 

Y101β 

V152H  W99β  R98β 

E154H E154H(O
ε2

)N54α(N
δ2

) N54α  S31α 

V51α 

Q155H Q155H(N
ε2

) N32α(N
δ2

) 

Q155H(O
ε1

) S53α(O
γ
) 

 

N32α 

R52α 

S53α 

N54α 

W99β 

Q155H(O
ε1

) R98β(N
η1

) 

Q155H(O
ε1

) R98β(N
η2

) 

S31α 

G94α 

R98β 

S100β 
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Figure 5.4 Interactions of TCR F50 with the GIL peptide and HLA-A2. 
 

(A) Direct interactions between TCR F50 (green) and the HLA-A2 (orange). The side chains 

of contacting residues are drawn in stick representation with carbon atoms in green 

(CDR1β and CDR2β), nitrogen atoms in blue, and oxygen atoms in red. Hydrogen bonds 

are indicated by yellow dashed lines. Water molecules are depicted as red spheres. 

Peptide residues are identified by a one-letter amino acid designation followed by 

position (P).  

(B) Interactions between CDR2α (cyan), CDR3β (green) of F50 and GIL–HLA-A2, showing 

hydrogen bond network mediated by Asn32α, Ser53α and Asn54α.  

(C) Interactions between Vα (cyan) of F50 and GIL peptide.  

(D) Interactions between Vβ (green) of F50 and GIL peptide. 

 

E30β 

N51β 

Y84H 

T80H 

R52α 

Q155H 

W100β 

S53α 

N32α N54α 

E154H 

A31α Q101α 

I96α 

S58 

G4P 
E30β 

W99β 
Q101α 

L95β 

S112 

S450 

S812 

A B 

C D 



91 
 

These hydrogen bonds are further reinforced by 16 germline-encoded van der Waals contacts 

from CDR1α and CDR2α. Due to an acute crossing angle (29⁰), the F50 CDR3α loop makes 8 

contacts with the HLA-A2 α1 helix instead of interacting with HLA-A2 α2 helix, as do JM22 

and F6. All of these contacts are van der Waals contacts due to the very hydrophobic nature of 

the CDR3α motif (FIIQGA). TCR F50 contacts the HLA-A2 α1 helix through CDR1β and 

CDR2β. In particular, the side chains of Glu30β, Met50β and Asn51β make germline-encoded 

contacts with the HLA-A2 α1 helix. Glu30β and Asn51β form three side-chain-side-chain 

hydrogen bonds to Tyr84H and Thr80H on the HLA-A2 α1 helix (Figure 5.4-A). These 

interactions focus on the C-terminus of the α1 helix, which is rarely targeted by other TCRs. For 

instance, the HLA-A24-restricted T36-5 TCR has utilizes the same TRBV27 as F50 but Asn51β 

forms two hydrogen bonds with Ala69 and Thr73 of HLA-A24. Similar to F50 CDR3α, the 

somatically-generated interactions between F50 CDR3β and the HLA-A2 α2 helix are 

exclusively van der Waals contacts, with the majority (9 out of 15) of interactions focusing on 

Trp99β. The bulky Trp99β side chain occupies a notch between HLA-A2 and the GIL peptide, in 

a way that somewhat mimics Arg98β of JM22 and F6 TCRs (Figure 5.4-D). However, Trp99β 

cannot form hydrogen bonds with HLA-A2 Ala150H or Gln155H. Mutating Trp99β to Arg 

completely abolished the interaction between F50 and GIL-HLA-A2, confirming the importance 

of this residue. Interestingly, Gln155H has different rotamer conformations in JM22/F6-GIL-

HLA-A2 and F50-GIL-HLA-A2 complexes. In JM22/F6-GIL-HLA-A2 complexes, the side 

chain of Gln155H points toward Arg98β, with which it makes two hydrogen bonds. By contrast, 

the Gln155H side chain is pushed away from Trp99β in the F50-GIL-HLA-A2 complex probably 

due to steric hindrance (Figure 5.5).  

 



92 
 

 

 

 

 

 

 

Figure 5.5 Different Q155H rotamer conformations in the F50-GIL-HLA-A2 and JM22-GIL-

HLA-A2 complexes.  

A150H and Q155H in the JM22-GIL-HLA-A2 complex are colored beige. A150H and Q155H in 

the F50-GIL-HLA-A2 complex are colored orange. TCR JM22 is colored cyan; TCR F50 is 

colored green. 

 

5.2.6 Interaction of TCR F50 with the GIL peptide 

 Except for a few contacts (5 out of 36) made by F50 CDR1α and CDR1β, all interactions 

between F50 and the GIL peptide are mediated by the somatically-generated CDR3β loops, with 

CDR3α and CDR3β accounting for 18 and 13 contacts, respectively. Peptide specificity is 

conferred mainly by shape complementarity, since the F50-GIL interface features only two 

hydrogen bonds: F50 Gln101α Oε1-N P6 Val and F50 Trp99β Nε1-O P6 Val. F50 engages 

central and C-terminal portions of the GIL peptide (P4 Gly, P5 Phe, P6 Val, P7 Phe, P8 Thr and 

P9 Leu) with the principal focus on P5 Phe and P6 Val (Figure 5.4-C and D). The N-terminal P1-

P3 residues of GIL made no contact with F50, which explains why F50 buries only 73% (215 Å
2
) 

of the peptide solvent-accessible surface upon binding GIL-HLA-A2 compared to 85% (258 Å
2
) 

W100β 

R98β 

Q155H 

A150H 
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by F6. The longer CDR3α of F6 enables this TCR to make several contacts with Ile P2 and Leu 

P3.  Residues CDR3α Gln101α and CDR3β Trp99β of F50 protrude from the tips of the CDR3 

loops and grasp the center of peptide like two fingers. Indeed, these two residues alone account 

for 23 out of 36 contacts made by TCR F50 to the GIL peptide. Whereas F50 makes 88 total 

contacts to GIL-HLA-A2, JM22 makes 104. This difference likely contributes to the 20-fold 

weaker affinity of F50 than F6 for GIL-HLA-A2.  

 

 

Table 5.7 

Interactions between TCR and GIL peptide in the F50–GIL–HLA-A2 and JM22–GIL–

HLA-A2 complexes 

 Hydrogen bonds Van der Waals 

contacts 

Hydrogen bonds Van der Waals 

contacts 

GIL F50 F50 JM22 JM22 

I2P     

L3P     

G4P  A30α 

I96α 

G4P(O) Q52β(N
ε2

) S95α 

Q96α 

Q52β 

F5P  N32α 

I96α 

Q101α 

W99β 

 S95α 

G97α 

Q52β 

R98β 

S100β 

V6P V6P(N) Q101α(O
ε1

) 

V6P(O) W99β(N
ε1

) 

Q101α 

W99β 

V6P(N) Q52β(O
ε1

) 

V6P(O) S99β(O
γ
) 

Q52β 

S99β 

T8P  L96β T8P(O
γ1

) D32β(O
δ2

) D32β 

I53β 

L9P  E30β   
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Table 5.8 

Water bridges between TCR and GIL peptide in the F50–GIL–HLA-A2 and JM22–GIL–

HLA-A2 complexes 
GIL Water  F50 B factor Water  JM22 B factor 

G4(O) S58 A31α(O) 

Q101α(N
ε2

) 

22.3 S1 Q52β(O) 

S99β(N) 

17.2 

T8(N) S122 G97β(O) 23.9 S6 R98β(N
η1

) 

S99β(O
γ
) 

18.4 

T8(O
γ1

) S450 L95β(O) 30.1 S10 Q58β(N
ε2

) 20.5 

T8(O
γ1

) S812 G97β(N) 35.9 S14 S95α(O) 19.0 

    S19 D32β(O
δ1

) 18.7 

 

5.3 Discussion 

 The diversity of TCR repertoires has been linked to high-avidity recognition of pMHC 

ligands, effective viral clearance, and prevention of viral escape. Previous structural studies of 

public T cell responses to immunodominant viral epitope have been largely restricted to EBV-

specific TCRs (Liu et al., 2013; Tynan et al., 2005; Kijer-Nielsen et al., 2003; Rossjohn et al., 

2015). The two TCR-NLV-HLA-A2 complexes described here provide insights into the 

structural basis for the diverse T cell response against CMV in HLA-A2+ individuals (Yang et 

al., 2015). EBV-specific TCRs recognize a bulged peptide presented by HLA-B8 using two 

distinct binding modes: one in which the TCR straddles the bulged peptide but makes few 

contacts with MHC (Tynan et al., 2005), and one in which the TCR is positioned toward the N-

terminal end of the HLA-B8 peptide-binding groove, thereby bypassing the bulged peptide (Liu 

et al., 2013). In contrast to EBV, the dominant CMV epitope NLV presented by HLA-A2 

features multiple solvent-exposed residues, thereby providing multiple TCR anchor points. Such 

feature has resulted much more diverse CMV-specific T cell response than EBV T cell response 

regardless both virus are ubiquitous and persistent pathogens.   
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Influenza A virus cause acute infections and is rapidly cleared by host immune system. 

The T cell response to the dominant GIL epitope is heavily biased toward certain V(D)J 

combinations and features a highly conserved CDR3β motif (Moss et al., 1991; Lehner et al., 

1995). Our structural studies of two GIL-specific TCRs in complex with GIL-HLA-A2 revealed 

the structural basis for the narrow GIL-specific repertoire. The previously determined JM22-

GIL-HLA-A2 structure showed several advantages of the TRBV19 Vβ region and ‘RSS’ CDR3β 

motif in recognizing the featureless GIL-peptide: 1. Arg98 in Vβ inserts into a notch between the 

GIL peptide and HLA-A2. 2. TRBV19 TCRs are able to recruit water molecules to TCR-pMHC 

interface to stabilize TCR-pMHC complex. 3. Vα has very limited contacts with GIL-HLA-A2, 

thus allowing TRBV19 pairing with multiple Vα to expand the GIL-specific T cell response.  

Our structural study of the low-affinity F6 TCR in complex with GIL-HLA-A2 revealed 

how restriction of CDR3α length and sequence may impact TCR binding. Interestingly, the Vα 

of F6 is dominantly present in GIL-specific TCR repertoires, suggesting that F6-like TCRs are 

effective in killing influenza-infected cells. The apparent discrepancy between the low affinity of 

F6 and its prominence in GIL-specific TCR repertoires can perhaps be explained by the way we 

measured its affinity. We measured the 3D affinity of the TCR-pMHC interaction by 

immobilizing pMHC ligand on a chip and flowing the TCRs. In a more physiologically setting, 

both TCR and pMHC should be immobilized on membranes (e.g. on cells transfected with 

specific TCR and pMHC). Indeed, in such experiments, TCRs with similar 3D affinities can 

display surprisingly different 2D affinities and TCRs with different 3D affinities may have with 

similar 2D affinities. Nevertheless, our F6-GIL-HLA-A2 complex structure emphasizes the 

effectiveness of TRBV19 Vβ in recognizing the featureless GIL peptide. Moreover, TRBV19 Vβ 
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is able to pair with multiple Vα, as well as different CDR3α motifs, to expand T cell repertoire 

diversity.  

The F50-GIL-HLA-A2 structure provides a wealth of information on how a non-

TRBV19 TCR can engage GIL-HLA-A2. The relatively low affinity of F50 compared to JM22 

is likely attributable, at least in part, to fewer contacts, in particular polar contacts, across the 

TCR-pMHC interface. Trp99β of F50 TCR mimics the function of Arg98 β of JM22, but not as 

effectively. The F50 CDR3α and CDR3β motifs were newly identified by our deep sequencing 

analysis and may therefore be considered as minor public clonotypes. Nevertheless, F50 TCR 

serves as a possible candidate to further expand the GIL-specific T cell repertoire and such 

expansion may improve viral clearance.  
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Chapter 6  

Conclusions and future perspectives      

 CD8+ T lymphocytes specific for antigenic peptides derived from viral proteins protect 

us against different viruses (e.g. EBV, CMV, influenza A virus). The diversity of the T cell 

repertoire for specific viral peptides is critical for effective viral clearance. Previous studies used 

combinatorial peptide libraries to examine TCR cross-reactivity (Hemmer et al., 1997; Ishizuka 

et al., 2009; Wooldridge et al., 2012; Birnbaum et al., 2014; Adams et al., 2016). However, a 

comprehensive analysis of how many TCRs can recognize a single pMHC ligand requires 

extensive TCR sequence information. Recent advances of deep sequencing and single-cell 

analysis have revolutionized our understanding of the actual size of T cell repertoires for specific 

antigenic peptides (Shugay et al., 2014).  

 CMV and Flu cause chronic and acute infections in human, respectively. The CD8
+
 T cell 

response to CMV and Flu has been studied extensively. The CMV matrix protein pp65 accounts 

for 70–90% of the CD8
+
 cytotoxic T cell response to this ubiquitous herpesvirus . The dominant 

epitope in HLA-A2
+
 subjects corresponds to residues 495–503 of pp65 (NLVPMVATV). In Flu, 

the dominant epitope for cytotoxic T cells in HLA-A2
+
 subjects corresponds to residues 58–66 of 

matrix protein M1 (GILGFVFTL). Characterization of the TCR repertoires elicited by these two 

dominant viral epitopes has revealed several important features. For NLV-specific TCRs, 

preferential usage of certain Vβ gene segments is observed in some individuals, but such bias 

does not seem to be shared by different individuals, suggesting that the NLV-specific TCR 

repertoire is large and functionally redundant. In contrast, GIL-specific TCRs exhibit more 
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restricted in V gene usage, with high percentage representations of TRBV27, TRAV12 and 

TRBV19.  

 The much higher diversity of NLV- than GIL-specific TCR repertoires observed in 

multiple studies can likewise be explained in structural terms. We determined structures of two 

public TCRs in complex with NLV–HLA-A2 (C25-NLV-HLA-A2 and C7-NLV-HLA-A2). 

These TCRs utilize completely different CDR3α and CDR3β motifs that, in addition, can 

associate with multiple Vα and Vβ regions in NLV-specific T cell repertoires. This 

interchangeability of TCR V regions and CDR3 motifs is made possible, at least in part, by the 

nature of the NLV peptide, which contains several residues, mainly P4 Pro and P5 Met, with 

solvent-exposed side chains that contribute to the TCR recognition surface. These protruding 

side chains offer multiple anchor points for TCR attachment, thereby permitting multiple 

structural solutions to binding the NLV–HLA-A2 ligand and generation of a clonally diverse T 

cell repertoire. By comparison, the relatively featureless GIL peptide, with its lack of protruding 

side chains, presents a difficult target for TCR recognition, as illustrated by comparing the 

JM22/F6-GIL-HLA-A2 and F50–GIL–HLA-A2 structures. The rarity of the TRBV27 β chain 

expressed by F50 (1.5% of GIL-specific TCRβ sequences) contrasts sharply with the prevalence 

of the TRBV19 β chain expressed by F6 (80% of sequences), which enables insertion of a highly 

conserved CDR3β Arg98 residue into a notch on the surface of GIL–HLA-A2. Indeed, the 

diversity of the GIL-specific TCR repertoire arises in large measure from the pairing of the 

TRBV27 Vβ region with a variety of Vα regions. This interchangeability is made possible by the 

dominance of TRBV27 in interactions with pMHC, as seen in the F50–GIL–HLA-A2 complex. 

The weak affinity of F50 is consistent with the underepresentation of TRBV27 β in the total 

GIL-specific T cell repertoire. Since most immunodominant viral epitopes are likely to resemble 
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NLV rather than GIL in terms of side-chain exposure to TCRs, we predict that most such 

epitopes will elicit highly diverse T cell responses, similar to NLV.   
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Appendix: Methods and materials 

1. List of constructs and E.coli stocks.  

Name C7α 

Description  Ectodomain of C7 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MILNVEQSPQSLHVQEGDSTNFTCSFPSSNFYALHWYRWETAKSPE

ALFVMTLNGDEKKKGRISATLNTKEGYSYLYIKGSQPEDSATYLCA

FITGNQFYFGTGTSLTVIPNIQNPDPAVYQLRDSKSSDKSVCLFTDF

DSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDFA

CANAFNN SIIPEDTFFPSPESS 

Protein MW (kDa) 22.9 

Protein PI 4.7 

 

Name C7β 

Description  Ectodomain of C7 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MGAGVSQSPSNKVTEKGKDVELRCDPISGHTALYWYRQRLGQGLE

FLIYFQGNSAPDKSGLPSDRFSAERTGESVSTLTIQRTQQEDSAVYL

CASSQTQLWETQYFGPGTRLLVLEDLKNVFPPEVAVFEPSEAEISHT

QKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPA

LNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDR

AKPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.5 

Protein PI 5.3 

 

Name C25α 

Description  Ectodomain of C25 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MDAKTTQPNSMESNEEEPVHLPCNHSTISGTDYIHWYRQLPSQGPE

YVIHGLTSNVNNRMASLAIAEDRKSSTLILHRATLRDAAVYYCILD

NNNDMRFGAGTRLTVKPNIQNPDPAVYQLRDSKSSDKSVCLFTDF

DSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDFA

CANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.7 

Protein PI 5.0 
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Name C25β 

Description  Ectodomain of C25 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MGAGVSQSPRYKVTKRGQDVALRCDPISGHVSLYWYRQALGQGP

EFLTYFNYEAQQDKSGLPNDRFSAERPEGSISTLTIQRTEQRDSAMY

RCASSLAPGTTNEKLFFGSGTQLSVLEDLNKVFPPEVAVFEPSEAEIS

HTQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQ

PALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQ

DRAKPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.8 

Protein PI 5.8 

 

Name D12α 

Description  Ectodomain of D12 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MAQSVAQPEDQVNVAEGNPLTVKCTYSVSGNPYLFWYVQYPNRG

LQFLLYITGDNLVKGSYGFEAEFNKSQTSFHLKKPSALVSDSALYFC

AVRDISARLMFGDGTQLVVKPNIQNPDPAVYQLRDSKSSDKSVCLF

TDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSD

FACANAF NNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.9 

Protein PI 4.7 

 

Name D12β 

Description  Ectodomain of D12 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MDAGVIQSPRHEVTEMGQEVTLRCKPISGHDYLFWYRQTMMRGL

ELLIYFNNNVPIDDSGMPEDRFSAKMPNASFSTLKIQPSEPRDSAVY

FCASSSVNEQFFGPGTRLTVLEDLKNVFPPEVAVFEPSEAEISHTQK

ATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALN

DSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAK

PVTQIVSAEAWGRAD 

Protein MW (kDa) 27.8 

Protein PI 5.8 
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Name C31α 

Description  Ectodomain of C31 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MGQQLNQSPQSMFIQEGEDVSMNCTSSSIFNTWLWYKQEPGEGPV

LLIALYKAGELTSNGRLTAQFGITRKDSFLNISASIPSDVGIYFCAGP

MKTSYDKVIFGPGTSLSVIPNIQNPDPAVYQLRDSKSSDKSVCLFTD

FDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDFA

CANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.8 

Protein PI 4.5 

 

Name C31β 

Description  Ectodomain of C31 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MDAGVIQSPRHEVTEMGQEVTLRCKPISGHNSLFWYRQTMMRGLE

LLIYFNNNVPIDDSGMPEDRFSAKMPNASFSTLKIQPSEPRDSAVYF

CASSSANYGYTFGSGTRLTVVEDLKNVFPPEVAVFEPSEAEISHTQK

ATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALN

DSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAK

PVTQIVSAEAWGRAD 

Protein MW (kDa) 27.4 

Protein PI 5.4 

 

Name C32α 

Description  Ectodomain of C31 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MGQQLNQSPQSMFIQEGEDVSMNCTSSSIFNTWLWYKQEPGEGPV

LLIALYKAGELTSNGRLTAQFGITRKDSFLNISASIPSDVGIYFCAGP

MKTSYDKVIFGPGTSLSVIPNIQNPDPAVYQLRDSKSSDKSVCLFTD

FDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDFA

CANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.8 

Protein PI 4.5 
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Name C32β 

Description  Ectodomain of C32 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MNAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGM

GLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSV

YFCASSYSGNSGYTFGSGTRLTVVEDLNKVFPPEVAVFEPSEAEISH

TQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQP

ALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQD

RAKPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.1 

Protein PI 5.5 

 

Name C34α 

Description  Ectodomain of C34 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MILNVEQSPQSLHVQEGDSTNFTCSFPSSNFYALHWYRWETAKSPE

ALFVMTLNGDEKKKGRISATLNTKEGYSYLYIKGSQPEDSATYLCA

FPYNNNDMRFGAGTRLTVKPNIQNPDPAVYQLRDSKSSDKSVCLFT

DFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDF

ACANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 23.1 

Protein PI 4.9 

 

Name C34β 

Description  Ectodomain of C34 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MEAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGL

RQIYYSMNVEVTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLY

FCASSLEGYTEAFGQGTRLTVVEDLKNVFPPEVAVFEPSEAEISHTQ

KATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPAL

NDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRA

KPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.1 

Protein PI 5.5 
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Name F5α 

Description  Ectodomain of F5 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLL

VTVVTGGEVKKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLCAG

AGSQGNLIFGKGTKLSVKPNIQNPDPAVYQLRDSKSSDKSVCLFTD

FDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKSDFA

CANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.3 

Protein PI 4.9 

 

Name F5β 

Description  Ectodomain of F5 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MVDGGITQSPKYLFRKEGQNVTLSCEQNLNHDAMYWYRQDPGQG

LRLIYYSQIVNDFQKGDIAEGYSVSREKKESFPLTVTSAQKNPTAFY

LCASSSRSSYEQYFGPGTRLTVTEDLKNVFPPEVAVFEPSEAEISHT

QKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPA

LNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDR

AKPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.1 

Protein PI 5.5 

 

Name F6α 

Description  Ectodomain of F6 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLL

VTVVTGGEVKKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLC 

AGAIGSSNTGKLIFGKGTKLSVKPNIQNPDPAVYQLRDSKSSDKSVC

LFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNK

SDFACANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.6 

Protein PI 5.0 
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Name F6β 

Description  Ectodomain of F6 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MVDGGITQSPKYLFRKEGQNVTLSCEQNLNHDAMYWYRQDPGQG

LRLIYYSQIVNDFQKGDIAEGYSVSREKKESFPLTVTSAQKNPTAFY

LCASSIRSSYEQYFGPGTRLTVTEDLKNVFPPEVAVFEPSEAEISHTQ

KATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPAL

NDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRA

KPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.8 

Protein PI 5.6 

 

Name F8α 

Description  Ectodomain of F8 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MQLLEQSPQFLSIQEGENLTVYCNSSSVFSSLQWYRQEPGEGPVLL

VTVVTGGEVKKLKRLTFQFGDARKDSSLHITAAQPGDTGLYLC 

AGAIGSSNTGKLIFGKGTKLSVKPNIQNPDPAVYQLRDSKSSDKSVC

LFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNK

SDFACANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.6 

Protein PI 5.0 

 

Name F8β 

Description  Ectodomain of F8 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MVDGGITQSPKYLFRKEGQNVTLSCEQNLNHDAMYWYRQDPGQG

LRLIYYSQIVNDFQKGDIAEGYSVSREKKESFPLTVTSAQKNPTAFY

LCASSIRSSYEQYFGPGTRLTVTEDLKNVFPPEVAVFEPSEAEISHTQ

KATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPAL

NDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRA

KPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.8 

Protein PI 5.6 
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Name F22α 

Description  Ectodomain of F22 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence METNVEQHPSTLSVQEGDSAVIKCTYSDSASNYFPWYKQELGKRP

QLIIDIRSNVGEKKDQRIAVTLNKTAKHFSLHITETQPEDSAVYF 

CAAQGSQGNLIFGKGTKLSVKPNIQNPDPAVYQLRDSKSSDKSVCL

FTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNK 

SDFACANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 22.9 

Protein PI 5.2 

 

Name F22β 

Description  Ectodomain of F22 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MDGGITQSPKYLFRKEGQNVTLSCEQNLNHDAMYWYRQDPGQGL

RLIYYSQIVNDFQKGDIAEGYSVSREKKESFPLTVTSAQKNPTAFYL

CASSIRSSYEQYFGPGTRLTVTEDLKNVFPPEVAVFEPSEAEISHTQK

ATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALN

DSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAK

PVTQIVSAEAWGRAD 

Protein MW (kDa) 27.7 

Protein PI 5.6 

 

Name F26α 

Description  Ectodomain of F26 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MPQSVTQLDSQVPVFEEAPVELRCNYSSSVSVYLFWYVQYPNQGL

QLLLKYLSGSTLVKGINGFEAEFNKSQTSFHLRKP SVHISDTAEY 

FCAVGGSQGNLIFGKGTKLSVKPNIQNPDPAVYQLRDSKSSDKSVC

LFTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNK

SDFACANAFNNSIIPEDTF FPSPESS 

Protein MW (kDa) 23.0 

Protein PI 5.0 
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Name F26β 

Description  Ectodomain of F26 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MDGGITQSPKYLFRKEGQNVTLSCEQNLNHDAMYWYRQDPGQGL

RLIYYSQIVNDFQKGDIAEGYSVSREKKESFPLTVTSAQKNPTAFYL

CASSIRSSYEQYFGPGTRLTVTEDLKNVFPPEVAVFEPSEAEISHTQK

ATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQPALN

DSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAK

PVTQIVSAEAWGRAD 

Protein MW (kDa) 27.7 

Protein PI 5.6 

 

Name F50α 

Description  Ectodomain of F50 TCR α chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MGENVEQHPSTLSVQEGDSAVIKCTYSDSASNYFPWYKQELGKRP

QLIIDIRSNVGEKKDQRIAVTLNKTAKHFSLHITETQPEDSAVYFCA

ASFIIQGAQKLVFGQGTRLTINPNIQNPDPAVYQLRDSKSSDKSVCL

FTDFDSQTNVSQSKDSDVYITDKCVLDMRSMDFKSNSAVAWSNKS

DFACANAFNNSIIPEDTFFPSPESS 

Protein MW (kDa) 23.3 

Protein PI 5.1 

 

Name F50β 

Description  Ectodomain of F50 TCR β chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MEAQVTQNPRYLITVTGKKLTVTCSQNMNHEYMSWYRQDPGLGL

RQIYYSMNVEVTDKGDVPEGYKVSRKEKRNFPLILESPSPNQTSLY 

FCASSLLGGWSEAFFGQGTRLTVVEDLKNVFPPEVAVFEPSEAEISH

TQKATLVCLATGFYPDHVELSWWVNGKEVHSGVCTDPQPLKEQP

ALNDSRYALSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQD

RAKPVTQIVSAEAWGRAD 

Protein MW (kDa) 27.8 

Protein PI 5.8 
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Name HLA-A2 heavy chain  

Description  Ectodomain of HLA-A2 heavy chain 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MGSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQR

MEPRAPWIEQEGPEYWDGETRKVKAHSQTHRVDLGTLRGYYNQS

EAGSHTVQRMYGCDVGSDWRFLRGYHQYAYDGKDYIALKEDLRS

WTAADMAAQTTKHKWEAAHVAEQLRAYLEGTCVEWLRRYLENG

KETLQRTDAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRD

GEDQTQDTELVETRPAGDGTFQKWAAVVVPSGQEQRYTCHVQHE

GLPKPLTLRWE 

Protein MW (kDa) 31.9 

Protein PI 6.0 

 

Name β2-microglobulin 

Description  Intact β2-microglobulin 

Plasmid pET-26b(+) 

Expression strain BL21(DE3) 

Antibiotics  Kan
+
 

Protein sequence MIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERI

EKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKI

VKWDRDM 

Protein MW (kDa) 11.9 

Protein PI 6.0 

 

Name NLV peptide 

Description  CMV virus dominant epitope  

Method  Chemically synthesized 

Company  GenScript 

Purity  90% 

Protein sequence NLVPMVATV 

Protein MW (kDa) 0.94 

Protein PI 5.5 

 

Name GIL peptide 

Description  Flu virus dominant epitope  

Method  Chemically synthesized 

Company  GenScript 

Purity  90% 

Protein sequence GILGFVFTL 

Protein MW (kDa) 0.97 

Protein PI 5.5 
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2. Molecular cloning 

PCR and sub-cloning were performed according to Molecular Cloning or product 

manuals. The genes encoding the ectodomain of all TCR αβ, HLA-A2 heavy chain and β2-

microglobulin were amplified via standard PCR protocols and sub-cloned into pET-26b(+) 

vector via NdeI and XhoI restriction sites. All constructs were verified by DNA sequencing 

before transforming into BL-21(DE3) strain for protein expression.  

 

3. Freezing bacteria 

Single colony of BL-21(DE3) containing the corresponding construct was pre-cultured in 

100 mL of LB culture with correct antibiotics for 12 hours at 30 ⁰C. The pre-culture was 

supplemented to 20% glycerol before storing in a -80⁰C freezer.  

 

4. Growth of E. coli cultures for expression of inclusion bodies  

1) Grow BL-21(DE3) cells with TCR  plasmid in 1 L LB culture until OD reaches 0.6-0.8. 

2) Add 1 ml 1M IPTG to the culture to induce recombinant protein expression. 

3) Shake the culture 3 or 3.5 hours, then harvest cells by centrifugation (7000 rpm for 15 

min) in a Beckman Coulter JLA-8.1000 rotor. The harvested cells can be stored at -80⁰C. 

 

5. Inclusion body processing 

Solutions: 
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Wash buffer I  Wash buffer II  Urea buffer 

5% Triton X-100 50 mM Tris.HCl, pH 8.0 50 mM Tris.HCl, pH 8.0 

50 mM Tris.HCl, pH 8.0 100 mM NaCl 8 M Urea 

100 mM NaCl 2 mM EDTA 10 mM EDTA 

2 mM EDTA  10 mM DTT 

 

1) Resuspend the cells in 50 mL inclusion wash buffer 1.  

2) Sonicatate (2 min sonication and 2min rest for cooling) the suspended cells for 4 

cycles and centrifuge at 7000 rpm for 15min. Discard supernatant.  

3) Repeat steps 1 and 2 for 2 more times. 

4) Resuspend the cells in inclusion wash buffer 2.  

5) Sonicate (2 min sonication and 2 min rest for cooling) the suspended cells for 4 

cycles and centrifuge at 7000 rpm for 15min. Discard supernatant. 

6) Repeat steps 4 and 5 for 1 more time. 

7) Dissolve the inclusion bodies in urea buffer overnight at 4 ⁰C.  

8) The dissolved inclusion bodies can be stored at -80 ⁰C. 

 

6. Refolding TCR and peptide-HLA-A2  

Refolding TCR: 

1) α and β inclusion bodies were mixed first and then added to the refolding buffer. 

drop by drop. The final concentration of inclusion bodies is 60-80 mg/L (α 45 mg 

and β 35mg). 

2) Refolding mixture dialyzed against 10 L of DI water for 48 hours. 
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3) Dialyzed against 10 L of  10mM Tris pH 8 for 24 hours. 

4) Concentrate to 50 mL.   

5) Dialyze against 2L 50 mM MES pH 6 for 24 hours. 

6) Dialyze against 2L 50mM Tris pH 8 for 24 hours. 

Refolding peptide-HLA-A2 

1) Add 15mg of peptide dissolved in solvent to 1L refolding buffer.  

2) HLA-A2 heavy chain and β2-microglobulin inclusion bodies were mixed first and 

then added to the refolding buffer drop by drop to a final protein concentration of 

40 mg/L (HLA-A2 heavy chain 20 mg and β2-microglobulin 20 mg). 

3) Refolding mixture dialyzed against 10 L of 10 mM Tris pH 8 for 72 hours with 

buffer exchange every 12 hours.  

4) Concentrate to 50mL.  

Refolding buffer  

5 M urea 

0.4 M Arginine-HCl 

100 mM Tris-HCl pH 8.0 

3.7 mM Cystamine 

6.6 mM Cysteamine 

2 mM EDTA 

 

7. Purification of in vitro folded TCR 

1) Remove aggregates by ultracentrifugation for 30 min at 20,000 rpm using a JA25.5 

rotor.  
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2) Further concentrate TCR solutions to ~5 mL and filter the solution by 0.2 μM 

membrane.  

3) Run gel filtration with Superdex 200 column on an FPLC system. Inject 1 mL of 

sample each time. Run with Tris-HCl buffer at pH 8. The flow rate was set at 0.5 

mL/min. The fractions contained correct proteins were pooled together.  

4) Run anion-exchange chromatography with MonoQ column on an FPLC system. 

Inject 5 mL of sample each time. Run with Tris-HCl buffer at pH 8. Use a NaCl 

gradient of 1%-per-mL increase to elute proteins. The fractions containing target 

proteins were pooled together.  

 

8. Purification of in vitro folded peptide-HLA-A2 

1) Remove aggregates by ultracentrifugation for 30min at 20,000 rpm using a JA25.5 

rotor.  

2) Further concentrate TCR solutions to ~5 mL and filter the solution by 0.2 μM 

membrane.  

3) Run gel filtration with Superdex 200 column on an FPLC system. Inject 1 mL of 

sample each time. Run with Tris-HCl buffer at pH 8. The flow rate was set at 0.5 

mL/min. The fractions contained correct proteins were pooled together.  

4) Run anion-exchange chromatography with MonoQ column on an FPLC system. 

Inject 5 mL of sample each time. Run with Tris-HCl buffer at pH 8. Use a NaCl 

gradient of 1%-per-mL increase to elute proteins. The fractions containing target 

proteins were pooled together.  
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9. SPR analysis of NLV/GIL-specific TCR binding to NLV/GIL-HLA-A2 

using Biacore T100 instrument 

Running buffer: 

 1x PBS  

 50 mM PBS, pH 7.4 

 150 mM NaCl 

 0.05% Surfactant P-20 

1) Insert a SA Biacore sensor chip into the chip cassette.  

2) Prime the system with the running buffer. 

3) Immobilization of NLV/GIL-HLA-A2: dilute the 2 mg/mL NLV/GIL-HLA-A2 

solution to 2 μg/mL using 1x PBS buffer. Open manual control and set the flow rate 

at 10 μL/min. Stop injection when ~1000 RU NLV/GIL-HLA-A2 are immobilized on 

flow cell 2 or 3. Flow cell 1 is left for blank.  

4) Inject of NLV/GIL-specific TCRs: set flow rate at 10 μL/min. For a binding cycle of 

equilibrium measurement, inject each concentration of TCR for 120-180 sec. 

Dissociation time is set to 60 sec. The highest concentration should be more than 10 

times the estimated KD. Do 1:2 serial dilutions with PBS for 6-8 more concentrations.  

5) Fit the equilibrium RU with concentration and obtain KD via BiaEvaluation 3000 

software.  

 

10.  Protein analysis 

10.1 SDS-PAGE to check the purity of protein samples 
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1) Prepare non-reduced samples by mixing 2 μL protein and 2 μL 2x Laemmli 

sample buffer. For preparing reduced samples, add an extra 0.5 μL 1 M DTT.  

2) Heat samples at 100 ⁰C for 5 min.  

3) Carefully load 4 μL sample into each well of the sample applicator.  

4) Set up a 20% homogeneous PhastGel on the PhastSystem unit. Insert the buffer 

strips. Slide in the sample applicator.  

5) Close the lid and run the preset program for 20% PhastGel.  

Ethanol-based fast Coomassie staning: 

 Coomassie blue stain 

50% Ethanol  50 mL  

0.25% Coomassie R250 0.31 g  

40% H2O 40 mL Total  

10% Acetic acid 10 mL 100 mL 

Mix everything else before adding acetic acid. Filter to remove undissolved chemicals.  

 Fixing solution 

50% Ethanol  250 mL  

7% Acetic acid 35 mL Total 

43% H2O 215 mL 500 mL 

 Stain/Destain solution 

5% Ethanol  25 mL  

7.5% Acetic acid 37.5 mL Total 

87.5% H2O 447.5 mL 500 mL 
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Preserving solution 

5% Ethanol  50 mL  

10% Acetic acid 100 mL Total 

85% H2O 850 mL 1 L 

1) Make the staining solution by adding 1 mL Coomassie blue stain to 100 mL 

Stain/Destain solution.  

2) Add 100 mL fixing solution to cover gel.  

3) Microwave both for 1min.  

4) Transfer the gel into the staining solution and put on a rocking shelf.  

5) Bands can be seen after 10 min and will become darker if staining is continued.  

6) Destain if needed with the Stain/Destain solution. Or directly transfer into preserving 

solution for destaining and preserving.  

10.2 UV spectrometry to determine protein concentration  

1) Use the buffer of the protein as blank.  

2) Dilute the protein samples X times with same buffer until the measured A280 is in the 

range of 0.1 to 1.  

3) Check the value of absorbance parameters for each protein and calculate the 

concentration of a protein in mg/mL or M using the following two equations:    

[𝑝𝑟𝑜𝑡𝑒𝑖𝑛](𝑚𝑔 𝑚𝐿⁄ ) = 𝐴280 × 𝑋 × (𝑚𝑔 𝑚𝐿⁄  𝑝𝑒𝑟 𝑂𝐷280) 

           [𝑝𝑟𝑜𝑡𝑒𝑖𝑛](𝜇𝑀) = 𝐴280 × 𝑋 × 106 ÷ 𝐸𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

 

11.  Co-crystallization of TCR and peptide-HLA-A2 

1) Concentrate both TCR and peptide-HLA-A2 to 10 mg/mL. 

2) Mix TCR and peptide-HLA-A2 at a 1:1 molar ratio.  
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3) Set up sitting-drop crystallization trials using the available commercial crystal screening 

kits, including Wizard I, II, III, IV (Rigaku system), Index and PEG/Ion screens. Each 

well from a 96 well plate received 80 μL of crystallization solution; 0.2 μL of protein 

solution was mixed with 0.2 μL crystallization solution using a Mosquito robot.  

4) Seal the wells using cover slips and store crystal plates at room temperature in a 

disturbance-free place.  

5) Check the plates for crystal formation every 2 days.  

 

12. Optimization of crystallization conditions 

Since only the C7-NLV-HLA-A2 complex crystallized using commercial screens, we 

developed in-house crystal screens based on previously reported TCR-pMHC crystallization 

conditions. To date, most TCR-pMHC complex crystals have been grown from PEG 3000-

8000 and pH 6-8. Thus, we set matrices to exhaustively array one PEG at 20% concentration 

(v/v) with eight pH conditions from 6-8.5 and eleven additives (salts). Specifically, C25-

NLV-HLA-A2 crystals were grown in conditions containing 20% PEG 3000, imidazole 

(pH8.0) 0.1 M and 0.2M Ca(CH3COO)2. F6-GIL-HLA-A2 crystals were grown in 20% PEG 

3350 and imidazole (pH8.0) 0.1 M.  F50-GIL-HLA-A2 crystals were grown in 20% PEG 

3350, imidazole (pH8.0) 0.1 M and 0.2M C3H2O4Na2.  
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PEG 3000 20% (v/v) 

Additives  (0.2 M) 

Buffer pH (0.1M)  Ca(CH3COO)2 KHCOO KBr NH4 CH3COO C3H2O4Na2 MgCl2 CaCl2 Li2SO4 NH4SO4 NaCl LiCl 

Cacodylate (pH6.0) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

Cacodylate (pH6.5) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

MES (pH 6.5) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

HEPES (pH7.0) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

HEPES (pH7.5) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 

Imidazole (pH 8.0) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Tris-HCl (pH 8.0) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

Tris-HCl (pH 8.5) H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 

 

 

PEG 3350 20% (v/v) 

Additives  (0.2 M) 

Buffer pH (0.1M)  Ca(CH3COO)2 KHCOO KBr NH4 CH3COO C3H2O4Na2 MgCl2 CaCl2 Li2SO4 NH4SO4 NaCl LiCl 

Cacodylate (pH6.0) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

Cacodylate (pH6.5) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

MES (pH 6.5) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

HEPES (pH7.0) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

HEPES (pH7.5) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 

Imidazole (pH 8.0) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Tris-HCl (pH 8.0) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

Tris-HCl (pH 8.5) H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 
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PEG 4000 20% (v/v) 

Additives  (0.2 M) 

Buffer pH (0.1M)  Ca(CH3COO)2 KHCOO KBr NH4 CH3COO C3H2O4Na2 MgCl2 CaCl2 Li2SO4 NH4SO4 NaCl LiCl 

Cacodylate (pH6.0) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

Cacodylate (pH6.5) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

MES (pH 6.5) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

HEPES (pH7.0) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

HEPES (pH7.5) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 

Imidazole (pH 8.0) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Tris-HCl (pH 8.0) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

Tris-HCl (pH 8.5) H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 

 

 

 

PEG 6000 20% (v/v) 

Additives  (0.2 M) 

Buffer pH (0.1M)  Ca(CH3COO)2 KHCOO KBr NH4 CH3COO C3H2O4Na2 MgCl2 CaCl2 Li2SO4 NH4SO4 NaCl LiCl 

Cacodylate (pH6.0) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

Cacodylate (pH6.5) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

MES (pH 6.5) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

HEPES (pH7.0) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

HEPES (pH7.5) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 

Imidazole (pH 8.0) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Tris-HCl (pH 8.0) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

Tris-HCl (pH 8.5) H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 
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PEG 8000 20% (v/v) 

Additives  (0.2 M) 

Buffer pH (0.1M)  Ca(CH3COO)2 KHCOO KBr NH4 CH3COO C3H2O4Na2 MgCl2 CaCl2 Li2SO4 NH4SO4 NaCl LiCl 

Cacodylate (pH6.0) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

Cacodylate (pH6.5) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

MES (pH 6.5) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

HEPES (pH7.0) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 

HEPES (pH7.5) E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 

Imidazole (pH 8.0) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Tris-HCl (pH 8.0) G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

Tris-HCl (pH 8.5) H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 

 

 

 

 

13. Flash freezing and storage of protein crystals 

1) Make 100 μL of cryoprotectant solution containing all the ingredients of crystallization 

solution plus 20% glycerol. 

2) Fill a dewar with liquid nitrogen and immerse a CryoPuck in liquid nitrogen slowly.  

3) Select a right size of crystal loop to fish out target crystals and transfer crystals into 

cryoprotectant solutions for a few seconds.  

4) Transfer the cryo-protected crystals into liquid nitrogen immersed CryoPuck. 

5) After filling the Puck space with 16 crystals, cap the Puck with a Puck Wand.  

6) Insert the CryoPuck into a CryoPuck Carrier and put the carrier back in a dry shipper 

filled with liquid nitrogen. 

7) The dry shipper is then ready to ship to synchrotron facilities. 

 



120 
 

14.  X-ray data collection and processing 

All X-ray diffraction data were collected at synchrotron facilities. C25-NLV-HLA-A2 and C7-

NLV-HLA-A2 datasets were collected at beamline 22ID of the Advanced Photon Source (APS), 

Argonne National Laboratory with a MAR 300 CCD detector. F6-GIL-HLA-A2 diffraction 

datasets were collected at beamline 24ID-E of the Advanced Photon Source, Argonne National 

Laboratory with an ADSC Q315 CCD detector. F50-GIL-HLA-A2 diffraction datasets were 

collected at beamline 12-2 of the Stanford Synchrotron Radiation Lightsource (SSRL) with an 

MARmosaic 325 CCD detector. Data processing was performed with the program HKL-2000 

and scaled to 2.1 Å, 3.5 Å, 2.1 Å and 1.7 Å resolutions.   

 

15. Molecular replacement and structure refinement 

Molecular replacement was performed using the program Phenix. Details of search steps are 

discussed in previous chapters. A correct solution should lead to an Rfree of less than 50%. 

Structure refinement was carried out by Phenix initially, followed by manual adjustment. Details 

and statistics of refinement are discussed in previous chapters. All complex structures gave 

reasonable Rwork and Rfree in the end.   

 

16. Structure analysis and figure preparation 

Solvent-accessible surface areas were calculated using the program PISA with a probe 

radius of 1.4 Å. Contacts were identified by CONTACT using a cut-off distance of 4.0 Å. All 

structure figures were prepared using PyMOL, a powerful and versatile molecular graphics 

program written by Warren L. DeLano. 
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