
ABSTRACT

Title of dissertation: CONTEXT MODELS FOR
UNDERSTANDING IMAGES AND VIDEOS

Varun K. Nagaraja
Doctor of Philosophy, 2016

Dissertation directed by: Professor Larry S. Davis
Department of Computer Science.

A computer vision system that has to interact in natural language needs to

understand the visual appearance of interactions between objects along with the

appearance of objects themselves. Relationships between objects are frequently

mentioned in queries of tasks like semantic image retrieval, image captioning, visual

question answering and natural language object detection. Hence, it is essential to

model context between objects for solving these tasks. In the first part of this thesis,

we present a technique for detecting an object mentioned in a natural language query.

Specifically, we work with referring expressions which are sentences that identify a

particular object instance in an image. In many referring expressions, an object is

described in relation to another object using prepositions, comparative adjectives,

action verbs etc. Our proposed technique can identify both the referred object and

the context object mentioned in such expressions.

Context is also useful for incrementally understanding scenes and videos. In

the second part of this thesis, we propose techniques for searching for objects in an

image and events in a video. Our proposed incremental algorithms use the context

from previously explored regions to prioritize the regions to explore next. The

advantage of incremental understanding is restricting the amount of computation

time and/or resources spent for various detection tasks. Our first proposed technique

shows how to learn context in indoor scenes in an implicit manner and use it for

searching for objects. The second technique shows how explicitly written context

rules of one-on-one basketball can be used to sequentially detect events in a game.

CONTEXT MODELS FOR UNDERSTANDING IMAGES AND
VIDEOS

by

Varun K. Nagaraja

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Rama Chellappa
Professor David Jacobs
Professor Hal Daumé III
Professor Tom Goldstein

c© Copyright by
Varun K. Nagaraja

2016

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Larry Davis.

He provided me ample freedom during my Ph.D to explore many problems while

providing valuable guidance which saved me from pursuing unfruitful ideas. His

feedback has greatly helped me in improving my ability to clearly convey ideas in

papers and presentations.

I thank Vlad Morariu for patiently listening to all my crazy ideas, provid-

ing insightful comments during our discussions and also motivating me when I got

stuck. During the initial phase of my graduate study, I got to work with Wael Abd-

Almageed and I am grateful for the opportunity he provided me. I am also thankful

to Prof. Hal Daumé, for helping with his code which I used in my work on object

searching, and Prof. David Jacobs, for letting me sit in his group meetings during

the beginning of my graduate study and also providing advice with an extremely

friendly attitude.

I got to spend two summers at Amazon working on the wonderful Echo with

Shiv Vitaladevuni and his team. I learned a lot from him on how to methodically

solve problems, and got a glimpse of what it takes to build an amazing product.

My graduate student life would not have gone smooth without the help of

Jenny, Fatima, Brenda, Sharron and Arlene. They were always quick in helping me

with any administrative issue. I thank Prof. Samir Khuller and the members of the

CS department for supporting our enthusiasm to create a social environment in the

department.

ii

I have been extremely lucky to have lived with amazing roommates - Rajesh,

Ashish, Prathyusha, Vivek, Arvind and Puneeth. I can’t thank them enough for

taking care of me. I also found great friends in the lab and the department - Ejaz,

Sravanthi, Bharat, Abhishek, Preeti and Snigdha. They provided invaluable help

and feedback on the many problems that I worked on. It was a lot of fun spending

time with them while working on course projects, and also outside of school. I am

also thankful to Aleks, Kotaro, Christoph, Zamira, Aishwarya, Vikas, Matt, Austin,

and Angjoo for all the good times we had playing board games, having thanksgiving

dinners, watching movies, and spending nights in DC.

My parents and sister have encouraged me in all of my pursuits and stood by

me through difficult times. I am extremely grateful for their love and support.

iii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Object detection using natural language queries 3
1.2 Sequential object detection in indoor scenes 3
1.3 Sequential event detection in videos 5

2 Modeling Context Between Objects for Referring Expression Understanding 6
2.1 Related Work . 9
2.2 Modeling context between objects . 11
2.3 Experiments . 18

2.3.1 Datasets . 18
2.3.2 Implementation details . 19
2.3.3 Comparison of different techniques 20
2.3.4 Ablation experiments . 23

2.4 Conclusions . 28

3 Searching for Objects using Structure in Indoor Scenes 29
3.1 Related Work . 32
3.2 Sequential Exploration . 33

3.2.1 Data subset selection . 38
3.3 Experiments and Results . 40

3.3.1 Dataset . 40
3.3.2 Sequential Exploration . 41

3.4 Conclusion . 43

4 Feedback Loop between High Level Semantics and Low Level Vision 48
4.1 Related Work . 51
4.2 Incremental Inference with Feedback Loop 53

4.2.1 Clusters under closed world assumption 54
4.2.2 Detection scoring function . 57

4.3 Experiments . 61

iv

4.3.1 One-on-One basketball dataset 61
4.3.2 Hypothesizing candidate events 62
4.3.3 Incrementally adding events with feedback loop 63
4.3.4 Effect of initial threshold . 67

4.4 Conclusion . 68

5 Feature Selection using PLS regression and Optimal Experiment Design 70
5.1 Related Work . 72
5.2 Preliminaries . 74

5.2.1 Partial Least Squares . 74
5.2.2 Notation . 77

5.3 Optimal Loadings Technique . 77
5.3.1 Optimal Experiment Design for PLS 77
5.3.2 PLS models with Maximum Relevance and Minimum Redun-

dancy . 82
5.3.3 Approximation for the D-Optimal Loadings criterion 84

5.4 Analysis of the relationship between PπP
>
π and Π>PP>Π 89

5.5 Experiments and Results . 93
5.5.1 Datasets . 94
5.5.2 Comparison with other Feature Selection Techniques 94

5.6 Conclusion . 97

6 Conclusion 99

A Derivation of Scoring Functions for Feedback Loop Inference 101
A.1 Linear Programming Relaxation of the MAP problem 102
A.2 Block Coordinate Descent in the Dual 105
A.3 Upper Bound Score - Proof of Proposition 1 106
A.4 Blind Score - Proof of Proposition 2 109
A.5 Message Update Equations . 111

Bibliography 117

v

List of Figures

2.1 Context between objects is specified using spatial relationships be-
tween regions such as “above”, “to the right”, “to the left” etc. It
is also represented using interactions between objects such as “rid-
ing”, “holding”, “sitting”, etc. When there are multiple instances of
the same type of object, context helps in referring to the appropriate
instance of that object . 7

2.2 We identify the referred region along with its supporting context re-
gion. We start with a set of region proposals in an image and consider
pairs of the form {region, context region}. The entire image is also
considered as a potential context region. The probability is evaluated
using an LSTM which takes as input region CNN features, context
region CNN features, bounding box features and an embedding vector
for words in the referring expression. All the LSTMs share the same
weights. The probability of a referring expression for an individual
region is obtained by finding the maximum over its pairs with con-
text regions. The noisy-or function can be used instead of the max
function. After pooling over context regions, the top scoring region
(along with its context region) is selected as the referred region 13

2.3 Given a set of region proposals in an image, we construct positive and
negative bags containing pairs of regions. In this example, the plant
in Region1 is the referred object. Hence the positive bag consists
of pairs of the form (Region1,Ri) where Ri is one of the remaining
regions. The negative bag consists of pairs of the form (Ri, Rj) where
the first region Ri can be any region except Region1 and the second
region Rj can be any region including Region1 16

2.4 Google RefExp results. We show results from the model trained with
positive and negative bag margin. We compare the grounding be-
tween using image context only and pooling the context from all
regions using noisy-or. A box with dashed line indicates the context
region. We first identify the referred region using noisy-or function.
The context region is then selected as the one which produces maxi-
mum probability with the referred region. The last row shows images
with misplaced context regions . 25

vi

2.5 Google RefExp failure cases. We observe errors when there is wrong
grounding of attributes or when there is incorrect localization of con-
text region . 25

2.6 UNC RefExp results from TestB partition. We show results from
the model trained with negative bag margin. We observe that our
method can identify the referred region even when the context object
is not explicitly mentioned . 26

2.7 UNC RefExp failure cases from TestA partition. We show results
from the model trained with negative bag margin. This partition
contains terse referring expressions. Most of the time, the referring
expressions do not uniquely identify the people 26

2.8 Spatial likelihood of referred region given a context region. We fix the
context region and evaluate the likelihood of the referred object being
present in various locations of the image. When the entire image is
used as context, the high likelihood regions do not necessarily overlap
with the location of the referred region. However when the context
region is fixed, the high likelihood regions overlap the referred region 27

3.1 Searching for a table. Each step in the above sequence shows ex-
ploration of three additional regions in the image. The search strategy
learned using our method utilizes the room structure and the presence
of other objects in the image to discover the table region much earlier
than using the ranked sequence from an object proposal technique. . 31

3.2 Average Precision (AP) vs. number of processed regions. A
classifier trained for a query class with unary scene context features
alone can achieve a significantly high average precision by processing
very few regions. Classes like bed, nightstand and sofa need only 20-
25% of the regions when compared to the proposal ranking sequence.
A search strategy trained for a query class using both object-object
context and scene-context features further improves the performance
for classes like counter, lamp, pillow and sofa. While the plots show
sequential processing of all 100 regions, the stopping criterion for
practical situations can be chosen based on the number of regions at
which we obtain the maximum AP. 44

3.3 Scene+Objects Context: Comparison of background selec-
tion techniques. We see that the search strategy trained with a
background subset selected using determinant maximization performs
better or equally well as the strategy trained with a background sub-
set selected randomly. But the main advantage of the determinant
maximization based subset selection is the repeatability of experi-
ments unlike the random subset selection. 45

vii

3.4 Scene Context: Comparison of background selection tech-
niques. We see that the performance of the classifier trained with a
background subset selected using determinant maximization is com-
parable to that of the classifier trained with a random background
subset. But the main advantage of the determinant maximization
based subset selection is the repeatability of experiments unlike the
random subset selection. 46

3.5 Search results for different queries. We compare three strate-
gies - ranked sequence obtained from the region proposal technique
(unaware of query class), ranked sequence obtained from a classifier
trained for a query class using scene context features alone and se-
quence produced by a search strategy trained for a query class using
both scene context and object-object context features. Red boxes
indicate regions labeled as query class, yellow boxes indicate regions
other than the query class and blue boxes indicate regions labeled
as background. The images show a state in the search sequence of
different methods at a certain number of regions processed. We can
see that our strategy which uses both scene context and object-object
context can locate an object of the query class earlier than the other
methods. 47

4.1 The shared nodes between clusters in a partitioning of a Markov
network. The set f contains active detections that are currently in
the network and xf are the nodes that are instantiated over only
the detections from f . The set of factors θf (xf) is defined over the
nodes xf . Similarly, g is the set of detections to be unclamped at an
iteration and h is the set of detections that are still clamped to false. 56

4.2 Visualization of the Feedback Loop 60
4.3 PR curves for the newly hypothesized events with continuous confi-

dence measures. The red star shows the operating point of Morariu
et al. [1] in their feed-forward approach. 61

4.4 Feedback based scores achieve better solutions with fewer detections;
We apply an initial threshold on the Clear events and incrementally
add the remaining events using the feedback based scores. We mea-
sure the exact MAP value of the Markov network along with the f1
score corresponding to the ground truth. The plots start at the same
initial value for all the five scoring methods since the initial network
contains the same set of events. Our feedback based scores achieve
better solutions with fewer detections than the baselines - observation
score and random score. 64

viii

4.5 We apply threshold on both the Rebound and Clear events for initial
network and then incrementally add both events at every iteration.
We still see that the exact score and the upper bound score reach bet-
ter solutions with fewer detections than the observation score. How-
ever, the blind score falls slightly below the observation score since it
depends only on the current network and the context in the current
network is weak due to fewer events. 65

4.6 Effect of initial threshold for the Rebound event in video 4; The
confidence scores for the Clear events are scaled between 0.5 to 1 and
the Rebound events between -0.25 to 0.1. We fix the initial threshold
for Clear event at 0.75 and vary the threshold for Rebound from -0.25
to 0. We observe that a higher threshold for Rebound event in the
initial network decreases the MAP value that is achieved in the first
iteration of adding Rebound and Clear events to the initial network.
The blind score continues to perform poorly in later iterations at
higher initial threshold due to weak context in the initial network.
However, the exact score and the upper bound score are still stable
with respect to the initial threshold. 68

5.1 Relationship between the original criterion log det[PπP
>
π] and the ap-

proximate criterion log det[Π>PP>Π], that are obtained by applying
PLS for varying number of features, k, in a subset π. The approximate
and original criterions are positively correlated for the real datasets.
Hence, by maximizing the approximate criterion we are not too far
away from the maximum of the original criterion. 89

5.2 Classification performance with feature subsets: The D-Optimal Load-
ings criterion performs better than others on the MNIST and the
CMU PIE datasets and performs equally well with the mRMR tech-
nique on the ORL and the Arcene datasets. It also shows a consistent
performance especially when the number of selected features is small. 95

5.3 Feature points selected by D-Optimal Loadings, Regression Coeffi-
cients, Relief-F, Fisher Score and mRMR techniques. The features
selected by D-Optimal Loadings are well distributed across the sig-
nificant regions of the image unlike others that tend to get clustered
or lie in noisy regions. 97

ix

Chapter 1: Introduction

Many environments possess a pattern in spatial and temporal arrangement of

their constituent objects. For example, objects in a room of a house are placed in a

characteristic layout, events in a basketball game follow strict rules of the game. The

presence of such structure can have an effect on the perception of an individual object

independent of its attributes. Such an influence is called the context effect [2–5].

Context has been found to affect the probability of correctly recognizing an

object. Palmer et al. [2] performed user studies to evaluate the effect of context

and identified that the probability of correctly recognizing an object is higher with

appropriate context and lower with inappropriate context. Context has been useful

in tasks like semantic segmentation [6–8], object detection [3, 9–15], human pose

estimation [16, 17], action recognition [18, 19] and event recognition [1, 20, 21]. In

many of these tasks, especially object detection, context mostly acts as an addi-

tional source of information. It is used to enhance the confidence of recognition

in poor viewing conditions like occlusion, low resolution etc. [3]. However, there

are situations where understanding context is essential. As humans and computers

begin to interact using natural language, a vision system must be able to visually

ground nouns and verbs along with prepositions and comparative adjectives. Exam-

1

ples of such situations arise in tasks like image captioning [22–24], semantic image

retrieval [25, 26], visual question answering [27, 28] and natural language object de-

tection [29–32]. In these tasks, we are interested in relationships of objects and high

level understanding of a scene and hence context is not just an additional source of

information.

Context is also useful in few other ways as an additional source of information.

Biederman et al. [33] evaluated the effect of context in searching for an object

and found that the less time is taken for locating a target in appropriate context.

Torralba [3] also noted that context can be used in “cutting down on the number of

object categories, scales, locations and features that need to be considered”. Context

can help in the task of searching [34–36] where the goal is to locate an object or an

event under a restricted budget of time and/or computational resources (Ex.: low

power mobile devices). A typical search algorithm works sequentially and can use

context from previously explored regions to prioritize the regions to process next.

Another use of context is to exploit it as an automatic supervisory signal for learning

visual representations in an unsupervised manner [37,38].

In this thesis we explore the two main uses of context discussed above. We

show how context helps in understanding natural language queries for detecting

objects in images. We also show how context can be used to search for objects and

events under restricted computational budget.

2

1.1 Object detection using natural language queries

In chapter 2, we propose a technique [39] that integrates context between ob-

jects to understand referring expressions. Referring expressions are natural language

queries that identify a particular object in an image. Such expressions usually de-

scribe an object using properties of the object and relationships of the object with

other objects. Our approach uses an LSTM to learn the probability of a referring

expression, with input features from a region and a context region. The context

regions are discovered using multiple-instance learning (MIL) since annotations for

context objects are generally not available for training. We utilize max-margin

based MIL objective functions for training the LSTM. We perform experiments on

the Google RefExp and UNC RefExp datasets and show that modeling context be-

tween objects provides better performance than modeling only object properties.

We also qualitatively show that our technique can ground a referring expression to

its referred region along with the supporting context region.

1.2 Sequential object detection in indoor scenes

In chapter 3, we propose a search technique [40] for localizing objects in indoor

scene images. In situations where we are interested in identifying the location of an

object of a particular class, a passive computer vision system would process all the

regions in an image to finally output a small region. The low level processes like

feature extraction from regions can be computationally expensive and it is wasteful

3

to run the detectors throughout the video/image given that most of their results

will be discarded after thresholding. Instead, if we use the structure in the scene,

we can search for objects without processing the entire image. Our proposed search

technique sequentially processes image regions such that the regions that are more

likely to correspond to the query class object are explored earlier. We frame the

problem as a Markov decision process and use an imitation learning algorithm to

learn a search strategy. Since structure in the scene is very essential to perform

an intelligent search, we work with indoor scene images as they contain both scene

context and spatial context between objects in the scene.

One of the issues that arises during the training of a search strategy is the

availability of a large number of background regions when compared to the number

of foreground regions. This makes the training time slow and hence requires selec-

tion of a subset of the background regions. We perform data subset selection using

ideas from Optimal Experiment Design (OED). Given a linear regression model, the

goal of OED is to select samples such that the variance in the regression coefficients

is minimized. A smaller variance in the coefficients indicates that the prediction

error on the test set is low and hence the linear regression model trained with such

a subset does not overfit the training data. We have also applied the theory of

OED to feature selection. In chapter 5, we show that the variance of the Partial

Least Squares (PLS) regression can be minimized by employing the OED criteri-

ons on the loadings covariance matrix obtained from PLS [41]. We also provide an

intuitive viewpoint to the technique by deriving the A-optimality version of the Op-

timal Loadings criterion using the properties of maximum relevance and minimum

4

redundancy for PLS models.

1.3 Sequential event detection in videos

In chapter 4, we propose a feedback based sequential technique [42] to de-

tect events in one-on-one basketball videos. Typically, high level semantic analysis

involves constructing a Markov network over the low level detections to encode re-

lationships between them. In complex higher order networks (e.g. Markov Logic

Networks), each low level detection can be part of many relationships and the net-

work size grows rapidly as a function of the number of detections. As the network

size increases, there is an exponential increase in the amount of computational re-

sources required for instantiating the network and also perform inference. Hence

we propose a sequential technique to keep the network size small. The network

is initialized with detections above a high confidence threshold and then based on

the high level semantics in the initial network, relevant detections are incrementally

selected from the remaining ones that are below the threshold. We perform experi-

ments on one-on-one basketball videos that uses Markov Logic Networks to encode

the rules of the game. We show three different ways of selecting detections which are

based on three scoring functions that bound the increase in the optimal value of the

objective function of network, with varying degrees of accuracy and computational

cost.

5

Chapter 2: Modeling Context Between Objects for Referring Expres-

sion Understanding

In image retrieval and human-robot interaction, objects are usually queried by

their category, attributes, pose, action and their context in the scene [26]. Natural

language queries can encode rich information like relationships that distinguish ob-

ject instances from each other. In a retrieval task that focuses on a particular object

in an image, the query is called a referring expression [29, 43]. When there is only

one instance of an object type in an image, a referring expression provides additional

information such as attributes to improve retrieval/localization performance. More

importantly, when multiple instances of an object type are present in an image, a

referring expression distinguishes the referred object from other instances, thereby

helping to localize the correct instance. The task of localizing a region in an image

given a referring expression is called the comprehension task [31] and its inverse

process is the generation task. In this work we focus on the comprehension task.

Referring expressions usually mention relationships of an object with other

regions along with the properties of the object [44, 45] (See Figure 2.1). Hence, it

is important to model relationships between regions for understanding referring ex-

pressions. However, the supervision during training typically consists of annotations

6

The plant on the right side of the TV

Umbrella held by a girl in red coat

A bed with two beds to the left of it

Umbrella held by a woman wearing a blue jacket

A person on a black motorcycle

A man riding a white sports bike

A person sitting on a couch watching TV

A man sitting on a table watching TV

Computer monitor above laptop screen

Referred Object Context Object Referred Object Context Object

Figure 2.1: Context between objects is specified using spatial relationships between
regions such as “above”, “to the right”, “to the left” etc. It is also represented using
interactions between objects such as “riding”, “holding”, “sitting”, etc. When there
are multiple instances of the same type of object, context helps in referring to the
appropriate instance of that object

of only the referred object. While this might be sufficient for modeling attributes

of an object mentioned in a referring expression, it is difficult to model relation-

ships between objects with such limited supervision. Previous work on referring

expressions [29, 31,32] generally ignores modeling relationships between regions. In

contrast, we learn to map a referring expression to a region and its supporting con-

text region. Since the bounding box annotations of context objects are not available

for training, we learn the relationships in a weakly supervised framework.

We follow the approach of Mao et al. [31] to perform the comprehension task.

The probability of a referring expression is measured for different region proposals

and the top scoring region is selected as the referred region. The input features in

our model are obtained from a {region, context region} pair where the image itself is

7

considered as one of the context regions. The probability of a referring expression for

a region can then be pooled over multiple pairs using the max function or the noisy-or

function. We use an LSTM [46] for learning probabilities of a referring expression

similar to Mao et al. [31]. Since the bounding boxes for context objects are not

known during training, we train using a Multiple-Instance Learning (MIL) objective

function. The max-margin based LSTM training of Mao et al. [31] is extended

to max-margin MIL training for LSTMs. The first formulation is similar to MI-

SVM [47] which has only negative bag margin and the second formulation is similar

to mi-SVM [47] which has both positive and negative bag margins. Experiments are

performed on the Google RefExp dataset [31] and UNC RefExp dataset [48]. Our

results show that modeling objects in context for the comprehension task provides

better performance than modeling only object properties. We also qualitatively

show that our technique can ground the correct context regions for those referring

expressions which mention object relationships.

Our contributions are:

• We propose a technique that integrates context between objects to understand

referring expressions.

• We demonstrate that training an LSTM by multiple-instance learning is effec-

tive when the annotations for context objects are not available.

• We show that modeling context between objects provides better performance

than modeling only object properties.

8

2.1 Related Work

The two tasks of localizing an object given a referring expression and gener-

ating a referring expression given an object are closely related. Some image caption

generation techniques [49, 50] first learn to ground sentence fragments to image re-

gions and then use the learned association to generate sentences. Since the caption

datasets (Flickr30k-original [22], MS-COCO [23]) do not contain the mapping from

phrases to object bounding boxes, the visual grounding is learned in a weakly super-

vised manner. Fang et al. [51] use multiple-instance learning to learn the probability

of a region corresponding to different words. However, the associations are learned

for individual words and not in context with other words. Karpathy et al. [24] learn

a common embedding space for image and sentence with an MIL objective such

that a sentence fragment has a high similarity with a single image region. Instead of

associating each word to its best region, they use an MRF to encourage neighboring

words to associate to common regions.

Attention based models implicitly learn to select or weigh different regions in

an image based on the words generated in a caption. Xu et al. [52] propose two types

of attention models for caption generation. In their stochastic hard attention model,

the attention locations vary for each word and in the deterministic soft attention

model, a soft weight is learned for different regions. Neither of these models are well

suited for localizing a single region for a referring expression. Rohrbach et al. [53]

learn to ground phrases in sentences using a two stage model. In the first stage, an

attention model selects an image region and in the second stage, the selected region

9

is trained to predict the original phrase. They evaluate their technique on the Flickr

30k Entities dataset [50] which contains mappings for noun phrases in a sentence to

bounding boxes in the corresponding image. The descriptions in this dataset do not

always mention a salient object in the image. Many times the descriptions mention

groups of objects and the scene at a higher level and hence it becomes challenging

to learn object relationships.

Kong et al. [54] learn visual grounding for nouns in descriptions of indoor

scenes in a supervised manner. They use an MRF which jointly models scene classi-

fication, object detection and grounding to 3D cuboids. Johnson et al. [30] propose

an end-to-end neural network that can localize regions in an image and generate

descriptions for those regions. Their model is trained with full supervision with

region descriptions present in the Visual Genome dataset [55].

Most of the works on referring expressions learn to ground to a single region by

modeling object properties and image level context. Rule based approaches to gen-

erating referring expressions [56,57] are restricted in the types of properties that can

be modeled. Kazemzadeh et al. [29] designed an energy optimization model for gen-

erating referring expressions in the form of object attributes. Hu et al. [32] propose

an approach with three LSTMs which take in different feature inputs such as region

features, image features and word embedding. Mao et al. [31] propose an LSTM

based technique that can perform both tasks of referring expression generation and

referring expression comprehension. They use a max-margin based training method

for the LSTM wherein the probability of a referring expression is high only for the

referred region and low for every other region. This type of training significantly

10

improves performance. We extend their max-margin approach to multiple-instance

learning based training objectives for the LSTM. Unlike previous work, we model

context between objects for comprehending referring expressions.

2.2 Modeling context between objects

Given a referring expression S and an image I, the goal of the comprehension

task is to predict the (bounding box of the) region R∗ that is being referred to. We

adopt the method of Mao et al. [31] and start with a set of region proposals (C)

from the image. We learn a model that measures the probability of a region given

a referring expression. The maximum scoring region R∗ = arg maxR∈C p(R|S, I) is

then selected as the referred region. Mao et al. [31] rewrite the scoring function as

R∗ = arg maxR∈C p(S|R, I) by applying Bayes’ rule and assuming a uniform prior

for p(R|I). This implies that comprehension can be accomplished using a model

trained to generate sentences for an image region.

Many image and video captioning techniques [49,58,59], learn the probability

of a sentence given an image or video frame using an LSTM. The input features to

the LSTM consist of a word embedding vector and CNN features extracted from the

image. The LSTM is trained to maximize the likelihood of observing the words of

the caption corresponding to the image or the region. This model is used by Mao et

al. [31] as the baseline for referring expression comprehension. Along with the word

embedding and region features, they also input CNN features of the entire image

and bounding box features to act as context. They further propose a max-margin

11

training method for the LSTM to enforce the probability of a referring expression

to be high for the referred region and low for all other regions. For a referring

expression S, let Rn ∈ C be the true region and Ri ∈ C \ Rn be a negative region;

then the training loss function with a max-margin component is written as

J(θ) = −
∑

Ri∈C\Rn


log p(S|Rn, I, θ)

−λmax(0,M − log p(S|Rn, I, θ) + log p(S|Ri, I, θ)

 (2.1)

where θ are the parameters of the model, λ is the weight for the margin loss com-

ponent and M is the margin. The max-margin model has the same architecture as

the baseline model but is trained with a different loss function.

In the above model, the probability of a referring expression is influenced by the

region and only the image as context. However, many referring expressions mention

an object in relation to some other object (e.g., “The person next to the table”)

and hence it is important to incorporate context information from other regions

as well. One of the challenges for learning relationships between regions through

referring expressions is that the annotations for the context regions are generally

not available for training. However, we can treat combinations of regions in an

image as bags and use Multiple Instance Learning (MIL) to learn the probability

of referring expressions. MIL has been used by image captioning techniques [24,

25,51] to associate phrases to image regions when the ground-truth mapping is not

available.

We learn to map a referring expression to a region and its supporting context

12

Region4

Region3

Region1

Region2

max

max

LSTM

LSTM

The plant on the

right side of the TV

Region1

Region2

Region1

Region4

Region3

Region2

CNN Features

LSTM

Word Embedding

Region4

Region2

Region3

Region1

max

CNN Features

LSTM

LSTM

LSTM

Figure 2.2: We identify the referred region along with its supporting context region.
We start with a set of region proposals in an image and consider pairs of the form
{region, context region}. The entire image is also considered as a potential context
region. The probability is evaluated using an LSTM which takes as input region
CNN features, context region CNN features, bounding box features and an embed-
ding vector for words in the referring expression. All the LSTMs share the same
weights. The probability of a referring expression for an individual region is obtained
by finding the maximum over its pairs with context regions. The noisy-or function
can be used instead of the max function. After pooling over context regions, the
top scoring region (along with its context region) is selected as the referred region

region. We start with a set of region proposals in an image and consider pairs of the

form {region, context region}. The image is included as one of the context regions.

The probability of a referring expression is learned for pairs of regions where the

input features include visual features and bounding box features for both regions.

The probability of an individual region is then obtained by pooling from probabilities

of the region’s combinations with its potential context regions. After pooling, the

top scoring region (along with its context region) is selected as the referred region.

Figure 2.2 shows an overview of our system.

Let C = {I, R1, R2, . . . , Rn} be the set of candidate context regions which

13

includes the entire image, I, and other regions generated by the object proposal

algorithm. The minimum size of the context region set is one since it always includes

I and the model in that case would be equivalent to Mao et al. [31]. We now define

the probability of a sentence S given a region R as

p(S|R) = max
Ri∈C\R

p(S|R,Ri) (2.2)

This implies that the probability of a sentence given a region is defined as the

maximum probability obtained by any of the region’s combination with a context

region. The referred region can now be selected as the top scoring region from the

max-pooled probabilities.

R∗ = arg max
R∈C\I

{
max
Ri∈C\R

p(S|R,Ri)

}
(2.3)

The noisy-or function can be used instead of the max function in Equation 2.2.

Then the referred region is selected as

R∗ = arg max
R∈C\I

1−
∏

Ri∈C\R

(1− p(S|R,Ri))

 (2.4)

The noisy-or function can integrate context information from more than one pair of

regions and it is more robust to noise than the max function.

We learn the probability function p(S|Ri, Rj) using multiple-instance learning.

In our MIL framework, a positive bag for a referring expression consists of pairs of

regions of the form (Rt, Ri). The first element in the pair is the region Rt referred to

14

in the expression and the second element is a context region Ri ∈ C \Rt. A negative

bag consists of pairs of regions of the form (Ri, Rj) where Ri ∈ C \ Rt and Rj ∈ C.

Figure 2.3 shows an example of bags constructed for a sample referring expression.

An LSTM is used to learn the probability of referring expressions and we

define multiple-instance learning objective functions for training. Similar to the

max-margin training objective defined in Equation 2.1, we apply the max-margin

approach of MI-SVM and mi-SVM [47] here to train the LSTM. In MI-SVM, the

margin constraint is enforced on all the samples from the negative bag but only

on the positive instances from the positive bag. The training loss function with a

margin for the negative bag is given by

J ′(θ) = −
∑

Ri∈C\Rt,
Rj∈C


log p(S|Rt, θ)

−λN max(0,M − log p(S|Rt, θ) + log p(S|Ri, Rj, θ)

 (2.5)

The difference between the max-margin Equation 2.1 and Equation 2.5 is that the

probability of the referred region is now obtained from Equation 2.2 and the negative

samples are not just pairs of regions with the entire image.

The loss function in Equation 2.5 ignores potential negative instances in the

positive bag. We can attempt to identify the negative instances and apply a mar-

gin to those pairs as well. In mi-SVM, the labels for instances in positive bags are

assumed to be latent variables. The goal is to maximize the margin between all

positive and negative instances jointly over the latent labels and the discriminant

hyperplane. In many referring expressions, there is usually one other object men-

15

The plant on the right side of the TV

Region1

Region4

Region3

Region2

Positive Bag Negative Bag

Figure 2.3: Given a set of region proposals in an image, we construct positive and
negative bags containing pairs of regions. In this example, the plant in Region1 is
the referred object. Hence the positive bag consists of pairs of the form (Region1,Ri)
where Ri is one of the remaining regions. The negative bag consists of pairs of the
form (Ri, Rj) where the first region Ri can be any region except Region1 and the
second region Rj can be any region including Region1

tioned in context. We assume that there is only one positive pair in the positive

bag and assign a positive label for the instance with the maximum probability. The

remaining pairs in the positive bag are assigned a negative label. Without loss of

generality, let (Rt, Rc) be the positive instance from the positive bag. The training

loss function with margins for both positive and negative bags is given by,

J ′′(θ) = −
∑

Ri∈C\Rt,
Rj∈C


log p(S|Rt, Rc, θ)

−λN max(0,M − log p(S|Rt, Rc, θ) + log p(S|Ri, Rj, θ)


−

∑
Rk∈C\Rc


log p(S|Rt, Rc, θ)

−λP max(0,M − log p(S|Rt, Rc, θ) + log p(S|Rt, Rk, θ)

 (2.6)

In the training algorithm proposed by Andrews et al. [47] for mi-SVM, the latent

labels for instances in a positive bag are obtained in an iterative manner. The mi-

SVM algorithm iterates over two steps: use the current hyperplane to determine the

16

latent labels, then use the labels to train a new hyperplane. Since neural networks

are trained over multiple epochs of the data, the training process is similar to the

iterative algorithm used to train mi-SVM. During an epoch, the positive instance

(Rt, Rc) in the positive bag is determined as

Rc = arg max
Ri∈C\Rt

p(S|Rt, Ri) (2.7)

The parameter θ is updated by applying the loss function in Equation 2.6 with Rc

substituted into it. In the following epoch, Rc is updated using the model with

updated parameter θ.

The assumption that there is one positive instance in the positive bag holds

true when a referring expression uniquely identifies an object and its context object.

Such referring expressions are present in the Google RefExp dataset (e.g., “A white

truck in front of a yellow truck”). The UNC RefExp dataset contains referring ex-

pressions which do not always uniquely refer to an object with its context object

(e.g., “Elephant towards the back”). Hence the two different formulations (Equa-

tion 2.5 and Equation 2.6) harness different characteristics of referring expressions

between the two datasets.

17

2.3 Experiments

2.3.1 Datasets

We perform experiments on the Google RefExp dataset [31] and the UNC

RefExp dataset [48]. Both datasets contain referring expressions for images in the

Microsoft COCO dataset [23].

The dataset partition accompanying the current release of Google RefExp

dataset was created by randomly selecting 5000 objects for validation and 5000 ob-

jects for testing. This type of partitioning results in overlapping images between

training, validation and test sets. To avoid any overlap between the partitions, we

create our own partition for the training and validation sets. Our training partition

contains 23199 images with 67996 objects. Some objects have multiple referring

expressions and hence the total number of referring expressions is 85,408. The

validation partition contains 2600 images with 7623 objects and 9602 referring ex-

pressions. The results of the baseline and max-margin techniques did not differ

much between our partition and the Mao et al. [31] partition. However, we perform

experiments with our partition since we model context from many regions in an

image and that information should not leak into the test stage. We will make our

partition publicly available. The test set of this dataset has not been released yet.

Hence, we use 4800 referring expressions from the training set for validation.

The UNC RefExp dataset was collected by applying the ReferIt game [29] on

MS-COCO images. The training partition contains 16994 images, 42404 objects

18

and 120624 referring expressions. The validation partition contains 1500 images,

3811 objects and 10834 referring expressions. The testing partition contains two

splits. TestA partition contains 750 images, 1975 objects and 5657 person-centric

referring expressions. TestB partition contains 750 images, 1810 objects and 5095

object-centric referring expressions. While Mao et al. [31] create their own test

partition of the UNC RefExp data from a random subset of objects, we work with

the partitioning provided by Yu et al. [48].

The evaluation is performed by measuring the Intersection over Union (IoU)

ratio between a groundtruth box and the top predicted box for a referring expres-

sion. If the IoU >0.5, the prediction is considered a true positive and this is the

Precision@1 score. The scores are then averaged over all referring expressions.

2.3.2 Implementation details

Our neural network architecture is the same as Mao et al. [31]. We use an

LSTM to learn probabilities of referring expressions. The size of the hidden state

vector is 1024. We extract CNN features for a region and its context region using

the 16 layer VGGNet [60] pre-trained on the ImageNet dataset. We use the 1000

dimensional features from the last layer (fc8) of VGGNet and fine tune only the

last layer while keeping everything else fixed. The CNN features for each region are

concatenated with bounding box features of the form [xmin
W

, ymin
H
, xmax

W
, ymax

H
, Areabbox
Areaimage

]

where (W,H) are the width and height of the image. The resulting feature length for

both the region and the context region is 2010. We scale the features to lie between

19

-0.5 and 0.5 before feeding them into the LSTM. The scaling factors are obtained

from the training set. We use a vector embedding of size 1024 for the words in a

referring expression. The size of the vocabulary is 3489 and 2020 for the Google

RefExp and UNC RefExp datasets respectively. The vocabularies are constructed

by choosing words that occur at least five times in the training sets.

We implement our system using the Caffe framework [61] with LSTM layer

provided by Donahue et al. [58]. We train our network using stochastic gradient

descent with a learning rate of 0.01 which is halved every 50,000 iterations. We use

a batch size of 16. The word embedding and LSTM layer outputs are regularized

using dropout with a ratio of 0.5.

While Mao et al. [31] used proposals from the Multibox [62] technique, we use

proposals from the MCG [63] technique. We obtain top 100 proposals for an image

using MCG and evaluate scores for the 80 categories in the MS-COCO [23] dataset.

We then discard boxes with low values. The category scores are obtained using the

16 layers VGGNet [60] CNN fine-tuned using Fast RCNN [64]. The category scores

of proposals are not used during the testing stage by the referring expression model.

2.3.3 Comparison of different techniques

We compare our MIL based techniques with the baseline and max-margin

models of Mao et al [31]. The model architecture is the same for all the different

variants of training objective functions.

Our implementation of the max-margin technique provided better results than

20

those reported in Mao et al. [31]. We use a margin M = 0.1 and margin weight λ = 1

in the max-margin loss function. The margin is applied on word probabilities in the

implementation. For each referring expression and its referred region, we sample

5 “hard MCG negatives” for training, similar to their “hard Multibox negatives”.

The “hard MCG negatives” are MCG proposals that have the same predicted object

category as the referred region. The object category of a proposal is obtained during

the proposal filtering process. For our MIL based loss functions, we randomly sample

5 ground-truth proposals as context regions for training. We also sample 5 hard

MCG negatives. We use a margin M = 0.1 and margin weights λN = 1, λP = 1 in

the MIL based loss functions. During testing, we combine the scores from different

context regions using the noisy-or function (Equation 2.4). We sample a maximum

of 10 regions for context during the testing stage.

Table 2.1 shows the Precision@1 scores for the different partitions of both

datasets. We show results using ground-truth proposals and MCG proposals to

observe the behavior of our framework with and without proposal false positives.

The results show that our MIL loss functions perform significantly better than the

max-margin technique of Mao et al. [31] on the validation partitions of both datasets

and the TestB partition of UNC RefExp dataset. The results on the TestA partition

show only a small improvement over the max-margin technique and we investigate

this further in the ablation experiments.

We observe on the Google RefExp dataset that the MIL loss function with both

positive and negative bag margin performs better than the one with negative bag

margin only. In this dataset, referring expressions which mention context between

21

Table 2.1: Precision@1 score of different techniques. The results are obtained us-
ing the noisy-or function for pooling context information from multiple pairs. We
experiment with both ground-truth (GT) and MCG proposals

Proposals GT MCG
Google RefExp - Val

Max Likelihood [31] 57.5 42.4
Max-Margin [31] 65.7 47.8
Ours, Neg.Bag Margin 68.4 49.5
Ours, Pos. & Neg. Bag Mgn. 68.4 50.0

UNC RefExp - Val
Max Likelihood [31] 67.5 51.8
Max-Margin [31] 74.4 56.1
Ours, Neg. Bag Margin 76.9 57.3
Ours, Pos. & Neg. Bag Mgn. 76.1 57.4

UNC RefExp - TestA
Max Likelihood [31] 65.9 53.2
Max-Margin [31] 74.9 58.4
Ours, Neg. Bag Margin 75.6 58.6
Ours, Pos. & Neg. Bag Mgn. 75.0 58.7

UNC RefExp -TestB
Max Likelihood [31] 70.6 50.0
Max-Margin [31] 76.3 55.1
Ours, Neg. Bag Margin 78.0 56.4
Ours, Pos. & Neg. Bag Mgn. 76.1 56.3

objects usually identify an object and its context object uniquely. Hence there is

only one positive instance in the positive bag of region and context region pairs.

This property of the referring expressions satisfies the assumption for using the loss

function with both positive and negative bag margin.

On the UNC RefExp dataset, we observe that the MIL loss function with neg-

ative bag margin performs better or similar to the loss function with both positive

and negative bag margin. Unlike the Google RefExp dataset, the referring expres-

sions in the dataset do not always uniquely identify a context object. Many times

the context object is not explicitly mentioned in a referring expression e.g., in Figure

2.6b, the elephant in the front is implied to be context but not explicitly mentioned.

22

Table 2.2: Pooling context in different ways during testing. We compare the perfor-
mance of pooling context using noisy-or function, max function and also restricting
to image as context. The bold values indicate the best performance obtained for
the corresponding dataset among all settings

MIL with Negative Bag Margin

Proposals GT
MCG

Google RefExp - Val
Noisy-Or 68.4 49.5
Max 66.5 48.6
Image context
only

65.9 48.1

UNC RefExp - Val
Noisy-Or 76.9 57.3
Max 75.5 56.5
Image context
only

76.4 56.7

UNC RefExp - TestA
Noisy-Or 75.6 58.6
Max 74.1 57.9
Image context
only

76.2 58.8

UNC RefExp - TestB
Noisy-Or 78.0 56.4
Max 76.8 55.3
Image context
only

77.0 55.0

MIL with Pos. & Neg. Bag Margin

Proposals GT
MCG

Google RefExp - Val
Noisy-Or 68.4 50.0
Max 67.2 49.3
Image context only 67.9 49.3

UNC RefExp - Val
Noisy-Or 76.1 57.4
Max 75.3 56.5
Image context only 76.1 56.6

UNC RefExp - TestA
Noisy-Or 75.0 58.7
Max 73.4 58.2
Image context only 75.5 58.9

UNC RefExp - TestB
Noisy-Or 77.5 56.3
Max 76.1 55.3
Image context only 76.1 55.0

The assumption of one positive instance in the positive bag does not always hold.

Hence, the performance is better using the loss function with negative bag margin

only.

2.3.4 Ablation experiments

In Table 2.1, the results for the MIL based methods use the noisy-or function

for measuring the probability of a referring expression for a region. The noisy-or

function integrates context information from multiple pairs of a regions. We can

23

also use the max function to determine the probability of a referring expression

for a region. In this case, the probability for a region is defined as the maximum

probability obtained by any of its pairings with other regions. We also experiment

with restricting the context region set to include only the image during testing.

The results in Table 2.2 show that noisy-or pooling provides the best perfor-

mance on all partitions except the UNC RefExp TestA partition. It is also more

robust when compared to max pooling, which does not exhibit consistent perfor-

mance. Our models with just image context perform better than the max-margin

model of Mao et al. [31] which also used only image as context. The reason for this

improvement is that our MIL based loss functions mine negative samples for context

during training. In the max-margin model of Mao et al. [31], the model was trained

on negative samples for only the referred region and it was not possible to sample

negatives for context.

Figure 2.4 and Figure 2.5 show a few sample results from the Google RefExp

dataset. We observe that our model can localize the referred region and its support-

ing context region. When there is only one instance of an object in an image, the

presence of a supporting context region helps in localizing the instance more accu-

rately when compared to using just the image as context. When there are multiple

instances of an object type, the supporting context region resolves ambiguity and

helps in localizing the correct instance.

The sample results in Figure 2.6 from the TestB partition of the UNC RefExp

dataset shows that our method can identify the referred region even when the context

object is not explicitly mentioned. Since our method considers pairs of regions, it

24

Ground-truth Image Context Only Noisy-Or Pooling

(a) The elephant that the man is walking and guiding

(c) A slice of pizza on a plate with a knife next to it

(e) A white and red beaded suitcase sitting to the left of other red luggage

(i) Dog on right wearing green bow tie and hat

(b) A white truck in front of a yellow truck

(d) A person wearing a gray shirt watching TV with another person

(f) A pizza in front of a woman with a gray sweatshirt

Ground-truth Image Context Only Noisy-Or Pooling

(j) Woman smiling with umbrella to the right

(g) A chair closest to the lady (h) A horse being led by an equestrian

Figure 2.4: Google RefExp results. We show results from the model trained with
positive and negative bag margin. We compare the grounding between using image
context only and pooling the context from all regions using noisy-or. A box with
dashed line indicates the context region. We first identify the referred region using
noisy-or function. The context region is then selected as the one which produces
maximum probability with the referred region. The last row shows images with
misplaced context regions

Ground-truth Image Context Only Noisy-Or Pooling

(a) A man wearing eyeglass cut the pizza with his friend

(c) A basket full of flowering plants sitting on top of a stack of cardboard boxes

Ground-truth Image Context Only Noisy-Or Pooling

(b) A boy with brown hair and red shirt with gray sleeves

(d) Horse on the left of the group of horses

Figure 2.5: Google RefExp failure cases. We observe errors when there is wrong
grounding of attributes or when there is incorrect localization of context region

can evaluate the likelihood of a region relative to another region. For example, when

there are two instance of the same object on the left, our method can evaluate which

25

Ground-truth Image Context Only Noisy-Or Pooling

(a) Very top top thing

Ground-truth Image Context Only Noisy-Or Pooling

(c) Broccoli far left

(e) Front most duck

(g) Far left sandwich

(b) Elephant towards the back

(d) Train on the left

(f) Food on the far back on the plate

(h) Zebra on right

Figure 2.6: UNC RefExp results from TestB partition. We show results from the
model trained with negative bag margin. We observe that our method can identify
the referred region even when the context object is not explicitly mentioned

Ground-truth Image Context Only Noisy-Or Pooling

(a) Of three in front one on right

Ground-truth Image Context Only Noisy-Or Pooling

(c) Black in the front

(e) Guy on the tennis course

(b) A little boy

(d) Young woman in back

(f) Blue on left

Figure 2.7: UNC RefExp failure cases from TestA partition. We show results from
the model trained with negative bag margin. This partition contains terse referring
expressions. Most of the time, the referring expressions do not uniquely identify the
people

of those two instances is more to the left than the other. On the TestA partition of

UNC RefExp dataset, we observe that adding context did not improve performance.

Samples from this partition are shown in Figure 2.7. The referring expressions in

26

Ground-truth Image as context Object as context

(a) A woman sitting on a bench

(c) Skis being worn by a skier wearing a green and white jacket

(e) A pizza in front of the woman on the table

Ground-truth Image as context Object as context

(f) A silver Apple laptop being used by a person in a plaid shirt

(b) A green and white book underneath two other books

(d) Large grey luggage with black bag on top

Figure 2.8: Spatial likelihood of referred region given a context region. We fix the
context region and evaluate the likelihood of the referred object being present in
various locations of the image. When the entire image is used as context, the high
likelihood regions do not necessarily overlap with the location of the referred region.
However when the context region is fixed, the high likelihood regions overlap the
referred region

this partition deal with people only and are usually terse. They do not always refer

to a unique region in the image. We also observe that many referring expressions

do not mention that they are referring to a person.

To observe the effect of spatial relationships between objects, we move the

referred region to different locations in the image and evaluate the likelihood of

the referred region at different locations. Figure 2.8 shows sample heat-maps of

the likelihood of a referred object. We first select the entire image as context and

observe that the likelihood map is not indicative of the location of the referred

object. However, when the relevant context object is selected, the regions of high

likelihood overlap with the location of referred object.

27

2.4 Conclusions

We have proposed a technique that models the probability of a referring ex-

pression as a function of a region and a context region. We demonstrate that

multiple-instance learning based objective functions can be used for training LSTMs

to handle the lack of annotations for context objects. Our two formulations of the

training objective functions are conceptually similar to MISVM and mi-SVM [47].

The results on Google RefExp and UNC RefExp dataset show that our technique

outperforms the max-margin model of Mao et al. [31]. The qualitative results show

that our models can identify a referred region along with its supporting context

region.

28

Chapter 3: Searching for Objects using Structure in Indoor Scenes

One of the popular object detection frameworks, RCNN [65], is a pipeline of

two main stages: the object proposal stage and the feature extraction/classification

stage. Object proposals are image regions that with high probability significantly

overlap with an object, irrespective of object class. Features are extracted from

object proposals and then a label is predicted. Even with high quality object pro-

posals, the typical number of proposals considered by the feature extraction stage

ranges from hundreds to tens of thousands for high resolution imagery.

Consider the situation where a computer vision system needs to identify the

presence or location of a particular object in an image. In a passive computer vision

system, if we ask a specific question like “Where is the table in this room?”, it

would process all the region proposals in the image to detect a table instance. Such

a vision system does not exploit the structure in the scene to efficiently process

the image. Our goal is to locate objects of interest in an image by processing as

few image regions as possible using scene structure. We build on a region proposal

module that generates candidate regions and a region classification module that

predicts the class label for a region. The generic strategy is to sequentially process

image regions such that the regions that are more likely to correspond to the object

29

of interest are explored earlier. At each step, we use the labels of the explored

regions and spatial context to predict the likelihood that each unexplored region is

an instance of the target class. We then select a few regions with highest likelihood,

obtain the class label from the region classification module and add them to the

explored set. The process is repeated with the updated set of explored regions.

We frame our sequential exploration problem as a Markov Decision Process

(MDP) and use a reinforcement learning technique to learn an optimal search policy.

However, it is challenging to manually specify a reward function for the search policy.

The true reward function is unknown for our sequential exploration problem since

the underlying distribution from which a spatial arrangement of objects in an image

is generated is unknown, analogous to a game generated by a hidden emulator [66].

But we have access to an oracle’s actions in the individual images. Learning an

optimal policy in such situations is known as imitation learning [67] where an oracle

predicts the actions it would take at a state and the search policy learns to imitate

the oracle and predict similar actions. The oracle in our image exploration problem

selects the next set of regions to explore based on the groundtruth labels. We use

the DAgger algorithm of Ross et al. [68] that trains a classifier as the search policy

on a dataset of features extracted at states and actions taken by the oracle (labels),

where the states are generated by running the policy iteratively over the training

data.

Intelligent search strategies can be learned only in domains that contain suffi-

cient structure in the scenes. Frequently recurring patterns between the constituent

objects of a scene are essential to learn powerful strategies and predict exploration

30

(a) Ranked sequence obtained from an object proposal technique.

(b) Sequence obtained from a search strategy that uses structure in the scene.

Figure 3.1: Searching for a table. Each step in the above sequence shows explo-
ration of three additional regions in the image. The search strategy learned using
our method utilizes the room structure and the presence of other objects in the
image to discover the table region much earlier than using the ranked sequence from
an object proposal technique.

paths with high confidence. Such structures can be found in indoor scenes of houses,

stores and buildings. Hence we illustrate our technique on the indoor scene dataset,

NYU depth v2 [69]. The other advantage of indoor scenes is the availability of depth

data. Gupta et al. [70] showed that RCNN [65] trained with depth information

greatly improved object detection performance. Apart from improving detection

performance, depth information provides spatial context that is highly informative

for efficient localization of objects. Our experiments show that given a fixed number

of regions that can be processed, our sequential exploration technique provides a bet-

ter average precision than using a ranked sequence provided by the object proposal

technique. Figure 3.1 shows a sequence of regions explored by a strategy trained

to detect a table. We compare the search sequence produced by our technique to

the ranked sequence provided by the region proposal technique. Our technique is

able to utilize the room structure and the presence of other objects in the image to

31

explore the table region much earlier than the object proposal ranking.

3.1 Related Work

Many techniques reduce the number of image windows to limit computation

time for object detection. For example, object proposal techniques [71, 72] rank

regions in an image based on their likelihood of containing an object. The ranking

can be used to prioritize regions for running an object classifier depending on the

available computation budget. Such object proposal techniques use only low level

image information and do not exploit scene structure.

Some techniques iteratively run the classifier on a few windows and find the

next set of windows to be processed based on feedback from the classifier scores

and/or spatial context. Lampert et al. [73] prune the space of windows using a

branch and bound algorithm. Butko and Movellan [74] use a Partially Observable

Markov Decision Process to sequentially place a digital fovea (a center of fixation)

to detect a single target in an image. Neither of these techniques make use of

spatial context between objects to improve window selection. Alexe et al. [34] use

only spatial context to choose a set of windows to be processed. The classifier is

run at the end of window set selection and the maximum scoring window is output

as the object location. Gonzalez-Garcia et al. [35] use both spatial context and

the classifier scores of previously explored regions. While their output during the

testing stage is a sequence of regions, the training is performed without taking

into consideration the states (set of objects explored until a step) encountered in a

32

sequence. Hence, they can only model pairwise constraints between an unexplored

region and an object. Our technique models relationships between an unexplored

region and all the explored objects. Unlike existing work, we use a framework that

allows training and testing using the same procedure, thus reducing the burden of

tuning many modules in the system.

The idea of sequentially processing an image by exploiting structure is not just

relevant to object localization. Sequential processing has also been explored for video

event detection, where running a multitude of detectors at all spatio-temporal scales

is very expensive. Amer et al. [36] propose an explore-exploit strategy that schedules

processes of top-down inference using activity context and bottom-up inference using

activity parts. They use a Q-learning algorithm to learn the optimal actions to

perform at a state. However, the learning algorithm needs the specification of a

reward function which is difficult to obtain in many domains. We use an imitation

learning algorithm that alleviates the problem of choosing a reward function.

3.2 Sequential Exploration

The most common formalism for sequential decision making is the Markov

Decision Process (MDP). An MDP is characterized by a set of states S, a set of

actions A, transition probabilities P and a reward function G (or equivalently a loss

function). A policy π is a function that maps states to actions π(s). The goal is

to find a policy that will maximize a cumulative function of the reward. When the

transition probabilities are unknown, reinforcement learning techniques are used to

33

interact with the problem domain and sample the probabilities.

Our problem is to locate objects of a query class (q) by exploring as few image

regions as possible. Let R be the set of indices of the regions in the image and

t correspond to a step index. Let Rt
e be the set of indices of the explored image

regions and Rt
u = R \ Rt

e be the set of indices of the unexplored image regions at a

step t. To state our problem in the reinforcement learning setting, a state st is the

set of all the image regions (r) explored until that step.

st = {ri|i ∈ Rt
e} (3.1)

An action corresponds to selecting the next image region to explore, at = rj

where j ∈ Rt
u. The reward function is difficult to specify for our image exploration

problem. If we assume that spatial arrangements of objects in images are generated

from a hidden distribution similar to games generated by a hidden emulator, a true

reward function will allow the policy to learn a predictor that can replicate the

behavior of the hidden distribution. For example, if we are searching for a chair, by

setting the reward values higher for regions near a table than those far away from

it, the policy assigns a greater importance to table proximity feature. Since images

contain samples of spatial arrangements from the hidden distribution and the true

reward values are unknown, an imitation learning algorithm can be used to learn the

optimal policy. In imitation learning [67], rather than specifying a reward function,

an oracle demonstrates the action to take and the policy learns to imitate the oracle.

For us, the oracle selects the next region to explore based on the groundtruth labels.

34

Hence, the policy is trained to predict labels similar to the groundtruth.

Imitation learning algorithms usually learn a strategy by training a classifier

on the dataset of state features and actions (labels) obtained by sampling sequences

produced by an oracle policy. They make an i.i.d assumption about the states

encountered during the execution of a learned policy which does not hold for our

problem since the policy’s prediction affects future states. During the test stage, if

the policy encounters a state that was not generated by the oracle policy, it could

predict an incorrect action that can lead to compounding of errors. Ross et al. [68]

propose an imitation learning algorithm called DAgger (Dataset Aggregation) that

does not make the i.i.d assumption about the states. DAgger finds a policy π̂ which

minimizes the observed surrogate loss `(s, π) under its induced distribution of states,

π̂ = arg min
π∈Π

Es∼dπ [`(s, π)] (3.2)

where dπ = 1
T

∑T
t=1 d

t
π is the average distribution of states if we follow policy π for T

steps. Since dπ is dependent on the policy π, this is a non-i.i.d supervised learning

problem.

In our work, `(s, π) is the Hamming loss of π with respect to π∗ - the oracle

policy. At a given state, the policy is penalized for what it predicts for all the regions

in the unexplored set. Let

p = (pi)i∈Rtu (3.3)

be a list of the predicted labels where each label pi ∈ {0, 1} indicates whether the

corresponding region is predicted to contain an object of the queried class or not.

35

The oracle policy produces a list the same length as p with groundtruth labels.

The Hamming loss is measured between the list of predicted labels and groundtruth

labels. When the policy labels more than one region for exploration, we select the

region with the highest belief as the next region to explore.

DAgger trains a single cost sensitive classifier for policy π̂ that considers fea-

tures extracted from a state and predicts labels to determine the next action. During

training, it starts with an initial classifier and runs through the states, predicting

labels for each state. Based on its predictions, it is assigned a loss value at each

state. At the end of an iteration, all the features, the predicted labels and the loss

values for all states are collected. The aggregate of all the collected datasets until

the current iteration is used to train a cost sensitive classifier, which becomes the

policy for the next iteration. DAgger is available through a simple interface in the

Vowpal Wabbit1 library. It contains a new programming abstraction proposed by

Daumé III et al. [75] where a developer writes a single predict function that encodes

the algorithm for the testing stage and the training is done by making repeated calls

to this predict function.

The function SEQ EXPLORE shown in Algorithm 1 is substituted for the

predict function in the programming abstraction of Daumé III et al. [75]. The

input to the algorithm is a list of object proposals and the number of regions that

we are allowed to process. We use a modified MCG [70, 71] for region proposal

generation and RCNN-depth [70] for region classification. The unary features used

for classification are objectness score, proposal rank, mean depth of the region,

1https://github.com/JohnLangford/vowpal_wabbit

36

https://github.com/JohnLangford/vowpal_wabbit

Algorithm 1 Sequential Exploration

1: function seq explore(obj proposals,N)
2: explored list← ∅
3: curr regions← obj proposals[0]
4: unexplored regions← obj proposals[1 :

end]
5: i← 0
6: while i < N and curr regions 6= ∅ do
7: i← i+ 1
8: rcurr ← pop(curr regions)
9: Push(explored list, rcurr)

10: for rj ∈ unexplored regions do
11: scorej = classify(rj , explored list)
12: end for
13: next← arg maxj scorej
14: push(curr regions, rnext)
15: remove(unexplored regions, rnext)
16: end while
17: return explored list
18: end function

1: function classify(rj , explored list)
2: features← ∅
3: unaryj ← unary features(rj)
4: append(features, unaryj)
5: non maximal supress(explored list)
6: pairs← ∅
7: for rk ∈ explored list do
8: label← query label(rj)
9: if label 6= bgnd then

10: pairrj ,rk ← pair features(rj , rk)
11: append(pairs, pairrj ,rk)
12: end if
13: end for
14: agg pair features← agg stats(pairs)
15: append(features, agg pair features)
16: (label, score)← DAgger Predict(features)
17: if training then
18: DAgger Setloss(label, groundtruth)
19: end if
20: return score
21: end function

mean distance from the back of the room, minimum height from the ground and

maximum height from the ground. The pairwise features are 2D area overlap, 2D

size ratio, distance between centroids, difference in mean distance from the back

of the room, difference in minimum heights from the ground and the difference in

maximum heights from the ground. Most of these features were used by Silberman

et al. [69] for performing support inference. The aggregate feature set is constructed

by performing min-pooling for each class and each pairwise feature. For example,

one of the aggregate features would be constructed by collecting all the distances

between centroids of the current region and the regions of table class, and then taking

the minimum of those distances. This feature measures ”how far is the closest table

(and every other class) from the current region?”

The computational complexity of our algorithm in the worst case scenario of

37

exploring all regions is O(n2) where we perform classification for every unexplored

region at every step after adding one region. However, we do not repeat the classifi-

cation if a newly explored region is marked as background since it does not change

the context features at that step. Hence the number of iterations where we classify

the unexplored regions is dependent on the number of foreground regions (k) in the

image and the complexity is O(nk). Since there are very few foreground regions in

an image, k is usually small.

3.2.1 Data subset selection

Due to the presence of a large number of background regions, the training

process can become very slow. Hence we need to select a subset of the background

regions such that the training time becomes tractable while maintaining perfor-

mance. A popular approach to background set collection is hard negative mining,

an iterative process where the training data is progressively augmented with the

false positive examples produced by the classifier in an iteration. Hard negative

mining is a computationally expensive technique which is exacerbated in our case

by the already expensive training process for a search strategy. Instead we use a

data subset selection technique motivated by the theory of Optimal Experiment

Design (OED) [76]. Given a linear regression model, the goal of OED is to select

samples such that the variance in the regression coefficients is minimized. A smaller

variance in the coefficients indicates that the prediction error on the test set is low

and hence the linear regression model trained with such a subset does not overfit

38

the training data. Since DAgger uses a linear classifier to predict actions, we employ

an OED criterion to select a subset of the background samples.

Let X be a matrix of n samples with p features. Let Π be a row selection

matrix of size k × n. Each row of Π contains a value of one in exactly one column

and zeros otherwise. Let Y be the vector of predicted labels. A linear regression

model can be written as

Yk×1 = Πk×nXn×pβp×1 + εk×1 (3.4)

ε is the noise vector with mean zero and variance σ2Ik. In ordinary least squares re-

gression, the prediction error is directly proportional to the variance of the regression

coefficients. The variance is given by

var(β̂) = σ2(XTΠTΠX)−1 (3.5)

Optimal Experiment Design suggests many criteria that optimize the eigenvalues of

the inverse covariance matrix as a way to minimize the variance in the regression

coefficients. The A-optimal criterion minimizes the trace of the inverse covariance

matrix and the D-optimal criterion minimizes the determinant of the inverse covari-

ance matrix. The D-optimal criterion [77] is more popular due to the availability of

off-the-shelf implementations and also, it simplifies the determinant minimization

of an inverse to maximizing the determinant of the covariance matrix. Since we

want to select only a subset of the negative samples, we fix the selection variables

39

for the positive samples. We use a row exchange algorithm2 that iteratively adds

and removes rows based on the increments in the determinant. The features we use

in the data matrix for subset selection are only the mean centered unary features,

since the pairwise features are constructed dynamically and they are difficult to

know beforehand.

3.3 Experiments and Results

3.3.1 Dataset

We demonstrate our approach on the NYU depth v2 dataset [69]. We use

the RCNN-Depth module of Gupta et al. [70] for the region classification. Their

region proposal module is a modified Multiscale Combinatorial Grouping (MCG)

[71] technique that incorporates depth features. Their feature extraction module is

RCNN [65] which includes CNNs fine-tuned on the depth images. The dataset is

split into three partitions - 381 images for training, 414 images for validation and

654 images for testing. Since RCNN is trained on the training split, the performance

of the detectors on the training set images is extremely good and does not reflect

the behavior of the detectors on the test set. Hence we run the detectors on the

validation set, obtain groundtruth labels for the detections and this set forms the

training set for learning search strategies. The thresholds for the detectors are set

based on the best F1 point on the validation set PR curves. We work with 18

categories and do not include the box category as its performance values are very

2The row exchange algorithm is available as part of the Statistics Toolbox in MATLAB.

40

low with an average precision of 1.4%. We consider the top 100 regions obtained

from the region proposal module. One of the reasons we use only 100 regions is that

as we increase the number of regions, the amount of variation in the background

regions increases, making the classification boundaries highly nonlinear given our

feature set. Since the number of available positive samples is not sufficiently large,

it is difficult to train a nonlinear classifier.

3.3.2 Sequential Exploration

Given a sequence of processed image regions, we measure the performance

by the average precision (AP) of object detection performance versus the number

of regions processed. Specifically, we measure the average precision at intervals

of 10 image regions until we reach 100 image regions. Since our goal is to search

for an object of a query class, the sequence of regions produced by our sequential

exploration technique is different for different query classes. Figure 3.4 shows average

precision as the number of processed regions increases. Each figure compares various

sequences produced for a particular query class. The baseline technique we compare

with is the rank sequence obtained from the region proposal technique. The sequence

is usually rank diversified and not necessarily sorted by objectness scores. Since the

region proposal technique is not aware of the query class, it produces only one

sequence for an image.

First, we train a classifier with the query class as the label and just the unary

scene context features (see Sec. 3.2). Since the scene context features do not change

41

based on the regions explored, we obtain scores from this classifier in a single step.

The scores are then used to rank the regions to obtain a sequence. Our results in-

dicate that the scene context features alone can achieve a significantly high average

precision by using very few regions - for some classes (Ex: bed, nightstand, sofa)

almost 20-25% of the regions when compared with the proposal ranking sequence.

Next, we perform a sequential search using strategies trained with object-object

context features along with the scene context features. The results indicate that for

classes like counter, lamp, pillow and sofa, object-object context improves the aver-

age precision over using just the scene context features. While we see improvement

in the dresser class as well, the number of test samples are too few to determine

the significance of the improvement. Figure 3.5 shows examples of search results for

different query classes. The examples show that our strategy which uses both scene

context and object-object context can locate objects of the query class earlier than

the other methods.

The supplementary material contains plots that compares our technique trained

with a randomly selected background subset against our technique trained with the

determinant maximization based background subset. The plots show that our de-

terminant maximization based subset selection technique performs better or equally

well with the random subset on most of the classes. But the main advantage of our

subset selection technique is the repeatability of experiments unlike the one with

random subset selection.

Computation time: On a single core of an Intel 4.0GHz processor, it takes

only 20ms on average for the search process in an image with 100 region proposals.

42

The time taken for extracting CNN features is 5ms per region on a GPU. Since our

results show that for most of the classes we can achieve a high average precision at

around 25 to 50 regions instead of evaluating all 100 regions, the total time taken

for feature extraction and search overhead is 0.145s and 0.27s for 25 and 50 regions

respectively. This shows that the search overhead is negligible compared to the

total time and the reduction in number of regions directly translates to 2 to 4 times

speedup in computation time while still achieving a high average precision. The

time for context feature extraction is negligible because the necessary information

is already extracted by the region proposal module.

3.4 Conclusion

We have proposed a search technique for detecting objects of a particular class

in an image by processing as few image regions as possible. The search strategy is

framed as a Markov decision process learned using an imitation learning algorithm,

which sequentially explores regions based on structure in the scene. Our experiments

shows that unary scene context features of regions can alone achieve a significantly

high average precision after processing only 20-25% of the regions for classes like

bed, night-stand and sofa. By incorporating object-object context, the performance

is further improved for classes like counter, lamp, pillow and sofa. Our sequential

search process adds a negligible overhead when compared to the time spent on

extracting CNN features, hence the reduction in number of regions leads directly to

a gain in computation speed of the object detection process.

43

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

bathtub

Number of Image Regions
A

v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.3

0.35

0.4

0.45

0.5

0.55

bed

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

bookshelf

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

chair

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

counter

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

−0.04

−0.02

0

0.02

0.04

0.06

0.08

desk

Number of Image Regions

A
v
e
ra

g
e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

door

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

dresser

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

garbage−bin

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15
lamp

Number of Image Regions

A
v
e
ra

g
e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

monitor

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

night−stand

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

0.3

pillow

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

sink

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0.15

0.2

0.25

0.3

0.35

sofa

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

table

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

television

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

toilet

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context

Scene+Objects Context

Figure 3.2: Average Precision (AP) vs. number of processed regions. A
classifier trained for a query class with unary scene context features alone can achieve
a significantly high average precision by processing very few regions. Classes like
bed, nightstand and sofa need only 20-25% of the regions when compared to the
proposal ranking sequence. A search strategy trained for a query class using both
object-object context and scene-context features further improves the performance
for classes like counter, lamp, pillow and sofa. While the plots show sequential
processing of all 100 regions, the stopping criterion for practical situations can be
chosen based on the number of regions at which we obtain the maximum AP.

44

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

bathtub

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.3

0.35

0.4

0.45

0.5

0.55

bed

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

bookshelf

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

chair

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

counter

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

−0.04

−0.02

0

0.02

0.04

0.06

0.08

desk

Number of Image Regions

A
v
e
ra

g
e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

door

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

dresser

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

garbage−bin

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15
lamp

Number of Image Regions

A
v
e
ra

g
e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

monitor

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

night−stand

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

0.3

pillow

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

sink

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.15

0.2

0.25

0.3

0.35

sofa

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

table

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

television

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

toilet

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene+Objects Context (RandBgndSubset)

Scene+Objects Context (OEDBgndSubset)

Figure 3.3: Scene+Objects Context: Comparison of background selection
techniques. We see that the search strategy trained with a background subset
selected using determinant maximization performs better or equally well as the
strategy trained with a background subset selected randomly. But the main advan-
tage of the determinant maximization based subset selection is the repeatability of
experiments unlike the random subset selection.

45

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

bathtub

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.3

0.35

0.4

0.45

0.5

0.55

bed

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

bookshelf

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

chair

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

counter

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

−0.04

−0.02

0

0.02

0.04

0.06

0.08

desk

Number of Image Regions

A
v
e
ra

g
e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

door

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

dresser

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

garbage−bin

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15
lamp

Number of Image Regions

A
v
e
ra

g
e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

monitor

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

night−stand

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

0.3

pillow

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

sink

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0.15

0.2

0.25

0.3

0.35

sofa

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

table

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

television

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

toilet

Number of Image Regions

A
v
e

ra
g

e
 P

re
c
is

io
n

Proposal Rank

Scene Context (RandBgndSubset)

Scene Context (OEDBgndSubset)

Figure 3.4: Scene Context: Comparison of background selection tech-
niques. We see that the performance of the classifier trained with a background
subset selected using determinant maximization is comparable to that of the clas-
sifier trained with a random background subset. But the main advantage of the
determinant maximization based subset selection is the repeatability of experiments
unlike the random subset selection.

46

Groundtruth Proposal Rank Scene Context Scene+Objects
Context

chair

chairchairchairchairchairchairchair

chair

door

chair

chair
table

door

chair

chair

table

door

chair

chair

chair

(a) Searching for chair. Number of regions processed = 15

lamp

lamp

pillow
pillow

pillow

bed

pillow

bed

pillow
lamp

bed

(b) Searching for lamp. Number of regions processed = 35

pillow
pillow

pillow

pillow

pillowbed

pillow

bed
pillow

pillow

pillow

bed

(c) Searching for pillow. Number of regions processed = 15

sofa

sofa

sofa

pillow

door

sofa

chair

sofa

sofa

pillow

(d) Searching for sofa. Number of regions processed = 20

chair

chair

chair

chair

chair

table

chair

chair

table

sofa

chair

table

sofa

chair

chair

chair

(e) Searching for chair. Number of regions processed = 45

Figure 3.5: Search results for different queries. We compare three strategies
- ranked sequence obtained from the region proposal technique (unaware of query
class), ranked sequence obtained from a classifier trained for a query class using
scene context features alone and sequence produced by a search strategy trained
for a query class using both scene context and object-object context features. Red
boxes indicate regions labeled as query class, yellow boxes indicate regions other
than the query class and blue boxes indicate regions labeled as background. The
images show a state in the search sequence of different methods at a certain number
of regions processed. We can see that our strategy which uses both scene context
and object-object context can locate an object of the query class earlier than the
other methods.

47

Chapter 4: Feedback Loop between High Level Semantics and Low

Level Vision

Computer vision systems are generally designed as feed-forward systems where

low level detectors are cascaded with high level semantic analysis. Low level detec-

tors for objects, tracks or short activities usually produce a confidence measure

along with the detections. The confidence measures can sometimes be noisy and

hence a multitude of false detections are fed in to subsequent analysis stages. To

avoid these false detections, it is common practice to discard some detections that

are below a particular confidence threshold. Unfortunately, it is difficult to reli-

ably select a threshold a priori given a particular task. The threshold is generally

selected to achieve a “reasonable” trade-off between detector precision and recall,

since it is generally not possible to find all true detections (high recall) without also

hallucinating false alarms (low precision).

High level analysis integrates multiple low level detections together using se-

mantics to discard false detections rather than simply thresholding detector scores.

This typically involves constructing a Markov network over the detections, where

contextual relationships corresponding to high level knowledge about the image or

video are encoded as factors over combinations of detections [1, 12, 14, 20, 21]. A

48

detection usually corresponds to one or more nodes in the network and relation-

ships between detections correspond to a factor. In Markov networks of high order,

each detection can be part of exponentially many instantiations of a factor and the

network size grows rapidly as a function of the number of detections. The problem

is further exacerbated by the inference process, whose computational cost is related

exponentially to the network complexity. When many detections are hypothesized

at low precision, the size of the Markov network becomes unnecessarily high since

the inference process sets most of the detections to false.

We tackle the problem of keeping the network size small by incrementally

adding only those detections that are most likely to be inferred as true while the

rest of them are kept false. We achieve this by adding a feedback loop between the

high level and low level stages, where the high level semantics guides the selection

of relevant low level detections. There are several advantages to this feedback loop.

First, it can locally adjust the thresholds for low level detectors based on the neigh-

boring context. Second, it keeps the network size small and the inference procedure

tractable. And third, we can potentially save computation by selectively running

the low level procedures like feature extraction and classification only when needed.

The goal of our feedback based incremental technique is to perform inference

and obtain the optimal solution of the objective function corresponding to the full

network (the network obtained when we include all the detections) by unclamping

only the relevant detections. We start with detections above a high confidence

threshold and clamp the remaining detections to false based on the closed world

assumption, the assumption that what is not known to be true is false. We then

49

incrementally select from the remaining detections below the threshold to add to

the network. Our proposed feedback loop involves a principled mechanism by which

we identify the detections that are most likely to improve the objective function.

Motivated by cluster pursuit algorithms [78] for inference, we derive three scoring

functions that bound the increase in the objective function with varying degrees of

accuracy and computational cost. The first score function yields the exact increase

in the objective function, but it requires that the detector has been run everywhere

and that inference can be performed exactly; the second bounds the change in the

objective function, relaxing the inference requirements; the third provides an even

looser bound, but it is least computationally intensive and does not require the low

level detector to have processed the candidate detections (which is why we call it

the Blind Score).

We perform experiments on an event recognition task using one-on-one bas-

ketball videos. Morariu and Davis [1] used Markov Logic Networks (MLNs) on this

dataset to detect events like Shot Made, Shot Missed, Rebound etc. The inputs

are a set of event intervals hypothesized from low level detectors like the tracks of

objects. Using the feedback loop technique we show that we can successfully select

the most relevant event intervals that were earlier discarded due to thresholding.

The experiments show that our score functions can reach the optimal value in fewer

iterations with smaller network sizes when compared with using just the low level

confidence measures.

50

4.1 Related Work

While many inference techniques work in an incremental fashion to tackle the

complexity issues, they do not necessarily behave as a feedback loop and hence do

not present with the advantages mentioned earlier. We mention few works here that

iteratively add detections while performing inference. In a scene segmentation task,

Kumar and Koller [79] hypothesize a set of regions in an image through multiple

bottom-up over-segmentations and exploit the high level energy function to itera-

tively select input regions that are relevant for the task. Zhu et al. [80] use the greedy

forward search technique of Desai et al. [81] for inference in their event recognition

system. The inference algorithm of Desai et al. first sets the output label for the

inputs to the background class. Each input is then scored based on the change in

the objective function if it were allowed to be labelled as a non-background class.

The top scoring inputs are then iteratively added until convergence. Our feedback

loop technique is based on the same idea of greedily reaching the MAP value as

quickly as possible but we provide a principled mechanism to performing inference

in higher order networks. Also we do not use it just as an incremental technique,

but extract more insight from the high level semantics to save computation for the

low level module. An interesting characteristic of our feedback technique is that we

can potentially run low level processes only when required during the inference.

Apart from the advantages of keeping the inference tractable, a feedback loop

can also be useful in other ways. Sun et al. [13] apply a feedback loop for object

detection with geometrical context. They jointly infer about the location of an

51

object, the 3D layout of the scene and the geometrical relationships between the

object and the 3D layout. The speciality of their feedback loop is that the object

detector module adaptively improves its accuracy in the confidence measures of

detections based on the feedback from the scene layout.

The idea of incrementally building a network can be approached in principled

ways, including Cutting Plane Inference (CPI) and Cluster Pursuit Algorithms.

Many inference problems can be cast as an Integer Linear Program (ILP) which is

well suited for CPI. CPI employs an iterative process where the ILP is kept small

by adding only the most violated constraints. However, CPI cannot be used for our

feedback loop technique where we need to selectively set some detections to false.

Sontag et al. [78] propose a cluster pursuit algorithm, an alternative formulation

that incrementally adds cliques of variables (called clusters) and optimizes the dual

function, an objective function obtained through Lagrangian relaxation that is an

upper bound on the original (or primal) objective function. Their score function

for clusters is an approximation to the decrease in the dual value of the objective

function after adding a cluster, which is derived from the message passing updates

of Globerson and Jaakkola [82]. We use this idea of cluster pursuit algorithm and

derive a feedback technique for higher order Markov networks. Our scoring functions

use the dual value to calculate approximations for the increase in the primal MAP

value after adding a particular cluster.

52

4.2 Incremental Inference with Feedback Loop

We consider Markov networks defined over binary nodes x = {x1, . . . , xn}

with factors θc(xc) defined over cliques of nodes xc such that c1, . . . , ck ⊂ {1, . . . , n}

. The Maximum A Posteriori (MAP) problem is defined as finding an assignment

x∗ that maximizes the function

Φ(x;θ) =
∑
c∈C

θc(xc) (4.1)

The nodes xi are instantiated over candidate detections that are hypothesized by

low level detectors. For example, they can be object detections obtained from

running single-object detectors. The detector confidence scores output along with

the detections are used as unary factors for the nodes. The factors θc that involve

more than one detection represent the relationships between the detections. For

example, they can be spatial relationships like the placement of an object on top

of other objects. We obtain a MAP solution by performing inference, that will

ultimately label the hypothesized detections as true positives or false positives.

In Markov networks of high order, every newly added detection can become

combinatorially linked to other detections through the higher order factors. When

many detections are hypothesized at low precision, the size of the Markov network

becomes exponentially large and the inference process becomes computationally

expensive even though many of the detections are going to be inferred as false.

The goal of our incremental approach for inference is to maximize the function

53

in (4.1) while keeping the network size small. We achieve this by unclamping only

those detections that are most likely to be labeled as true by the inference. The

rest of the detections are clamped to false, and while they always participate in the

objective function over the iterations, they are excluded from the network during

inference. We first perform inference with an initial network constructed from high

confidence detections while the rest are clamped to false. We then calculate scores

for the remaining detections based on the initial network. The scores measure the

change in the MAP value after adding a detection to the current network. These

scores are equivalent to locally adding an offset to the low level detector confidences,

based on the feedback, so that the detections appear above the threshold. Another

way to interpret this is that the thresholds get locally modified to select the de-

tections that are below the threshold. We then unclamp a selected number of top

detections and the process is repeated. When the incremental procedure is stopped,

the MAP solution to the current network provides the true/false labels to the active

detections and the remaining set of detections are labeled as false.

4.2.1 Clusters under closed world assumption

We show that incrementally unclamping detections is equivalent to adding

clusters of factors. First we partition the Markov network into three clusters as

shown in Figure (4.1). Let f be the set of active detections that are currently in

to the network and xf be the nodes that are instantiated over only the detections

from f . The factor θf is defined over just the nodes xf . Let g be the set of one or

54

more detections that is to be unclamped in a given iteration and xg be the nodes

instantiated over at least one detection from g and any other detections from f . The

factor θg is defined over nodes xg and other nodes from xf that it shares with θf .

Let h be the remaining set of detections and xh be the nodes that are grounded over

at least one detection from h and any other detections from f ∪ g. The factor θh is

defined over xh and the other shared nodes with θf and θg. The overall objective

function expressed as a sum of these clusters is

Φ(x) = θf (xf1, xf2, xf3, xf4) + θg(xg1, xg2, xf2, xf3) (4.2)

+ θh(xh1, xg2, xf3, xf4)

Under the closed world assumption, any detection that is not included in the

Markov network due to thresholding is assumed to be false. To satisfy this condition

during the incremental process, we need to repartition the objective function (4.2).

During every iteration of the process, we have a Markov network that includes a set

f of active detections. The remaining detections from g and h are not yet added and

hence the nodes instantiated over these detections must be clamped to false. The

associated factors are projected on to the current network after setting the nodes of

the excluded detections to false. The resulting objective function is

Φcur(xcur) = θf (xf1, xf2, xf3, xf4) + θg(xg1 = 0, xg2 = 0, xf2, xf3) (4.3)

+ θh(xh1 = 0, xg2 = 0, xf3, xf4)

55

xf1

xg1

xh1
xf2xf3

xf4

xg2
θf

θg

θh

Figure 4.1: The shared nodes between clusters in a partitioning of a Markov network.
The set f contains active detections that are currently in the network and xf are
the nodes that are instantiated over only the detections from f . The set of factors
θf (xf) is defined over the nodes xf . Similarly, g is the set of detections to be
unclamped at an iteration and h is the set of detections that are still clamped to
false.

To calculate a score for the set of detections in g, we need the objective function

to include these detections in the active set while all other remaining detections from

h are still clamped to false. This gives rise to the objective function

Φ′(x) = θf (xf1, xf2, xf3, xf4) + θg(xg1, xg2, xf2, xf3) (4.4)

+ θh(xh1 = 0, xg2, xf3, xf4)

Hence, the cluster of factors that need to be added to the current network during

an iteration is given by

Φnew(xnew) = Φ′ − Φcur(xcur) (4.5)

= θg(xg1, xg2, xf2, xf3)− θg(xg1 = 0, xg2 = 0, xf2, xf3) (4.6)

− θh(xh1 = 0, xg2 = 0, xf3, xf4) + θh(xh1 = 0, xg2, xf3, xf4)

We now propose three score functions that measure the change in the MAP

56

value after adding the cluster Φnew(xnew) to Φcur(xcur), with varying degrees of ac-

curacy and computational cost.

4.2.2 Detection scoring function

We define the score for a detection based on the change in the MAP value

after adding the detection to the current network. If we are adding the detection in

g, the score is given by

score(g)exact = ∆Φ = max [Φcur(xcur) + Φnew(xnew)]−max [Φcur(xcur)] (4.7)

We also propose an upper bound to the exact score - score(g)upper, that is

derived based on the ideas of cluster pursuit algorithm of Sontag et al. [78]. We

first obtain a dual of the MAP problem through Lagrangian relaxation. The MAP

problem is now equivalent to minimizing the dual objective function since the dual

value is an upper bound on the primal MAP value. We then use the message passing

algorithm of Globerson et al. [82] to obtain the message update equations for the

dual variables. Similar to Sontag et al. [78], we obtain an approximation to the new

dual value after adding a cluster to the current network, by performing one iteration

of message passing. Since the dual value is an upper bound on the primal MAP

value, the new decreased dual value gives an upper bound for the exact score.

Proposition 1 (Upper Bound Score). An upper bound on the change in the MAP

57

value (4.7) after adding a cluster is given by

∆Φ ≤ score(g)upper (4.8)

=
1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− max Φcur(xcur) (4.9)

where s is the set of nodes in the intersection of the sets xcur and xnew.

The proof can be found in Appendix A. The first term in the upper bound score

is equivalent to averaging the MAP values obtained by enforcing same assignment for

one shared node at a time. The upper bound score can be calculated efficiently using

an inference algorithm that calculates max-marginals with only a little computation

overhead (eg. dynamic graph cuts [83]) and hence can avoid performing repeated

inference to calculate the exact score.

We derive another approximation to the score function called the Blind Score

since it is dependent only on the max-marginals of the current network and does

not involve the max-marginals of the new cluster to be added. It is obtained as a

lower bound to the upper bound score (not the exact score).

Proposition 2 (Blind Score). A lower bound to the upper bound score (A.15) is

given by

score(g)upper ≥ score(g)blind (4.10)

=
−1

|s|
∑
i∈s

∣∣∣∣ max
xi=0,xcur\i

Φcur(xcur)− max
xi=1,xcur\i

Φcur(xcur)

∣∣∣∣ (4.11)

where s is the set of nodes in the intersection of the sets xcur and xnew.

58

The proof can be found in Appendix A. This score measures the average of the

difference in max-marginals of the shared nodes. It indicates the susceptibility of

the shared nodes in the current network to change their values when a new cluster is

added. The score is low if the absolute difference in the max-marginals of the shared

variables is high. This indicates that the current network has low uncertainty (or

strong belief) in the assigned values to the shared variables. Similarly the score is

high if the absolute difference in the max-marginals is low. This indicates that the

network has high uncertainty in the assignments to the shared variables and that is

where we need more evidence/observations.

Since the blind score is independent of max-marginals of the new cluster, it

does not need the confidence score of a detection which is usually used as a unary

potential in the new cluster. This can save computation for the low level detectors by

avoiding expensive procedures like feature extraction and classification throughout

an image/video and instead run them only when it is needed by the inference.

However, the blind score needs to know the shared variables (s) between the new

cluster and the current network. This corresponds to determining the locations

where the detector would be run and these are usually easy to obtain for sliding-

window approaches. For example, to perform 3D object detection, Lin et al. [14]

first generate candidate cuboids without object class information which fixes the

structure of their network and hence tells us the shared variables for any cluster.

They then extract features for generating unary potentials and use it in a contextual

model to assign class labels to the hypothesized cuboids. If we use the blind score

during the inference, we can potentially save computation by not extracting features

59

(a) A sequence of events which shows a shot being missed by Player1 and the rebound received
by Player2. When Player2 is clearing the ball, the track goes missing for a while and hence the
confidence measure for that clear event is low.

(b) Applying an initial threshold for Clear events does not include the highlighted Clear event.
However the corresponding Shot Missed event by Player1 is included in the network. The absolute
difference in the max-marginals represents certainty of a node assignment and hence the negative
of that difference represents uncertainty. Here, darker colors indicate high uncertainty. When the
Clear event is missing, the network is highly uncertain right after the Shot Missed event.

(c) The node assignments become more certain after adding the missing Clear event.

Figure 4.2: Visualization of the Feedback Loop

for cuboids that are likely to be labeled as false. Figure (4.2) illustrates our feedback

loop technique using an example from the basketball dataset of Morariu et al. [1].

60

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

ShotMade Hypotheses

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

ShotMissed Hypotheses

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Rebound Hypotheses

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Clear Hypotheses

Figure 4.3: PR curves for the newly hypothesized events with continuous confidence
measures. The red star shows the operating point of Morariu et al. [1] in their
feed-forward approach.

4.3 Experiments

4.3.1 One-on-One basketball dataset

The one-on-one basketball dataset used by Morariu et al. [1] contains tracks of

players and ball along with court annotations for seven basketball videos. The are

eight events of interest: Check, Out Of Bounds, Shot Made, Shot Missed, Rebound,

Clear, Dribble and Steal. They use a Markov Logic Network (MLN) [84] to represent

high level rules of the game which interrelates the various events. The inputs to the

MLN are candidate events hypothesized by low level detectors which use the tracks

of players and the ball.

61

4.3.2 Hypothesizing candidate events

In the MLN used by Morariu et al. [1], each event was hypothesized with

just two discrete confidence values. However, continuous confidence measures are

required for the events to better tie them to reality. We hypothesize a new set of

candidates with continuous confidence measures for the Shot Made, Shot Missed,

Rebound and Clear events and copied the other events (Check, Dribble, Out Of

Bounds, Steal) from their dataset. The confidences are obtained based on observa-

tions like ball near a player, ball seen inside the hoop, player being inside the two

point area, etc. The PR curves of the event hypotheses is shown in Figure (4.3).

Since our modified observation model introduces higher uncertainty in event interval

endpoints, we also make few minor modifications to the original MLN to make it

robust to the overlapping endpoints of different event intervals.

We first test the importance of continuous confidences in the feed-forward

setting by feeding in all the hypothesized intervals to the MLN without thresholding.

The confidence measures are used as unary potentials for event predicates in the

MLN. Inference is then performed to obtain a MAP assignment for the ground MLN,

which labels the candidate events as true or false based on the high level context

of the game. The results are shown in Table (4.1). We see that the confidence

measures play a significant role in improving the event recognition performance.

We have implemented our system as an extension of Alchemy [85], a software

package for probabilistic logic inference. The MAP problem for MLNs is framed as

an Integer Linear Program (ILP) [86] and we integrated our system with the Gurobi

62

Morariu et al. [1] Ours
P R F1 P R F1

Check 0.84 0.89 0.87 0.86 0.90 0.90
Clear 0.86 0.61 0.71 0.81 0.82 0.82
Dribble 0.81 0.75 0.78 0.79 0.82 0.80
OutOfBounds 0.88 0.66 0.75 0.80 0.62 0.70
Rebound 0.62 0.72 0.67 0.82 0.84 0.83
ShotMade 0.64 0.86 0.73 0.87 0.87 0.87
ShotMissed 0.67 0.79 0.72 0.81 0.85 0.83
Steal 0.08 0.50 0.13 0.25 0.25 0.12
Overall 0.72 0.75 0.74 0.81 0.83 0.82

Table 4.1: Comparison of MLN Recognition Performance using all the hypothesized
intervals without thresholding. We can see that the continuous confidence measures
for input events play a significant role in improving the performance.

ILP solver [87] for performing inference.

4.3.3 Incrementally adding events with feedback loop

We demonstrate the feedback loop technique by incrementally adding one

type of event, the Clear event. The confidence values for the Clear event are scaled

between 0.5 and 1. We initialize the network with all the event intervals except

for Clear which is thresholded at 0.75. We then run four iterations of the feedback

loop and in each iteration, we add a certain number of top ranking Clear events

from the remaining set. There are five different kinds of scores that we experiment

with: score(g)exact, score(g)upper, score(g)blind, observation score and random score.

The observation and random scores are baseline approaches to incrementally adding

constants without using a feedback loop. The observation score is the confidence

measure that comes from the low level detectors. By adding constants based on their

observation score, we are effectively reducing the threshold uniformly throughout

the video. The random score is basically selecting a certain number of Clear events

63

21 28 35 42 49

Number of Clear Detections

6312

6314

6316

6318

6320

M
A
P
 V
a
lu
e

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

21 28 35 42 49

Number of Clear Detections

0.72

0.74

0.76

0.78

0.80

0.82

0.84

F1
 S
co
re

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

25 32 39 46 53

Number of Clear Detections

1

2

3

4

5

M
A
P
 V
a
lu
e

+9.021e3 Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

25 32 39 46 53

Number of Clear Detections

0.74

0.76

0.78

0.80

F1
 S
co
re

Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

29 37 45 53 61

Number of Clear Detections

1

2

3

4

5

M
A

P
 V

a
lu

e

+8.692e3 Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

29 37 45 53 61

Number of Clear Detections

0.80

0.81

0.82

0.83

0.84

0.85

F1
 S
co
re

Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

18 24 30 36 42

Number of Clear Detections

1

2

3

4

5

6

7

8

M
A

P
 V

a
lu

e

+5.844e3 Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

18 24 30 36 42

Number of Clear Detections

0.70

0.72

0.74

0.76

0.78

0.80

F1
 S
co
re

Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

Figure 4.4: Feedback based scores achieve better solutions with fewer detections; We
apply an initial threshold on the Clear events and incrementally add the remaining
events using the feedback based scores. We measure the exact MAP value of the
Markov network along with the f1 score corresponding to the ground truth. The
plots start at the same initial value for all the five scoring methods since the initial
network contains the same set of events. Our feedback based scores achieve better
solutions with fewer detections than the baselines - observation score and random
score.

64

28 55 82 109 136

Number of Clear and Rebound Detections

6295

6300

6305

6310

6315

6320

M
A
P
 V
a
lu
e

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

28 55 82 109 136

Number of Clear and Rebound Detections

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 S
co
re

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

37 72 107 142 177

Number of Clear and Rebound Detections

9005

9010

9015

9020

9025

M
A
P
 V
a
lu
e

Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

37 72 107 142 177

Number of Clear and Rebound Detections

0.55

0.60

0.65

0.70

0.75

0.80

F1
 S
co
re

Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

41 75 109 143 177

Number of Clear and Rebound Detections

8665

8670

8675

8680

8685

8690

8695

M
A
P
 V
a
lu
e

Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

41 75 109 143 177

Number of Clear and Rebound Detections

0.4

0.5

0.6

0.7

0.8

F1
 S
co
re

Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

21 46 71 96 121

Number of Clear and Rebound Detections

5825

5830

5835

5840

5845

5850

M
A
P
 V
a
lu
e

Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

21 46 71 96 121

Number of Clear and Rebound Detections

0.4

0.5

0.6

0.7

0.8

F1
 S
co
re

Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

Figure 4.5: We apply threshold on both the Rebound and Clear events for initial
network and then incrementally add both events at every iteration. We still see
that the exact score and the upper bound score reach better solutions with fewer
detections than the observation score. However, the blind score falls slightly below
the observation score since it depends only on the current network and the context
in the current network is weak due to fewer events.

65

randomly and adding them without looking at either the confidence measures or the

context in the main network.

The results are shown in Figure (4.4). Among the seven videos from the

dataset, four of the them are large enough to add intervals in an iterative manner.

We show the plots of MAP value and also the f1 scores against the number of Clear

detections in the current network. The plots start at the same initial value for all the

five scoring methods since the initial network contains the same set of detections.

The goal of our feedback technique is to reach the final MAP value in few iterations

by adding only the relevant detections while keeping the rest of them false. The

MAP values increase faster with all of our three feedback based score functions

when compared to the observation score. The exact score is the quickest followed

by the upper bound score and then the blind score. The plots of f1 scores also

show that we can reach the best possible value with fewer detections using feedback

based score functions implying that they select the most relevant events from the

missing ones. We observe that the blind score performs well when compared with

the observation score. This indicates that the context in the main network has a

huge impact on what needs to be added to improve the MAP value.

We also experiment with jointly thresholding the Rebound event along with

the Clear event. The Rebound events are scaled between -0.25 to 0.1 and we choose

a threshold of 0 for the initial network. The Clear events are scaled between 0.5 to 1

and we choose a threshold of 0.75. We then proceed to iteratively add the remaining

Rebound and Clear events. The results in Figure (4.5) show that the exact score and

upper bound score can reach the best possible MAP value and f1 score by adding

66

fewer detections. However the plot for blind score falls below that of the observation

score. By increasing the threshold on the Rebound event, the strength of context

in the main network is weakened and hence the blind score which is dependent on

just the current network starts to perform poorly.

4.3.4 Effect of initial threshold

To observe the effect of initial threshold, we experimented with four different

initial thresholds for the Rebound event. Like before, the Rebound events are scaled

between -0.25 to 0.1 and the Clear events are scaled between 0.5 to 1. We choose

a threshold of 0.75 for Clear events and vary the initial threshold for Rebound

events starting from the lowest, which is -0.25 (includes all the Rebound events) and

increase up to the value 0 which is high enough to weaken the context. As the initial

threshold is increased for the Rebound events, the initial network becomes sparse

weakening the context in the initial network. Figure (4.6a) shows that a higher

threshold decreases the MAP value achieved in the first iteration of adding events

to initial network. The blind score is affected the most since it is dependent only on

the current network. It continues to perform poorly in later iterations (Figure (4.6b))

at higher initial threshold for the Rebound event. Hence, it is important to select a

reasonably high threshold that allows enough number of events in the initial network

without increasing the network size.

67

-0.25 -0.2 -0.1 0

Initial threshold for Rebound

9010

9012

9014

9016

9018

9020

9022

9024

9026

M
A
P
 v
a
lu
e

Iteration 1

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

(a) First iteration of adding Rebound and
Clear events

-0.25 -0.2 -0.1 0

Initial threshold for Rebound

9014

9016

9018

9020

9022

9024

9026

M
A
P
 v
a
lu
e

Iteration 2

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

(b) Second iteration of adding Rebound and
Clear events

Figure 4.6: Effect of initial threshold for the Rebound event in video 4; The con-
fidence scores for the Clear events are scaled between 0.5 to 1 and the Rebound
events between -0.25 to 0.1. We fix the initial threshold for Clear event at 0.75 and
vary the threshold for Rebound from -0.25 to 0. We observe that a higher threshold
for Rebound event in the initial network decreases the MAP value that is achieved
in the first iteration of adding Rebound and Clear events to the initial network. The
blind score continues to perform poorly in later iterations at higher initial threshold
due to weak context in the initial network. However, the exact score and the upper
bound score are still stable with respect to the initial threshold.

4.4 Conclusion

We propose a computational framework for a feedback loop between high

level semantics and low level detectors in a computer vision system, where we use

the information in the high level model to select relevant detections from a set of

candidate hypotheses. We start with high confidence detections and then iteratively

add only those detections to the model that are most likely to be labeled as true

by the high level model. This helps us keep the model size small especially in the

presence of many noisy detections. We develop the framework for higher order

Markov networks and propose three feedback based scoring functions to rank the

detections. We show through our experiments on an event recognition system that

68

the feedback loop can construct smaller networks with fewer detections and still

achieve the best possible performance.

69

Chapter 5: Feature Selection using PLS regression and Optimal Ex-

periment Design

Datasets with a large number of features are prevalent in many fields like

Computer Vision, Bioinformatics and Chemometrics. These large datasets pose

analytical and computational challenges, and the problem is even worse for high

dimensional cases where the number of features is much greater than the number

of samples. A feature selection process reduces the dimensionality of the data by

identifying a subset of the original features that captures the maximum amount of

information from the data. The advantages of feature selection are improving the

generalization capability of models, reduce computation time and provide a better

understanding of the interaction among features [88].

Among supervised feature selection techniques, ranking by regression coeffi-

cients is one of the simplest ways to select features. Partial Least Squares (PLS)

[89,90] is a widely used regression technique for high dimensional datasets. It is ex-

tensively used for wavelength selection in Chemometrics and gene selection in Com-

putational Biology [91,92] as they typically present with high dimensional datasets.

The features are usually selected by ranking them according to the value of their

PLS regression coefficients or other relevance measures. The caveat of this procedure

70

is that it doesn’t jointly look at the features and is susceptible to selecting redun-

dant features. Similar to `1 and `2 norm penalized regression techniques, penalized

techniques for PLS [93, 94] are one of the approaches to perform feature selection

with PLS. The penalized regression techniques enforce sparsity in the regression

coefficients along with the minimization of model variance.

The other approach to minimizing the variance of the regression model is to

apply the theory of Optimal Experiment Design (OED) [76] and its optimality cri-

terions to PLS regression. The three most commonly used optimality criterions are

A-optimality, D-optimality and E-optimality which respectively minimize the trace,

determinant and maximum eigenvalue of the covariance matrix of regression coef-

ficients. Optimal Experiment Design has been used for sample selection problems

like sensor selection and Active Learning [95]. The optimality criterions are not spe-

cific to sample selection and can also be used to measure the optimality of models

with different sets of features. Hence we use these criterions with PLS to develop a

supervised feature selection technique. We show that an optimal feature subset can

be selected by applying these criterions to the loadings covariance matrix obtained

from PLS.

We first decompose the prediction error of PLS regression into its bias, variance

and noise components. We then apply the OED criterions to the covariance matrix

of regression coefficients to derive the A-optimality and D-optimality versions of the

Optimal Loadings criterion. We also show that the A-Optimal Loadings criterion

can be obtained by explicitly incorporating the property of maximum relevance

as maximizing energy content in the loadings matrix. The minimum redundancy

71

property is incorporated as minimizing the condition number of loadings matrix.

However, solving the Optimal Loadings criterions is computationally challenging

as it is dependent on different PLS models for evaluating different feature subsets.

Hence we propose an approximate D-Optimal Loadings criterion that is based on

a single loadings covariance matrix obtained with the entire set of features. We

also obtain a mathematical relationship between the approximate and the original

D-Optimal Loadings criterion and use it to qualitatively justify the approximation.

The advantage of the Optimal Loadings criterions is that the features are

evaluated as subsets rather than individual features and hence can simultaneously

measure redundancy along with relevance of features. This advantage is clearly

evident in our experiments when the number of selected features is small. In our

experiments we implement the D-Optimal Loadings criterion that maximizes the

determinant of the loadings covariance matrix. Experiments on four datasets indi-

cate that the D-Optimal Loadings criterion performs consistently better than the

standard feature selection techniques, in terms of classification accuracies obtained

with feature subsets.

5.1 Related Work

Feature selection techniques can be classified [88] into individual feature rank-

ing methods and feature subset evaluation methods. The individual feature ranking

methods use relevance measures to sort the features in a rank order. Fisher Score [96]

and ReliefF [97] are two techniques that belong to the ranking methods. Features

72

can also be ranked based on regression coefficients and other informative vectors like

Variable Influence on Projection (VIP) [98]. Although these methods have a compu-

tational advantage, they fail in the presence of redundant features as the minimum

redundancy property needs to be measured by jointly looking at the features. A

popular technique that incorporates both the relevance and redundancy properties is

the minimum redundancy and maximum relevance (mRMR) framework [99,100]. It

involves an objective function that is based on Information Theoretic measures and

uses incremental search techniques to find the feature subsets. The computational

challenge in the original mRMR framework is the estimation of mutual information

when the number of samples is small and also when the data is continuous. However,

a kernel based dependency measure like the Hilbert Schmidt Independence Criterion

(HSIC) can be used instead of the mutual information measure. The HSIC has been

used as a measure of feature dependence by L.Song et al. [101].

In the presence of high dimensionality, ordinary least squares regression fails

due to the singularity of the feature covariance matrix. Hence regularized linear

regression, usually with `1 and/or `2 penalization [102,103], is employed to obtain a

biased model with smaller variance. Partial Least Squares (PLS) regression [89,90]

is a commonly used technique for handling high dimensional datasets. It provides

two viewpoints to the modeling process - as a regression technique and as a feature

extraction technique. While it can extract information in a latent space of few

dimensions, the sparsity of the features needs to be explicitly incorporated into the

PLS formulation for feature selection. In the Sparse PLS of K-A Lê Cao et al. [93],

`1 penalization is applied to the loading vectors in the PLS-SVD formulation to

73

integrate feature selection into the modeling process. The Sparse PLS of H.Chun

and S.Keles [94] uses both the `1 and `2 penalization like that of Elastic Nets in the

PLS formulation.

In Ordinary Least Squares regression, under uniform noise assumption, the co-

variance matrix of the regression coefficients is independent of the response variable.

This property is used to apply the Optimal Experiment Design [76] to unsupervised

feature selection. The Laplacian Score technique [104] is a ranking based algo-

rithm for unsupervised feature selection that has been extended [105] with OED

and shown to perform better than the original ranking based algorithm. While

both the penalization and the OED approaches have been studied for ordinary least

squares regression, only the penalization methods have been tried with PLS. Our

work explores the application of the OED criterions to PLS regression.

5.2 Preliminaries

5.2.1 Partial Least Squares

Partial Least Squares is a simultaneous feature extraction and regression tech-

nique, well suited for high dimensional problems where the number of samples is

much lesser than the number of features (n � p). The linear PLS model can be

expressed as

X = TP> +Xres (5.1)

Y = UQ> + Yres (5.2)

74

where Xn×p is the feature matrix, Yn×q is the matrix of response variables or class

labels, Tn×d is called the X-scores, Pp×d is X-loadings, Un×d is Y -scores, Qq×d is

Y -loadings, Xres and Yres are the residuals. The data in X and Y are assumed to

be mean-centered. X-scores and Y -scores are the projections of n samples onto a d-

dimensional orthogonal subspace. The X-scores are obtained by a linear combination

of the variables in X with the weights W ∗ as shown in Eqn. (5.3).

T = XW ∗ (5.3)

The inner relation between X-scores and Y -scores is a linear regression model

[89] and hence X-scores are called predictors of Y -scores. If B is the regression

coefficient for the inner relation between the scores, we can write

U = TB (5.4)

Substituting the above Eqn. (5.4) in Eqn. (5.2) we get

Y = TBQ> + Yres (5.5)

= TB̃ + Yres (5.6)

where B̃ = BQ>. The least squares estimate of B̃ is then given by

B̂ = (T>T)−1T>Y (5.7)

75

Hence PLS can be expressed in a linear regression form as,

Ŷ = TB̂ = T (T>T)−1T>Y (5.8)

For a detailed explanation of the PLS technique, we guide the readers to refer [89,90].

The two most popular algorithms to obtain the PLS model are NIPALS [90]

and SIMPLS [106]. SIMPLS provides weights W ∗ which can be combined directly

with X where as NIPALS provides weights W that act on the residuals Za obtained

by deflating X at every component a. The relationship between the two is given

by [90],

W ∗ = W (P>W)−1 (5.9)

Here we consider the case of a single response variable Yn×1 and use the equa-

tions from the NIPALS algorithm to obtain the PLS model. However we consider

a small variation, where we normalize the scores instead of the loadings. At every

iteration for the component a, we have

wa =
Z>a Y√

Y >ZaZ>a Y
(5.10)

ta =
Zawa√

w>a Z
>
a Zawa

(5.11)

pa = Z>a ta (5.12)

Za+1 = Za − tap>a (5.13)

where Z1 = X. The weights and scores form an orthonormal set i.e. w>i wj = 0 and

76

t>i tj = 0 for i 6= j.

5.2.2 Notation

Let π denote a subset of feature indices from the set {1, 2, 3, . . . , p} containing

exactly k elements. The feature subset matrix Xπ is expressed as

Xπ = X(n×p)Π(p×k) (5.14)

where Π is a column selection matrix that selects k out of p features. Each of the

k columns of Π contains a single entry of one at a row indexed by an element in π

and zeros elsewhere. Any parameter of a model built with a subset of features is

represented by a subscript π.

5.3 Optimal Loadings Technique

5.3.1 Optimal Experiment Design for PLS

Consider a linear regression model

Y = Xβ + ε (5.15)

where Yn×1 is the response vector, Xn×p is the feature matrix, βp×1 is the regression

coefficient vector and εn×1 is the noise vector with mean zero and covariance σ2In.

The noise for different observations are assumed to be independent of each other.

77

The Partial Least Squares estimate of the regression coefficients can be ob-

tained by substituting for Tπ from Eqn. (5.3) in Eqn. (5.8).

β̂π = ΠW ∗
π (T>π Tπ)−1T>π Y = ΠW ∗

πT
>
π Y (5.16)

By substituting for Y from Eqn. (5.15) in the above Eqn. (5.16), we find that the

mean of the PLS estimate is given by

E[β̂π] = ΠW ∗
πT
>
π Xβ + ΠW ∗

πT
>
π E[ε] (5.17)

= ΠW ∗
πT
>
π Xβ (5.18)

where in Eqn. (5.17) we have assumed that ΠW ∗
πT
>
π and ε are negligibly correlated.

This is possible when the Signal to Noise Ratio is high and hence the deviation in

the PLS model with respect to noise is negligible. The covariance of β̂π is given by

cov(β̂π) = E
[
(β̂π − E[β̂π])(β̂π − E[β̂π])>

]
(5.19)

= E[β̂πβ̂
>
π]− E[β̂π]E[β̂>π] (5.20)

= σ2ΠW ∗
πW

∗>
π Π> (5.21)

For a new sample (x, y) such that y = x>β + e and ŷ = x>β̂π, the mean squared

prediction error of PLS can be decomposed into its bias, variance and noise compo-

78

nents.

E[(y − ŷ)2] (5.22)

= x>E[(β − β̂π)(β − β̂π)>]x+ σ2 (5.23)

= Bias2 + x>
(
σ2ΠW ∗

πW
∗>
π Π>

)
x+ σ2 (5.24)

where

Bias2 = x>(Ip − ΠW ∗
πT
>
π X)ββ>(Ip −X>TπW ∗>

π Π>)x (5.25)

Since the squared prediction error is directly proportional to cov(β̂π), the prediction

error can be minimized by minimizing the covariance of PLS regression coefficients.

Also, in high dimensional datasets, reducing the model variance helps avoid overfit-

ting to the data. The theory of Optimal Experiment Design proposes to minimize

this covariance by optimizing the eigenvalues of ΠW ∗
πW

∗>
π Π> through various crite-

rions.

Lemma 1. The matrices W ∗
πW

∗>
π and (PπP

>
π)† have the same non-zero eigenvalues,

where † represents the Moore-Penrose inverse.

79

Proof. By substituting for W ∗
π from Eqn. (5.9), we get

eigval(W ∗
πW

∗>
π) (5.26)

= eigval
[
Wπ(P>π Wπ)−1 (P>π Wπ)−1)>W>

π

]
(5.27)

= eigval
[
WπW

>
π (PπP

>
π)†WπW

>
π

]
(5.28)

= eigval [(PπP
>
π)†] (5.29)

where eigval() refers to the eigenvalues of a matrix. Eqn. (5.28) can be regarded as

a similarity transformation since Wπ is orthonormal. The rank of these matrices is

equal to the number of latent components (d) extracted.

Using the above Lemma 1 and applying the A-optimality criterion to the

covariance matrix of PLS coefficients in Eqn. (5.21) we get,

arg min
Π

trace
[
Π(PπP

>
π)†Π>

]
(5.30)

We can drop the pre and post multiplication by Π as it is only padding zeros to

change the size of the matrix, (PπP
>
π)†, from k × k to p× p. For a fixed number of

selected features, k, the A-optimal criterion can be rewritten as

Definition 1 (A-Optimal Loadings criterion). The A-optimality version of Optimal

Loadings criterion is given by

arg min
Π

trace
[
(PπP

>
π)†
]

(5.31)

80

We could also apply the D-optimality or E-optimality criterion which mini-

mize the determinant or the maximum eigenvalue respectively, instead of the trace

in Eqn. (5.31). Among these optimality criterions, the D-optimality criterion is the

most popular due to availability of off-the-shelf algorithms in convex optimization

toolboxes and row exchange algorithms. It also simplifies the determinant mini-

mization of an inverse to maximizing the determinant of the matrix itself. The

D-optimality version of the criterion (5.31) is given by

arg min
Π

det †
[
(PπP

>
π)†
]

(5.32)

which is equivalent to

Definition 2 (D-Optimal Loadings criterion). The D-optimality version of Optimal

Loadings criterion is given by

arg max
Π

det †
(
PπP

>
π

)
(5.33)

where det †() represents pseudo-determinant which is a product of non-zero eigen-

values of the matrix.

The actual determinant is substituted by a pseudo determinant as the criterion

involves a rank deficient matrix.

81

5.3.2 PLS models with Maximum Relevance and Minimum Redun-

dancy

The A-Optimal Loadings criterion (5.31) can also be obtained by applying the

requirements of maximum relevance and minimum redundancy for feature subsets.

The following derivation provides an intuitive viewpoint to the same criterion that

is obtained from the theory of Optimal Experiment Design.

The reconstruction error in a feature extraction technique measures the differ-

ence between the original energy content in all the features and the amount captured

by the latent components. While it is our goal to obtain features that best explain

a response variable, the structure in data should also be preserved. By substituting

for pa from Eqn. (5.12) in Eqn. (5.13), we get

Za+1 = [I − tat>a]Za = [I −
a∑
i=1

tit
>
i]X (5.34)

The reconstruction error can also be viewed as the residuals that cannot be explained

by the PLS model. Hence we can use Eqn. (5.34) to express the error in a form

similar to that of reconstruction error for PCA.

error2 = ||Xres||22 =
∣∣∣∣X − TT>X∣∣∣∣2

2
(5.35)

= trace
[
X>X −X>TT>X

]
(5.36)

= trace
[
X>X

]
− trace

[
PP>

]
(5.37)

82

where Eqn. (5.37) is obtained by substituting for X from Eqn. (5.1) in the second

term and making use of the fact that the scores T are orthogonal to the residuals

Xres. The reconstruction error reduces with increase in the number of components

extracted. But for a fixed number of components d, the error is minimum when

the trace
[
PP>

]
is maximum. Therefore we start by defining the feature selection

criterion as

arg max
Π

trace
[
PπP

>
π

]
(5.38)

It should be noted that the reconstruction error in itself is not considered in cri-

terion (5.38). This criterion tries to select the feature subset that contains the

maximum energy content (measured by Frobenius norm) in the PLS model after

feature selection.

The criterion (5.38) is also directly proportional to covariance between the

features X and the response variable Y . This can be seen by substituting for pπ

from Eqn. (5.12) in criterion (5.38) and then expanding up to wπ in Eqn. (5.10).

We get

trace[PπP
>
π] =

d∑
a=1

Y >
(
ZaZ

>
a

)3
Y

Y > (ZaZ>a)2 Y
(5.39)

Since PLS extracts components such that the covariance between features and re-

sponse variable and the covariance between features itself are simultaneously max-

imized, the criterion (5.38) simultaneously satisfies the relevance property towards

the response variable and the latent information in features.

However, the trace criterion (5.38) does not measure the redundancy property

and hence we incorporate condition number of P>π to measure the linear dependence

83

of columns/features. Since we want to minimize the condition number, the criterion

(5.38) can be rewritten as

arg max
Π

(
trace

[
PπP

>
π

]
(κ (P>π))2

)
(5.40)

The condition number in Frobenius norm is defined as

(
κ
(
P>π
))2

= trace
[
PπP

>
π

]
. trace

[
(PπP

>
π)†
]

(5.41)

We now substitute for κ in criterion (5.40) to obtain

arg min
Π

trace
[
(PπP

>
π)†
]

(5.42)

This is the same A-Optimal Loadings criterion (5.31) obtained earlier by applying

the Optimal Experiment Design to Partial Least Squares regression.

5.3.3 Approximation for the D-Optimal Loadings criterion

In our experiments we choose to implement the D-optimality version of Opti-

mal Loadings criterion as it simplifies the minimization of determinant of inverse ma-

trix to the maximization of determinant itself. The availability of off-the-shelf algo-

rithms for determinant maximization is another advantage of using the D-optimality

criterion.

The loadings in criterion (5.33) is dependent on π and is infeasible to construct

84

a PLS model every time a subset of features is to be evaluated. This would defeat

the purpose of a feature selection technique. Hence we try to express the criterion

in terms of loadings obtained with all features. From Eqn. (5.1), we have

X>π Xπ = PπP
>
π +X>res πXres π (5.43)

Π>X>XΠ = Π>PP>Π + Π>X>resXresΠ (5.44)

The right hand terms of the above Eqns. (5.43) and (5.44) can be equated (Eqn. (5.14))

to obtain

PπP
>
π = Π>PP>Π + ∆π (5.45)

where ∆π is a symmetric matrix given by

∆π =
[
Π>X>resXresΠ−X>res πXres π

]
(5.46)

Since we use the D-optimality criterion for feature selection, we discuss the rela-

tionship between the determinants of PπP
>
π and Π>PP>Π. The singularity of these

matrices presents difficulties in quantifying their behavior. Therefore we obtain

the relationship between the determinants of regularized matrices (PπP
>
π + I) and

(Π>PP>Π + I).

Theorem 1. The relationship between the determinants of (Π>PP>Π + I) and

(PπP
>
π + I) is given by,

det(PπP
>
π + I) = det(M + ΛMΣ−1) det(Π>PP>Π + I) (5.47)

85

where M is a unitary matrix, Λ is a diagonal matrix of real eigenvalues of ∆π and

Σ is a diagonal matrix of positive eigenvalues of (Π>PP>Π + I).

Proof. Let the two symmetric, positive semi-definite matrices PπP
>
π and Π>PP>Π,

each be of rank d and size k × k, with the relationship between them as

PπP
>
π = Π>PP>Π + ∆π (5.48)

where ∆π is a symmetric matrix given by

∆π =
[
Π>X>resXresΠ−X>res πXres π

]
(5.49)

We make use of Sherman-Morrison-Woodbury formula [107] for expressing the de-

terminant of sum of matrices.

det(PπP
>
π + I) = det(Π>PP>Π + I + ∆π) (5.50)

= det(Π>PP>Π + I + UΛU>) (5.51)

= det(I + ΛU>(Π>PP>Π + I)−1U) det(Π>PP>Π + I) (5.52)

= det(I + ΛU>V Σ−1V >U) det(Π>PP>Π + I) (5.53)

= det(I + ΛMΣ−1M>) det(Π>PP>Π + I) (5.54)

= det(M + ΛMΣ−1) det(Π>PP>Π + I) (5.55)

where we have applied Eigen-decomposition on ∆π and (Π>PP>Π + I). Σ and Λ

are diagonal matrices containing non-negative eigenvalues (σ) of (Π>PP>Π + I)

86

and real eigenvalues (λ) of ∆π, respectively. M is a unitary matrix obtained as a

product of two other unitary matrices U and V .

The two determinants are highly correlated when the condition number of

(M+ΛMΣ−1) is small. The condition number of a matrix measures the asymptotic

worst case of the amount of perturbation that can be produced by the matrix when

multiplied with other matrices. The eigenvalues in Σ and Λ are indicators of the en-

ergy content in structured data and noise respectively, where noise is any structure

that cannot be explained by the first d components of the PLS model. The theoret-

ical and empirical observations (found in the supplementary material) suggest that

the condition number is small when the variance in noise is low and levels of noise

are far away from that of structure in data. Therefore under the assumption of high

Signal to Noise Ratio, we can ignore ∆π and substitute for PπP
>
π from Eqn. (5.45)

in criterion (5.33). The approximate feature selection criterion is given by,

arg max
Π

det †(Π>PP>Π) (5.56)

The number of components in Π>PP>Π and PπP
>
π must be equal to compare the

information between the two matrices. The number of components in PLS regression

determines the bias and variance of the model. It is usually chosen such that the

cross-validation error of PLS regression is minimum.

The experiments and discussion in the following sections use the D-optimality

criterion for feature selection. D-optimal designs are usually generated by employing

row exchange algorithms [77, 108]. These algorithms add or delete rows, starting

87

from a non-singular set, in order to increase the determinant. The algorithm iterates

until the increment in determinant becomes lesser than some fixed threshold or

the number of iterations reach a maximum value. However, it is not guaranteed

that the iterations will converge to the global maximum value. One of the first

exchange algorithms was developed by V.V.Fedorov and several modifications have

been proposed to improve the computational performance [108]. The traditional

D-optimal experiment design differs from the feature selection problem, as it allows

duplicate samples. Hence the standard exchange algorithms need to be tweaked to

avoid duplicates for feature selection.

Since the D-optimality criterion involves maximization of the determinant, it

can also be treated as a convex optimization problem [109]. The integer constraints

πi ∈ {0, 1} need to be relaxed to πi ∈ [0, 1].

minimize − log det

[
p∑
i=1

πiPiP
>
i

]
(5.57)

subject to

p∑
i=1

πi = k (5.58)

0 ≤ πi ≤ 1, i = 1, . . . p (5.59)

It can be seen that the solution to the original problem in Criterion (5.56) is a

feasible solution to the above relaxed problem. Usually we obtain a discrete solution

by considering the k largest values of πi, which can lead to a sub-optimal solution

to the original problem. The log det criterion is an objective function available with

popular SDP solvers [110]. One of the disadvantages of the convex optimization

88

5 10 15 20 25 30 35 40
25

30

35

40

k=200
k=125

k=50k=5

y=x

logdet[ΠT
PP

T
Π]

lo
g
d
et
[P

π
P

T π
]

Random dataset

(a) Random data

50 100 150 200 250

80

100

120

140

160

180

200

220

240

260 k=200k=125
k=50

k=15

y=x

logdet[ΠT
PP

T
Π]

lo
g
d
et
[P

π
P

T π
]

MNIST dataset

(b) MNIST dataset

80 90 100 110 120 130 140 150
80

90

100

110

120

130

140
k=200

k=125

k=50
k=10

y=x

logdet[ΠT
PP

T
Π]

lo
g
d
et
[P

π
P

T π
]

ORL dataset

(c) ORL dataset

280 300 320 340 360 380 400 420

300

320

340

360

380

400

420 k=200

k=125

k=50
k=30

y=x

logdet[ΠT
PP

T
Π]

lo
g
d
et
[P

π
P

T π
]

CMU PIE dataset

(d) CMU PIE dataset

Figure 5.1: Relationship between the original criterion log det[PπP
>
π] and the ap-

proximate criterion log det[Π>PP>Π], that are obtained by applying PLS for varying
number of features, k, in a subset π. The approximate and original criterions are
positively correlated for the real datasets. Hence, by maximizing the approximate
criterion we are not too far away from the maximum of the original criterion.

methods is that they store the entire convex hull of features, which is difficult to

handle for large loadings matrix due to memory restrictions.

5.4 Analysis of the relationship between PπP
>
π and Π>PP>Π

We can obtain an upper bound for the relationship (5.47) by finding the largest

singular value of det(M+ΛMΣ−1). The spectral norm measures the largest singular

89

value of a matrix. Using few of the properties of norms we can write

||M + ΛMΣ−1||2 ≤ ||M ||2 + ||Λ||2||M ||2||Σ−1||2 (5.60)

= 1 +
λmax
σmin

(5.61)

where λmax = maxi |λi| and σmin = mini σi. Therefore the upper bound for rela-

tionship (5.47) is given by,

det(PπP
>
π + I) ≤

(
1 +

λmax
σmin

)k
det(Π>PP>Π + I) (5.62)

To determine the lower bound, we will need to find the smallest singular value of

det(M + ΛMΣ−1). However the only safe bound that can be obtained is that the

smallest singular value is greater than zero as the determinants on both sides of

the relationship need to be positive. Nevertheless, a qualitative discussion can be

provided by estimating the smallest singular value by a lower bound for the norms

of the columns. We will first express the matrix M + ΛMΣ−1 as,

M + ΛMΣ−1 = (5.63)

(1 + λ1
σ1

)m11 (1 + λ1
σ2

)m12 . . . (1 + λ1
σk

)m1k

(1 + λ2
σ1

)m21 (1 + λ2
σ2

)m22 . . . (1 + λ2
σk

)m2k

...
. . .

(1 + λk
σ1

)mk1 (1 + λk
σ2

)mk2 . . . (1 + λk
σk

)mkk


(5.64)

90

The norm of a column is given by

βi =

√√√√ k∑
j=1

(
1 +

λj
σi

)2

m2
ji (5.65)

Since λj can be negative, the lower bound is dependent on ratio between λj and

σi. Therefore we just let l be the column that minimizes the column norms and

calculate a λmin,l such that

λmin,l = arg min
λj

∣∣∣∣1 +
λj
σl

∣∣∣∣ (5.66)

Then a lower bound for the norms of columns is given by

βi ≥
∣∣∣∣1 +

λmin,l
σl

∣∣∣∣ (5.67)

and an approximate lower bound on the determinant can be written as

det(PπP
>
π + I) &

∣∣∣∣1 +
λmin,l
σl

∣∣∣∣k det(Π>PP>Π + I) (5.68)

Combining the two bounds in (5.62) and (5.68) we get

∣∣∣∣1 +
λmin,l
σl

∣∣∣∣k . det(PπP
>
π + I)

det(Π>PP>Π + I)
≤
(

1 +
λmax
σmin

)k
(5.69)

In most practical situations the bounds in inequality (5.69) are much tighter. The

number of non-zero eigenvalues of ∆π are usually few and hence the exponential

91

factor of k is also low.

Figure 5.1 shows a quantitative relationship between the log determinants of

PπP
>
π and Π>PP>Π for random data and three of the datasets (ORL, MNIST, CMU

PIE) used in our experiments. The random data is of size 100 × 1000. The point

clouds are generated by observing the determinant values for randomly selected

subsets of size k. We can see that for the MNIST (Figure 5.1(b)), ORL (Figure

5.1(c)) and CMU PIE (Figure 5.1(d)) datasets, the point clouds are very narrow

and the behavior of two matrices are almost positively correlated.

We can use the bounds in inequality (5.69) to qualitatively describe the situ-

ations when the point clouds in Figure 5.1 will be narrow so that the determinants

are positively correlated. The point clouds are narrower when the ratio between the

bounds is close to one. Minimizing this ratio is equivalent to minimizing the condi-

tion number of the matrix (W + ΛWΣ−1) which is the ratio of its largest singular

value to its smallest singular value. The largest singular value of (W + ΛWΣ−1) is

1 + λmax since the minimum of σi is one. The condition number is then given by,

κ ' 1 + λmax∣∣∣1 +
λmin,l
σl

∣∣∣ (5.70)

The eigenvalues (λ) of ∆π are usually few large positive values coming mostly due

to Π>X>resXresΠ and few negative values coming due to −(X>res πXres π). These

eigenvalues are indicators of the information content in the noise, where noise is any

structure that cannot be explained by the first d components of the PLS model.

The eigenvalues in Σ are indicators of information content in the structured data.

92

When all the λj are positive, the approximate lower bound in inequality (5.67)

is
(

1 + λmin
σmax

)
where λmin = minj λj. In this case, the condition number is low when

the ratio between λmax and λmin is low i.e. the variance in noise is low. When there

are negative eigenvalues, λmin,l is satisfied by an eigenvalue whose absolute value is

close to σl. In such a situation, the condition number is low when λi are farther

from σi i.e. the levels of noise and structured data are separated. Therefore the

approximation gets better as the variance in noise gets lower and noise levels are

farther away from that of structured data. In many real datasets, linear regression

can provide good models and hence in such situations by maximizing det(Π>PP>Π+

I), we are not too far away from the maximum of det(PπP
>
π + I).

5.5 Experiments and Results

To evaluate the performance of our feature selection criterion, we test it in a

classification framework where feature selection is treated as a preprocessing filter

that produces the indices, π, of the selected feature subset. The feature subset

is then used to obtain low dimensional subspaces using PLS. The classification is

performed using a Linear Discriminant Classifier in the low-dimensional projection

subspace. In a cross-validation setting, the test data is separated from training data

for both feature selection and classifier training. This experimental setup is used

in order to avoid any overoptimistic performance results obtained when evaluating

feature selection using the entire data, as reported in [111].

93

5.5.1 Datasets

The experiments are performed on four datasets - two of them are face image

datasets, one is a handwritten digit dataset and the last one is a mass-spectrometric

dataset of cancerous and normal tissues. For all of the three image datasets, pixel

values are used as features and no feature extraction is performed. The first dataset

is a subset1 [112] of the MNIST handwritten digits. This dataset contains 200 images

each for 10 different digit classes, producing a dataset of size 2000×784. The second

one is a subset of the AT&T ORL face image database. The dataset consists of face

images for 10 subjects with 10 images for each subject with pose variations, which

produces a dataset of size 100 × 10304. The third dataset is a subset of the CMU

PIE database that contains face images of 10 different people in a fixed frontal pose

(Pose 27) with light and illumination changes. There are 49 images per person,

hence producing a dataset of size 490×4096. The fourth is the Arcene dataset from

the NIPS Feature Selection Challenge. It contains training and validation sets each

of size 100× 10000. There are two classes in this dataset.

5.5.2 Comparison with other Feature Selection Techniques

We evaluate the performance of D-Optimal Loadings criterion along with other

supervised feature selection techniques such as ranking by regression coefficients,

Fisher Score [96], RRelief-F [97] and mRMR [100]. For the D-Optimal Loadings

criterion, the number of components is chosen based on the minimization of cross

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

94

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Number of features

OptimalLoadings
RegressionCoeffs
RReliefF
FisherScore
mRMRq

(a) MNIST dataset

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Number of features

OptimalLoadings
RegressionCoeffs
RReliefF
FisherScore
mRMRq

(b) ORL dataset

40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Number of features

OptimalLoadings
RegressionCoeffs
RReliefF
FisherScore
mRMRq

(c) CMU PIE dataset

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Number of features

OptimalLoadings
RegressionCoeffs
RReliefF
FisherScore
mRMRq

(d) Arcene dataset

Figure 5.2: Classification performance with feature subsets: The D-Optimal Load-
ings criterion performs better than others on the MNIST and the CMU PIE datasets
and performs equally well with the mRMR technique on the ORL and the Arcene
datasets. It also shows a consistent performance especially when the number of
selected features is small.

validation error of PLS regression and the determinant maximization is performed

using a tweaked version of the row exchange algorithm available in MATLAB Statis-

tics Toolbox. The same PLS model is used to obtain the regression coefficients and

the top features are selected based on the absolute value of their coefficient. We use

the regression version of Relief-F as it showed better performance than the classifi-

cation version. In RRelief-F, the neighborhood and number of samples for quality

estimation are set to 10 and 100 respectively. Finally for the mRMR technique we

use the Mutual Information Quotient scheme since it is shown to perform better

than the MI Difference scheme. Here we do not discretize the data any further.

95

We compare the performance using classification accuracies obtained using

a Linear Discriminant Classifier. We prefer to use a simple linear classifier so as

to avoid tuning the new parameters introduced by nonlinear classifiers. Since the

number of selected features can be greater than the number of samples, the classifier

is trained in a PLS subspace to avoid over-fitting. The feature subset is used to

construct a subspace whose dimensions are again selected based on least cross-

validation error for PLS regression. This happens to be same as that used for the D-

Optimal Loadings criterion. Given the number of components as d, the experiments

are conducted for varying sizes of the feature subset. During the test phase, we

select the feature subset from test data, find projections using weights from training

phase and then classify using the trained model.

We found that the cross validation error of PLS regression stabilizes at around

10, 15, 30 and 20 components for the ORL, MNIST, CMU PIE and Arcene datasets

respectively. Using these number of components, we perform a 20-fold cross-validation

experiment for the ORL dataset and 10 fold cross-validation for MNIST and CMU

PIE datasets. A larger number of folds is used for the ORL dataset due to smaller

number of samples. For the Arcene dataset, the validation set is used as the test

set and entire training set is used for training. Figure 5.2 shows the classification

accuracies obtained with D-Optimal Loadings, Regression coefficients, Fisher score,

Relief-F and mRMR for the four datasets. The D-Optimal Loadings criterion out-

performs other techniques on the MNIST and the CMU PIE datasets and performs

equally well with the mRMR technique on the ORL and the Arcene datasets. The

D-Optimal Loadings technique can very well handle the situation when the number

96

k
=

 5
0

k
=

 1
00

k
=

 1
50

OptimalLoadings

k
=

 2
00

RegressionCoeffs RReliefF FisherScore mRMRq

(a) Sample ORL image

k
=

 5
0

k
=

 1
00

k
=

 1
50

OptimalLoadings

k
=

 2
00

RegressionCoeffs RReliefF FisherScore mRMRq

(b) Sample CMU PIE image

Figure 5.3: Feature points selected by D-Optimal Loadings, Regression Coefficients,
Relief-F, Fisher Score and mRMR techniques. The features selected by D-Optimal
Loadings are well distributed across the significant regions of the image unlike others
that tend to get clustered or lie in noisy regions.

of selected features is small. We see that the Fisher score and Relief-F are generally

worse performing for smaller number of features since they do not handle redundancy

among features. In Figure 5.3 the feature points selected by the five techniques are

shown overlaid on sample images from two of the datasets. The features selected by

D-Optimal Loadings are well distributed across the significant regions of the image

unlike others that tend to get clustered or lie in the noisy regions.

5.6 Conclusion

Our work explores the application of the theory Optimal Experiment Design

(OED) to Partial Least Squares (PLS) regression. We use the OED to derive the

A-Optimal Loadings and D-Optimal Loadings feature selection criterions with the

goal of minimizing the variance of the PLS regression model. We specifically use an

approximation of the D-Optimal Loadings criterion that maximizes the determinant

of loadings covariance matrix to select an optimal feature subset. The availability

of off-the-shelf row exchange algorithms and convex optimization methods for de-

97

terminant maximization hastens the feature selection stage in a pattern analysis

problem. One of the important characteristics of the Optimal Loadings criterions is

that they are based on optimization of eigenvalues which is necessarily evaluated at

a subset level. We also provide insight into the technique by deriving the A-Optimal

Loadings criterion by using just the properties of maximum relevance and minimum

redundancy for feature subsets. The results from our experiments with four datasets

indicate that the D-Optimal Loadings criterion selects better feature subsets when

compared to other techniques such as mRMR and Relief-F. Apart from classifica-

tion accuracies, the locations of feature points on these images also indicate that it

selects non-redundant features from the significant regions of the image.

98

Chapter 6: Conclusion

In this thesis, we have presented techniques that model context for improving

accuracy and reducing computational requirements of object detection and event

detection tasks.

We showed that modeling context is essential for detecting objects mentioned

in referring expressions. The main challenge addressed by our technique is the lack

of annotations of context objects for training. Our proposed technique learns the

contextual relationships between objects in a weakly supervised manner by relying

on the annotations available for the referred object. We demonstrated that modeling

context provides better performance than models trained on object properties only.

We have also shown the benefits of context as a guide to sequentially process-

ing images and videos. We used structure in scenes and activities to incrementally

process images and videos while saving computation resources. In the case of detect-

ing objects in indoor scenes, we learned search strategies using imitation learning

which did not involve explicit encoding of spatial relationships between objects. We

also proposed a feedback based incremental algorithm to detect events in one-on-

one basketball videos. Our sequential technique used basketball rules to construct

relationships between detected events and then used it to search for other missing

99

events. The results from both the domains showed that intelligent searching using

context can reach the best accuracy possible by processing very few regions when

compared to naive methods that do not use context.

Our work in this thesis provides a few directions for future work.

• Referring expressions can be parsed as a tree of objects, attributes and rela-

tionships. Such a hierarchy can be imposed on visual grounding as well to

better model the referring expressions.

• Datasets like Visual Genome [55] contain annotations of objects and relation-

ships in detail which can be used to learn context models with full supervision.

It would be worthy to see if a model learned with weak supervision like ours

and a model learned with full supervision can be combined. Even fully an-

notated datasets may benefit from additional (larger scale) data that is not

explicitly annotated.

• In an application where there is a dialogue between humans and robots to

perform tasks, information is received by the robot in an incremental fashion.

For example, a robot might be asked to fetch a box via a referring expression.

If the robot is still confused, it receives additional information in the referring

expression for disambiguation. This task could be solved by incrementally

constructing the query and knowledge about the environment to understand

referring expressions.

100

Appendix A: Derivation of Scoring Functions for Feedback Loop In-

ference

Before deriving the score functions, we first formulate the MAP inference prob-

lem in binary Markov networks as an Integer Linear Program (ILP) following the

work of Globerson and Jaakkola [82]. The integer variables in the ILP are then

relaxed to continuous values giving us a relaxed linear program. We then obtain the

dual of this relaxed linear program and show a block co-ordinate descent strategy

that can be used to solve the dual through a “message passing algorithm”. How-

ever we do not solve the the inference problem in the dual space. We only use the

message update equations for the dual variables to obtain our score functions.

Sontag et al. [78] use these message update equations to rank clusters of vari-

ables in their cluster pursuit algorithm which incrementally adds clusters of variables

to the objective function and solves the MAP problem in the dual space. They rank

the clusters using a score function that measures the decrease in the dual value of

the objective function when a cluster is added. We also derive our score functions

similar to their approach by using the message update equations.

While the derivations in [78, 113] are provided for pairwise graphical models,

we derive them for general networks of any order.

101

A.1 Linear Programming Relaxation of the MAP problem

Let x = {x1, x2, . . . , xn} be a set of binary variables and C = {c : c ⊂

(1, 2, . . . n)} be a set of clusters. Consider a function Φ(x;θ) defined as a sum

of the functions θc(xc) defined over the clusters of variables. The goal of Maximum

A Posteriori assignment (MAP) is to find an assignment that maximizes the function

Φ(x;θ).

arg max
x

Φ(x;θ) = arg max
x

∑
c∈C

θc(xc) (A.1)

Let S = {c∩ c′ : c, c′ ∈ C, c∩ c′ 6= ∅} be the set of intersections between clusters and

S(c) = {s ∈ S : s ⊆ c} be the set of overlap sets for cluster c. The above problem

can be reformulated as an integer program by introducing indicator variables µc(xc)

for each cluster, µs(xs) for each intersection set between clusters and µi(xi) for each

variable.

maximize
µ

∑
c∈C

∑
xc

µc(xc)θc(xc) (A.2)

subject to µc(xc) ∈ {0, 1} ∀c ∈ C (A.3)∑
xi

µi(xi) = 1 ∀i ∈ {1, . . . , n} (A.4)

∑
xs\i

µs(xs) = µi(xi) ∀s ∈ S, i ∈ s (A.5)

∑
xc\s

µc(xc) = µs(xs) ∀c ∈ C, s ∈ S(c) (A.6)

102

The constraint in Equation (A.6) enforces that the cluster indicator variables must

be consistent with the intersection set indicator variable and the constraint in Equa-

tion (A.5) enforces the consistency of an individual variable with all the intersection

sets that it is part of. The set of constraints on µ denoted asML(C) is known as the

marginal polytope. This problem is completely equivalent to the original problem

A.1 and is hence as hard as the original problem. In many cases, this is NP-Hard

and hence we obtain a linear programming relaxation by allowing the indicator vari-

ables to take on non-integer values i.e. replace the constraints as µc(xc) ∈ [0, 1]. The

optimum of the relaxed problem gives an upper bound on the MAP value.

We will now find the dual problem of the relaxed linear program. Let λcs(xs)

and λsi(xi) be the dual variables corresponding to each of the constraints in Equa-

tion (A.6) and Equation (A.5) respectively. The constraint in Equation (A.4) will

be kept implicit and used to simplify the Lagrangian later.

The Lagrangian is given by

L(µ,λ) =
∑
c∈C

∑
xc

µc(xc)θc(xc) +
∑
c∈C

∑
s∈S(c)

∑
xs

λcs(xs)

µs(xs)−∑
xc\s

µc(xc)


+
∑
s∈S

∑
i∈s

∑
xi

λsi(xi)

µi(xi)−∑
xs\i

µs(xs)

 (A.7)

103

After rearranging the terms to group by common indicator variables, we get

L(µ,λ) =
∑
c∈C

∑
xc

µc(xc)

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑
s∈S

∑
xs

µs(xs)

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)


+
∑
i

∑
xi

µi(xi)

[∑
s:i∈s

λsi(xi)

]
(A.8)

We can now analytically maximize with respect to µ ≥ 0 and the implicit

constraint in Equation (A.4) to obtain the dual objective function,

J(λ) = max
µ

L(µ,λ)

=
∑
c∈C

max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑
s∈S

max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

+
∑
i

max
xi

[∑
s:i∈s

λsi(xi)

]
(A.9)

The unconstrained dual program is now just

minimize
λ

J(λ) (A.10)

The above dual formulation is a simple extension of the technique adopted

by D. Sontag [114] where they derive the dual of the LP relaxation for pairwise

potentials. Another dual formulation, with constraints, can also be obtained by

following the method of Globerson and Jaakkola [82].

104

A.2 Block Coordinate Descent in the Dual

A block coordinate descent strategy can be used to minimize the dual objective.

At every iteration, the dual variables λcs(xs) are updated for one cluster while

the rest are kept fixed. Similarly the dual variables λsi(xi) are updated for one

intersection set at a time while the rest are kept fixed. The update messages for the

dual variables are given below.

From a cluster to one of its intersection sets:

λcs(xs) = −λ−cs (xs)−
∑
i∈s

λsi(xi)

+
1

|S(c)|
max
xc\s

θc(xc) +
∑
ŝ∈S(c)

λ−cŝ (xŝ)−
∑
ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (A.11)

where

λ−cs (xs) =
∑

ĉ 6=c:s∈S(ĉ)

λĉs(xs) (A.12)

From an intersection set to one of its variables:

λsi(xi) = −λ−si (xi) +
1

|s|
max
xs\i

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (A.13)

where

λ−si (xi) =
∑

ŝ 6=s:i∈ŝ

λŝi(xi) (A.14)

The derivation of the update messages can be found in Section A.5.

105

A.3 Upper Bound Score - Proof of Proposition 1

Proposition 3 (Upper Bound Score). An upper bound on the change in the MAP

value after adding a cluster is given by

∆Φ ≤ 1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− max Φcur(xcur) (A.15)

where s is the set of nodes in the intersection of the sets xcur and xnew.

Proof. In the block coordinate descent algorithm, during each iteration of the min-

imization procedure, the dual variables λcs(xs) are updated for one cluster c and

all its intersection sets s ∈ S(c) while the rest are kept fixed. Similarly the dual

variables λsi(xi) are updated for one intersection set s and all the variables in this

set (i ∈ s) while the rest are kept fixed.

We calculate the scores for one cluster at a time while setting the dual variables

for other clusters to zero. Let θf (xf) be the cluster of potential functions of the

current network and θg(xg) be the cluster of potential functions of the new cluster.

We start with all the dual variables set to zero. Since we consider only two clusters

f and g, the number of intersection sets is just one i.e. |S(f)| = |S(g)| = 1. The

first update (Equation A.11) is performed to the dual variable λfs(xs) while setting

the rest of the dual variables to zero.

λfs(xs) = max
xf\s

[θf (xf)] (A.16)

106

This is followed by an update to the dual variable λgs(xs) given by

λgs(xs) = −λfs(xs) + max
xg\s

[θg(xg) + λfs(xs)] = max
xg\s

θg(xg) (A.17)

Finally we update (Equation A.13) the dual variables λsi(xi)

λsi(xi) =
1

|s|
max
xs\i

[λfs(xs) + λgs(xs)] (A.18)

We now measure the value of the dual objective function before and after

updating the dual variables. The dual objective function (Equation A.9) in our case

is given by

J = max
xf

[θf (xf)− λfs(xs)] + max
xg

[θg(xg)− λgs(xs)]

+ max
xs

[
λfs(xs) + λgs(xs)−

∑
i∈s

λsi(xi)

]

+
∑
i∈s

max
xi

[λsi(xi)] (A.19)

When we initialize the dual variables to zero, the value of the dual objective function

is

J (0) = max
xf

θf (xf) + max
xg

θg(xg) (A.20)

After performing one update for the dual variables λfs(xs) (Equation A.16) and

107

λgs(xs) (Equation A.17), we can see that

max
xf

[θf (xf)− λfs(xs)] = max
xf

[
θf (xf)−max

xf\s
[θf (xf)]

]
≤ 0 (A.21)

max
xg

[θg(xg)− λgs(xs)] = max
xg

[
θg(xg)−max

xg\s
[θg(xg)]

]
≤ 0 (A.22)

Also substituting for λsi(xi) from Equation (A.18) gives us

max
xs

[
λfs(xs) + λgs(xs)−

∑
i∈s

λsi(xi)

]

= max
xs

[
λfs(xs) + λgs(xs)−

∑
i∈s

1

|s|
max
xs\i

[λfs(xs) + λgs(xs)]

]
≤ 0 (A.23)

Hence the dual value after performing one update of the dual variables is

J (1) ≤
∑
i∈s

max
xi

[λsi(xi)] (A.24)

To avoid performing costly max-marginalization over the intersection set s to

calculate λfs(xs) and λgs(xs), we can approximate λsi(xi) as follows

λsi(xi) =
1

|s|
max
xs\i

[λfs(xs) + λgs(xs)] (A.25)

≤ 1

|s|

(
max
xs\i

λfs(xs) + max
xs\i

λgs(xs)

)
(A.26)

=
1

|s|

(
max
xf\i

θf (xf) + max
xg\i

θg(xg)

)
(A.27)

We still need to perform max-marginalization, but only over one variable at a time.

108

This gives us a new upper bound on the dual value

J (1) ≤ 1

|s|
∑
i∈s

max
xi

[
max
xf\i

θf (xf) + max
xg\i

θg(xg)

]
(A.28)

Since the dual value is an upper bound on the primal MAP value, we have

max
x

[θf (xf) + θg(xg)] ≤
1

|s|
∑
i∈s

max
xi

[
max
xf\i

θf (xf) + max
xg\i

θg(xg)

]
(A.29)

Substituting for cluster θf (xf) as Φcur(xcur) and θg(xg) as Φnew(xnew) we can

write an upper bound for the change in the primal MAP value after adding a cluster

as

∆Φ ≤ 1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− max Φcur(xcur) (A.30)

A.4 Blind Score - Proof of Proposition 2

Proposition 4 (Blind Score). A lower bound to the upper bound score (A.15) is

given by

score(g)upper ≥ score(g)blind (A.31)

=
−1

|s|
∑
i∈s

∣∣∣∣ max
xi=0,xcur\i

Φcur(xcur)− max
xi=1,xcur\i

Φcur(xcur)

∣∣∣∣ (A.32)

where s is the set of nodes in the intersection of the sets xcur and xnew.

109

Proof.

score(g)upper

=
1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− max Φcur(xcur) (A.33)

=
1

|s|
∑
i∈s

max


(

maxxcur\i,xi=0 Φcur(xcur) + maxxnew\i,xi=0 Φnew(xnew)
)
,(

maxxcur\i,xi=1 Φcur(xcur) + maxxnew\i,xi=1 Φnew(xnew)
)


− max Φcur(xcur) (A.34)

=
1

|s|
∑
i∈s

δi (A.35)

where

δi = max

{(
max

xcur\i,xi=1
Φcur(xcur) + max

xnew\i,xi=1
Φnew(xnew)−max Φcur(xcur)

)
,(

max
xcur\i,xi=0

Φcur(xcur) + max
xnew\i,xi=0

Φnew(xnew)−max Φcur(xcur)

)}
(A.36)

Let us assume that the assignment to some xi = 1 in max Φcur(xcur). Then δi

becomes

δi = max

{
max

xnew\i,xi=1
Φnew(xnew),(

max
xcur\i,xi=0

Φcur(xcur) + max
xnew\i,xi=0

Φnew(xnew)− max
xcur\i,xi=1

Φcur(xcur)

)}
(A.37)

We now assume that maxxnew\i,xi=0 Φnew(xnew) ≥ 0, which can be enforced by adding

110

a positive offset to Φnew(xnew). A lower bound for δi is then

δi ≥
(

max
xcur\i,xi=0

Φcur(xcur)− max
xcur\i,xi=1

Φcur(xcur)

)
(A.38)

Since the maximizing assignment to Φcur(xcur) had xi = 1, any other assignment

with xi = 0 must be less than the maxima. Hence,

δi ≥ −
∣∣∣∣ max
xcur\i,xi=0

Φcur(xcur)− max
xcur\i,xi=1

Φcur(xcur)

∣∣∣∣ (A.39)

A similar argument can be made if the assignment to an xi = 0. Hence we

can put all the δi together to obtain a lower bound on the upper bound score

score(g)upper =
1

|s|
∑
i∈s

δi (A.40)

≥ −1

|s|
∑
i∈s

∣∣∣∣ max
xcur\i,xi=0

Φcur(xcur)− max
xcur\i,xi=1

Φcur(xcur)

∣∣∣∣ (A.41)

A.5 Message Update Equations

Theorem 2. The message update in Equation (A.11) for the dual variable λcs(xs)

corresponds to block co-ordinate descent on the dual objective J(λ).

Proof. The proof follows from the ideas in the derivation of the optimality of the

MPLP update from [113]. It shows that the value of the dual objective function

reaches the minima in the variable λcs after performing a single update to it.

111

Consider fixing all λcs(xs) except for one cluster c. The part of the objective

function that is dependent on the free variables is given by

J̄(λ) = max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑
s∈S(c)

max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

 (A.42)

Let

λ−cs (xs) =
∑

ĉ 6=c:s∈S(ĉ)

λĉs(xs) (A.43)

then J̄(λ) can be rewritten as

J̄(λ) = max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑
s∈S(c)

max
xs

[
λcs(xs) + λ−cs (xs)−

∑
i∈s

λsi(xi)

]
(A.44)

= Ac(xc) +
∑
s∈S(c)

As(xs) (A.45)

The lower bound on J̄(λ) is given by

J̄(λ) ≥ max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑
s∈S(c)

[
λcs(xs) + λ−cs (xs)−

∑
i∈s

λsi(xi)

] (A.46)

= max
xc

θc(xc) +
∑
s∈S(c)

λ−cs (xs)−
∑
s∈S(c)

∑
i∈s

λsi(xi)

 = B (A.47)

112

If we apply the update messages in Equation (A.11) to Ac(xc), we get

Ac(xc) = max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)

 (A.48)

= max
xc

θc(xc) +
∑
s∈S(c)

λ−cs (xs) +
∑
s∈S(c)

∑
i∈s

λsi(xi)

− 1

|S(c)|
∑
s∈S(c)

max
xc\s

θc(xc) +
∑
ŝ∈S(c)

λ−cŝ (xŝ)−
∑
ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (A.49)

≤ max
xc

θc(xc) +
∑
s∈S(c)

λ−cs (xs) +
∑
s∈S(c)

∑
i∈s

λsi(xi)


− 1

|S(c)|
∑
s∈S(c)

max
xc

θc(xc) +
∑
ŝ∈S(c)

λ−cŝ (xŝ)−
∑
ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (A.50)

= 0 (A.51)

Similarly by applying the update to Ax(xs), we get

As(xs) = max
xs

[
λ−cs (xs)−

∑
i∈s

λsi(xi) + λcs(xs)

]
(A.52)

= max
xs

[
λ−cs (xs)−

∑
i∈s

λsi(xi)− λ−cs (xs)−
∑
i∈s

λsi(xi)

+
1

|S(c)|
max
xc\s

θc(xc) +
∑
ŝ∈S(c)

λ−cŝ (xŝ)−
∑
ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (A.53)

=
1

|S(c)|
max
xc

θc(xc) +
∑
ŝ∈S(c)

λ−cŝ (xŝ)−
∑
ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (A.54)

=
B

|S(c)|
(A.55)

113

Therefore

J̄(λ) = Ac(xc) +
∑
s∈S(c)

As(xs) ≤ B (A.56)

whereas we earlier showed that B is the lower bound on J̄(λ). Hence J̄(λ) = B

which implies that the update equation does indeed minimize the dual objective in

the coordinates λcs(xs).

Theorem 3. The message update in Equation (A.13) for the dual variable λsi(xi)

corresponds to block co-ordinate descent on the dual objective J(λ).

Proof. Consider fixing all λsi(xi) except for one intersection set s. The part of the

objective function that is dependent on the free variables is given by

J̄(λ) = max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

+
∑
i∈s

max
xi

[∑
s:i∈s

λsi(xi)

]
(A.57)

= As(xs) +
∑
i∈s

Ai(xi) (A.58)

Let

λ−si (xi) =
∑

ŝ 6=s:i∈ŝ

λŝi(xi) (A.59)

The lower bound on J̄(λ) is given by

J̄(λ) ≥ max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
i∈s

λ−si (xi)

 = B (A.60)

114

When we apply the update in Equation (A.13) to As(xs) we get,

As(xs) = max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

 (A.61)

= max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
i∈s

λ−si (xi)

− 1

|s|
∑
i∈s

max
xs\i

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (A.62)

≤ max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
i∈s

λ−si (xi)


− 1

|s|
∑
i∈s

max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (A.63)

= 0 (A.64)

Similarly by applying the update to Ai(xi), we get

Ai(xi) = max
xi

[
λsi(xi) + λ−si (xi)

]
(A.65)

= max
xi

 1

|s|
max
xs\i

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (A.66)

=
1

|s|
max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (A.67)

=
B

|s|
(A.68)

115

Therefore we get

J̄(λ) = As(xs) +
∑
i∈s

Ai(xi) ≤ B (A.69)

But we showed that J̄(λ) ≥ B. Hence J̄(λ) = B and the update equation minimizes

the dual objective in the coordinates λsi(xi).

116

Bibliography

[1] VI Morariu and LS Davis. Multi-agent Event Recognition in Structured Sce-
narios. In CVPR, 2011.

[2] Stephen E Palmer. The effects of contextual scenes on the identification of
objects. Memory & Cognition, 3:519–526, 1975.

[3] Antonio Torralba. Contextual priming for object detection. International
Journal of Computer Vision, 2003.

[4] Aude Oliva and Antonio Torralba. The role of context in object recognition.
Trends in cognitive sciences, 2007.

[5] Carolina Galleguillos and Serge Belongie. Context based object categorization:
A critical survey. CVIU, 2010.

[6] Josep M Gonfaus, Xavier Boix, Joost Van de Weijer, Andrew D Bagdanov,
Joan Serrat, and Jordi Gonzalez. Harmony potentials for joint classification
and segmentation. In CVPR, 2010.

[7] Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing
natural scenes and natural language with recursive neural networks. In ICML,
2011.

[8] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan
Lee, Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for
object detection and semantic segmentation in the wild. In CVPR, 2014.

[9] Antonio Torralba, Kevin P Murphy, and William T Freeman. Contextual
models for object detection using boosted random fields. In NIPS, 2004.

[10] Andrew Rabinovich, Andrea Vedaldi, Carolina Galleguillos, Eric Wiewiora,
and Serge Belongie. Objects in context. In ICCV, 2007.

[11] Santosh K Divvala, Derek Hoiem, James H Hays, Alexei A Efros, and Martial
Hebert. An empirical study of context in object detection. In CVPR, 2009.

117

[12] MJ Choi, Antonio Torralba, and AS Willsky. A Tree-based Context Model
for Object Recognition. PAMI, 34:240–52, 2012.

[13] Min Sun, Sid Yingze Bao, and Silvio Savarese. Object Detection using Geo-
metrical Context Feedback. IJCV, August 2012.

[14] Dahua Lin, S Fidler, and Raquel Urtasun. Holistic Scene Understanding for
3D Object Detection with RGBD Cameras. In ICCV, 2013.

[15] Yukun Zhu, Raquel Urtasun, Ruslan Salakhutdinov, and Sanja Fidler.
segdeepm: Exploiting segmentation and context in deep neural networks for
object detection. In CVPR, 2015.

[16] Bangpeng Yao and Li Fei-Fei. Modeling mutual context of object and human
pose in human-object interaction activities. In CVPR, 2010.

[17] Leonid Pishchulin, Mykhaylo Andriluka, Peter Gehler, and Bernt Schiele.
Strong appearance and expressive spatial models for human pose estimation.
In ICCV, 2013.

[18] Abhinav Gupta, Aniruddha Kembhavi, and Larry S Davis. Observing human-
object interactions: Using spatial and functional compatibility for recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

[19] G. Gkioxari, R. Girshick, and J. Malik. Contextual action recognition with
r*cnn. 2015.

[20] S Tran and L Davis. Event Modeling and Recognition using Markov Logic
Networks. In ECCV, 2008.

[21] William Brendel, Alan Fern, and Sinisa Todorovic. Probabilistic Event Logic
for Interval-based Event Recognition. In CVPR, 2011.

[22] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From im-
age descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions. TACL, 2014.

[23] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV,
2014.

[24] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for gener-
ating image descriptions. In CVPR, 2015.

[25] Andrej Karpathy, Armand Joulin, and Fei-Fei Li. Deep fragment embeddings
for bidirectional image sentence mapping. In NIPS, 2014.

118

[26] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma,
Michael Bernstein, and Li Fei-Fei. Image retrieval using scene graphs. In
CVPR, 2015.

[27] Licheng Yu, Eunbyung Park, Alexander C. Berg, and Tamara L. Berg. Visual
madlibs: Fill in the blank description generation and question answering. In
ICCV, 2015.

[28] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C. Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering.
In ICCV, 2015.

[29] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Refer-
itgame: Referring to objects in photographs of natural scenes. In EMNLP,
2014.

[30] Justin Johnson, Andrej Karpathy, and Fei-Fei Li. Densecap: Fully convolu-
tional localization networks for dense captioning. In CVPR, 2016.

[31] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L.
Yuille, and Kevin Murphy. Generation and comprehension of unambiguous
object descriptions. In CVPR, 2016.

[32] Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi Feng, Kate Saenko, and
Trevor Darrell. Natural language object retrieval. In CVPR, 2016.

[33] Irving Biederman, Arnold L Glass, and E Webb Stacy. Searching for objects
in real-world scenes. Journal of Experimental Psychology, 97(1):22, 1973.

[34] Bogdan Alexe, Nicolas Heess, YW Teh, and Vittorio Ferrari. Searching for
objects driven by context. NIPS, 2012.

[35] Abel Gonzalez-Garcia, Alexander Vezhnevets, and Vittorio Ferrari. An active
search strategy for efficient object detection. In CVPR, 2015.

[36] Mohamed R Amer, Dan Xie, Mingtian Zhao, Sinisa Todorovic, and Song-Chun
Zhu. Cost-Sensitive Top-down / Bottom-up Inference for Multiscale Activity
Recognition. ECCV, 2012.

[37] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual
representation learning by context prediction. In ICCV, 2015.

[38] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei
Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016.

[39] Varun K. Nagaraja, Vlad I. Morariu, and Larry S. Davis. Modeling context
between objects for understanding referring expressions. In ECCV, 2016.

[40] Varun K. Nagaraja, Vlad I. Morariu, and Larry S. Davis. Searching for objects
using structure in indoor scenes. In BMVC, 2015.

119

[41] Varun K Nagaraja and Wael Abd-Almageed. Feature selection using partial
least squares regression and optimal experiment design. In IJCNN, 2015.

[42] Varun K. Nagaraja, Vlad I. Morariu, and Larry S. Davis. Feedback Loop
between High Level Semantics and Low Level Vision. In ECCV Workshops,
2014.

[43] Emiel Krahmer and Kees van Deemter. Computational generation of referring
expressions: A survey. Computational Linguistics, 38(1):173–218, 2012.

[44] Margaret Mitchell, Kees van Deemter, and Ehud Reiter. Natural reference to
objects in a visual domain. In INLG, 2010.

[45] Jette Viethen and Robert Dale. The use of spatial relations in referring ex-
pression generation. In INLG, 2008.

[46] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 1997.

[47] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vec-
tor machines for multiple-instance learning. In NIPS, 2003.

[48] Licheng Yu, Patric Poirson, Shan Yang, Alexander C. Berg, and Tamara L.
Berg. Modeling context in referring expressions. In ECCV, 2016.

[49] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show
and tell: A neural image caption generator. In CVPR, 2015.

[50] Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia
Hockenmaier, and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-
phrase correspondences for richer image-to-sentence models. In ICCV, 2015.

[51] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K Srivastava, Li Deng,
Piotr Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C Platt,
et al. From captions to visual concepts and back. In CVPR, 2015.

[52] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville,
Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In ICML,
2015.

[53] Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor Darrell, and Bernt
Schiele. Grounding of textual phrases in images by reconstruction. In ECCV,
2016.

[54] Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler.
What are you talking about? text-to-image coreference. In CVPR, 2014.

120

[55] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Fei-Fei Li. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. IJCV, 2016.

[56] Margaret Mitchell, Kees Van Deemter, and Ehud Reiter. Two approaches
for generating size modifiers. In European Workshop on Natural Language
Generation, 2011.

[57] Nicholas FitzGerald, Yoav Artzi, and Luke S Zettlemoyer. Learning distri-
butions over logical forms for referring expression generation. In EMNLP,
2013.

[58] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recur-
rent convolutional networks for visual recognition and description. In CVPR,
2015.

[59] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond
Mooney, Trevor Darrell, and Kate Saenko. Sequence to sequence - video to
text. In ICCV, 2015.

[60] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015.

[61] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[62] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir
Anguelov. Scalable object detection using deep neural networks. In CVPR,
2014.

[63] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale
combinatorial grouping. In CVPR, 2014.

[64] Ross Girshick. Fast R-CNN. In ICCV, 2015.

[65] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. In
CVPR, 2014.

[66] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529–533, 2015.

121

[67] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse rein-
forcement learning. In ICML, 2004.

[68] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A Reduction of
Imitation Learning and Structured Prediction. In AISTATS, 2011.

[69] Nathan Silberman, Pushmeet Kohli, Derek Hoiem, and Rob Fergus. Indoor
Segmentation and Support Inference from RGBD Images. In ECCV, 2012.

[70] Saurabh Gupta, Ross Girshick, P Arbeláez, and J Malik. Learning Rich Fea-
tures from RGB-D Images for Object Detection and Segmentation. In ECCV,
2014.

[71] Pablo Arbelaez, Jordi Pont-Tuset, Jonathan T Barron, Ferran Marques, and
Jitendra Malik. Multiscale Combinatorial Grouping. In CVPR, 2014.

[72] C. Lawrence Zitnick and Piotr Dollar. Edge Boxes : Locating Object Proposals
from Edges. ECCV, 2014.

[73] Christoph H Lampert, Matthew B Blaschko, and Thomas Hofmann. Beyond
sliding windows: Object localization by efficient subwindow search. In CVPR,
2008.

[74] Nicholas J. Butko and Javier R. Movellan. Optimal scanning for faster object
detection. CVPR, 2009.

[75] Hal Daumé III, John Langford, and Stephane Ross. Efficient programmable
learning to search. arXiv preprint arXiv:1406.1837, 2014.

[76] Friedrich Pukelsheim. Optimal Design of Experiments, volume 50. Society for
Industrial and Applied Mathematics, 2006.

[77] R. C. St. John and N. R. Draper. D-Optimality for Regression Designs: A
Review. Technometrics, 17(1):15, February 1975.

[78] David Sontag, Talya Meltzer, and Amir Globerson. Tightening LP Relaxations
for MAP using Message Passing. In UAI, 2008.

[79] M. Pawan Kumar and Daphne Koller. Efficiently Selecting Regions for Scene
Understanding. In CVPR, 2010.

[80] Yingying Zhu, N Nayak, and A Roy Chowdhury. Context-Aware Activity
Recognition and Anomaly Detection in Video. In CVPR, 2013.

[81] Chaitanya Desai, Deva Ramanan, and Charless Fowlkes. Discriminative Mod-
els for Multi-Class Object Layout. In ICCV, 2009.

[82] Amir Globerson and Tommi Jaakkola. Fixing Max-Product: Convergent Mes-
sage Passing Algorithms for MAP LP-Relaxations. In NIPS, 2007.

122

[83] P Kohli and PHS Torr. Measuring Uncertainty in Graph Cut Solutions -
Efficiently Computing Min-Marginal Energies Using Dynamic Graph Cuts. In
ECCV, 2006.

[84] Matthew Richardson and Pedro Domingos. Markov Logic Networks. Machine
Learning, January 2006.

[85] S Kok, M Sumner, M Richardson, and P Singla. The Alchemy System for
Statistical Relational, 2009.

[86] Jan Noessner, Mathias Niepert, and H Stuckenschmidt. RockIt: Exploiting
Parallelism and Symmetry for MAP Inference in Statistical Relational Models.
In AAAI Workshop: Statistical Relational Artificial Intelligence., 2013.

[87] Gurobi-Optimization-Inc. Gurobi Optimizer Reference Manual, 2013.

[88] Isabelle Guyon and Andre Elisseefi. An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research, 3(7-8):1157–1182, October
2003.

[89] P Geladi. Partial least-squares regression: a tutorial. Analytica Chimica Acta,
185(1):1–17, 1986.

[90] S Wold. PLS-regression: a basic tool of chemometrics. Chemometrics and
Intelligent Laboratory Systems, 58(2):109–130, October 2001.

[91] DV Nguyen and DM Rocke. Tumor classification by partial least squares using
microarray gene expression data. Bioinformatics, 18(1):39–50, 2002.

[92] Anne-Laure Boulesteix and Korbinian Strimmer. Partial least squares: a
versatile tool for the analysis of high-dimensional genomic data. Briefings in
Bioinformatics, 8(1):32–44, January 2007.

[93] Kim-Anh Lê Cao, Debra Rossouw, Christèle Robert-Granié, and Philippe
Besse. A sparse PLS for variable selection when integrating omics data. Statis-
tical Applications in Genetics and Molecular Biology, 7(1):Article 35, January
2008.

[94] Hyonho Chun and Sündüz Keles. Sparse partial least squares regression for
simultaneous dimension reduction and variable selection. Journal of the Royal
Statistical Society. Series B, Statistical methodology, 72(1):3–25, January 2010.

[95] Xiaofei He. Laplacian Regularized D-optimal Design for active learning and
its application to image retrieval. IEEE Transactions on Image Processing,
19(1):254–63, January 2010.

[96] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification and Scene
Analysis 2nd ed. 1995.

123

[97] M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of
ReliefF and RReliefF. Machine learning, 53(1):23–69, 2003.

[98] Reinaldo F. Teófilo, João Paulo a. Martins, and Márcia M. C. Ferreira. Sorting
variables by using informative vectors as a strategy for feature selection in
multivariate regression. Journal of Chemometrics, 23(1):32–48, January 2009.

[99] Chris Ding and Hanchuan Peng. Minimum redundancy feature selection from
microarray gene expression data. Journal of Bioinformatics and Computa-
tional Biology, pages 1–8, 2005.

[100] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on
mutual information: criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(8):1226–38, August 2005.

[101] Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt.
Feature selection via dependence maximization. The Journal of Machine
Learning Research, 13(1):1393–1434, 2012.

[102] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[103] Hui Zou and Trevor Hastie. Regularization and variable selection via the elas-
tic net. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 67(2):301–320, April 2005.

[104] Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection.
In Advances in Neural Information Processing Systems, volume 18, page 507,
2006.

[105] Xiaofei He, Ming Ji, Chiyuan Zhang, and Hujun Bao. A Variance Mini-
mization Criterion to Feature Selection using Laplacian Regularization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(10):2013–2025,
March 2011.

[106] Sijmen De Jong. SIMPLS: An alternative approach to partial least squares
regression. Chemometrics and Intelligent Laboratory Systems, 18(3):251–263,
1993.

[107] F. Giannessi, P.M. Pardalos, and Tamas Rapcsak. Optimization Theory: Re-
cent Developments from Matrahaza. pages 124–125, 2002.

[108] RD Cook. A comparison of algorithms for constructing exact D-optimal de-
signs. Technometrics, 22(3):315–324, 1980.

[109] Lieven Vandenberghe, Stephen Boyd, and Shao-Po Wu. Determinant Maxi-
mization with Linear Matrix Inequality Constraints. SIAM Journal on Matrix
Analysis and Applications, 19(2):499, 1998.

124

[110] R.H. Tütüncü, K.C. Toh, and M.J. Todd. Solving semidefinite-quadratic-
linear programs using SDPT3. Mathematical programming, 95(2):189–217,
2003.

[111] Pawel Smialowski, Dmitrij Frishman, and Stefan Kramer. Pitfalls of super-
vised feature selection. Bioinformatics (Oxford, England), 26(3):440–3, Febru-
ary 2010.

[112] Deng Cai, Xiaofei He, and Yuxiao Hu. Learning a spatially smooth subspace
for face recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, June 2007.

[113] David Sontag, Amir Globerson, and Tommi Jaakkola. Introduction to Dual
Decomposition for Inference. 2011.

[114] David Alexander Sontag. Approximate Inference in Graphical Models using
LP Relaxations. PhD thesis, MIT, 2010.

125

	List of Figures
	Introduction
	Object detection using natural language queries
	Sequential object detection in indoor scenes
	Sequential event detection in videos

	Modeling Context Between Objects for Referring Expression Understanding
	Related Work
	Modeling context between objects
	Experiments
	Datasets
	Implementation details
	Comparison of different techniques
	Ablation experiments

	Conclusions

	Searching for Objects using Structure in Indoor Scenes
	Related Work
	Sequential Exploration
	Data subset selection

	Experiments and Results
	Dataset
	Sequential Exploration

	Conclusion

	Feedback Loop between High Level Semantics and Low Level Vision
	Related Work
	Incremental Inference with Feedback Loop
	Clusters under closed world assumption
	Detection scoring function

	Experiments
	One-on-One basketball dataset
	Hypothesizing candidate events
	Incrementally adding events with feedback loop
	Effect of initial threshold

	Conclusion

	Feature Selection using PLS regression and Optimal Experiment Design
	Related Work
	Preliminaries
	Partial Least Squares
	Notation

	Optimal Loadings Technique
	Optimal Experiment Design for PLS
	PLS models with Maximum Relevance and Minimum Redundancy
	Approximation for the D-Optimal Loadings criterion

	Analysis of the relationship between PP and PP
	Experiments and Results
	Datasets
	Comparison with other Feature Selection Techniques

	Conclusion

	Conclusion
	Derivation of Scoring Functions for Feedback Loop Inference
	Linear Programming Relaxation of the MAP problem
	Block Coordinate Descent in the Dual
	Upper Bound Score - Proof of Proposition 1
	Blind Score - Proof of Proposition 2
	Message Update Equations

	Bibliography

