
ABSTRACT

Title of Dissertation: EFFICIENT IMAGE AND VIDEO
REPRESENTATIONS FOR RETRIEVAL

Sravanthi Bondugula, Doctor of Philosophy, 2016

Dissertation directed by: Professor Larry S. Davis
Department of Computer Science

Image (Video) retrieval is an interesting problem of retrieving images (videos)

similar to the query. Images (Videos) are represented in an input (feature) space

and similar images (videos) are obtained by finding nearest neighbors in the input

representation space. Numerous input representations both in real valued and bi-

nary space have been proposed for conducting faster retrieval. In this thesis, we

present techniques that obtain improved input representations for retrieval in both

supervised and unsupervised settings for images and videos.

Supervised retrieval is a well known problem of retrieving same class images of

the query. We address the practical aspects of achieving faster retrieval with binary

codes as input representations for the supervised setting in the first part, where

binary codes are used as addresses into hash tables. In practice, using binary codes

as addresses does not guarantee fast retrieval, as similar images are not mapped to

the same binary code (address). We address this problem by presenting an efficient

supervised hashing (binary encoding) method that aims to explicitly map all the

images of the same class ideally to a unique binary code. We refer to the binary

codes of the images as ‘Semantic Binary Codes’ and the unique code for all same

class images as ‘Class Binary Code’. We also propose a new class based Hamming

metric that dramatically reduces the retrieval times for larger databases, where only

hamming distance is computed to the class binary codes. We also propose a Deep

semantic binary code model, by replacing the output layer of a popular convolutional

Neural Network (AlexNet) with the class binary codes and show that the hashing

functions learned in this way outperforms the state of the art, and at the same time

provide fast retrieval times.

In the second part, we also address the problem of supervised retrieval by tak-

ing into account the relationship between classes. For a given query image, we want

to retrieve images that preserve the relative order i.e. we want to retrieve all same

class images first and then, the related classes images before different class images.

We learn such relationship aware binary codes by minimizing the similarity between

inner product of the binary codes and the similarity between the classes. We calcu-

late the similarity between classes using output embedding vectors, which are vector

representations of classes. Our method deviates from the other supervised binary

encoding schemes as it is the first to use output embeddings for learning hashing

functions. We also introduce new performance metrics that take into account the

related class retrieval results and show significant gains over the state of the art.

High Dimensional descriptors like Fisher Vectors or Vector of Locally Aggre-

gated Descriptors have shown to improve the performance of many computer vision

applications including retrieval. In the third part, we will discuss an unsupervised

technique for compressing high dimensional vectors into high dimensional binary

codes, to reduce storage complexity. In this approach, we deviate from adopting

traditional hyperplane hashing functions and instead learn hyperspherical hashing

functions. The proposed method overcomes the computational challenges of directly

applying the spherical hashing algorithm that is intractable for compressing high di-

mensional vectors. A practical hierarchical model that utilizes divide and conquer

techniques using the Random Select and Adjust(RSA) procedure to compress such

high dimensional vectors is presented. We show that our proposed high dimensional

binary codes outperform the binary codes obtained using traditional hyperplane

methods for higher compression ratios.

In the last part of the thesis, we propose a retrieval based solution to the Zero

shot event classification problem - a setting where no training videos are available

for the event. To do this, we learn a generic set of concept detectors and represent

both videos and query events in the concept space. We then compute similarity

between the query event and the video in the concept space and videos similar to

the query event are classified as the videos belonging to the event. We show that we

significantly boost the performance using concept features from other modalities.

EFFICIENT IMAGE AND VIDEO REPRESENTATIONS FOR
RETRIEVAL

by

Sravanthi Bondugula

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Larry S. Davis, Chair/Advisor
Professor Ramani Duraiswami
Professor David Mount
Professor V.S. Subrahmanian
Professor Louiqa Raschid, Dean’s Representative

c© Copyright by
Sravanthi Bondugula

2016

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been a learning and life changing

experience.

First and foremost I’d like to thank my advisor, Professor Larry S. Davis for

training me to become a better person and also giving me independence to choose the

problems that I am comfortable with. He has always been patient to edit my drafts,

helped me with improving my presentation skills and more importantly, solved the

problems with me and pointed me in the right direction when I am stuck.

I owe my deepest thanks to my family - my mother, father, sister and husband

who have always stood by me and without whom, I would not have done this. I am

indebtful to them for all the support, strength and courage they have provided me

to complete this journey.

I would also like to thank my roommates/friends - Manisha Ganeshan, Shiv-

angini Pachauri and Soumya Rastogi, who have made the graduate life experience

and the career path comfortable and welcoming. I cannot give enough credit to my

close friends - Pooja Dasari, Aswani Dhulipalla and Priyanka Tangudu for bearing

with me, listening to the graduate success and failure stories and also have patiently

waited and forgiven me for all the meetings that I missed.

I also would like to thank all my co-authors - Varun Manjunatha, David Do-

ermann, Pradeep Natarajan, Shuang Wu, Florian Luisier and working with them

was truly a learning experience.

ii

I would like to acknowledge financial support from the NSF and MURI Projects,

for all the projects discussed herein.

Lastly, thank you all and thank you GOD.

iii

Contents

List of Figures vii

1 Introduction 1
1.1 Outline . 3

2 Semantic Binary Codes 8
2.1 Introduction . 8
2.2 Related Work . 11
2.3 Semantic Binary Codes . 14

2.3.1 Class Indicator Matrix Y . 19
2.3.2 Initialization of V . 20
2.3.3 Class Hamming Distance(CHD) 20
2.3.4 Deep Semantic Binary Codes 22

2.4 Experiments . 22
2.4.1 Train/Test Partitions . 24
2.4.2 Evaluation metrics . 25
2.4.3 Comparison with other methods 26
2.4.4 Comparison Methods for SBC-D: 28
2.4.5 Experiments for SBC-D: . 28

2.5 Conclusion . 30

3 SHOE: Sibling Hashing with Output Embeddings 33
3.1 Introduction . 33
3.2 Related Work . 37
3.3 Method . 40

3.3.1 Preliminaries . 40
3.3.2 Evaluation Criteria . 43
3.3.3 Preliminary Experiments . 44
3.3.4 Analysis . 46
3.3.5 SHOE Revisited . 47
3.3.6 Supervised Dimensionality Reduction 51

3.4 Experiments . 53
3.5 Fine-grained Category Classification 56
3.6 Conclusion . 59

iv

4 Hierarchical Spherical Hashing for Compressing High Dimensional
Vectors 64
4.1 Overview . 64
4.2 Spherical Hashing . 67

4.2.1 Computation Challenges(d is large and k ∼ d) 68
4.3 Hierarchical Spherical Hashing . 69

4.3.1 Learning Sub-Hypersphere functions 70
4.3.2 Cartesian-product of pivots/centers 72
4.3.3 Random-Select and Adjust(RSA) 73
4.3.4 Divide and Conquer . 75
4.3.5 Computation time . 76

4.4 Experiments . 77
4.4.1 Datasets, Evaluation Protocol 79
4.4.2 Comparison methods . 80
4.4.3 Results . 81

4.5 Conclusion . 85

5 Zero-shot Event Detection using Multi-modal Fusion of Weakly
Supervised Concepts 87
5.1 Overview . 87
5.2 Related Work . 89
5.3 Zero-shot Learning Framework . 92

5.3.1 Basic Similarity Computation 92
5.3.2 Expansion-based Similarity Computation 93

5.4 Video Feature Extraction . 95
5.4.1 Weakly Supervised Concepts (WSC) 95

5.4.1.1 Data Collection and Concept Discovery 95
5.4.1.2 Low-level feature extraction 96
5.4.1.3 Classifier Training 98
5.4.1.4 Weakly Supervised Concept Feature 98

5.4.2 Concept Training using Web Data 98
5.4.3 Concept Distance Features . 99
5.4.4 Off-the-shelf Concept Detectors 99
5.4.5 Automatic Speech Recognition (ASR) 100
5.4.6 Optical Character Recognition (OCR) 101

5.5 Fusion . 102
5.6 Experiments . 103

5.6.1 Comparison of Similarity Computation 103
5.6.2 Comparison of Visual Features 104
5.6.3 Comparison of Audio Features 106
5.6.4 Comparison of Language Features 106
5.6.5 Comparison of Fusion Systems 107
5.6.6 TRECVID Performance . 108

5.7 Discussion and Conclusion . 108

v

Bibliography 110

vi

List of Figures

2.1 Illustration of the Semantic Binary Codes idea and retrieval using
Class Binary Codes. Here, instead of searching 9 image binary codes,
we search only 3 class binary codes. 9

2.2 The top row and the bottom row shows the performance of various
metrics for varying numbers of bits on Cifar-100 and Caltech-256
datasets respectively. 19

2.3 Neural Network architecture for the Deep Semantic Binary code model. 21
2.4 Plots showing Precision @ radius 0 , Precision@ radius 2, mAP@10K

for the ILSVRC2010 Train dataset. 23
2.5 Images of Caltech-256 dataset that have the same semantic binary

code given by the corresponding 128 bit SBC. For each row, we men-
tion the most common category of the images. False Positives are
indicated by red boundaries. 31

3.1 We prefer results II over I because they tend to retrieve images of
classes(jaguar and tiger) related to the class label of the query(leopard),
rather than unrelated classes(sharks and dolphins). 35

3.2 We perform k-means clustering on Word2Vec embeddings [1] of Ima-
geNet classes. The principle behind SHOE is that images belonging
to related classes (like leopard or tiger, which are nearby in the output
embedding space) are mapped to nearby binary codes (represented by
points on a binary hypercube). Images belonging to unrelated classes
(like leopards and aircraft) are mapped to distant binary codes. This
figure was created using [2] and is for illustrative purposes. 37

3.3 Retrieval on CUB dataset comparing our method SHOE(E) with the
state-of-the art hashing techniques. The above plots report precision,
sibling precision and weighted sibling precision for top 5 sibling classes
for bits c = {16, 32, 64, 128, 256}. 40

3.4 Retrieval on CUB dataset evaluating the performance of our method(SHOE)
for varying θ values and p = 1000. The left and right y-axis show the
standard metrics and sibling metrics respectively. 60

vii

3.5 Retrieval on CUB-2011(first and second row) and SUN(third and
fourth row) dataset comparing our methods SHOE(E) and SHOE(L)
with the state-of-the art hashing techniques. The above plots report
mAP, Sibling and Weighted Sibling mAP for top 5 sibling classes.
For the CUB dataset, we used 2000 training samples and 1000 anchor
points, while for the SUN attribute dataset, we used 3585 training
samples and 1434 anchor points. 61

3.6 Retrieval on ILSVRC2010 dataset comparing SHOE with state-of-the
art hashing techniques. We use 5K training samples and CNN+K+CCA
as features for all the binary encoding schemes. The above plots
report recall, Sibre, Sib

w
re @10K for top 5 sibling classes for bits

c = {32, 64, 128, 256}. 62
3.7 The first query is of an ovenbird. SHOE retrieves more ovenbirds than

KSH. The second query is of a Brewer black-bird. Neither SHOE nor
KSH retrieve Brewer black-birds. However, SHOE returns ravens,
which are sibling classes of Brewer black-birds, whereas KSH retrieves
pileated woodpeckers, which are unrelated to black-birds. Here, blue
borders represent sibling classes. 63

4.1 Performance of our method(SpH-RSA) and SpH-Concat on a subset
of ILSVRC2010 Train dataset with 25600 VLAD vectors for varying
partition size m= 3200 to 10. Plots (Left, middle) show recall for 10
and 50 ground truth neighbors while comparing our method with the
concatenated bit vectors from SpH-Concat(indicated by C). Notice
the poor performance of the concatenated bit vectors. Plot (Right)
evaluates the results of our method for varying sub vector sizes. . . . 69

4.2 Left: RSA technique that randomly selects hyperspheres from the
cartesian product of the subsets and adjusts the hyperspheres to sat-
isfy the hashing properties. Right:RSA method applied in a Divide
and conquer fashion to obtain the k full hyperspheres. 70

4.3 Recall plots showing the performance of Ours(Red) and BPBC(Learned
and Random) methods on ILSVRC2010 Validation data set for ground
truth defined at 10 Nearest Neighbors. Our method performs better
for 8000, 16000 and 32000 bits for all the retrieved images in both
the distance settings. 75

4.4 Recall plots showing the performance of Ours(Red) and several state-
of-the art methods on Holidays+Flickr 1M data set for ground truth
defined at 10 NNs. Top Row shows the performance of the methods
using Assymetric Distance and the Bottom Row using Symmetric
Distance. We see that our method consistently performs better for
1600 and 3200 bits at all the retrieved images in both the distance
settings . 78

viii

4.5 Recall plots showing the performance of Ours(Red), BPBC and PQ
based methods on ILSVRC2010 Train data set for ground truth de-
fined at 10 NNs. Top Row shows the performance of the methods
using Assymetric Distance and the Bottom Row using Symmetric
Distance. We see that our method consistently performs better for
3200 and 6400 bits at all the retrieved images in both the distance
settings. 82

5.1 Overview of the proposed multi-modal zero-shot learning approach. . 92

ix

Chapter 1: Introduction

Image (Video) retrieval is an interesting problem of retrieving images (videos)

similar to the query. Images (Videos) are represented in an input (feature) space

and similar images (videos) are obtained by finding nearest neighbors in the input

representation space. This has been a challenging task over decades due to the

proliferation of available visual data on the web. To alleviate this problem, effi-

cient input representations have been proposed for visual data in both real valued

and binary space to facilitate faster retrieval and provide efficient storage. But,

input representations learned for one retrieval setting may not be suitable for oth-

ers. Therefore, these representations need to be tailored for different objectives of

retrieval. For example, binary codes that outperform for an unsupervised setting

need not show similar trend in a supervised setting. In an unsupervised setting, bi-

nary codes preserve similarity in the Euclidean space of the original features, while

in a supervised setting, binary codes preserve similarity in the semantic space (given

by the class labels) of images. The performance gap is due to the fact that Euclidean

neighbors simply need not be semantic neighbors. Similarly, encoding schemes suit-

able for compressing small dimensional features cannot be readily extended to high

dimensional features due to computational challenges. In this thesis, we address

1

the problem of learning efficient input representations for some of the less explored

retrieval settings and its practical aspects and show that we remarkably improve the

performance over the existing state-of-the art retrieval methods.

Specifically, we want to improve retrieval of images and videos by learning

efficient binary and concept representations respectively. In particular, we focus on

learning improved binary codes in the first three parts of the thesis, while we learn

concept based representations for videos in the last part. In the first part, we address

the practical aspects of achieving faster retrieval with binary codes for a supervised

setting, where the task is to retrieve images of the same class of the given query

image. We also propose a deep based model and show superior results over the state

of the art. We show that we achieve faster retrieval times with the proposed class

hamming distance metric. In the second part, we also propose a supervised learn-

ing method that takes into account the relationship between classes using output

embeddings-which are vector representation of classes. Our hashing scheme learns

such relationship aware binary codes by minimizing the difference between inner

product of the binary codes and similarity of the classes. We also introduce new

evaluation metrics that consider retrieved images of related classes and show signifi-

cant gains over the state of the art. In the third part, we learn binary codes for large

dimensional vectors like Fisher Vector and Vector of Locally Aggregated Descrip-

tors (VLAD) using hyperspherical hashing functions than adopting the traditional

hyperplane hashing functions. We show that the codes learned using hyperspheri-

cal hashing functions obtain compact codes and yield better performance than the

traditional hyperplane based hashing methods. The last part is different from the

2

previous works, but embodies the retrieval principles for classification. This work

specifically addresses the event classification of videos in zero-shot settings, where

no training examples associated with the event are known prior to the classification

task. We use a concept based video representation to solve this. Further, we show

that multimodal fusion of the scores using visual, audio and text concepts boost

remarkably the performance of our system. The outline is given below.

1.1 Outline

In Chapter 2, we address the practical aspects of achieving faster retrieval

with supervised hashing by mapping all images of the same class to a unique binary

code. In Chapter 3, we learn relationship aware binary codes that rank related

class images before unrelated class images when same class images of the query

are not retrieved. In Chapter 4, we present a hierarchical approach to compress

large dimensional vectors using hyperspherical hashing functions. In Chapter 5, we

present a complete zero-shot classification system for videos, solved in a retrieval

setting.

• Semantic Binary Codes: Fast image retrieval is required for many applica-

tions like Image Search and Shopping, especially for large datasets. Hashing

addresses this problem by learning compact binary codes for images and using

them as direct addresses into hash tables. In practice, using binary codes as

addresses does not guarantee fast retrieval, as similar images are not mapped

to the same binary code (address). We address this problem by presenting an

3

efficient supervised hashing method that aims to explicitly map all the images

of the same class ideally to a unique binary code. We refer to the binary

codes of the images as ‘Semantic Binary Codes’ and the unique code for all

same class images as ‘Class Binary Code’. We formulate this intuitive objec-

tive ‘directly’ by minimizing the squared error criterion between the semantic

binary codes and the corresponding class binary codes. We further propose

a Deep Semantic Binary Code model that utilizes the class binary codes and

show that we significantly outperform the state-of-the-art. We also propose a

class-based Hamming metric that dramatically reduces the retrieval times for

larger databases and also improves the performance of the method by large

margins on Cifar-100, Caltech-256 and ILSVRC2010 datasets.

• SHOE: Supervised Hashing with Output Embeddings: In this work,

we present a supervised binary encoding scheme for image retrieval that learns

projections by taking into account similarity between classes obtained from

output embeddings. Our motivation is that binary hash codes learned in

this way improve both the visual quality of retrieval results and existing su-

pervised hashing schemes. We employ a sequential greedy optimization that

learns relationship aware projections by minimizing the difference between in-

ner products of binary codes and output embedding vectors. We develop a

joint optimization framework to learn projections which improve the accu-

racy of supervised hashing over the current state of the art with respect to

standard and sibling evaluation metrics. We further boost performance by

4

applying the supervised dimensionality reduction technique on kernelized in-

put CNN features. Experiments are performed on three datasets: CUB-2011,

SUN-Attribute and ImageNet ILSVRC 2010. As a by-product of our method,

we show that using a simple k-nn pooling classifier with our discriminative

codes improves over the complex classification models on fine grained datasets

like CUB and offer an impressive compression ratio of 1024 on CNN features.

• Hierarchical Spherical Hashing for Compressing High Dimensional

Vectors: High dimensional vectors like Fisher Vectors and Vector of Locally

Aggregated Descriptors (VLAD) have been shown to be effective for many

computer vision applications like classification, detection including retrieval.

However, due to their storage complexity - it becomes intractable to use these

features for retrieval. In this work, we address the problem of compressing such

high dimensional vectors to high dimensional binary codes in an unsupervised

setting. We present a hierarchical approach to compress large dimensional

vectors using hyperspherical hashing functions. We provide a practical solu-

tion for learning hyperspherical hashing functions by partitioning the vectors

and learning hyperspheres in subspaces. Our method is an efficient way to

preserve the hashing properties of sub-space hashing functions to generate

the full-hashing functions in a divide and conquer fashion. We demonstrate

the performance of our approach on the ILSVRC2010 Validation dataset and

two large scale datasets: ILSVRC2010 Train and Holidays+Flickr 1M with

high dimensional representations of size 128000, 25600 and 12800 respectively.

5

Our results highlight the compact nature of hyperspherical hashing functions

which significantly outperform the state-of-the art methods at compression

ratios of 512, 256 and 128. Furthermore, we boost the retrieval performance

by introducing an assymetric distance for spherical hashing functions.

• Zero-shot Event Detection using Multi-modal Fusion of Weakly Su-

pervised Concepts: Current state-of-the-art systems for visual content anal-

ysis require large training sets for each class of interest, and performance de-

grades rapidly with fewer examples. In this work, we present a general frame-

work for the zero-shot learning problem of performing high-level event detec-

tion with no training exemplars, using only textual descriptions. This task

goes beyond the traditional zero-shot framework of adapting a given set of

classes with training data to unseen classes. We leverage video and image col-

lections with free-form text descriptions from widely available web sources to

learn a large bank of concepts, in addition to using several off-the-shelf concept

detectors, speech, and video text for representing videos. We utilize natural

language processing technologies to generate event description features. The

extracted features are then projected to a common high-dimensional space

using text expansion, and similarity is computed in this space. We present

extensive experimental results on the large TRECVID MED [3] corpus to

demonstrate our approach. Our results show that the proposed concept de-

tection methods significantly outperform current attribute classifiers such as

Classemes [4], ObjectBank [5], and SUN attributes [43]. Further, we find

6

that fusion, both within as well as between modalities, is crucial for optimal

performance.

7

Chapter 2: Semantic Binary Codes

2.1 Introduction

Approximate Nearest Neighbor(ANN) search for image retrieval using com-

pact binary codes has been extensively investigated for faster retrieval and efficient

storage. Encoding images with short bit vectors offers great compression. Retrieval

is faster predominantly because binary codes can be used as direct addresses into

hash tables and ANN’s in principal are identified with just a few lookups, compared

to an exhaustive linear scan [6]. In practice, using binary codes as addresses does

not guarantee fast ANN search, as similar images are not mapped to the same bi-

nary code(address). Instead, nearest neighbors must be discovered from examining

binary codes within some Hamming radius around the query code. So, the num-

ber of lookups required grows exponentially with radius. State-of-the art hashing

algorithms then resort to linear scan for large radius. Therefore, there is an explicit

need for a hashing algorithm that learns to map similar images to the same binary

code.

There exist supervised [7–10] and unsupervised [11–14] hashing algorithms for

learning similarity preserving binary codes. Unsupervised hashing algorithms try to

preserve Euclidean neighbors while supervised hashing algorithms try to preserve

8

Figure 2.1: Illustration of the Semantic Binary Codes idea and retrieval using Class

Binary Codes. Here, instead of searching 9 image binary codes, we search only 3

class binary codes.

semantic neighbors. The notion of similarity is well defined for semantic neighbors

compared to Euclidean neighbors as similarity values are discrete(1(same) or 0(dif-

ferent)) for the former and continuous for the latter. In this work, we develop a

new approach to supervised hashing, where we want to learn both image and

class binary codes such that all images from the same class are ideally

assigned a unique binary code. We refer to the image binary codes as ‘Semantic

Binary Codes’ (SBC) and the unique binary code for a class as the ‘Class Binary

9

Code’ (CBC). Figure 2.1 illustrates the idea of our method. By learning both these

codes, the performance of a hashing algorithm is naturally improved by retrieving

more relevant neighbors within a smaller Hamming ball around the query code.

Only a handful of approaches [7–9, 15, 16] have been developed to learn a

unique binary code for all images from the same class, but they do not formulate

this directly into the objective. They instead, learn same binary codes for same

class images and different binary codes for different class images. Further, their

optimization is complex due to the pair-wise formulation which forces them to resort

to a greedy iterative procedure of learning bit by bit which leads to a slow training

process. In contrast to these approaches, we propose a simple and efficient supervised

hashing algorithm with point-wise formulation of the objective. The first objective

eliminates noise by learning projections of input features such that the projected

vectors are highly correlated with class vectors. The second objective then minimizes

the quantization error between semantic and class binary codes. We jointly optimize

these two objectives to obtain the hash functions that meet our goal. Further, we

propose a Deep Semantic Binary Code model that utilizes the CBC’s.

The contributions of our work are as follows: 1. To the best of our knowl-

edge, our approach is the first ‘direct’ attempt to learn Semantic Binary Codes(a

unique binary code for all semantically similar images) and Class Binary Codes by

formulating an intuitive objective function. 2. We present a novel joint learning

framework for simultaneous dimensionality reduction and semantic binary codes.

Using a least squares formulation for both objectives, we obtain a simple objective

function which has an efficient closed-form solution. 3. We also propose a new

10

metric: Class Hamming Distance(CHD). Using CHD, we retrieve results for a query

by only calculating Hamming Distance to the class binary codes, rather than cal-

culating Hamming Distance to all the database codes, leading to a large decrease

in retrieval times. 4.We also demonstrate superior performance and achieve faster

training and retrieval times compared to the state of the art shallow supervised

hashing techniques for Caltech-256, Cifar-100 and ILSVRC2010 Train datasets. The

Deep Semantic Binary Code model proposed also outperforms the state of the art

Deep Supervised Hashing techniques.

The remainder of the work is organized as follows. We first discuss related

work in Section 2.2. We propose a novel joint framework for dimensionality re-

duction and learning semantic and class binary codes and its deep learning model

in Section 2.3. Retrieval experiments are carried out in Section 4.4. Finally, we

conclude in Section 2.5.

2.2 Related Work

Supervised hashing methods in [7–9,15,17–19] use pair-wise formulations that

lead to complex optimization procedure. Liu et al ([7]) proposed the Supervised

Hashing with kernels(KSH) method that minimizes the difference between inner

products of the binary code and similarity for pairs of images. Similarity is 1 (-1) for

same (dissimilar) class pairs. They obtain a simple, clean objective function unlike

the complicated objective functions in MLH [15] and BRE [20]. FastHash [8] applies

a two-step procedure [17] to solve the KSH loss function: First, they learn the binary

11

codes using Graph cuts and then learn the parameters of the hash function with

Boosted Decision Trees. They accommodate training of large numbers of samples

with high dimensional features and show better performance than KSH [7]. Recently,

Ge et al [9] introduced the Graph Cuts Coding(GCC) method which also adopts

a two-step approach [17], but iteratively. At each iteration, they first learn the

binary codes using GraphCuts and then learn the hash functions using linear SVMs.

Rastegari et al [18] propose learning predictable and discriminative hash functions

using a linear or kernel SVM formulation using bits as labels. For each hash function,

they minimize(maximize) the distance between the codes of same(dissimilar) class

images. All these hashing methods obtain similar codes for same class images by

minimizing(maximizing) intra(inter) class distance between image codes but not

between class and image codes.

Recently, Wang et al [19] construct compact binary codes for both images

and tags such that the observed tags are consistent with the constructed binary

codes. They minimize three critiera: difference between similar tag and image codes,

difference between similar image codes and difference between similar tag codes.

This is highly suitable for datasets with weakly labeled information which require

fast image tagging. Note that the binary codes for tags are learned but not the class

codes. Very recently, Supervised Discrete Hashing(SDH) [10] learns binary codes

that are optimal for classification. They employ a joint optimization framework

which jointly learns a binary embedding and a linear classifier. SDH also obtains

a simple objective function that yields a closed form solution by incorporating a

Discrete-Coordinate Descent method to learn one bit at a time. While, our end goal

12

is not specifically to learn better classification codes, we intend to learn semantic

binary codes and binary representations for classes.

We also review several deep supervised hashing methods [16,21–25] that have

been proposed and showed superior performance over the shallow methods. Se-

mantic Hashing(SH) [6], one of the earliest works, uses Restricted Boltzmann Ma-

chines(RBMs) to train Binary Auto Encoders. However, SH did not do well due

to limited computational power available then. The following Deep Supervised

Hashing(DSH) Models: Sparse Similarity-Preserving Hashing (SSPH) [21], Deep

Hashing (DH) [22], Convolutional Neural Network Hashing (CNNH) [16], Deep Se-

mantic Ranking Hashing (DSRH) [23], Deep Neural Network Hashing (DNNH) [24]

and Deep Learning of Binary Hash Codes for Fast Image Retrieval (DLH) [25] have

been proposed. The output of these neural networks yields a binary code by ap-

plying either a hyperbolic tangent or a sigmoid function to the output followed by

a thresholding operation, leading to the final binary hash code. While, some net-

works like SSPH, DH assume a hand crafted visual representation to learn binary

codes that minimizes the reconstruction error. These methods are limited by the

performance of the assumed hand crafted visual representation. To overcome this,

CNNH, DSRH, DNNH and DLH networks do not assume an specific feature repre-

sentation and instead, integrate both the feature learning and hash value learning in

the optimization. The later methods have subsequently shown better performance.

For a comprehensive related work on DSH schemes, we refer the readers to the short

survey by Liu1. We also present a deep extension of the SBC model, Deep Semantic

1http://www.ee.columbia.edu/w̃liu/WeiLiu DLHash.pdf

13

Binary Code model, where we learn a deep neural network that utilizes the class

binary codes.

2.3 Semantic Binary Codes

Input features/labels: We are given a data set of n samples {(xi, yi)}ni=1,

where xi ∈ Rd is the input feature and yi ∈ {1, 2, ..k} denotes the class label

of the ith sample. Let Y ∈ Rk×n denote the class indicator matrix with one-of-

k embeddings i.e Yij = 1 if the class of the jth sample is i and −1 otherwise.

We apply the radial basis kernel features with m random sample points to obtain

φ(x) : x→ x̄ ∈ Rm as done commonly in [7, 10, 26].

Objective: We aim to jointly minimize both the dimensionality reduction

error and quantization error between the image binary codes and the corresponding

class binary codes.

Input Projections/Hash Projections: We want to learn semantic binary

codes bi ∈ {−1, 1}l and the corresponding class binary codes cyi ∈ {−1, 1}l, both

of length l for the ith sample, such that a unique binary code is learned for all

same class images. We utilize the hash functions {hj(φ(x)) = sgn(uTj φ(x)}lj=1 to

obtain l bits, where, sgn(.) is the sign function, which outputs +1 for positive

number and -1 otherwise. uj ∈ Rm is a column vector that gives the bit bij for

the ith sample. Let U = [u1,u2, ...,ul] ∈ Rr×l which can be decomposed into

two projection matrices V and W . Then, the corresponding hash functions are:

{hj(φ(x)) = sgn(wT
j V

Tφ(x)}lj=1, where V ∈ Rm×r are the input projections and

14

wj ∈ Rr are the hash projections on the reduced features V Tφ(x). We solve the

following joint formulation of the objective:

min
W,V,c

n∑
i=1

∥∥V Tφ(xi)− Yi
∥∥2
2

+
n∑
i=1

‖bi − cyi‖
2
2

bi = sgn(W TV Tφ(xi)) (2.1)

where, ‖.‖22 is the L2-norm.

The first term of the objective eliminates noise by learning projections of

input features such that the projected vectors are highly correlated with the class

vectors. This is a least squares error formulation for dimensionality reduction and

has been shown to be equivalent to CCA [27], with an appropriate form of class

indicator matrix ((Y Y T)−
1
2Y). Similarly, the second term of the objective decreases

the quantization error between image and class binary codes. Relaxing the sign

function in the objective, we get:

min
W,V,C

∥∥V Tφ(X)− Y
∥∥2
F

+
∥∥W TV Tφ(X)− C

∥∥2
F

B = sgn(W TV Tφ(X)) (2.2)

where, ‖.‖2F is the Frobenius norm and C ∈ {−1, 1}l×n with Ci = cyi denote the

corresponding class codes for all the samples. Solving this is an NP-Hard problem

as there are many variables to learn. We therefore employ an iterative procedure,

by solving for one variable at a time.

Solving for V : Given the binary codes of classes C and the hash projections

W , we can solve for the input projections V . Let S = V Tφ(X), we first learn S and

then learn V . Expanding (2.2), we obtain:

15

tr(ST (I +WW T)S)− 2tr(ST (WC + Y)) + nl + const

where tr(.) is the Trace function. Taking derivative of the above equation w.r.t.to

S and equating to zero yields:

S = (WW T + I)−1(WC + Y) (2.3)

Given the reduced features S, we then obtain the input projections V as:

V = (φ(X)φ(X)T)−1φ(X)ST (2.4)

Now, we can learn binary codes of images B and classes C independently from the

dimensionality reduction step, by solving:

min
W,C

∥∥W TS − C
∥∥2
F

s.t. B = sgn(W TS) (2.5)

Solving for W : Given binary codes of classes C, we obtain the hash projec-

tions W on the reduced features S by taking the derivative of (2.5) and setting it

to zero. We obtain the following closed form solution for W :

W = (SST)−1SCT (2.6)

Utilizing the hash projections learned, we now obtain the binary codes for the images

B by simply taking the sign of the projected vector W TS, given as B = sgn(W TS).

Solving for C: Given binary codes of the images B, we can learn the class

binary codes without the relaxed formulation. We rewrite the objective in (2.5) with

discrete constraints on binary codes, for each sample as:

min
c

n∑
i=1

‖bi − cyi‖
2
2 , s.t. cyi ∈ {−1, 1}l (2.7)

16

Set/Tr(t) SBC(C) SBC SDH ITQ FastH KSH-

Cal256 31 31 408 10 2413 2e+5

Cifar100 44 44 378 8 739- 5800

Ilsvrc10 116 116 283 81 8580- 3e+4

Set/R(t) SBC(C) SBC SDH ITQ FastH KSH

Cal256 0.25 1.4 1.4 1.4 2.6 1.4

Cifar100 0.13 2.9 2.9 2.7 4.8 2.9

Ilsvrc10 0.94 351 351 350 354 351

Table 2.1: We compare the training(Tr(t) in sec) and retrieval(R(t) in milli sec)

times on Caltech256(128 bits), Cifar-100(96 bits) and ILSVRC2010(256 bits). (C)

denotes that, we use CHD.

It is easy to see that the objective is minimized when the class code is obtained by

simply taking the sign of the sum of the bit vector of the samples. To see this, let Yκ

contain the indices of the samples belonging to class κ and nκ = |Yκ|, the number

of samples per class. We can now rewrite the objective function independently for

each class:

min
c

∑
j∈Y1

‖bj − c1‖22 +
∑
j∈Y2

‖bj − c2‖22 + ...+
∑
j∈Yk

‖bj − ck‖22 (2.8)

For a single class, Expanding the objective, we get:

min
cκ

∑
j∈Yκ

‖bj − cκ‖ = (
∑
j∈Yκ

‖bj‖) + nκ ‖cκ‖ − 2(
∑
j∈Yκ

bTj)cκ

= nκl + nκl − 2B̃κ
T
cκ (2.9)

17

Method #Train #anchor mAP preH@0 pre@1

SBC(C) 2560 512 40.2 17.5 54.49

SBC(C) 6400 1280 54.7 47.8 64.02

SBC(C) 6400 2560 62.7 60.11 66.03

SBC(C) 12800 2560 63.64 59.73 66.56

SBC 12800 2560 59.63 10.59 65.33

SDH 12800 2560 55.4 18.3 65.13

ITQ+CCA 12800 - 49.44 4.7 59.7

FastHash 12800 - 55.85 0.1 59.8

KSH 6400 1280 46.29 11.6 59.8

BRE- 6400 - 15.98 0.1 40.4

Table 2.2: Comparing various metrics and methods for 128 bits on Caltech-256,

except for BRE, where we report performance with 64 bits as the method did not

converge in 8 hours for 128 bits.

where B̃κ =
∑

j∈Yκ bj . As cκ is a binary code ∈ {−1, 1}l, it is easy to infer that (2.9)

is minimized when the product B̃T
κ cκ is maximized. This happens only when the

class code cκ takes the same sign as the sum of the bit vector B̃κ. In other words,

each bit of the class code is given by the maximum voted bit of all the samples of the

class or equivalently, the centroid of the binary codes of the class samples. Given

binary code vectors, we have:

cκ = sgn(
∑
j∈Yκ

bj), ∀κ (2.10)

18

8 16 32 64 96
0

0.05

0.1

0.15

0.2

0.25

Number of bits

P
re

c
is

io
n
 @

 r
a
d
iu

s
 2

BRE
ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

8 16 32 64 96
0

0.05

0.1

0.15

0.2

Number of bits

m
A

P

BRE
ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

8 16 32 64 96
0

0.1

0.2

0.3

0.4

Number of bits

P
re

c
is

io
n
 @

 1
0

BRE
ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

16 32 64 128 192
0

0.2

0.4

0.6

0.8

Number of bits

P
re

ci
si

o
n
 @

 r
a
d
iu

s
2

BRE
ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

16 32 64 128 192
0

0.2

0.4

0.6

0.8

Number of bits

m
A

P

BRE

ITQ+CCA

KSH

FastHash

SDH

SBC

SBC(C)

16 32 64 128 192
0

0.2

0.4

0.6

0.8

Number of bits

P
re

ci
si

o
n
 @

 1
0

BRE
ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

Figure 2.2: The top row and the bottom row shows the performance of various met-

rics for varying numbers of bits on Cifar-100 and Caltech-256 datasets respectively.

We have now learned all the variables, one at a time. We do this iteratively

until the objective converges or we reach a maximum number of iterations. We

empirically observed that the whole algorithm converges very fast and typically takes

fewer than 3 iterations to converge. In either case, we set the maximum number of

iterations to be 5. We use initialization from CCA to learn the initial W and then

obtain an initial B & C, using the initial solution of V as (φ(X)φ(X)T)−1φ(X)Y T .

The detailed SBC algorithm is given in Algorithm 1.

2.3.1 Class Indicator Matrix Y

Given a mean centered Y matrix, Let H = (Y Y T)−
1
2Y . [27] shows that when

Y = H, solving equation (2.11) is equivalent to solving the CCA problem or an

Orthonomal Partial Least Squares problem under the following criteria: 1) The

19

minor condition that rank(X) = n-1 or rank(Y) = k is satisfied, which generally

holds true for high dimensional data and 2) The final goal is to do nearest neighbor

search or train SVMs on the projected features. Since, these criteria hold in our

case, we use the class indicator matrix Y = H and refer to the DR-step as LS-CCA.

2.3.2 Initialization of V

We obtain the initial solution for V by solving the LS-CCA using (2.11).

min
V

∥∥V Tφ(X)− Y
∥∥2
F

(2.11)

where ‖‖2F is the Frobenius norm and Y = H, given in 2.3.1. Solutions of equa-

tion (2.11) are given by ridge regression as:

V = (φ(X)φ(X)T)−1φ(X)Y T (2.12)

2.3.3 Class Hamming Distance(CHD)

Most hashing methods that employ the hyperplane hashing function form:

h(x) = sgn(UTx) use Hamming Distance(HD) between the query code (bq) and

database codes (bd) to compute nearest neighbors in the database for a query(q).

Hamming distance for binary codes bq, bd ∈ {0, 1}l is given as, HD(bq, bd) = |bq⊕bd|,

where⊕ is the XOR operation and |.| denotes the number of +1 bits in a given binary

code. Since, we learn class binary codes, we propose a suitable metric: class-based

Hamming Distance(CHD).

Given binary codes for each class, CHD retrieves nearest neighbors for a query

q in two steps: First, we compute the nearest class binary code c i.e. c = cκ, κ =

20

Figure 2.3: Neural Network architecture for the Deep Semantic Binary code model.

arg minj HD(cj, bq). Second, we retrieve the nearest neighbors in the database to

the class binary code c (instead of the test binary code bq). Note that, we do not

use any class information when we rank the nearest neighbors in the database to

the class binary code.The advantages of doing this are two fold: 1) For a correctly

assigned class binary code, there is a high probability of always obtaining the same

class images as the top retrievals, but the same cannot be said for an incorrect

assignment. We expect to reduce the overall error using this approximation. 2)

Retrieval is much faster as we only need to compute Hamming distance to the class

codes. For each class code, nearest neighbors in the database can be computed

offline once and the ranking is stored. Nearest neighbors can now be returned with

a single lookup. The total retrieval time is only O(k) instead of O(n), k << n

(assuming, linear search).

21

2.3.4 Deep Semantic Binary Codes

Recently, Deep Supervised Hashing(DSH) methods [16,24,25] have been shown

to improve hashing performance by large margins over shallow methods([7,28]). The

model of SBC is a single layer neural network and does not take advantage of the deep

training procedure. We present a deep neural network method for SBC that also

aims to learn a unique binary code for all same class images. We do so by training a

deep network model using the Class Binary Codes learned to form the output layer

as shown in Figure 2.3. We retrain the AlexNet [29] model by replacing the 1000-

dimensional output layer(i.e. fc8) with the Class Binary Codes(Equation (2.10))

of the images and use Sigmoid Cross Entropy Loss as the loss function for the

output layer. For a new image, hash codes are obtained by thresholding the sigmoid

activations of the output (thr = 0.5). We refer to this model as a Deep Semantic

Binary Code model and the binary codes learned from the network as Deep Semantic

Binary Codes(SBC-D). We expect that the SBC-D model learns to preserve the

semantic similarity between the same class images by learning non-linear mappings

between the image pixels and the class binary codes.

2.4 Experiments

We evaluate our proposed supervised hashing method(SBC) and deep model

on three datasets containing large numbers of categories: Caltech-256 [30], Cifar-

100 [31] and ILSVRC2010 Train [32]. We compare our approach to the state-of-the

art supervised hashing techniques: SDH [10], FastHash [8], KSH [7], ITQ with

22

32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

Number of bits

P
re

c
is

io
n
 @

 r
a
d
iu

s
 0

ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

32 64 128 256
0

0.1

0.2

0.3

0.4

Number of bits

P
re

c
is

io
n
 @

 r
a
d
iu

s
 2

ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

Number of bits

m
A

P

ITQ+CCA
KSH
FastHash
SDH
SBC
SBC(C)

Figure 2.4: Plots showing Precision @ radius 0 , Precision@ radius 2, mAP@10K

for the ILSVRC2010 Train dataset.

CCA(ITQ+CCA) [28] and BRE [20]. We use their publicly available implementa-

tions and the suggested parameters to obtain their best performance. Caltech-256

dataset consists of 30607 images from 256 categories and 1 background category. We

compute 4096 dimensional Convolutional Neural Network (CNN) features from the

fc7 layer of AlexNet [29] for each image using the Caffe library developed by [33].

Cifar-100 dataset contains a subset of 60K images from 100 categories of the Tiny

80M dataset [34]. These images are only 32x32 images and so we only compute

512 dimensional GIST features. For the ILSVRC2010 Train dataset containing 1.2

Million Images of 1000 categories, we also compute fc7 CNN features. We kernelize

the features which take the form {κ(x, a1), κ(x, a2), ...κ(x, am)} where κ is a radial

basis kernel, and m is the cardinality of a subset of training sample, designated as

‘anchor points’ as done in [7, 10,26]. All the features are unit normalized.

23

2.4.1 Train/Test Partitions

Caltech-256 dataset contains around 30607 images from 256 categories and 1

background category. In this dataset, the number of images in each category varies

a lot, with a minimum of 80 images in a category and a maximum of around 800

images. To equally weigh the performance of each class, we follow the general test-

ing protocol for Caltech-256 i.e., we choose an equal number of test images(N=25)

per category as queries and 50 images per category to form the retrieval set. We

choose three subsets of the retrieval set for training, correspondingly {10, 25, 50}

images per category to form train sets of 2560, 6400 and 12800 images. We com-

pute the Radial Basis Function(RBF) features φ(x) with varying numbers of anchor

points: m = {512, 1280, 2560}. Cifar-100 constitutes images of 100 classes, with

each class containing 600 samples. The entire dataset is split into a test set with

1000 samples(10 per class) and a retrieval set with all remaining samples. We report

performance for methods trained with subsets of size 5000 and the whole retrieval

set and construct kernelized features with anchor points of size 1000 and 3000. For

the ILSVRC2010 Train dataset containing 1.2M images of 1000 categories, we ran-

domly select 1000 queries and use the rest as the retrieval dataset. For training, we

chose 50K samples(50 per class) from the retrieval set and again compute RBF fea-

tures with 3000 anchor points. For all the datasets, we construct the ground truth

from class label information, required for supervised training. During retrieval, we

do not use any class label information.

24

2.4.2 Evaluation metrics

We report the standard retrieval performance metrics: Precision@K(pre@K),

Mean Average Precision(mAP) and Precision@Hamming radius (preH@r). pre@K

gives the precision at top-K nearest neighbors retrieved. Here, we report for K = 10

for both Caltech-256 and Cifar-100 datasets. mAP calculates the area under the

precision-recall curve, thereby evaluating the performance of the method for all the

ranked images. For Caltech-256 and Cifar-100, we report mAP and for ILSVRC2010

Train, we report mAP@10K. preH@r is the percentage of the number of images

within a Hamming radius r of the query code that belong to the same class as the

query code. For r = 0, these are exact collisions i.e. images are mapped to the same

code as the query code. We penalize the query when there are no retrievals within

a Hamming radius r. We report Precision@Hamming radius 2 for Caltech-256 and

Cifar-100 datasets. For ILSVRC2010 Train, we report both Precision@Hamming

radius 0 and 2.

We show the performance of our method with both Hamming distance and

Class-based Hamming distance (CHD). We append the notation (C) when CHD

based performance is reported. For Caltech-256, Cifar-100 and ImageNet datasets,

we learn {16, 32, 64, 128, 192}, {8, 16, 32, 64, 96} and {32, 64, 128, 256} bits respec-

tively.

25

2.4.3 Comparison with other methods

BRE, KSH and FastHash incur high training times for large training samples.

In our experiments, for efficiency reasons, we show performance of these methods for

only 6400 for Caltech-256 dataset and 5000 training samples for Cifar-100 dataset .

SDH [10] can be solved with both discrete or relaxed constraints on the binary codes

in learning the classifier. They show that discrete binary constraints are critical to

obtain maximum performance. So, we only show the results of SDH with discrete

constraints. Both, SDH and ITQ+CCA are scalable and efficient. They obtain the

maximum performance with larger numbers of training samples and therefore, we

show their performance when trained on the larger training set.

Table 2.2 compares the performance of our methods learned with various num-

bers of training samples for 128 bits on the Caltech-256 dataset. We vary the num-

ber of anchor points up to 2560 and training samples up to 12800 and show that

performance improves with more anchor points and larger training sets. For all the

reported metrics, we significantly outperform the state-of-the art methods by a large

gap and we do this with very small training and retrieval times as indicated in Table

2.1.

The top row in Figure 2.2 shows performance on the Cifar-100 dataset. Cifar-

100 has a smaller number of classes(100) than Caltech-256 but many samples per

class. The results show that SBC(C) generalizes better than the second best method

SDH on all metrics. Here, we see that as we learn a larger number of bits, SDH

performs better than FastHash, KSH, ITQ+CCA and BRE but worse than both

26

SBC and SBC(C). We also observe that the performance of both SBC (without

the Hamming distance) and SDH converges for precision@radius 2 for 96 bits.The

bottom row of Figure 2.2 compares the performance on Caltech-256 dataset for

various numbers of bits. We observe that SBC(C) shows superior performance

consistently over all metrics: preH@2, mAP and pre@10. We report performance of

BRE only up to 64 bits as it did not converge in 8 hours for more bits.

We also compare our method on the large dataset (ILSVRC 2010 Train) to

demonstrate the scalability and efficiency of our method in Figure 2.4. Both, SBC

and SBC(C) perform significantly better than the other methods at varying number

of bits on all the performance measures. Particularly, there is a larger gap with

the second best method SDH for accurately finding nearest neighbors with exact

collisions, even for longer bits. For KSH, we chose 10, 000 training samples for

1000 anchor points to keep the training time under 8 hours. We do not show the

results of BRE due to its high training times. For FastHash, we observe that the

performance is very low with 5K training samples. So, we use 50K samples at the

expense of training time. We still see that it does not perform well on preH@0 and

2, as also shown in [10]. Table 2.1 reports the training and retrieval times of our

method and the competing methods for Caltech-256, Cifar-100 and ILSVRC2010

Train datasets. For all the datasets, SBC is efficient and scalable in training and so

is ITQ. The retrieval times of SBC with CHD is significantly faster than HD, as we

only compute Hamming distance to the class binary codes. Figure 2.5 shows the

qualitative results.

27

Mthd 64 bits 96bits

mAP pre@1 preH@0 mAP pre@1 preH@0

SBC-D 57.9 57.4 52.4 49.7 52.5 45.4

DLH [25] 14.2 26.6 5.8 26.9 42.4 2.7

Table 2.3: Performance comparison of DSH methods for various metrics and various

numbers of bits for Cifar-100 dataset.

2.4.4 Comparison Methods for SBC-D:

It has been shown that DLH [25] outperforms the model of CNNH and its

variants proposed by Xia et al [16] and other Deep Supervised Hashing methods

that preserve semantic similarities ([21], DH [22]). As training deep neural networks

is computationally expensive, we here compare SBC-D with only the best baseline:

DLH [25]. We here show the results for Cifar-100 with 100 classes and use the same

train/test partitions described above.

2.4.5 Experiments for SBC-D:

For training our model, we use the AlexNet [29] architecture and replace the

output layer with the learned Class Binary Codes in Section 2.3. For training the

model of DLH, we use their publicly available code2. For Cifar-100, we use a batch

size of 100 and we train two models for learning 64 and 96 bits. We train up to

2https://github.com/kevinlin311tw/caffe-cvprw15

28

Iter 64 bits 96bits

SBC-D DLH SBC-D DLH

10,000 32.5 1.0 23.2 1.3

20,000 37.3 4.2 25.3 8.5

30,000 51.1 9.8 38.9 20.2

40,000 55.4 12 45.1 23.4

50,000 57.9 14.2 49.7 26.8

Table 2.4: Performance(mAP) comparison of DSH methods for various numbers of

iterations for Cifar-100 dataset.

50000 iterations, such that training is completed in a reasonable amount of time. We

report the mean average precision(mAP), precision@1(pre@1) and precision@radius

0(preH@0) for both the methods in Table 2.3 at 50K iterations. Table 2.4 compares

the performance of SBC-D and DLH for the learned numbers of bits.

We see that our model SBC-D outperforms DLH for all the metrics for both

64 and 96 bits and has significantly improved over SBC. High Precision of exact

collision binary codes(preH@0) of our method indicates that we achieve the goal

of mapping all same class images to a unique binary code. We report a gain of

43.7% and 23% in mAP over DLH and a gain of 42% and 30.7% over SBC for 64

and 96 bits respectively. We notice that the mAP of SBC-D is lower for 96 bits

than 64 bits. We expect that this is because of learning from an over complete

representation, which resulted in overfitting. However, notice that the performance

29

of DLH improved from 64 to 96 bits, but is still significantly lower than our proposed

deep model. Table 2.3 suggests that the initial SBC-D models learned(i.e. at few

iterations) are also efficient and do better than the best models of DLH for both

64 and 96 bits. Both the methods improve performance with more iterations. It is

surprising that the model of DLH did not do well for the Cifar100 dataset as opposed

to the competitive results shown for the Cifar-10 dataset in its work. We suspect

that this may be because the number of latent functions(i.e. bits) learned are less

than the number of classes. We have shown that by transforming the labels to the

class binary code space and replacing the output layer with the binary codes, an

efficient supervised deep hashing method can be learned. Although, we emphasize

that the improvement in performance with the deep model comes with an expense

of training time(10 hours to train each of the 64 and 96 models), compared to only

few minutes for the SBC model.

2.5 Conclusion

The key idea in our work is to address the practical aspects of faster retrieval

using image binary codes as addresses. Our goal was to learn supervised hashing

functions such that all same class images are mapped to a unique binary code. We

proposed a new supervised hashing algorithm that jointly minimizes the dimension-

ality reduction error and quantization error between the image and class binary

codes, by formulating independent objectives with a least squared criterion. A deep

extension of the SBC model is also presented to take advantage of the deep train-

30

Figure 2.5: Images of Caltech-256 dataset that have the same semantic binary code

given by the corresponding 128 bit SBC. For each row, we mention the most common

category of the images. False Positives are indicated by red boundaries.

ing procedure. We also introduced Class Hamming Distance that utilizes the class

binary codes and shows significant improvement in performance and retrieval times

compared to instance-based Hamming Distance. Our experiments demonstrate the

superiority of both the shallow and deep proposed methods over the state-of-the art.

31

Algorithm 1 Learning Semantic Binary Codes(SBC)

Input: Given {(xi, yi)}ni=1 as (input, label) pair, yi = {1, .., k}. Let X ∈ Rd×n denote

the input feature matrix.

Preprocessing: Choose randomly m anchor points and construct φ(X) ∈ Rm×n using

RBF kernel. Also, construct a binary one-of-k class indicator matrix: Y ∈ {−1, 1}k×n

with Yij = 1 if the class of the jth sample is i and −1. Mean center the matrix Y.

Equivalent Class indicator matrix for LS-CCA: Construct H = (Y Y T)−
1
2Y .

Goal: To learn l bits i.e. l and r projections for W ∈ Rr×l and V ∈ Rm×r and class

binary codes C.

Initialization:

V : Solve for V using the ridge regression solution in equation (2.12), given Y = H

and φ(X).

W : Given V , apply the DR-mapping: S = V Tφ(X). Then, learn W using CCA

with S and Y = H as input and output modalities.

C: Obtain B = sgn(W TS) and then C using (2.10)

Optimization:

repeat

- Solve for S and then V using equations (2.3) and (2.4), given Y = H and φ(X).

- Solve for W using equation (2.6)

- Obtain B = sgn(W TS) and then cκ using equation (2.10), ∀κ. Ci = cyi ; for each

bit: most occuring bit is assigned

until Convergence Criteria met or max number of iterations

Final Hash Projection: U = VW

Query(q) binary code: binarycode(q) = sgn(UTφ(q))

Class binary codes: Class binary codes given by C.

32

Chapter 3: SHOE: Sibling Hashing with Output Embeddings

3.1 Introduction

The presence of social networks, image hosting websites like Imgur and Flickr,

and the ubiquity of mobile phones with cameras have resulted in large-scale pro-

liferation of images on the internet. Given a database of images, image retrieval

seeks to return images from the database that are most similar to a query. Recent

applications for content based image retrieval (CBIR) include Google’s “Search by

Image” feature [35] and TinEye [36], which enable users to search for an image us-

ing a closely related image, rather than a keyword. Performing image retrieval on

databases with billions of images is challenging due to the linear time complexity

of nearest neighbor retrieval algorithms. Image hashing [7,8,11,12,15,37] addresses

this problem by obtaining similarity preserving binary codes which represent high

dimensional floating point image descriptors and offer efficient storage and scalable

retrieval with sub-linear search times. These binary hash-codes can be learned in

unsupervised or supervised settings. Unsupervised hashing algorithms map nearby

points in a metric space to similar binary codes. Supervised hashing algorithms try

to preserve semantic label information in the Hamming space. Images that belong

to the same class are mapped to similar binary codes.

33

In this work, we develop a new approach to supervised hashing, which we

motivate with the example shown in Figure 3.1. Consider an image retrieval problem

that involves a database of animals and a query image of a leopard. Now consider

the following three scenarios :

1. If the retrieval algorithm returns images of leopards, we can deem the result

to be absolutely satisfactory.

2. If the retrieval algorithm returns images of dolphins, whales or sharks, we con-

sider the results to be absolutely unsatisfactory because not only are dolphins

not leopards, they do not look anything at all like leopards.

3. If the retrieval algorithm returns the image of a jaguar or a tiger, we would

be reasonably satisfied with the results. Although a jaguar is not the same as

a leopard, it is semantically similar to one.

In this example, leopards, dolphins, whales, sharks, jaguars and tigers all

belong to different categories. However, some of these categories are more closely

related to each other than to other categories. Animals which fall under the “big cat”

(Panthera) genus are related to each other, as are the large aquatic vertebrates like

dolphins, sharks and whales. We designate the related categories as “siblings”. The

question now becomes : how can we construct hash functions that rank sibling class

images ahead of unrelated class images? Traditional supervised hashing algorithms

like [7,8] use discrete binary labels to compute similarity between classes. We, on the

other hand, consider information outside of the image domain to define inter-class

relationships.

34

Figure 3.1: We prefer results II over I because they tend to retrieve images of

classes(jaguar and tiger) related to the class label of the query(leopard), rather than

unrelated classes(sharks and dolphins).

To study the relationships between categories, Weinberger et al. [38] suggested

the concept of “output embeddings” - vector representations of category informa-

tion in Euclidean space. There has been extensive work on “input embeddings”,

which are vector-space representations of images [39–41], but less work has been

done on output embeddings, which map similar category labels to similar vectors

in Euclidean space. In an output embedding space of animals, we would expect to

have embeddings for labels so that chimpanzees, orangutans and gorillas are near

each other as are leopards, cheetas, tigers and jaguars. In Section 3.2, we describe

various methods from the literature to obtain output embeddings.

Our method, which uses output embeddings to construct hash codes in a

supervised framework is called SHOE: Sibling Hashing with Output Embeddings

(Figure 3.2). Our motivation for doing this is the following : it is our belief that in

the case of supervised hashing, a more desirable algorithm will retrieve images of

35

sibling classes ahead of images of unrelated classes, while maintaining the retrieval

performance for images of the same class. This improves the overall visual quality

of retrieved results. We perform extensive retrieval experiments on the Caltech-

UCSD Birds(CUB) dataset [42], SUN Attribute Dataset [43] and ImageNet [44].

Our hash-codes can also be used to do classification, and we report accuracy on the

CUB dataset using a nearest-neighbor classifier which is better than R-CNN and its

variants [45,46].

The contributions of our work are as follows :

1. To the best of our knowledge, our approach is the first to introduce the problem

of learning supervised hash functions using the modality of output embeddings.

2. We propose a joint learning method to solve the above problem, and perform

retrieval and classification experiments to experimentally validate our method.

3. We propose two new evaluation criteria - “sibling metrics” and “weighted

sibling metrics”, for gauging the efficacy of our method.

4. We significantly boost retrieval and classification performance by applying

Canonical Correlation Analysis [47] on input features, and learn hash functions

using output embeddings on these features.

The remainder of this work is arranged as follows. Section 3.2 describes

related work. In Section 3.3 we describe our hashing framework, and carry out

experiments in Sections 3.4 and 3.5. We conclude in Section 3.6.

36

Figure 3.2: We perform k-means clustering on Word2Vec embeddings [1] of Im-

ageNet classes. The principle behind SHOE is that images belonging to related

classes (like leopard or tiger, which are nearby in the output embedding space) are

mapped to nearby binary codes (represented by points on a binary hypercube). Im-

ages belonging to unrelated classes (like leopards and aircraft) are mapped to distant

binary codes. This figure was created using [2] and is for illustrative purposes.

3.2 Related Work

Work on image hashing can be divided into unsupervised and supervised meth-

ods. For the purpose of brevity, we only consider supervised methods. Supervised

Hashing algorithms are based on the objective function of minimizing the differ-

ence between hamming distances and similarity of pairs of data points. Supervised

Hashing with Kernels(KSH) [7] uses class labels to determine the similarity. Points

are considered ‘similar’ (value ‘1’) if they belong to the same class and ‘dissimilar‘

37

(value ‘-1’) otherwise. They utilize a simplified objective function using the relation

between the hamming distance and inner products of the binary codes. A sequential

greedy optimization is adapted to obtain supervised projections. FastHash [8] also

uses a KSH objective function but employs decision trees as hash functions and

utilizes a GraphCut based method for binary code inference. Minimal loss hash-

ing [15] uses a structured SVM framework [48] to generate binary codes with an

online learning algorithm.

All these methods except KSH categorize the input pairs to be either similar

or dissimilar. KSH allows a similarity 0 for related pairs, but the authors only use it

to define metric neighbors and not for semantic neighbors. FastHash entirely ignores

the related pairs, as it weighs the KSH loss function by the absolute value of the

label. Furthermore, their work does not support a similarity value other than 1 and

-1, as it violates the submodularity property - a crucial property required to solve the

problem in parts. The idea of ordering binary codes has been recently proposed in

Zhang et al. [49], however, this has been done in an unsupervised setting. To the best

of our knowledge, we are the first to use similarity information of sibling classes in a

supervised hashing framework to obtain binary codes that respect relation between

classes. Our work is also different from others as we compute similarity from output

embeddings and use a joint learning framework to learn the sibling similarity. We

now discuss related work on output embeddings.

Output embeddings can be defined as vector representations of class labels.

We use these vector representations to compute the distance between categories in

the label space, in the belief that sibling classes are nearby in this space compared

38

to unrelated ones. Output embeddings can be thought of as a modality exclusive

of the pixel domain (or “input embeddings”), and can be divided into two types:

data-independent and data-dependent. Some of the data-independent embeddings

include [42,43,50–52]. Langford et al. [50] constructed output embeddings randomly

from the rows of a Hadamard matrix where each embedding was a random vector of

1 or -1. Data dependent embeddings, on the other hand, can be constructed from

side information about classes such as attributes, or a Linnean hierarchy, and are

available with datasets such as [42, 43, 51]. In WSABIE [53], the authors jointly

learn the input embeddings and the output embeddings to maximize classification

accuracy in a structural SVM setting. Akata et al. [54] uses the WSABIE framework

to learn fine grained classification models by mapping the output embeddings to

attributes, taxonomies and their combination.

The binary hash-codes that SHOE learns on the CUB and SUN datasets use

attributes as output embeddings, just like [54]. These attributes are provided either

by expert oracles or Amazon Mechanical Turk - hence, output embeddings can be

considered as a separate modality of information. For ILSVRC2010 experiments,

we use a taxonomy derived embedding similar to [52]. In a taxonomy embedding, a

binary output embedding vector is obtained, where each node in the class hierarchy

and its ancestors are represented as 1 while non-ancestors are represented as 0. Deng

et al. [55] show that classification that takes hierarchies into account can be informa-

tive. Mikolov et al. [1] use a skip-gram architecture trained on a large text corpus to

learn output embeddings for words and short phrases. These Word2Vec embeddings

are used by [56] for large scale image classification and zero-shot learning. Finally,

39

16 32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

Number of bits

P
re

c
is

io
n
 @

 3
0

Precision @ 30 for CUB

LSH
ITQ
FastHash
KSH
SHOE(E)

16 32 64 128 256
0

0.2

0.4

0.6

Number of bits

S
ib

 P
re

c
is

io
n
 @

 3
0

Sib Precision @ 30 for CUB

LSH
ITQ
FastHash
KSH
SHOE(E)

16 32 64 128 256
0

0.1

0.2

0.3

0.4

Number of bits

S
ib

w
P

re
c
is

io
n
 @

 3
0

Sib
w

Precision @ 30 for CUB

LSH
ITQ
FastHash
KSH
SHOE(E)

Figure 3.3: Retrieval on CUB dataset comparing our method SHOE(E) with

the state-of-the art hashing techniques. The above plots report precision, sib-

ling precision and weighted sibling precision for top 5 sibling classes for bits

c = {16, 32, 64, 128, 256}.

output embeddings can even be learned from the data. For example, [57] exploits

co-occurences of visual concepts to learn classifiers for unseen labels using known

classifiers. All these methods use output embeddings for classification and zero shot

learning, but none have used them to learn binary codes for retrieval.

3.3 Method

3.3.1 Preliminaries

Given a training set M = {(x1, y1),, (xN , yN)} of N (image,label) pairs with

xi ∈ X and yi ∈ Y , let φ : X → X̄ ∈ Rd be the input embedding function and

ψ : Y → Ȳ ∈ Re be the output embedding function. We wish to learn binary

codes bi, bj of length c (i.e., bi ∈ {−1, 1}c) such that for pairs of training images,

the Hamming distance between the codes preserve the distance between their class

40

Method mAP SibmAP SibwmAP

SHOE(E) 0.111 0.250 0.174

KSH 0.113 0.133 0.108

FastHash 0.045 0.062 0.047

ITQ 0.060 0.119 0.084

LSH 0.013 0.044 0.028

Table 3.1: Retrieval on CUB dataset comparing our method SHOE(E) with the

state-of-the art hashing techniques. The table reports mAP, Sibling and Weighted

Sibling mAP for c = 64 bits.

labels (given by their corresponding output embedding vectors). In other words,

for a given query image, retrieved results of sibling(unrelated) classes ought to be

ranked higher(lower). To this end, we obtain the following objective function:

min
b

N∑
i=1

N∑
j=1

(
1

c
dH(bi, bj)− dE(¯ψ(yi), ¯ψ(yj)))

2. (3.1)

where dH(bi, bj) is the Hamming distance between binary codes bi and bj and dE

is the Euclidean distance between the normalized output embedding vectors ¯ψ(yi)

and ¯ψ(yj).

For an input image x with input embedding vector φ(x), we obtain binary

code b of length c bits. Each bit is computed using a hash function hl(x) that takes

the form :

41

hl(x) = sgn(wlφ(x)), wl ∈ Rd. (3.2)

To learn c such hash functions H = {hl|l = 1, . . . , c}, we learn c projection vectors

W = [w1, w2 . . . , wc], which we compactly write as H(x) = sgn(Wφ(x)), W ∈ Rc×d.

Without loss of generality, we can assume that φ(x) is a mean-centered feature. This

ensures we obtain compact codes by satisfying the balanced property of hashing (i.e,

each bit fires approximately 50% of the time) [12]. φ(x) can be an input embedding

that maps images to features in either kernelized or unkernelized forms.

Solving the optimization problem in Equation (1) is not straightforward, so we

utilize the relation between inner product of binary codes and Hamming distances

[7, 58], given as 2dH(bi, bj) = c − bTi bj, where bTi bj =
∑c

l=1 hl(φ(xi)) hl(φ(xj)) is

the inner product of the binary codes bi and bj. Note that the inner product of

binary codes lies between −c and +c, while the Hamming distance ranges from 0 to

c, where the distance between the nearest neighbors is 0 and between the farthest

neighbors is c . By unit normalizing the output embedding vectors, ‖ψ̄(y)‖ = 1,

we exploit the relationship between Euclidean distances and the dot products of

normalized vectors, given as dE(ψ̄(yi), ψ̄(yj)))
2 = 2− 2ψ̄(yi)

T ψ̄(yj), and obtain the

following objective function:

min
H

N∑
i=1

N∑
j=1

(
1

c

c∑
l=1

hl(φ(xi))hl(φ(xj))− ψ̄(yi)
T ψ̄(yj))

2 (3.3)

Let oij = ψ̄(yi)
T ψ̄(yj) and as a consequence of the unit normalization of ψ̄(yi),

−1 ≤ oij ≤ 1, which implies that the similarity between same classes is 1 and

42

similarity between different classes is as low as -1. The objective ensures that the

learned binary codes preserve the similarity between output embeddings, which is

required for supervised hashing and our goal of ranking related neighbors before

farthest neighbors.

This is similar to the KSH [7] objective function, except that KSH assumes

that oij takes only values 1 (−1) for similar (dissimilar) pairs defined with semantic

information. Their work also accomodates the definition of the oij = 0 for related

pairs but only for metric neighbors. Our work is different from theirs, as we empha-

size the learning of binary codes that preserve the similarity between the classes,

given by oij. Regardless of the definition of oij, our optimization is similar, and so

we employ a similar sequential greedy optimization for minimizing (3.3). We refer

the reader to Section 3.3.5 and [7] for further details.

3.3.2 Evaluation Criteria

Standard metrics like precision, recall and mAP defined for semantic neighbors

are not sufficient to evaluate the retrieval of the sibling class images. To measure this,

we define sibling precision, sibling recall and sibling average precision metrics. Let

Ry : (yi, yj) → rank return the rank of class yj for a query class yi, 0 ≤ rank ≤ L,

where L is the number of classes. Note that, Ry(y, y) = 0 for the same class. The

ranking Ry is computed by sorting the distance between the output embedding

vectors ψ(y) and ψ(y∗), y∗ ∈ Y \ y. We obtain the weight of the sibling class

used for evaluation using the following functions for Sibling(Sibm) and Weighted

43

Sibling(Sibwm) metrics:

Sibm : (yi, yj, Ry)→ I(Ry(yi, yj)) ≤ m)

Sibwm : (yi, yj, Ry)→
m−Ry(yi, yj)

m
∗ I(rank ≤ m)

where, m is the number of related classes for each query class and I(.) is the Indi-

cator function that returns 0 when rank > m. The Sibling and Weighted Sibling

precision@k, recall@k and mAP is defined as:

swprecisionq@k =

∑k
l=1 Sib

w
m(yq, yql , Ry)

k
(3.4)

swrecallq@k =

∑k
l=1 Sib

w
m(yq, yql , Ry)∑L

p=1Nl ∗ I(Sibwm(yq, yp, R))
(3.5)

swAPq =
N∑
k=1

sprecisionq@k ×4srecallq@k (3.6)

swmAP =

∑Q
q=1 sAPq

Q
(3.7)

In the above equations, yql refers to the class of the lth retrieved image.

3.3.3 Preliminary Experiments

We evaluate the proposed hashing scheme that takes into account structure of

the related classes with the following performance metrics: Precision@k, mAP and

their sibling versions previously defined.

44

• Datasets: To test our approach, we use datasets that contain information

about class structure. The CUB-2011 dataset [42] contains 200 fine-grained

bird categories with 312 attributes and is well suited for our purpose. In

this dataset, although both binary and continuous real-valued attributes are

available, we use only the mean-centered real-valued attributes as output em-

beddings ψ(y). We obtain ranking Ry for each class y based on these attribute

embeddings. There are 5994 train and 5774 test images in the dataset. We

select a subset of the dataset of size 2000 for training, use the whole train set

for retrieval and all test images as queries. Ground truth for a query is defined

label-wise and each query class has approximately 30 same class neighbors in

the retrieval set. For input embeddings, we extract state-of-the-art 4096 dime-

sional Convolution Neural Network (CNN) features from the fc7 layer for each

image using the Caffe Deep Learning library developed by [33]. We kernelize

the CNN features which take the form :
∑p

i=1 κ(x, xi) where κ is a radial basis

kernel, and p is the cardinality of a subset of training sample, designated as

“anchor points”. We refer to these as CNN+K features and they are inherently

mean-centered.

• Comparison methods: We compare our method with raw output em-

beddings:SHOE(E), with the following supervised and unsupervised hashing

schemes: KSH [7], FastHash [8], ITQ [28] and LSH [11]. We use their publicly

available implementations and set the parameters to obtain the best perfor-

mance. It is important to note that none of these methods utilize the distri-

45

bution of class labels in the output embedding space. The closest comparison

would be to use KSH, setting the similarity of semantic class neighbors to 0

value. For this purpose, we obtain top-m related pairs for each class using Ry

and set the similarity to 0 for related pairs. To evaluate the unsupervised ITQ

and LSH, we zero-center the data and apply PCA to learn the projections. We

use CNN+K features with p = 300 for evaluating SHOE(E) and KSH since

we learn linear projections in these methods, unlike FastHash which learns

non-linear decision trees on linear features.

• Results: Figure 3.3 shows the precision@30, sibling and weighted sibling

precision@30 plots for 5 related classes, i.e. m = 6(+1 for the same class)

by encoding the input embeddings to bits of length c={16, 32, 64, 128, 256}.

Table 3.1 shows the recall and mAP and its sibling variants for 64 bits. We

observe that SHOE(E) does better than baselines for both sibling and weighted

sibling precision metrics for top-30 retrieved neigbhors for all bit lengths, but

there is a loss in precision compared to the KSH method. In their work,

FastHash [8] shows better performance compared to KSH. However, it does

not perform well here because of the large number of classes and few training

samples available per class.

3.3.4 Analysis

Experiments in Section 3.3.3 show that using similarity directly from output

embeddings actually reduces the performance for same classes, while improving it for

46

sibling classes. To analyse this, we obtained top-m related classes using ranking Ry

and assigned a constant oij = θ value (previously, in Equation(3.3), we had defined

oij = ψ̄(yi)
T ψ̄(yj)). θ measures the similarity between a class and a related class.

Figure 3.4 show the performance of our method(SHOE) for varying θ values for

64 bits on CUB-2011 dataset. Results reveal that, when a fixed similarity is used,

we actually gain performance from the sibling class training examples, and this

gain is maximized for negative values of θ, i.e −1 < θ < 0. The intuition behind

this is: when θ is close to 1, the learned hash-code would not discriminate well

enough between identical classes and sibling classes. For instance, in our “database

of animals” example, we would learn hash-codes that nearly equate leopards with

jaguars, which is not what we desire. On the other hand, when θ is close to -1, a

hash-code for a leopard image will be learned mostly from other training images of

leopards, but with slight consideration towards training images of its sibling classes.

When θ is assigned -1, the sibling classes aren’t considered at all, so our method

becomes identical to KSH [7]. We are now interested in learning θ simultaneously

with the hash functions during the training phase.

3.3.5 SHOE Revisited

We observe that the objective function that we want to minimize in Equa-

tion (3.3) can be split into three parts - for identical classes, sibling classes and

unrelated classes, respectively. We also observe from the preceding analysis that

precision and recall metrics improve for negative values of θ. Therefore, we add reg-

47

Method CUB-2011(2000 train: (Pre,re)@100) SUN Attribute(3585 train: (Pre,re)@25)

pre|re Sibpre|re Sibwpre|re pre|re Sibpre|re Sibwpre|re

SHOE(L) 0.108 0.180 0.325 0.091 0.229 0.109 0.042 0.105 0.140 0.058 0.094 0.067

SHOE(E) 0.077 0.128 0.285 0.079 0.190 0.090 0.023 0.056 0.095 0.040 0.060 0.043

KSH 0.089 0.149 0.225 0.062 0.165 0.079 0.035 0.087 0.091 0.038 0.066 0.047

ITQ 0.069 0.115 0.214 0.060 0.147 0.070 0.031 0.078 0.097 0.040 0.066 0.047

FastHash 0.035 0.117 0.097 0.054 0.069 0.065 0.006 0.015 0.019 0.008 0.013 0.009

LSH 0.013 0.042 0.053 0.030 0.034 0.032 0.005 0.012 0.021 0.009 0.013 0.009

with CCA features

SHOE(L)+CCA 0.142 0.474 0.437 0.243 0.308 0.293 0.060 0.150 0.197 0.082 0.135 0.096

SHOE(E)+CCA 0.121 0.402 0.416 0.232 0.284 0.270 0.040 0.099 0.150 0.062 0.098 0.070

KSH+CCA 0.136 0.454 0.322 0.179 0.244 0.232 0.057 0.143 0.138 0.058 0.102 0.073

ITQ+CCA 0.095 0.318 0.203 0.113 0.158 0.150 0.029 0.071 0.067 0.028 0.050 0.035

Table 3.2: Comparing Precision, recall and their sibling variants with our meth-

ods(SHOE(L) and SHOE(E)) and several baselines for 64 bits. We here show results

with and without applying CCA projections for all the methods except FastHash

and LSH as their performance decreases. We see that SHOE performs significantly

better than the baselines for sibling metrics and performs as well as the baselines

for standard metrics.

ularizer term λ ‖θ + 1‖2 to the objective function, which becomes small when θ lies

close to -1. For easier notation, we denote hli = hl(φ(xi)). Our modified objective

function now becomes :

48

min
W,θ

N∑
i,j∈

N∑
same
class

(
1

c

c∑
l=1

hlihlj − 1)2 +
N∑
i,j∈

N∑
sibling
class

(
1

c

c∑
l=1

hlihlj − θ)2

+
N∑
i,j∈

N∑
unrelated
class

(
1

c

c∑
l=1

hlihlj + 1)2 + λ ‖θ + 1‖2 (3.8)

Let Hijc = 1
c

c∑
l=1

hlihlj denote the sum of the inner product of the binary codes

bi and bj of length c. We now compute the derivative of Equation (3.8) w.r.t θ, set

it to 0 and solve for each θ. We obtain :

θ = θc =

N∑
i,j∈

N∑
sibling
class

(Hijc − λ)

c(nsib + λ)
(3.9)

where nsib is the number of sibling pairs in the training data. We have thus obtained

a closed form solution for the optimal θ. However, we cannot calculate θ directly

as we do not learn all the bits at once. Therefore, we employ a two step alternate

optimization procedure that first learns the bits and then an approximate θl value

calculated from the previously learned bits. For the first iteration, we use an initial

θ0 value, computed from the similarity of the output embeddings. The two step

optimization procedure for learning the lth hash function is:

1. Step 1 : We optimize for Equation (3.3), keeping θl−1 constant and updating

the projection vector W , thus learning hash-code bits hl(φ(xi)).

2. Step 2 : We keep the hash-code bits hl(φ(xi)) constant and learn θl for each

image pair using Equation (3.9).

49

Let O denote the inner product of output embedding vectors such that oij is

assigned 1 for same class pairs, θ for sibling class pairs and -1 for unrelated class

pairs and Hl denote the lth bit for all training samples. Now, we can write equation

(3.8) as:

min
W,θ

∥∥∥∥∥1

c

c∑
l=1

HlHT
l −O

∥∥∥∥∥
2

F

+ λ ‖θ + 1‖2 (3.10)

Utilizing the independence constraints [12, 59] for learning hashing functions,

we rewrite the objective function to greedily solve for one bit at a time like in [7],

given as:

min
Wl,θ

∥∥∥∥∥1

c
HlHT

l − (O −
l−1∑
m=1

HmHT
m)

∥∥∥∥∥
2

F

+ λ ‖θ + 1‖2 (3.11)

Let Ml−1 = O −
∑l−1

m=1HmHT
m. Replacing Hl with

sgn(Wlφ(X)) in equation (3.11) and expanding, we get:

min
Wl,θ
−sgn(Wlφ(X))TMl−1sgn(Wlφ(X)) + λ ‖θ + 1‖2 (3.12)

As discussed in the above two step procedure, we solve first for Wl and then

for θ. In the first step, we relax the sgn function and scale the projected vectors

to obtain initial solution Wl, which is the solution of the generalized eigenvalue

problem φ(X)TMl−1φ(X)Wl = σφ(X)Tφ(X)Wl. Then, we approximate the sgn

function with tanh. The gradient for the above equation w.r.t to Wl is now given

as:

δg = −φ(X)T ((Ml−1b) ◦ (1− b ◦ b)) (3.13)

Given the gradient, we solve the optimization using a fast iterative procedure like

Nesterov’s gradient descent [60] or FASTA [61]. In the second step, we learn θ as

50

given in Equation (3.9). We then update Ml−1 with the new value of θ and repeat

the optimization procedure for the next bit until we learn the required number of

bits.

3.3.6 Supervised Dimensionality Reduction

As our datasets contain class label information and corresponding output em-

beddings, we have explored the idea of supervised dimensionality reduction for in-

put embeddings φ(x) ∈ Rd to ω(x) ∈ Rc(c � d), given the output embeddings

ψ(y) ∈ RE. There are many supervised dimensionality reduction techniques avail-

able in the literature like Canonical Correlation Analysis (CCA) [47] and Partial

Least Square Regressions [62], for example. In particular, we have used CCA [47]

(φ → ω) to extract a common latent space from two views that maximizes the

correlation with each other. [28] also leveraged the label information using CCA to

obtain supervised features prior to binary encoding. However, they limit their out-

put embeddings to take the form of one vs remainder embeddings: : ψ(y) ∈ {0, 1}L

is a L-dimensional binary vector with exactly one bit set to 1 i.e. ψ(y)y = 1 where

L is the number of class labels. On the other hand, we apply CCA to the gen-

eral form of output embeddings that are real valued continuous attributes captur-

ing structure between the classes. We observe that when supervised features with

CCA-projections are used, we obtain a significant boost in performance (≈ 100%

improvement) for all of our evaluation metrics.

51

Method CUB-2011(5000 train) SUN Attribute(7000 train)

pre|mAP Sibpre|mAP Sibwpre|mAP pre|mAP Sibpre|mAP Sibwpre|mAP

@100 mAP @100 mAP @100 mAP @25 mAP @25 mAP @25 mAP

SHOE(L)+CCA 0.211 0.527 0.561 0.467 0.417 0.416 0.114 0.201 0.311 0.239 0.225 0.193

SHOE(E)+CCA 0.183 0.429 0.575 0.533 0.411 0.429 0.078 0.134 0.240 0.205 0.167 0.152

KSH+CCA 0.204 0.526 0.421 0.290 0.335 0.303 0.115 0.220 0.227 0.130 0.178 0.126

ITQ+CCA 0.109 0.256 0.193 0.125 0.157 0.129 0.039 0.070 0.081 0.044 0.062 0.041

FastHash 0.109 0.246 0.192 0.120 0.156 0.124 0.014 0.021 0.029 0.017 0.022 0.014

LSH 0.018 0.017 0.069 0.049 0.045 0.032 0.008 0.009 0.030 0.018 0.019 0.012

Table 3.3: Comparing Precision, mAP and their sibling variants with our meth-

ods(SHOE(L) and SHOE(E)) and several baselines for 128 bits. We apply CCA

projections for all the methods except FastHash and LSH as their performance de-

creases. For sibling metrics, SHOE performs significantly better than the baselines

and performs as well as the baselines for standard metrics. We use 1000 anchor

points for CUB dataset and 1434 anchor points for SUN attribute dataset.

52

3.4 Experiments

We evaluate our method on the following datasets: Caltech-UCSD Birds

(CUB) Dataset [42], the SUN Attribute Dataset [43] and Imagenet ILSVRC2010

dataset [44]. We extract CNN features from [33], as mentioned in Section 3.3.3.

In the case of CUB dataset, we extract CNN features for the bounding boxes that

accompany the images. For CUB and SUN datasets, we create two training sets

of different size to examine the variation in performance with number of training

examples. For all the datasets, we define the ground truth using class labels.

Datasets: We have described the CUB dataset in Section 3. The ImageNet

ILSVRC 2010 dataset is a subset of ImageNet and contains about 1.2 million images

distributed amongst 1000 classes. We uniformly select 2 images per class as a test set

and use the rest as retrieval set. We select 5000 training and p = 3000 anchor point

images by uniformly sampling across all classes. We obtain the output embeddings

for the ImageNet class using the method of Tsochantaridis [52]. Each of the 74401

synsets in ImageNet is a node in a hierarchy graph and using this graph, we obtain

the ancestors for each class in ILSVRC 2010 dataset. We then construct a matrix

OImagenet = {0, 1}1000×74401, where the jth column of the ith row is set to 1 if the

jth class is an ancestor of the ith class, 0 otherwise. Thus, the output embedding of

each class is represented by a row of OImagenet.

The SUN Attribute dataset [43] contains 14340 images equally distributed

amongst 717 classes, accompanied by annotations of 102 real valued attributes. We

partition the dataset into equal retrieval and test sets, each containing 7170 images.

53

We derive two variants from the retrieval set - the first has 3585(5 per class) training

and 1434(2 per class) anchor point images, while the second has 7000(10 per class)

training and 3000(4 per class) anchor point images. In this dataset, each test query

has 10 same class neighbors and 50 sibling class neighbors in the retrieval set. We

compute a per class embedding by averaging embedding vectors for each image in

the class.

Evaluation Protocol: For binary hash-codes of length c = {16, 32, 64, 128, 256},

we evaluate SHOE using standard, sibling and weighted sibling flavors of precision,

recall and mAP. Two variants of SHOE are used - SHOE(E), which uses raw output

embeddings, and SHOE(L), which is learned using the method in Section 3.3.5. For

the smaller CUB and SUN subsets, we compute mAP and their sibling versions.

For the big subsets, in addition to mAP, we also compute precision. In the case of

ImageNet, we compute precision@50, recall@10K, mAP and their sibling variants.

Results: We compare our work to state-of-the-art methods in image-hashing

literature mentioned in Section 3.3.3 and present the results in Figure 3.5, Tables

3.2 and 3.3. Figure 3.5 and Table 3.2 represent experiments performed on a smaller

dataset with 2000 train, 1000 anchor points for CUB and 3585 train, 1434 anchor

point images for SUN Attribute dataset. Table 3.3 shows experiments that use 5000

train, 3000 anchor for CUB and 7000 train, 3000 anchor points for SUN Attribute.

For the baselines, we use publicly available implementations and set the parameters

to obtain the best performance. We use CNN+K features as input embeddings for

SHOE and KSH.

In Figure 3.5, the rows represent weighted sibling, sibling and mAP metrics.

54

The first two columns represent experiments without and with CCA projections

on the CUB dataset, while the latter two columns represent the same on the SUN

Attribute dataset. We notice that without CCA projections, we outperform the

baselines on standard metrics, and comfortably outperform on sibling metrics. These

results confirm our expectation that with fewer training samples, learning hash

codes with SHOE benefits from training samples of related classes. With output

embedded CCA projections, our method performs as well as the best baseline on

standard metrics, and comfortably outperforms on sibling metrics. CCA projections

significantly improve the performance for SHOE, KSH and ITQ, while it lowers the

performance for FastHash and LSH.

Table 3.2 does the same comparison with 64 bits and fewer training samples.

Once again, we notice that our method with and without CCA, SHOE(L) beats all

baselines on both standard and sibling metrics, while SHOE(E), which uses raw out-

put embeddings, without the extra optimization step in Section 3.3.5, outperforms

comfortably on sibling metrics, but does worse on the standard metrics. Table 3.3

shows similar trends for 128 bits for larger training sets, but we notice that the gap

in performance on standard metrics between SHOE and KSH reduces when CCA

projections are applied, but not on the sibling metrics. We think this is because

the CCA step utilizes output embeddings and hence, improves performance of both

KSH and SHOE. Finally, we conduct experiments on the Imagenet ILSVRC 2010

dataset, which contains 1000 classes. Results from Figure 3.6 show that with CCA

features, SHOE surpasses KSH on recall@10K and sibling precision metrics, while

performing as well as KSH on precision@50 and mAP. Qualitative results which

55

Method pre spre swpre

SHOE(L)+CCA 24.5 32.6 29.1

KSH+CCA 24.8 30.4 28.0

ITQ+CCA 6.5 10.8 9.9

Method mAP smAP swmAP

SHOE(L)+CCA 0.039 0.021 0.022

KSH+CCA 0.036 0.010 0.014

ITQ+CCA 0.005 0.001 0.002

Table 3.4: Retrieval on ILSVRC2010 dataset comparing SHOE with state-of-the art

hashing techniques. We use 5K training samples and CNN+K+CCA as features for

all the binary encoding schemes. Table reports precision@50, mAP and their sibling

versions for 256 bits.

compares SHOE and KSH can be found in Figure 3.7.

3.5 Fine-grained Category Classification

In this section, we demonstrate the effectiveness of our proposed codes for fine-

grained classification of bird categories in CUB-2011 dataset. We propose a simple

nearest neighbor pooling classifier that classifies a given test image by assigning it

to the most common label among the top-k retrieved images. Let Rx(q, x)→ rank

give the ranking of the images retrieved based on our binary codes. Thus, rank is 1

56

for the nearest neigbhor and rank is N for the farthest neighbor, where N is the size

of the database. Given such ranking, withMq denoting the top-k ranked neighbors

of a new query q, we define the k-nn pooling classifier as:

classpredict(q) = arg max
y

∑
x∈Mq

I(class(x) == y) (3.14)

We use the above model to obtain the classification accuracy on the CUB

dataset with 200 categories from top-10 neighbors. In particular, we obtain the

following accuracies: top-1 accuracy(top-1) measures if the predicted class matches

the ground truth class, top-5 accuracy(top-5) measures if one of the top-5 predicted

classes match the ground truth class and sibling accuracy(sib) measures if the pre-

dicted class is one of the sibling classes of the ground truth class. As a baseline, we

train a linear SVM model on the CNN features. We compare our proposed binary

codes SHOE(L), KSH and state-of-the-art fine grained classification models that

use CNN features. For this experiment, we use bounding box information, but do

not use any part-based information available with the datasets. Hence, we do a fair

comparison between methods with no part-based information. Table 3.5 shows the

classification performance over the 5794 test images with approximately 30 images

for each of the 200 categories.

Features: For each of the binary coding schemes(SHOE, KSH, ITQ), we

use the CNN+K+CCA(kernelized CNN with CCA projections) features as input

embeddings and mean-centered attributes as the output embeddings. For the ex-

periments, we used only 128 bit codes, while CNN features are 4096 dimensional

vectors.

57

Method top-1 top-5 sib Compression

Baseline(SVM) 50.6 75.6 70.19 1

SHOE(L)+CCA 52.51 77.8 72.4 1024

KSH+CCA 52.48 75.1 69.06 1024

ITQ+CCA 27.5 43.4 37.6 1024

R-CNN [45] 51.5 - - 1

Part-RCNN [46] 52.38 - - 1

Table 3.5: Comparing classification accuracies for CUB dataset. For top-1 and

sibling accuracy, we used k = 10 neighbors. To obtain top-5 accuracy, we used

k = 50 neighbors. For the binary coding schemes, we used only 5000 of the 5994

train images to obtain 128 bits, while the classification models are trained on the

full set. ’-’ indicates that the information is not available in their work.

58

Results: We observe that not only do the proposed binary codes obtain a

marginal improvement in performance over the complex classification models in [45]

[46], but they also offer an astounding compression ratio of 1024. Also, the training

and testing times of binary coding schemes are significantly smaller than those with

SVM classification models.

3.6 Conclusion

The key idea of our work is to learn binary codes that respect the relation-

ship between classes. We utilize output embeddings to define the similarity between

classes and obtain binary codes that preserve class order. To the best of our knowl-

edge, ours is the first work to do so. We devised a method to learn class similarity

jointly with the hash function, along with new metrics for their evaluation. It is

our belief that this scheme improves overall visual quality of the retrieval system,

and we have validated this experimentally with sibling metrics. Our method, called

SHOE, achieves state-of-the art image retrieval results over multiple datasets for

hash codes of varying lengths. Our other innovation was to utilize CCA to learn a

projection of features with output embeddings, which resulted in significant gains

in both retrieval and classification experiments. Upon applying this approach to all

methods, we perform comparable to or better than all baselines over all datasets.

59

−1 −0.5 0 0.5 1
0.1

0.15

P
re

c
is

io
n

@
3

0

θ

Precision Variants @ 30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

S
ib

|S
ib

w
 P

re
c
is

io
n

@
3

0

Std
Sib

Sib
w

−1 −0.5 0 0.5 1
0.08

0.1

0.12

m
A

P

θ

mAP Variants for CUB

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

S
ib

|S
ib

w
 m

A
P

Std
Sib

Sib
w

Figure 3.4: Retrieval on CUB dataset evaluating the performance of our

method(SHOE) for varying θ values and p = 1000. The left and right y-axis show

the standard metrics and sibling metrics respectively.

60

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

S
ib

w
m

A
P

Sib
w

mAP for CUB

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.2

0.4

0.6

Number of bits

S
ib

 m
A

P

Sib mAP for CUB

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

Number of bits

m
A

P

mAP for CUB

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

Number of bits

S
ib

w
m

A
P

Sib
w

mAP for CUB (CCA)

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of bits

S
ib

 m
A

P

Sib mAP for CUB (CCA)

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

Number of bits

m
A

P

mAP for CUB (CCA)

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.05

0.1

0.15

0.2

Number of bits

S
ib

w
m

A
P

Sib
w

mAP for SUN

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

Number of bits

S
ib

 m
A

P

Sib mAP for SUN

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.05

0.1

0.15

0.2

0.25

Number of bits
m

A
P

mAP for SUN

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.05

0.1

0.15

Number of bits

S
ib

w
m

A
P

Sib
w

mAP for SUN (CCA)

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.05

0.1

0.15

0.2

Number of bits

S
ib

 m
A

P

Sib mAP for SUN (CCA)

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

16 32 64 128 256
0

0.05

0.1

0.15

0.2

Number of bits

m
A

P

mAP for SUN (CCA)

LSH
ITQ
FastHash
KSH
SHOE(E)
SHOE(L)

Figure 3.5: Retrieval on CUB-2011(first and second row) and SUN(third and fourth

row) dataset comparing our methods SHOE(E) and SHOE(L) with the state-of-the

art hashing techniques. The above plots report mAP, Sibling and Weighted Sibling

mAP for top 5 sibling classes. For the CUB dataset, we used 2000 training samples

and 1000 anchor points, while for the SUN attribute dataset, we used 3585 training

samples and 1434 anchor points.

61

32 64 128 256
0

0.05

0.1

0.15

0.2

Number of bits

 R
e
c
a
ll

@
1
0
K

Recall@10K:ILSVRC2010

ITQ
KSH
SHOE(Learn)

32 64 128 256
0

0.02

0.04

0.06

0.08

Number of bits

S
ib

R

e
c
a
ll

@
1
0
K

Sib
re

@10K:ILSVRC2010

ITQ
KSH
SHOE(Learn)

32 64 128 256
0

0.05

0.1

Number of bits

S
ib

w
 R

e
c
a
ll

@
1
0
K

Sib
w

re
@10K:ILSVRC2010

ITQ
KSH
SHOE(Learn)

Figure 3.6: Retrieval on ILSVRC2010 dataset comparing SHOE with state-of-

the art hashing techniques. We use 5K training samples and CNN+K+CCA as

features for all the binary encoding schemes. The above plots report recall, Sibre,

Sibwre @10K for top 5 sibling classes for bits c = {32, 64, 128, 256}.

62

Figure 3.7: The first query is of an ovenbird. SHOE retrieves more ovenbirds than

KSH. The second query is of a Brewer black-bird. Neither SHOE nor KSH retrieve

Brewer black-birds. However, SHOE returns ravens, which are sibling classes of

Brewer black-birds, whereas KSH retrieves pileated woodpeckers, which are unre-

lated to black-birds. Here, blue borders represent sibling classes.

63

Chapter 4: Hierarchical Spherical Hashing for Compressing

High Dimensional Vectors

4.1 Overview

Large dimensional descriptors like Fisher Vectors (FV) [63, 64], Vector of Lo-

cally Aggregated Descriptors(VLAD) [65] and Locally Constrained Linear Codes(LLC)

[66] have performed very well in problems like retrieval, classification and object de-

tection [67–69]. A major bottleneck in using such vectors is their high storage

requirements. For example, a typical Fisher Vector size ranges from 1000 to 0.5

Million with 16 to 4096 GMMs; that translates to 8 KB to 2 MB. The full dataset

of ILSVRC2010 containing 1.4 Million images [44] needs 3 TBs of storage when stor-

ing FV’s over 4096 GMMs. One can adapt dimensionality reduction techniques like

PCA to reduce the storage requirements at the cost of losing structural properties of

the original vectors. To preserve the discriminative power of such high-dimensional

descriptors without losing structural properties, Perronnin et al [67, 68] found that

they must be encoded using a large number of bits.

There have been many proposals for compressing high-dimensional descriptors

to a small number of bits [11, 12, 28, 65, 70–72] by initially applying PCA, but less

64

has been done on compressing to a large number of bits. Perronin et al [67,68] used

sparsity constraints that employ thresholding based methods to encode to a large

number of bits. Locality Sensitive Hashing [11] and Product Quantization [70] based

methods can be applied to compress large descriptors to large numbers of bits at a

storage cost. Specifically, to compress a 128K dimensional vector to 64K bits, LSH

requires 32 GB for storing the projection matrix, which is a huge storage require-

ment. PQ encoding methods obtain excellent results for retrieval by partitioning the

vectors and learning a codebook for each partition. Binary codes are obtained as a

concatentation of the codebook indices to which each sub-vector belongs. Approxi-

mate nearest neighbors are then computed efficiently using symmetric/asymmetric

distance between the query and the codebook learned for each partition, obtained

by looking up the codebook indices. This method works best when an orthogonal

rotation is applied to the data to balance variance, but incurs a huge storage cost

for the rotation matrices. Gong et al [73] also proposed a fast bilinear projection

method to compress large dimensional vectors without the storage overhead of pro-

jection matrices. They accomplish this by formulating the projection operation as

the Kronecker product of two small orthogonal matrices. Recently, Circulant ma-

trix properties have been used in [74] to obtain a low-storage projection matrix that

requires storing only d values for compressing a d dimensional vector to d bits. We

present an alternative method for compressing high dimensional descriptors based

on hypersphere hashing functions inspired by the Spherical Hashing method(SpH)

of Heo et al [72].

Hypersphere hashing functions have been shown to outperform hyperplane

65

methods [11, 15, 28] for low numbers of bits by capturing the non-linearity of the

data. We explore the potential of the hyperspherical hashing functions for com-

pressing large dimensional descriptors by proposing a hierarchical approach that

overcomes the computational challenges of learning spherical hashing functions for

high dimensional data. We take advantage of the structural properties of VLAD

and FV to split the vectors and learn spherical hashing functions for partitions. Full

spherical hashing functions are constructed from the sub-spherical hashing functions

in a hierarchical way using a Random-Select and Adjust(RSA) method which we

also introduce in this work.

This work is organized as follows. In section 4.2, we discuss the Spherical

Hashing method that defines the hypersphere hashing functions and an efficient

iterative optimization scheme that achieves the hashing properties for the hashing

functions. We also highlight the computational challenges of applying this technique

to high dimensional vectors. In section 4.3 we introduce our Hierarchical Spherical

Hashing method for compressing high dimensional descriptors. We further discuss

the details about partitioning of vectors, learning sub-spherical hashing funtions and

construction of full hashing functions using RSA in a divide and conquer fashion,

while highlighting the computational advantages of our solution. Our experiments in

section 4.4 demonstrate the performance of our approach(SpH-RSA) in comparison

to existing state-of-the art methods for compressing large dimensional descriptors.

66

4.2 Spherical Hashing

Heo et al [72] introduce a novel hypersphere-based hashing function to map

spatially coherent data points into a binary code. Their approach is motivated by

the fact that a single hypersphere can enclose a closed region in d-dimensional space

while it requires d + 1 hyperplanes to define the same region, thus requiring fewer

bits to encode data points. A spherical hashing function is defined by a center(c) and

a threshold(t), whose value is +1/− 1 if a point is inside/outside the hypersphere.

If cp, tp define a hypersphere p, the corresponding hashing function hp for a feature

point x ∈ Rd that generates the pth binary code is given as sgn(tp − dist(cp, x)),

where dist(., .) denotes the Euclidean distance from its center to the point.

To obtain k bits, SpH learns k spherical hashing functions with the objective

of satisfying the balance and independence properties of hashing. These properties

play an important role in producing compact binary codes as independent hashing

functions distribute points in a balanced-manner to different binary codes [75, 76].

An efficient iterative scheme was proposed to meet these hashing constraints. The

algorithm starts with selection of k centers and chooses k thresholds that satisfy

the balance property. With the selected thresholds and centers, the method com-

putes the number of training points inside each hypersphere(oi) and in each pair

of hyperspheres(oij). These statistics are used to adjust the centers by applying

a replusive or attractive force based on the deviation from the ideal independence

criterion n/4 between every pair of hyperspheres, where n is the number of training

samples. This process is repeated until the centers converge, but typically some

67

Time(d/k) 25600 12800 6400 3200

12800 - - - > 8

6400 >8 >8 >8 3.5182

3200 6.2317 4.1013 3.6981 1.1891

400 0.3718 0.1034 0.0599 0.0318

Table 4.1: Training times (in hours) for learning k = {12800, 6400, 3200, 400} spherical hashing

functions for d = {25600, 12800, 6400, 3200} dimensional vectors using [72]. We used 20000 training

samples for training from the ILSVRC2010(Train) dataset. >8 means that the learning did not

finish after 8 hours. ’-’ indicates that we could not learn the hashing functions on a single machine

with 16 GB RAM, as they did not fit in memory. We see that as the number of hyperspheres to

be learned and the dimension of the data increases, the training times increase exponentially.

error is allowed to avoid over-fitting. For the detailed algorithm, refer to [72].

4.2.1 Computation Challenges(d is large and k ∼ d)

The time complexity of the above iterative process for a single iteration is

O((k2 + kd)n), where k is the number of bits to be learned, d is the size of the

vector and n is the number of training samples. For small numbers of bits k � d,

the learning algorithm is practical and very fast. To learn large number of bits

(k ∼ d and d is large), this becomes computationally intractable.

There are two computationally intensive steps in the algorithm that inhibit

its extension to higher dimensional vectors. The first is to compute distances of all

feature points to k hyperspheres. The second is to compute the forces for adjusting

68

0 50 100
0

0.2

0.4

0.6

0.8

1

Number of retrieved Neighbors

R
e

c
a

ll
fo

r
1

0
 N

N

Recall for 10 NN

m=3200(C)
m=3200
m=800(C)
m=800
m=200(C)
m=200
m=100(C)
m=100

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Number of retrieved Neighbors

R
e

c
a

ll
fo

r
5

0
 N

N

Recall for 50 NN

m=200(C)
m=200
m=100(C)
m=100
m=40(C)
m=40
m=20(C)
m=20

0 500 1000
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e

c
a

ll
fo

r
1

0
0

 N
N

Recall for 100 NN

m=3200
m=1600
m=800
m=400
m=200
m=100
m=40
m=20
m=10

Figure 4.1: Performance of our method(SpH-RSA) and SpH-Concat on a subset

of ILSVRC2010 Train dataset with 25600 VLAD vectors for varying partition size

m= 3200 to 10. Plots (Left, middle) show recall for 10 and 50 ground truth neigh-

bors while comparing our method with the concatenated bit vectors from SpH-

Concat(indicated by C). Notice the poor performance of the concatenated bit vec-

tors. Plot (Right) evaluates the results of our method for varying sub vector sizes.

the centers to satisfy the independence property. It is important to keep in mind

that, the amount of training data required to learn a large number of hash func-

tions is also very high. Such large amounts of training data with high dimensional

descriptors cannot fit in memory and the algorithm to adjust the hash functions for

even a single iteration becomes intractable as it suffers from the latency of reading

from disk. Table 4.1 gives the training time of spherical hashing for learning vary-

ing number of hashing functions. Section 4.3.5 will discuss how we overcome these

computational challenges for learning a large number of hashing functions.

4.3 Hierarchical Spherical Hashing

We alleviate the problem of learning hyperspheres for large dimensional vectors

by partitioning the vectors and learning sub-hyperspheres for each partition. This

69

Figure 4.2: Left: RSA technique that randomly selects hyperspheres from the carte-

sian product of the subsets and adjusts the hyperspheres to satisfy the hashing

properties. Right:RSA method applied in a Divide and conquer fashion to obtain

the k full hyperspheres.

results in a feasible procedure for learning the hyperspheres in the full space. We

refer to this method as Hierarchical Spherical Hashing as we start by learning sub-

hypersphere hashing functions at the lower levels and extend them to higher levels

using the Random Select Adjust(RSA) algorithm; we satisfy the hashing properties

at each level as it is constructed in a divide and conquer style. The subsequent

sections discuss the details of the algorithm.

4.3.1 Learning Sub-Hypersphere functions

Data: Let X = {x1, x2, ..., xN}, xi ∈ Rd denote the set of N data points of

dimension d. d is large in our case. We want to compress each data point xi to a

binary vector bi ∈ {0, 1}k with k ∼ d. Let Xn be the subset of n data points from

X that we use for training.

Partitioning the data: To learn k hyperspheres for Xn, we partition each

data point xi to m subfeature vectors {xi1, xi2, ...xim}, xip ∈ Rs, p = 1..m, where

70

s = d
m

denotes the size of the subfeature vector. We obtain subsets(or components)

{X1, X2,, Xm}, where each subset Xp = {x1p, x2p, ..., xnp}, p = 1..m is the set of

all pth subfeature vectors of Xn. Note that we use subset or component to refer to

Xp.

Learning Sub-hypersphere Hashing functions: For each subset Xi, we

learn ki hypersphere hash functions as in section 4.2. We refer to the hypersphere

hashing functions learned for each subset as sub-hypersphere hashing functions.

To avoid bias in learning a varying number of hash functions for each component,

we learn an equal number of hashing functions for each subset, ki = κ, i = 1..m.

Therefore, training on m components produces mκ sub-hypersphere hash functions.

One could concatenate the bits obtained from the sub-hyperspheres of the m subsets

to obtain a full bit-vector. We refer to this method SpH-Concat. However, this is

not a good choice1. Figure 4.1 compares the performance of our method with SpH-

Concat for different sizes of m, indicating a poor performance for the latter. We

therefore employ a hierarchical approach that uses these learned sub-hyperspheres

to obtain k full hyperspheres.

Size of (s,m): The parameters that influence the selection of the size of

the partition(m) are the training time, memory required and performance on each

subset. We choose s so as to fit the training data of a subset in memory and achieve

1The concatenated bit vector does not have a global relation to the full feature vector due to

the de-correlation of bits between each sub-bit vector and hence is not a suitable global bit vector.

Also, the independence and balance properties are only satisfied for the sub-bit vectors and not

for the concatenated bit vector.

71

a reasonable training time and accuracy for learning sub-hypersphere hash functions

using the algorithm SpH. We can at most learn up to 4000 sub-hyperspheres for a

subset of dimension 4000 in typically <8 hours on a machine with 16GB RAM.

Figure 4.1 shows the performance of our method on ILSVRC2010 Train dataset for

various m.

4.3.2 Cartesian-product of pivots/centers

To this point we have constructed κ sub-hyperspherical hashing functions for

each component. Let {C1, C2,Cm} be the pivots(centers) learned for the m sub-

sets, where each Ci = {ci1, ci2,, ciκ}, ∀i = 1..m, define the κ sub-hypersphere

centers learned for Xi. The idea is to select k-pivots for the full space from the

Cartesian product of the learned subspace pivots given as:

C1 × C2 × ...Cm

From the κm combinations of pivots of sub spaces, we randomly select k pivots

in a divide and conquer fashion using the RSA method. It makes sense to select

random k pivots from the Cartesian product based on the down-ward closure prop-

erty, which is commonly used in subspace clustering algorithms [77]. This property

states that ”a cluster in the sub space is a candidate for the cluster in the full feature

space”. In our case, this property suggests that any pivot choosen from the Carte-

sian product is a candidate pivot in the full space. We will see later that learning

the full spherical hashing functions from the sub-spherical hashing functions gives a

huge computational advantage as the hashing properties of the sub-spherical hashing

72

functions are already met.

Similarity to other methods: The idea of using the Cartesian product of

sub-pivots for selection of the pivots in full space is similar to the Product Quanti-

zation method by Jegou et al [65] an Cartesian k-means [71]. While both methods

use the codebook for compression, there are several differences. First, PQ obtains a

full bit vector by concatenating the sub-bit vectors, whereas our full bit vector is en-

coded using the full spherical hashing functions learned from the sub-hyperspheres.

Second, they do not use the bit vectors directly for computing distance, while ours

directly computes the Hamming distance between the bit vectors, providing a com-

putational advantage. To facilitate this, they do a lookup from pre-computed tables

that contain distances between sub-codebooks, adding an additional storage cost

to store these tables. Third, they select exactly one pivot from each sub-space to

define the full pivot, while we select more than one pivot from each sub-space to

obtain the final k pivots, increasing the representability. Finally, our pivot is always

associated with a threshold, which ensures that the hypersphere hashing functions

satisfy balance and independence properties, a requirement to obtain compact bit

representations. There are no such guarantees for these methods [65,71].

4.3.3 Random-Select and Adjust(RSA)

The RSA method is a two-step process that learns hashing functions of the

combined subsets from the sub-hyperspheres of two components. The first is the

Random-Select Step which randomly selects the pivots from the cartesian product

73

of sub-hypersphere centers and the second is the Adjust Step which adjusts the

pivots to define the hashing functions of the combined components. Figure 4.2

illustrates the RSA algorithm.

Let X1 ∈ Rs and X2 ∈ Rs define two subsets of the data, from which we

learned C1 and C2, each containing κ pivots. We learn 2κ hyperspheres for the

combined set X12 = {(x11, x21), ..., (x1n, x2n)} ∈ R2s.

1. Random-Select Step: This step selects 2κ random pivots from the Cartesian

product of C1 and C2. These form the potential candidates for the pivots

of the final hashing functions with the necessity of adjusting the pivots and

thresholds.

2. Adjust Step: We use a similar method as is used for learning spherical

hashing functions for selection of thresholds. The balance property is satisfied

by selecting the radii that partitions the training data into two equal parts and

the independence property is satisfied by applying an attractive or repulsive

force in proportion to the deviation from the ideal independence criterion n
4
.

We do this iteratively until the hashing functions converge, thus producing a

linear number of 2κ hashing functions that satisfies the hashing properties of

the combined set X12.

Convergence: Our goal in learning full hyperspheres from sub-hyperspheres

is to obtain a computational advantage as the hashing properties are already met

for the subsequent iterations. We observe that it typically takes < 2 iterations to

perform RSA on the combined subsets, compared to the original SpH algorithm

74

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e

c
a

ll
fo

r
1

0
 N

N

8000 bits

BPBC(R)
BPBC(L)
BPBC(R)(ASD)
BPBC(L)(ASD)
Ours(SHD)
Ours(SD)
Ours(ASD)

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e

c
a

ll
fo

r
1

0
 N

N

16000 bits

BPBC(R)
BPBC(L)
BPBC(R)(ASD)
BPBC(L)(ASD)
Ours(SHD)
Ours(SD)
Ours(ASD)

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e

c
a

ll
fo

r
1

0
 N

N

32000 bits

BPBC(R)
BPBC(L)
BPBC(R)(ASD)
BPBC(L)(ASD)
Ours(SHD)
Ours(SD)
Ours(ASD)

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e

c
a

ll
fo

r
1

0
 N

N

64000 bits

BPBC(R)
BPBC(L)
BPBC(R)(ASD)
BPBC(L)(ASD)
Ours(SHD)
Ours(SD)
Ours(ASD)

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e

c
a

ll
fo

r
1

0
 N

N

128000 bits

BPBC(R)
BPBC(L)
BPBC(R)(ASD)
BPBC(L)(ASD)
Ours(SHD)
Ours(SD)
Ours(ASD)

Figure 4.3: Recall plots showing the performance of Ours(Red) and BPBC(Learned

and Random) methods on ILSVRC2010 Validation data set for ground truth defined

at 10 Nearest Neighbors. Our method performs better for 8000, 16000 and 32000

bits for all the retrieved images in both the distance settings.

which takes at least 30 iterations(only when the training data fits in memory), thus

reducing the computational time and providing a tractable solution to learn k12

centers.

4.3.4 Divide and Conquer

We apply the RSA algorithm in a divide and conquer style with a divide step

that partitions the data and a conquer step that applies the RSA method to learn

the hyperspheres for the combined partition. Figure 4.2 illustrates the process of

obtaining the k full hyperspheres from m partitions using RSA in a divide and

conquer fashion. We empirically observed that the adjust step in the final stage

only requires the balanced property to be satisfied defining the k radii and naturally

satisfies the independence property without the re-adjustment. Table 4.2 shows the

number of iterations for RSA at lower levels and the total number of iterations

needed to meet the convergence criteria for the ILSVRC2010 Validation data set

containing 50K images.

75

k #Levels #Iter(L) #Iter(T) avg std-dev

6400 4 235 242 34.47 43.84

12800 4 239 241 34.35 43.86

25600 4 238 238 33.23 43.7

Table 4.2: Table listing the number of iterations at lower level(Iter(L)) and all the lev-

els(Iter(T)) along with the convergence criteria(avg(abs(oij − n
4)) and std− dev(oij)) for learning

k = {6400, 12800, 25600} hashing functions from 10K train samples of ILSVRC2010 Validation

dataset(50K images, m = 10). Allowing 10% error on avg and 15% tolerance on std − dev, our

method has met the convergence criteria for all the bits in few iterations. We observe that only

an additional 7, 2, 0 iterations are needed to meet the convergence at higher levels (given, ∼ 20

iterations for each component in the lower level).

4.3.5 Computation time

The computational complexity of our algorithm is O((κ4m + log(k/s)kd)n)t,

where t is the total sum of the iterations at all levels. The complexity is polynomial

in terms of the number of hyperspheres learned in the lowest level as we typically

observe that t is very low. Using our method, we reduce the computational burden

of computing the force matrix for large numbers of bits. However, we still need

to compute distances to the k-matrix at each iteration. This is only computed in

subsets for learning m submodels and is relatively fast.

We notice from Table 4.2 that no additional iterations are required to satisfy

the hashing properties for obtaining full hyperspheres from sub hyperspheres for

76

learning 25600 bits from 25600 VLAD vectors. This emphasizes that our approach

succeeded in obtaining the hyperspheres that naturally satisfy the independence

properties in the full space by learning only sub-hyperspheres in sub spaces. We

further observe that excluding the independence step at each conquer step would

only require us to compute a single balancing step at the root level for learning k

pivots in the full space, decreasing the computation and storage cost drastically.

The computational complexity of computing only one single balance step for the

full space is O((κ2m + κd)ntlow + kdn), where tlow is the average of the iterations

for computing sub-hypersphere hashing functions at the lowest level. Therefore, we

obtain a feasible solution to train the SpH-RSA model with complexity O(κ2mn)tlow.

The storage cost for such a model with k full hyperspheres is O(dκ+ k), where the

first term dκ refers to storing the mκ sub-hyperspheres and the second term k

corresponds to the k thresholds of the hashing functions. We use this model in our

experiments.

4.4 Experiments

We evaluate our method on the following datasets: ILSVRC2010 Validation

and Train datasets which contain 50,000 and 1.2 Million images and Holidays dataset

with 1M Flickr distractors containing 1491 and 1 Million images respectively. We

download these publicly available datasets [44] and [78] which already contain the

computed dense sift descriptors. We use VLAD descriptors [65] for applying our

compression techniques. We power normalize (α = 0.5) the VLAD vectors and

77

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

800 bits (ASD)

BPBC(L)
BPBC(R)
SpH
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

1600 bits (ASD)

BPBC(L)
BPBC(R)
SpH
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

3200 bits (ASD)

BPBC(L)
BPBC(R)
SpH
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

6400 bits (ASD)

BPBC(L)
BPBC(R)
SpH
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

12800 bits (ASD)

BPBC(L)
BPBC(R)
SpH
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

800 bits (SD)

BPBC(L)
BPBC(R)
SpH
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

1600 bits (SD)

BPBC(L)
BPBC(R)
SpH
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

3200 bits (SD)

BPBC(L)
BPBC(R)
SpH
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

6400 bits (SD)

BPBC(L)
BPBC(R)
SpH
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

12800 bits (SD)

BPBC(L)
BPBC(R)
SpH
Ours

Figure 4.4: Recall plots showing the performance of Ours(Red) and several state-of-

the art methods on Holidays+Flickr 1M data set for ground truth defined at 10 NNs.

Top Row shows the performance of the methods using Assymetric Distance and

the Bottom Row using Symmetric Distance. We see that our method consistently

performs better for 1600 and 3200 bits at all the retrieved images in both the distance

settings

78

L2-normalize the vectors to obtain the best performance for retrieval [68]. We do

not need to mean-center the vectors as the VLAD vectors naturally have a mean of

zero.

4.4.1 Datasets, Evaluation Protocol

We apply our method on the ILSVRC2010 Validation and Train datasets where

each image is represented by a VLAD vector of size 128000 and 25600 with a code-

book of size 1000 and 200 respectively. For both datasets, we randomly select 500K

SIFT descriptors to learn a codebook. We partition the data in two parts:a query

partition containing 500 queries and a non-query partition containing the remaining

images. We use the non-query partition for retrieval and training purposes. From

the non-query partition, we select 10K and 20K training samples to learn the full

spherical hashing functions for the Validation and Train datasets respectively.

We also evaluate our method on the Holidays dataset [78] containing 1491

images with 500 predefined queries. We combine the rest of the 991 images with 1M

Flickr distractor images for retrieval and training(20K). We use the visual dictionar-

ies learned from independent Flickr60K images for these experiments. Specifically,

we compute the VLAD vector of size 12800 (128x100) using a codebook of size 100.

We evaluate the performance of our method and the following state-of-the

art methods by calculating recall for upto 100 retrieved images for top-10 Nearest

Neighbors. For each query, we obtain the ground truth based on Euclidean distance

of their VLAD vectors.

79

4.4.2 Comparison methods

We compare our methods to the following state-of-the art approaches: BPBC(Random),

BPBC(Learned) [73], Product Quantization(PQ) [70] and Spherical Hashing(SpH)

[72] for full vectors. CBE [74], a recent state-of-the art approach also compresses

high dimensional vectors to large number of bits with a low storage cost for pro-

jection matrix. However, it mimics the performance of BPBC for compressing to

both high and low number of bits and our intention is to boost the performance

for low number of bits using compact hyperspherical hashing functions. So, we

do not include this method in our comparison. In our experiments, we compress

the VLAD vector to kILSV RC2010V al = {128000, 64000, 32000, 16000, 8000} bits for

ILSVRC2010 Validation, kILSV RC10Train = {25600, 12800, 6400, 3200, 1600} bits

for ILSVRC2010 Train and kHol+Flickr1M= {12800, 6400, 3200, 1600, 800} bits for

Holidays+Flickr1M datasets.

1. BPBC: For obtaining a compression of k bits, both the learned (BPBCL)

and random versions (BPBCR) learn two bilinear projection matrices Rc×k1
1

and R128×k2
2 , where k2 = k

k1
and c is the codebook size. To compress a d

dimensional vector to {d, d
2
, d
4
, d
8
, d
16
} bits, we chose k1 = {c,4c

5
, c
2
,2c
5

, c
4
} to ensure

the method’s best performance as suggested in [73].

2. PQ: We obtain binary codes by applying Product Quantization(PQ) to both

the original and rotated vectors(BR+PQ). We chose to rotate the vectors as

per [70] to balance the bias of the vectors. Since, rotating the full vectors

80

is an expensive operation in terms of both storage and computing rotated

vectors, we bilinearly rotate the vectors as suggested in [73]. We then apply

PQ methods by chosing the subvector size as s = 8 and learning mc clusters

for each sub vector as in [65]. For all the datasets, we learn codebook of

size mc = {256, 128, 64, 32, 16} from each subset. For PQ and BR+PQ, we

use only Assysmetric Distance (distance between the query and codebook

vectors) (ASD) to obtain the neighbors, as this is shown to always outperform

the Symmetric Distance(SD).

3. SpH: We also learn directly full spherical hashing functions on the full VLAD

vectors. Due to the limitation of training for large number of hash func-

tions, we only learn the spherical hashing functions for lower numbers of bits

kHol+Flickr1Ml
= {1600, 800} for the Holidays+Flickr1M data set only. To be

consistent, we use the same training set we used to learn the sub-hypersphere

hashing functions.

4.4.3 Results

Parameters for SpH-RSA: The following properties are common for all

the datasets. We chose s = 256 and κ = 1280 as suggested from our experiments in

Figure 4.1.To select the hypersphere hashing functions for lower number of bits, we

chose the hashing functions that most satisfy the hashing properties. The results

reported are an average of 5 iterations to be consistent with our random selection

scheme. Typically, we observed a small standard deviation value of 0.0253, 0.048

81

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

1600 bits (ASD)

BPBC(L)
BPBC(R)
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

3200 bits (ASD)

BPBC(L)
BPBC(R)
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

6400 bits (ASD)

BPBC(L)
BPBC(R)
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

12800 bits (ASD)

BPBC(L)
BPBC(R)
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

25600 bits (ASD)

BPBC(L)
BPBC(R)
PQ
BR+PQ
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

1600 bits (SD)

BPBC(L)
BPBC(R)
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

3200 bits (SD)

BPBC(L)
BPBC(R)
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

6400 bits (SD)

BPBC(L)
BPBC(R)
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

12800 bits (SD)

BPBC(L)
BPBC(R)
Ours

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Number of retrieved images

R
e
c
a
ll

fo
r

1
0
 N

N

25600 bits (SD)

BPBC(L)
BPBC(R)
Ours

Figure 4.5: Recall plots showing the performance of Ours(Red), BPBC and PQ

based methods on ILSVRC2010 Train data set for ground truth defined at 10 NNs.

Top Row shows the performance of the methods using Assymetric Distance and

the Bottom Row using Symmetric Distance. We see that our method consistently

performs better for 3200 and 6400 bits at all the retrieved images in both the distance

settings.

82

and 0.0361 for ILSVRC2010 Validation, Train and Holiday datasets for learning k

bits.

Symmetric/Assymetric Distance: As PQ based methods(PQ and BR+PQ)

perform better with using Asymmetric Distance, we report the results on both Sym-

metric and Assymetric Distance. Symmetric distance(SD) is the traditional Ham-

ming distance between the query bit code and the retrieval image bit code. This

can be efficiently obtained by an XOR Operation and POP COUNT. Assymetric

distance(ASD) is obtained by computing the distance between the projected query

vector and the bit code. For SpH and our method, the projected vector of a query

q: qp = [qp1 qp2 qpk] is obtained as qpl = tl − dist(cl, q), where dist is the eu-

clidean distance of the hypersphere(l) with center(cl) and threshold tl to the query

q, l = 1..k. For BPBC, the projected vector is obtained as R1
T qR2. ASD is now

given as dist(qp, b) = ||qp|| + ||b|| − 2qpb
T , which requires only computation of the

dot product of the projected query vector(qp) and the binary code(b), as the norm

of the query and binary codes are constant.

ILSVRC2010 Validation: Figure 4.3 shows the performance of our method

for compressing 128000-dim VLAD vectors to kILSV RC2010V al bits. We observe that

our method (SpH-RSA) using both Symmetric and Assymetric distance outper-

forms the BPBC(Random and Learned Versions) for 8000, 16000 and 32000 bits

and performs very similar to the learned method of BPBC for 64000 and 128000

bits at recall for top 100 retrieved images. Our results emphasize that the compact

hyperspherical hashing functions learned significantly improve the performance at

lower numbers of bits than the traditional hyperplane hashing functions(∼ 10%

83

for 8000 bits). For this dataset, we also calculated the Spherical Hamming Dis-

tance(SHD) [72], obtained as the ratio of Hamming distance and common number

of +1 bits. Contrary to the results in Spherical Hashing method [72], SHD does not

provide compact distance in our case degrades the performance. This may be be-

cause all the L2-normalized VLAD vectors are lying on the surface of a unit sphere

of radius 1 and the ratio of the average max distance of the nearest neighbors to

distant neighbors is close to 1.

Holidays+Flickr 1M: Figure 4.4 shows the performance of our method for

compressing 12800-dim VLAD vectors to kHol+Flickr1M bits. Our method(SpH-RSA)

performs very similar to the BPBC(Learned) method for all bits, but outperforms

PQ and BR+PQ except for 800 bits. Surprisingly, as the size of the codebook

increases the performance of PQ and BR+PQ decreases. This might be because

of learning too many clusters and forming different clusters with similar proper-

ties, causing an over-segmentation problem. Gong et al [73] reported a similar

trend for PQ and BR+PQ in their results. We achieve a 2% and 5% improve-

ment over BPBC(L) for SD and ASD when compressing to 800 bits(both recall@10

and recall @100). We have also compared our method with the Spherical Hashing

method (SpH) learned from full VLAD vectors, and we observed a low recall for the

kHol+Flickr1Ml
bits using SpH.

ILSVRC2010 Train: Figure 4.5 shows the performance of our method for

compressing 25600-dim VLAD vectors to kILSV RC2010Train bits. We observe that

our method (SpH-RSA) significantly outperforms the BPBC(Learned and Random)

methods for 1600, 3200 and 6400 bits for both the Symmetric and Assymetric

84

Distance based results. Similar performance is obtained for recall@100 with the

BPBC(Learned) method for 12800 and 25600 bits and ours consistently improves

over the random Bilinear Projections method in the two distance settings. Com-

paring the performance to the PQ based methods (BR+PQ and PQ), our encoding

schemes obtain higher recall for all the bits except 1600 bits. Notice that the perfor-

mance of PQ methods does not increase with an increase in the number of codebooks

learned as also seen in [73]. This emphasizes that the parameters of s and m for

PQ need to be carefully selected to obtain optimal performance, while our method

is robust to these choices. Finally, we report approximately 4% and 14% improve-

ment over the learned BPBC scheme using the Symmetric and Assymetric Distance

respectively(recall@100 for 1600 bits).

Training times: By partitioning the problem, we have proposed a practical

solution to learn hypersphere hashing functions for high dimensional descriptors.

Our approach takes approximately 60 and 40 minutes for training 128000 and 25600

hyperspheres on the training sets of ILSVRC2010 Validation and Train datasets.

Training times are calculated for learning mκ sub-hyperspheres, m={200, 100} on

a single machine with 16GB RAM, Intel Xeon Quad CPU @ 2.66 GHz.

4.5 Conclusion

We have proposed an efficient method for learning hypersphere hashing func-

tions for high dimensional data. Our method employs a hierarchical procedure that

This work is supported by NSF EAGER grant: IIS1359900, Scalable Video Retrieval.

85

learns hash functions for paritions of the data and utilizes the RSA method to obtain

the hashing functions for the full space. We have shown a significant improvement

of 10% and 14% over the BPBC(learned) method for a compression ratio of 512

for ILSVRC2010 Validation, Train datasets. We also report increases in perfor-

mance over the state of the art methods for compression ratios of 256 and 128 and

demonstrated similar performance for compression ratios of 64 and 32.

86

Chapter 5: Zero-shot Event Detection using Multi-modal Fu-

sion of Weakly Supervised Concepts

5.1 Overview

Popular websites such as YouTube, Google images, and Flickr contain large

volumes of image and video data from a multitude of consumer devices such as digital

and cellphone cameras. Technologies that can rapidly analyze such content and

detect salient concepts and events have several compelling applications. Significant

progress has been made in developing such technologies and the core of most state-

of-the-art methods is based on the bag-of-words model [79]. Here, we first extract

low-level features that capture salient gradient [80,81], color [82], or motion [83,84]

patterns, project them to a pre-trained codebook in the same feature space, and

then aggregate the projections to get the final image or video level feature vector.

Classifiers, typically kernel support vector machines (SVM), are then trained using

labeled data. This approach requires a large number of training examples for each

class of interest and performance decreases rapidly as the training set size decreases.

In this work, we study the problem of video classification using only a tex-

tual description of the events of interest, without exemplar videos pertaining to

87

the events. This zero-shot framework, where we perform video classification with

zero training samples, goes beyond traditional zero-shot problems such as described

in [85], where an existing set of classes with training data is adapted to an unseen

class. We pose this difficult problem of video classification as a retrieval task, where

an event is described as a query defined by a set of concepts, e.g. the event “driving

a car” described by the set of concepts “drive, car, road, person, face.” We aim

to retrieve videos that are most similar to the query, where the similarity score is

treated as the confidence of the video belonging to that event.

Our approach to zero-shot learning is to first transform both video and query

text to a high-dimensional concept space before computing similarity in that space.

For the query, we apply text processing techniques to obtain a vector of salient

words and phrases describing the event. For the video, we apply a bank of concept

detectors to obtain a textual representation of the video using a vector of detection

scores. Since we have no prior knowledge of the events of interest, we need a very

large set of generic concept detectors in order to provide semantic coverage of all

possible queries. To address this challenge, we utilize multiple concept detectors

from different modalities: visual features, including video concepts and multiple

query fusion [86] of multiple features described in this work, in addition to off-

the-shelf detectors such as Classemes [4], ObjectBank [5] and SUN attributes [43];

audio information from concepts learned on low-level Mel-frequency Cepstrum Co-

efficients(MFCC) features; and text from video text and speech transcriptions.

Once we represent both query and videos as vectors of concept scores, we can

compute similarities to retrieve relevant videos. A key challenge here is the mismatch

88

between query and video concept vocabularies. We utilize a text expansion based

method to project query and video concept vectors to a common high-dimensional

concept space where they are compared, using the large text corpus Gigaword [87] to

learn this projection matrix. Finally, we fuse retrievals from each of the features and

modalities using a simple linear combination to exploit the complementary nature

of the different modalities and concept vocabularies.

The work is organized as follows: in Section 5.2, we discuss related approaches

to similar problems. In Section 5.3, we present an overview of our zero-shot learning

framework. Section 5.4 describes the features we extract from video and Section 5.5

outlines the combination of these features. We report experimental results in Sec-

tion 5.6, and discuss our conclusions in Section 5.7.

5.2 Related Work

Extensive research has been performed in recent years on effective representa-

tion and classification of images and videos. The first step in most techniques is to

extract low-level features from local spatial or spatio-temporal patches. Popular fea-

tures include grayscale appearance features such as SIFT [80] and SURF [81], color

features such as Color SIFT [82], and motion features such as STIP [83] and dense

trajectories [84]. These typically extract thousands to millions of feature vectors

per image or video. They are aggregated to a single fixed dimensional representa-

tion by a sequence of coding and pooling steps. Possible coding techniques include

Hard Quantization [79], Soft Quantization [88], Sparse Coding [89] and Fisher Vec-

89

tors [90], using a codebook trained in an unsupervised manner from a large set of

feature vectors. The coded features are then aggregated, typically using average or

max pooling, and classified typically using support vector machines (SVM).

While this approach has shown strong results given a large training set, per-

formance degrades rapidly as the amount of training data decreases and the method

does not generalize to previously unseen events. Only limited attention has been

paid to this challenging problem and most existing approaches introduce an inter-

mediate layer of semantic concepts, which are then used to describe novel classes.

Semantic output codes (SOC) are proposed in [85] to extrapolate novel classes by

utilizing a knowledge base of semantic properties of known classes. A large scale

ontology is used in [91] to learn visual relationships between objects, while [92] uses

knowledge transfer between object classes. An online incremental attribute based

zero-shot learning approach is presented in [93], while a max-margin formulation is

proposed in [94] for zero-shot multi-label classification where the label correlations

on the training set differ significantly from the test set. A constrained optimization

formulation that combines regression and knowledge transfer based functions has

recently been proposed in [95].

All of these techniques rely on extrapolating from an existing set of classes and

training data. The more difficult task of performing video retrieval and classification

with no prior event knowledge or training data has been addressed only recently.

In contrast to [96], we introduce several ways to generate a large visual and audio

concept lexicon without prior knowledge of the event classes, and present a simple

unified framework for effectively combining visual, audio, and textual information.

90

While we are not able to benchmark our method against [96] since we do not have

access to their concept lexicon or data partitions, our results in the TRECVID

evaluation (Section 5.6.6) compare favorably to systems using similar approaches.

Video retrieval using semantic similarity has previously been explored in [97,

98]. However, these approaches focus on highly structured broadcast data, where

a small 374 concept pool [97] can be adequate. In contrast, we focus on more

challenging unconstrained web data where leveraging multiple modalities and larger

concept banks is important to build a robust system. While [97,98] both use a pre-

defined concept ontology, we demonstrate the benefit of training in-domain detectors

in a data driven manner by discovering concepts from free form text descriptions.

There has also been an increasing interest in joint modeling of text and visual

features [99], which can then potentially be used to generate a text description of

query images [100–103] and videos [104, 105]. A large scale study of the relation-

ship between semantic similarity of classes and confusion between them is presented

in [106]. In [107], a large text corpus is used to learn a semantic space using word

distributions and a separate model is trained for seen and unseen classes. How-

ever, given the training data limitations in our problem, we constrain our focus

to attribute mappings produced using off-the-shelf features [4, 5, 43], novel concept

banks developed with video-caption pairs similar to [103], and speech and video text

output.

91

Similarity

Measure

Similarity

Measure

Similarity

Measure

Similarity

Measure

Projection

Projection

Projection

Projection

Projection

Feature

Spaces

Concept

Spaces
Videos

Events Text

Descriptions

Query

Space

Natural Language Processing

Common

Lexicon Space

Event/Video

Similarity Scores

E030 metal crafts project people fashion object
metal metal crafts project involves manipulating
metal create decorative functional object jewelry
decorative wall hangings wrought iron fences
objects factory operating factory style machine
count relevant event metal manipulated bending
molding vice hammer instrument usually initially
heating metal placing designated metal hot fire
targeted heat soldering iron welding machine
welding involves joining pieces metal heating
molten joining metal heated degree changes
color glow orange bright yellow white color thin
pieces metal holes punched drilled decorative
purposes allow wire piece connecting material
screw passed hole usually indoors workshop
metal pieces soldering iron rivets vice hammer
various metal rods rivet punch nail punch metal
stamps riveting machine awl caliper solder
paintbrush metal mold drill polisher welding
machine person doing hammering metal onto
table base block mold hammering metal rod awl
metal painting metal solder melting metal
soldering iron polishing metal drilling holes metal
bending metal using vice hammering soldering
iron flame narration process

E030 metal crafts project people fashion object
metal metal crafts project involves manipulating
metal create decorative functional object jewelry
decorative wall hangings wrought iron fences
objects factory operating factory style machine
count relevant event metal manipulated bending
molding vice hammer instrument usually initially
heating metal placing designated metal hot fire
targeted heat soldering iron welding machine
welding involves joining pieces metal heating
molten joining metal heated degree changes
color glow orange bright yellow white color thin
pieces metal holes punched drilled decorative
purposes allow wire piece connecting material
screw passed hole usually indoors workshop
metal pieces soldering iron rivets vice hammer
various metal rods rivet punch nail punch metal
stamps riveting machine awl caliper solder
paintbrush metal mold drill polisher welding
machine person doing hammering metal onto
table base block mold hammering metal rod awl
metal painting metal solder melting metal
soldering iron polishing metal drilling holes metal
bending metal using vice hammering soldering
iron flame narration process

E030 metal crafts project people fashion object
metal metal crafts project involves manipulating
metal create decorative functional object jewelry
decorative wall hangings wrought iron fences
objects factory operating factory style machine
count relevant event metal manipulated bending
molding vice hammer instrument usually initially
heating metal placing designated metal hot fire
targeted heat soldering iron welding machine
welding involves joining pieces metal heating
molten joining metal heated degree changes
color glow orange bright yellow white color thin
pieces metal holes punched drilled decorative
purposes allow wire piece connecting material
screw passed hole usually indoors workshop
metal pieces soldering iron rivets vice hammer
various metal rods rivet punch nail punch metal
stamps riveting machine awl caliper solder
paintbrush metal mold drill polisher welding
machine person doing hammering metal onto
table base block mold hammering metal rod awl
metal painting metal solder melting metal
soldering iron polishing metal drilling holes metal
bending metal using vice hammering soldering
iron flame narration process

Video Frames

ASR Score

OCR Score

Visual

Score

Fusion

Score

Audio Stream

Audio

Score

Figure 5.1: Overview of the proposed multi-modal zero-shot learning approach.

5.3 Zero-shot Learning Framework

Figure 5.1 displays an overview of our multi-modal zero-shot learning ap-

proach, which involves applying C different concept banks on each video v. Let

L = {cl1 , . . . , clK} be a lexicon defined by K concepts clk for concept bank l ∈

[1, . . . , C]. Each concept bank provides a K-dimensional vector of detection scores

~dv = [dl1 . . . dlK]T for each video v = 1 . . . V , that is `2-normalized; i.e., ‖~dv‖2 = 1.

Given a query Q = {cq1 , ...cqN} defined by N concepts cqn , we aim to retrieve videos

that are similar to the query.

5.3.1 Basic Similarity Computation

We first present a direct model to measure video-query similarity. In this

model, we compute the similarity score SQ(v) between a query Q and a video v as

92

a sum of the concept scores of the lexicon that match the query concepts:

SQ(v) =
1

K

K∑
k=1

dlk1Q(clk) (5.1)

where 1Q(clk) is an indicator function of the presence of concept clk in query Q.

This baseline system is very precise for efficient concept detectors. We expect

the system to perform well when there is a large match between the query and video

concepts, but lexicon coverage of the query will limit recall while noise in the video

concept detections will degrade precision.

5.3.2 Expansion-based Similarity Computation

To address the issue of vocabulary mismatch between query and video, we use

an alternative model to measure video-query similarity. In this model, concepts are

expanded and projected to a common global concept space defined by the lexicon L.

The goal is to propagate existing confidence scores to semantically similar concepts

using the knowledge from a text corpus (like Gigaword) to estimate similarity. Let

G : (c1, c2) −→ s be a text model that measures the similarity s ∈ [0, 1] between two

concepts c1 and c2. Let an item I in the database be represented by a set of triplets

describing the concept name, its confidence score, and its index in the lexicon L.

The expansion-based projection method is given in Algorithm 2.

This algorithm obtains the projected vector ~f of an item I in two steps for

each concept. The first step finds the top T similar concepts using the model G.

The second step boosts the scores of the similar concepts for an item by the amount

of similarity between the concepts. The final feature vector ~f is then normalized for

93

Algorithm 2 Expansion-based projection.
Given an item I = {(c1, s1, i1), . . . , (cN , sN , iN)}.

Let ~f ∈ RK be the projected feature vector of item I for L.

Initialization: fk = 0 for k = 1 . . .K.

for each (c, s, i) in I do

fi ← fi + s

Find the top T similar concepts of c in G, given as

IT = {(c1, s1, i1), . . . , (cT , sT , iT)},

where st = G(c, ct).

Update the feature for the similar concepts:

for each (ct, st, it) in IT do

fit ← fit + s · st

end for

end for

Normalize the feature vector ‖~f‖2 = 1.

comparison purposes.

Algorithm 2 is applied to expand both the query and database concepts to a

common lexicon space. Query concept confidences are given as 1, while database

concept confidences are given by the output of the concept detectors. Once the ex-

panded feature vectors ~fQ ∈ RK representing the query Q and ~fv ∈ RK representing

the video v have been obtained, the similarity between the query Q and the video

v is computed as

SQ(v) = ~fTQ
~fv. (5.2)

94

Note that other similarity measures may also be considered (e.g., Laplacian or

RBF kernels), although in our experiments we find that (5.2) has the best perfor-

mance.

5.4 Video Feature Extraction

Since existing concept banks are generally trained on out of domain data and

may not contain a large enough vocabulary to cover possible queries, we propose

multiple methods to rapidly learn new concept detectors with easily collected data

from readily available in-domain and web sources.

5.4.1 Weakly Supervised Concepts (WSC)

We train a set of WSCs for concept detection in videos using the following

steps:

5.4.1.1 Data Collection and Concept Discovery

We collect a set of videos with free-form text descriptions of their content.

Such data is widely available online in websites such as YouTube and also in the

research set of the considered TRECVID MED dataset. We apply standard nat-

ural language processing (NLP) techniques to clean up the annotations, including

removal of common stop words and stemming to normalize word inflections. The

remaining vocabulary is taken as our concept dictionary.

95

5.4.1.2 Low-level feature extraction

For each video in the collected corpus, we extract the following set of low-level

visual and audio features:

D-SIFT [89]: This is a dense version of SIFT where, instead of detecting inter-

est points, the 128-dimensional feature vectors are extracted at uniformly-sampled

locations covering the whole image. D-SIFT typically generates 3× the number of

points produced by SIFT [80] and has been shown to outperform SIFT for image

classification [89].

Dense Trajectories (DT) [84]: This feature represents the video using dense op-

tical flow trajectories. Histogram of oriented gradients (HoG) and motion boundary

histograms (MBH) are extracted from the local spatio-temporal neighborhood of

each track to capture salient appearance and motion patterns respectively.

MFCC [108]: These popular audio features are extracted from overlapping 29 ms

frames at a rate of 100 frames per second. From each frame, we compute 14 mel-

frequency warped cepstral coefficients. The resulting 45-dimensional feature vector

captures the short-time spectral structure of the audio stream.

For each of the above low-level features, we first apply principal component

analysis (PCA) to reduce the dimensionality and whiten the feature vectors. For

each video, we then obtain a set X =
{
xt ∈ RD, t = 1 . . . T

}
of T low-level low-

dimensionality feature descriptors. We assume that these features are distributed

96

according to a Gaussian mixture model (GMM) with diagonal covariance matrix:

p(~xt|Λ) =
K∑
k=1

wkN (~xt;µk,σ
2
k), for t = 1 . . . T. (5.3)

The GMM parameters

Λ =
{
wk ∈ [0, 1],µk ∈ RD,σk ∈ RD, k = 1 . . . K

}
are learned on a training set through maximum likelihood estimation. We then

consider the Fisher vector encoding as proposed in [109] and represent each video

by the normalized gradients of the GMM log-likelihood GµkX ∈ RD and GσkX ∈ RD

with respect to the Gaussian mean µk and standard deviation parameters σk, re-

spectively. For k = 1 . . . K, these D-dimensional normalized gradients are defined

as

GµkX =
1

T
√
wk

T∑
t=1

γk(~xt|Λ)

(
~xt − µk
σk

)
(5.4)

GσkX =
1

T
√

2wk

T∑
t=1

γk(~xt|Λ)

[
(~xt − µk)2

σ2
k

− 1

]
, (5.5)

where the posterior probability

γk(~xt|Λ) =
wkN (~xt;µk,Σk)∑K
l=1wlN (~xt;µl,Σl)

is the soft assignment of the feature descriptor ~xt to the k-th Gaussian cluster. The

final Fisher vector is the concatenation of the K D-dimensional normalized gradients

GµkX and GσkX , and is thus of dimension 2KD.

Vector multiplications and divisions are element-wise operations here.

97

5.4.1.3 Classifier Training

For each concept identified in Section 5.4.1.1, we collect all videos for which

that concept occurs in the text caption, and utilize them as our positive training set,

with the remaining videos considered as negatives. We then train RBF kernel-based

support vector machine (SVM) classifiers using the Fisher vectors representing the

videos. We train a set of concept detectors for each of the low-level features (D-SIFT,

DT, MFCC) described in Section 5.4.1.2.

5.4.1.4 Weakly Supervised Concept Feature

Given a video, we produce a compact representation by concatenating the

detection scores of our concept detectors. We use this feature vector for event

detection and refer to this representation as WSC, for weakly-supervised concepts.

5.4.2 Concept Training using Web Data

In addition to the concept detectors trained using the research set described

in Section 5.4.1.1, we also train detectors using data downloaded from the web. For

each concept identified in Section 5.4.1.1, we downloaded the top 100 retrievals from

Google images and thumbnails for the top 50 retrievals from YouTube. We then

train WSCs with this data using the same approach as described in Section 5.4.1.

We call the WSCs trained using the TRECVID research set, Google images and

YouTube thumbnails as WSCTRECVID, WSCGoogle and WSCYouTube respectively.

98

5.4.3 Concept Distance Features

We also introduce a novel concept distance (CD) based feature. Let C denote

the set of concepts identified from the text annotations in Section 5.4.1.1. For each

concept c ∈ C, let Vc denote the set of videos in the research set containing the

concept. Let ~xi denote the low-level feature based vector extracted for video i.

Then, we compute the feature vector ~yc for the concept c as:

~yc =
1

|Vc|
∑
i∈Vc

~xi. (5.6)

Given a new video v and its low-level feature vector ~xv, we obtain the CD

feature vector by computing the distance to each ~yc in (5.6) and concatenating:

~CDv =
[
‖~xv − ~y1‖2 . . . ‖~xv − ~y|C|‖2

]T
. (5.7)

In our experiments, we use D-SIFT, DT and MFCC low-level feature vectors.

The proposed feature vector builds on multiple-queries (MQ) [86] and the query ex-

pansion [110] based techniques proposed previously. While these approaches identify

relevant videos at query time and use the retrievals to expand the concept set or

training set, we use a static set of concept vectors ~yc and compute distances at query

time to these vectors.

5.4.4 Off-the-shelf Concept Detectors

We also test three off-the-shelf concept detectors that have been used in recent

literature:

Classemes [4]: This is a bank of concept detectors trained on images. These were

99

chosen using a large ontology of visual concepts. Given an image or a video frame,

the application of all these detectors yields a 2,659-dimensional vector of detection

scores.

ObjectBank [5]: Here, we use a spatial pyramid representation of images and

produce detection confidence scores at different scales and spatial pyramids for each

concept. The concept detectors are trained using linear SVMs and an image is

represented by concatenating the detection scores of different concepts at different

scales and spatial pyramids.

SUN Attributes [43]: The SUN attribute set contains detectors for 102 scene

attributes that were specified using crowd sourced human studies.

We apply each of these concept detectors on a set of frames uniformly sampled

from a video and then average the detection scores across the video to get the final

video-level feature vector.

5.4.5 Automatic Speech Recognition (ASR)

We use GMM-based speech activity detection (SAD) and a hidden Markov

model (HMM) based multi-pass large vocabulary ASR to obtain speech content in

the video, and encode the hypotheses in the form of word lattices.

We first extract MFCC features from the audio stream. Then, the speech seg-

ments are identified by using a speech activity detection (SAD) system that employs

two GMMs, for speech and non-speech observations respectively. The SAD model

incorporates video clips with music content to enrich the non-speech model, in order

100

to handle the heterogeneous audio in consumer video. Given the automatically de-

tected speech segments, we then apply a large-vocabulary ASR system to the speech

data to produce a transcript of the spoken content. The system is adapted from an

ASR system trained on English Broadcast News, and updated with MED 2011 de-

scriptor files [111], relative web text data, and the small set of annotated consumer

video data. We evaluated the ASR model on a held-out set of 100 video clips and

achieved a Word Error Rate (WER) of 35.8%. The system outputs not only the

1-best transcripts but also word lattices with acoustic and language model scores.

After basic processing to remove stop words and normalize word inflections,

the word lattice posteriors are used to generate the concept score vectors used in

the zero shot projection system.

5.4.6 Optical Character Recognition (OCR)

Our OCR system recognizes text in bounding boxes from a video text detector

using an HMM-based multi-pass large vocabulary OCR system. Similar to our

ASR system, word lattices are used to encode alternative hypotheses. We leverage

a statistically trained video text detector based on SVM to estimate video text

bounding boxes.

Text candidate regions are first selected using Maximally Stable Extremal

Regions (MSER) and filtered using an SVM with rich shape descriptors such as His-

togram of Oriented Gradients (HoG), Gabor filter, corners and geometrical features.

Candidate regions are then grouped to form word boundaries, and detected words

101

are binarized and filtered before being passed to the HMM-based OCR system for

recognition. The OCR system finds a sequence of characters that maximizes the

posterior, by using glyph models (similar to the acoustic models in ASR), a dictio-

nary and N-gram language models. The word precision and recall of our system

measured on a small consumer video dataset is 14.7% and 37% respectively.

Since the video text content presents itself in various forms, such as subtitles,

markup titles and in-scene text, it is much more challenging than conventional

scanned document OCR. To address these challenges, we consider two versions of

OCR: one which utilizes the dictionary and N-gram language model, and one which

is character-based. While the language model corrects character-level transcription

errors, it also introduce errors when falsely correcting out of vocabulary words.

For the word model OCR output, we generate a concept score vector from the

word lattice posteriors in the same way as ASR. For the character based model, we

estimate word posteriors by smoothing character errors across adjacent video frames

to produce a concept score vector. In our experiments we find the character model

to be slightly better for video than the word model, as detailed in Section 5.6.

5.5 Fusion

State of the art systems for standard event detection with training data have

shown fusion of multiple features and modalities to be crucial for improving perfor-

mance [112]. Fusion is especially important for the zero-shot problem, due to the

sparse occurrence of speech and video text content, as well as the limited vocabulary

102

intersection between a given concept bank and query. While we do not have any

training data on which to learn parameters for more sophisticated fusion methods,

we find that simple score averaging works well to exploit the complementary infor-

mation in various systems. We further see some benefit to manually increasing the

weights of the higher precision ASR and OCR systems in fusion, and use a linearly

weighted score combination for all fusion experiments below.

5.6 Experiments

We test our approach on the large collection of consumer web videos from the

TRECVID MED 13 [3] dataset. The task is to retrieve videos containing one of 20

diverse high-level multimedia events, each described by a short text document of

∼250 words. The dataset provides a research set that contains ∼12,000 background

videos and no exemplars of the events of interest. We use this research set to learn

our WSCTRECVID and CD features. We report on the designated MEDTest set

containing ∼25,000 videos. More details of the events and data partitions may be

found in [3].

5.6.1 Comparison of Similarity Computation

Table 5.1 compares the two methods of query-video similarity computation

discussed in Section 5.3.1 and Section 5.3.2 for the best feature in each modality.

We observe that expansion consistently improves over the simple approach. We

observed similar gains from using projection based features in fusion, and thus we

103

Feature Basic (MAP) Expanded (MAP)

ASR 3.27% 3.66%

OCR (character) 4.43% 4.72%

CDMFCC 1.04% 1.04%

WSCD-SIFT
YouTube 3.42% 3.48%

Table 5.1: Mean average precision (MAP) comparison between basic (5.1) and ex-

panded (5.2) query-video similarity computation for our single best ASR, OCR,

audio, and visual features.

use the expansion-based approach in all experiments below.

5.6.2 Comparison of Visual Features

In these experiments, we compare our proposed WSC and CD features to sev-

eral off-the-shelf detectors. Table 5.2 summarizes our results. Here, WSCD-SIFT
YouTube

refers to the weakly supervised concept features trained using D-SIFT features ex-

tracted on pre-downloaded YouTube thumbnails. Overall, the WSCD-SIFT
YouTube feature

has the strongest performance, while the off-the-shelf detectors are significantly

weaker than our proposed approaches. A possible reason for this is the large do-

main mismatch between the data used for training them and the video data. The

same issue could explain the weaker performance of the WSCGoogle features com-

pared to WSCTRECVID and WSCYouTube due to the domain mismatch between images

104

Feature MAP AUC

SUN [43] 0.48% 0.605

ObjectBank [5] 0.77% 0.592

Classemes [4] 0.84% 0.630

CDD-SIFT 1.71% 0.770

CDDT 2.28% 0.779

WSCD-SIFT
TRECVID 1.92% 0.735

WSCDT
TRECVID 2.76% 0.726

WSCD-SIFT
Google 1.21% 0.543

WSCD-SIFT
YouTube 3.48% 0.729

Table 5.2: Comparison of mean average precision (MAP) and area under the curve

(AUC) for visual features.

and videos. Moreover, the CD features that are significantly faster to extract have

comparable performance to the WSC features that require training expensive SVMs.

Finally, the WSC and CD features detected using DT are stronger than the ones

using D-SIFT.

105

Feature MAP AUC

WSCMFCC
TRECVID 0.76% 0.507

CDMFCC 1.04% 0.604

Table 5.3: Comparison of mean average precision (MAP) and area under the curve

(AUC) for audio features.

5.6.3 Comparison of Audio Features

We compare the performance of our WSC and CD features trained using the

audio MFCC features. Table 5.3 summarizes the MAP and AUC results. As ob-

served, both of the audio features are weaker than the visual features.

5.6.4 Comparison of Language Features

Feature MAP AUC

ASR 3.66% 0.583

OCR (word) 4.30% 0.636

OCR (character) 4.72% 0.611

Table 5.4: Comparison of mean average precision (MAP) and area under the curve

(AUC) for language features.

106

Table 5.4 compares the performance of our OCR and ASR systems. All the

systems have higher MAP compared to the visual and audio features from Tables

5.2 and 5.3. However, note that the AUCs of many visual features outperform the

language features. This is because although language content, when present, is a

highly accurate source of information, its occurrence is sporadic, leading to low

recall.

5.6.5 Comparison of Fusion Systems

Feature MAP AUC

ASR 3.66% 0.583

OCR 5.87% 0.642

Audio 1.04% 0.623

Visual (CD + WSC) 6.12% 0.853

Full 12.65% 0.733

Table 5.5: Comparison of mean average precision (MAP) and area under the curve

(AUC) for fusion systems.

We fused each of the individual systems described above, both within each

modality as well as across modalities. Table 5.5 compares the performance of the

different fusion systems. Note that within the visual system, we found that off-the-

shelf visual features did not improve the fused system, and only included our CD and

107

WSC features. While none of the individual visual features is stronger than ASR

or OCR, the visual system is the single strongest system after fusion, gaining ∼75%

relative improvement over the single best visual system. The combined OCR system

also outperforms the individual OCR systems, and the full system that combines

all modalities more than doubles the performance of any individual modality as

measured by MAP.

5.6.6 TRECVID Performance

The zero-shot event detection task was introduced as a pilot training condition

as part of the TRECVID MED 13 evaluations. Independent evaluations were con-

ducted by NIST on a blind ∼100000 video dataset, both for the same 20 events as in

our previous experiments (prespecified), as well as for 10 new events given one week

before the evaluation (ad hoc). Our zero-shot system achieved highly competitive

scores for both prespecified and ad hoc conditions, placing among the top three out

of 9 submissions. In particular, our consistent performance between prespecified

and ad hoc events demonstrate the robustness of our event-independent approach

to generalize to new queries.

5.7 Discussion and Conclusion

Only limited attention has been devoted to the task of video retrieval using

only text queries. We present a systematic evaluation of our zero-shot framework

for performing high-level multimedia event detection with no training data, given

108

only text descriptions of the events of interest. Our findings and results on the large

TRECVID MED dataset can serve as an initial baseline for this challenging task.

We present a general framework for zero-shot learning, that utilizes multiple

multi-modal features to map a video to an intermediate semantic attribute space,

which are then projected to a high-dimensional concept space using statistics learned

on a large text corpus. Similarity between the attributes and a text query are

computed in this space, and the scores computed from different attribute sets are

combined to get the final score. We demonstrate the effectiveness of this approach

for aligning disjoint vocabularies between query and various modalities.

We describe two simple but effective methods for rapidly training new concept

detectors using in-domain as well as web data in the form of image/video with

associated text descriptions. Detailed experimental results show that our concept

detectors significantly outperform off-the-shelf detectors for zero-shot retrieval tasks.

Exploiting the complementary nature of speech and video text as well as between

different concept banks, we perform multiple rounds of fusion to produce a final

system that is significantly better than any individual feature or modality.

109

Bibliography

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. CoRR, abs/1301.3781, 2013.

[2] Geoffrey Hinton Laurens van der Maaten. Visualizing data using t-sne. In
Journal of Machine Learning Research, Vol. 9, pages pp. 2579–2605. 2008.

[3] Paul Over, George Awad, Martial Michel, Jonathan Fiscus, Greg Sanders,
Wessel Kraaij, Alan F. Smeaton, and Georges Quéenot. Trecvid 2013 – an
overview of the goals, tasks, data, evaluation mechanisms and metrics. In
Proceedings of TRECVID 2013. NIST, USA, 2013.

[4] Lorenzo Torresani, Martin Szummer, and Andrew Fitzgibbon. Efficient object
category recognition using classemes. In CVPR, 2010.

[5] Li-Jia Li, Hao Su, Eric Xing, and Li Fei-Fei. Object bank: A high-level image
representation for scene classification and semantic feature sparsification. In
NIPS, 2010.

[6] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. Int. J. Approx.
Reasoning, 2009.

[7] Wei Liu, Jun Wang 0006, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang.
In CVPR, 2012.

[8] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, and David
Suter. Fast supervised hashing with decision trees for high-dimensional data.
In CVPR’ 14.

[9] Tiezheng Ge, Kaiming He, and Jian Sun. Graph cuts for supervised binary
coding. In ECCV ’14.

[10] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. Supervised discrete
hashing. CVPR’ 15.

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions.

[12] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In NIPS,
2009.

110

[13] Wei Liu, Jun Wang, and Shih fu Chang. Hashing with graphs. In In ICML,
2011.

[14] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Discrete graph hashing.
In NIPS, 2014.

[15] Mohammad Norouzi and David J. Fleet. Minimal loss hashing for compact
binary codes. In ICML’11.

[16] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. Super-
vised hashing for image retrieval via image representation learning. In AAAI,
2014.

[17] Guosheng Lin, Chunhua Shen, David Suter, and Anton van den Hengel. A
general two-step approach to learning-based hashing. In ICCV’ 13.

[18] Mohammad Rastegari, Ali Farhadi, and David A. Forsyth. Attribute discovery
via predictable discriminative binary codes. In ECCV ’12.

[19] Qifan Wang, Bin Shen, Shumiao Wang, Liang Li, and Luo Si. Binary codes
embedding for fast image tagging with incomplete labels. In ECCV ’14.

[20] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive
embeddings. In NIPS’ 09.

[21] Jonathan Masci, Alexander M. Bronstein, Michael M. Bronstein, Pablo
Sprechmann, and Guillermo Sapiro. Sparse similarity-preserving hashing.
2014.

[22] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. Deep
hashing for compact binary codes learning. In CVPR, 2015.

[23] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. Deep semantic
ranking based hashing for multi-label image retrieval. CVPR, 2015.

[24] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature
learning and hash coding with deep neural networks. In CVPR, 2015.

[25] Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and Chu-Song Chen. Deep learn-
ing of binary hash codes for fast image retrieval. In CVPR Workshops, 2015.

[26] Weiran Wang and Miguel Á. Carreira-Perpiñán. The role of dimensionality
reduction in classification. In AAAI’ 14.

[27] Liang Sun, Shuiwang Ji, and Jieping Ye. Canonical Correlation Analysis
for Multilabel Classification: A Least-Squares Formulation, Extensions, and
Analysis. IEEE, 2011.

[28] Yunchao Gong and Svetlana Lazebnik. Iterative quantization: A procrustean
approach to learning binary codes. In CVPR’11.

111

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In NIPS. 2012.

[30] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset.
Technical Report 7694, California Institute of Technology, 2007.

[31] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, 2009.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recog-
nition Challenge. IJCV, 2015.

[33] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In ACM MM ’14.

[34] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene recognition.
IEEE’ 08.

[35] Google search by image. http://www.google.com/insidesearch/features/
images/searchbyimage.html.

[36] Tineye : Reverse image search. https://www.tineye.com/.

[37] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for
scalable image search. In IEEE International Conference on Computer Vision
(ICCV), 2009.

[38] Kilian Q. Weinberger and Olivier Chapelle. Large margin taxonomy embed-
ding for document categorization. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems
21, pages 1737–1744. Curran Associates, Inc., 2009.

[39] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to ob-
ject matching in videos. In Proceedings of the International Conference on
Computer Vision, volume 2, pages 1470–1477, October 2003.

[40] Jorge Sanchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Im-
age classification with the fisher vector: Theory and practice. 2013.

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural Infor-
mation Processing Systems, page 2012.

[42] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Per-
ona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, Califor-
nia Institute of Technology, 2010.

112

http://www.google.com/insidesearch/features/images/searchbyimage.html
http://www.google.com/insidesearch/features/images/searchbyimage.html
https://www.tineye.com/

[43] Genevieve Patterson, Chen Xu, Hang Su, and James Hays. The sun attribute
database: Beyond categories for deeper scene understanding. International
Journal of Computer Vision, 108(1-2):59–81, 2014.

[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[45] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[46] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Part-based
R-CNNs for fine-grained category detection. In Proceedings of the European
Conference on Computer Vision (ECCV), 2014.

[47] David R. Hardoon, Sandor Szedmak, Or Szedmak, and John Shawe-taylor.
Canonical correlation analysis; an overview with application to learning meth-
ods. Technical report, 2007.

[48] Chun-Nam Yu and T. Joachims. Learning structural svms with latent vari-
ables. In International Conference on Machine Learning (ICML), 2009.

[49] Lei Zhang, Yongdong Zhang, Jinhui Tang, Xiaoguang Gu, Jintao Li, and
Qi Tian. Topology preserving hashing for similarity search. In Alejandro
Jaimes, Nicu Sebe, Nozha Boujemaa, Daniel Gatica-Perez, David A. Shamma,
Marcel Worring, and Roger Zimmermann, editors, ACM Multimedia, pages
123–132. ACM, 2013.

[50] Daniel Hsu, Sham Kakade, John Langford, and Tong Zhang. Multi-label pre-
diction via compressed sensing. In Yoshua Bengio, Dale Schuurmans, John D.
Lafferty, Christopher K. I. Williams, and Aron Culotta, editors, NIPS, pages
772–780. Curran Associates, Inc., 2009.

[51] Christoph H. Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to
detect unseen object classes by between-class attribute transfer. In CVPR,
pages 951–958. IEEE, 2009.

[52] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. Large margin methods for structured and interdependent output vari-
ables. J. Mach. Learn. Res., 6:1453–1484, December 2005.

[53] Jason Weston, Samy Bengio, and Nicolas Usunier. N.: Wsabie: Scaling up to
large vocabulary image annotation. In: IJCAI, pages 2764–2770.

[54] Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid.
Attribute-Based Classification with Label-Embedding. In NIPS 2013 Work-
shop on Output Representation Learning, Lake Tahoe, United States, Decem-
ber 2013. Neural Information Processing Systems (NIPS) Foundation.

113

[55] Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei. What does classifying
more than 10,000 image categories tell us? In Proceedings of the 11th Euro-
pean Conference on Computer Vision: Part V, ECCV’10, pages 71–84, Berlin,
Heidelberg, 2010. Springer-Verlag.

[56] Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy Bengio, Jeffrey
Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. Devise: A deep visual-
semantic embedding model. In Christopher J. C. Burges, Léon Bottou, Zoubin
Ghahramani, and Kilian Q. Weinberger, editors, NIPS, pages 2121–2129, 2013.

[57] Thomas Mensink, Efstratios Gavves, and Cees G. M. Snoek. Costa: Co-
occurrence statistics for zero-shot classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, Ohio,
USA, June 2014.

[58] Yair Weiss, Rob Fergus, and Antonio Torralba. Multidimensional spectral
hashing. In ECCV (5), pages 340–353, 2012.

[59] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-supervised hashing for
scalable image retrieval. In CVPR, San Francisco, USA, June 2010.

[60] Yurii Nesterov. Introductory lectures on convex optimization : a basic course.
Applied optimization. Kluwer Academic Publ., Boston, Dordrecht, London,
2004.

[61] Tom Goldstein, Christoph Studer, and Richard G. Baraniuk. FASTA: A gener-
alized implementation of forward-backward splitting. CoRR, abs/1501.04979,
2015.

[62] Roman Rosipal and Nicole Krämer. Overview and Recent Advances in Par-
tial Least Squares. In Craig Saunders, Marko Grobelnik, Steve Gunn, and
John Shawe-Taylor, editors, Subspace, Latent Structure and Feature Selection,
volume 3940 of Lecture Notes in Computer Science, chapter 2, pages 34–51.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[63] Florent Perronnin and Christopher R. Dance. Fisher kernels on visual vocab-
ularies for image categorization. In CVPR, 2007.

[64] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob J. Verbeek.
Image classification with the fisher vector: Theory and practice. International
Journal of Computer Vision, 105(3):222–245, 2013.

[65] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregat-
ing local descriptors into a compact image representation. In IEEE Conference
on Computer Vision & Pattern Recognition, pages 3304–3311, jun 2010.

[66] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas S. Huang, and
Yihong Gong. Locality-constrained linear coding for image classification. In
CVPR, pages 3360–3367, 2010.

114

[67] Florent Perronnin, Yan Liu, Jorge Sánchez, and Herve Poirier. Large-scale
image retrieval with compressed fisher vectors. In CVPR, pages 3384–3391,
2010.

[68] Jorge Sánchez and Florent Perronnin. High-dimensional signature compression
for large-scale image classification. In CVPR, pages 1665–1672, 2011.

[69] Luca Marchesotti, Claudio Cifarelli, and Gabriela Csurka. A framework for
visual saliency detection with applications to image thumbnailing. In ICCV,
pages 2232–2239. IEEE, 2009.

[70] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for
nearest neighbor search. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 33(1):117–128, jan 2011. to appear.

[71] Mohammad Norouzi and David Fleet. Cartesian k-means. In IEEE Conference
on Computer Vision & Pattern Recognition, 2013.

[72] Youngwoon Lee. Spherical hashing. In Proceedings of the 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), CVPR ’12, pages
2957–2964, Washington, DC, USA, 2012. IEEE Computer Society.

[73] Yunchao Gong, Sanjiv Kumar, Henry Rowley, and Svetlana Lazebnik. Learn-
ing binary codes for high dimensional data using bilinear projections. In IEEE
Computer Vision and Pattern Recognition, 2013.

[74] F. X. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Circulant Binary Embedding.
ArXiv e-prints, May 2014.

[75] A. Joly and O. Buisson. Random maximum margin hashing. In Proceedings
of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’11, pages 873–880, Washington, DC, USA, 2011. IEEE Computer
Society.

[76] Junfeng He, Regunathan Radhakrishnan, Shih-Fu Chang, and Claus Bauer.
Compact hashing with joint optimization of search accuracy and time. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), oral session, June 2011.

[77] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data for data
mining applications. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, SIGMOD ’98, pages 94–105, New York,
NY, USA, 1998. ACM.

[78] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding
and weak geometric consistency for large scale image search. In Proceedings of
the 10th European Conference on Computer Vision: Part I, ECCV ’08, pages
304–317, Berlin, Heidelberg, 2008. Springer-Verlag.

115

[79] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and
Cedric Bray. Visual categorization with bags of keypoints. In ECCVW, 2004.

[80] David G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60:91–110, 2004.

[81] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Surf:
Speeded up robust features. CVIU, 110(3):346–359, 2008.

[82] K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors for
object and scene recognition. 32(9):1582–1596, 2010.

[83] Ivan Laptev. On space-time interest points. IJCV, 64(2-3):107–123, 2005.

[84] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense
trajectories and motion boundary descriptors for action recognition. IJCV,
103(1):60–79, 2013.

[85] Mark Palatucci, Dean Pomerleau, Geoffrey Hinton, and Tom Mitchell. Zero-
shot learning with semantic output codes. In NIPS, December 2009.

[86] R. Arandjelović and A. Zisserman. Multiple queries for large scale specific
object retrieval. In BMVC, 2012.

[87] David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword
third edition. In Linguistic Data Consortium, Philadelphia, 2007.

[88] Jan C. van Gemert, Cor J. Veenman, Arnold W. M. Smeulders, and Jan-Mark
Geusebroek. Visual word ambiguity. IEEE PAMI, 32(7):1271–1283, 2010.

[89] Y.L. Boureau, F. Bach, Y.L. Le Cun, and J. Ponce. Learning mid-level features
for recognition. In CVPR, 2010.

[90] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob J. Verbeek.
Image classification with the fisher vector: Theory and practice. International
Journal of Computer Vision, 105(3):222–245, 2013.

[91] Olga Russakovsky and Li Fei-Fei. Attribute learning in large-scale datasets.
In ECCV, Crete, Greece, September 2010.

[92] Marcus Rohrbach, Michael Stark, and Bernt Schiele. Evaluating knowledge
transfer and zero-shot learning in a large-scale setting. In CVPR, 2011.

[93] Pichai Kankuekul, Aram Kawewong, Sirinart Tangruamsub, and Osamu
Hasegawa. Online incremental attribute-based zero-shot learning. In CVPR,
pages 3657–3664, 2012.

[94] B. Hariharan, S. V. N. Vishwanathan, and M. Varma. Efficient max-margin
multi-label classification with applications to zero-shot learning. Machine
Learning Journal, 88(1):127–155, 2012.

116

[95] Mohamed Elhoseiny, Babak Saleh, and Ahmed Elgammal. Write a classifier:
Zero-shot learning using purely textual descriptions. In ICCV, 2013.

[96] Jeffrey Dalton, James Allan, and Mirajkar Pranav. Zero-shot video retrieval
using content and concepts. In ACM Conference of Information and Knowl-
edge Management, 2013.

[97] Yusuf Aytar, Mubarak Shah, and Jiebo Luo. Utilizing semantic word similarity
measures for video retrieval. In CVPR, pages 1–8. IEEE, 2008.

[98] Min Young Jung and Sung Han Park. Semantic similarity based video re-
trieval. In New Directions in Intelligent Interactive Multimedia Systems and
Services-2, pages 381–390. Springer, 2009.

[99] Kobus Barnard, Pinar Duygulu, and David A. Forsyth. Clustering art. In
CVPR, pages 434–441, 2001.

[100] Ali Farhadi, Seyyed Mohammad Mohsen Hejrati, Mohammad Amin Sadeghi,
Peter Young, Cyrus Rashtchian, Julia Hockenmaier, and David A. Forsyth.
Every picture tells a story: Generating sentences from images. In ECCV,
pages 15–29, 2010.

[101] Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi,
Alexander C. Berg, and Tamara L. Berg. Baby talk: Understanding and
generating simple image descriptions. In CVPR, pages 1601–1608, 2011.

[102] Yezhou Yang, Ching Lik Teo, Hal Daumé III, and Yiannis Aloimonos. Corpus-
guided sentence generation of natural images. In EMNLP, pages 444–454,
2011.

[103] Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg. Im2text: Describing
images using 1 million captioned photographs. In NIPS, 2011.

[104] Niveda Krishnamoorthy, Girish Malkarnenkar, Raymond J. Mooney, Kate
Saenko, and Sergio Guadarrama. Generating natural-language video descrip-
tions using text-mined knowledge. pages 541–547, 2013.

[105] P. Das, C. Xu, R. F. Doell, and J. J. Corso. A thousand frames in just a few
words: Lingual description of videos through latent topics and sparse object
stitching. In CVPR, 2013.

[106] Jia Deng, Alexander C. Berg, Kai Li, and Li Fei-Fei. What does classifying
more than 10,000 image categories tell us? In ECCV, pages 71–84, 2010.

[107] Richard Socher, Milind Ganjoo, Hamsa Sridhar, Osbert Bastani, Christo-
pher D. Manning, and Andrew Y. Ng. Zero-shot learning through cross-modal
transfer. CoRR, abs/1301.3666, 2013.

117

[108] S. Davis and P. Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. In IEEE
ASSP, volume 28, pages 357–66, 1980.

[109] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher
kernel for large-scale image classification. In Kostas Daniilidis, Petros Mara-
gos, and Nikos Paragios, editors, ECCV, volume 6314 of Lecture Notes in
Computer Science, pages 143–156. Springer Berlin Heidelberg, 2010.

[110] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Au-
tomatic query expansion with a generative feature model for object retrieval.
In ICCV, 2007.

[111] Paul Over, George Awad, Martial Michel, Jonathan Fiscus, Wessel Kraaij,
Alan F. Smeaton, and Georges Quéenot. TrecVid 2011 – An Overview of the
Goals, Tasks, Data, Evaluation Mechanisms and Metrics. In Proceedings of
TRECVID 2011. NIST, USA, 2011.

[112] Pradeep Natarajan, Shuang Wu, Shiv Naga Prasad Vitaladevuni, Xiaodan
Zhuang, Stavros Tsakalidis, Unsang Park, Rohit Prasad, and Premkumar
Natarajan. Multimodal feature fusion for robust event detection in web videos.
In CVPR, 2012.

118

	List of Figures
	Introduction
	Outline

	Semantic Binary Codes
	Introduction
	Related Work
	Semantic Binary Codes
	Class Indicator Matrix Y
	Initialization of V
	Class Hamming Distance(CHD)
	Deep Semantic Binary Codes

	Experiments
	Train/Test Partitions
	Evaluation metrics
	Comparison with other methods
	Comparison Methods for SBC-D:
	Experiments for SBC-D:

	Conclusion

	SHOE: Sibling Hashing with Output Embeddings
	Introduction
	Related Work
	Method
	Preliminaries
	Evaluation Criteria
	Preliminary Experiments
	Analysis
	SHOE Revisited
	Supervised Dimensionality Reduction

	Experiments
	Fine-grained Category Classification
	Conclusion

	Hierarchical Spherical Hashing for Compressing High Dimensional Vectors
	Overview
	Spherical Hashing
	Computation Challenges(d is large and kd)

	Hierarchical Spherical Hashing
	Learning Sub-Hypersphere functions
	Cartesian-product of pivots/centers
	Random-Select and Adjust(RSA)
	Divide and Conquer
	Computation time

	Experiments
	Datasets, Evaluation Protocol
	Comparison methods
	Results

	Conclusion

	Zero-shot Event Detection using Multi-modal Fusion of Weakly Supervised Concepts
	Overview
	Related Work
	Zero-shot Learning Framework
	Basic Similarity Computation
	Expansion-based Similarity Computation

	Video Feature Extraction
	Weakly Supervised Concepts (WSC)
	Concept Training using Web Data
	Concept Distance Features
	Off-the-shelf Concept Detectors
	Automatic Speech Recognition (ASR)
	Optical Character Recognition (OCR)

	Fusion
	Experiments
	Comparison of Similarity Computation
	Comparison of Visual Features
	Comparison of Audio Features
	Comparison of Language Features
	Comparison of Fusion Systems
	TRECVID Performance

	Discussion and Conclusion

	Bibliography

