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The development of accurate modeling techniques for nanoscale thermal trans-

port is an active area of research. Modern day nanoscale devices have length scales

of tens of nanometers and are prone to overheating, which reduces device perfor-

mance and lifetime. Therefore, accurate temperature profiles are needed to predict

the reliability of nanoscale devices. The majority of models that appear in the liter-

ature obtain temperature profiles through the solution of the Boltzmann transport

equation (BTE). These models often make simplifying assumptions about the nature

of the quantized energy carriers (phonons). Additionally, most previous work has

focused on simulation of planar two dimensional structures. This thesis presents

a method which captures the full anisotropy of the Brillouin zone within a three

dimensional solution to the BTE. The anisotropy of the Brillouin zone is captured

by solving the BTE for all vibrational modes allowed by the Born Von-Karman

boundary conditions.
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Chapter 1: Introduction

1.1 Perspective and Motivation

Moore’s Law states that the number of transistors on an integrated circuit

doubles roughly every two years. This qualitative law has been the driving force

behind the rapid increase in processor speeds over the past few decades. One result

of the increase in transistor density is an increase in the power generated on an

integrated circuit. Although in general the power generated per transistor shrinks

as the transistor characteristic dimensions are reduced, this effect is counterbalanced

by the increase of the overall number of transistors on an integrated circuit, leading

to an overall power generation increase. Furthermore, in order to double the number

of transistors on an integrated circuit, the size of a transistor must be reduced. The

most recent generation of transistors have gate lengths of 14 nanometers [4] with

the next generation reaching even smaller lengths. This size reduction results in

hotspot creation within the transistor where heat is trapped and cannot be efficiently

removed [5–9]. These self heating effects are exacerbated in devices with non-planar

three dimensional geometries. The combined effects of increasing power density

coupled with shrinking feature size leads to inefficient heat removal, resulting in

large increases in temperature which negatively effects device performance. Among
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these negative effects are reductions in saturation currents and maximum allowable

frequencies which reduce the transistors operating performance [10]. Furthermore,

the strain caused by overheating reduces the transistor lifetime [11]. Therefore,

accurate thermal modeling is critical for determining device reliability in existing

devices as well as designing transistors which minimize hotspot temperatures.

Continuum laws, such as Fourier’s Law of heat conduction, rely on the assump-

tion that a material may be assumed homogeneous on the length scale of interest.

In addition, these laws assume that local equilibrium is assumed to prevail through-

out the material. When devices, such as transistors, have characteristic dimensions

within the nanometer regime, sub-continuum effects begin to dominate and the as-

sumptions underlying continuum laws are no longer valid. Therefore modeling tech-

niques that are capable of capturing subcontinuum effects are required for accurate

prediction of temperature profiles within such nanoscale devices. One such mod-

eling technique is the solution of the Boltzmann transport equation which may be

numerically solved to determine a wide range of thermodynamic properties, includ-

ing temperature profiles, in devices with dimensions ranging from a few nanometers

up through the macroscale. The Boltzmann transport equation is an appealing

technique as it is capable of capturing ballistic transport effects that emerge on

the atomistic scale, while also accurately modeling regions where diffusive transport

dominates. Thus the Boltzmann transport equation is a widely used method for

simulation of nanoscale devices and thin crystalline films.

Despite gaining widespread use for nanoscale thermal modeling, methods for

the numerical solution of the Boltzmann transport equation detailed in the liter-
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ature often have a variety of simplifying assumptions that limit the accuracy of

the solutions obtained. Chief amongst these are the gray and semi-gray approxi-

mation which assume that the energy carriers, henceforth referred to as phonons,

within a crystalline material may be approximated by a few averaged phonon prop-

erties [12–18]. More recently, work done in the area of nanoscale thermal modeling

has replaced the gray approximation with a Boltzmann transport equation formula-

tion that accounts for variation in the phonon properties, however this variation is

considered along only a single high symmetry direction in the Brillouin Zone (region

of reciprocal space containing all unique vibrational modes that exist within a mate-

rial) [19–25]. Therefore, energy transport is assumed to be isotropic, an assumption

that has been shown to be inaccurate in the literature [26]. Other assumptions

made in the literature assume that temperature varies in only one or two dimen-

sions, leading to Boltzmann transport solution methods that are unable to model

new device geometries that are intrinsically three dimensional. Examples of such

devices are new transistor designs such as the Fin field effect transistor (FinFET)

first developed at Berkeley [27] and gaining adoption in present day commercial

integrated circuits [4]. Additionally, few published methods for solving the Boltz-

mann transport equation rigorously account for the effect of material geometry on

the allowed vibrational modes. Those that do, do not consider temperature varia-

tion in three dimensions [26, 28]. While the simplifications and assumptions listed

here do not apply to all of the Boltzmann transport solution methods appearing

in the literature, no method has appeared in the literature which has completely

eliminated all of the simplifications documented above.

3



In this thesis an algorithm for solving the Boltzmann transport equation is

presented. This approach is then implemented into a numerical Boltzmann trans-

port equation code capable of three dimensional device simulation. The algorithm

presented in this thesis avoids simplifying assumptions, which appear in approaches

detailed in the literature, in order to fully capture the wide array of phonon physics.

Full Brillouin zone anisotropy is accounted for by determining phonon properties

throughout the Brillouin zone, not just along one high symmetry directions. To

this end, phonon properties are determined via a molecular dynamics approach for

obtaining lattice vibrational properties which are then used as inputs to the Boltz-

mann transport code. Secondly, the Boltzmann transport equation is discretized in

a manner allowing for three dimensional temperature gradients. This is important

as recent nanoscale devices are no longer planar, i.e. approximately two dimensional,

and therefore require three dimensional modeling. Finally the algorithm solves the

Boltzmann transport equation for all available vibrational modes within a material

by considering the device geometry. Therefore, the approach detailed in this work

is capable of capturing effects such as the reduction in thermal conductivity which

is known to occur in devices with very thin dimensions [26].

By eliminating the various simplifications and assumptions that appear in

much of the modeling methods utilizing the Boltzmann transport equation, a Boltz-

mann transport code is formulated that is capable of accurately modeling heat flow

in nanoscale crystalline devices. The scope and structure of this thesis is now pre-

sented.
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1.2 Scope of Thesis

The remainder of this work is organized as follows. First, current computa-

tional modeling techniques for nanoscale thermal transport are reviewed in Ch. 2.

These techniques can be roughly categorized as first principles methods, molecular

dynamics methods, and Boltzmann transport simulations. The strengths, weak-

nesses, and regime of applicability for each technique is covered. Boltzmann trans-

port equation algorithms that appear in literature are discussed in more detail in

order to distinguish how the method presented in this thesis differs from existing

methodologies.

Following the literature review, the fundamentals of lattice dynamics and

phonon physics theory are presented in Ch. 3. Important concepts related to vibra-

tional modes in crystalline materials as well as nanoscale energy transport are dis-

cussed. Examples of several key concepts are presented via simple one-dimensional

examples, which avoids obfuscating the underlying physics. The concepts covered

in the theoretical section, though not complete, form the basis for understanding

the algorithm presented in later sections.

Chapter 4 details the Boltzmann transport equation algorithm as it has been

implemented into a FORTRAN90 code. First the molecular dynamics simula-

tions used for generating phonon inputs are discussed as well as the basis for the

form of the phonon relaxation times. Subsequently, the numerical discretization of

the Boltzmann transport equation is presented. The control volume discretization

scheme is briefly discussed as well as the upwinding approximation for discretizing
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the spatial operator. The computational implementation of various boundary con-

ditions are detailed and supported through physical arguments. Finally, specifics

to the computational implementation, such as parallelization techniques and the

iterative solver, are discussed.

A variety of simulation results are presented in Ch. 5. First a simulation of

semi-ballistic transport is performed via the plane parallel problem borrowed from

the field of radiation transport physics. The simulation results are then compared

to known semi-analytical solutions in order to verify the BTE code. Once the

mathematical accuracy of the algorithm has been verified, the improvement over

existing computational techniques is demonstrated. This is shown through simple

transport problem highlighting the result of accounting for Brillouin zone anisotropy.

The final set of simulations is a parameter study of a nanoscale transistor device

known as a FinFET, a schematic of a FinFET is presented in Fig. 1.1. This device

is gaining adoption in top of the line integrated circuits, and due to the nanometer

dimensions and non-planar geometry requires modeling which accounts for three

dimensional temperature gradients as well as anisotropy in the heat flow.

The final section reiterates the main points of the thesis. The improvements

demonstrated by the algorithm are restated. In addition a path forward is detailed

for improving the method through inclusion of material interfaces, time stepping,

and OpenMPI parallelization.
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Figure 1.1: Schematic of a typical FinFET device. The dimensions are in units of
nanometers and are obtained from [29].
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Chapter 2: Literature Review

Modeling of subcontinuum effects is important for predicting thermal behavior

of nanoscale devices, the length and time scales of interest render experimental

techniques difficult or infeasible for many cases. Rapid increase in computing power

over the past few decades has allowed for increasingly complex computational models

of nanoscale heat transport. Computational models are not hindered by the practical

restrictions of experimental techniques attempting to probe nanometer length scales

or picosecond time scales and thus present an attractive alternative to experiment.

In addition computational techniques are inexpensive as computing time is cheaper

and often faster than experimental alternatives, albeit with reduced accuracy.

There exist a wide range of computational methods for modeling thermal be-

havior at the nanoscale. Within the next section these various computational meth-

ods will be detailed; with special attention paid to methods similar to the one utilized

in this work so that differences may be clearly stated. Each method has inherent

strengths and weaknesses as well as different length scales at which the method is

applicable. The three main computational methods that will be discussed are: first-

principles calculations, Molecular Dynamics simulations, the Boltzmann transport

equation.
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2.1 First Principles Calculations

First principles or Ab-Initio methods seek to directly apply physical equations

and concepts to systems of interest. One manner in which Ab-Initio methods are

used in the context of determining vibrational and heat transport properties at

the nanoscale, is through determination of the exact response of electrons in the

crystal to displacements of atomic nuclei. The electronic response yields parameter

free force constants, which in turn allows for the determination of vibrational and

transport properties [30]. Alternatively if the system is sufficiently one dimensional

and without impurities, Landauer Formalism may be used to calculate heat flow.

The most prevalent computational methods for determining electronic re-

sponse for use in the first principles framework is Density Functional Theory (DFT),

and the closely related Density Functional Perturbation Theory (DFPT) [31–35].

DFT allows for calculation of the ground state electronic structure for a many body

system, which allows for direct calculation of phonon properties such as phonon

frequencies, heat capacity, and harmonic force constants [33]. DFPT extends this

approach to calculate higher order perturbations to the system in order to extract

anharmonic force constants as well as phonon lifetimes [36]. Phonon properties ob-

tained from DFT and DFPT are most often used as inputs for the determination of

thermal conductivity within the first principles framework [37]. Furthermore, these

properties may be used as inputs to the Boltzmann transport equation for accurate

device modeling. DFT/DFPT calculations may be performed using open source

computer codes such as Quantum Espresso [38], however calculation is restricted to
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structures with a small number of atoms and becomes prohibitively computationally

expensive for large systems.

Another first principles technique that is prevalent for the prediction of nanoscale

thermal transport is the Landauer formula. The Landauer formula allows for the pre-

diction of the heat current in nanojunctions. This has application to one-dimensional

systems such as nanowires and nanotubes [39]. The fundamental quantity of im-

portance in determining the thermal current is determination of the transmission

coefficient which describes how efficiently thermal energy is transported through a

junction connected to two thermal leads. The transmission coefficient is dependent

on the thermal properties of the material of interest [40]. One method of calculating

the transmission coefficient is through non-equilibrium Green’s function. Landauer

formalism, as this approach is called, is valid when there are hundreds of atoms,

or fewer, between the two leads. At this length scale energy is transported via

waves and the phonon particle viewpoint is not necessarily valid. However, use of

the Landauer formula is restricted to small system sizes that are predominantly

one-dimensional [39].

2.2 Molecular Dynamics

Molecular dynamics is another commonly used method for nanoscale heat

transport. The molecular dynamics method uses an analytic equation describing the

interatomic potential of a material to integrate the Newtonian equations of motion,

allowing for the evolution of atomic nuclei in time and space. By treating the atomic
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nuclei as hard spheres, which evolve according to Newtonian equations of motion,

molecular dynamics is a classical method and therefore one must exercise caution

as to the regime it is applied. In the case of lattice thermal conductivity it has been

found that molecular dynamics simulations compare well with experiment down

to one-tenth of the Debye temperature of a material [41]. Molecular dynamics by

design models the dynamics of individual atoms and has a wide range of applications

such as thermal transport, molecular assembly, chemical reactions, and material

fracture [42–47].

An important consideration when performing a molecular dynamics simulation

of thermal transport is in selecting the appropriate interatomic potential. Empirical

potentials often include fitting parameters which are fitted through comparison of

quantities such as melting temperature, lattice constant, or liquid structure to known

experimental data. However, an empirical potential which accurately predicts the

melting point of a crystal may not accurately predict the same crystal’s phonon

transport properties. Therefore, recent work has focused on fitting existing empirical

potentials to certain properties that better predict transport characteristics. One

example of this type of research is fitting the Stillinger-Weber potential, initially

developed to describe the liquid phase of silicon, to inter-atomic force constants

in silicon derived from DFT simulations [48]. The resulting phonon frequencies

predicted through the modified empirical potential give much closer agreement to

experiment than the original model. Thus DFT simulations may be used to modify

the parameters of an interatomic potential so that molecular dynamics simulations

yield more accurate predictions of thermal transport properties.
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Molecular dynamics simulations are used to determine a wide variety of phonon

properties for use as inputs to thermal transport simulations. Examples of these

properties include: frequencies, group velocities, phonon lifetimes, density of phonon

states, and specific heats. One benefit of using molecular dynamics to extract these

properties is that assumptions inherent in other methods of obtaining vibrational

properties (see lattice dynamics in Ch. 3) are avoided in molecular dynamics [49].

Furthermore, molecular dynamics methods are often less computationally expensive

than DFT methods. Phonon properties extracted from molecular dynamics have

been used for the determination of thermal conductivities through the Green-Kubo

method [50], as well as for inputs to Boltzmann Transport simulations [51].

In addition to accurate determination of phonon properties, molecular dynam-

ics has been used to study the transmission and reflection of phonon wave-packets

at interfaces of dissimilar materials as well as grain boundaries [52]. Previous mod-

els for predicting how phonon are transmitted and reflected at material boundaries,

such as the acoustic mismatch model and the diffuse mismatch model, failed to ac-

curately capture transmission and reflection. The technique detailed in [52] specifies

the initial position and momenta of the atoms within a material in order to form a

phonon wavepacket of defined wavevector and polarization. The wavepacket is then

launched toward an interface where transmission and reflection are observed. This

technique allows for the determination of wavevector and polarization specific trans-

mission and reflection coefficients. Furthermore, mode conversion due to interface

scattering may also be studied using this technique.
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Molecular dynamics has proven to be an extremely useful tool for the modeling

of nanoscale thermal transport. It is orders of magnitude less computationally

demanding than DFT calculations while still capturing effects on the length scale

of individual atoms. In addition, by its very nature molecular dynamics is able

to capture the full anharmonicity of the interatomic potential (unlike harmonic

lattice dynamics) which allows for more accurate predictions of phonon properties.

However, molecular dynamics is still restricted to system sizes with less than a billion

atoms due to its computational expense. In addition the classical nature of the

method means the ensemble is governed by Boltzmann statistics rather than Bose-

Einstein statistics meaning accuracy is lost when quantum effects become important

[53]. Therefore, alternative techniques are required for larger systems as well as

simulations at low temperature. One such technique is the Boltzmann transport

equation.

2.3 Boltzmann Transport Equation

The Boltzmann equation was first formulated by Ludwig Boltzmann to de-

scribe the statistical distribution of a dilute gas system. However, the theory was

expanded to describe any system with an equilibrium statistical distribution, such

as electrons, phonons, or photons [54]. Rudolf Peierls first derived the phonon form

of the Boltzmann Transport Equation (BTE), which in its most general form is
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written as [55]:

∂f

∂t
+ vg · ∇rf =

(
∂f

∂t

)

collision

f = f(r,k, p, t) ,

(2.1)

where f represents the phonon distribution function, i.e. the number of phonons

within the infinitesimal spatial region (r, r+ dr) with a wavevector in the infinites-

imal region of momentum space (k,k + dk) of polarization p at time t. Inspecting

Eq. 2.1 reveals that the phonon ensembles time rate of change is affected through

both advection as well as a collisional term accounting for carrier interactions, iso-

tope scattering, as well as boundary scattering. It is this equation that modeling

techniques using Boltzmann transport theory seek to solve through a wide range of

methodologies.

2.3.1 Monte Carlo Method

Monte Carlo simulation is a particle based method with applications to sev-

eral physical phenomenon, including neutron, radiative, electron, and thermal trans-

port [23, 56–58]. As applied to nanoscale heat transport the Monte Carlo method

utilizes random sampling to trace the path of particles, representing phonons, within

a domain. The random sampling process determines how long the particles travel

before scattering, the type of scattering the particles undergo, and the frequency of

the newly created particle. By simulating a large number of particles for a suffi-

ciently long length of time, relevant statistics may be extracted to give the phonon

distribution within the domain. Despite the probabilistic nature of the Monte Carlo
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method, an accurate solution to the governing equation is obtained in the limit of

sampling an infinite number of particles [23]. The Monte Carlo method is amenable

to solution of the BTE as it is well suited to obtaining the solution to a differential

equation for a function of many variables such as the distribution function (f in Eq.

2.1) in the Boltzmann transport equation. The basic algorithm of any Monte Carlo

implementation involves a drift step in which particles are advected through space,

using the left hand side of Eq. 2.1, followed by a collisional where scattering occurs,

modeled by the right hand side of Eq. 2.1.

One of the earliest works which used Monte Carlo techniques to solve the BTE

was performed by Mazumder and Majumdar (2001). They simulated phonons by

tracing representative particles in a spatial domain, explicitly accounting for phonon

dispersion. The scattering events were drawn from probability distribution functions

constructed from Normal and Umklapp process relaxation times. This technique was

used to predict in plane thermal conductivity of thin silicon films. Conductivities

predicted through this method were in excellent agreement with experimental values

[24].

A major drawback of the Monte Carlo method is its unfavorable scaling char-

acteristics with regards to reducing the statistical uncertainty of the numerical so-

lution. This means that in order to obtain a solution with half the variance in the

temperature and heat flux fields, four times the particles must be simulated [59].

Recent work in the area of Monte Carlo simulation method for solving the phonon

BTE have utilized a variance reduction technique referred to as the deviational for-

mulation [59]. This technique only simulates the particles which deviate from the
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known analytical form of the equilibrium distribution. As a result very ”small”

signals may be resolved with over four orders of magnitude computational speed up

versus traditional methods. Monte Carlo methods utilizing this variance reduction

approach have been used for the simulation of three dimensional nanoscale devices

under the isotropic assumption [59].

2.3.2 Equation of Phonon Radiative Transfer

The equation of phonon radiative transfer (EPRT) was first developed by

Majumdar [60]. This method exploits the similarity between photons and phonons

to express the phonon BTE in terms of a phonon intensity, Iω(ŝ, r, t) where Iω

represents the phonon energy flux in the direction ŝ within the frequency interval

(ω, ω + dω). The appeal of the EPRT representation rests in the wide range of

numerical methods that already exist in the radiation transport literature which

may be easily adopted for solving the EPRT. Numerical solution techniques for the

EPRT include the control angle discrete ordinates method (CADOM) [25] and the

finite difference method [61].

The EPRT has been used for simulations involving transport in thin film as

well as device modeling. It is capable of capturing transport on several different

length scales ranging from a few nanometers where transport is completely ballistic,

to micrometers where transport is diffusive in nature. In addition the EPRT is a

starting point for the derivation of continuum heat transport equations including

Fourier equation and the hyperbolic heat equation. One severe drawback of the
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EPRT is that by its formulation it is an isotropic method and therefore does not

account for anisotropy of phonon properties within the Brillouin zone. Therefore,

the EPRT is only strictly valid for simulations where isotropic transport is a valid

assumption.

2.3.3 Lattice Boltzmann Method

The lattice Boltzmann method is a deterministic particle based method first

formulated for fluid mechanics simulations. It has since been developed into a form

for solving the BTE, called the Lattice Boltzmann Kinetic Equation (LBKE) [62].

The lattice Boltzmann method discretizes the spatial domain into discrete nodes and

then solves the BTE by approximating the derivatives through finite differencing.

One of the drawbacks of the lattice Boltzmann method is the finite travel directions

that result from discretizing the spatial domain. This can lead to non-physical be-

haviors where phonons propagate faster than their group velocity in some directions.

Additionally, in ballistic transport regimes the lack of available transport directions

can manifest itself in ”ray effects” where energy is never allowed to reach certain

regions of the domain [63].

The lattice Boltzmann method has been used to determine both cross plane,

as well as in plane thermal conductivity of a silicon thin film, [26] and [28]. Due to

the difficulty in probing thermal conductivity experimentally on this scale, no exper-

imental results exist for comparison. However, results from the lattice Boltzmann

method used in [26,28] may be compared to thermal conductivity values obtained un-
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der a wide range of simplifying assumptions such as the gray approximation and the

isotropic assumption. It was discovered that the isotropic assumption can produce

thermal conductivity values with up to 25 percent error, highlighting the impor-

tance of accounting for Brillouin Zone anisotropy [26]. However, despite accounting

for anisotropy the results in this study were obtained only for one-dimensional heat

transport.

A variety of solution techniques to the Boltzmann transport equation have

been presented in this section. These modeling techniques have grown more sophisti-

cated over the years in an effort to capture the wide array of phonon physics that are

present within crystalline materials. In addition three dimensional simulations have

begun to appear in order to model devices with more complex geometries [25,59,64].

However despite the sophistication of the modeling methods detailed in this section,

the literature does not contain a modeling method which captures the anisotropy of

the Brillouin Zone within the framework of solving the Boltzmann transport equa-

tion in a three dimensional nanoscale device. In this thesis such a technique will be

presented. The next section covers the fundamental physics of phonon transport in

crystalline materials, this physics is then implemented into a Boltzmann transport

solver.

18



Chapter 3: Theory

3.1 Direct Space Lattice

The defining feature of a crystalline material is the periodic array of atoms of

which it is composed. The spatial locations of these atoms are completely defined

by a crystal lattice along with an associated basis. The crystal lattice is a regular

array of points in one, two, or three dimensional space. The basis refers to a group

of atoms attached to each lattice point, where the group may consist of one atom, a

few atoms, or even entire molecules. Encapsulating the atoms which form a single

basis is a unit cell. The crystalline material is constructed through a tiling of these

unit cell with each unit cells containing the exact same basis of atoms. Fig. 3.1

contains a diagram of a two dimensional crystal. There are many types of crystal

lattice systems [30], however this work deals primarily with materials that exhibit

cubic crystal lattices. There are three types of cubic crystal lattices: simple cubic

(SC), body-centered cubic (BCC), and face-centered cubic (FCC), a diagram of all

three lattice types is given in Fig. 3.2. Common semiconductor materials such as

silicon and germanium exhibit an FCC structure.

A crystal lattice may be completely defined through primitive lattice vectors

(a1,a2,a3), where the location of any point in the lattice is given by a lattice vector
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a1

a2

Figure 3.1: A two dimensional crystalline material with a three atom basis. a1 and
a2 are the direct lattice vectors. The dotted region denotes a single unit cell, each
unit cell is associated with a lattice point and contains a three atom basis (denoted
black, red, and green)

T ,

T = n1a1 + n2a2 + n3a3 n1, n1, n1 ∈ Z . (3.1)

The crystal lattice is invariant under any translation by a lattice vector, meaning

that all points in a lattice are equivalent. The primitive lattice vectors for the three

types of cubic lattices are as follows:

SC

a1 = ax̂

a2 = aŷ

a3 = aẑ

BCC

a1 =
a

2
(−x̂+ ŷ + ẑ)

a2 =
a

2
(x̂− ŷ + ẑ)

a3 =
a

2
(x̂+ ŷ − ẑ)

FCC

a1 =
a

2
(ŷ + ẑ)

a2 =
a

2
(x̂+ ẑ)

a3 =
a

2
(x̂+ ŷ)
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(a) (b)

(c)

Figure 3.2: Cubic lattice structures: (a) simple cubic lattice where atoms lie at the
vertices only, (b) body-centered cubic (BCC) where atoms lie at the vertices as well
as the cell centroid, (c) face-centered cubic (FCC) where atoms lie at the vertices
as well as the face centers.
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The direct lattice in conjunction with the basis completely describe the equi-

librium positions of all atoms within a material. However, in reality atoms do not

lie stationary at their equilibrium positions, but rather oscillate about their equi-

librium positions with some finite displacement. The mathematical apparatus for

describing these lattice vibrations is called lattice dynamics and will be the focus of

the Sec. 3.3.

3.2 Reciprocal Space Lattice and Brillouin Zone

In addition to a direct space lattice, the concept of a reciprocal space lattice

proves extremely useful towards understanding the physics underlying phonon trans-

port. The reciprocal lattice is completely defined by the reciprocal lattice vectors

(b1, b2, b3), where all points in the reciprocal space lattice may be written in the

form,

G = k1b1 + k2b2 + k3b3 k1, k2, k3 ∈ Z . (3.2)

The reciprocal space lattice vectors are related to the real space lattice vectors

through:

bi = 2π
aj · ak

|ai · (aj × ak)|
. (3.3)
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The reciprocal lattice vectors for each cubic type are:

SC

b1 =
2π

a
x̂

b2 =
2π

a
ŷ

b3 =
2π

a
ẑ

BCC

b1 =
2π

a
(ŷ + ẑ)

b2 =
2π

a
(x̂+ ẑ)

b3 =
2π

a
(x̂+ ŷ)

FCC

b1 =
2π

a
(−x̂+ ŷ + ẑ)

b2 =
2π

a
(x̂− ŷ + ẑ)

b3 =
2π

a
(x̂+ ŷ − ẑ)

Reciprocal space may be conceptualized as the space of vibrational modes in

a material. A point in reciprocal space is mapped by a wavevector k, analogously

to a point in real space being mapped by a position vector r. The wavevector k

corresponds to a certain vibrational mode, i.e. simple harmonic motion of all the

atoms in a material at some characteristic frequency ω. It can be shown that all

physically distinct vibrational modes correspond to a wavevector within the first

Brillouin zone. The first Brillouin zone for a given crystal structure is constructed

by connecting the origin in reciprocal space to all lattice points in reciprocal space

by a line and then bisecting these lines with perpendicular planes. In doing so, the

zone created about the origin is called the first Brillouin Zone, see Fig. 3.3 for the

first Brillouin zone of the FCC crystal lattice.

3.3 Lattice Dynamics

Lattice dynamics describes the dynamical motion of the atoms within a crys-

talline material. To determine the dynamics of all atoms within a crystal, the

potential energy function of the entire crystal is differentiated to give the forces on
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Figure 3.3: First Brillouin zone of a Face Centered Cubic crystal lattice

each atom, leading to equations of motion. Solving these equations of motion leads

to the atomic displacements being governed by waves of vibrational motion, where

each wave is characterized by wavevector, k, and branch, λ.

Consider the potential energy V of a crystal. V is assumed to be a function of

the instantaneous positions of each atom within the crystal and is minimized when

all atoms occupy their equilibrium positions. Expanding V in a Taylor series about

the equilibrium positions of the atoms leads to,

V = V0+
∑

i
p

∑

α

∂V
∂rα(ip)

∣
∣
∣
∣
0

uα(ip, t)+
1

2

∑

i i′

p p′

∑

αβ

∂2V
∂rα(ip)∂rβ(i′p′)

∣
∣
∣
∣
0

uα(ip, t)uβ(i
′p′, t)+· · · .

(3.4)
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In the above equation rα(ip) is the α Cartesian component of the position vector of

the p-th atom in the basis attached to the lattice point labeled by i, while uα(ip, t)

is the time dependent displacement of the Cartesian component α of atom (ip)

from equilibrium. The first term of Eq. 3.4, V0, refers to the potential energy

of the crystal when all atoms are in their equilibrium position and is a constant

representing the energy of the lattice once all vibrations have been frozen out. This

term does not affect the dynamical motion of the lattice as it adds nothing to the

force experienced by each atom. The second term corresponds to the force felt by

the atoms at equilibrium, and is trivially zero since the Taylor expansion is taken

about each atom’s equilibrium positions. Thus the third, or harmonic, term in the

expansion is the first to contribute a force on the atoms. Furthermore, if the atomic

displacements are small then higher order terms in the potential expansion may be

neglected in what is referred to as the harmonic approximation.

The forces on each atom are found by taking the negative gradient of the

harmonic portion of the potential energy, leading to the following equation of motion

for an atom:

mpüα(ip, t) = −
∑

i′

p′

∑

β

Φα,β(ip; i
′p′) uβ(i

′p′, t)

Φα,β(ip; i
′p′) =

∂2V
∂rα(ip)∂rβ(i′p′)

∣
∣
∣
∣
0

(3.5)

where the force constant matrix Φ(ip; i′p′), characterizing the forces between atoms

(ip) and (i′p′), has been introduced. This is a differential equation which is com-
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monly solved through an ansatz, such as the one introduced in [30],

uα(ip, t) =
∑

k

Uα(kp)e
i(k·Ri−ωt) , (3.6)

here Ri is the spatial location of the lattice point i. Note that the form of the

displacement vector is a linear combination of plane waves. In addition the plane

wave polarization vector U is in general complex and thus by convention the real

space displacement corresponds to the real part only.

Inserting Eq. 3.6 into Eq. 3.5 and performing algebraic manipulation yields

the eigenvalue equation:

∑

i′
p′

∑

β

[
Φα,β(ip; i

′p′)eik(Ri′−Ri) − ω2δp,p′δα,β
]
Uβ(k, p

′) = 0 . (3.7)

Therefore the determination of the frequency and mode shape of the vibration asso-

ciated with wavevector k is determined by solving the eigensystem of the dynamical

matrix defined as,

Dp,p′(k) =
∑

i′

Φ(1p; i′p′)eik·Ri′ . (3.8)

It is important to understand that due to the invariance of V under uniform trans-

lation by any lattice vector T , only the relative difference (|Ri −Ri′|) of two points

in the lattice affect the dynamical matrix. Therefore the lattice point denoted by

i may be arbitrarily set to i = 1 where Ri=1 = 0, this has been done in Eq. 3.8.

Note that the dynamical matrix is a continuous tensor function of the wavevector

k and accounts for all interactions of atom (1p) with the rest of the crystal. The
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D =

Force on atom

p = 1 due

displacement of

atom p′ = 1

Force on atom

p = 1 due

displacement of

atom p′ = 2

Force on atom

p = 2 due

displacement of

atom p′ = 1

Force on atom

p = 2 due

displacement of

atom p′ = 2

Figure 3.4: Visual depiction of what the blocks of the dynamical matrix represent
in terms of forces and displacements.

dynamical matrix can be interpreted as being composed of blocks which represent

the force felt by the p−th atom in the unit cell due to displacements by the p′-th

atom in the unit cell, where each block is modulated by some phase factor. A single

block of the dynamical matrix is a: 3 × 3 matrix for a three dimensional crystal,

2× 2 matrix for a two dimensional crystal, scalar for a one dimensional crystal (see

Fig. 3.4 for a visual representation).

3.3.1 1-D Example

To demonstrate how the dynamical matrix is constructed and used to obtain

the vibrational properties of the lattice, consider the simple case of a one dimensional

lattice with a two atom basis, the system is depicted in Fig. 3.5.
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0

i = 1

p = 1 p′ = 2

m2 m1 m2 m1 m2

Figure 3.5: A one dimensional lattice with a two atom basis is depicted. The unit
cell, labeled by i = 1 is denoted by dashed lines. Within this unit cell, the basis
atoms have been labeled. For convenience the lattice vector of cell i = 1 is centered
on the origin.

In the one dimensional case the dynamical matrix defined in Eq. 3.8 reduces

to the simplified form:

Dpp′(k) =
∑

i′

Φ(1p; i′p′)eikRi′ ,

Φ(1p; i′p′) =
∂2V

∂r(1p)∂r(i′p′)

∣
∣
∣
∣
0

,

(3.9)

note that in one dimension the Cartesian component subscripts may be dropped.

To proceed an interatomic potential is required to describe the interaction between

atoms, for ease of presentation assume that each atom interacts only with it’s nearest

neighbors via a linear spring-like force, where the potential energy of each spring is

given by:

φ(r) =
A

2
(r − x0)

2 , (3.10)

here A is the strength of the interatomic bond and x0 is the equilibrium separation.

Note that with this potential form the harmonic approximation is exact.

Once an analytical form for the interatomic potential has been chosen the

potential energy of the entire crystal may be written in the harmonic approximation
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leading to the expression,

V =
1

2

∑

i,i′

p,p′

φ (|r(i, p)− r(i′, p′)|) ,

=
A

4

∑

i,i′

p,p′

(|r(i, p)− r(i′, p′)| − x0)
2 .

(3.11)

From this expression the force constants are extracted by differentiating twice. Tak-

ing the first derivative with respect to an arbitrary atoms (js) yields:

∂V

∂r(js)
=

A

4

∑

i,i′

p,p′

{

2(|r(ip)− r(i′p′)| − x0)

(
r(ip)− r(i′p′)

|r(ip)− r(i′p′)| [δijδps − δi′jδp′s]

)}

= A
∑

i′

p′

(|r(js)− r(i′p′)| − x0)
r(js)− r(i′p′)

|r(js)− r(i′p′)| .

(3.12)

Differentiating a second time with respect to an arbitrary atoms (j′s′) gives the

expression:

∂2V

∂r(js)∂r(j′s′)
=

A
∑

i′
p′

(
r(js)− r(i′p′)

|r(js)− r(i′p′)| [δjj′δss′ − δi′j′δs′p′]

)
r(js)− r(i′p′)

|r(js)− r(i′p′)|+

(|r(js)− r(i′p′)| − x0)×
(

δjj′δss′ − δi′j′δs′p′

|r(js)− r(i′p′)| − (r(j, s)− r(i′p′))2

|r(js)− r(i′p′)|3 [δjj′δss′ − δi′j′δs′p′]

)

(3.13)
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Evaluating eq. 3.13 at equilibrium, and taking i to be the unit cell attached to the

lattice vector which coincides with the origin, i.e. i = 1 and Ri=1 = 0, reduces the

force constant expression to:

Φ(1p; i′p′) =
∂2V

∂r(1p)∂r(i′p′)

∣
∣
∣
∣
0

= A
∑

j
s

[δ1i′δpp′ − δi′jδp′s] . (3.14)

Once the force constants have been extracted from the chosen interatomic

potential the dynamical matrix is formed. Inserting Eq. 3.14 into Eq. 3.9 gives the

expression,

Dpp′(k) =
∑

i′

Φ(1, p; i′, p′)eikRi′

=A
∑

i′






∑

j
s

δ1i′δpp′ − δi′jδp′s




 eikRi′

=A
∑

j
s

δpp′e
ikR1 − A

∑

i′

eikRi′ ; R1 = 0

=A
∑

j
s

δpp′

︸ ︷︷ ︸

Term 1

−A
∑

i′

eikRi′

︸ ︷︷ ︸

Term 2

.

(3.15)

Note in the the final expression the summation indices, j, s, i′, range only over atoms

that interact with the atom under consideration, i.e. the nearest neighbor.

It is instructive to assemble the dynamical matrix term by term to gain intu-

ition with how atoms interact with one another. When considering the dynamical

matrix one may think of term Dpp′ as a measure of the force felt by atom p due to

displacement of atom p′ with a phase modulation (the cells in the lattice and atoms
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in the basis are labeled in Fig. 3.5). Assembling the dynamical matrix gives the

following terms:

D11 =

Term 1
︷ ︸︸ ︷

A
︸︷︷︸
j=1
s=2

+ A
︸︷︷︸
j=0
s=2

−
Term 2
︷︸︸︷

0

D22 =

Term 1
︷ ︸︸ ︷

A
︸︷︷︸
j=1
s=1

+ A
︸︷︷︸
j=2
s=1

−
Term 2
︷︸︸︷

0

D12 =

Term 1
︷︸︸︷

0 −
Term 2

︷ ︸︸ ︷

Aeik0
︸ ︷︷ ︸

interaction
of atom 1
w/ atom2
in cell 1

− Ae−ik
︸ ︷︷ ︸

interaction
of atom 1
w/ atom 2
in cell 0

D21 =

Term 1
︷︸︸︷

0 −
Term 2

︷ ︸︸ ︷

Aeik0
︸ ︷︷ ︸

interaction
of atom 2
w/ atom1
in cell 1

− Ae−ik
︸ ︷︷ ︸

interaction
of atom 2
w/ atom 1
in cell 2

.

(3.16)

Thus the fully assembled dynamical matrix has the form:

D(k) =







2A −A
(
1 + e−ik

)

−A
(
1 + eik

)
2A







. (3.17)

3.3.2 Vibrational Properties

The dynamical matrix contains information about several fundamental vi-

brational properties of the lattice including: mode shapes, vibrational frequencies,

and group velocities. The wavevector k may be thought of as enumerating the vi-

brational modes of the material, for each k there are n unique vibrational modes

corresponding to the n eigenvector/eigenvalue pairs of the dynamical matrix, where:

n = number of dimensions× number of atoms in basis .
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The n values of the vibrational properties at each wavevector are referred to as

branches, where each branch may be labeled as λ. Therefore a vibrational mode is

uniquely defined by a wavevector and branch, i.e. (k, λ)

Obtaining the mode shapes and frequencies of each vibrational mode reduces

to solving the generalized eigensystem:

DU − ω2MU = 0, (3.18)

where M is the diagonal mass matrix. Solving for the frequencies in the one dimen-

sional example presented in Sec. 3.3.1 yields:

ωac(k) =
√

A/(m1m2)

√

m1 +m2 −
√

m2
1 +m2

2 + 2m1m2 cos(k)

ωop(k) =
√

A/(m1m2)

√

m1 +m2 +
√

m2
1 +m2

2 + 2m1m2 cos(k) ,

(3.19)

for a plot of these values, see Fig. 3.6. The two distinct frequencies per wavevector,

a result of the two atom basis, are said to belong to either the acoustic or opti-

cal branches. The naming convention stems from the fact that sound waves in a

material correspond to the acoustic branch, while the high energy optical branch

may be excited by photons in certain ionic crystals [65]. The dispersion curves, i.e.

the wavevector-frequency relations, for the linear chain display qualitative behavior

which extend to more general three dimensional lattices. One such behavior is that

at the center of the Brillouin zone there will always be certain branches that tend to
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Dispersion Plot for Two-Atom Linear Chain

Figure 3.6: Frequencies of the acoustic (yellow line) and optical (blue line) modes.

0, i.e. the acoustic modes, while the other branches will tend towards a maximum

frequency, i.e. the optical modes. Conversely, all branches level out at the Brillouin

zone edge and their slopes approach 0.

In addition to vibrational frequency, group velocity vg is an inherent property

of a vibrational mode. The group velocity characterizes the speed at which energy

within a vibrational mode travels, and defined as:

vg = ∇k ω (3.20)
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Applying this to our one dimensional example yields the following group velocity

equations for the linear chain:

vg,ac(k) = −
√
A m1 m2 sin(k)

2
√

m2
1 +m2

2 + 2m1m2 cos(k)
√

m1 +m2 −
√

m2
1 +m2

2 + 2m1m2 cos(k)

vg,op(k) = −
√
A m1 m2 sin(k)

2
√

m2
1 +m2

2 + 2m1m2 cos(k)
√

m1 +m2 +
√

m2
1 +m2

2 + 2m1m2 cos(k)
,

(3.21)

for a plot of these values, see Fig. 3.7. The group velocities of the linear chain also

display behavior that is common to general three dimensional lattices. Namely the

velocity of the acoustic modes is maximum at the Brillouin zone center, while the

optical mode’s group velocity becomes zero. In addition the group velocity of both

modes decrease towards the Brillouin zone edge, although in real crystals the group

velocity does not always vanish at the Brillouin zone boundary as it does here.

34



-π 0 π

 v
g
 

0

1
√

2

√

A

m1 +m2

−

1
√

2

√

A

m1 +m2

Group Velocity Plot for Two-Atom Linear Chain

Figure 3.7: Group velocity of the acoustic (yellow line) and optical (blue line)
branches.

3.4 Quantum Nature of Phonons

Individual vibrational modes, characterized by a wavevector k and branch in-

dex λ, represent a collective motion of lattice ions where the vibrational modes are

decoupled from one another within the harmonic approximations. Therefore, each

mode may be described quantum mechanically by the harmonic oscillator Hamilto-

nian:

Hk,λ = ~ωk,λ

(

N̂k,λ +
1

2

)

, (3.22)
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where N̂k,λ is the number operator that gives the quanta of energy, or number of

phonons, in the mode (k, λ), for a derivation of this expression see [65]. A well known

property of a harmonic oscillator is that the the energy levels are quantized [66] and

may be written in the form:

Ek,λ =

(

Nk,λ +
1

2

)

~ωk,λ , (3.23)

where Nk,λ represents the number of phonons of the quantum state (k, λ).

Interpreting phonons as a quantum of energy for de-localized lattice vibration

is referred to as the wave description of phonons, this is because a phonon wavefunc-

tion is of the form of a plane wave. However, there exists an alternative interpreta-

tion known as the particle description of phonons [67]. The particle description seeks

to localize phonons both in real space, as well as in wavevector space. In order to

localize a phonon for a given quantum state (k, λ), a phonon wave-packet is formed

through a superposition of phonon wavefunctions. Each wavefunction forming the

superposition has a wavevector contained in a small region of reciprocal space, ∆k,

centered on the wavevector of interest k [68]. The resulting wavepacket is localized

in both real and reciprocal space with a small uncertainty in both, see Fig. 3.8. It

is important to note that an implicit assumption of the particle viewpoint is that

enough waves exist in a lattice to form a wavepacket. It will be shown in Sec. 3.5

that this amounts to the crystal having a sufficient number of unit cells. In this work

all crystals studied will be sufficiently large enough to be modeled in the particle

description.
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The phonon wavepacket centered at (k, λ) possesses the same properties as

the quantum state, namely the same frequency and group velocity. Therefore, the

energy of a phonon wavepacket is given by Eq. 3.23. Furthermore, the energy

propagates at the group velocity vg(k, λ).

The occupation of a given mode is the quanta of energy within that mode,

with respect to the particle description the occupation number is the number of

wavepackets corresponding to a given mode that exist within a region of space. The

differential equation governing the occupation of various phonon states was first

detailed by Robert E. Peierls [55]. The time evolution of the occupation for a given

phonon state is governed by the differential equation:

∂Nk,λ

∂t
+ vg(k, λ) ·

∂Nk,λ

∂r
=

(
∂Nk,λ

∂t

)

collision

. (3.24)

This expression is the phonon Boltzmann Transport Equation (BTE). It describes

the time rate of change of a phonon state through advection as well as collisional

terms. The collisional terms are a result of isotope scattering, boundary scattering,

as well as phonon-phonon interactions. Physical justification for Eq. 3.24 is given

in [67] and [55].

Once phonon properties such as vibrational frequency and group velocity have

been determined, the phonon Boltzmann transport equation gives a complete de-

scription of the spatial distribution of all allowed phonon modes within the material.

Therefore, the problem of phonon transport is reduced to the solution of a differen-

tial equation, or rather a set of coupled differential equations, one for each phonon
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Figure 3.8: Phonon representation in the wave representation (delocalized wave),
and the particle representation (localized wave packet)

mode. Once the spatial distribution of phonons is known, the temperature and en-

ergy fields within the domain are easily obtained. In the final section of this chapter

the determination of the allowed phonon modes within a material are discussed.

3.5 Determination of Allowed Wavevectors

The numerical procedure detailed in Ch. 4, relies on the knowledge of phonon

properties for all vibrational states available to the crystalline material being mod-

eled in order to solve the Boltzmann transport equation for these states. In this

section the process for determining the allowed vibrational states, denoted by (k, λ),

is discussed. Furthermore, it is shown that not only are allowed wavevectors discrete

in reciprocal space, but there are also a finite number of wavevectors corresponding

to physically unique vibrational modes. Therefore, the continuous representation of

wavevectors that is used in the vast majority of Boltzmann solvers is a simplifying

assumption. For crystals of dimensions on the nanoscale it has been shown that

the reduction in allowed vibrational modes do affect thermal properties [26, 28, 69]

and therefore considering wavevectors as discrete is a fundamentally more accurate
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Figure 3.9: Periodic boundary conditions for a one dimensional chain with a period
of M unit cells

treatment that better captures phonon physics. In the remainder of this section

physical arguments are laid out, which restrict the allowed wavevectors within the

first Brillouin Zone. Additionally, a more subtle point regarding the wavevectors is

proven, notably that for a crystal of finite size, only a finite number of physically

allowed wavevectors exist within the first Brillouin Zone.

The theory developed in Sec. 3.3 relied on the assumption that every atom

experiences the same analytical form of the potential energy and therefore is in the

bulk of the crystal far removed from any surfaces. However, this assumption relies

on the crystal being infinite in extent which is non-physical as this work deals with

crystals with length scales on the nanoscale. In order to reconcile these contradictory

assumptions, Born Von-Karman boundary conditions are applied.

Born/Von-Karman, boundary conditions state that the crystal is periodic in

M unit cells in one dimension or more generally periodic in (M1,M2,M3) unit cells

in three dimensions, see Fig. 3.9.
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To see how the assumption of periodic boundary conditions restricts the al-

lowed wavevectors within the Brillouin Zone, consider the ionic displacement result-

ing from a single vibrational mode given by Eq. 3.6,

uα(ip, t) = Uα(k, p)e
i(k·Ri−ωt) . (3.25)

Note that a traveling wave in the crystal lattice is completely characterized by a

wavevector and a polarization, (k, λ), the latter has been omitted in the above

equation but is implied.

Let the direct lattice of the crystalline material be defined by the lattice vectors

{a1,a2,a3}. Assuming the crystal has M1 unit cells in the a1 direction, M2 unit

cells in the a2 direction, and M3 unit cells in the a3 direction, then the atoms in the

basis attached to lattice site Ri are equivalent to the corresponding atoms in the

basis attached to the lattice site Ri +M1a1 +M2a2 +M3a3 by periodic boundary

conditions.

Defining G = M1a1 +M2a2 +M3a3, Eq. 3.25 implies:

uα(ip, t) = uα(jp, t) , (3.26)
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where j indexes the lattice point Ri +G. Combining Eq. 3.26 and Eq. 3.25 leads

to the relation:

eik·Ri =eik·(Ri+G)

eik·G =1

k ·G =2πr ; r ∈ Z

(3.27)

Therefore all admissible wavevectors must obey this relation. The form of k that

satisfy the relation were given in Eq. 3.3. Note the property of real space and

reciprocal lattice vectors that ai · bj = 2πδij. Finally, consider a general wavevector

written as k = r1
M1

b1 +
r2
M2

b2 +
r1
M1

b3 in the context of Eq. 3.27,

G · k =(M1a1 +M2a2 +M3a3) · (
r1
M1

b1 +
r2
M2

b2 +
r3
M3

b3)

=2πr1 + 2πr2 + 2πr3

=2πr

(3.28)

Therefore it is clear that the wavevectors k = r1
M1

b1+
r2
M2

b2+
r1
M1

b3 do satisfy periodic

boundary conditions, and furthermore only wavevectors of this form correspond to

physically realizable vibrational modes. Furthermore, because ri ∈ Z the wavevec-

tors that are allowed to exist in the crystal are discrete within reciprocal space.

These wavevectors are often referred to colloquially as k-points.

To show that there are a finite number of these wavevectors, consider the

atomic displacements that arise from the wavevectors:
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k =
r1
M1

b1 +
r2
M2

b2 +
r3
M3

b3

k′ =
r1 +M1

M1
b1 +

r2 +M2

M2
b2 +

r3 +M3

M3
b3

Inserting the second of these wavevector into the exponential term of Eq. 3.25

yields:

eik
′·Ri =e

i
[

r1+M1
M1

b1+
r2+M2

M2
b2+

r3+M3
M3

b3

]

·Ri

=e
i
[

r1
M1

b1+
r2
M2

b2+
r3
M3

b3

]

·Riei[b1+b2+b3]·Ri

=e
i
[

r1
M1

b1+
r2
M2

b2+
r3
M3

b3

]

·Riei[2π(r1+r2+r3)]

=e
i
[

r1
M1

b1+
r2
M2

b2+
r3
M3

b3

]

·Ri

=eik·Ri ,

where we have used Ri = M1a1+M2a2+M3a3. Therefore the two wavevectors cor-

respond to the exact same ionic displacement and are therefore equivalent. Thus all

unique wavevectors are contained in the range ri ∈ {1, 2, . . . ,Mi} or any contiguous

range of integers of length Ni. It is convention to choose this range to be (almost)

symmetric about 0 so that ri ∈ {−Mi

2
+ 1,−Mi

2
+ 2, . . . ,−1, 0, 1, . . . , Mi

2
− 1, Mi

2
}.

This convention restricts the wavevectors to lie within the first Brillouin zone. It

has been shown that the allowed wavevectors within the Brillouin Zone are of the
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form:

k =
r1
M1

b1 +
r2
M2

b2 +
r3
M3

b3

ri ∈
(

−Mi

2
+ 1,−Mi

2
+ 2, . . . ,−1, 0, 1, . . . ,

Mi

2
− 1,

Mi

2

)

.

(3.29)

These wavevectors may be determined solely from the crystal dimensions. For each

of these allowed wavevectors and for all branches the phonon properties are deter-

mined and supplied as inputs to the solution of the BTE.

One final note of importance is that in addition to Born Von-Karman boundary

conditions there do exist other conditions that may be imposed on the crystalline

system, one example being fixed end boundary conditions. These various boundary

conditions will alter the allowed vibrational modes within the system, however the

wavevectors will always remain discrete as well as finite for any other condition

imposed. Furthermore there will always be the same number of allowed wavevectors,

or stated differently the number of degrees of freedom is unaffected by the choice

of boundary conditions as it should be. Throughout the rest of this work periodic

boundary conditions are assumed as it has been shown that Born Von-Karman

boundary conditions are suitable for application to crystals considered in this work

[70].

In this section the relevant physics governing phonons has been introduced.

In order to model phonon transport in a finite system one only needs information

regarding the system size, or specifically the number of unit cells in the system,

as well as the empirical potential governing interatomic interactions. Knowledge of
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the number of unit cells allows extraction of the allowed wavevectors as detailed

in Sec. 3.5. Once wavevectors are known the dynamical matrix may be formed

and the eigensystem solved for every allowable wavevector and branch, providing

all necessary phonon inputs for the simulation, this process was detailed in 3.3.

With the phonon properties in hand one may use the phonon BTE to simulate

phonon transport for the system of interest. Though the form of the BTE is known,

analytical solutions exist only for a small set of simple situations. In the next

section, a general numerical approach for solving the phonon BTE is introduced

which explicitly accounts for the allowed wavevectors within the anisotropic Brillouin

Zone. The BTE is discretized and solved via a numerical algorithm yielding the

the spatial energy density for all phonon modes. From the known phonon energy

densities, energy and temperature profiles then determined.
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Chapter 4: Boltzmann Transport Solver Algorithm

This chapter presents the details for implementing a method for the simulation

of phonon transport via the Boltzmann transport equation. The method solves the

BTE for all allowed wavevectors within the anisotropic Brillouin zone. Section 4.1

details how inputs to the BTE code are obtained. Inputs to the Boltzmann transport

code include phonon frequency, group velocity, and relaxation time. In Sec. 4.2 the

governing differential equation is discretized for numerical solution via the control

volume method. Section 4.2.2 deals with the implemented boundary conditions

and their physical basis. Finally, in Sec. 4.2.3 the specifics of the computational

implementation are discussed, such as: parallelization, linear solver, and convergence

criterion.

4.1 Boltzmann Solver Inputs

The Boltzmann transport solver detailed in this thesis has been written in

such a manner that given a set of phonon properties, boundary conditions, and a

spatial grid, the Boltzmann transport equation is solved iteratively for each allowed

wavevector and all branches to obtain the steady state temperature and energy

profiles within the domain of interest. While, this procedure allows the solver to
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be applied to a wide range of geometries and crystalline material structures, it does

require the user to determine the phonon properties and supply these as inputs.

The manner in which these properties are determined is now detailed.

4.1.1 Frequencies and Group Velocities

In Ch. 3, the theoretical basis for obtaining phonon properties was presented.

There, the functional expression for an interatomic potential was differentiated to

obtain the dynamical matrix, along with the associated eigensystem which yields

the desired phonon properties. This process while conceptually straightforward and

thus useful for pedagogical purposes is difficult to implement in practicality. Often

materials of interest will have complex crystalline structure with several atoms in the

basis rendering the straightforward treatment exceedingly difficult as the interatomic

potential will, in general, be of a very complex form. An example of such a material

is the Hexahydro-1,3,5-trinitro-1,3,5-s-triazine crystal (RDX) pictured in Fig. 4.1.

As a result it is much more practical to use a molecular dynamics simulator to obtain

phonon inputs.

The General Utility Lattice Program (GULP) [71] is used to generate the

phonon properties for every allowed wavevector and all branches within the first

Brillouin zone. While GULP is capable of directly calculating the frequencies of all

phonon branches corresponding to a given wavevector, the full dynamical matrix is

obtained instead. The reason for obtaining the full dynamical matrix stems from
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Figure 4.1: RDX unit cell (figure from [2])

the definition of the group velocity:

vg = ∇kω . (4.1)

The group velocity may be numerically evaluated from through a central differenc-

ing scheme. However, this process may result in errors in regions of the Brillouin

zone where frequency values of different branches intersect. Degeneracies in the fre-

quencies may occur at points or lines within the Brillouin zone and are an inherent

feature of the point operation symmetry of the lattice [72].

In regions where degeneracy occurs, it may become difficult to discern which

frequency values corresponds to which phonon state (k, λ). Inability to discern

which branch a frequency corresponds to poses challenges to the central differencing

approach for obtaining the group velocity. This obstacle may be circumvented by
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instead using an alternative definition of the group velocity, which involves differen-

tiating the entire dynamical matrix. In doing so the issue of assigning frequencies

to the appropriate branches is circumvented as all the branch information is implic-

itly handled by numerically differentiating a single dynamical matrix as opposed to

differentiating multiple frequencies. The alternative definition for group velocity is:

∂ω

kα
=

1

2ω
e† ∂D

∂kα
e , (4.2)

where kα is the α-th component of the wavevector under consideration and e

and e† are the dynamical matrix eigenvector and its associated adjoint.

The derivation for this expression is as follows. Consider the eigensystem of

the dynamical matrix,

De− ω2e = 0 , (4.3)

and its Hermitian adjoint

e†D − e†ω2 = 0 , (4.4)

where the hermiticity of the dynamical matrix has been invoked. Taking the

derivative of Eq. 4.3 yields the expression:

∂D

∂kα
e +D

∂e

∂kα
− 2ω

∂ω

∂kα
e− ω2 ∂e

∂kα
= 0 . (4.5)

Rearranging this expression and left multiplying by e† yields:

48



e† ∂D

∂kα
e− 2ω

∂ω

∂kα
e†e+

(
e†D − e†ω2

) ∂e

∂kα
= 0 . (4.6)

Utilizing the orthonormality of eigenvectors of the dynamical matrix as well

as Eq. 4.4 reduces our expression to:

e† ∂D

∂kα
e− 2ω

∂ω

∂kα
= 0 . (4.7)

Rearrangement of this expression yields Eq. 4.2. The benefit of this method

is that the group velocity and frequency for each branch of a given wavevector has

no ambiguity.

Therefore, to perform a simulation, the allowed wavevectors, k, are first deter-

mined from the system geometry. Next, for each wavevector the dynamical matrix

is determined via GULP, and in addition six other dynamical matrices are deter-

mined at the wavevectors {kx ± dk, ky ± dk, kz ± dk} and the central differencing is

performed. The eigensystem, for each allowed wavevector, is then solved yielding

the phonon frequencies and eigenvectors. Finally the frequencies and eigenvectors

are used to evaluate Eq. 4.2, where by virtue of the method each phonon state (k, λ)

maps to a unique frequency, eigenvector, group velocity triplet. The only remaining

phonon input required is the relaxation time.

4.1.2 Relaxation Times

The right hand side collisional term of the phonon Boltzmann transport equa-

tion represents phonon-phonon, phonon-electron, phonon-impurity, and phonon-
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boundary scattering. For a pristine infinite semiconducting crystal only phonon-

phonon interactions occur, as these arise naturally from the anharmonicity of the

interatomic potential. The complete mathematical description of three phonon in-

teractions was first derived by Peierls [55], where the time rate of change of the

occupation, N , of the phonon mode (k, λ) due to three phonon interactions is given

by:

(
∂N(k, λ)

∂t

)

collision

=

~

32π2ρ

∫

d3k′

[
∑

λ′λ′′

|b(k, λ;k′, λ′;k′′, λ′′)|2 × ωω′ω′′δ(ω + ω′ − ω′′)×

(N0 + 1)(N ′
0 + 1)N ′′

0 (g
′′ − g − g′)+

1

2

∑

λ′λ′′

|b(k, λ;k′, λ′;k′′, λ′′)|2 ωω′ω′′δ(ω − ω′ − ω′′)

(N0 + 1)N ′
0N

′′
0 (g

′ + g′′ − g)

]

,

(4.8)

here ~ is Planck’s constant divided by 2π, ρ is the material density, the in-

tegration ranges over the entire first Brillouin zone where the sum and integration

only includes phonon modes that satisfy pseudo-momentum conservation as well as

energy conservation, i.e.

k ± k′ =k +G

ωλ(k)± ωλ′(k′) =ωλ′′(k′′) ,

(4.9)
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,where G is any reciprocal lattice vector. Additionally, N0 is the equilibrium popula-

tion of a phonon mode as given by Bose-Einstein statistics, |b(k, λ;k′, λ′;k′′, λ′′)| rep-

resents the strength of the three phonon process (i.e. the coupling between modes),

and finally g represents how strongly the phonon mode occupation deviates from

the equilibrium value N0(k, λ). The physical basis of this expression, within the

particle description, may be understood as follows. The integration ranges over the

frequency surface within the first Brillouin zone defined through the delta functions

in Eq. 4.8. Points on the constant frequency surface where the pseudo-momentum

conservation rules are satisfied correspond to either a creation or an annihilation

event for mode (k, λ). The first term in the summation of Eq. 4.8 corresponds to a

creation event, while the second corresponds to an annihilation event (the factor of

1/2 accounts for double counting physically indistinguishable processes). See Fig. 4.2

for an illustration of the two types of three phonon scattering. By integrating over

the whole Brillouin zone in Eq. 4.8 and summing over all branches, the effect of all

possible annihilation and creation processes, on the occupancy of mode (k, λ), are

accounted for. Further information on phonon-phonon interactions may be found

in [55].

The Boltzmann transport equation has been solved exactly by retaining this

full scattering term [73–76], however this method is restricted to one-dimensional

systems under the assumption of small temperature deviation. Even with these

simplifications implementation of the iterative solution procedure proves to be com-

putationally demanding as it requires a double integral over a sufficiently fine grid of
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Figure 4.2: Three phonon interactions within the particle viewpoints, annihilation
(a) or creation (b) events

wavevectors within the first Brillouin Zone [77]. Therefore, Eq. 4.8 is often replaced

with the relaxation time approximation:

(
∂N(k, λ)

∂t

)

collision

=
N0(k, λ)−N(k, λ)

τ(k, λ)
. (4.10)

The relaxation time τ represents the average time a phonon travels before

colliding with a boundary, impurity, or other energy carriers. These collisions serve

to relax the phonon mode occupation back to equilibrium Bose-Einstein statistics,

N0(k, λ) A wide range of relaxation time values appear in the literature. Early

expressions for τ were derived from theory using simplifications such as the as-

sumption of low temperature [78, 79], or were fit to experimental data for bulk

crystals [80]. However, advances in ab-initio calculations have allowed for phonon

relaxation times to be fitted to results from first principles DFPT calculations [34].

These relaxation times have been found to accurately predict the thermal conduc-

tivity of common semiconductor materials silicon and germanium. Furthermore,
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these relaxation times have been been previously used in computational studies of

thin silicon films and therefore are applicable to length scales of interest within this

work. Thus for studies of silicon the following form of the relaxation times will be

used:

τ
(N)
j (ω, T ) =

1

A
(N)
j ω2T

[

1− exp(− 3T
ΘD

)
]

τ
(U)
j (ω, T ) =

1

A
(U)
j ω4T

[

1− exp(− 3T
ΘD

)
]

j = TA, LA (4.11)

A
(N)
TA

(meV2K s)−1

A
(N)
LA

(meV2K s)−1

A
(U)
TA

(meV2K s)−1

A
(U)
LA

(meV2K s)−1

253322 163921 2012 507

Table 4.1: Constants for evaluation of silicon phonon relaxation times, all values
obtained from [34]

4.2 Discretization

Obtaining the the energy and temperature profiles of a nanoscale device re-

quires the solution of the Boltzmann transport equation for every phonon state

that exists within the material. The Boltzmann transport equation for a general

wavevector and polarization (k, λ) under the relaxation time approximation is:
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∂Nk,λ

∂t
+ vg(k, λ) · ∇Nk,λ =

N0
k,λ −Nk,λ

τk,λ
. (4.12)

This expression cannot, in general, be solved analytically and therefore must

be discretized and solved using a numerical method. The numerical procedure used

is the control volume method which has long been applied to heat transfer and

fluid mechanics simulations [81]. The control volume method is straightforward to

implement, and by its very nature ensures energy conservation regardless of the

refinement level of the spatial grid [81]. The basic concept of the control volume

method is to partition the solution domain into non-overlapping control volumes

and integrate the differential equation of interest over each volume. Assuming the

solution variable is constant over each volume yields a system of linear equations of

size equal to the number of control volumes. This linear system is then solved to

obtain the solution variables of interest.

Consider a finite domain in real space denoted by Ω. Associated with this

domain is a discrete set of allowed vibrational modes which may exist within the

material that constitutes Ω, a single mode is uniquely defined through a wavevector

and branch index (k, λ). The spatial domain may now be discretized into NCV

volume elements or control volumes, where the ith generic control volume is denoted

by ∆Ωi. The domain with single control volume and the associated Brillouin zone

are depicted in Fig. 4.3, although the figure shows a two dimensional rectangular

domain and control volume the numerical discretization presented in this section is

applicable to a general three dimensional domain with polyhedral control volumes.
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Ω ∆Ωi BZ

Figure 4.3: Spatial domain Ω with control volume ∆Ωi and the associated Brillouin
zone with discrete kpoints.

In this work steady state solution are desired, where the general form of the steady

state Boltzmann transport equation within the relaxation time approximation for a

phonon state (k, λ) is written as:

vg · ∇Nk(r) =
1

τk

[
N0

k
(r)−Nk(r)

]
, (4.13)

where the branch index λ is implied on every term. vg represents the phonon group

velocity, τk is the relaxation time, N0
k
is the equilibrium occupation of the phonon

state, and Nk is the unknown occupation of the phonon state. The occupation of

a phonon state represent the number of energy quanta, or phonons, in that state.

The equilibrium occupation is determined through Bose-Einstein statistics, which

has the functional form:

N0
k
=

[

e
~ωk

kbT (r) − 1

]−1

(4.14)

where kb is the Boltzmann constant and T the temperature. Note that the equi-

librium distribution is independent of wavevector and depends only on the phonon

state frequency ωk.
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Next the Boltzmann transport equation is converted into its energy density

form. The energy density of the phonon mode is given by ek = (Nk +
1
2
)~ωk, where

within the particle description Nk describes the number of phonons in the spatial

region (r, r+dr), i.e. it is the phonon number density. The simulations in this work

are for temperatures that are sufficiently large such that the zero point energy, 1
2
~ωk,

may be neglected. Thus multiplying Eq. 4.13 by ~ωk yields the energy density form

of the BTE:

vg · ∇ek(r) =
1

τk

[
e0
k
(r)− ek(r)

]
. (4.15)

Device simulations often incorporate the effect of electron-phonon interactions.

When a transistor is turned on electrons are accelerated towards the drain, these

high-energy electrons interact with the crystalline lattice transferring energy and cre-

ating phonons. This phonon creation, known as Joule heating, is modeled through

a source term added to the RHS of Eq. 4.15:

vg · ∇ek(r) =
1

τk

[
e0
k
(r)− ek(r)

]
+ Sk , (4.16)

note that despite motivating the source term through the Joule heating analogy, it

is a general term which models any process that generates phonons.

Eq. 4.16 is now integrated over a polyhedral control volume ∆Ωi,

∫

∆Ωi

vg · ∇ek(r)dr =

∫

∆Ωi

1

τk

[
e0
k
(r)− ek(r)

]
dr +

∫

∆Ωi

Skdr . (4.17)
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In the control volume method it is assumed that the spatial discretization is suffi-

ciently fine that the variation of ek and e0
k
over a single control volume is very small.

Therefore ek and e0
k
are taken to be constant within each control volume,

∫

∆Ωi

vg · ∇ek(r)dr =
1

τk

[
e0
k,i(r)− ek,i(r)

]
∆Ωi + Sk,i∆Ωi . (4.18)

The LHS of Eq. 4.18 still requires discretization of the spatial operator.

Consider only the LHS of Eq. 4.18 and apply the Gauss divergence principle,

∫

∆Γi

vg · ek(r)n̂ dS , (4.19)

where now integration ranges over the surface of cell ∆Ωi, denoted ∆Γi, and n̂ is

the outward facing normal. The cell boundary may be divided into facets, where

over each facet n̂ and ek is constant. Under this assumption Eq. 4.19 becomes

# offacets
∑

m=1

Amek,mvg · n̂m , (4.20)

where m is an arbitrary facet of the control volume surface, ∆Γi, and Am is the

area of that facet. In order to resolve the value of ek,m, the first order upwinding

approximation is applied. The upwinding approximation states that the value of an

advected quantity at a facet between two control volumes is that of the cell center

of the upwind control volume, where the upwind direction is uniquely determined

by vg. The upwinding approximation is represented visually for two dimensions in

Fig. 4.4, and may be written mathematically for a general facet m as
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Figure 4.4: Examples of the upwind direction at all four facets of cell i for four
different phonon propagation directions (red, yellow, blue, and green). At face e, the
upwind direction corresponds to cell i. At face n, the upwind direction corresponds
to cell B. At face w, the upwind direction corresponds to cell A. At face s, the
upwind direction corresponds to cell i.

ek,m =
max(vg · n̂m, 0)

|vg · n̂m|
ek,i +

max(−vg · n̂m, 0)

|vg · n̂m|
ek,j , (4.21)

here j refers to the control volume that shares facet m with control volume i.

Once the spatial operator has been discretized, Eqs. 4.18, 4.20, and 4.21 may

be combined to yield

# offacets
∑

m=1

Am

[
max(vg · n̂m, 0)

|vg · n̂m|
ek,i +

max(−vg · n̂m, 0)

|vg · n̂m|
ek,j

]

vg · n̂m

=
1

τk

[
e0
k,i(r)− ek,i(r)

]
∆Ωi + Sk,i∆Ωi .

(4.22)

Eq. 4.22 represents a single linear equation within the system of equations corre-

sponding to the phonon mode (k, λ). The final step in the discretization procedure
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is to recast the linear system into matrix form, Kkuk = fk. The elements of the

matrix equations are:

(Kk)ij =







1
τk
∆Ωi +

∑# offacets
m=1 Am

max(vg·n̂m,0)
|vg ·n̂m|

vg · n̂m , i = j

Am
max(−vg·n̂m,0)

|vg ·n̂m|
vg · n̂m , i 6= j

(4.23)

and

(fk)i =
1

τk
∆Ωie

0
k,i + Sk,i∆Ωi (4.24)

The linear system may be solved for the unknown cell centered phonon state

energy densities, ek,i. This process is then repeated for all allowed wavevectors and

branches. Upon completion the total cell centered energy density may be computed

via the summation,

ei =
∑

k

ek,i . (4.25)

Often in addition to obtaining the energy field the temperature is also sought, there-

fore once the energy field has been obtained the temperature field is determined

through thermodynamic relations involving the specific heat.

4.2.1 Specific Heat

The volumetric specific heat is a thermodynamic quantity relating a materials

energy to its temperature, and is defined as

CV =

(
∂U

∂T

)

V

, (4.26)

59



where U is the internal energy density and the derivative is taking at constant

volume. Using this definition the mode-wise volumetric specific heat may be defined

as:

CV,k =
∂ek
∂T

, (4.27)

where it is assumed the material is stationary (once again the branch index is implied

for all terms indexed by the wavevector k). As temperature is a thermodynamic

quantity defined only in equilibrium, the phonon mode energy density in Eq. 4.27

may be replaced by the equilibrium value, e0
k
. Since the temperature dependence of

the phonon mode energy at equilibrium is known to be e0
k
= ~ωk

[

exp(~ωk

kbT
)− 1

]−1

the analytical form of the mode-wise specific heat,

CV,k =
1

V

(~ωk)
2

kbT 2

e
~ωk

kbT

[

e
~ωk

kbT − 1

]2 , (4.28)

where V is the volume of the crystal. Equation 4.28 is a fully quantum mechanical

expression in that it is a result of Bose-Einstein statistics and has been shown to be

in excellent agreement with experimental data [82].

The total specific heat of the crystalline material is determined by summing

all mode contributions,

CV =
∑

k

CV,k . (4.29)

Equation 4.28 shows that the specific heat is a function of temperature, however

for temperature ranges of interest in this work the specific heat will be assumed to

take on a constant value at some reference temperature Tref . The choice of Tref is
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not unique and for simplicity will be assumed to be that of the lowest prescribed

temperature boundary condition (see Sec. 4.2.2), therefore CV (T ) = CV (Tref).

The assumption of constant specific heat allows for a simple relationship be-

tween energy and temperature to be established, specifically:

e = CV × (T − Tref) , (4.30)

note that the energy density obtained in this manner corresponds to the difference

between the system energy density at temperature T and the system energy density

at temperature Tref . Finally, it is important to recall that the energy-temperature

relations obtained here are strictly only valid in an equilibrium system, where tem-

perature is defined. However, it is customary in Boltzmann transport simulations

to retain a pseudo-temperature, as defined by Eq. 4.30, even when the system is

out of equilibrium and refer to this quantity as the temperature.

Finally, note that the force vector of the linear system given in Eq. 4.24 may be

rewritten using the specific heat expression, and corresponding energy-temperature

relations, defined in Eq’s 4.30, 4.29, and 4.28. The updated force vector is,

(fk)i =
1

τk
∆ΩiCk(Ti − Tref) + Sk,i∆Ωi . (4.31)

4.2.2 Boundary Conditions

Phonons, which are quantized lattice vibrations, are confined to a material and

therefore scatter at material boundaries. Many works which appear in the literature
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that solve the Boltzmann transport equation quantify this scattering through the

inclusion of a boundary scattering relaxation time τb [28, 83–85]. However such a

relaxation time is insufficient for the description of boundary scattering in materials

with complex geometries and at material interfaces. Therefore, the work in this

thesis implements a more fundamental approach whereby the surface conditions are

applied as boundary conditions to the differential equation. In this manner, each

facet of a control volume may be assigned different types of boundary scattering,

boundary scattering can also vary for each allowed wavevector and branch. The three

types of boundary conditions implemented in the Boltzmann transport equation

solver are: Fourier interface condition, specular scattering, and diffuse scattering.

4.2.2.1 Fourier Interface Condition

Often a crystalline material may be grown on an amorphous substrate. One

example of this is in a FinFET device where the silicon fin is deposited on silicon

dioxide which is a disordered amorphous material. At such an interface, blackbody

behavior may be assumed whereby phonons propagating out of the crystalline mate-

rial and into the amorphous material are perfectly absorbed. Alternatively, phonon

modes entering the crystalline material may be assumed to be occupied at equilib-

rium Bose-Einstein statistics. The mathematical expression for a Fourier interface

condition is

ek,bound = CV,k (Tbound − Tref) ; vg(k) · n̂ < 0 (4.32)
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where n̂ is the boundary outward facing normal and Tbound is the temperature at

the control volume facet which intersects with the material interface. Note that this

boundary condition allows for a non-zero net flux through the boundary.

4.2.2.2 Specular Scattering Condition

Exposed material boundaries must reflect all phonons into the bulk of the ma-

terial. If at the atomic level the surface is perfectly ordered, phonons are assumed to

undergo specular reflection, depicted in Fig. 4.5. Mathematically, specular reflection

is expressed as:

ek′,bound = ek,i

vg(k
′) =

[
vg(k)

|vg(k)|
− 2

(
vg(k)

|vg(k)|
· n̂
)

n̂

]

|vg(k)| ,

(4.33)

here ek′,bound represents the energy density at the facet of control volume i that

intersects with the material boundary, where k and k′ satisfy the condition in Eq.

4.33. Note that specular reflection does not resist the component of energy flux that

is tangential to the material boundary.

4.2.2.3 Diffuse Scattering Condition

Fabrication techniques for nanoscale devices often create disorder within the

crystalline lattice near the device surface. This surface roughness is assumed to

diffusely reflect phonons [64, 86]. This diffuse reflection process is depicted visually

in Fig. 4.6. The mathematical expression for diffuse reflection is
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vg,i

n̂

vg,r = vg,i − 2(vg,i · n)

: Bulk Material
: Material Boundary

Figure 4.5: Phonon wavepacket undergoing specular reflection

vg,i

n̂ : Bulk Material
: Material Boundary

Figure 4.6: Phonon wavepacket undergoing diffuse reflection

ek,bound =
1

N

∑

k
′

ek′,i ; vg(k
′) · n̂ > 0

N =
∑

k
′

1 such that vg(k
′) · n̂ < 0 ,

(4.34)
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here ek,bound is the same expression as in Sec. 4.2.2.2. Diffuse scattering serves to

redistribute energy incident on the boundary isotropically. Note that diffuse scat-

tering does resist the component of energy flux tangential to the material boundary,

thus diffuse scattering engenders thermal resistance.

All three types of boundary conditions amount to specifying the solution vari-

able ek,i and are therefore essential or Dirichlet boundary conditions. Additionally,

diffuse and specular boundary conditions are dependent upon the prevailing en-

ergy field and will therefore require iteration to obtain the appropriate steady state

solution.

4.2.3 Computational Implementation

The final portion of this section covers the specifics of implementing the nu-

merical algorithm detailed in this chapter into a Boltzmann transport equation

code. A primary function of the code is to assemble and solve the linear system

(terms given by Eqs. 4.23 and 4.24) for each allowed wavevector and branch. There

exist a wide array of linear solver packages capable of solving the linear system.

In choosing which linear solver package to implement three criterion were consid-

ered. First the linear solver needed to use condensed row storage (CRS) in order

to avoid unnecessary floating point operations that grow costly for simulation of

large systems. Additionally, the solver must be capable of inverting non-symmetric

matrices, such as those that arise through application of the upwinding condition.
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Finally the solver must be iterative in nature as direct methods would again prove

too computationally expensive for large systems.

A generalized minimum residual (GMRES) iterative solver satisfying the three

criterion was chosen as it provided a combination of speed and accuracy. Specifics of

the solver implementation are as follows: the matrices are preconditioned through

an incomplete LU preconditioning step, twenty Krylov subspaces were used in the

inversion, and eight orders of magnitude reduction in the residual was enforced as a

convergence criterion. The GMRES solver as well as the preconditioner routine are

provided through the open source sparse matrix computation tool kit, SPARSKIT

[87]. Implementation of this linear solver gave a 40 times speed up for a problem size

of 1000 control volumes when compared to a direct solver which stores the entire

linear system.

In Sec. 4.2.2 it was mentioned that due to the nature of specular and diffuse

boundary conditions, the steady state solution must be computed iteratively. As

a result a condition must be established to determine when the numerical solution

{e(k)
i : i ∈ (1, · · · , NCV )} is sufficiently ”close” to the exact solution {e(exact)

i : i ∈

(1, · · · , NCV )}. Since the exact solution is in general not known, an alternative

metric for determining convergence is required. This is done by taking the l2 norm

of the difference of the total system energy vector for consecutive iterations and

requiring that it be sufficiently small with respect to the initial difference between

iterations one and two. Mathematically this condition is stated as,

‖e(k) − e(k−1)‖2 < ǫ ‖e(2) − e(1)‖2 (4.35)
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where the l2 norm has the traditional definition:

‖v‖2 =
[

N∑

i

v2i

]1/2

v ∈ R
N . (4.36)

The value of ǫ is dependent on the desired accuracy of the final solution and is

generally in the range 10−4 to 10−10.

The algorithm detailed in this section involves solution of the Boltzmann trans-

port equation for all allowable wavelengths and branches within the anisotropic first

Brillouin Zone. While this approach is more rigorous than gray or isotropic assump-

tions, it becomes computationally expensive for large system sizes. In Sec. 3.5 it

was shown that the finite size of a system restricts the allowed wavevectors within

the Brillouin zone. In addition the number of these allowed wavevectors increases

proportional to the volume of the crystal. Therefore within this algorithm, a lin-

ear system must be constructed and inverted for every allowed wavevector and all

branches, which is a computationally demanding procedure. However, for a given

iteration n, the assembly and solution of the linear system for a wavevector k is

dependent only on prevailing values of the temperature and energy field, geometric

quantities specific to the mesh, and phonon properties calculated a priori to the

simulation. Thus the energy values for each wavevector may be solved for indepen-

dently, allowing for parallelization of the algorithm.

The core concept of parallelization is that certain portions of a computer code

may be shared between separate computing threads. These threads then perform

operations simultaneously before returning control to a master thread which then
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moves on to the next portion of the computer code, this process is depicted in

Fig. 4.7. Parallelization is implemented within the Boltzmann transport equation

Serial Region

Parallel Region

Serial Region

Thread

0

Thread

0

Thread

1

Thread

2

Thread

3

Thread

n

Thread

0

Figure 4.7: A computer code with serial and parallel regions. A master thread
(Thread 0) controls program flow within a serial region. When a parallel region
is encountered work is distributed to n threads. Upon completion of the parallel
region control is returned to the master thread.

code via OpenMP directives. OpenMP is a computing tool comprised of compiler

directives, library routines, and environment variables for use on shared-memory
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machines [88]. By assembling and solving linear systems in parallel a 20 times speed

up is achieved when using 40 threads with a system size of 1000 control volumes.

A flow chart detailing the numerical algorithm outlined in this chapter for

solving the Boltzmann transport equation is given in Fig. 4.8. Thus determination of

the temperature profile through the Boltzmann algorithm may now be summarized:
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Determine phonon inputs:

• frequencies (ω)

• group velocity (vg)

• specific heat (CV )

• relaxation time (τ)

Define problem set up:

• material dimensions

• spatial mesh

Initialize Temperature

• Ti = Tinit

Initialize Energy (Eq. 4.35)

• ek,i = CV,k × (Ti − Tref)

Calculate boundary conditions from prevailing
energy and temperature field (Eqs. 4.32, 4.33, 4.34)

Assemble linear system Kkek = fk
for phonon mode (k, λ)
(Eqs. 4.23 and 4.24)

Solve for solution variable ek

Have all wavevectors k and branches been solved for?

Select new
phonon mode

(k, λ)

Sum all wavevectors to get energy field (Eq. 4.25)

Update temperature field (Eq. 4.30)

Has the solution solution varibale converged? (Eq. 4.35)

Proceed to
next iteration
select phonon
mode (k, λ)

Print energy and temperature fields

no

yes

no

yes

Solver Region

Iterative Region

Figure 4.8: Control flow within Boltzmann transport code.
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The fundamental difference between the algorithm presented in this chapter

and those presented in the literature is the solution of the Boltzmann transport

equation for all allowed wavevectors and branches within the anisotropic Brillouin

Zone. By solving the Boltzmann transport equation for every allowed wavevec-

tors and branches, anisotropy in the phonon transport may be captured in three

dimensional nanoscale simulations.

In this section a method of solving the Boltzmann transport equations has

been presented. The algorithm requires phonon properties as well as material di-

mensions as inputs and then solves the Boltzmann transport equation for all allowed

wavevectors and all branches in a three-dimensional domain. It is this solution tech-

nique which accounts for all vibrational modes, and thus all energy carriers, that

leads to a more fundamental model than what has previously been presented in the

literature. This capability coupled with the multi-dimensionality of the numerical

procedure generates a Boltzmann transport code capable of capturing the wide ar-

ray of phonon physics that occur within a nanoscale device. In the next section the

code’s capabilities are demonstrated. First a simulation of semi-ballistic transport

is performed and results obtained from the BTE code are compared to the semi-

analytical solutions to verify the mathematical accuracy of the code. Next a study is

performed to compare BTE solutions obtained under the isotropic solution to BTE

solutions which account for full Brillouin zone anisotropy. Finally a FinFET device

parameter study is performed to showcase the three-dimensional capability of the

solver.
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Chapter 5: Simulations and Results

5.1 Semi-Ballistic Transport

The Boltzmann transport equation is capable of accurate thermal modeling

in regimes where phonon transport is dominated by boundary scattering, such as

on the nanoscale. Accurate thermal modeling at the nanoscale requires capturing

transport from the ballistic regime, where phonons propagate without scattering

with other carriers, to the diffusive regime, where phonon-phonon scattering dom-

inates, this range of transport is referred to as semi-ballistic transport. Methods

such the Fourier equation of heat transfer assume that transport is completely dif-

fusive and are therefore only valid within the diffusive regime. Thus a simulation

of semi-ballistic transport may serve as a verification problem, testing the capabil-

ity of the BTE code to accurately model transport spanning diffusive to ballistic

regimes. Semi-analytical solutions of semi-ballistic transport are available within

the radiative transport literature, one such example is the plane-parallel problem.

The plane-parallel problem determines the radiation intensity field in a one dimen-

sional domain with absorbing and emitting gray media. Solutions to such a problem

have long been studied in the radiation transport literature [89–91]. The physics of

radiative transport are very similar to phonon transport, where instead of quantized
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lattice vibrations, quantized electromagnetic waves carry energy. In this section, the

problem set up for the plane-parallel problem is detailed, the analytical expression

for the exact solution is given along with the solution method, finally the results ob-

tained from the Boltzmann transport equation solver are verified against the exact

solution.

5.1.1 Verification Problem Set-Up

The physical setup of the plane-parallel problem is depicted in Fig. 5.1, note

that the wall temperature slip is characteristic of semi-ballistic transport, where the

temperature slip, ∆T , becomes zero in the diffuse transport limit. The governing

differential equation for the radiative intensity field in such a problem may be written

as [90]:

ŝ · ∇I = β (Ib − I) , I = I(r, ŝ)







I(0, ŝ) = Ib(T1) ; ŝ · x̂ > 0

I(τL, ŝ) = Ib(T2) ; ŝ · x̂ < 0

(5.1)

where ŝ represents the propagation direction, I the radiative intensity, and Ib the

blackbody equilibrium intensity. The quantity τL is the optical thickness of the

problem and is a measure of how strongly the radiative field interacts with the

medium. The analogous quantity, to τL in phonon physics is the Knudsen number

(Kn) which is defined as Kn = Λ/L, where Λ is the mean free path (MFP) and L

is the length of the domain. The MFP for a given wavevector k is Λk = |vg(k)|τk,

therefore each phonon mode will have its own Kn. For the remainder of of the
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T1

T2

T

x

∆T

: Temperature Profile

Figure 5.1: Temperature profile of a gray absorbing-emitting medium between two
infinite parallel plates at temperature T1 (red) and T2 (blue). The temperature
profile displays a temperature slip ∆T at the boundaries, a characteristic of semi-
ballistic transport

section we will work with a single averaged phonon mode and thus Kn will have

a single unique value. A Kn ≪ 1 correspond to diffusive transport, while a Kn

≫ 1 corresponds to the ballistic regime. It is important not to confuse the τk, the

phonon relaxation time, with τL, the optical thickness for radiation transport.
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The general solution for the non-dimensional temperature field in an absorbing-

emitting gray medium is given by [90]:

Φb(τ) =
1

2

[

E2(τ) +

∫ τL

0

Φb(τ
′)E1 (|τ − τ ′|) dτ ′

]

Φb(τ) =
T 4(τ)− T 4

2

T 4
1 − T 4

2

,

(5.2)

where the elliptic integral is defined as:

En(x) =

∫ 1

0

µn−2e
− x/µdµ . (5.3)

Integral Equations of this form may be solved through the method of successive

approximations, where an initial guess of the desired function, Φk
b is substituted into

the RHS of Eq. 5.2, the RHS of Eq. 5.2 is then computed yielding an updated,

Φk+1
b , the resulting function is then used as the guess in the k + 1 iteration. This

procedure is outlined in Fig. 5.2. Using the method of successive approximations

in conjunction with numerical quadrature, Φb was computed numerically for use in

verification of the Boltzmann algorithm.

To compare to the numerical solution, the inputs to the BTE code must be

altered to simulate gray photon transport. To that end a spherical Brillouin zone

is created to simulate the isotropic continuum of propagation directions allowed for

photons in radiative transport, see Fig. 5.3. As the the system being modeled

is gray, i.e. frequency independent, all phonon properties are assumed constant
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Rewrite Integral Equation in iterative form :

Φb(τ) =
1
2
E2(τ) +

1
2

∫ τL
0

Φb(τ
′)E1(|τ − τ ′|)dτ ′

↓

Φn+1
b (τ) = 1

2
E2(τ) +

1
2

∫ τL
0

Φn
b (τ

′)E1(|τ − τ ′|)dτ ′

Make initial guess for Φn=0
b :

Φ0
b(τ) =

1
2
E2(τ)

Calculate Φn+1
b from Φn

b :

Φn+1
b (τ) = 1

2
E2(τ) +

1
2

∫ τL
0

Φn
b (τ

′)E1(|τ − τ ′|)dτ ′

Compare change, δ in Φb from succesive iterations :

δ = ||Φn+1
b − Φn

b ||2

Is δ less than
some predetermined

tolerance, i.e
δ < ǫ ?

Set Φn
b = Φn+1

b

and perform
another iteration

Convergence reached :

Φn
b = Φb

yes

no

Figure 5.2: Method of successive approximations approach to solving the integral
equation for the exact solution to the plane parallel problem
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Figure 5.3: Schematic of a spherical Brillouin Zone.

except for the group velocity which was assumed to be constant in magnitude, and

collinear with the wavevector. The gray phonon properties are given in Table 5.1.

The simulation domain geometry replicates infinite parallel plates by specifying the y

and z dimensions to be many orders of magnitude larger than the x dimensions. The

plate at the x = 0 boundary was specified to be a Fourier interface condition with

T1 = 301 K and the high x boundary was specified to be a Fourier interface condition

T2 = 300 K. These conditions are analogous to the blackbody emitter-absorbers

from the plane parallel problem. The distance between the plates was varied to

investigate several Knudsen numbers (i.e. transport regimes). The transport regime

is quantified by the Knudsen number where as the separation goes to zero (Kn ≫ 1)
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Specific Heat 1.631× 106 J
m3·sec

Group Velocity Magnitude 6400 m
sec

Relaxation Time 7.2× 10−12 sec

Frequency 16.0 THz

Mean Free Path 4.608× 10−8 m

Table 5.1: Gray phonon properties

transport becomes ballistic, and as the separation reaches several mean free paths

(Kn < 1) the transport becomes more diffusive.

5.1.2 Verification Results

The results of the simulations for a range of Knudsen numbers are plotted in

Figs. 5.4, 5.5, 5.6, and 5.7.
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Figure 5.4: Temperature profile for domain length of 1
10

Λ
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Figure 5.5: Temperature profile for domain length of 1
2
Λ
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Figure 5.6: Temperature profile for domain length of 1 Λ
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x
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Figure 5.7: Temperature profile for domain length of 2 Λ

For all transport regimes the agreement is excellent between the numerical

algorithm and the exact solution.
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In addition to verifying the Boltzmann algorithm over a range of transport

regimes, a mesh convergence study was performed to ensure that the algorithm

converges to the exact solution as the mesh is refined. The results of the mesh con-

vergence study, Fig. 5.8, give confidence that the algorithm has been implemented

into the BTE code in a manner which reproduces exact numerical solutions.

101 102

10−4

10−3

10−2

Error =.014N−1.06

Number Control Volumes(N)

R
M
S
E
rr
or

Root Mean Square Error in Disrete Brillouin Zone Algorithm

Line of Best Fit
RMS Error

Figure 5.8: Logarithmic plot of root mean square (RMS) error between the Boltz-
mann algorithm and the exact numerical solution from [90]. Kn = 10
.
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The BTE code results for the semi-ballistic transport simulations have been

compared to semi-analytical solutions from radiation transport. The excellent agree-

ment verifies that the BTE algorithm has been correctly implemented into a BTE

code. In the following section the code is used to investigate the effect of Bril-

louin zone anisotropy. Finally the code is used to perform a parameter study of a

nanoscale device.

5.2 Effect of Anisotropy

The vast majority of studies which use the Boltzmann transport equation

to model nanoscale heat transport assume that high symmetry phonon properties

prevail in all directions within the Brillouin zone. This assumption is equivalent to

obtaining the dispersion curves of some material along a single high symmetry line,

most often along the Γ−X high symmetry line for the case of silicon( see Fig. 5.9),

and assuming those frequency values are isotropic throughout a spherical Brillouin

zone. Therefore, at any point in the Brillouin zone the frequency at that location is

a function of |k| only, as the frequency is assumed spherically symmetric.

The consequence of these assumptions is twofold. First, the assumption effec-

tively reduces the Brillouin zone shape to that of a sphere, as opposed to its true

shape of a truncated octahedron for an FCC crystal (inset of Fig. 5.9). Within this

sphere the frequencies, and all frequency dependent properties such as specific heat,

are assumed to be distributed isotropically. Secondly, the group velocities become

collinear with the wavevector and are therefore always directed radially outward.
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Γ X

ω

Dispersion Curve in Silicon along [100] Direction

Figure 5.9: Vibrational frequencies in silicon along the high symmetry line Γ − X
corresponding to the [100] direction. The inset depicts the Γ−X line (thick black
line connecting the blue dots) within the first Brillouin zone of silicon

The true behavior of phonons within the anisotropic Brillouin zone is in fact-

more complex. Consider the constant frequency contours of various branches within

the kz = 0 plane of the true anisotropic Brillouin zone given in Fig. 5.10. If the

the Brillouin zone plane were isotropic these contours should be circular. However,

only in certain regions can the contours be approximated as circles. The top row

of Fig. 5.10 corresponds to the acoustic modes which are believed to dominate

heat transport. The longitudinal acoustic mode (top right) is roughly circular near

the Brillouin zone plane center, however the contours deviate strongly away from
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Figure 5.10: Frequency contours within the kz = 0 first Brillouin zone for the first
transverse acoustic branch (top left), the longitudinal acoustic branch (top right),
the first transverse optical branch (bottom left), and the longitudinal optical branch
(bottom right).

circular near the Brillouin zone edge, becoming more square-like. The transverse

acoustic mode (top left) remains roughly square throughout the Brillouin zone plane

suggesting that the assumption of an isotropic Brillouin zone could lead to errors

in the phonon properties supplied to the Boltzmann transport equation. To verify

whether frequency values are truly anisotropic in three dimensions a fine grid of

wavevectors was created and the frequency values were determined via molecular
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dynamics. The resulting frequency space was then discretized and all wavevectors

corresponding to a frequency falling within a certain interval of frequency space were

plotted. It was found that the constant frequency surface of the transverse acoustic

mode is in fact a cube in three dimensions, see Fig. 5.11, further disproving the

isotropic assumption.

Figure 5.11: Constant frequency wavevectors of the transverse acoustic branch. The
blue edges of the constant frequency square are visual guides

.
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The anisotropy of frequencies within the Brillouin zone affects the phonon

group velocities. In the isotropic assumption the group velocities, defined as vg =

∇k ω, are directed radially away from the Brillouin zone origin. However, it is shown

in Fig. 5.12 that this simplification is not realistic. Figure 5.12 shows that away from

the Brillouin zone center, frequencies become more anisotropic and the direction of

phonon propagation deviates strongly from the radial direction. Additionally, for

the transverse acoustic mode the majority of phonon propagation directions align

along the x, y, z Cartesian directions, while a smaller percentage lie along the

diagonal directions. Since the phonon group velocity is the speed and direction

in which energy of a given mode is carried, therefore advection of a phonon mode

will strongly depend on group velocity. Therefore, Fig. 5.12 would suggest that

advection will be largest along the x and y directions and reach a minimal value

along the diagonal directions.

The anisotropic distribution of frequency in the Brillouin zone, along with

phonon mode group velocities which deviate from the radially outward direction,

indicate that temperature profiles obtained using the isotropic assumption may incur

some error. A two dimensional simulation of a thin silicon film with a heat source

was performed to study what effect, if any, anisotropy has on phonon transport and

the resulting temperature profile. The dimensions of the heat transport problem are

given in Fig. 5.13, in addition the thickness of the film was set to 17.4 nanometers

with diffusely reflecting boundary conditions.

Note that in general, different forms of the Boltzmann transport equation

(i.e. gray, frequency dependent with isotropic assumption, or fully anisotropic)
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Figure 5.12: Constant frequency wavevectors of the transverse acoustic branch. The
arrows protruding from each wavevector indicate the direction of phonon propaga-
tion in the kz = 0 plane

.

will predict different peak temperatures in the simulation of a heated domain [19].

Therefore comparison of the absolute temperature profiles of two different models

may not reveal the variation in heat conduction along different directions in the

plane. However, this study focuses on whether or not phonon properties, and group

velocities, obtained along a single high-symmetry line, are a valid description of heat
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heated region

100K Fourier boundary

100K Fourier boundary

100 nm

100 nm

20 nm

S = 1016 J/m3s

Figure 5.13: Simulation domain for the study of anisotropic effects in a thin silicon
film.

transport along all directions. In order to study this assumption, the temperature

profiles of two different Boltzmann transport models should be normalized so that

the maximum temperature for each model is equal. For simplicity the following

normalization is used,

Tnormalized =
T − Tmin

Tmax − Tmin
Tmin = 100K . (5.4)

The effect of this normalization is to restrict the temperatures within the domain to

be between 0 and 1. Throughout the rest of this section any reference to temperature

will implicitly be referring to the normalized temperature.
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A reference isotropic solution was required for comparison to the anisotropic

result. Therefore, a gray isotropic phonon simulation was performed to discretize

and solve the Boltzmann transport equation. The spatial domain was discretized

into a 71 × 71 grid of control volumes. The source term in the heated region is

distributed equally into all phonon modes. The phonon properties for this simulation

are identical to those used in the verification problem, which were given in Table

5.1. Due to the symmetry of the problem only a quarter of the plate was actually

simulated, the constant temperature contours of the isotropic simulation are given

in Fig. 5.14.

An anisotropic simulation was subsequently performed. All material and

phonon properties of silicon were obtained from the molecular dynamics approach

detailed in Sec. 4.1. The relaxation time model used was detailed in Sec. 4.1.2.

Since the purpose of this study is to investigate the directional dependence of heat

transport, only acoustic phonon modes were included in the simulation. The same

spatial mesh that was used in the isotropic simulation is used in the anisotropic

case. The source term was again equally distributed amongst all phonon modes.

The constant temperature contours for the anisotropic simulation are given in Fig.

5.15. Note the flattening of the temperature contours along the diagonal direction,

this flattening is most evident for the .3 temperature contours.

In order to directly compare the isotropic simulation to the anisotropic sim-

ulation, the difference between the two temperature profiles was taken. To obtain

the difference in the temperature profiles, the cell centered temperature values of

the anisotropic simulation were subtracted from the cell centered temperatures of
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Figure 5.14: Constant temperature contours obtained through solving the gray
isotropic Boltzmann transport equation

the isotropic simulation,

Tdiff = Tisotropic − Tanisotropic . (5.5)

The contours of the temperature difference of the two simulations are given in Fig.

5.16, in addition the percent differences between the two simulations are given in

5.17.
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Figure 5.15: Constant temperature contours obtained through solving the fully
anisotropic Boltzmann transport equation

The difference in the two solutions reveals that the isotropic assumption does

lead to error in determining the temperature profiles. Furthermore this error is

largest along the diagonal direction. This can be explained by considering the

frequency and group velocity behavior within the Brillouin zone (Figures 5.10, 5.11,

and 5.12). These figures demonstrate that the transverse acoustic modes preferably

transport energy along the ±x or ±y directions as opposed to along any direction.
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Figure 5.16: Constant temperature difference contours obtained by subtracting the
anisotropic cell centered temperatures from the isotropic cell centered temperatures.

Therefore, by assuming that transport along the ±x or ±y direction is the same as

along the plate diagonal, as is done within the isotropic assumption, the advection

along the diagonal is exaggerated. This leads to an over prediction of temperatures

along this diagonal line as seen in the temperature difference contours.

Note that the largest temperature difference occurs at 40.833 nanometers from

the origin and 20.833 nanometers from the source term boundary. The majority of
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Figure 5.17: Percent difference contours between the isotropic and anisotropic sim-
ulations.

longitudinal and transverse acoustic phonons will traverse this distance ballistically

without experiencing phonon-phonon scattering. Therefore the isotropic assumption

introduces artificial advection in certain directions. The difference between the two

models is least along the ±x or ±y direction as these directions correspond to the

direction in which the majority of transverse acoustic phonon modes propagate, see

Fig. 5.12. Finally note that at distances far from the source the two models agree

93



closely. This is a result of transport transitioning from ballistic to more diffusive

at these distances. At large distance, transport is dominated by diffusion, resulting

from the relaxation time term, as opposed to advection which is not accurately

modeled through the isotropic model. Therefore the isotropic assumption differs

the most from a fully anisotropic solution in regions where transport is dominated

by advection.

From the results presented in this section it appears that use of the isotropic

assumption may not be valid for two dimensional phonon transport simulations. The

cause for the inaccuracy, which arises from the isotropic assumption, stems from the

anisotropy of frequencies within the Brillouin zone. As a result of this anisotropy, the

group velocities, determined by the frequency values, advect phonons preferentially

along certain directions, leading to an anisotropy in phonon transport.

5.3 FinFET Design and Self-Heating

The Boltzmann transport equation algorithm presented in this work, is ca-

pable of modeling nanoscale heat flow in three dimensions. This capability has

application in the simulation of field effect transistors with a three dimensional fin

geometry (FinFET). The benefit of modeling the temperature profile in a transistor

is two fold. First it is important to determine the maximum temperature within a

transistor as critical electronic properties of the transistor are negatively affected by

temperature. These electronic properties include the drain saturation current and

the threshold voltage [11]. Sufficiently large temperatures reduce saturation current
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and threshold voltage, effectively reducing the transistor lifetime [11]. Therefore

thermal profile information is critical in determining possible failure in such devices

as well as predicting the long term reliability of the transistor device. The useful-

ness of the simulation is enhanced by the fact that experimental measurements of

transistors are difficult to perform due to the nanometer length scales of current

transistor designs. The second benefit of nanoscale modeling lies in the profiling of

new transistor designs. A wide array of device geometry parameters may be varied

and the temperature profile within the device may be modeled using the presented

algorithm to determine the design which most efficiently dissipates heat. The set

of geometric parameters which yield the lowest peak hotspot temperature should

maximize device performance and lifetime.

5.3.1 Problem Set-Up

A parameter study of a silicon on insulator (SOI) fin field effect transistor

(FinFET) was performed with the goal of analyzing the effect of fin width, and

source region geometry, on the peak temperature obtained within the fin. Three fin

widths were chosen as well as three source region geometries. In order to allow for

comparison between the various parameter combinations the overall energy sourced

into each FinFET is maintained at a constant value. The parameter values for

the FinFET and source region were drawn from the literature to ensure that the

simulations reflect realistic physical conditions of FinFET transistor devices. The

FinFET device has a characteristic length scale of ten nanometers, reducing the
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Figure 5.18: Idealized Simple Cubic Lattice: (a) Brillouin Zone including high sym-
metry points (Γ, X , M , and R) and lines (dotted), (b) real space lattice primitive
unit cell with atoms at vertices.

number of allowed vibrational modes as compared to a bulk device. In addition the

FinFET length scales are on the same order of magnitude as the phonon MFP’s

placing transport within the fin in the semi-ballistic regime. The device geometry,

source terms, and boundary conditions all vary in three dimensions, resulting in

three dimensional temperature profiles. Therefore, the wide array of features within

the presented Boltzmann algorithm are required for accurate modeling of the SOI

FinFET device.

For simplicity, it was assumed that the FinFET is composed of an idealized

Lennard-Jones solid with a simple cubic crystal lattice, the real space unit cell as

well as the associated Brillouin zone of the material are depicted in Fig. 5.18. The

chosen interatomic potential is the Lennard-Jones potential which has the form:

VLJ,n(rij) = 4Bn

(
A12

n

r12ij
− A6

n

r6ij

)

; n = NN or NNN ,
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here rij is the distance between atom i and atoms j, An and Bn are constants chosen

to reproduce the lattice constant and frequency spectrum displayed by common

semiconductor materials, and NN and NNN represent the interactions between

nearest neighbor and next-nearest neighbor respectively. The constants appearing

in the interatomic potential are given in Table 5.2.

Empirical Potential Constants

Ann 4.4545× 10−10 meters

Bnn 2.7× 10−20 Joules

Annn 6.2996× 10−10 meters

Bnnn 1.9× 10−20 Joules

Table 5.2: Lennard Jones parameters

The phonon properties are determined from the analytical form of the inter-

atomic potential, using the methods detailed in Sec. 3.3 and 4.1. The resulting

dispersion along the high symmetry lines of the cubic Brillouin zone are given in

Fig. 5.19. From the dispersion relations, the phonon group velocities are obtained

through the central differencing procedure outlined in Sec. 4.1.

The phonon relaxation times are obtained from literature values given in

ref. [1]. This relaxation time model was chosen as it accounts for the temperature

and frequency dependence of relaxation times. In addition the model differentiates

between both longitudinal and transverse modes as well as between normal and
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Figure 5.19: Frequency - wavevector relations for a series of high-symmetry lines
within the first Brillouin zone

Umklapp scattering processes. Finally, the functional forms have been fit to exper-

imental data and accurately reproduce the thermal conductivity values in semicon-

ducting materials [1]. The functional forms of the various phonon scattering rates,

along with the parameter values, are reproduced from [1] in Tables 5.3 and 5.4.

A source term is incorporated into the appropriate BTE’s in order to model

electron - phonon interactions or Joule heating. Joule heating occurs when high

energy electrons interact with the lattice, transferring their energy to the lattice and

creating phonons. The vast majority of electron-phonon interaction occurs within

a region of the transistor known as the channel [9]. The location of this channel

region is assumed to coincide with the fin region of highest electron density. Due

to the high energy of electrons within the channel, the majority of energy is known

to be transferred to high frequency phonons [9]. In order to capture this effect, a
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Phonon Branch Umklapp
Scattering
Rate (τ−1

U )

Normal
Scattering
Rate (τ−1

L )

Transverse BTUω
2Te−CT/T BTωT

4

Longitudinal BLUω
2Te−CL/T BLω

2T 3

Table 5.3: Functional form of the phonon scatter-
ing rates from [1]

Scattering Rate Parameters

BT (K−4) 2× 10−13

BTL (s/K−3) 2× 10−21

BTU (s) 1× 10−19

BLU (s) 5× 10−19

CT (K) 55

CL (K) 180

Table 5.4: Parameter values for phonon scattering
rates in Table 5.3 given by [1]

source term is included in the BTE’s (i.e. Sk 6= 0 in Eq. 4.31) corresponding to

phonon states which have a frequency ω(k) ≥ ωmax/2 where ωmax is the maximum

vibrational frequency of the material. As a result of this assumption, energy is

injected into high frequency modes which tend to have lower group velocity and are

thus inefficient at transporting thermal energy. Therefore the removal of heat will

require energy to decay from high frequency modes to lower frequency modes which

then carry the heat away from the heated region.

Joule heating occurs in the regions of the transistor with high electron density,

i.e. the channel. Electron density may be determined through solving the problem of

electron transport, this is typically done using the Monte Carlo method to solve the
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Boltzmann transport equation for electrons [56]. The electron density for the device

considered in this study is found to vary with the applied gate voltage [3], where as

the gate voltage is increased, electrons are pulled toward the gate interface at the

corners of the device, see Fig. 5.20. To capture this variation, the parameter study

Figure 5.20: Evolution of carrier concentration with applied gate voltage, figure
obtained from [3]

considers three different configurations of the source region. These configurations

are meant to reflect the location and size of the channel for a range of applied

voltages, these regions are depicted in Fig. 5.21. The source is applied in such a

manner that the energy injected into the channel is constant for all fin widths and

for all channel geometries (the three regions are henceforth referred to as channel
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Figure 5.21: Three channel geometries simulated in FinFET device. Channel I
corresponds to low applied gate voltage, channel II corresponds to medium applied
gate voltage, and channel III corresponds to high applied gate voltage.

I, channel II, and channel III). The depth (in the x-direction, i.e. into the page)

of all channels is set to 10 nanometers, this value was found to be the length of

the channel from Monte Carlo simulations of electron-phonon coupling [8]. The

simulation domain dimensions are varied to investigate the effect of fin width on the

temperature profile within a FinFET. Three simulation domains were considered,

depicted in Fig. 5.3.1. The geometries of the devices being simulated are drawn

from [3] and reflect current FinFET transistor device design.

Due to symmetry in the x and y directions only a quarter of the FinFET need

be simulated, however the allowed wavevectors must reflect the dimensions of the

full crystal. The quarter domain to be simulated is depicted in Fig. 5.25 along

with the associated boundary conditions. Specular boundary conditions are applied
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Figure 5.24: Thick Fin

to the symmetry surfaces. Diffuse boundary conditions are applied to the exposed

surfaces of the FinFET as fabrication techniques for these devices cause disorder in

atoms near the surface [92], this disorder results in diffuse phonon scattering at these

boundaries. Finally, Fourier boundary conditions are applied to the silicon/silicon

dioxide interfaces. It is assumed that the majority of heat generated within the

FinFET is removed through these surfaces. All Fourier boundary conditions are set
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Figure 5.25: Boundary conditions applied to the simulation domain.

to 300 K, where it is the maximum rise in temperature over 300 K that is of the

most importance to the performance of the FinFET.

5.3.2 Device Simulation Results

With the phonon inputs, and physical properties defined, device simulations

were performed for all three channels and all three fin widths, resulting in a total of

nine simulations. The temperature contours of each simulation are grouped based

on the channel region in order to illuminate the effect of fin width (Figs 5.26, 5.27,

and 5.28).

Consider channel I whose temperature contours are given in Fig. 5.26. Be-

gin by noting that the region of maximum temperature occurs in the center of the
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channel region. Furthermore, the temperatures are highest within the channel and

decrease sharply outside the channel. Both of these effects are a result of energy

being distributed to high frequency modes with low group velocity due to electron-

phonon interactions within the channel. As a result energy is confined to the channel

region before decaying into lower frequency modes with higher group velocity which

are capable of transporting energy out of the domain. Note also the slight temper-

ature rise which occurs in the (+x,+y,+z) region. This is a result of the adiabatic

boundary conditions trapping phonons in the domain, all energy must leave via the

(−y) plane or through the (−z) plane. Finally, it is important to consider the trend

in maximum channel temperature as this will have the largest effect on the electri-

cal performance of the FinFET. The trend observed here is that as the fin width

decreases, the peak temperature increases.

Consider now channel II temperature contours, which are given in Fig. 5.27.

The temperature profile for this channel region is spread over a larger portion of

the domain as a result of spreading of the source term. Recall that this spreading

effect comes from an increase in the applied gate voltage which reduces the spatial

electron density. The temperature profile inside the domain is observed to be less

than for channel I. This reduction is a result of shifting the channel region closer

to the Fourier interface boundary. By moving the channel closer to the Fourier

boundary which allows phonons to flow out of the domain, heat generated in the

high frequency modes with low group velocity can be transported out of the domain

directly. Therefore, the process in which energy must be transferred to lower group

velocity modes (a process which is limited by the mode relaxation times), before
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Figure 5.26: Temperature profiles for channel 1. All temperatures are reported in
units of Kelvin.

being transported out of the system, is partially circumvented. This more efficient

process of heat removal results in the lower overall temperatures observed in channel

II. Again, note the trapping of energy along the (+x,+z) boundary edge, resulting

from adiabatic boundary conditions. As with channel I, an decrease in fin width

corresponds to an increase in maximum temperature for channel II.
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Figure 5.27: Temperature profiles for channel 2. All temperatures are reported in
units of Kelvin.

Finally, consider the channel III temperature contours given in Fig. 5.28.

This channel configuration produces the highest temperatures. These temperature

contours strongly mirror the channel region itself. Channel III lies along a Fourier

interface boundary as does channel II. However, as opposed to channel II, the large

energy generation which exists in channel III cannot be efficiently dissipated by high

frequency phonon modes. This results in channel III displaying the largest overall
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temperature profiles with respect to the 300 K. Also note the sharp temperature

gradients in regions near the channel. This effect is characteristic of non-equilibrium

ballistic transport at the nanoscale and has been observed in similar device simu-

lations [64]. These sharp temperature gradients are qualitatively different than

those that would be obtained through a classical simulation using Fourier’s equa-

tion of heat transfer. Such a simulation assumes diffusive transport and would yield

smoother temperature gradients. Finally the trend in maximum hotspot tempera-

ture is again that decreasing fin width increases the peak channel temperature.

The central quantity of interest is the maximum temperature rise within the

domain with respect to 300 K. The maximum temperature for all fin widths and

channels is given in Table 5.5. Several conclusions may be drawn from these results.

Thin Fin Medium Fin Thick Fin

Channel 1 312.245 K 309.735 K 308.276 K

Channel 2 303.823 K 303.024 K 302.535 K

Channel 3 324.966 K 319.044 K 316.048 K

Table 5.5: Maximum temperature rise in each simulation.

First, as the channel becomes smaller, corresponding to larger applied gate voltages,

the maximum temperature rise increases. This is to be expected as channel III

corresponds the to the highest electron densities within any channel and therefore

the largest source term. The high source term, in addition to the low group velocity
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Figure 5.28: Temperature profiles for channel 3. All temperatures are reported in
units of Kelvin.

of phonon modes receiving the energy, lead to large temperature rise of the channel.

Furthermore, a clear trend emerges, for all channels, when considering the variation

of fin width. Namely as the fin width decreases, so does the maximum temperature

achieved in the channel. This effect results from introducing the same amount of

energy into a smaller volume leading to an overall temperature rise.
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In the final portion of this section the energy density of two particular phonon

modes are visualized, henceforth referred to as mode 1 and mode 2. Tracking the

energy flow within an individual phonon mode represents a capability unique to the

Boltzmann transport equation algorithm presented in this work, whereby individual

mode occupancies may be be examined since the BTE is solved for all allowed

wavevectors and branches within the Brillouin zone. Consider the phonon properties

of mode 1 and mode 2 which are detailed in Table 5.6. The energy density profiles

Mode 1 Mode 2

Frequency (THz) 117.20 7.89

Group Velocity (meters/sec) 0x̂+ 0ŷ + 0x̂z −4882.8x̂+ 1656.37ŷ + 973.58ẑ

Source Term (ω > ωmax/2) Yes No

Relaxation Time (picoseconds) 69.74 28.37

Table 5.6: Phonon properties of two vibrational modes.

of these two modes for channel II in the 8 nm wide fin are detailed in Fig. 5.29.

These modes are chosen to highlight the wide array of phonon physics that manifest

within nanoscale devices for two different modes within the first Brillouin zone.

Analyzing the energy profiles of the two modes, it is clear that the individual

phonon modes may behave in a manner quite different from one another as well as

from the total energy density profile, which is given in Fig. 5.27 (recall that energy

and temperature are proportionally related through the specific heat, this relation
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Figure 5.29: Energy profiles of mode 1 and mode 2. The parameters correspond to
the 8 nm fin width and channel 1 geometry

is given in Eq. 4.30). Considering mode 1 first, note that the shape is identical

to the channel geometry. This is a result of mode 1 having zero group velocity,

therefore none of the energy deposited into this mode can be directly transported.

Rather, energy must decay into other phonon modes through scattering processes,

modeled through the relaxation time term, before being transported. Therefore it

is capacitative modes such as mode 1 that are responsible for the self heating effects

in nanoscale devices.

Mode 2 has an energy profile which is much different from that of the overall

energy density profile, this departure arises from a multitude of factors. First,

mode 2 is of low enough frequency that it does not directly receive energy from

the source term, rather any energy injected into this mode is through phonon-
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phonon scattering modeled by the relaxation time term or through in-scattering

from boundaries. Furthermore, the region of the material in which the mode is

excited is far removed from the hotspot region, see Fig. 5.27. This separation

arises from energy decaying from capacitative modes, such as mode 1, into lower

frequency (and higher group velocity) modes which then transport energy away from

the domain. When these modes reach the far end of the domain, i.e. the surface

normal to the +x̂ direction, they scatter and diffusely redistribute their energy into

mode 2. Finally it is important to note that mode 2 has a much lower energy

density than mode 1, indicating dominance of the source term over phonon-phonon

scattering when increasing the occupancy of the mode. The dominance of phonon

generation by the source term results in the overall energy density profile more

closely mirroring mode 1, whose BTE contains a source term, over mode 2, whose

BTE does not.

In this section a study of a FinFET device has been performed with the goal

of characterizing the effect of fin geometry as well as source term geometry on the

temperature profiles within the fin. Of specific interest is the peak temperature

achieved, as this has the largest effect on the electronic performance of the FinFET.

It is found that decreasing fin width corresponds to an increase in peak temperature

of the hotspot. Furthermore, the capability of visualizing individual mode occu-

pations was demonstrated by considering two phonon modes with different phonon

properties. Capturing phonon physics of individual phonon modes is an inherent

capability of the presented algorithm, a capability not available the majority of BTE

solvers which appear in the literature.
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Chapter 6: Conclusion

6.1 Closure

The main goal of this thesis was to solve the fully anisotropic Boltzmann

transport equation for all allowed wavevectors and branches in the first Brillouin zone

and apply this method to nanoscale device simulation. To this end the challenges

inherent in nanoscale thermal modeling were introduced, and a literature review

was presented of previous work that had been performed in the area of nanoscale

thermal modeling. Work done on nanoscale thermal modeling within the framework

of solving the Boltzmann transport equation was highlighted to demonstrate that

the BTE provided accurate description of thermal transport in nanoscale devices.

However, it was noted that many of these works employed simplifying assumptions

which did not fully account for the variation of phonon properties throughout the

anisotropic Brillouin zone.

Following the literature review, the theory behind the physics of phonons was

reviewed. The lattice dynamical approach to obtaining phonon properties was cov-

ered, and the difficulties in accurately described phonon-phonon collisions was dis-

cussed. A relaxation time model was chosen which accurately captured scattering in

thin films. Additionally, the quantum mechanical basis for the particle viewpoint of
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phonons was introduced to motivate the use of the Boltzmann transport equation.

Finally the notion of discrete allowed wavevectors within the Brillouin zone was

presented. By solving the Boltzmann transport equation for each of these allowed

wavevectors, the anisotropy of phonon properties within the Brillouin zone may be

accounted for.

The algorithm for solving the BTE was given in Sec. 4. The algorithm employs

a control volume discretization to solve the system of differential equations. Phonon

boundary scattering is incorporated by applying specular, diffuse, or Fourier bound-

ary conditions directly to the individual differential equations. Finally, specifics re-

garding the computational implementation were discussed, including parallelization

of the algorithm.

In the results section, the code implementing the BTE algorithm was verified

to ensure mathematical accuracy. The verification problem was borrowed from

radiative transport and described transport in regimes ranging from fully ballistic to

diffusive. Next the validity of the isotropic assumption, which is used in many BTE

models, was tested. Comparison between the anisotropic model used in this work

and the gray isotropic model revealed that the isotropic model may overestimate

advection along certain direction. As a result the temperature profiles obtained from

the two models differ by up to 16 %. Finally a device simulation was performed to

investigate the effects of channel geometry and fin width on the peak temperatures

inside a FinFET transistor. It was found that smaller channels and thicker fins

tended to increase the maximum temperature, while spreading of the channel and

narrowing the fin reduced peak temperatures.
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6.2 Future Work

The work presented in this thesis represents the first steps towards modeling

phonon transport in three dimensions for a wide variety of devices. Future work, as

well as improvements to the BTE code, include:

(i) Further investigate and quantify the effect of anisotropy. This includes inves-

tigating the effects of anisotropy in all three dimensions as opposed to just two

dimensions. In addition explore materials which display stronger anisotropy

than silicon.

(ii) Implement the time dependent form of the Boltzmann transport equation. The

unsteady form of the BTE will allow for the modeling of transient phenomena

at the nanoscale which cannot be captured in the current BTE code.

(iii) Incorporate the effect of material interfaces into the framework of the BTE

code. In its current state the BTE code is capable of handling only a single

homogeneous material. However modern day nanoscale devices are often het-

erostructures with material interfaces. At such interfaces the effects of phonon

scattering, absorption, and transmission need to be accounted for. Thus simu-

lation of more complex structures will require incorporating material interfaces

into the framework of the existing BTE code.

(iv) The current OpenMP implementation for parallelizing the code should be ex-

tended to MPI parallelization. While the OpenMP parallelization provides a

large reduction in computing time, it is restricted to use on shared memory
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platforms. Solving the Boltzmann transport equation for all allowed wavevec-

tors, as done in this thesis, is very computationally expensive. Therefore

parallelization through MPI will allow for further performance improvements

that are needed for investigating larger problems.
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