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This dissertation investigates the connection between spectral analysis and

frame theory. When considering the spectral properties of a frame, we present a

few novel results relating to the spectral decomposition. We first show that scalable

frames have the property that the inner product of the scaling coefficients and the

eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result

when an approximate scaling is obtained.

We then focus on the optimization problems inherent to the scalable frames by

first showing that there is an equivalence between scaling a frame and optimization

problems with a non-restrictive objective function. Various objective functions are

considered, and an analysis of the solution type is presented. For linear objectives,

we can encourage sparse scalings, and with barrier objective functions, we force

dense solutions. We further consider frames in high dimensions, and derive various

solution techniques.

From here, we restrict ourselves to various frame classes, to add more speci-



ficity to the results. Using frames generated from distributions allows for the place-

ment of probabilistic bounds on scalability. For discrete distributions (Bernoulli and

Rademacher), we bound the probability of encountering an ONB, and for contin-

uous symmetric distributions (Uniform and Gaussian), we show that symmetry is

retained in the transformed domain. We also prove several hyperplane-separation

results.

With the theory developed, we discuss graph applications of the scalability

framework. We make a connection with graph conditioning, and show the in-

feasibility of the problem in the general case. After a modification, we show that

any complete graph can be conditioned.

We then present a modification of standard PCA (robust PCA) developed by

Candès, and give some background into Electron Energy-Loss Spectroscopy (EELS).

We design a novel scheme for the processing of EELS through robust PCA and least-

squares regression, and test this scheme on biological samples.

Finally, we take the idea of robust PCA and apply the technique of kernel

PCA to perform robust manifold learning. We derive the problem and present an

algorithm for its solution. There is also discussion of the differences with RPCA

that make theoretical guarantees difficult.
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Chapter 1: Introduction

1.1 Foreword

The use of mathematics in the physical and social sciences relies heavily on

the analysis of sampled/collected data. These datasets may be the result of a data-

driven process or direct/indirect measurements, but in modern frameworks, two

things are universal; the datasets are extremely large in the number of features, and

the datasets contain noise.

The former issue of data dimensionality has developed through the refinement

of sensors, allowing for the collection of massive amounts of data, raising issues not

only about its efficient analysis, but also of its storage. Attempting to distinguish

any correlations in these datasets can become a rush for larger/faster computational

resources, but this is not a solution. Datasets are being produced of such increasing

sizes, that the brute force approach of more computational resources can’t keep

up. Other oddities occur when applying mathematical models to data lying in

high dimensions. Distinguishing differences in datapoints becomes more difficult,

as visualized through the volume of `2-balls in high dimensions [63], and datasets

become arbitrarily separable when considering datasets in high dimensions when

compared with the number of examples [87].
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The latter issue of noise handling has always been a major component of

data analysis, as noise in the sample is generally magnified in the analysis, produc-

ing unreliable results. This can take place anywhere in the data analysis pipeline,

from data acquisition, transmission, processing, to storage. Many mathematical ap-

proaches attempts to mitigate/separate noise by using prior information about the

noise present [39], or using the lack of correlation between noise and sampled data

[19].

To handle both of these issues, it is known that dealing with a reduced version

of the dataset, results in stable results and more accurate analysis. “Reduced” in

this context, is a representation of the data with only the important features. Under

such a framework, we expect these features to be statistically relevant (to mitigate

the risk of noise corruption), and we expect them to be uncorrelated with each other

(to mitigate the risk of biasing any results). This naturally leads to the application

of the spectral decomposition of a dataset, and the work of this thesis.

1.2 Outline

In Chapter 2 we give useful preliminary results for the subsequent chapters.

The notions presented are necessary for a more complete background of the subject,

but most results used in the respective chapters are presented where needed. This is

done mainly to keep the chapters as self-contained as possible, but still give a gen-

eral background. These complementary sections serve to give the reader historical

context, background, and notation. We start with an introduction of the spectral
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decomposition, along with the notion of a well-conditioned system. Finite Frame no-

tions are then introduced, giving a connection to spectral methods. Scalable Frames

are a major focus in this thesis, and we give a concise introduction of the work, along

with the necessary motivation. Finally, dimension reduction methods are discussed,

to prepare the reader for the notions presented in the later chapters.

1.3 Summary of Results

In Chapter 3, we present three major results relating to the spectral decompo-

sition of finite frames. We first show that scalable frames have the property that the

inner product of the scaling coefficients and the eigenvectors of scalable frames must

be equal to the reciprocal of the corresponding eigenvalues. From this, we prove a

similar result when an approximate scaling is obtained. We conclude Chapter 3 by

showing the equivalence of scalability and the 0-eigenvalue problem of the frame

transform, and present some figures that explore the space of scalable frames.

Chapter 4 focuses on the optimization problems inherent to Scalable Frames.

We first show that there is equivalence between scaling a frame and optimization

problems with non-restrictive objective functions. Various objective functions are

considered, and an analysis of the solution type is presented. For linear objectives,

we can encourage sparse scalings, and with barrier objectives, we can force dense

solutions. We further consider frames in high dimensions, and derive various solution

techniques.

In Chapter 5, restricting ourselves to various frame classes, we add more speci-
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ficity to the results obtained. Using frames generated from distributions allows us to

place probabilistic bounds on scalability. For discrete distributions, we bound the

probability of encountering an ONB, and for continuous symmetric distributions,

we show that symmetry is retained in the transformed domain, and we prove sev-

eral hyperplane-separation results. We end the chapter with some numerical results

comparing the scalability of certain frame types.

Chapter 6 discusses graph applications of the scalability framework. We make

a connection with graph conditioning, and show the in-feasibility of the problem in

general. After we modify the definition of scalability, we shown that all complete

graphs can be perfectly conditioned. We conclude with a formulation of the graph

scaling problem, and present numerical results on example graphs.

In Chapter 7 we present the modification of standard PCA (robust PCA)

presented by Candès [16]. We give some background into Electron Energy-Loss

Spectroscopy (EELS), and then design a novel scheme for the processing of EELS

through robust PCA and least-squares regression. The scheme is tested on artificial

and experimental biological samples, and the results are presented.

Chapter 8 takes the idea of RPCA and applies the techniques of kernel PCA

to perform manifold learning (for nonlinear manifolds). We then derive the problem

and present an algorithm for its solution, discussing the differences with robust

PCA simultaneously. We end the chapter with a few select applications showing the

expressiveness of the technique on a number of datasets.
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Chapter 2: Preliminaries

2.1 Notation

We denote by the superscript AT of a matrix A, the transpose, and we denote

the set compliment with superscript Ac. Let ‖f‖2 denote the standard `2 norm for

a vector f , and denote by ‖A‖2, the operator norm of a matrix A,

‖A‖2 = supv 6=0

{
‖Av‖2

‖v‖2

}
.

The Frobeneous norm of a matrix, ‖A‖F , is defined to be the square-root of the

sum of matrix elements of A squared, ‖A‖F =
√∑

ij a
2
ij. We denote the Hadamard

product, �, of two matrices, A and B, as the element-wise product, A � B. We

take the inner product of two vectors, 〈u, v〉, to be uTv. The identity matrix is

denoted I, and 1 denotes a vector of ones. 0 denotes a matrix or vector of zeros

with necessary size. A set of vectors A = {ak}mk=1 ⊂ Rn shall also denote a matrix

A = [a1, a2, . . . , am] when needed (we shall distinguish which we are using). When

discussing probabilistic distributions, we shall write i.i.d. to denote that values are

drawn from the same distribution, independently, and identically. ek denotes the

kth column of the identity matrix (standard basis vectors). The sgn(A) of a matrix

is a function that acts element-wise on A, and returns a matrix containing the sign
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of each element. The cardinality of a set is the number of elements in the set, and

is denoted | · |. The pseudo-inverse of a matrix, A†, is denoted with a superscript †.

2.2 Spectral Analysis

Much of the background in this section is present in [42, 70].

Theorem 2.2.1. (Spectral Decomposition SVD) Let M be an n ×m matrix with

elements on R. Then M can be decomposed into,

M = UΣV T ,

where U ∈ Rn×n and V ∈ Rm×m are both real unitary matrices referred to as the

left and right singular matrices respectively. Σ ∈ Rn×m is a diagonal matrix whose

entries are non-negative.

When referring to the vectors of U and V , let ui ∈ Rn denote the ith column of

U , and let vk denote the kth column of V . The diagonal entries of Σ are referred to as

singular values, and are denoted σi. For symmetric matrices we have an equivalent

theorem for spectral decomposition.

Theorem 2.2.2. (Spectral Decomposition EVD) Let G = MTM be an m × m

symmetric matrix with elements on R. Then G can be decomposed into,

G = V ΛV T ,

where V ∈ Rm×m is a real unitary matrix referred to as the eigenvector matrix of

G. Λ ∈ Rm×m is a diagonal matrix whose entries real and is referred to as the

eigenvalue matrix.
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When referring to the eigenvectors of G, we use vk to denote the kth column

of V , and thus, the kth eigenvector of G. This eigen-decomposition is readily seen

by performing the singular value decomposition on the matrix G,

G = MTM

= (UΣV T )T (UΣV T )

= V ΣTUTUΣV T

= V ΣTΣV T .

Let Λ = ΣTΣ,

G = V ΛV T .

By spectral decomposition of a matrix, we mean the eigenvalue decomposition (EVD)

when the matrix is symmetric, and the singular value decomposition (SVD) other-

wise. By spectrum, we mean the set of eigenvalues or singular values in a similar

fashion. So when discussing spectral properties, we are referring to the properties

of the eigenvalues or singular values respectively.

While we shall generally be agnostic to the spectral decomposition used in

numerical experiments, it is worth mentioning a classical technique in determining

eigenvalues and eigenvectors. Finding the zeros of the characteristic polynomial

p(λ) = det(G − Iλ) is in general not possible [76], so many techniques attempt to

approximate zeros of p(λ) (and similarly the eigenvectors). In [67] the von Mises

iteration is introduced to numerically solve for the largest eigenvalue and its eigen-

vector. This algorithm became the classical power iteration, used to determine

extremal eigen-pairs of large matrices [42, 45, 59, 70, 71]. The scheme progresses by

7



successively applying matrix multiplications to an initial vector. For convenience,

Algorithm 1 Power Iteration

1: Given symmetric G and approximate eigenvector v(0)

2: for i = 1, 2, . . . , do

3: v(i) ← Gv(i−1)

‖Gv(i−1)‖2

4: λ(i) ← 〈v(i), Gv(i)〉

5: end for

6: v(i) is an approximate eigenvector and λ(i) is an approximate eigenvalue

let G be symmetric matrix with largest eigenvalue λ1 = 1. Squaring the matrix

results in,

G2 = V ΛV TV ΛV T = V ΛΛV T = V Λ2V T .

The square of G retains the same eigenvectors, but the eigenvalues are squared,

resulting in the top eigenvalue remaining constant, and the smaller eigenvalues

decreasing. As we continue to apply this operation, the smaller eigenvalues will

approach 0, while the largest eigenvalue λt1 = 1,

lim
t→∞

λti = 0, i = 2, . . . , n.

For t� 1, this constricts the range of Gt to be the span of the largest eigenvector,

as the remaining eigenvectors have eigenvalues that are effectively 0. Applying the

matrix Gt to a non-trivial vector results in a vector proportional to the eigenvector

corresponding to the largest eigenvalue. After making the resulting vector unit

norm, we have the standard form of the eigenvector.
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This process finds the largest eigen-pair of the matrix. To find the second

eigen-pair, we must first remove the current largest eigen-pair. This process can be

made explicit by decomposing G into its rank-1 decomposition,

G = V ΛV T =
n∑
i=1

λiviv
T
i .

As we have determined λ1 and v1 through the initial application of Algorithm (2.2),

we can remove this eigen-pair by subtracting the rank-1 matrix λ1v1v
T
1 from G,

G̃ = G− λ1v1v
T
1 =

n∑
i=2

λiviv
T
i .

The largest eigenvalue of G̃ is λ2, and Algorithm (2.2) will result in the second

eigen-pair.

We now present notation for the condition of a matrix. Review the works of

[42, 43, 70, 83] for a more comprehensive study. Consider the linear system,

Gf = b,

with n × n invertible symmetric matrix G, vector b, and unknown vector f . For

various reasons [42, 70], we may be unable to determine the solution, f , exactly, and

instead we find an approximate solution f̃ through various methods [26, 89, 98]. This

approximate solution solves the approximate linear system,

G̃f̃ = b,

where G̃ is the original G with an error matrix E (G̃ = G + E). Performing a
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relative error analysis of the two solutions we have,

G̃f̃ −Gf = 0

(G+ E)f̃ −Gf = 0

G(f̃ − f) = −Ef̃

f̃ − f = −G−1Ef̃

‖f̃ − f‖2 = ‖G−1Ef̃‖2

‖f̃ − f‖2 ≤ ‖G−1‖2‖E‖2‖f̃‖2

‖f̃ − f‖2

‖f̃‖2

≤ ‖G
−1‖2‖E‖2‖G‖2

‖G‖2

‖f̃ − f‖2

‖f̃‖2

≤ (‖G−1‖2‖G‖2)
‖E‖2

‖G‖2

.

The relative error in the approximate solution is bounded by the error matrix E,

but also properties of the matrix G. The matrix norms of G and G−1 are the largest

and reciprocal smallest eigenvalues respectively,

‖G‖2 = λ1 , ‖G−1‖2 =
1

λn
.

Definition 2.2.3 (Condition Number). We define the condition number of an n×n

matrix G to be,

κ(G) =
λ1

λn
.

If the smallest eigenvalue value is 0, we take the condition number to be ∞.

We shall extend this definition of condition number to apply to non-square matrices

using the singular values. The condition number of a n ×m matrix, M , is defined

to be the square-root ratio of the largest and min(n,m)th eigenvalues of MTM .
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Definition 2.2.4 (Ill-Conditioned System). We call a matrix M ill-conditioned if

the condition number is much larger that 1,

κ(M)� 1.

In finding better approximate solutions, two lines of parallel research focus

on more accurate approximation methods (reducing ‖E‖2 [42]), or using a better

conditioned matrix (reducing κ(M) [25]). This thesis focuses on the latter notion

of preconditioning a matrix to accentuate favourable spectrum properties. This will

take the form of optimal condition number κ(M) = 1 when discussing frames, and

the quick decay of the spectrum when discussing dimension reduction.

2.3 Frame Theory

Introduced by Duffin & Schaeffer in [33], frame theory has become a staple of

applied harmonic analysis. Where the Fourier transform takes signals and reveals

their frequency information, frames allow for the analysis of other inherent properties

of the signal. We give a brief introduction of finite frame theory here, and refer to

[5, 6, 7, 8, 22, 27, 30, 38].

Definition 2.3.1 (Frame Definition). Given 2 ≤ n ≤ m, a finite frame for Rn is a

set Φ = {ϕk}mk=1 ⊂ Rn such that there exist positive constants 0 < A ≤ B <∞ for

which

A‖f‖2
2 ≤

m∑
k=1

|〈f, ϕk〉|2 ≤ B‖f‖2
2,

for all signals f ∈ Rn. A and B are referred to as the upper and lower frame bounds.
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The frame bounds as stated are not unique (e.g. an upper frame bound of

B = 2 implies an upper frame bound of B = 3 is true as well), to account for this,

we define Aopt and Bopt to be the supremum of lower bounds and the infimum of

upper bounds respectively. We refer to Aopt and Bopt as the optimal lower bound

and optimal upper bound respectively.

This definition extends the standard notion of a basis representation, but

there are two important differences. First, when representing a signal with a frame

expansion, the coefficients produced in the analysis are not unique. In fact, there

will generally be an infinite number of expansions for a signal. This can be seen

by considering a frame consisting of two orthonormal bases Φ = {ϕk}nk=1 ∪{φk}nk=1.

Any signal f can be represented completely with either basis, but could also be

represented with the full frame by taking both individual expansions and scaling by

a factor 1√
2
. Moreover, the frame elements are not linearly independent. This can

be observed by noticing that the number of frame elements, m, is generally greater

than the frame dimension, n, and for non-trivial vectors this necessarily implies that

the frame elements are linearly dependent.

We analyze a frame through matrices that encode all relevant information. In

particular, a frame denoted Φ = {ϕk}mk=1 shall also have its matrix Φ = [ϕ1, . . . , ϕm]

denoted the same way. This matrix Φ is the synthesis operator, as it is used to

reconstruct the signal with the frame expansion coefficients. Its transpose-conjugate,

ΦT , is the analysis operator, as applying it produces the sequence of coefficients to be

analyzed. The product of these two matrices is denoted by S = ΦΦT , and is referred

to as the frame operator. S is full rank and positive definite, and thus admits a well-
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defined inverse S−1. This comes from the fact that the frame elements span Rn,

and thus Φ has full row rank, implying ΦΦT has full row rank (and equivalently, full

column rank).

A frame is called a tight frame if the optimal frame bounds are equal, Aopt =

Bopt. If Aopt = Bopt = 1, the frame is also called Parseval, because the Parseval

identity holds, in that

‖f‖2
2 =

m∑
k=1

|〈f, ϕk〉|2 = ‖f‖2
2.

With bases, F , the reconstruction of the original signal, f , can be performed by

multiplying by the basis inverse, F−1, but with frames this operation must be per-

formed with the synthesis operator of a frame. Moreover, as the inverse of a basis is

itself only in the case of an orthonormal basis, and a frame’s analysis and synthesis

operator are transpose-conjugates of each other, we must define the notion of a dual

frame.

Definition 2.3.2 (Canonical Dual Frame). To every frame Φ = {ϕk}mk=1, and asso-

ciated frame operator S = ΦΦT , denote by Ψ the canonical dual frame,

Ψ = {ψk}mk=1 = {S−1ϕk}mk=1.

Further denote by Ψ the matrix of dual frame elements.

We define this frame/frame-dual pair this system to use as a surrogate for

basis inversion, as

ΨΦT = S−1ΦΦT = S−1S = I.
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This leads to the reconstruction formula,

f =
m∑
k=1

ckψk =
m∑
k=1

〈f, ϕk〉ψk = ΨΦTf.

Furthermore, we have that a Parseval frame is self-dual, S = ΦΦT = ΨΦT = I.

We shall now connect the notion of frame expansions, with that of spectral

analysis and conditioning.

Theorem 2.3.3. [22, Theorem 1.5] Let Φ = {ϕk}mk=1 ⊂ Rn be a frame for Rn, with

the frame operator, S = ΦΦT , having eigenvalues,

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn.

Then λ1 corresponds with the optimal upper frame bound Bopt = λ1, and λn corre-

sponds with the optimal lower frame bound Bopt = λ1.

This theorem states that for a unit-norm signal f , the `2 norm of the frame

coefficients ΦTf will be bounded above by the largest eigenvalue of the frame op-

erator, and will be bounded below by the lowest eigenvalue of the frame operator.

This sheds light on the usefulness of a well-conditioned spectrum.

2.4 Scalable Frames

Given a frame Φ = {ϕk}mk=1 ⊂ Rn, we have a number of methods available

to produce tight (or Parseval) frames. We can apply the square root of the inverse
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frame operator S−
1
2 to produce a Parseval frame [22],

Ψ = S−
1
2 Φ (2.1)

ΨΨT = S−
1
2 ΦΦTS−

1
2

ΨΨT = S−
1
2SS−

1
2

ΨΨT = S−
1
2S

1
2S

1
2S−

1
2

ΨΨT = I.

We can perform a singular value decomposition Φ = UΣV T , and use the truncated

right singular vectors as the Parseval frame,

Ψ = In×mV
T (2.2)

ΨΨT = In×mV
TV Im×n

ΨΨT = In×mIm×n

ΨΨT = I.

Here In×m is the low rank identity matrix of size n × m. We can also perform a

Gram-Schmidt orthogonalization on the rows of Φ to produce a Parseval frame,

Ψi = Φi −
i−1∑
j=1

〈Φj,Ψj〉
‖Ψj‖2

2

, for i = 1, 2, . . . , n, (2.3)

where Ψi and Φi correspond to the rows of the Parseval and original frame respec-

tively. As the rows are orthonormal, ΨΨT must be the identity, and as such, the

frame Ψ is Parseval.

Another technique forgoes the explicit creation of the dual frame or inverting

the frame operator, and instead iteratively solves for the unknown signal from the
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frame coefficients. These methods generally fall under the classification of frame

algorithms [22, 44]. We present a classical examples below. Note that the algorithm

below multiplies the frame operator to a signal, Sf , which can be decomposed

into Φ(ΦTf), where ΦTf is a vector of the frame coefficients, (ΦTf)k = 〈f, ϕk〉 for

k = 1, . . . ,m.

Proposition 2.4.1 (Frame Algorithm). [44, Lemma 1] Let Φ = {ϕk}mk=1 ⊂ Rn

be a frame for Rn, with the frame operator S = ΦΦT , and optimal frame bounds

Aopt, Bopt. For an unknown signal f ∈ Rn, define a sequence {gi}∞i=0 by

g0 = 0,

gi = gi−1 +
2

Aopt +Bopt

S(f − gi−1).

Then, {gi}∞i=0 converges to f in Rn, and the rate of convergence is

‖f − gi‖2 ≤
(
Bopt − Aopt

Bopt + Aopt

)i
‖f‖2.

The methods discussed above for signal synthesis/analysis (determining Par-

seval frames or approximating dual frames) can be insufficient when the frame ele-

ments must retain certain properties(e.g. preserve the angle between the elements).

A common problem in signal processing is the reconstruction of a signal from frame

measurements [39],

ΦTf = c.

In real-world applications, this frame may have a large number of elements, and

computing a canonical dual frame may be too computationally expensive (as this

generally requires O[n3] operations [10, 48, 84]), or it may be the case that the
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frame is ill-conditioned, making the inversion of the frame operator unreliable [42].

Further, computing eigenvectors can become unstable producing inaccurate results

if the methods in (2.1) and (2.2) are applied [42].

Frames transformed into tight frames by only changing the length of the frame

elements was introduced as Scalable Frames in [54, 56] partially as an alternative to

the above methods.

Definition 2.4.2 (Scalable Frames). Let 2 ≤ n ≤ m < ∞ be given. A frame

Φ = {ϕk}mk=1 ⊂ Rn is scalable if there exist a subset ΦJ = {ϕk}k∈J with J ⊆

{1, 2, . . . ,m}, and positive scalars {xk}k∈J such that the system ΨJ = {xkϕk}k∈J is

a Parseval frame for Rn.

By only changing the length of the frame elements, we retain their relative

angles, and applying a scalar xk is a computationally efficient operation (assuming

we have an efficient way to find these coefficients). Considering the scaled analysis

operator applied to a signal f ∈ Rn,

〈xkϕk, f〉,

we can write this operator as the product of a diagonal matrix X = Xkk = xk and

the original analysis operator ΦT ,

XTΦTf.

For the scaled synthesis operator, we have a corresponding relation,

ΦX.
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We shall denote the set of scalable frames in dimension n and m elements as

SF (n,m).

From the definition of scalable frames, we have that the scaled analysis/synthesis

operator is a Parseval frame,

(ΦX)(ΦX)T = ΦXXTΦT = ΦX2ΦT = I. (2.4)

Also, assume that the scaling coefficients xk are non-zero, then the angle between

frame elements is preserved,

|〈xkφk, xk′φk′〉|
‖xkφk‖2‖xk′φk′‖2

=
|xkxk′ ||〈φk, φk′〉|
|xkxk′ |‖φk‖2‖φk′‖2

=
|〈φk, φk′〉|
‖φk‖2‖φk′‖2

.

Furthermore, if we are attempting to solve a signal reconstruction system for un-

known f and known frame coefficients c,

ΦTf = c,

and our frame Φ is scalable with diagonal scaling matrix X, then we can solve the

analogous system,

ΦXf̃ = c,

where f̃ is a change of variables f = Xf̃ and the matrix ΦX has optimal condition

number (κ(ΦX) = 1). This relation is also valid when some of the scaling coefficients

are zero. In this case, a coefficient of xk = 0 implies that the corresponding frame

coefficient, ϕk, is removed from the frame.

In later work in this area [55], the authors form a system of linear equations

that guarantee scalability. We derive this system using the frame operator equation
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(2.4). We first define two versions of the frame transform T and F . The first

variation is more general and will be useful in later chapters in regards to graphs,

and the latter variation is reduced in the transformed dimension.

Definition 2.4.3 (Frame Transformation). Define the frame transformation, T :

Rn → Rd+1, for d = (n−1)(n+2)
2

, as follows:

T (z) :=



T0(z)

T1(z)

...

Tn(z)


where T0(z) :=



z2
1

z2
2

...

z2
n


Ti(z) :=



zizi+1

zizi+2

...

zizn


,

where i = 1, . . . , n. When applied to a matrix Z = [z1, . . . , zm], the transformation

acts on the columns,

T (Z) = [T (z1), . . . , T (zm)].

Definition 2.4.4 (Reduced Frame Transformation). Define the reduced frame trans-

formation, F : Rn → Rd, for d = (n−1)(n+2)
2

, as follows:

F (z) :=



F0(z)

F1(z)

...

Fn(z)


where F0(z) :=



z2
1 − z2

2

z2
1 − z2

3

...

z2
1 − z2

n


Fi(z) :=



zizi+1

zizi+2

...

zizn


,

where i = 1, . . . , n. When applied to a matrix Z = [z1, . . . , zm], the transformation

acts on the columns,

F (Z) = [F (z1), . . . , F (zm)].
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Theorem 2.4.5. A frame Φ = {ϕk}mk=1 ⊂ Rn is scalable if and only if there exists

a u ∈ Rm
+ that solves the linear system,

T (Φ)u =

1
0

 .
Proof. From Definition 2.4.2, we have that if a frame is scalable with scaling matrix

X, and the corresponding Parseval frame is ΦX, the following equation holds,

ΦX2ΦT = I,

ϕ11 ϕ12 . . . ϕ1m

ϕ21
. . . ϕ2m

...
...

ϕn1 ϕn2 . . . ϕnm


X2



ϕ11 ϕ21 . . . ϕn1

ϕ12
. . . ϕn2

...
...

ϕ1m ϕ2m . . . ϕnm


= I.

We can model the diagonal equations in terms of the square of the scaling weights

x2
k,

m∑
k=1

ϕ2
ikx

2
k = 1 for i = 1, . . . , n.

The off diagonal equations can be written similarly,

m∑
k=1

ϕikϕjkx
2
k = 0 for i = 1, . . . , n− 1 i < j < n.

Perform the change of variables uk = x2
k. This adds the constraint u ≥ 0, and we

can now write the system linearly (writing the diagonal equations first) with the

frame transformation T ,

T (Φ)u =

1
0

 ,
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with u ∈ Rm
+ . We have only rewritten the equations, and so it follows that this

argument holds if and only if. �

Corollary 2.4.6. A frame Φ = {ϕk}mk=1 ⊂ Rn is scalable if and only if there exists

a u ∈ Rm
+\0 that solves the linear system,

F (Φ)u = 0.

Proof. For this simplification, it suffices to note that since we require the diagonal

elements to all be 1, we can subtract the equations from each other,

m∑
k=2

(ϕ2
i1x

2
k − ϕ2

ikx
2
k) = 0 for i = 2, . . . , n,

reducing the number of equations by 1. This new system allows for the trivial

solution u = 0, so we add a non-zero constraint. We have lost the guarantee

that the resulting frame is Parseval (it is only required to be tight), but with an

appropriate scaling we can construct the corresponding Parseval frame. Perform the

change of variables uk = x2
k. This adds the constraint u ≥ 0, and we can now write

the system linearly (writing the diagonal equations first) with the reduced frame

transformation F ,

F (Φ)u = 0,

with u ∈ Rm
+\0. �

2.5 Low-Rank Embeddings and Pre-Image Problems

Principal Component Analysis (PCA) is a standard tool for data analysis and

low-rank approximations [51, 63]. Its ubiquitous use is partly due to the intuition
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associated with the process. Viewing the eigenvalues as variance indicators is a

clear and concise explanation of the projection, and when data’s true manifold is

linear/affine, PCA is optimal in its representation. For notation, and for connections

with later notions, we shall denote PCA as an eigen-value/vector problem of a data

matrix M ,

MTMV = V Λ,

where the eigen-decomposition of the gram matrix MTM is,

MTM = V ΛV T .

The assumption of linearity on the manifold is generally violated for com-

plex datasets. The standard examples on which PCA fails are swiss-roll, open

box, twin peaks, and spiral datasets [63]. Any linear projection of these surfaces

will result in a sub-optimal embedding (sub-optimal here, meaning not preserving

structure/distances). Nonlinear dimension reduction techniques were designed to

alleviate this drawback. The canonical example being Kernel PCA [63, 74]. Instead

of analyzing the data directly, kernel methods analyze the relationship between

data points. In [9, 46], various non-linear dimension reduction methods (Isomap

[86], Laplacian Eigenmaps [4], Locally Linear Embeddings [72], etc.) are shown to

fall under the kernel PCA model, and as such, Kernel PCA is the only nonlinear

dimension reduction method we shall consider in this thesis.

The kernel PCA problem for a dataset M , with respect to a kernel K(M) =

KM , shall be denoted,

KMV = V Λ.
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It’s important to note that we have slightly abused notation here, as the eigenvector

matrix V is not necessarily the eigenvector matrix presented above (this is only

the case when KM = MTM). This is done to keep with standard notation in the

literature, and wherever the eigenvectors are used, context will differentiate the two

cases. The embedding Θ of this dataset, shall be denoted,

Θ = Λ
1
2V T ,

where V is the eigenvector matrix of KM .

The strength of linear methods like PCA, are that they admit a well-defined

inverse, and by inverse, we mean a transformation that takes an embedding obtained

through a nonlinear dimension reduction method, and produces an appropriate re-

construction in the original space. For kernel methods, and non-linear dimension

reduction methods in general, the inverse problem is ill-posed [66]. The act of us-

ing similarity between points to embed a dataset, introduces a number of possible

points that give the embedding Θ. The local nature in which many kernel methods

produce embeddings further exacerbate the situation by removing any guarantees

about the global structure of the original dataset.

In cases where the embedding is used to cluster data points, this is not an issue,

as the original dataset is known, and the embedding is only used to aid processing.

In cases where the embedding is altered, or when only the embedding is known,

a dataset in the original space must be determined. A number of papers explore

this topic [2, 47, 57, 66], giving various problem formulations and heuristics. Stated

abstractly, given an embedding Θ, the pre-image problem is to find a dataset M̂ ,
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such that Θ̂ ≈ Θ. This is generally phrased as an optimization problem with various

constraints and norms [66],

min
M̂

:
∥∥KM̂ −KM

∥∥ .
The authors in [66, 73] show that for Gaussian kernels, employing a fixed-point

iteration can result in an approximate pre-image. In [57], a method using multidi-

mensional scaling [53] is presented, and shown to apply to a wide range of kernels.

The works of [57, 79] show various optimization methods that employ gradient de-

scent to converge to an approximate inverse.
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Chapter 3: Spectral Analysis of Scalable Frames

3.1 Overview

In this chapter we show the connection between frame scalings and spectral

analysis by employing spectral decompositions. This shall lay the framework for the

analysis performed in chapter 6, when we discuss connections to graph analysis. We

begin with exact scalability results relating to the singular value decomposition, and

then prove similar results for frames that can approximately be scaled. This leads to

an equation for the eigenvalues of the frame operator as an inner-product between

eigenvectors and scaling coefficients. We then discuss an alternate formulation of

scalability from an eigen-decomposition point of view, and end the chapter with

some visualizations of the space of possible scalings.

Much of the motivation for this section can be drawn from spectral graph

theory [28]. By analyzing the spectrum of the frame, we can give necessary and suf-

ficient conditions for the space of scalable frames. In the same way that connectivity

of a graph can be characterized by the smallest non-zero eigenvalue of its Laplacian,

scalable frames can be completely characterized by the eigenvectors corresponding

to the zero eigenvalues of the frame transformation, F , applied to the frame.
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3.2 Spectral Analysis

Theorem 3.2.1 (Spectral Frame Decomposition). Let Φ be a frame in Rn with m

elements, and assume Φ is scalable with diagonal scaling matrix X. Furthermore,

let V be an m×m matrix of the right singular vectors of Φ, such that the singular

value decomposition is

Φ = UΣV T .

Then there exists an m× n sub-block of V (denoted Ṽ ) such that

Ṽ TX2Ṽ = Λ−1.

Proof. Assuming Φ is scalable, we have

ΦX2ΦT = I.

Using a singular value decomposition of Φ, we have

(UΣV T )X2(UΣV T )T = I,

UΣV TX2V ΣTUT = I.

We can simplify this system by performing left and right matrix multiplications of

UT and U respectively.

UTUΣV TX2V ΣTUTU =UT IU,

ΣV TX2V ΣT = I.

We shall now perform left and right matrix multiplications by ΣT and Σ respectively.

In this case, we obtain block matrices where the upper-left n×n block is a diagonal
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matrix of non-zero eigenvalues, Λ, and all other blocks are zero matrices.

ΣTΣV TX2V ΣTΣ = ΣT IΣ,Λ 0

0 0

V TX2V

Λ 0

0 0

 =

Λ 0

0 0

 .
We write V in block form as well,Λ 0

0 0


V1 V2

V3 V4


T X1 0

0 X2


2 V1 V2

V3 V4


Λ 0

0 0

 =

Λ 0

0 0

 .
Given this structure, we shall further simplify the system by removing the zero

matrices, obtaining the result,

ΛṼ TX2Ṽ Λ = Λ,

Ṽ TX2Ṽ = Λ−1ΛΛ−1,

Ṽ TX2Ṽ = Λ−1.

�

In the general case, we cannot do any further analysis, as the matrix Ṽ will

not have orthogonal rows (due to the truncation). If Φ contains an orthogonal set,

then the truncated singular vectors will be orthogonal, but little more is known.

The trouble lies in requiring that the matrix Ṽ be row orthogonal after applying

a diagonal matrix, but this is in general only true when the diagonal matrix is a

scale of the identity. We can, though, say some things relating the eigenvalues to

the scaling achieved.

Corollary 3.2.2. Let Φ be a frame in Rn with m elements, and assume Φ is scalable

with diagonal scaling matrix X. Furthermore, let V be an m × m matrix of the
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right singular vectors of Φ, such that the singular value decomposition is

Φ = UΣV T .

Then the inverse of each eigenvalue of the frame operator S = ΦΦT can be written

as the sum of squares of the right singular vectors (vi)k = vik and the scaling weights

Xkk = xk,

1

λi
= 〈vi � vi, x� x〉 =

m∑
k=1

(vikxk)
2 for i = 1, . . . , n.

Proof. Consider the equation

Ṽ TX2Ṽ = Λ−1.

Take the ith diagonal entry of Λ−1. This location is equivalent to the inner product

of the ith row of the matrix Ṽ (after X is applied) with itself. This results in the

equation,

1

λi
=

m∑
k=1

(vikxk)
2.

�

3.3 Perturbed Spectral Analysis

It will often occur that a frame will not be exactly scalable. In this case we

can still analyze the frame, although the results will not be as robust. We assume

a frame is non-scalable, with approximate scaling matrix Y , and prove worst-case

bounds for the change in smallest eigenvalue.

Theorem 3.3.1 (Perturbed Spectral Decomposition). Let Φ be a frame in Rn with

m elements, and let V be an m×m matrix of the right singular vectors of Φ, such
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that the singular value decomposition is

Φ = UΣV T .

Also, let Ṽ denote an m×n sub-block of V . Given a non-trivial, non-negative diago-

nal matrix Y (and thus positive semi-definite), we shall write the general scalability

equality as

ΦY 2ΦT = I + E,

with an error matrix, E, bounded by

E � δ11T ,

for some δ > 0. Then the following inequality holds,

∥∥∥Ṽ TY 2Ṽ
∥∥∥

2
≤ 1 + δn

λn
.

Proof. Following the process outlined in the proof of Theorem 3.2.1, we shall simplify
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the scaled frame,

ΦY 2ΦT = I + E,

(UΣV T )Y 2(UΣV T )T = I + E,

UΣV TY 2V ΣTUT = I + E,

UTUΣV TY 2V ΣTUTU =UT IU + UTEU,

IΣV TY 2V ΣT I =UTU + UTEU,

ΣV TY 2V ΣT = I + UTEU,

ΣTΣV TY 2V ΣTΣ = ΣT IΣ + ΣTUTEUΣ,

ΛṼ TY 2Ṽ Λ = Λ + Λ1/2UTEUΛ1/2,

Ṽ TY 2Ṽ = Λ−1ΛΛ−1 + Λ−1/2UTEUΛ−1/2,

Ṽ TY 2Ṽ = Λ−1 + Λ−1/2UTEUΛ−1/2.

Taking the norm of both sides of the equation, and applying the bound, we have on

the error matrix E,

‖Ṽ TY 2Ṽ ‖2 = ‖Λ−1 + Λ−1/2UTEUΛ−1/2‖2,

‖Ṽ TY 2Ṽ ‖2 ≤‖Λ−1‖2 + ‖Λ−1/2UTEUΛ−1/2‖2,

‖Ṽ TY 2Ṽ ‖2 ≤‖Λ−1‖2 + ‖Λ−1/2UT (δ11T )UΛ−1/2‖2,

‖Ṽ TY 2Ṽ ‖2 ≤
1

λn
+

δ

λn
‖UT (11T )U‖2,

‖Ṽ TY 2Ṽ ‖2 ≤
1

λn
+

δ

λn
‖11T‖2,

‖Ṽ TY 2Ṽ ‖2 ≤
1

λn
+
δn

λn
.

�

This can also be a useful analysis method when we have a scalable frame, but
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only have an approximate solution. In the following result, we bound the error in

approximate scaling matrices.

Corollary 3.3.2. Let Φ be a frame in Rn with m elements, and let V be an m×m

matrix of the right singular vectors of Φ, such that the singular value decomposition

is

Φ = UΣV T .

Also, let Ṽ denote an m × n sub-block of V . Given a non-trivial, non-negative

diagonal matrix Y , we shall write the general scalability equality as

ΦY 2ΦT = I + E,

with an error matrix, E, bounded by

E � δ11T ,

for some δ > 0. If Φ is scalable with scaling matrix X, and the difference between

X and Y is denoted D2 := X2 − Y 2, then the following inequality holds,

∥∥∥Ṽ TD2Ṽ
∥∥∥

2
≤ δn

λn
.
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Proof. Decompose the above inequality into a difference of diagonal matrices,

ΦY 2ΦT = I + E,

Φ(X2 −D2)ΦT = I + E,

ΦX2ΦT − ΦD2ΦT = I + E,

I − ΦD2ΦT = I + E,

ΦD2ΦT = E.

UΣV TD2V ΣTUT = EΛ 0

0 0


V1 V2

V3 V4


T D1 0

0 D2


2 V1 V2

V3 V4


Λ 0

0 0

 =

Λ 0

0 0

 .
Ṽ TD2Ṽ = Λ−1/2UTEUΛ−1/2.

Applying a norm to both sides of the equation, and following the process presented

in the proof of Theorem 3.3.1, gives the result,

‖Ṽ TD2Ṽ ‖2 ≤
δn

λn
.

�

3.4 Spectral Interpretation of Scalability

We now present a spectral scalability theorem.

Theorem 3.4.1 (Spectral Scalability). A frame Φ is scalable if and only if there
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exists a u ∈ Rm
+ that solves the linear system,

T (Ṽ )u =



λ−1
1

...

λ−1
n

0


,

where λi are the eigenvalues of the frame operator S = ΦΦT .

Proof. From Theorem 3.2.1, we have that if a frame is scalable, the following equa-

tion holds,

ΦX2ΦT = I,

Ṽ TX2Ṽ = Λ−1.

From Corollary 3.2.2, we can model the diagonal equations as,

m∑
k=1

v2
ikx

2
k =

1

λi
for i = 1, . . . , n.

The off diagonal equations can be written similarly,

m∑
k=1

vikvjkx
2
k = 0 for i = 1, . . . , n− 1 i < j < n.

Define uk := x2
k. This adds the constraint u ≥ 0, and we can now write the system

linearly (writing the diagonal equations first) with the transformation T ,

T (Ṽ )u =



λ−1
1

...

λ−1
n

0


,

with u ∈ Rm
+ . As all we have done is rewrite the equation, it is clear that this

argument holds if and only if. �
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We can also phrase scalability as some combination of right singular vectors

(or similarly, the eigenvectors).

Theorem 3.4.2. A frame Φ is scalable if and only if there exists a u ∈ Rm
+ that is

a linear combination of the right singular vectors of F (Φ) that correspond to zero

singular values.

Proof. For clarity and without loss of generality, we shall show that this problem

can be written as zero eigenvalue problem. In this result, the eigenvectors are the

right singular vectors. Consider the following linear system and multiply by the

transpose of the reduced frame transform F (Φ)T ,

F (Φ)u = 0,

F (Φ)TF (Φ)u = 0.

Excluding the trivial solution, any zero eigenvector is a solution to this system, and

as there are at least m− d of them, any linear combination of these eigenvectors is

a solution to the system. Scalability is achieved if the linear combination results in

a non-negative solution u. �

3.5 Scalability Projections

In the last section of this chapter, we aim to give a graphical representation

of the differences in scalable and non-scalable frames. We now present scalability

maps where each pixel maps to the residual (‖F (Φ)u‖1) from a candidate scaling

normalized to have unit sum. For frames with m > 2 vectors, the computation

results in a N1 × N2 × · · · × Nm dimensional array. To display the result in 2D,
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Figure 3.1: The scalability maps of 4 non-scalable frames. The scalability maps

are projections onto the xy-plane that attain a value of 0 (Black) when the frame

is scalable. In these examples, the center of the map is the trivial solution u = 0,

and due to these frames being non-scalable, we see that only the radius around the

origin attains a small residual.

we take the minimum over the other dimensions, such that a pixel value is the best

possible over the scalings.
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Figure 3.2: The scalability maps of 4 scalable frames. The scalability maps are

projections onto the xy-plane that attain a value of 0 (Black) when the frame is

scalable. In these examples, the center of the map is the trivial solution u = 0, and

due to these frames being scalable, we see that there are lines or areas away from

the origin that also have residual 0.
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Chapter 4: Generating Frame Scalings through Optimization

4.1 Overview

As we have discussed the spectral characterizations of scalable frames, we now

turn to the implementation of scaling techniques. We shall show in this chapter that

the scalability problem can be solved as a convex optimization problem. Further-

more, the type of solution obtained can be determined through careful selection of

the objective function (e.g. sparse or dense scalings). At the end of this chapter,

we give a treatment of scalings for frames in high dimensions and high redundancy,

along with some numerical experiments to show the effectiveness of these techniques.

Some of the work presented here is also presented in [29], and when intro-

duced, citation of the article is given. Current techniques for scaling generally fall

into three distinct categories. In [32], the authors construct scalings by concate-

nating orthonormal bases with selected vectors. With this construction, the scaling

coefficients can be explicitly obtained in certain cases. The author in [69] presents

a complete characterization of frames in R2. Finally, in [21], the authors formulate

an optimization problem seeking to generate a tight frame, or in the cases where

the frame is not scalable, produce a well-conditioned frame.

Recall that the primal and dual linear mathematical programming problems
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are defined respectively, as follows:

minimize: cTx

subject to:Ax = b

x ≥ 0.

maximize: bTy

subject to:ATy ≤ c

y ∈ Rn.

Theorem 4.1.1 (Strong Duality). If either the primal or dual problem has a finite

optimal value, then so does the other. The optimal values coincide, and optimal

solutions to both the primal and dual problems exist.

Theorem 4.1.2 (Complimentary Slackness). Let x∗ and yfortheseframes∗ be fea-

sible solution vectors to the primal and dual problems respectively. Let A be an n

by m matrix, where Aj denotes the jth column and ai denotes the ith row of A.

Then x∗ and y∗ are optimal solutions to their respective problems if and only if

yi(ai · x− bi) = 0 for all i = 1, . . . , n,

and

xi(cj − yTAj) = 0 for all j = 1, . . . ,m.

Theorem 4.1.3. [11, Farkas’ Lemma] Let A be a matrix of dimensions m by n and

let b be a vector in Rm. Then, exactly one of the following two alternatives holds:

1. There exists some x ≥ 0 such that Ax = b.

2. There exists some vector p such that pTA ≥ 0 and pT b < 0.
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4.2 Scalability on a Convex Domain

Consider the sets S1 and S2 given by

S1 := {u ∈ Rm |F (Φ)u = 0 , u ≥ 0 , u 6= 0},

and

S2 := {v ∈ Rm |F (Φ)v = 0 , v ≥ 0 , ‖v‖1 = 1}.

S1 is a subset of the null space of F (Φ), and each u ∈ S1 is associated a scaling

matrix Xu, defined as

Xu := (Xij)u =


√
ui if i = j

0 otherwise.

S2 ⊂ S1 ∩B`1 where B`1 is the unit ball under the `1 norm.

We observe that a frame Φ = {ϕk}mk=1 ⊂ Rn is scalable if and only if there

exists a scaling matrix Xu with u ∈ S1. Consequently, one can associate to Xu a

scaling matrix Xv with v ∈ S2. The normalized set S2 ensures that the constraints

in the optimization problems, to be presented, are convex.

Theorem 4.2.1. [29, Theorem 2.1] Let Φ = {ϕk}mk=1 ⊂ Rm be a frame, and let

f : Rm → R be a convex function. Then the program

minimize: f(u)

subject to:F (Φ)u = 0

‖u‖1 = 1

u ≥ 0

(4.1)

has a solution if and only if the frame Φ is scalable.
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Proof. Any feasible solution u∗ of (4.1) is contained in the set S2, which itself is

contained in S1, and thus corresponds to a scaling matrix Xu.

Conversely, any u ∈ S1 can be mapped to a v ∈ S2 by appropriate scaling

factor. This provides an initial feasible solution to (4.1), and as f is convex and

the constraints are closed, convex, and bounded, there must exist a minimizer of

(4.1). �

Theorem 4.2.1 is very general in that the convex objective function f can be

chosen so that the resulting frame has desirable properties. We now consider certain

interesting examples of objective functions f . These examples can be related to the

sparsity (or lack thereof) of the desired solution. Using a linear objective function

promotes sparsity, while barrier objectives promote dense solutions (large support

solutions, u).

4.3 Sparse Solutions

A number of works consider the problem of sparse scalings (minimal scalings)

[14, 23, 32], and while much of the work focuses on creating minimal scalings, as

opposed to finding the minimal scaling subset, we still present related results.

Definition 4.3.1 (Minimal Scalings). Let a frame Φ = {ϕk}mk=1 ⊂ Rn be scalable

with scaling coefficients {xk} supported on J ⊆ {1, 2, . . . ,m}. If there is no proper

subset of the frame vectors {ϕk}k∈J that is itself a scalable frame, then the scaling

{xk}k∈J is called J-minimal.

What can be gleamed from this definition is that if the solution found is
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“sparse enough”, we have created a minimal scaling. Our goal is to use optimization

to find such a scaling. Essentially, we wish to solve the minimal support problem

(min : ‖u‖0), and while this is NP-hard in general, there is a vast array of literature

available to solve this problem [3, 18, 26]. We take the approach of solving an `1

minimization problem.

Much of the work on sparse solutions employs an `1 objective in some form

or another. We present the definition here, because when mixed with the non-

negativity constraints on u, we can write the norm as an inner product, and sum-

marily solve problem (4.1) as a linear programming problem.

f |u≥0(u) =
m∑
k=1

|uk| =
m∑
k=1

uk = 〈1, u〉.

As the `1 norm “encourages” sparsity, methods like basis pursuit and interior-point

methods are readily available to solve this problem [11, 26, 89]. To further encourage

sparsity, weighted `1 norms can be applied [20]. An approach considered in this

thesis uses the columns of F (Φ) itself. Define the objective function of (4.1) to be

f(u) := 〈a, u〉,

minimize: 〈a, u〉

subject to:F (Φ)u = 0

‖u‖1 = 1

u ≥ 0,

(4.2)

where a is the multiplicative inverse of some measure of similarity between columns

of F (Φ). Our goal is to take a non-negative combination of the columns, F (ϕk), that

result in a null vector. In the situation where columns of F (Φ) are anti-correlated,
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we obtain a null vector by adding. It is this property we wish to reward by inversely

weighting columns in F (Φ) with high similarity.

4.3.1 Strong Dual Formulation

One of the advantages of linear programs is that they admit a strong dual

formulation. To the primal problem (4.2) corresponds the following dual problem:

Proposition 4.3.2. [29, Proposition 2.2] Let Φ = {ϕk}mk=1 ⊂ Rn be a frame. The

program

maximize:w

subject to: [F (Φ)T 1]

v
w

 ≤ a

w ∈ R , v ∈ Rd

(4.3)

is the strong dual of (4.2).

Proof. This result follows exactly from the construction of dual formulations for

linear programs. The primal problem can be formulated as follows:

minimize:
m∑
k=1

akuk

subject to:F (Φ)u = 0

m∑
k=1

uk = 1

u ≥ 0.
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The strong dual of this problem is:

maximize:w

subject to: [F (Φ)T 1]

v
w

 ≤ a.

�

Numerical optimization schemes generally consist of a search for an initial

feasible solution, and then a search for an optimal solution. In analyzing the linear

program formulation (4.2), we notice that we either have an optimal solution or the

problem is infeasible, but there is no case when the problem is unbounded (due to

the bounding constraint ‖u‖1 = 1). Any feasible solution must have norm 1, and

thus, cannot be unbounded. The dual problem has the property that it either has

an optimal solution, or is unbounded (from duality). Consequently, for any frame,

Φ, w = min{a} and v = 0 is always a feasible solution to the dual problem. This

removes the requirement that an initial solution be found [11].

4.3.2 Sparse Solutions from Combinatorics

We now briefly diverge from standard signal processing techniques to those in

operations research and combinatorics to create a heuristic to find sparse solutions.

This technique will be employed when discussing graph applications, but we present

the optimization result here for thematic reasons.

We have formulated the `1 minimization problem above, and a wide range

of literature is available on the subject of finding sparse solutions to this problem
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[19, 20, 26, 89]. Under certain conditions, we can ensure that the minimum solution

will be integer. We first present some necessary background from [91, 95].

Definition 4.3.3. (Totally Unimodular Matrices) A matrix A is totally unimodular

if every square sub-matrix of A has determinant {0 , ±1}. Furthermore, this implies

that

Theorem 4.3.4. The linear program

minimize: 〈c, x〉

subject to:Ax ≥ b

x ≥ 0,

has an integer optimal solution for all integer vectors b, for which it has a finite

optimal value, if and only if A is totally unimodular.

Proof. Let B denote the basis for the optimal solution. By Cramer’s rule, we can

solve for each variable,

xi =
det(B|i)
det(B)

,

where B|i is the basis with the ith column replaced with the vector b. As B is a

basis and totally unimodular, det(B) = ±1, and as everything is integer, det(B|i)

will be integer as well. �

This result can be generalized for other matrices where there are a finite num-

ber of distinct determinant values. Using this, we can characterize scalings for

frames with this property (note the work of [91]).
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Definition 4.3.5. (Bimodular Matrices) A matrix A is totally bimodular if every

square sub-matrix of A has determinant {0 , ±1 , ±2}.

Theorem 4.3.6. Let Φ = {ϕk}mk=1 ⊂ Rm be a frame. Also let the transformed

frame F (Φ) be totally bimodular. Then the program

minimize: 〈a, u〉

subject to:F (Φ)u = 0

‖u‖1 ≥ 1

0 ≤ u ≤ 1

(4.4)

has a solution if and only if the frame Φ is scalable. Furthermore, the solution u∗

will have elements that are in the set {0 , 1
2
, 1}.

Proof. First dealing with the constraints, we can write the `1 norm as the inner

product 1Tu, and the constraints 0 ≤ u ≤ 1 as matrix inequalities,−I
I

u ≤
−1

0

 .
Our new problem can be expressed as,

minimize: 〈a, u〉

subject to:



F (Φ)

1
T

−I

I


[u]



=

≥

≥

≥





0

1

−1

0


It is clear from this formulation that by adjoining the vector of ones and the iden-

tities, we have preserved the bimodularity of the matrix.
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As with Theorem 4.2.1, if we have an optimal solution to the problem, we have

a scaling for the frame. For the converse, we can normalize the scaling to lie in the

interval [0, 1].

Now mirroring the proof of Theorem 4.3.6 we shall prove the remainder of the

result. Let B denote the basis for the optimal solution. By Cramer’s rule, we can

solve for each variable,

uk =
det(B|k)
det(B)

,

where B|k is the basis with the kth column replaced with the vector on the right

hand side. As B is a basis and totally bimodular, det(B) ∈ {±1 , ±2}, and as

everything is integer, det(B|k) will be integer as well. If det(B|k) is divisible by 2,

uk will be an integer, and if det(B|k) is not divisible, uk will have a factor of 1
2

(the

variable will be exactly
1

2
from the constraint u ≤ 1). �

To further encourage sparsity, we can employ a weighted objective function.

If we set the normalization constraint to ‖u‖1 = s, where s is the desired support of

the solution, we ensure that the solution found will sum to s. Given the assumptions

in Theorem 4.3.6, if our solution has a 1
2

present, it must then have a pair. And so

our goal turns to stopping these pairs from occurring. Take the objective function,

f(u) :=
m∑
k=1

2k−1uk.

What this objective aims to do is penalize non-sparse solutions by unbalancing the

objective function coefficients.
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4.4 Dense Solutions

A sparse solution to the linear program produces a frame in which the frame

elements corresponding to the zero coefficients are removed. In contrast, one may

wish to have a full solution, that is, one may want to retain all of, or most of, the

frame vectors. To enforce this property, we introduce two types of barrier objective

results.

Proposition 4.4.1. [29, Proposition 2.3] Let Φ = {ϕk}mk=1 ⊂ Rn be a frame, and

define 0 ≤ ε� 1. If the problem

maximize:
m∑
k=1

ln(uk + ε)

subject to:F (Φ)u = 0

‖u‖1 = 1

u ≥ 0.

(4.5)

has a feasible solution u∗ with a finite objective function value, then the frame Φ

is scalable, and the scaling matrix X is a diagonal operator where the elements are

the square-roots of the feasible solution u∗. Moreover, for ε = 0, if a finite solution

u∗ exists, all elements of u∗ are strictly positive.

Proof. Assume u∗ is a feasible solution to (4.5) with 0 < ε � 1 and the objective

function finite. Then from the proof of Theorem 4.2.1, we have that the frame Φ is

scalable. Now assume ε = 0. If one of the variables uk were zero, then the objective

function would have a value of −∞. Since we assume the function is finite, this

cannot be the case. A negative value for uk would result in the objective function
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value being undefined, this also cannot be the case due to the finite objective.

Therefore, uk must be positive for all k. �

While the barrier method above finds a non-sparse solution if one exists, for

ε = 0, there is the possibility that the problem is infeasible and the frame is still

scalable. The formulation we present below is guaranteed to find a non-sparse

solution if one exists, but will always return a solution if the frame is scalable (even

if the only solution is sparse).

Proposition 4.4.2. [29, Proposition 2.4] Let Φ = {ϕk}mk=1 ⊂ Rn be a frame. If the

problem

maximize: min
k=1,...,m

{uk}

subject to:F (Φ)u = 0

‖u‖1 = 1

u ≥ 0.

(4.6)

has a feasible solution u∗ with a finite objective function value, then the frame Φ

is scalable, and the scaling matrix X is a diagonal operator where the elements are

the square-roots of the feasible solution u∗. Moreover, a solution exists with positive

elements if and only if the solution produced by solving this problem has positive

elements.
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Proof. To show this, we shall rewrite this problem as a linear program.

maximize: t

subject to:F (Φ)u = 0

m∑
k=1

uk = 1

t ≤ uk

t > 0 , u ≥ 0.

Here, t is an auxiliary variable, taken to be the minimum element of u. This linear

program can be solved to optimality. Moreover, as this problem is convex, the

optimum achieved is global. If the objective function at optimality has a value of 0,

then there can exist no solution with all positive coefficients. �

4.5 Numerical Comparison of Formulations

We have implemented the formulations above, in the programming language

Matlab. This decision is primarily due to flexibility in syntax, its ubiquitous use

by the scientific community, and the wide availability of support and toolboxes. In

particular, the optimization, linear algebra, and sparse matrix support, make it an

ideal choice. Specifically, we have implemented the linear programming formulation

[PLP] and its weighted variant [WLP] (4.2) , the strong dual formulation [DLP] (4.3),

and the dense formulation (maximin program [MMLP] (4.6)). We omit the nonlinear

formulation to avoid any issues with unboundedness of the objective function. We

test three aspects of the formulations:

1. Solution Type: Do solutions bias towards certain frame elements?
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2. Sparsity: How does the support change with each formulation?

3. Computation Time: Do the methods have similar computational require-

ments?

We omit discussion of the third item, as this is more implementation dependent,

and this is not the focus of the thesis. We shall still mention this as a comparison

tool when we discuss frame in high dimensions.

We consider frames in the dimensions n ∈ {2, 5, 10}, with the number of

frame elements varying with the dimension. We first consider frames with lower

redundancy m ∈ {n+ 1, 2n+ 1, 3n+ 1}, and then consider high-redundancy frames

m = {n2 +n+1, 2n2 +n+1, 3n2 +n+1, 4n2 +n+1, 5n2 +n+1}. For any tests of the

frame properties, we perform 500 trials (a frame of the specified size is generated

500 times).

4.5.1 Solution Type

Solution type matters in the sense that we desire to transform a given frame

into a tight frame while retaining properties inherent to the frame. The obtained

solutions are for the four different formulations sorted in ascending order, and then

averaged across the 500 trials. The resulting solution is shown for frames with the

highest redundancy tested m = 5n2 + n+ 1. See Figure 4.1
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Figure 4.1: The average solutions (sorted) produced over 500 trials by the meth-

ods: PLP (Top-Left), WLP (Top-Right), DLP (Bottom-Left), and MMLP (Bottom-

Right).
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4.5.2 Sparsity

We present this section mainly to show the effectiveness of the weighted linear

programming and the dual linear programming formulations. Ultimately, we find

that the sparsity level achieved is a percentage of the redundancy, which we then

describe from the frames and optimization point of view. We omit sparsity results

for the maximin formulation [MMLP], as the results obtained were all non-sparse

(save a few outliers).

The results are averaged across 500 trials as before, and we also only consider

Gaussian frames. A scaling weight xk is considered zero if its value is below the

threshold 10−10. This is mostly to account for round-off effects that occur when

taking square-roots and the like. The results are presented in tables below as a

sparsity percentage (1 - average percent of non-zero values), and any fields with “-”

did not produce any scalable frames to be tested. All percentages were rounded to

the nearest tenth of a percent. See Table 4.1, Table 4.2, and Table 4.3

The results show the consistency in the sparsity achieved across frame dimen-

sion, n, and across problem formulation. It’s clear from the results that the standard

linear programming formulation doesn’t produce sparse results, and in the few cases

where the weights are sparse, the frame has low redundancy. This consistency in

sparsity percentage hints at a fixed number of frame elements that are retained in

the sparse scaling, and indeed this is the case, as the number of elements retained is

the length of the transformed vectors (d+ 1) = n(n+1)
2

. No matter how many frame

elements are present, the sparse (seemingly the sparsest) solution obtained will be
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approximately this constant d + 1. To explain this, we need look no further than

the number of constraints present in the linear programming constraints,

F (Φ)u = 0

‖u‖1 = 1

u ≥ 0.

Ignoring the non-negativity constraint u ≥ 0 for the moment, the linear system will

have a solution, generally, when there are as many frame elements as constraints,

d + 1 = m. Furthermore, the sparsest solution that we generally expect to achieve

will be a solution where the non-zero scaling coefficients will correspond to a basis

(of size d + 1) in the linear system. This hints at the sparse solutions being the

sparsest possible solution, but also hints at the requirement that the number of

frame elements required to scale a frame should be at least d+ 1.

It should be noted here, that the solution achieved from linear programming

can be highly dependent upon the algorithm employed. Interior point methods

[11] admit polynomial-time schemes, but as the objective function in not strictly

convex, the methods can often lead to non-sparse solutions. The Simplex algorithm

on the other hand, visits the extreme points of the polytope, which produces sparse

solutions in most cases [11]. Instead of electing to use the “best” method (in terms

of inducing sparsity), we choose an average case, and use an interior point scheme.
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n = 2 Frame Elements

Formulation 3 5 7 7 11 15 19 23

PLP 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0

WLP 00.0 40.0 57.1 57.1 72.7 80.0 84.2 86.9

DLP 00.0 40.0 57.1 57.1 72.7 80.0 84.2 86.9

Table 4.1: The percentage of zero elements in the scaling weights xk.

n = 5 Frame Elements

Formulation 6 11 16 31 56 81 106 131

PLP - - - 00.1 00.1 00.0 00.0 00.0

WLP - - - 51.6 73.2 81.4 85.8 88.5

DLP - - - 51.6 73.2 81.4 85.8 88.5

Table 4.2: The percentage of zero elements in the scaling weights xk.

n = 10 Frame Elements

Formulation 11 21 31 111 211 311 411 511

PLP - - - 00.4 00.0 00.0 00.0 00.0

WLP - - - 50.4 73.9 82.3 86.6 89.2

DLP - - - 50.4 73.9 82.3 86.6 89.2

Table 4.3: The percentage of zero elements in the scaling weights xk.
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Dimension Average Computation Time

n = 10 0.0080

n = 25 11.9384

n = 50 271.4127

Table 4.4: The average computation time, in seconds, required to find a scaling for

an n× 4n2 frame using the PLP formulation. This average is taken over 50 trials.

4.6 Frames in High Dimensions

So far we have kept the frame dimension low for computational reasons. The

size of the linear system to be solved increases as the square of the dimension n.

A further confounding issue are the number of frame elements required to reach

scalability (also proportional to n2). These properties together make exact scaling

computationally infeasible. In this section we employ schemes designed to perform a

scaling for large frames approximately. We perform 50 trials, and present the average

computation time, and the average condition number achieved (as our metric of how

much we have scaled the frame). To give a baseline for the efficiency of the methods

presented below, we also present the average time to employ the PLP formulation

on moderately sized frames. See Table 4.4.
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4.6.1 Matching Pursuit

In general, there will be no true solution to the scalability problem for a small

number of frame elements (or low redundancy). So we present a way to find an

approximate solution using matching pursuit as the base algorithm.

Given a set of vectors A = {Ai}mi=1 ⊂ Rn and a vector b ∈ Rn, if we are asked

to find the best approximation (in the `2 sense) of b by the elements of A, we have

the following problem,

min
x∈Rn

: ‖Ax− b‖2
2.

There is a closed-form solution to this problem, where x is the pseudo-inverse

(A+ := (AAT )−1) applied to the vector b. If we were then asked to only use at

most s (with s << m) columns of A, we could come up with a number of solutions

of a similar sort to the pseudo-inverse. One such solution would be to find the

least-squares solution and project onto the positive orthant (we discuss this in a

following section). This is equivalent to finding a scalable frame with exactly s

non-zero weights and A := F (Φ) and b := 0. Our problem is

min
u∈Rn , u 6=0

: ‖F (Φ)u− 0‖2
2.

If we relax the requirement that ‖F (Φ)u − 0‖2
2 = 0, there are a number of

approximate schemes that we can create. We now present the matching pursuit

formulation.

This method starts by finding the two vectors in F (Φ) whose normalized inner

product is most negative (or whose correlation is closest to −1). An inner product
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near −1 implies that the vectors are parallel to each other, and facing opposite

directions. This assures that their sum will be approximately 0 for an appropriate

positive scaling constant. This constant can be obtained for F (ϕk) and F (ϕk′) by

writing the optimization problem,

a∗ = arg min
a∈R

: ‖F (ϕk)− aF (ϕk′)‖2
2.

The solution is

a∗ = −〈F (ϕk), F (ϕk′)〉
‖F (ϕk′)‖2

2

.

We set uk = 1 and uk′ = a∗. This is the start of our approximation. After

this initialization step, we will have 2 elements in our approximation (uk and uk′).

From here, we can add elements to our approximation by choosing columns that are

“most” negatively correlated with our current approximation until either s elements

have been added to the solution, or there are no more negatively correlated columns

in F (Φ). Our solution û∗ produces an approximate tight frame.

The initial step of this greedy search requires the comparison of
(
m
2

)
:= m!

2(m−2)!

inner products. The ith step in our process requires m−i inner product comparisons,

for a total complexity of,

O

[
m!

2(m− 2)!
+

s−2∑
i=1

(m− i)

]
= O

[
m(m− 1)

2
+

s−2∑
i=1

m−
s−2∑
i=1

i

]

= O

[
m(m− 1)

2
+ (s− 2)m− (s− 2)(s− 1)

2

]
= O[m2].

We can reduce the number of operations by changing our initialization step to a

process that randomly selects p initial columns randomly from F (Φ) to produce the
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Algorithm 2 Scalable Frame Matching Pursuit

1: Given unit norm F (Φ) and tolerance τ

2: u← 0

3: dk ← F (ϕk)− µF (ϕk)

4: D ← [d1, d2, . . . , dm]

5: C ← DTD

6: (i, j)← arg minij{Cij}

7: if Cij ≥ 0 then

8: return u

9: end if

10: ui ← 1

11: uj ← −〈F (ϕi), F (ϕj)〉

12: S ← {i, j}

13: r ← F (Φ)u

14: while r > τ do

15: c← 〈r,DSc〉

16: i← arg minj{cj}

17: if ci ≥ 0 then

18: return u

19: end if

20: ui ← 〈r, F (ϕi)

21: r ← F (Φ)u

22: S ← {S, i}

23: end while
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initial solution. Our complexity with this reduction, becomes

O[pm] << O[m2].

4.6.2 Delayed Column Generation

As a further modification of the standard matching pursuit problem, we can

selectively apply the transformation to a frame element F (ϕk) as a means of memory

management. The operation is relatively cheap in a computational sense, but to

store all transformed vectors in memory requires O[n2m] bytes, and this does not

take into consideration any other memory requirements for operations performed on

F (Φ). When employing matching pursuit, there is no requirement that the columns,

F (ϕk), be stored when not in use. In effect we can delay generating the column until

its use is required. For more background on the method applied to linear programs

see [11], and for a treatment given for combinatorics, see [24].

Employing this technique though, does require a modification of the selection

process. Currently, we take the best column and add it into the basic solution. This

would require us to transform all other frame elements for each iteration. And while

the frame transform is relatively cheap to implement, a more efficient scheme would

only look at a few of these frame elements.
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4.6.3 Projected Least-Squares

The second large-scale method we present here, takes the least-squares solution

to the system, F (Φ)

1
T

u =

0

1

 ,
and project onto the non-negative orthant R+. For situations where speed is the

determining factor, finding a fast solution and thresholding the negative values is

a standard approach [42]. This method is far less precise, and in cases when the

frame is well-conditioned already, this method may increase condition number. It’s

only advantageous to use this method when the frame considered is large and ill-

conditioned.

4.6.4 Computational Results

Here, we consider frames with in high dimension and with large redundancy.

We perform a similar analysis to that of the low-dimensional case above. See Ta-

ble 4.5.

It speaks to set of possible scalings, that for methods that are highly dependent

upon the starting conditions, we are able to find “good” approximate solutions.

This seems due to two main properties of the scalability problem. First, for frames

with frame elements larger than the transformed dimension, m > d, the system

F (Φ)u = 0 becomes under-determined and the number of solutions (and near-

solutions) becomes infinite. Second, the number of minimal (and near-minimal)
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Average Computation Time

Dimension PLP MP LS

n = 10 0.0080 0.0305 0.0030

n = 25 11.9384 4.8171 0.1925

n = 50 271.4127 83.8872 24.3478

n = 100 - 3770.9 1215.7

Table 4.5: The average computation time, in seconds, required to find a scaling for

an n×4n2 frame using the PLP formulation, the matching pursuit formulation MP,

and the least-squares formulation LS. This average is taken over 50 trials. A “-”

indicates that the method did not produce a result in the computation time allowed.

scalings appears to be dense for high redundancy frames.
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Chapter 5: Frames Drawn from Distributions

5.1 Overview

The aim of this chapter is to characterize the space of scalable frames generated

from discrete and continuous distributions. The four distributions considered are

Bernoulli, Rademacher, Uniform, and Gaussian, and we bound the probability of

a frame being scalable. For frames sampled from the two discrete distributions,

we prove bounds related to the expected time until an orthonormal basis is formed

from the sampling, and for the Gaussian and Uniform distributions, we prove a

result using the symmetry of the distribution and Farkas’ Lemma that shows the

chance of a non-scalable frame decreases as a power law of the frame elements. We

present some intuition as to how the continuous distribution results can be extended

to the class of symmetric distributions, and close the chapter with some numerical

results.

We first define the distributions we use, and give any relevant statistics. For

more information on probability theory, the interested reader is encouraged to review

the works of [85, 94].

Definition 5.1.1 (Bernoulli Frames). Denote the Bernoulli distribution as a func-
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tion supported on the set {0, 1} with equal probability. The corresponding proba-

bility mass function is,

p(X) =


1/2 X = 0

1/2 X = 1

. (5.1)

A Bernoulli frame Φ is defined to be a frame where each entry is chosen i.i.d. from

the Bernoulli distribution.

Definition 5.1.2 (Rademacher Frames). Denote the Rademacher distribution as

a function supported on the set {−1, 1} with equal probability. The corresponding

probability mass function is,

p(X) =


1/2 X = 1

1/2 X = −1

. (5.2)

A Rademacher frame Φ is defined to be a frame where each entry is chosen i.i.d.

from the Rademacher distribution.

Definition 5.1.3 (Uniform Frames). Denote the Uniform distribution as a func-

tion supported on the interval [−1, 1] with constant probability. The corresponding

density function is,

p(X) = 1/2 for X ∈ [−1, 1]. (5.3)

A Uniform frame Φ is defined to be a frame where each entry is sampled i.i.d. from

the Uniform distribution.

Definition 5.1.4 (Gaussian Frames). A Gaussian frame Φ is defined to be a frame

where each entry is sampled i.i.d. from the Standard Normal distribution with 0

mean and unit standard deviation.
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5.2 Bernoulli Frames

For frames drawn from a Bernoulli distribution, we can characterize the entire

space of scalable frames. An interpretation of the scalability criterion relies on

positive and negative values in the frame transform F (·). This is never satisfied

when the frame entries are all positive, or similarly, all negative, but in the case

where frame entries are chosen from non-negative/non-positive values (values of 0

are allowed), the frame is scalable only if a subset of the frame elements ϕk form an

orthogonal basis (i.e. scalings of the standard basis vectors ei).

Lemma 5.2.1. Let Φ = {ϕk}mk=1 be a Bernoulli frame where each entry is drawn

from the Bernoulli distribution. Then Φ is scalable if and only if it contains an

n-dimensional identity sub-matrix.

Proof. If Φ contains an identity sub-matrix, it is apparent that Φ is scalable, as the

identity is an ONB.

To show the converse, we consider what happens to Bernoulli vectors under

the frame transformation Fi(·). Fi(ϕk) = (ϕk(i)ϕk(j)) ≥ 0 for all 1 ≤ i < j ≤ n.

For a frame to be scalable, we require that a non-negative sum of these values equal

0 (
∑m

k=1 ukFi(ϕk) = 0). Excluding the trivial case of u = 0, this is only possible if

Fi(ϕk) = 0 for all 1 ≤ i < j ≤ n for some subset of {1, . . . ,m}. The product pairs

ϕk(i)ϕk(j) are 0 only if ϕk = e(·).

To show that the full standard basis is required it is sufficient to notice that

without the standard basis, any proposed scaling {xkϕk} would not span all of
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Rn. �

For other frames with non-negative/non-positive entries, we can extend this to

a requirement that the frame elements have disjoint support and a single non-zero

element.

Theorem 5.2.2 (Non-negative Frames). Let Φ = {ϕk}mk=1 be a frame with only non-

negative or only non-positive entries. Then Φ is scalable if and only if it contains an

n-dimensional identity sub-matrix (after normalizing each column of Φ to be unit

norm).

Proof. By an argument equivalent to Lemma 5.2.1, it suffices to shown that we have

the same requirement by a change of scaling variables x̃k = 1
‖ϕk‖2

xk. �

We now derive the probabilities of a Bernoulli frame containing the identity

sub-matrix. We consider the cases when the frame is sampled from the set of all

possible Bernoulli vectors of size n, both with and without replacement.

Lemma 5.2.3. Let Ψ be a random subset of m elements sampled i.i.d.. Also let this

random subset be sampled with replacement from the set of all possible Bernoulli

vectors in Rn\{0} with 2 ≤ n < m < ∞. The probability that Ψ contains an

orthonormal basis {ei}ni=1 can be expressed with the following equality,

P ({e1, e2, . . . , en} ⊂ Ψ) = 1−
n−1∑
i=0

(
n

i

)(
1

2n − 1

)i(
2n − 1− (n− i)

2n − 1

)m−i
. (5.4)
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Proof. We start by considering the complement of our probability,

P ({ei}ni=1 ⊂ Ψ) = 1−P ({ei}ni=1 6⊂ Ψ) ,

P ({ei}ni=1 ⊂ Ψ) = 1−
n∑
i=1

P ([{ei} ⊂ Ψ] ∩ [{eq}q 6=i 6⊂ Ψ])− . . .

n−1∑
i=1

n∑
j=i+1

P ([{ei, ej} ⊂ Ψ] ∩ [{eq}q 6=i,j 6⊂ Ψ])− . . .

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

P ([{ei, ej, ek} ⊂ Ψ] ∩ [{eq}q 6=i,j,k 6⊂ Ψ])− . . .

...

n∑
i=1

P ([{eq}q 6=i ⊂ Ψ] ∩ [{ei} 6⊂ Ψ]).

(5.5)

Notice that for any set of indices Ω, P ([{ei}i∈Ω ⊂ Ψ] ∩ [{ej}j∈Ωc 6⊂ Ψ]) = a, where

a only depends on the size of the set Ω (Ωc denotes the compliment). Hence, we

have,

P ({ei}ni=1 ⊂ Ψ) = 1−
(
n

0

)
P ({ei}ni=1 6⊂ Ψ)− . . .(

n

1

)
P ([{e1} ⊂ Ψ] ∩ [{ei}i 6=1 6⊂ Ψ])− . . .(

n

2

)
P ([{e1, e2} ⊂ Ψ] ∩ [{ei}i 6=1,2 6⊂ Ψ])− . . .

...(
n

n− 1

)
P ([{ei}i 6=n ⊂ Ψ] ∩ [{en} 6⊂ Ψ]) .

(5.6)

The probability of choosing any particular element in the set of Bernoulli vectors is

1
2n−1

, and since our choices are independent, we can use the multiplicative rule to
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expand the probabilities in the following manner,

P ({ei}ni=1 6⊂ Ψ) =

(
2n − 1− (n)

2n − 1

)m
,

P ([{e1} ⊂ Ψ] ∩ [{ei}i 6=1 6⊂ Ψ]) =

(
1

2n − 1

)1(
2n − 1− (n− 1)

2n − 1

)m−1

,

P ([{e1, e2} ⊂ Ψ] ∩ [{ei}i 6=1,2 6⊂ Ψ]) =

(
1

2n − 1

)2(
2n − 1− (n− 2)

2n − 1

)m−2

,

...

P ({ei}i 6=n ⊂ Ψ ∩ {en} 6⊂ Ψ) =

(
1

2n − 1

)n−1(
2n − 1− (1)

2n − 1

)m−n+1

.

(5.7)

Joining the probabilities and binomial coefficients
(
n
i

)
, and taking the summation,

we have,

P ({ei}ni=1 ⊂ Ψ) = 1−
n−1∑
i=0

(
n

i

)(
1

2n − 1

)i(
2n − 1− (n− i)

2n − 1

)m−i
. (5.8)

�

Theorem 5.2.4 (Bernoulli Frame Scalability). Let Ψ be a random subset of m

elements sampled i.i.d.. Also let this random subset be sampled with replacement

from the set of all possible Bernoulli frames in Rn\{0} with 2 ≤ n < m <∞. The

probability that Ψ is scalable can be bounded below with the following inequality,

P (Ψ ∈ SF (n,m)) ≥ 1−
n−1∑
i=0

(
n

i

)(
1

2n − 1

)i(
2n − 1− (n− i)

2n − 1

)m−i
. (5.9)

Proof. From Lemma 5.2.1, we have that Bernoulli frames are scalable if and only

if they contain an orthonormal basis (i.e. they contain the identity). From Lemma

5.2.3, we know the probability of the identity matrix being present in a Bernoulli

matrix. Given that the set of Bernoulli frames is contained in the set of Bernoulli

matrices, and the set of Bernoulli matrices with identity sub-matrices is contained
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in the set of scalable Bernoulli frames. Let Ψ1 and Ψ2 be random sets from the

collection of Bernoulli frames and Bernoulli vectors respectively, then we have the

following result,

P (Ψ1 ∈ SF (n,m)) = P ({ei}ni=1 ⊂ Ψ1)

≥ P ({ei}ni=1 ⊂ Ψ2) ,

≥ 1−
n−1∑
i=0

(
n

i

)(
1

2n − 1

)i(
2n − 1− (n− i)

2n − 1

)m−i
.

(5.10)

�

Lemma 5.2.5. Let Ψ be a random subset of m elements sampled i.i.d.. Also let

this random subset be sampled without replacement from the set of all possible

Bernoulli vectors in Rn\{0} with 2 ≤ n < m ≤ 2n − 1. The probability that Ψ

contains an orthonormal basis {ei}ni=1 can be expressed with the following equality,

P ({ei}ni=1 ⊂ Ψ) = 1−
n−1∑
i=0

(
n

i

)(2n−1−n
m−i

)(
2n−1
m−i

) 1(
2n−1−(m−i)

i

) . (5.11)

Proof. We start by considering the complement of our probability,

P ({ei}ni=1 ⊂ Ψ) = 1−P ({ei}ni=1 6⊂ Ψ) ,

P ({ei}ni=1 ⊂ Ψ) = 1−
n∑
i=1

P ([{ei} ⊂ Ψ] ∩ [{eq}q 6=i 6⊂ Ψ])− . . .

n−1∑
i=1

n∑
j=i+1

P ([{ei, ej} ⊂ Ψ] ∩ [{eq}q 6=i,j 6⊂ Ψ])− . . .

n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

P ([{ei, ej, ek} ⊂ Ψ] ∩ [{eq}q 6=i,j,k 6⊂ Ψ])− . . .

...

n∑
i=1

P ([{eq}q 6=i ⊂ Ψ] ∩ [{ei} 6⊂ Ψ]).

(5.12)
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Notice that for any set of indices Ω, P ([{ei}i∈Ω ⊂ Ψ] ∩ [{ej}j∈Ωc 6⊂ Ψ]) = a, where

a only depends on the size of the set Ω (Ωc denotes the compliment). Hence, we

have,

P ({ei}ni=1 ⊂ Ψ) = 1−
(
n

0

)
P ({ei}ni=1 6⊂ Ψ)− . . .(

n

1

)
P ([{e1} ⊂ Ψ] ∩ [{ei}i 6=1 6⊂ Ψ])− . . .(

n

2

)
P ([{e1, e2} ⊂ Ψ] ∩ [{ei}i 6=1,2 6⊂ Ψ])− . . .

...(
n

n− 1

)
P ([{ei}i 6=n ⊂ Ψ] ∩ [{en} 6⊂ Ψ]) .

(5.13)

Considering the components in the difference separately, we can compute the proba-

bilities exactly by considering the probability of selecting the corresponding number

of basis elements, and corresponding number of non-basis elements,

P ({ei}ni=1 6⊂ Ψ) =

(
2n−1−(n)

m

)(
2n−1
m

) 1(
2n−1−(m)

0

) .
P ([{e1} ⊂ Ψ] ∩ [{ei}i 6=1 6⊂ Ψ]) =

(
2n−1−(n)
m−1

)(
2n−1
m−1

) 1(
2n−1−(m−1)

1

) .
P ([{e1, e2} ⊂ Ψ] ∩ [{ei}i 6=1,2 6⊂ Ψ]) =

(
2n−1−(n)
m−2

)(
2n−1
m−2

) 1(
2n−1−(m−2)

2

) .
...

P ([{ei}i 6=n ⊂ Ψ] ∩ [{en} 6⊂ Ψ]) =

(
2n−1−(n)
m−(n−1)

)(
2n−1

m−(n−1)

) 1(
2n−1−(m−(n−1))

n−1

) .

(5.14)

Joining the probabilities and binomial coefficients
(
n
i

)
and taking the summation,

we have,

P ({ei}ni=1 ⊂ Ψ) = 1−
n−1∑
i=0

(
n

i

)(2n−1−n
m−i

)(
2n−1
m−i

) 1(
2n−1−(m−i)

i

) . (5.15)

�
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Theorem 5.2.6. Let Ψ be a random subset of m elements sampled i.i.d.. Also

let this random subset be sampled without replacement from the set of all possible

Bernoulli vectors in Rn\{0} with 2 ≤ n < m ≤ 2n − 1 such that the set forms

a frame for Rn. The probability that Ψ is scalable can be bounded below by the

following inequality,

P (Ψ ∈ SF (n,m)) ≥ 1−
n−1∑
i=0

(
n

i

)(2n−1−n
m−i

)(
2n−1
m−i

) 1(
2n−1−(m−i)

i

) . (5.16)

Proof. From Lemma 5.2.1, we have that Bernoulli frames are scalable if and only

if they contain an orthonormal basis (i.e. they contain the identity). From Lemma

5.2.5, we know the probability of the identity matrix being present in a Bernoulli

matrix. Given that the set of Bernoulli frames is contained in the set of Bernoulli

matrices, and the set of Bernoulli matrices with identity sub-matrices is contained

in the set of scalable Bernoulli frames. Let Ψ1 and Ψ2 be random sets from the

collection of Bernoulli frames and Bernoulli vectors respectively, then we have the

following result,

P (Ψ1 ∈ SF (n,m)) = P ({ei}ni=1 ⊂ Ψ1)

≥ P ({ei}ni=1 ⊂ Ψ2) ,

≥ 1−
n−1∑
i=0

(
n

i

)(2n−1−n
m−i

)(
2n−1
m−i

) 1(
2n−1−(m−i)

i

) .
(5.17)

�

5.3 Rademacher Frames

If instead of drawing from the set S = {0, 1}, we draw from the unimodular

set S = {−1, 1}, we have Rademacher frames. The results here are more positive, as
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frame transformation simplifies the system to be solved, and the possible solutions

are more plentiful. The downside of attempting to analyze these frames by the

probability of forming an orthogonal basis is the difficulty in forming the basis itself.

This relates heavily to the problem of constructing Hadamard matrices (orthogonal

±1 bases) for general dimensions [1]. To avoid this issue, we restrict ourselves to

frames of size 2q that allow for the Syllvester construction [1] of Hadamard matrices.

With this, we have the result that Rademacher frames for R2 are always scalable.

Lemma 5.3.1. Let ϕ ∈ Rn be a Rademacher vector. Then the frame transformation

F0(ϕ) is the (n− 1) zero vector.

Proof.

F0(ϕ) = ϕ(1)2 − ϕ(i)2 i = 2, 3, . . . n,

= |ϕ(1)|2 − |ϕ(i)|2 i = 2, 3, . . . n,

= 12 − 12 i = 2, 3, . . . n,

= 0 i = 2, 3, . . . n.

(5.18)

�

Furthermore, due to this lemma, what we require for a Rademacher frame to

be scalable, is that the weighted sum of the cross terms (which are also Rademacher)

equal 0.

Proposition 5.3.2. Let Φ = {ϕk}mk=1 ⊂ R2 be a Rademacher frame containing

m ≥ 3 elements. Furthermore, let the frame elements ϕk be drawn from the set of

all possible Rademacher vectors with or without replacement. Then the frame is

scalable.
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Proof. Considering the space of vectors on the unit hypercube for dimension n = 2,

we have the following set,

S = {s1 = [−1,−1]T , s2 = [−1, 1]T , s3 = [1,−1]T , s4 = [1, 1]T}. (5.19)

To show that a frame is scalable, it is sufficient to show that the frame con-

tains an ONB. Note that in dimension n = 2, the only spanning sets are ONB

{{s1, s2}, {s1, s3}, {s4, s2}, {s4, s3}}, implying that all Rademacher frames are scal-

able in dimension n = 2. �

Lemma 5.3.3. Let Ψ be a random subset of m elements sampled i.i.d.. Also let this

random subset be sampled with replacement from the set of all possible Rademacher

vectors in Rn\{0} with 2 ≤ n < m < ∞ and n = 2q for q ∈ Z+. The probability

that Ψ contains an orthonormal basis {ei}ni=1 can be expressed with the following

inequality,

P (Ψ ∈ SC(n,m)) ≥ 1−
n−1∑
i=0

(
n

i

)(
1

2n

)i(
2n − (n− i)

2n − 1

)m−i
.

Proof. For this proof, it will suffice to make the connection to Lemma 5.2.3 and The-

orem 5.2.4. Recall that if a frame contains an ONB it is scalable. For Rademacher

matrices with columns of size n = 2q, there always exists an ONB (or Hadamard

matrix). Using this basis in place of the identity in Lemma 5.2.3 and Theorem

5.2.4, and also noticing that there are 2n elements in the set of unimodular vectors

(instead of 2n − 1), we have our result. �

We shall perform a similar analysis when the elements are sampled without

replacement.
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Lemma 5.3.4. Let Ψ be a random subset of m elements sampled i.i.d.. Also let

this random subset be sampled without replacement from the set of all possible

Rademacher vectors in Rn\{0} with 2 ≤ n < m ≤ 2q and n = 2q for q ∈ Z+. The

probability that Ψ contains an orthonormal basis {ei}ni=1 can be expressed with the

following inequality,

P (Ψ ∈ SC(n,m)) ≥ 1−
n−1∑
i=0

(
n

i

)(2n−n
m−i

)(
2n

m−i

) 1(
2n−(m−i)

i

) .
Proof. For this proof, it will suffice to make the connection to Lemma 5.2.5 and The-

orem 5.2.6. Recall that if a frame contains an ONB it is scalable. For Rademacher

matrices with columns of size n = 2q, there always exists an ONB (or Hadamard

matrix). Using this basis in place of the identity in Lemma 5.2.5 and Theorem

5.2.6, and also noticing that there are 2n elements in the set of unimodular vectors

(instead of 2n − 1), we have our result. �

In the case of Rademacher frames, while we have similar results for Bernoulli,

these bounds are actually less tight. In the analysis of Bernoulli frames, we are

implicitly using the property that there exists only one ONB, and this property is

not necessarily true for Rademacher frames of any dimension,
1 1

1 −1

 ,
−1 1

−1 −1

 ,
1 −1

1 1

 ,
−1 −1

−1 1


 . (5.20)

5.4 Symmetric Distributions

For the analysis of continuous distributions, we need an alternative tool, as the

probability of encountering an ONB is zero. What we shall use instead is Farkas’
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Lemma and separating hyperplanes to bound the probability of encountering a frame

that is not scalable, and from this, bound the probability that a frame is scalable.

These results hold for general symmetric distributions, but we focus on Gaussian

and Uniform frames. We conclude the section with a Theorem of Alternatives for

frames drawn from Gaussian, Uniform, and Rademacher distributions. There are a

number of technical lemmas that we first require, but the theme shall proceed as

follows:

1. Alternatives Theorem for scalability

2. Frames drawn from symmetric distributions are symmetric in frame transform

domain

3. Alternatives results for Gaussian, Uniform, and Rademacher frames

4. Independence in the frame transform domain

5. Bounds for frames drawn from symmetric distributions

Lemma 5.4.1 (Farkas Lemma with Scalability). Let Φ = {ϕk}mk=1 ⊂ Rn be a

frame, and let F (Φ) be the associated frame transform of dimensions d×m where

d = (n−1)(n+2)
2

. Then, exactly one of the following two alternatives hold:

(a) There exists some u ≥ 0 such that

F (Φ)

1
T

u =

0

1

.

(b) There exists some vector w ∈ Rd+1 such that wT

F (Φ)

1
T

 ≥ 0T and wT

0

1

 <
0.
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Moreover, if alternative (a) is true, then the frame Φ is scalable.

Proof. The first statement follows directly from the proof of Farkas’ Lemma given in

(4.1.3), and scalability follows directly from the equivalence of Corollary (2.4.6). �

Lemma 5.4.2. Let Φ = {ϕk}mk=1 ⊂ Rn be a frame, and let F (Φ) be the associated

frame transform of dimensions d×m where d = (n−1)(n+2)
2

. Then if Φ is not scalable,

there exists a vector w ∈ Rd+1 with wT

0

1

 < 0, and furthermore, wd+1 < 0.

Proof. This follows from the fact that the only non-zero term in

0

1

 is the last

element. And for the product (1 · wd+1) to be negative, wd+1 must be negative

itself. �

Theorem 5.4.3 (Hyperplane Separation for Scalable Frames). Let Φ = {ϕk}mk=1 be

frame for Rn. Then, exactly one of the following two alternatives hold:

(a) Φ ∈ SF (n,m).

(b) There exists a halfspace, defined by a normal vector w ∈ Rd+1, that contains

all of the transformed frame vectors,

{〈F (ϕk), w̃〉 ≥ −wd+1}mk=1. (5.21)

Proof. Combining Lemma 5.4.1 and Lemma 5.4.2, we have the alternatives result.

We can normalize the length of the vectors {F (ϕk)}mk=1 to lie on the unit hyper-

sphere. If the transformed frame vectors have a maximum angle of < π radians, no
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weighted non-negative sum of {F (ϕk)}mk=1 will equal 0. Furthermore, there exists a

halfspace that contains {F (ϕk)}mk=1. �

Corollary 5.4.4 (Hyperplane Separation for Rademacher Frames). Let Φ = {ϕk}mk=1 ⊂

Rn be a Rademacher frame. Then, exactly one of the following two alternatives hold:

(a) Φ ∈ SF (n,m).

(b) There exists a halfspace, defined by a normal vector w ∈ Rd+1 with {wi =

0}n−1
i=1 , that contains all of the transformed frame vectors,

{〈F (ϕk), w̃〉 ≥ −wd+1}mk=1. (5.22)

Proof. For the added result {wi = 0}n−1
i=1 , we employ Lemma 5.3.1, which states

that,

F0(ϕ) = 0. (5.23)

�

We shall now present some probabilistic results for symmetric distributions.

These results stem from a quasi-independence for the transformed frame elements

F (Φ).

Lemma 5.4.5 (Frame Transform Symmetry). Let Φ = {ϕk}mk=1 be a frame in Rn,

and let ϕk be a frame element drawn i.i.d. from a symmetric distribution Θn ⊆ Rn.

Then the entries of the frame transform, F (ϕk), have entries drawn from a symmetric

distribution (the expected value is 0).
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Proof. To prove the result, we shall handle this in the two cases. For the difference

of square terms, we can write the random variable interpretation as,

F0,j(ϕ) = X2
1 −X2

j , where X1, Xj ∼ Θ. (5.24)

Now consider the expected value,

E[F0,j(ϕ)] = E[X2
1 −X2

j ] = E[X2
1 ]− E[X2

j ] = µX2
1
− µX2

j
= 0. (5.25)

For the cross products, we can write the random variable interpretation as,

Fi,j(ϕ) = XiXj , where Xi, Xj ∼ Θ. (5.26)

Now consider the expected value (using independence),

E[Fi,j(ϕ)] = E[Xi] · E[Xj] = 0. (5.27)

�

Lemma 5.4.6 (Frame Transform Independence). Let Φ = {ϕk}mk=1 be a from in Rn,

and let ϕk be a frame element drawn i.i.d. from a symmetric distribution Θn ⊆ Rn.

Then the transformed frame vector entries {Fi(ϕk)}mk=1 and F0,1(ϕ) are pairwise

independent in that,

P (Fi,j(ϕk) > 0 |Fi′,j′(ϕk) > 0) = P (Fi,j(ϕk) > 0). (5.28)

The first subscript, i, denotes the transformation Fi(·), and the second index, j,

denotes the entry in that vector.

Proof. In general, we choose F0,1(·) for convenience. We do not have independence

for all of the entries of F0(ϕ) (as we show in the proof), but we are able to use a

single entry, and we choose the first, F0,1(·).
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We separate this proof into several cases. Define the following random vari-

ables,

xi := X2
1 −X2

i = ϕ(1)2 − ϕ(i)2,

yij := XiXj = ϕ(i)ϕ(j).

(5.29)

This simplifies to proving independence in six cases:

(a) P (xi > 0 |xi′ > 0) 6= P (xi > 0)

(b) P (xi > 0 | y1i > 0) = P (xi > 0) = 1/2

(c) P (xi > 0 | yij > 0) = P (xi > 0) = 1/2

(d) P (yij > 0 | yij′ > 0) = P (yij > 0) = 1/2

(e) P (yij > 0 | yi′j′ > 0) = P (yij > 0) = 1/2

(f) P (xi > 0 | yi′j > 0) = P (xi > 0) = 1/2

Case (a):

Consider the sample space with X2
1 > X2

i equivalent to |X1| > |Xi|. Order the

variables in decreasing order (X1, Xi, Xi′)→ X1 > Xi > Xi′ , and the sample space

is,

S = {(X1, Xi, Xi′), (X1, Xi′ , Xi), (Xi, X1, Xi′), (Xi, Xi′ , X1), (Xi′ , X1, Xi), (Xi′ , Xi, X1)}.

(5.30)

Computing the conditional probability, we have,

P (xi > 0 |xi′ > 0) =
P (xi > 0 ∩ xi′ > 0)

P (xi′ > 0)
=

1

3
. (5.31)
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Case (b):

We need the probability that xi > 0 (or the probability that |X1| > |Xi|) to be

independent of the sign of X1 and Xi, but this is trivially true, as we lose any

information about the sign on X1 and Xi by taking the absolute value.

Case (c):

We need the probability that xi > 0 (or the probability that |X1| > |Xi|) to be

independent of the sign of Xi and Xj, but this is also trivially true, as we lose any

information about the sign onXi by taking the absolute value, andXj is independent

of |X1| and |Xi|.

Case (d):

P (yij > 0 | yij′ > 0) =
P (yij > 0 ∩ yij′ > 0)

P (yij′ > 0)

=
P (yij > 0 ∩ yij′ > 0)

1
2

.

(5.32)

Write the sample space denoting the sign outcomes ± for the variables (Xi, Xj, Xj′),

S(i,j,j′) = {(+ + +), (+ +−), (+−+), (−+ +), (+−−), (−+−), (−−+), (−−−)}.

(5.33)

The only two cases, of the eight total, that result in both products being positive is

(+ + +) and (−−−).

P (yij > 0 | yij′ > 0) =
P (yij > 0 ∩ yij′ > 0)

1
2

=
2
8
1
2

=
1

2

= P (yij > 0) .

(5.34)
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Case (e) and (f):

For these cases it is sufficient to notice that the events have no variables in common,

and so are independent. �

Theorem 5.4.7 (Probability Bound on Scalability). Let Ψ = {ϕk}mk=1 be frame

where the entries are drawn from the symmetric distribution Θ ⊆ R. Also let the

probability that there exists a vector w̃ such that,

{〈F (ϕk), w̃〉 ≥ 0}mk=1, (5.35)

be denoted with a function of the dimension an. Then the probability that Ψ is

scalable can be bounded below with the inequality,

P (Ψ ∈ SF (n,m)) = 1− P (Ψ 6∈ SF (n,m)) ≥ 1− amn . (5.36)

Proof. We prove this result by deriving the lower bound of P (Ψ 6∈ SF (n,m)). Using

Theorem 5.4.3, we have

P (Ψ 6∈ SF (n,m)) = P (w̃TF (Ψ) ≥ 0). (5.37)

The transformed frame elements F (ϕk) are independent of each other, so we can

simplify the probability,

P (Ψ 6∈ SF (n,m)) = P (w̃TF (Ψ) ≥ −wd+11
T ) ≤ [P (〈w̃, ϕk〉 ≥ 0)]m. (5.38)

The probability only depends on a function of n, that we shall denote an,

[P (〈w̃, ϕk〉 ≥ 0)]m = amn . (5.39)

Finally, taking the complement of this upper bound, we have the lower bound for

scalability. �
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With this result, we see that the probability that a frame is scalable increases

to 1, as m increases. What remains vague, is the function an. This is partially due

to the lack of independence as shown in Lemma 5.4.6.

5.5 Numerical Results

In this section we present some numerical computations of the distribution of

scalable frames when drawn from the above densities. For the results presented,

we consider Bernoulli, Rademacher, Uniform, and Gaussian frames. We consider

frames in the dimensions n ∈ {2, 3, 4, 5, 6, 7, 8, 9}, with the number of frame elements

varying with the dimension. We first consider frames with lower redundancy m ∈

{n + 1, 2n + 1, 3n + 1}, and then consider high-redundancy frames m = {n2 + n +

1, 2n2 + n + 1, 3n2 + n + 1, 4n2 + n + 1, 5n2 + n + 1}. For any tests of the frame

properties, we perform 500 trials (a frame of the specified size is generated 500

times). See Figures 5.1 and 5.2.
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Figure 5.1: The probability maps of Bernoulli (Left) and Rademacher (Right)

frames. Over 500 trials, the percentage of scalable frames tabulated. The x-axis

varies the frame dimension n, and the y-axis varies the number of frame elements

m.
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Figure 5.2: The probability maps of Gaussian (Left) and Uniform (Right) frames.

Over 500 trials, the percentage of scalable frames tabulated. The x-axis varies the

frame dimension n, and the y-axis varies the number of frame elements m.
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Chapter 6: Learning Graph Structure

In this chapter we present some select applications of the scalable frames

model. We give a connection to graph partitioning, scaling, and sparsification. The

topic of scalable frames, attempts to find a set of weights that control the spectrum

of the frame. This is accomplished by giving small weights to frame elements with

lots of redundancy, and larger weights to singular frame elements. In the previous

topics, we were intentionally vague about what our frame elements represented, but

in this section we focus specifically on the scaling of graphs. If we view an edge rep-

resentation of a graph as a frame element, we can then apply the scaling techniques

described above. It turns out that there is a natural interpretation of the scaling

weights as importance weightings on the structure of the graph. Depending on the

input graph, the scaling attempts to produce complete sub-graphs.

The motivation for this scheme comes from the need to process large graphs

efficiently. This has ties with many graph analysis techniques (i.e. min/max-cut

[41], community detection [40, 58], clustering [81, 92], etc. [41, 80, 81]), and in gen-

eral, these graphs are extremely large, and extremely sparse. In real-life examples,

though, the graph can be more complex (and provides more detail) than is actually

required in an analysis. The underlying connection in all of these applications, is
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the desired partitioning of a given network into meaningful constituent parts. This

chapter shall make the case that a spectral approach can efficiently process large

graphs without explicitly computing the spectrum.

6.1 Graph Background and Notation

A little notation and background is presented here, but much of this material

is taken from [28, 92]. Denote a graph by G := (V , E), where V := {ν1, ν2, . . . , νn} is

a set of vertices on the graph. E := {e1, e2, . . . , em} is the ordered set of edge pairs

that denotes a connection between two nodes. A weight 0 ≤ ωij ≤ 1 denotes the

similarity between two nodes (νi, νj), and ωij = 0 if the nodes are not connected.

We shall consider only undirected graphs in this work, implying ωij = ωji. The

matrix of these weights is referred to as the adjacency matrix W , and we denote the

degree of a node, νi, as

di :=
n∑
j=1

ωij. (6.1)

The degree matrix D is then a diagonal matrix with entries Dii = di for i = 1, . . . , n.

We now define the Laplacian matrix on the graph as

LG := L = D −W. (6.2)

An alternate formulation of the Laplacian uses the incidence matrix B = [b1, b2, . . . , bm],

defined as an n×m matrix where every column in B represents an edge (νi, νj) in
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E . For a column in the incidence matrix, bk, we have

bk(i) :=



√
ωij : (νi, νj) ∈ E , i < j

−√ωij : (νi, νj) ∈ E , i > j

0 : else

. (6.3)

The Laplacian can now be defined as

L := BBT . (6.4)

Finally, we define a common graph type we will consider, namely complete graphs,

where all nodes are connected to each other node (νi, νj) ∈ E for all i 6= j.

6.2 Graph Conditioning

We now turn out attention to defining what is meant by graph conditioning (or

graph scaling). Considering our definition of frame conditioning (weights that result

in a frame with constant spectra), we shall define graph conditioning as determining

weights that result in a graph with constant spectra. With this, we must make

clear which graph representation we are using. Instead of using the adjacency or

Laplacian, we shall take the incidence matrix, as it is the most frame-like. The

incidence matrix multiplied by its transpose results in the Laplacian matrix as the

frame operator analog, and analysing the spectral properties of L is usually a goal in

spectral methods (as we generally desire with frame methods). It should be noted

that the incidence matrix of a graph is not full rank, and thus, is not scalable (in

the usual sense). Scalability also generally requires order n2 frame elements, and a

graph has at most n(n−1)
2

edges (the complete graph) excluding self-edges. To get
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around this issue, we turn to the definition of the graph condition number. The

graph condition number is defined as the ratio of the largest and smallest non-zero

eigenvalues of the Laplacian,

κ(LG) :=
λ1

λr
for λ1 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0. (6.5)

Where eigenvalues of 0 can lead to numerically unstable solutions for linear systems,

eigenvalues of 0 in the graph setting disconnect the graph, where this can be a

desired property in the case of partitioning and clustering. This function is simply

the condition number of the Laplacian (ignoring the zero eigenvalues), so scaling

in this context, leads to the interpretation that well-conditioned graphs as sets of

complete sub-graphs. With this in mind, to condition (or scale) a graph, means

to scale edges to create these complete sub-graphs. This encourages the use of the

incidence matrix B as the frame Φ, which in turn leads to the Laplacian L as the

frame operator S. We can now formulate the graph conditioning problem for the

incidence matrix.

Definition 6.2.1. Let G(V , E , ω) be a graph with incidence matrix B, and Laplacian

matrix L = BBT . Then B is scalable if there exists a non-negative, non-zero diag-

onal matrix X, such that the graph condition number κ(L̃) of the scaled Laplacian

L̃ = BX2BT is equal to 1,

λ̃1 = · · · = λ̃r > λ̃r+1 = . . . λn = 0. (6.6)

With the connection made, it may seem tempting to phrase the problem as we

have for standard frames, but this is not possible for graphs. The standard equation
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we wish to solve, finds an X, such that

ΦX2ΦT = I → BX2BT = I, (6.7)

but in the case of graphs, there will never exist a scaling matrix X that satisfies this

equation. A simple argument for this, is to notice that a frame must be full rank

(and this is clear by noting that we scale to make all eigenvalues of the frame opera-

tor/Laplacian equal 1), and graphs by design are low rank. The scalability problem

is ill-posed here because we have not considered fully the expanded definition of the

condition number of a graph.

Theorem 6.2.2. Let G(V , E , ω) be a complete graph with incidence matrix B, and

Laplacian matrix L = BBT . Then there exists no scaling X such that,

BX2BT = I. (6.8)

Proof. Scaling an incidence matrix places weights on the edges of the graph, and

requiring the scaling to result in an identity Laplacian, is equivalent to requiring the

scaled graph to have only self-edges, and this is impossible. �

There is, though, another way to condition our graph without resulting in

the identity matrix. If our ultimate goal is to perfectly condition a graph, then

we desire our scaling to result in a degree-balanced complete graph (complete graph

with all nodes equal degree). This changes the desired Laplacian from the identity

to L = nI−11T , and this problem can be solved. We now redefine graph scalability.

Definition 6.2.3 (Graph Conditioning). Let G(V , E , ω) be a complete graph with

incidence matrix B, and Laplacian L = BBT . Then B is scalable if there exists a
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non-negative, non-zero diagonal matrix X, such that the graph condition number

κ(L̃) of the scaled Laplacian L̃ = BX2BT is equal to 1. In other words, the following

system of equations hold,

L̃ = BX2BT = nI − 11
T . (6.9)

To make this more concrete, we present a few small examples to motivate our

solution.

6.3 Motivating Examples

Take the complete graph G1 with n nodes andm = (n−1)2 edges. Furthermore,

let n be even. From [28] we have that all of the non-zero eigenvalues are n, resulting

in a graph that has optimal condition number,

κ(LG1) =
n

n
= 1. (6.10)

This is not the only way to optimize the graph condition number (as we have defined

above). If we randomly partition the nodes into groups A and B where |A| = n
2

and

|B| = n
2
, remove all edges that cross from one set to the other, there are now two

disconnected complete graphs, and the condition number is still optimal,

κ(LG1) =
n/2

n/2
= 1. (6.11)

We can perform a partitioning scheme similar to this until we have disconnected

pairs of connected nodes, but the condition number will still be optimal. This leads

to the conclusion that we desire some notion of “fullness” in this conditioning. In
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other words, we will require that the degree of each node must be at least some

value chosen a priori. Relating this to min/max-cut problems, in [92] the author

considers the problem of partitioning a graph in a balanced way, which leads to a

ratio cut that attempts to balance the total degree of the partitions generated. In

the same way, we are attempting to condition a graph, while keeping balance when

disconnections occur.

Now consider a graph G2 that consists of two distinct complete subgraphs of

equal size connected by a single edge. We can optimally condition this by removing

the connecting edge, but what should happen to the displaced weight is another

issue. The naive approach would be to simply “throw away” the excess weight, but

this seems unsatisfactory, as the degree of two nodes has been decreased and may

not satisfy our degree requirements. To account for this we shall further impose

the constraint that the degree of the nodes remains constant. So in the example

considered here, after the connecting edge is removed, all of the remaining edges

would need to be increased by a, where
∑m

j=1 awij = di is the number of edges.
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6.4 Problem Formulation

As discussed in Chapter 3, we can cast the problem of scaling a frame as

finding a non-negative solution to the system formed by the frame transform T ,

T (B)u =

1
0

 ,
1
Tu ≥ 1,

u ≥ 0.

(6.12)

We have to make an adjustment to the right-hand-side to account for our updated

definition of scalability,

T (B)u =



d11

d22

...

dnn

−1


,

1
Tu ≥ 1,

u ≥ 0,

(6.13)
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with dii = n − 1. We can also form an equivalent version using the reduced frame

transform F ,

F (B)u =

 0

−1

 ,
1
Tu ≥ 1,

u ≥ 0,

(6.14)

where we have the difference of the degree terms resulting in 0.

Proposition 6.4.1. Let G(V , E , ω) be a complete graph with incidence matrix B,

and Laplacian matrix L = BBT . Then B is scalable with scaling weights xk =
1
√
wij

,

such that,

L̃G = BX2BT = nI − 11
T , (6.15)

and κ(L̃G) = 1.

Proof. The graph is complete, and if we scale all of the edges to have weight 1, the

degree of each node will be equal to n−1, and the resulting graph will be complete.

As the complete graph has Laplacian eigenvalues λi = n for i = 1, . . . , n − 1, the

graph has condition number 1. �

As every complete graph is trivially scalable, we move on to more complicated

graphs, namely, non-complete graphs. Keeping in mind that complete graphs are

optimally conditioned (in the graph setting), we can simplify (6.14). Noticing that

the off-diagonal elements Fi(·) are unnecessary, we can remove the constraints from

the system (as the off-diagonal elements are set by the scaling weights given for the
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diagonal equations F0(·)),

F0(B)u = 0,

1
Tu ≥ 1,

u ≥ 0.

(6.16)

Using the techniques developed in Chapter 4 we shall phrase this as a linear opti-

mization problem,

minimize: 〈a, u〉

subject to: F0(B)u = 0,

1
Tu ≥ 1,

u ≥ 0.

(6.17)

For graphs that are not complete, there is, in general, no scaling that results in a

perfectly conditioned graph, but our goal isn’t necessarily to condition the graph,

but to learn the importance of edges, and the formulation above allows us to do

that. Consider again the second graph in the Section 6.3. We have two complete

graphs connected by a single edge between them. We shall assume the graph is un-

weighted, and now present the results from the conditioning (Figure 6.1 and Table

6.4). The edge corresponding to scaling coefficient with the smallest value will be

removed from the graph, and the spectrum will be considered.

Consider another example, where we take the complete graph with n nodes,

and remove n−2 edges from the first vertex. We present the results in Table 6.4, but

it should be noted that the scaling achieved, removed the edges (xk = 0) connected

to the second node. The original graph and resulting graph are shown in Figure 6.2.
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Figure 6.1: The Two-Complete Graphs with 10 nodes each.

Two-Complete Graphs Spectrum

original g1 g2 g3

σmax 3.4396 3.4396 3.3977 3.1623

σmin 0.4112 0.4112 0.4089 3.1623

κ(LG) 8.3648 8.3648 8.3094 1.0000

xk - 0.0101 0.0112 0.0090

The singular values of the incidence matrix after the removal of edges. The

original column contains the max/min singular values of the starting graph. The

“g1” and “g2” columns contain the max/min singular values after an edge from

one of the complete graphs is removed. The “g3” column contains the max/min

singular values after the edge between the two graphs is removed. The xk row

contains the unique scaling weights.
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Figure 6.2: The outlier node complete graph (Left), and the scaled graph (Right),

resulting in two complete graphs.

Outlier Complete Graph Spectrum

original g1 g2 g3

σmax 3.1623 3.0000 3.1623 3.0927

σmin 1.0000 3.0000 1.0000 0.9909

κ(LG) 10.000 1.0000 10.000 9.7412

xk - 0.2000 0.0286 0.0000

The singular values of the incidence matrix after the removal of edges. The

original column contains the max/min singular values of the starting graph. The

“g1,” “g2,” and “g3,” columns contain the max/min singular values after an edge

from one of the complete graphs is removed. It should be noted that while

removing the edge from the outlier results in a better condition number, it also

results in a single node graph. The xk row contains the unique scaling weights.
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Chapter 7: Learning Linear Structure

7.1 Overview

In this chapter we turn our focus to learning the linear structure of datasets.

We do this by employing a robust version of PCA, and then applying this method to

the field of Electron Energy-loss Spectroscopy (EELS). We give a brief introduction

and motivation of robust PCA methods, and then give an overview of the electron

imaging technique. After the notation and definitions are introduced, we present a

novel scheme designed take advantage of the linear structure of the images produced

by the electron imaging. Finally, we show some experimental results on artificial

and imaged biological samples.

7.2 Robust PCA Background

A notable pitfall of employing PCA as a learning technique, is the requirement

that the underlying manifold be linear in nature, but a far more subtle, and equally

important, difficulty is the failure of PCA in the presence of noise (as noted in [51]).

In the spectral sense, we can see this sensitivity with the following example. Take

the dataset Φ = {ϕk}100
k=1 ⊂ R100 where ϕk = k1. The matrix representation is
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Figure 7.1: The original rank-1 dataset Φ.

visualized in Figure 7.1. Φ truly lies on a linear manifold, as the dataset is rank

1 (every element ϕk is generated by scales of 1). If we add noise with a uniform

random pattern by biasing 15% of the elements by 50, we obtain a noise pattern,

and a corrupted dataset, which is presented in Figure 7.2. Denote the noise pattern

and the corrupted dataset by E = {εk}100
k=1 ⊂ R100 and Φ̃ = {ϕk + εk}100

k=1 ⊂ R100,

respectively. Performing a spectral analysis of this corrupted datset, we see that the

spectrum decays by several orders-of-magnitude after the first singular value. The

case can be made that the “true” dimensionality is 1, but if we take the top rank 1

component, a sub-optimal reconstruction is obtained (Figure 7.2). If we look at the

spectrum of the individual components (true dataset Φ and the corruption mask E)

we see that the spectrum and eigenvector pattern are uncorrelated (Figure 7.3), and

this is an important fact.
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Figure 7.2: The corrupted dataset Φ̃ with the unknown noise component E biasing

15% of the elements in Φ (Left), and the reconstructed dataset Φ̂, taking the largest

singular value (Right).

Presented in [16, 17], there is a mathematically rigorous way to separate these

components, and it uses the lack of correlation between the respective spectra. In-

troduced as Robust Principal Component Analysis (RPCA), we can separate uncor-

related spectra exactly. The result requires some machinery before its full statement.

Definition 7.2.1 (Incoherence Condition η). Let Φ = {ϕk}nk=1 be represented as

an n × n matrix of rank r, resulting in the SVD components U = [u1, . . . , ur],

Σ = diag(σ1, . . . , σr), and V = [v1, . . . , vr]. Φ is said to satisfy Incoherence Property

η, if the following inequalities hold:

max
k
‖UT ek‖2

2 ≤
rη

n
,

max
k
‖V T ek‖2

2 ≤
rη

n
,

‖UV T‖2
∞ ≤

√
ηr

n
.

The following result is Theorem 1.1 in [17].
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Figure 7.3: The correlation matrix of the eigenvectors of Φ and E. The vectors

are all uncorrelated except for the two leading vectors. This is due to the biasing

from the increasing elements in Φ and the non-negative elements of E. This is the

reason for the inability of the leading component to accurately reconstruct the rank

1 component. The average correlation is -.0012.
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Figure 7.4: The singular value decay of the rank-1 dataset (Left). And the singular

value decay of the noise mask (Middle). The singular value decay of the noise-

corrupted dataset (Right). These plots are all presented on the same scale.
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Theorem 7.2.2. Suppose Φ = {ϕk}nk=1 is represented as an n × n matrix and

satisfies the incoherence condition with parameter η, and let the support of a noise

matrix, E, have uniformly distributed support of cardinality |E| = s. Take γ = 1√
n
,

s ≤ ρ1n
2, and

rank(Φ) ≤ ρ2n

η(ln(n))2
,

with ρ1 and ρ2 being positive numerical constants. Then, there is a numerical

constant a such that, with probability at least 1 − an−10, the corrupted dataset

Φ̃ can be decomposed into the true low-rank and noise components, Φ and E,

respectively, by solving,

minimize: ‖Φ‖∗ + γ‖E‖1,

subject to: Φ + E = Φ̃.

(7.1)

Theorem 7.2.2 is related to many of the notions from Compressive Sensing

[3, 18, 19]. The optimization problem being solved is the convex relaxation of the

NP-hard problem,

minimize: rank(Φ) + γ‖E‖0,

subject to: Φ + E = Φ̃.

Here, the `0 “norm” (‖E‖0) is the number of non-zero values in E. The rank(Φ) term

represents the effective number of principal components in the corrupted dataset Φ̃.

The incoherence property ensures that the spectral properties of Φ don’t overlap

with the those of E, and in this case, we can solve an NP-hard problem with high

probability.

Several methods have been proposed to solve the separation problem of (7.1)

[64, 96]. The class of algorithms we consider here is described in [64] and utilizes
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Augmented Lagrange Multipliers (ALM). For more information on general ALM

formulation see [34, 65, 98]. ALM is employed here mainly for its guarantee of

convergence to an optimal solution under mild conditions, and we state the algorithm

below for convenience.

Definition 7.2.3 (Spatial Shrinkage Operator). We denote by Sγ the Spatial Shrink-

age Operator, which performs a soft thresholding on a given n×m matrix by sub-

tracting positive constant, γ, from each element and thresholding all negative values

to 0:

Sγ[A] = max{A− γ11T , 0},

where we use the entry-wise max function.

Definition 7.2.4 (Spectral Shrinkage Operator). We denote by Ŝµ the Spectral

Shrinkage Operator, which performs a soft thresholding on a given n × m matrix

by subtracting positive constant, µ, from each singular value and thresholding all

negative values to 0:

Ŝµ[A] = U ·max{Σ− µI , 0} · V T ,

where A = UΣV T .

Presented as Algorithm 4 in [64], we now present this scheme as Algorithm (7.2).

The authors in [16, 17] are not the first to consider extensions of PCA. Due to

PCA’s widely known sensitivity to outliers, a number of techniques were developed

under the umbrella of robust PCA. This generally refers to the ability of a technique
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Algorithm 3 ALM for Robust Principal Component Analysis

Require: Φ , γ , µ0 , ρ

1: J = max{‖Φ̂‖2 , γ
−1‖Φ̂‖∞}

2: Y0 =
sgn(Φ̂)

J

3: i← 0

4: while not converged do

5: Φ0
i+1 ← Φ∗i

6: E0
i+1 ← E∗i

7: j ← 0

8: while not converged do

9: Φj+1
i+1 ← Ŝµ−1

i
[Φ̂− Ej

i+1 − µ−1
i Yi]

10: E ← Sγµ−1
i

[Φ̂− Φj
i+1 − µ−1

i Yi]

11: j ← j + 1

12: end while

13: Yi+1 ← Yi + µ−1
i (Φ̂− Φj

i+1 − E
j
i+1)

14: µi+1 ← ρµi

15: i← i+ 1

16: end while
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Figure 7.5: The reconstructed rank-1 dataset (Left), and the extracted noise mask

(Right).

to find true principal components in the presence of outliers/noise. The two main

approaches to robust PCA attempt to either find a better correlation between points,

or use an iterative/projective approach to converge to a solution that separates the

outliers. Robust correlation estimators are employed in [31, 97], and projective

approaches are employed in [52, 96]. There have also been combination approaches

that balance effectiveness and speed [49]. The approaches developed in [16] are

iterative methods that attempt to determine the principal components and separate

them from noise. Revisiting the corrupted rank-1 dataset, we can employ Algorithm

7.2 to exactly separate the rank-1 and noise component (Figure 7.5).

7.3 Electron Energy-Loss Spectroscopy

Moving on to real-world data, we consider the removal of noise and artifacts

from biological samples. In this section we introduce the imaging technique of

Electron Energy-Loss Spectroscopy (EELS), where a biological sample placed in a
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microscope and imaged with electrons. High energy electrons are passed through

the sample, and the energy remaining in the electrons, after leaving the sample, are

measured. The number of electrons measured at a given energy level are binned

to form a histogram of counts at those energies. As the energies are on the order

of 109eV, it is common to analyze the measurements in terms of energy lost while

passing through the sample. This histogram, collected for each pixel, is called an

electron energy-loss spectra, and this imaging process produces a spectrum image.

This naming convention overlaps with our definition of spectrum (singular/eigen-

values), but we will explicitly distinguish between the two uses when necessary, and

all other cases will be clear from context.

With the spectral image, we can analyze the biological sample’s properties.

For the purposes of this thesis, we will restrict our analysis to that of attempting

to determine the elemental makeup. See Figure 7.6 for an example of spectra and

the spectral image. Electrons lose a variable amount of energy depending on the

element that they intersect (depending on the number of electrons/protons/etc.)

The specific response pattern of these elements is referred to as reference spectra

(Figure 7.7).

The general techniques for EELS processing follows the standards of many im-

age processing techniques involving channel dimensions not necessarily in the visible

spectrum [77, 89]. As many of the electrons fail to interact with the elements in the

sample, most of the electrons lose little-to-no energy, resulting in a large “zero-loss”

response. This background peak is several orders-of-magnitude larger than any sig-

nal response from the elements, so many EELS processing techniques first separate
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Figure 7.6: A collected EEL spectra from a biological sample (Left), and a spectral

image from the sample biological sample. The number of electrons measured is the

y-axis for the amount of energy lost (x-axis).
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Figure 7.7: A response spectra for phosphorus (Left) and sulfur (Right). Note that,

also shown here is a carbon response that is present in organic samples, is the second

peak on the far right of the images.
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Figure 7.8: Image slices taken at various energy-loss levels (92eV, 152eV, 212eV,

and 272eV), arranged from top-left to bottom-right.

the background from the sample as a first step. Also, when measurements of the

electron energies are made, there are a number of confounding issues that add noise

to the sample. Electrons that come into contact with other electrons can change

trajectory, and the results from those electrons are registered incorrectly. This is in

addition to anomalies added by the microscope itself (e.g. lens calibration issues,

vacuum sealing, environmental factors, etc.). Figure 7.8 shows some corrupted slices

from an EEL image.

We now give a brief summary of the techniques and language used to process

these energy-loss spectra. For more general information on the processing of EELS,

see [36, 37, 50, 90]. Much of the work presented here is available in greater detail in

[35, 36, 37, 50, 50, 60, 61, 62, 90, 93].
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Due to the nature of imaging trace elements in samples, the spectra will be

dominated by the background. This complicates processing efforts, as the inte-

grated value of a core-edge may be several orders-of-magnitude smaller than the

background. To account for this, many EELS processing techniques remove the

background loss before attempting to determine trace elements [37]. The linear

least-squares technique uses the well known inverse power-law to predict background

spectra [35, 36, 37],

b[i] = a0x[i]−a1 . (7.2)

where x[·] is the energy-loss, and b[·] is the electron count at a specific energy-loss

(for parameters a0 and a1). The behavior of background counts can be modeled

by finding the appropriate parameters, a0 and a1, for the function. This is known

to well approximate the background locally, and we can subsequently remove the

background by this fitting. The trace elements are then obtained by subtracting the

background.

In processing schemes that depend on modeling the entire energy-loss spec-

trum, the zero-loss and low-loss region of the spectrum can skew trace element

results due to its large magnitude, relative to core-loss edges. When comparing

spectra, small differences in the zero-loss are weighted more than differences during

higher energy-losses (lower electron counts). Using knowledge that the core-edge

losses fluctuate rapidly, using the difference (approximately, the local slope) of the

spectra, results in low values along the zeros-loss, and distinctive values for the

element edge-losses. When assuming the inverse power-law model from (7.2), the
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difference spectra for the background will be approximately constant, allowing for

its subtraction from the sample [50, 93]. Where presented in the thesis, we shall use

the forward, backward, and centered difference of a spectra ϕ[·] where applicable,

Forward Difference: di =
ϕ[i+ 1]− ϕ[i]

x[i+ 1]− x[i]
;

Centered Difference: di =
ϕ[i+ 1]− ϕ[i− 1]

2(x[i+ 1]− x[i])
;

Backward Difference: di =
ϕ[i]− ϕ[i− 1]

x[i]− x[i− 1]
.

A modification of linear least-squares, attempts to determine multiple trace

elements simultaneously [60, 61, 62]. Multiple least-squares was presented as a tool

useful when detecting overlapping core edges. The flexibility in the method allows

for the use of linear least-squares to fit the background (and then fit the element core

edges), or fit the background and core edges together. This also allows for reference

background spectra to be used in the least squares fit. As the method utilizes least

squares curve-fitting, quantitative methods can be employed, allowing for elemental

counts.

Statistical analysis techniques allow for the study of global relationships in

the sample. For an image represented as an n× n× c data cube, there are m = n2

pixels, and to each pixel, there is an associated spectra of length c. We now define

the matrix of spectra as,

Φ = [ϕ1, ϕ2, . . . , ϕm],

a collection of spectra obtained from the imaging (spectra are obtained from each

pixel of the image). Statistical techniques analyze the sample by considering the

mean and variance of the spectra [12, 13]. The specific example we give here is PCA
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[88]. This method performs a principal component decomposition where each of

the spectra are separated into components that explain the variance in the sample.

Furthermore, the components lie on subspaces that are perpendicular to each other

(essentially meaning that there is no mixing between components). Principal com-

ponent separation is meant to separate the major aspects of the sample, thereby

separating the background and any trace elements. The separation can be written

as:

ΦTΦ =
r∑
i=1

λiviv
T
i .

Here, vi represents the ith component of the sample (eigenvector), and λi represents

the ith scaling coefficient (eigenvalue). In this regard, PCA is flexible, as it allows

for separation of spectral maps, and/or the separation of the average core-loss edges.

This can be employed to find, eigen-spectra (the spectra that capture the variance

of the sample), or eigen-maps (a mapping that gives the components of the image

that contain the most variance).

Analyzing the EELS spectra through statistical methods [88], produces results

that consider the global relationships of the data. This approach is susceptible to

noise and artifacts present in the sample. To increase the accuracy of these methods,

a sub-sample of the spectra can be used to approximate the background and refer-

ence spectra. An experimentalist selects a subset of pixels from the spectrum-image

and performs PCA. If attempting to separate the background spectra, sub-blocks

are chosen where only the background (or no element trace) is present in the sample.

As PCA is sensitive to outliers [51], we desire to have a strong signal response from
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only the background. By selecting pixels that only have the background spectrum

present, there is no influence from the trace elements, and a clear background spec-

trum is obtained taking the top rank 1 component of the sample. This helps to

mitigate the effect of spectrum mixing.

7.4 Removing EELS Artifacts with RPCA

In this section we propose a framework for obtaining high-accuracy EELS

spectral maps given biological samples. This is true even in the presence of imag-

ing artifacts and noise. This is accomplished by pre-processing the samples using

robust PCA to separate the noise and true signal, and then using a combination of

standard techniques to produce the spectral maps. By “high-accuracy,” we mean

that the residuals associated with the fittings are small. The effectiveness of this

technique becomes more apparent when overlapping core-edges are present. Finally,

we compare our results with standard techniques and show the gain in quality when

employing the ensemble. Note that this work was in collaboration with Dr. Ric-

ahd Leapman and Dr. Maria Aronova at the National Institutes of Health. The

experimental samples are presented courtesy of the Dr. Leapman, and the National

Biomedical Imaging and Bioengineering Laboratory.

By taking the global structure of the sample spectra into consideration, the

processing methods become more robust to outliers, i.e., less sensitive to noise cor-

ruption. Global techniques have the effect of finding the central tendency of the

data, and we shall exploit this structure to produce high-accuracy spectral maps.
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We accomplish this goal by employing RPCA. In the imaging of biological sam-

ples, the artifacts that occur can be thought of as sparse errors, first, as they cor-

rupt a small percentage of the sample pixels, and second, as the spectrum of the

noise/artifacts are not necessarily correlated to the biological sample itself. This

is the case with various imperfections, like lens mis-calibrations and measurement

fluctuations. Under a model like standard PCA, these anomolies become outliers,

that mix the sample and anomaly spectrums. Robust PCA does not suffer from this

issue.

To form this method, we shall use the combined strength of the techniques

discussed above. We still wish to perform quantitative analysis, so it’s essential that

after processing, specific elemental counts are still possible. An explanation of the

method is given below, detailing the steps taken and their effect.

1 Pre-processing:

After a sample is imaged, each spectra is stacked into a matrix Φ. To ensure

that the sample is unbiased, the mean count for each energy loss is computed

and subtracted from the sample. The sample is then normalized by dividing

the largest count (with the mean subtracted).

2 De-noise with Robust PCA:

To remove any artifacts and speckle noise from the sample, robust PCA is

performed to separate the noise component, E, from the sample. The signal

component, Φ, obtained, is now used in further processing.

3 User Selects Background Area:
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To isolate the background in the sample, an area (or set of areas) is chosen

that contains no trace elements. This is performed by an experimenter, and

makes use of their experience with similar samples.

4 Use PCA to find Background Spectra:

With the background areas selected, PCA is performed. Taking the largest

eigen-spectra, results in the background reference to be used.

5 Subtract Background:

With this background reference, a least-squares fit is performed for each spec-

tra, and the background is removed from the sample.

6 Processing:

To allow for quantitative analysis, the divided normalizing constant must be

multiplied, and the subtracted mean must be re-added. This provides a sample

that can be interpreted as electron counts of the remaining trace elements.

7 Perform Multiple Least Squares:

With the background removed, the reference spectra for the trace elements

present are used in a multiple least-squares fit to account for any overlapping

core-edges. This produces the corresponding component maps that can be

used for quantitative analysis.
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7.4.1 Phantom EELS Processing

To show the effectiveness of using a combined, or ensemble, approach, we first

apply the method to an artificial sample with noise added. The spectral-image slices

at various eV are shown in Figure 7.10. The sample is generated over the range [90

- 270 eV] (with a step size of 3 eV). For generality, we shall denote the number of

energy losses with c (The given sample has c = 61.), and the sample contains a

background following the inverse power law,

b[i] = a0x[i]−a1 ,

with a0 = 105 and a1 = 3.25 (that we assume is unknown when processing the

sample). Phosphorus and sulfur are present in the phantom sample, with phospho-

rus in the large organelle, and sulfur in the smaller islets. Where they are present,

phosphorus and sulfur core-edge intensities are 2 orders-of-magnitude smaller than

the background signal. Figure 7.9 gives an image representation of the phospho-

rus/sulfur locations.

We employ the Poisson distribution,

p(λ, k) =
λk

k!
e−λ,

to add shot noise to the data. The parameters λ and k are the mean and occurrence

count, respectively. As working with large counts can be inaccurate due to round-off

errors, we will approximate the noise with a Gaussian distribution,

p(µ, σ, t) =
1

σ
√

2π
e
−

(t− µ)2

2σ2 .

112



Figure 7.9: The true phosphorus (Left) and sulfur (Right) locations in the artificial

sample.

Figure 7.10: Slices from the noisy artificial sample.
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Figure 7.11: Slices from the artificial sample after removing the noise with RPCA.
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In this approximation, the mean µ = λ, and the standard deviation σ =
√
λ. The

efficacy of this approximation is shown with the Central Limit Theorem [85, 94]. For

each energy loss over the number of pixels, m, the estimated mean µ̂ is computed

by the maximum likelihood estimator,

µ̂(i) =
1

m

m∑
k=1

Φ(i, k),

where Φ(i, k) is the energy-loss count for the ith energy level and kth pixel.

After applying the ensemble method to the phantom, we present, in Figure

7.12, visual maps comparing results between standard multiple least-squares and

PCA with our method. In Table 7.1, we present the χ2 results for the phantom

sample, with noise and without. We also give the signal-to-noise ratios obtained,

in Table 7.2. To generate the χ2 statistic, we first compute the sample standard

deviations for each energy loss si,

si =

√√√√ 1

m− 1

m∑
k=1

(Φ(i, k)− µ̂(i))2.

The χ2 is then generated with,

χ2 =
n∑
i=1

m∑
k=1

(Φ(i, k)− f(i, k))2

si
,

where f(i, k) is the generated fit from PCA, multiple least-squares, and the ensemble

method. The peak signal-to-noise ratio is,

psnr = 20 log10(max(Φ))− 10 log10(mse),

where mse is the mean-squared-error between the sample spectra and the predicted

spectra.
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χ2 Table

Phosphorus Sulfur Residual

PCA 6.7E9 2.8E9 1.8E9

MLS 2.7E9 1.8E8 1.9E9

Ensemble 1.1E9 1.3E8 1.0E9

Table 7.1: A table of chi-square values.

PSNR Table

Phosphorus Sulfur Residual

PCA -6.94 -4.49 21.75

MLS 8.38 21.57 21.62

Ensemble 10.55 21.23 21.47

Table 7.2: A table of peak signal-to-noise ratios.
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Figure 7.12: The results after applying the three schemes discussed, PCA (Top row),

MLS (Middle row), and Ensemble (Bottom row).
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Figure 7.13: The phosphorus maps produced by the PCA (Left), MLS (Middle),

and the Ensemble (Right).

7.4.2 Experimental EELS Samples

We now perform a similar analysis on an experiential sample. Unfortunately, as

we don’t have ground truth, our results are more qualitative in nature. We compare

with standard techniques and show RPCA’s effectiveness at removing noise. See

Figure 7.13.
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Chapter 8: Learning Nonlinear Structure

8.1 Robust Manifold Learning

The natural extension of PCA is to compare similarities between nonlinear

transformations of the dataset in the form of kernels (KPCA). In this same vein, we

may wish to add a notion of robustness to KPCA by employing an error regularizing

term. This motivates our introduction of the Robust Manifold Learning (RML)

problem,

minimize: rank(K(Φ)) + γ‖E‖0

subject to: Φ + E = Φ̃,

(8.1)

where K(Φ) is the kernel matrix (or similarity matrix) with Ki,j = f(ϕi, ϕj) for a

kernel function f . Here, the kernel is normalized to have λ1 = 1. As with many

formulations, we shall study the convex relaxation of this problem,

minimize: ‖K(Φ)‖∗ + γ‖E‖1

subject to: Φ + E = Φ̃.

(8.2)

Much of the intuition behind this approach can be gleamed from an understanding of

robust PCA and its variations. Our discussion of convergence in the following section

was encouraged partly from the results obtained in [68] for non-convex RPCA. The
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work by Candès on the convergence of iterative schemes to minimize the nuclear

norm, inspired the use of iterative methods under this framework [15], and the

unification of many of the standard nonlinear dimensionality reduction tools under

the kernel PCA umbrella in [9, 46] was the basis for its use here (as well as its

embedding results for clustering and learning [63, 78]). In the realm of related

work, there is the paper by Shahid et. al. [75]. The authors start with the RPCA

assumption of a low rank and sparse decomposition, and add a regularizer term that

enforces smoothness on the similarity graph of the the dataset,

min
Φ̃=Φ+E

: ‖Φ‖∗ + γ‖E‖1 + τ · trace(ΦCΦT ),

with ΦCΦT as the similarity. Taking the trace of this term imposes a penalty

for non-smooth results, as it encourages a slow variation in the spectrum. The

difference in the proposed method is that we don’t require the low-rank assumption

in the original space. In fact, we place no assumptions on the dataset, except that

there exists a true low-rank embedding.

For convenience, we shall generally define notation where used, but for brevity,

we define a few terms that are used throughout the chapter. We take the dataset

Φ = [ϕ1, ϕ2, . . . , ϕm] to be an n × m matrix where each column corresponds to a

datapoint. By embedding of a kernel, we write,

Θ = [θ1, θ2, . . . , θm] = Λ
1
2V T ,

where K(Φ) = ΘTΘ = V ΛV T . By neighbor set Ω(ϕk) and Ω(θk) we refer to the

indices of the closest (in `2 norm) datapoints in Φ and Θ respectively.
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8.2 Inverse Mapping

While this RML formulation is similar in form to that of (7.1), there are major

differences that must be addressed. We shall, in general, restrict the kernel function

to those acting on the inner-product between elements f(ϕi, ϕj) = f(〈ϕi, ϕj〉). We

shall also restrict ourselves to kernel matrices K(·) that are positive semi-definite (or

positive definite), but even with these simplifying assumptions, the class of kernel

functions is still too large for the same analytic techniques applied to problems

with linear structure. If we plan to use this technique in practical applications, we

require a method to minimize the rank of the kernel matrix, and this necessitates a

spectral decomposition. This brings us to the major issue with nonlinear methods;

there is in general no well-defined inverse for an embedding obtained from KPCA. As

mentioned in the preliminaries, many have studied the inverse problem [2, 47, 57, 66]

with many techniques making the assumption that a reasonable inverse uses an

interpolation technique to approximate the points in the original space [47, 66].

The algorithm employed to solve the RML problem is modeled from the Aug-

mented Lagrange multiplier algorithms presented for RPCA (Algorithm 7.2). The

major additions to this approach are the inclusion of the nonlinear embedding and

its inversion. A kernel K is formed for the dataset Φ (generally the heat kernel

e−
‖ϕi−ϕj‖

2
2

σ2 ), and an embedding is formed and thresholded for the kernel. Once the

threshold has been applied, an inverse operation is performed as follows,

ϕk =
∑

i∈Ω(θk)

a

‖θk − θi‖2
2

ϕi. (8.3)
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Here a is a normalization constant chosen so that the sum of `2 distances is 1,

m∑
i=1

∑
j∈Ω(θi)

‖θi − θj‖2
2 =

1

a
.

Before presenting the algorithm, we define the embedding and inverse opera-

tors.

Definition 8.2.1 (Embedding Operator). Define E as the embedding operator such

that,

Θ = E [K(Φ)],

where K(Φ) is the kernel matrix on the dataset Φ.

Definition 8.2.2 (Inverse Operator). Define E−1 as the embedding operator such

that,

Φ = E−1[Θ],

where Θ is an embedding formed from a kernel matrix. The inverse is performed

using the interpolation formula above (8.3).

Note that in Algorithm 8.2, we use the shrink operators defined in Defini-

tion 7.2.3 and 7.2.4.

8.3 Convergence Discussion

Let Φi, Ei ∈ Rn×m be the manifold approximation and sparse term, respec-

tively, from the ith iteration of the algorithm. Let Φ∗ be the ideal manifold, and E∗

be the ideal sparse error term. Assume E∗ is sparse with s non-zero terms. This
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Algorithm 4 ALM for Robust Manifold Learning

Require: Φ , γ , µ0 , ρ

1: J = max{‖Φ̃‖2 , γ
−1‖Φ̃‖∞}

2: Y0 =
sgn(Φ̂)

J

3: i← 0

4: while not converged do

5: Φ0
i+1 ← Φ∗i

6: E0
i+1 ← E∗i

7: j ← 0

8: while not converged do

9: Kj+1
i+1 ← K(Φ̃− Ej

i+1 − µ−1
i Yi)

10: Θj+1
i+1 ← E [Kj+1

i+1 ]

11: Θj+1
i+1 ← Ŝµ[Θj+1

i+1 ]

12: Φj+1
i+1 ← E−1[Θj+1

i+1 ]

13: E ← Sγµ−1
i

[Φ̃− Φj
i+1 − µ−1

i Yi]

14: j ← j + 1

15: end while

16: Yi+1 ← Yi + µ−1
i (Φ̃− Φj

i+1 − E
j
i+1)

17: µi+1 ← ρµi

18: i← i+ 1

19: end while
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means at most s
n

points contain errors, with s � n. Moreover, these s points are

randomly distributed across the manifold. Let Ω = {j : ∃i such that E∗j,i 6= 0}, such

that |Ω| ≤ s.

Figure 8.1: Example of manifold assumption with a corrupted point

We define K(Φi) = K(Φ∗) + Kε, where Kε is the error in the kernel caused

by corruption of the s points. We need three assumptions to guarantee that the

low frequency eigenvectors on the corrupted kernel K(Φi) will remain sufficiently

smooth and faithful to the unperturbed eigenvectors of K(Φ∗).

First, the manifold must be densely sampled compared to the number of cor-

ruptions, as in Figure 8.1. This is because there exists an all zeros sub matrix of Kε

of size
(
m− s

m

)
×
(
m− s

m

)
. As s grows, so does ‖Kε‖, which in turn corrupts the

eigen-decomposition.

The second assumption is that the eigenvectors are sufficiently spread across

the manifold. This is interpreted as the non-linear version of the Incoherence Condi-

tion η (Definition 7.2.1) from [17]. Namely, we assume the low frequency eigenvectors
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of Φ∗, which we denote V = [v1, ..., vr], satisfy

max
i
‖V ᵀei‖2 <

ηr

n
,

where r is the dimension of the manifold. This guarantees that none of the low

frequency eigenvectors are concentrated on a small section of the manifold. If this

assumption is violated, and eigenvectors vi were concentrated on some small number

of points c � m, then one or two corrupted points on that section of the manifold

would have a large effect on vi.

The third assumption is that the eigengap between λtr and λtr+1 is sufficiently

large for some diffusion time t. Given the assumption that the data lies on an

r-dimensional manifold, and given the freedom of choice in diffusion time, this as-

sumption can be easily satisfied.

The interplay of these assumptions can be more easily observed given the

eigenspace perturbation Theorem 4.11 of Stewart [82]. By assuming that the errors

in Kε are sufficiently randomly distributed and the low frequency eigenvectors are

sufficiently spread out, the norm of the error generated will be sufficiently small with

respect to the eigengap. Thus, the eigenvectors of the the perturbed kernel K(Φi)

are sufficiently close to the original eigenvectors V of the kernel K(Φ∗).

8.4 Circle Embeddings

We now present some results obtained using the RML approach. We start

with a clear example of when standard RPCA fails by adding sparse noise to an

embedding of a circle.
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Figure 8.2: This figure shows the original embedding (Left), noise signal (Middle),

and combined signal (Right).

We sample sine and cosine functions m = 1000 times using n = 4 frequencies

for each, resulting in a dataset, Φ, of size 2n-by-m where each column is a point in

Φ. Sparse noise, E, is then added to the dataset by randomly selecting 80 indices

and biasing the location. This is a relatively small amount of corruption, but due to

the true manifold being non-linear, PCA and RPCA will fail to converge to the true

solution. We also compare our results to those of standard KPCA, which results in

a solution that still contains the sparse errors. To further show the effectiveness of

our technique, we also present the iterates of the embedding produced during the

algorithm. As we sample trigonometric functions here, the optimal 2D embedding

is that of a circle. See Figures 8.3 and 8.4.

The results show that with this example, RML converges to the solution rather

quickly (after 9 iterations). The results in Figure 8.4 show the stark difference in

results. Particularly, RPCA converges to a completely different manifold, displaying

one of the pitfalls with assuming linear structure. The “closest” linear manifold is

completely different from the true manifold.
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Figure 8.3: This figure shows the low-rank results for iterations 1 through 9 using

RML.

Figure 8.4: This figure shows the embeddings obtained after the various techniques

are employed. From left to right, we present the final results after RML, kernel

PCA, standard PCA, and standard robust PCA.

127



Figure 8.5: The image shown on the left is the original, and the image on the right

is the result after employing the RML algorithm.

Figure 8.6: The image shown on the left is the original, and the image on the right

is the result after employing the RML algorithm.

8.5 Inpainting

We employ the RML algorithm to inpaint images with missing sections. The

results are shown in Figures 8.5, 8.6, 8.7, and 8.8.
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Figure 8.7: The image shown on the left is the original, and the image on the right

is the result after employing the RML algorithm.

Figure 8.8: The image shown on the left is the original, and the image on the right

is the result after employing the RML algorithm.
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8.6 Towards Nonlinear Inverse Mappings

For the inverse mapping described in Equation (8.3) we take the standard

convention of interpolating the updated datapoint using the embedded points. This

is unsatisfactory, as it provides little guarantees as to the solution produced. We

would expect this to be the case, as we place no restrictions on the dataset or kernel

employed. What we aim to do in this section, is present an initial path to the

rigorous study of manifold learning techniques that require a nonlinear mapping.

While the results presented here are not complete, they do illuminate some of the

issues inherent to inverse/pre-image problem.

The key insight, is that we perturb the spectrum of the kernel matrix by an

adjustable parameter µ. If this parameter is sufficiently small, we might expect

to be able to bound the accuracy of an inversion method. We start this analysis

by defining the spectrum-parametrized kernel matrix, then bound the error of small

perturbations of the embedding set (with some assumptions). We then show that,

after assuming some restrictions on the inverse mapping, the error between the

optimal kernel and the current iteration approaches 0 as the iterations progress.

Definition 8.6.1. The point sets Φ and Θ are ordered sets of m points in Rn and

Rn′ respectively,

Φ := {ϕk}mk=1 ⊂ Rn,

Θ := {θk}mk=1 ⊂ Rn′ .
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Moreover, we shall assume that the elements in Φ and Θ are unit norm,

‖ϕk‖2 = ‖θk‖2 = 1 for k = 1, . . . , n.

Definition 8.6.2. The neighborhood of a points ϕ shall be denoted Ω(ϕ), where

Ω(ϕ) := (k |ϕk is a neighbor of ϕ) .

Definition 8.6.3. The convex hull of a set of points Φ shall be denoted conv(Φ),

where

conv(Φ) :=


|Φ|∑
k=1

αkϕk

∣∣∣∣∣∣
|Φ|∑
k=1

αj = 1 , αj ≥ 0

 .

Definition 8.6.4. The euclidean distance matrix of a set Φ, is defined to be DΦ,

where

DΦ := DΦ(i, j) = ‖ϕi − ϕj‖2
2.

Definition 8.6.5 (Spectrum-Parametrized Kernel Matrix). We define a kernelK, as

a function that acts on a dataset, Φ := {ϕk}mk=1 ⊂ Rn, and maps it to a matrix K(Φ),

by a continuously differentiable function. Furthermore, we define its spectrum-

parametrization by K(Φ, µ), that maps a dataset in the following manner,

K(Φ, t) := K(Φ)− 1

µ
I.

The first lemma simply connects the parameter µ to a shift in the spectrum.

Lemma 8.6.6. Given a dataset Φ, its kernel K(Φ), and the parametrized kernel

K(Φ, t), let
1

µ
< λr, where λr is the smallest non-zero eigenvector of K(Φ) Then

the following equality holds,

‖K(Φ)−K(Φ, t)‖2 =
1

µ
.
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Proof.

‖K(Φ)−K(Φ, µ)‖2 = ‖K(Φ, 0)−K(Φ, µ)‖2

= ‖K(Φ, 0)−K(Φ, 0)−K(0, µ)‖2

= ‖ −K(0, t)‖2

=

∥∥∥∥ 1

µ
I

∥∥∥∥
2

=
1

µ
‖I‖2

=
1

µ
.

�

Lemma 8.6.7. Let ‖εj‖2 � 1 and let Θ = {θi}ni=1 ⊆ Rm. Assume the elements in

Θ are unit norm, and define ε to be the maximum value of the perturbation matrix

E = E(i, j) = εij,

ε := max
ij
{εij}.

Perturb Θ by E, such that

Θ̃ := {θ̃i}ni=1 = {θi + εi}ni=1.

Assume that any element in Θ is contained in the convex hull of its neighbor set in

Θ and Θ̃. Let α̃ ∈ R|Ω(θ̃i)| denote the convex coefficients for the perturbed set Θ̃.

Then the error (in `2 norm) of the reconstruction of θi as a convex combination of

its perturbed coefficients is bounded by ε,∥∥∥∥∥∥θi −
∑

j∈Ω(θi)

α̃jθj

∥∥∥∥∥∥
2

2

< O(ε2).
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Proof. Consider the two representation of θi. Write θi as its convex combinations

and simplify the expression,

0 =‖θi − θi‖2
2

=

∥∥∥∥∥∥
∑

j∈Ω(θi)

αjθj −
∑

j∈Ω(θi)

α̃j θ̃j

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑

j∈Ω(θi)

αjθj −
∑

j∈Ω(θi)

α̃j(θj + εj)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑

j∈Ω(θi)

(αj − α̃j)θj −
∑

j∈Ω(θi)

α̃εj

∥∥∥∥∥∥
2

2

Using a variation of the triangle inequality, we have,

0 =

∥∥∥∥∥∥
∑

j∈Ω(θi)

(αj − α̃j)θj −
∑

j∈Ω(θi)

α̃εj

∥∥∥∥∥∥
2

2

≥

∣∣∣∣∣∣
∥∥∥∥∥∥
∑

j∈Ω(θi)

(αj − α̃j)θj

∥∥∥∥∥∥
2

2

−

∥∥∥∥∥∥
∑

j∈Ω(θi)

α̃εj

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣ ≥ 0.

This gives the equality,

0 =

∥∥∥∥∥∥
∑

j∈Ω(θi)

(αj − α̃j)θj

∥∥∥∥∥∥
2

2

−

∥∥∥∥∥∥
∑

j∈Ω(θi)

α̃εj

∥∥∥∥∥∥
2

2

.

Using matrix-vector notation, we have,

0 = ‖ΘΩ(θi)(α− α̃)‖2
2 − ‖EΩ(θi)α̃‖2

2.

Here ΘΩ(θi) is a matrix of the neighbors of θi, and EΩ(θi) is a matrix of the corre-

sponding perturbations. After rearranging the equality, we have

‖ΘΩ(θi)(α− α̃)‖2
2 = ‖EΩ(θi)α̃‖2

2.

Applying Cauchy-Schwartz, we have

‖ΘΩ(θi)(α− α̃)‖2
2 ≤ ‖EΩ(θi)‖2

2 · ‖α̃‖2
2.
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As α̃ are convex combination coefficients,

‖α̃‖2
2 ≤ 1.

Employing ε, we have∥∥∥∥∥∥
∑

j∈Ω(θi)

(αj − α̃j)θj

∥∥∥∥∥∥
2

2

= ‖ΘΩ(θi)(α− α̃)‖2
2 ≤ ‖ε1m1T|Ω(θi)|‖

2
2 = m|Ω(θi)|ε2 ∼ O(ε2).

�

Lemma 8.6.8. Consider the two sets Φ and Θ. Let the elements in both sets be

unit norm. Assume each element in both sets is contained in the convex hull of its

respective neighbor set. Further, assume that their neighbor sets are equal,

Ω(ϕi) = Ω(θi),

and that the distance matrices are equal,

DΦ = DΘ.

Then there exists a vector α ∈ R|Ω(ϕi)|, such that

ϕi =
∑

j∈Ω(ϕi)

αjϕj,

and

θi =
∑

j∈Ω(θi)

αjθj,

with ∑
j∈Ω(ϕi)

αj = 1 , α ≥ 0.
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Proof. From the fact that the elements are unit norm and the pairwise distances

are equal between points, we have

〈ϕi, ϕj〉 = 〈θi, θj〉.

Write ϕi and θi as their respective convex combinations,

ϕi =
∑

j∈Ω(ϕi)

bjϕj,

and

θi =
∑

j∈Ω(ϕi)

cjθj,

with ∑
j∈Ω(ϕi)

bj =
∑

j∈Ω(θi)

cj = 1 , bj, cj ≥ 0.

From the assumption about the equal neighbor sets,

|Ω(ϕi)| = |Ω(θi)|.

Take the inner product of the sums and ϕi and θi respectively,

〈ϕi, ϕi〉 =

〈 ∑
j∈Ω(ϕi)

bjϕj, ϕi

〉
= 1,

and

〈θi, θi〉 =

〈 ∑
j∈Ω(θi)

cjθj, θi

〉
= 1.

Using the linearity of the inner product,

∑
j∈Ω(ϕi)

bj〈ϕj, ϕi〉 =
∑

j∈Ω(θi)

cj〈θj, θi〉.

From the equality, with respect to inner product, we have

bj = cj.

Letting αj = bj = cj concludes the proof. �
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The next two lemmas are in the spirit of the results presented in [68].

Lemma 8.6.9. Let Φ∗ and E∗ be the optimal solution to the RML problem pre-

sented in (8.1) using the heat kernel. Also let Φ(k) and E(k) be the kth iterate of

Algorithm (8.2). Lastly, let ∆E(k) := E∗ − E(k). Then,

‖KΦ(k+1) −KΦ∗‖2
F ≤ ‖KΦ∗‖2

F ·
∑
i

∑
j

[∆ϕ]2 .

Proof.

‖KΦ −KΦ∗‖2
F =

∑
i

∑
j

[
exp

(
−‖ϕi − ϕj‖

2
2

σ2

)
− exp

(
−
‖ϕ∗i − ϕ∗j‖2

2

σ2

)]2

=
∑
i

∑
j

[
exp

(
−
‖ϕ∗i − ϕ∗j + εi − εj‖2

2

σ2

)
− exp

(
−
‖ϕ∗i − ϕ∗j‖2

2

σ2

)]2

=
∑
i

∑
j

[
exp

(
−
‖ϕ∗i − ϕ∗j‖2

2

σ2

)]2 [
exp

(
−
‖εi − εj‖2

2 + 2〈εi − εj, ϕ∗i − ϕ∗j〉
σ2

)
− 1

]2

.

For notational convenience, and clarity, we shall denote the second exponent by ∆ϕ,

∆ϕ :=
‖εi − εj‖2

2 + 2〈εi − εj, ϕ∗i − ϕ∗j〉
σ2

.

‖KΦ −KΦ∗‖2
F =

∑
i

∑
j

[
exp

(
−
‖ϕ∗i − ϕ∗j‖2

2

σ2

)]2

· [exp (−∆ϕ)− 1]2 .

Using a first-order Taylor approximation, we have,

exp(−∆ϕ) = 1− |∆ϕ|
1!

.

Plugging this in to the equality,

‖KΦ −KΦ∗‖2
F ≈

∑
i

∑
j

[
exp

(
−
‖ϕ∗i − ϕ∗j‖2

2

σ2

)]2

· [∆ϕ]2

≤
∑
i

∑
j

[
exp

(
−
‖ϕ∗i − ϕ∗j‖2

2

σ2

)]2

·
∑
i

∑
j

[∆ϕ]2

≤ ‖KΦ∗‖2
F ·
∑
i

∑
j

[∆ϕ]2 .

This is sufficient to show the bound approaches 0 due to the following:
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1. If points are far apart, ‖ϕ∗i − ϕ∗j‖2
2 >> 0, then the optimal kernel KΦ∗ tends

towards 0.

2. If points are close together, ‖ε∗i −ε∗j‖2
2 << 1, and the difference term ∆ϕ tends

to 0.

�

Lemma 8.6.10. Let Φ∗ and E∗ be symmetric and the optimal solution to the RML

problem presented in (8.1) using the heat kernel. Also let Φ(k) and E(k) be the kth

iterate of Algorithm (8.2). Further assume that the inverse mapping is Lipschitz

continuous. Lastly, let ∆E(k) := E∗ − E(k). Then,

‖Φ(k+1) − Φ∗‖2
∞ ≤

r|λ∗q|
2k−1σ2(|λ∗q| − ε1 − ε2)

.

Proof. Note that we have the following relationships. For notational convenience,

we shall generally omit denoting the kth iterate unless necessary for clarity.

• K(Φ) = KΦ = V ΛV T (eigen-decomposition of kernel matrix).

• Θ = ΘΦ = Λ
1
2V T (embedding of the low-rank component using the specified

kernel).

Bound the `∞ norm with the Frobenious norm,

‖Φ(k+1) − Φ∗‖2
∞ ≤ ‖Φ(k+1) − Φ∗‖2

F .

Express the low-rank components as function of their embeddings,

‖Φ− Φ∗‖2
F = ‖Θ−1(ΘΦ)−Θ−1(ΘΦ∗)‖2

F .
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Since the rank of ΘΦ is smaller than the original dimension, Θ−1 is a perfect em-

bedding (in that all distances are preserved) and we can bound the norm by,

‖Θ−1(ΘΦ)−Θ−1(ΘΦ∗)‖2
F ≤ C1‖ΘΦ −ΘΦ∗‖2

F .

Expressing the embeddings as their eigen-decompositions and then bound the norm

using the boundedness of the spectrum,

C1‖ΘΦ −ΘΦ∗‖2
F = C1‖Λ

1
2V T − (Λ

1
2V T )∗‖2

F ≤ C1‖Λ
1
2V T − (Λ

1
2V T )∗‖2

F

≤ C1‖Λ
1
2 (V T
∗ − Λ

†
2 Λ

1
2
∗ V

T
∗ )‖2

F

≤ C1r‖V T
∗ − Λ

†
2 Λ

1
2
∗ V

T
∗ + (V T − V T

∗ )‖2
F .

Let D = Λ
†
2 Λ

1
2
∗ .

C1‖ΘΦ −ΘΦ∗‖2
∞ ≤ C1r‖(I −D)V T

∗ + (V T − V T
∗ )‖2

F

≤ C1r‖(I −D)V T
∗ ‖2

F + C1r‖(V T − V T
∗ )‖2

F .

We shall now bound the two terms separately.

‖(I −D)V T
∗ ‖2

F ≤ ‖(I −D)‖2
F‖V T

∗ ‖2
F

≤
√
r‖(I −D)‖2

F

From Lemma 8.6.9 we have that the difference in spectrum of the kth iterate and the

optimal approach 0 as k increases. So from this, the ratio of the spectra converge

to 1 (or I when written as a matrix). Bounding the second norm requires some

138



perturbation theory from [82].

‖(V T − V T
∗ )‖2

F ≤ . . . ≤
‖KΦ∗‖2

F |λ∗q|
2k−1σ2(|λ∗q| − ε1 − ε2)

≤
r|λ∗q|

2k−1σ2(|λ∗q| − ε1 − ε2)
.

�
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