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Every year in the US and other cold-climate countries considerable amount of money 

is spent to restore structural damages in conventional bridges resulting from (or 

“caused by”) salt corrosion in bridge expansion joints. Frequent usage of deicing salt 

in conventional bridges with expansion joints results in corrosion and other damages 

to the expansion joints, steel girders, stiffeners, concrete rebar, and any structural 

steel members in the abutments.  

The best way to prevent these damages is to eliminate the expansion joints at the 

abutment and elsewhere and make the entire bridge abutment and deck a continuous 

monolithic structural system. This type of bridge is called Integral Abutment Bridge 

which is now widely used in the US and other cold-climate countries. In order to 



 

 

provide lateral flexibility, the entire abutment is constructed on piles. Piles used in 

integral abutments should have enough capacity in the perpendicular direction to 

support the vertical forces. In addition, piles should be able to withstand corrosive 

environments near the surface of the ground and maintain their performance during 

the lifespan of the bridge. 

Fiber Reinforced Polymer (FRP) piles are a new type of pile that can not only 

accommodate large displacements, but can also resist corrosion significantly better 

than traditional steel or concrete piles. The use of FRP piles extends the life of the 

pile which in turn extends the life of the bridge. 

This dissertation studies FRP piles with elliptical shapes. The elliptical shapes can 

simultaneously provide flexibility and stiffness in two perpendicular axes. The 

elliptical shapes can be made using the filament winding method which is a less 

expensive method of manufacturing compared to the pultrusion or other 

manufacturing methods. In this dissertation a new way is introduced to construct the 

desired elliptical shapes with the filament winding method. 

Pile specifications such as dimensions, number of layers, fiber orientation angles, 

material, and soil stiffness are defined as parameters and the effects of each parameter 

on the pile stresses and pile failure have been studied. The ANSYS software has been 

used to model the composite materials. More than 14,000 nonlinear finite element 

pile models have been created, each slightly different from the others. The outputs of 

analyses have been used to draw curves. Optimum values of the parameters have been 

defined using generated curves. The best approaches to find optimum shape, angle of 

fibers and types of composite material have been discussed. 
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1. Introduction 

This dissertation focuses on Fiber Reinforced Polymer (FRP) piles with elliptical 

cross section used in Integral Abutment Bridge (IAB) structures.  

Integral Abutment Bridges are structures where the superstructure and substructure 

move together to accommodate the required translation and rotation. There are no 

bridge expansion joints and in the case of Fully Integral Abutment Bridges, no 

bearings. In the United States of America (USA), there are more than 9,000 Fully 

Integral Abutment Bridges and 4,000 Semi-Integral Abutment Bridges. Integral 

Abutment Bridges have proven themselves to be less expensive to construct, easier to 

maintain, and more economical to own over their life span. European experience with 

Integral Abutments is significantly less, but what experience has been gained has 

been positive. As a result, the trend across Europe is towards increasing the 

percentage of Integral Abutment Bridges in newly constructed bridges.  

Bridges are subjected to severe changes in temperature. This will cause bridges to 

expand and contract. The thermal displacement is a factor of bridge length, 

temperature variation and bridge material. The bridge material is almost constant for 

most of today’s bridges. The temperature variation depends on the geographic 

location of the bridge and the climate. The bridge length is the other effecting factor. 

Currently, the longest jointless IAB ever built in the US is 1175 ft long (Houston 

Walker 2016). With a practical solution to accommodate larger thermal displacement 

the IAB length can be extended further.  

Piles made of steel or timbers deteriorate over the years. Concrete piles may be more 

durable but when it comes to bridge piles, they do not present required flexibility. The 
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composite piles are a relatively newer generation of piles. They present a much longer 

life span. Besides, there are increasing types of composite to be used in piles. 

Composite piles also can accommodate much larger flexibility without affecting the 

vertical load carrying capacity.  

Composite piles have been available in the North American market since the late 

1980s, but to date their use has been limited mainly to marine fender piles, load-

bearing piles for light structures, and experimental test piles (Iskander, et al., 2001). 

Composite piles have not yet gained wide acceptance in the civil engineering 

industry, primarily due to the lack of a long track record of performance, and the 

scarcity of well-documented field load tests. However, FRP composite piles may 

exhibit longer life cycle and improved durability in harsh marine environments, 

thereby presenting the potential for substantially reduced costs. Potential 

disadvantages of using composite piles are related to cost and performance. At 

present, composite piles are generally more expensive than traditional piles (Hoy 

1995, Iskander and Hassan 1998). Drivability may be less efficient with these piles. 

Structural properties, including low bending stiffness and high axial capacity, could 

result in large lateral deformations. In IAB structures this can be an advantage.  

Currently, engineers and designers use H piles made of composite materials. There 

are a fewer number of sizes available to choose from. Compared to variations of the 

steel piles and concrete pile the number of choices is very limiting for the designers. 

The flexibility of the pile is the main reason for use as a replacement for the 

expansion joints. The pile requires enough rigidity in the lateral and vertical 

directions as well. The elliptical shape is proposed in this dissertation for its ability to 
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maintain the desired flexibly and stiffness in two independent perpendicular 

directions. The proposed method of production eases the production and reduces the 

cost. The pultrusion method, which is the dominant method of mass production, 

requires considerable budget in the beginning. This method will only be economical 

if it is used in mass production. Since the FRP piles are not popular, the low demand 

for this type of pile will keep the production low and expensive.  

On the contrary the filament winding method is a relatively less expensive method 

used for production of round sections. With the solution proposed in this dissertation, 

FRP piles with elliptical cross section can be made with this method which will be 

more economical. More economical production will lead to more usage. More usage 

of FRPs will lead to more study. More study and research will bring better solutions.  

Currently FRP piles are not as popular as the steel and concrete piles.  

In this dissertation numerous finite element models are created to show the stresses 

and failures resulting from applied forces and displacements. The conclusion at the 

end of the report summarizes the findings.  
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expansion joint/bearing detail is eliminated. IABs have been used for roads since at 

least the early 1930s in the U.S.A. However, they have seen more extensive use 

worldwide in recent years because of their economy of construction in a wide range 

of conditions. Over the years and in different countries IABs have also been called 

integral bridges, integral bridge abutments, jointless bridges, rigid-frame bridges and 

U-frame bridges. There is also a design variant called the semi-integral-abutment 

bridge which is not the subject of this dissertation.  

 

 Figure 2 - Typical Detail for Integral Abutments with Steel Girders (Dicleli, Rational design 

approach for prestressed-concrete-girder integral bridges 2000) 
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Figure 2 is an example of the approach slab, abutment and bridge deck connection. 

This dissertation will clarify the ways to replace the costly expansion joints with less 

expensive elliptical FRP piles. The result will be a type of bridge which is not only 

cost effective but also long-lasting, maintenance free and Earth friendly. 

One of the most important aspects of design, which can effect structure life and 

maintenance costs, is the reduction or elimination of roadway expansion joints and 

associated expansion bearings. Unfortunately, this is too often overlooked or avoided. 

Joints and bearings are expensive to buy, install, maintain and repair and more costly 

to replace. The most frequently encountered corrosion problem involves damaged 

expansion joints and broken seals that permit salt-laden runoff water from the 

roadway surface to attack the girder ends, bearings and supporting reinforced 

concrete substructures. Elastomeric glands get filled with dirt, rocks and trash, and 

ultimately fail to function. Many of our most costly maintenance problems originated 

with damaged joints. Bridge deck joints are subject to continual wear and heavy 

impact from repeated live loads as well as continual stages of movement from 

expansion and contraction caused by temperature changes, as well as creep and 

shrinkage or long term movement effects such as settlement and soil pressure. Joints 

are sometimes subject to impact loadings which can exceed their design capacity. 

Retaining hardware for joints are damaged and loosened by snowplows and the 

relentless pounding of heavy traffic. Broken hardware can become a hazard to 

motorists, and liability to owners. 

Deck joints are routinely one of the last items installed on a bridge and are sometimes 

not given the necessary attention they deserve to ensure the desired performance. 
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While usually not a significant item based on cost, bridge deck joints can have a 

significant impact on a bridge performance. A wide variety of joints have been 

developed over the years to accommodate a wide range of movements, and promises 

of long lasting, durable, effective joints have led States to try many of them. Some 

joint types perform better than others, but all joints can cause maintenance problems. 

Bearings also are expensive to buy and install and more costly to replace. Over time, 

steel bearings tip over and seize up due to loss of lubrication or build-up of corrosion. 

Elastomeric bearings can split and rupture due to unanticipated movements or may 

ratchet out of position. Because of the underlying problems of installing, maintaining 

and repairing deck joints and bearings, many States have been eliminating joints and 

associated bearings where possible and are finding that jointless bridges can perform 

well without the continual maintenance issues inherent in joints. When deck joints are 

not provided, the thermal movements induced in bridge superstructures by 

temperature changes, creep and shrinkage must be accommodated by other means. 

Typically, provisions are made for movement at the ends of the bridge by one of two 

methods: integral or semi-integral abutments, along with a joint in the pavement or at 

the end of a reinforced concrete approach slab. Specific guidelines for designing and 

detailing jointless bridges have not yet been developed by AASHTO so the States 

have been relying on established experience. 

A 1985 FHWA report on tolerable movement of highway bridges examined 580 

abutments in 314 bridges in the United States and Canada. Over 75 percent of these 

abutments experienced movement, contrary to their designer’s intent, typically much 



 

8 

greater movement vertically than horizontally. The following paragraph is from that 

report:  

“The magnitude of the vertical movements tended to be substantially greater than the 

horizontal movements. This can be explained, in part, by the fact that in many 

instances the abutments moved inward until they became jammed against the beams 

or girders which acted as struts, thus preventing further horizontal movements. For 

those sill type abutments that had no backwalls, the horizontal movements were often 

substantially larger, with abutments moving inward until the beams were, in effect, 

extruded out behind the abutments.”  

The use of expansion joints and bearings to accommodate thermal movements does 

not avoid maintenance problems; rather, the provision to these items can often 

increase the maintenance problems. In this 40-year national experience, many savings 

have been realized in initial construction costs by eliminating joints and bearings and 

in long-term maintenance expenses from the elimination of joint replacement and the 

repair of both super- and substructures.  

Designers should always consider the possibilities of minimum or no joint 

construction to provide the most durable and cost-effective structure. Steel 

superstructure bridges up to 400 feet long and concrete superstructure bridges up to 

800 feet long have been built with no joints, even at the abutments. 

The decisions made at the design stage account for over 80 percent of the influence 

on both cost (first and life-cycle) and quality (service life performance) of the 

structure. Decisions made in the initial stages of design establish a program that is 

difficult and costly to change once detailed design or construction begins. The 
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following quotation is very appropriate for bridge engineering: “Quality is never an 

accident. It is always the result of high intention, sincere effort, intelligent direction, 

and skillful execution. It represents the wise choice of many alternatives.” 

This is especially true when the Engineer begins the task of planning, designing and 

detailing a bridge structure. The variables are many, each of which has a different 

first and life-cycle cost factor. The question to be asked continuously throughout the 

entire process is, what value is added if minimum cost is not selected? Another 

question to be asked is, what features should be incorporated in the structure to 

reduce the first and life-cycle cost and enhance the quality? Most of the variables are 

controlled by the designer. These decisions influence the cost and quality of the 

project; for better or for worse. (Mistry 2000) 

There are many advantages to the use of FRP piles in jointless bridges as many are 

performing well in service. There are long-term benefits to adopting FRP pile 

concepts and therefore there should be greater use of FRP piles in integral bridge 

construction. FRP piles require much less maintenance compared to equivalent 

bridges with expansion joints. In other words, jointless bridges last longer without the 

need for maintenance. Using FRP piles increases the life of the bridge to even greater 

extent.  

This dissertation explains why we should use Integral Abutment and Jointless 

Bridges, and discusses some facts about FRP piles with elliptical cross section which 

is believed to be the best cross section for this type of bridge. 

Until today, relatively little study has been performed on Integral Abutment Bridges. 

Within this study, even less is focused on FRP piles. And among the studies on FRP 
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piles almost no study has been done on FRP piles with elliptical cross section. As will 

be described in future chapters, the use of some types of FRP material is also 

environmentally friendly and can help the environment while providing the required 

stabilities at the same time. 
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3. Research Objectives and Approach Methodology 

The piles used under integral abutment bridges should have a required stiffness in one 

direction and a different stiffness in the perpendicular direction. The pile should be 

flexible to allow the lateral displacement of the abutment along the bridge axis, and at 

the same time stiff enough to resist the moments, shears and axial load applied in the 

other directions. 

Fiber composites have been a viable option in replacing traditional pile materials such 

as concrete and steel in harsh environmental conditions. However, driving composite 

piles requires careful consideration due to their relatively low stiffness. Currently, 

there are no specific guidelines on the installation of composite piles which limits 

their acceptance in load-bearing applications. There is a need therefore to understand 

their behavior in order for composite piles to be safely and economically used under 

the bridges. 

The elliptical cross section is suggested as the best possible section that can be 

produced without the expensive cost of the pultrusion mold simply by using the 

filament winding method. The elliptical FRP piles have several variables. Thickness, 

orientation of the fibers, number of layers of fibers, eccentricity of the ellipse cross 

section, and size of the pile are some of the variables.  

The main objective of this dissertation is to evaluate these variables and provide 

charts to show the best economic solution for the desired pile section properties. This 

can be achieved by modeling different piles and obtaining a point for each. Then the 

curve will be generated by connecting these dots. The optimum value of each variable 

will be the maximum or minimum point of each chart.   
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4. Fiber Reinforced Polymer (FRP) Piles 

Every year in the US and other countries, considerable money is spent on piles 

damaged or deteriorated due to corrosion. Using FRP (Fiber Reinforced Polymer) 

piles appears to be the most feasible solution that eliminates the corrosion and 

deterioration problem.  

Figure 3 shows the corrosion resistance of the FRP piles compared to other materials 

used for pile construction. 

 

Figure 3 – Corrosion resistance of the FRP piles compared to other materials (Pearson 

Pilings 2016) 

 

This becomes more important in structures in which the lifespan of the structure is 

directly effected by the resistance of the foundation against corrosion. Use of FRP 

material in IAB (Integral Abutment Bridges) structures becomes more important than 

usual when both the performance and lifespan of the bridge can be significantly 

increased with the help of this new technology. 
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Piles under the IAB structures should have a cross section which maintains enough 

flexibility in one direction and considerable rigidity in the perpendicular direction. An 

elliptical section can accommodate both requirements. In addition, pile flexibility can 

be achieved with optimum cross section without sacrificing the overall pile capacity. 

Piles with elliptical cross sections can be made using both filament winding and 

pultrusion methods. Square or rectangular shapes can only be made with pultrusion 

method. Pultrusion method usually has considerable cost of forming die 

manufacturing which significantly affects the feasibility of the product.  

In contrast, the filament winding method has a relatively much lower cost of 

manufacturing. The filament winding mandrel can also be built much faster than the 

pultrusion forming die. Therefore, the elliptical cross sections will be the more 

feasible option for designers and engineers.  

The circular or elliptical mandrel can be easily built with several methods. Using a 

steel pipe with a matching desired diameter for circular sections is very popular. 

Pressing a steel pipe sideways to achieve an elliptical shape is also recommended for 

elliptical cross sections. Manufacturers can make the desired shape by welding strips 

of steel plates. As an alternative solution, stiffener plates can be temporarily (or 

permanently) welded to an inner circular core. Then a covering thin plate (to be bent 

easily) can be welded or screwed to the inner circular core. By using this method any 

desired elliptical shape can be built without bearing the cost of rotating inner parts. 

This method also reduces the time to build a new rotating mandrel with the desired 

cross section. Figure 4 and Figure 5 show different elliptical cross sections built on 

the same inner core.  
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or the elliptical stiffeners can be built in most steel shops. Using Computer Numerical 

Control (CNC) technology to cut the crescents between the desired ellipse and inner 

circular mandrel will reduce the time of production to a day. Even with hand cutting 

the plates, minor errors in the production such as eccentricity of the mandrel do not 

affect the quality of the final product. Therefore, the filament winding low cost 

elliptical mandrel can also be produced in a much shorter time. 

The filament winding method has several superior advantages over the pultrusion 

method which directly relates to the subject of this study. The most important factors 

are described as follows: 
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4.2.2. Solution 

This concludes that using the filament winding method is less expensive, faster and 

easier compared to the pultrusion method. The elliptical and circular shapes are the 

best cross sections that can be manufactured with the filament winding method. 

Therefore, the elliptical and circular cross sections are the most feasible cross sections 

to be used for FRP piles.  

The current studies performed on FRP piles show that the pile capacity is affected by 

many factors such as layer orientation, cross section of the pile and also pile 

dimensions and thickness. Currently there is lack of information on how each of the 

mentioned factors could affect the piles with elliptical cross section. Almost no study 

is found on the optimization of piles with elliptical or oval cross section. This 

dissertation is conducted to define the behavior of the pile with regard to each factor. 

Then the best and optimum case is presented as the most economical section. This 

method can obviously be a great aid for the designers and engineers in order to design 

the IAB structures. Functionality of IAB structures highly depends on to the 

durability of the piling system. If a reliable system is known to withstand 

deterioration, fatigue and extreme loading while being feasible and easy to produce, it 

would be a great tool to overcome the bridge design and construction problems.  
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• Significant reduced weight compared to metals 

• High stiffness and strength properties with respect to weight 

• High fatigue resistance 

• Specific material characteristics possible (e.g. thermal stability due to negative 

coefficient of thermal expansion of carbon fibers) 

• Reduced corrosion tendency 

• Low moisture absorption 

• Damping of vibrations 

• Less sensitive to imperfections (geometrical and physical) 

• Electrical conductivity or non-conductivity (depending on the materials used) 

While having considerable advantages over the homogenous material, there are some 

disadvantages using composites. Of course not all of them apply to the usage of 

composite piles under bridges.   

• Low stiffness and strength perpendicular to fiber direction 

• Large thermal strains perpendicular to fiber direction 

• Low inter-laminar shear stiffness and strength 

• Long time durability (especially concerning environmental influence, e.g. 

heat, moisture, chemical, UV, aging …) 

• Low heat resistance (e.g. low fire resistance of matrix material) 

• Undesirable brittle failure behavior (safety concepts) 

• Open questions concerning recycling 

• Difficulties in damage detection (x-rays, ultrasonic, thermographic, 

nondestructive methods) 
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• Open questions concerning reparability 

• Relatively high material costs 

• Problems with conventional joints (bolts, rivet, adhesive) 

• Sensitive with respect to the fabrication process (flaws, bubbles, dust) 
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In 2000 Pando studied the behavior of FRP piles under different loadings. Short term 

versus long term axial and flexural strength as well as durability of the pile was 

studied. Pando concluded that the degradation of the FRP properties has a greater 

impact on the long-term flexural capacity of the pile. For the example presented, the 

long-term axial and flexural capacities were estimated to be 5 and 24 percent lower 

than the short-term capacities respectively. 

In 2001 Davol et al. characterized the response of a circular external FRP jacket with 

inner concrete core under flexural loading. Compression behavior was discussed with 

emphasis on understanding the dilation behavior of the concrete core. A finite 

element model was proposed that predicted the longitudinal, hoop, and shear strains 

in the FRP shell. Large-scale experimental validation of the models was presented. 

In the same year Pando described a simplified model for predicting the residual axial 

capacity of a concrete FRP pile subjected to tidal region moisture. The model showed 

that based on available data, the strength would reach a maximum reduction in 

capacity in about 150 days.  

In the same year Iskander conducted a drivability study of FRP composite piles. 

Iskander concluded that several obstacles must be addressed before composite piling 

can be widely used. First, several FRP composite piles must be instrumented, 

installed, and load tested to support the analysis results and to answer many open 

questions. Second, allowable driving stresses of composite materials must be 

quantified. Third, prestressing of concrete-filled fiberglass piles must be verified. 

Fourth, long-term bond between composites and reinforcing elements must be 
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confirmed. Fifth, the durability of FRP piling, especially recycled composites, under 

actual field conditions must be validated. 

In the same year Ashford compared the drivability of four composite piles to 

conventional steel and concrete piles and showed that all of the FRP piles can be 

reasonably expected to attain design bearing capacities of 400 kN (90 kips), but the 

extremely low impedance of glass fiber-reinforced matrix composite piles limits the 

ultimate capacity that can be achieved through impact driving. 

In 2002 Hesham conducted a study on tapered FRP piles. The paper focused on 

design of tapered piles, toe driving and statnamic pile load testing. 

In the same year Pando conducted experiments on FRP piles driven in the sand with 

more focus on the skin friction characteristics of FRP composite piles against sand. 

Pando compared the results of sand-to-composite pile interface shear tests on two 

types of FRP composite piles. The test results were compared with those from sand-

to-concrete interface tests. 

In 2003 Fam et al. conducted a test on FRP piles used for the first time in the 

construction of the substructure of the Route 40 highway bridge over the Nottoway 

River in Virginia. The piles consisted of 24.6 in. (625 mm) diameter concrete-filled 

glass fiber reinforced polymer (GFRP) circular tubes, with a 0.21 in. (5.3 mm) wall 

thickness. 

Fam et al. concluded that 1) The use of concrete-filled FRP tubes as piling for bridge 

piers is practical and feasible; 2) The flexural strength of the 24” circular FRP pile 

with .213” thick GFRP tube is equal to a 20” square pile made of concrete and pre-

stressed with fourteen 0.5” strands; 3) The FRP pile failed by fracture of GFRP on the 
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tension side, whereas the pre-stressed concrete pile failed by yielding of strands in 

tension followed by crushing of the concrete in compression; 4) Both the FRP pile 

and the concrete pile performed similarly during pile driving, axial load test and 

flexural test and analysis; 5) The initial cost of FRP piles is 77% higher than pre-

stressed type. However, as production volume increases and by considering life cycle 

costs of the low maintenance composite piles, the cost comparison may shift in favor 

of FRP piles in corrosive environments; 6) No indications of unsatisfactory 

performance of FRP pile were reported by 2003.  

In the same year Mirmiran et al. studied the stay-in-place FRP form for concrete 

columns. Mirmiran reviewed various design issues including confinement modelling, 

axial-flexural behavior, time-dependent behavior, buckling and slenderness, pile 

driving, seismic behavior, connections and modular construction, shear behavior, 

fatigue performance, and nondestructive testing and inspection of stay-in-place FRP 

concrete columns. The study showed the feasibility and effectiveness of the system 

for civil engineering applications. 

In 2004 Mohammed conducted a study on toe driving of the FRP piles. In the study 

first the FRP pile was driven with a steel toe. Then self-consolidating concrete (SCC), 

a material that flows under gravity and assures the integrity of piles, was cast into 

fiberglass-reinforced polymer (FRP) tubes that provided corrosion-resistant 

reinforcement. The toe driving technique was proved to be very suitable for installing 

FRP piles in dense soils. Results from the driving tests and static load test indicated 

that FRP–SCC hybrid piles are a very competitive and attractive option for the deep 

foundations industry. 
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In 2005 Shao and Mirmiran conducted an experiment on six concrete-filled fiber 

reinforced polymer (FRP) tubes (CFFT). The study showed that CFFT can be 

designed with ductility behavior comparable to reinforced concrete members. 

Significant ductility can stem from the fiber architecture and interlaminar shear in the 

FRP tube. Moderate amounts of internal steel reinforcement in the range of 1–2% 

may further improve the cyclic behavior of CFFT. 

Shao and Mirmiran also conducted another parallel study on cyclic analysis of CFFT 

piles. The study was carried out to evaluate the effect of CFFT parameters on its 

hysteretic response, and to compare the response with reinforced concrete (RC) and 

concrete-filled steel tubes (CFSTs). The study shows the feasibility of designing 

CFFT columns with comparable hysteretic performance to RC columns. 

In the same year in the University of Maryland Civil and Environmental Engineering 

department, Yaser Jaradat submitted his dissertation titled “Soil-Structure Interaction 

of FRP Piles in Integral Abutment Bridges”. Jaradat studied the FRP piles with box 

and circular cross sections. Pile stress and deflection and optimization charts were 

created and the optimum variables of the FRPs were defined for the subjected study. 

A double-I section that could be converted to a box by assuming the flange length 

equal to zero was the subject of this study. Jaradat concluded that:  

1) The axial dead load which is applied at the beginning is of a major importance in 

increasing the capacity of the laterally deformed pile;  

2) Changing the section geometry of the pile to reduce its moment of inertia while 

maintaining constant area has a minor effect on the stresses if the pile is fully driven 

in stiff soils;  
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3) Piles with larger cross-sectional areas produce lower stresses compared to smaller 

piles with equivalent loading;  

4) The soil-pile stiffness for a single large pile is lower than that of multiple piles with 

an equivalent capacity when driven without predrilled holes;  

5) Predrilled holes have a dramatic effect on stress reduction in piles in stiff soils. The 

stress reduction depends on the depth of the predrilled hole. A stress reduction of 

70% or more can be achieved by using predrilled holes filled with loose sands;  

6) Rectangular piles were found to be better than circular piles for geometrical 

optimization purposes. The section dimensions can be proportioned for lowest stress 

and stiffness;  

7) Rectangular hollow piles are better than circular when subjected to lateral 

displacements. A hollow pile with a circular section experienced local buckling at 

some locations along its depth. Rectangular sections performed better without local 

buckling because the two sides parallel to the displacement direction (the webs) 

provided lateral support to the pile against local buckling; 

8) The fiber orientations in the layers have a strong effect on the pile behavior. It is 

strongly recommended to have multiple layers with different fiber orientations. 

Increasing the number of layers up to a certain limit will improve the pile properties. 

The fiber orientations should be selected for best performance; 

9) Due to the nature of concrete and its cracking under tension stresses, the section 

properties will not be stable under continuous lateral displacements. The loss of 

section under cracking increases the stresses on the composite shell which requires a 

change of fiber orientation for best performance as cracks keep growing; 



 

27 

10) The directional material properties have a major effect on the optimization results 

of layer orientations. The optimum fiber directions in each layer in the stack for the 

desired objective function change with the mechanical properties and their ratios in 

the composite material; 

11) Plain concrete improves the pile axial stiffness and increases its load capacity 

when used as filler with FRP shells; 

12) FRP improves the strength and the stiffness of confined concrete. The FRP shell 

strength, stiffness, thickness, and fiber structure are major factors in the percentage of 

the increase. 

Jaradat’s study was conducted on a FE model created in ANSYS software. 

In 2006 the Federal Highway Administration (FHWA) published a comprehensive 

report titled “Behavior of fiber-reinforced polymer composite piles under vertical 

load”. The report focused on mechanical short term behavior of FRP piles, behavior 

of FRP piles under vertical load and capacity evaluation. 

In that same year the FHWA published another report titled “A Laboratory and Field 

Study of Composite Piles for Bridge Substructures”. The report showed the field tests 

and axial , lateral and long term analysis of bridges with FRP piles. 

In 2007 Fu, Amde and Robert studied the field performance of FRP deck in Harford 

County, Maryland. The study was performed on a bridge deck replacement project 

with new FRP deck. The study showed that the FRP deck can be effectively used in 

lieu of concrete deck. 

In the same year Sakr studied wave equation analyses of tapered FRP–concrete piles 

in dense sand. The study concluded that the taper shape has a favorable effect on the 
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drivability and static resistance of piles. It is also found that the drivability of FRP–

SCC composite piles is similar to that of conventional pre-stressed concrete and steel 

piles. However, empty FRP tubes required a much higher driving energy. Their low 

flexural resistance along with risk of buckling can hinder their drivability in different 

soil conditions. 

In 2009 Gefu Ji performed a study on debonding between concrete and FRP 

shells.Ji’s study was in fact a continuation on Advanced Grid Stiffened (AGS) FRP. 

The AGS-FRP tube was made of a lattice of interlaced FRP ribs that was wrapped 

with a thin layer of FRP skin. The AGS-FRP tube was then filled with concrete. Test 

results show a considerably increased compressive strength, elastic range, and 

positive composite action due to the enhanced interfacial bonding strength through 

mechanical interlocking. 

In 2010 Guades conducted a study on the application of FRP composite in piling 

systems. The study compared the common FRP composite pile systems. Guades 

emphasized the necessity for more field tests to carefully assess and verify the 

geotechnical performance of the composite piles to be used in developing reliable 

design procedures.  

In the same year Sadeghian developed a model for a moment connection between 

circular concrete-filled FRP tubular CFFT members and RC footings. The connection 

was based on the simple approach of direct embedment of the CFFT member into the 

footing for a certain depth, and hence do not require the use of dowel bars or any 

mechanical devices. The CFFT member was subjected to lateral or lateral and axial 

loads at its free end. The model was capable of predicting the critical embedment 
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length of the CFFT member, which is the minimum length required to achieve 

material failure of the CFFT outside the footing, and bond failure inside the footing, 

simultaneously. If the actual embedment length was less than predicted, bond failure 

occurred prematurely at a lower capacity and the model could also predict the 

reduced strength. If the embedment was larger than the predicted critical embedment 

length, bond failure was avoided. 

In 2012 Guades studied the driving performance of the FRP piles. Relative low 

stiffness of the FRP piles was evaluated in the study. It was concluded that the type of 

driving hammers used, resistance offered by the soil, the pile impedance, and the 

impact strength of the pile materials are the main factors that effect the driving 

performance of composite FRP piles. 

In the same year Bozorg-Haddad and Iskander compared compressive creep of 

Reinforced Polymeric Piling (RPP) made of High Density Polyethylene (HDPE) and 

RPP reinforced with steel or fiber reinforced polymer rods (FRP, E-glass, or 

Fiberglass). The study showed that FRP has 0.5% (approximately half of HDPE) 100-

year creep while loaded at an ultimate stress of 88 MPa (approximately ten times 

higher than HDPE). 

In the same year Inkander performed a state of the art review on sustainable piling 

made of recycled polymers. He summarized the current state of the art in polymeric 

piling practice, including (1) the mechanical properties of piling made of recycled 

polymers; (2) the durability of recycled polymers in aggressive soils; (3) the 

compressive creep of recycled HDPE and FRP; (4) drivability; (5) design 
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considerations such as skin friction, end bearing, and buckling; and (6) load testing of 

polymeric piles. 

In the same year Mohamed et al. evaluated concrete columns reinforced 

longitudinally with FRP bars and confined with FRP hoops and spirals under axial 

load. Fourteen full-scale circular RC columns were tested under concentric axial load. 

The columns were reinforced with longitudinal FRP bars and confined with circular 

FRP spirals or hoops. The test parameters included configuration of the confinement 

reinforcement (spirals versus hoops), hoop lap length, volumetric ratio, and FRP 

reinforcement type (glass versus carbon). The test results indicated that the GFRP and 

CFRP RC columns behaved similarly to columns reinforced with steel. 

In 2014 Chyuan-Hwan et al conducted a study on reinforced concrete (RC) piles 

covered with FRP jacket. In order to compare the results seven reduced scale RC pile 

specimen were build and tested and the results were compared to the finite element 

analysis outputs. 

As mentioned, FRP piles are a relatively new area of study. Unlike other materials 

used in construction which have been known to mankind for centuries, the FRP 

technology is in its early ages. On the other hand, advanced methods of study such as 

computer modeling and laboratory tests facilitate the understanding of FRP 

technology in a much faster pace.   

The studies mentioned above focused on several topics. Nearly all studies indicate 

that:  

1- The FRP piles are suitable material to eliminate the corrosion issue.  
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2- Most studies indicate that there is not enough and sometimes no reliable data 

about FRP piles. 

FRP composites were used in aerospace and defense application before being used in 

piles and bridges. The first studies in FRP piles were conducted to study the repair 

and rehabilitation of marine structure piles that were corroded. 
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Figure 6 shows a schematic view of each type. The description and applications of 

each type of composite piles are presented in the following subsections. 

5.3.1. Steel Pipe Core Piles 

Steel pipe core piles consist of two layers: an inner steel layer and a thick outer plastic 

shell (Figure 6a). The inner layer provides the structural strength while the outer shell 

is used to protect the steel from corrosion. This type of pile is available in 8 to 24 in 

(200 to 600 mm) outer diameter and up to 75ft (23 m) long. The structural pipe cores 

range from 4 to 15 in (100 to 400 mm) outer diameter, with wall thicknesses between 

0.25 and 1.5 in (6 and 40 mm). Early applications of this product suffered from 

delamination of the steel core from the plastic shell due to the difference in thermal 

stresses (Iskander & Hassan, State of Practice Review in FRP Composite Piling, 

1998). These piles were observed to have cracks at the plastic shell surface a year 

after they were installed. The most common use of this type of pile is in fendering 

applications in regions with marine influence and change of the tide. However, steel 

pipe core piles are also considered potentially suitable for load-bearing applications. 

According to Pando et al., the design procedure of this type of composite pile would 

be essentially the same as for the traditional steel pipe pile if the plastic shell is used 

only in the upper portion of the pile that is exposed to corrosion.  

5.3.2. Structurally Reinforced Plastic Piles  

Structurally reinforced plastic (SRP) piles are composed of an extruded recycled 

plastic matrix reinforced with fiberglass rods or steel rebar (Figure 6b). The recycled 

materials are usually from waste plastic such as plastic milk jugs, soap bottles and 
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juice containers. SRP piles are produced using a continuous extrusion process which 

allows manufacturing of up to 32 m. The piles are available in diameters between 254 

and 430 mm and are reinforced with 6 to 16 pieces of FRP or steel reinforcing rods of 

diameters ranging from 25 to 35 mm. SRP piles are mainly used in fendering 

applications and are regarded as potential load-bearing piles. Problems associated 

with these piles include the possibility of debonding of the reinforcing FRP rods and 

high creep rate related with the high polymeric content. This type of piles exhibits 

larger deflections under axial and lateral load (Miguel A. Pando, 2006) and causes 

problems during installation and handling due to their excessive deformation 

(Iskander & Hassan, State of Practice Review in FRP Composite Piling, 1998). One 

version of this pile is structurally reinforced by a steel cage with the bars welded to a 

continuous steel spiral. 

5.3.3. Concrete-Filled FRP Piles 

Concrete-filled FRP piles are comprised of an outer FRP shell with unreinforced 

concrete infill (Figure 6c). The FRP shell provides a stay-in-place structural 

formwork for the concrete infill, acts as non-corrosive reinforcement, gives 

confinement to concrete in compression, and protects the concrete from severe 

environmental effects (Mirmiran & Shahawy, A new concrete-filled hollow FRP 

composite column, 1996). On the other hand, the concrete infill offers the internal 

resistance in the compression zone and increases the stiffness of the member and 

prevents local buckling of the FRP tube. 

This structural system is found to perform better than the equivalent prestressed and 

reinforced concrete structural members under combined axial and flexural loads. 
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Typically, concrete-filled FRP piles are available in diameters ranging from 203 to 

610 mm, with wall thicknesses ranging between 4.6 and 9.1 mm. These piles are 

suitable for both fendering and load-bearing applications. An impending concern in 

using these piles is the interface bonding and delamination problem between FRP 

shell and concrete core. Recently, techniques and fabrication processes were 

developed to minimize the occurrence of delamination. These include the roughening 

of inside shell surface by applying a thin layer of epoxy sprayed with coarse silica 

and the application of bonding agents. Concrete-filled FRP piles were lately adopted 

in bridge rehabilitation projects in Virginia, USA (Ernesto Guades, 2012). 

5.3.4. Fiberglass Pultruded Piles 

Fiberglass pultruded piles are composed of an outer fiberglass sheet fitted with a 

fiberglass grid to provide structural strength (Figure 6d). The grid consists of two sets 

of orthogonal plates joined at four intersecting points and forming a tic-tac-toe 

pattern. The grid inserts are sometimes filled with high-density polyethylene (HDPE), 

plastic lumber, or polyethylene foam fills. The HDPE shell and fiberglass inserts are 

used to absorb the impact of horizontal load. These piles were used as fender piles in 

1996 in a demonstration project at Berth 7 in Port Newark, New Jersey and in the 

Tiffany Pier Project. However, this type of composite pile was found to be unsuitable 

for load-bearing applications (Ernesto Guades, 2012). 
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5.3.5. Fiberglass Reinforced Plastic Piles 

Fiberglass reinforced plastic piles consist of a recycled plastic matrix with randomly 

distributed fiberglass reinforcement (Figure 6e). The dense solid outer shell is bonded 

to the peripheral surface of the inner plastic core which is foam-filled to reduce 

weight. Trimax is the manufacturer of these composite piles and produces a variety of 

structural members that conform to lumber industry standards. These piles are 

available in 250 mm diameter with a standard length of 7.5 m. These composite piles 

were used in the construction of the Tiffany Street Pier in New York City as fender 

piles. The suitability of using these piles in load-bearing applications has not been 

studied since they did not undergo testing for bearing piles.  

5.3.6. Hollow FRP Piles 

Hollow FRP piles are an outer shell component of a concrete filled FRP composite 

system (Figure 6f). These piles typically consist of a thermosetting matrix reinforced 

with glass fibers forming a tubular section made either by filament winding, 

pultrusion, or resin transfer molding process. Some versions of these piles are coated 

with acrylic to protect against abrasion, UV and chemical attacks. The diameter and 

wall thickness of these piles can be varied up to 460 mm and 22 mm, respectively. 

Hollow FRP piles are considered potentially suitable in load-bearing applications. 
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5.3.7. FRP Sheet Piles 

FRP sheet piles are typically made of FRP pultruded sections with a corrugated-shape 

profile (Figure 6g). The single unit corrugated profile is composed of a symmetric 

double Z cross section. The available products on the market have section depths of 

100–350 mm, widths from 400 to 460 mm, and wall thicknesses from 4 to 12 mm. 

FRP sheet piles are found to be increasingly used as waterfront retaining structures 

for both new installations and rehabilitations. The problem associated with using FRP 

sheet piles includes possible damage at their corners caused by ice impact and 

rubbing if installed in cold regions. Additionally, the asymmetrical shapes typically 

seen for FRP sheet piles make the testing of these materials more difficult than for 

many other commonly produced structural shapes. Earlier study on composite sheet 

piles includes recycled HDPE in tongue-and-groove profile reinforced with chopped 

glass fibers as potential material. As opposed to the other type of composite piles 

which carry vertical axial load, FRP sheet piles in general are used for a wall that 

resists horizontal loads. Similarly, the reported application of this type of pile is 

limited to seepage reduction, waterfront bulkhead or retaining walls, and protection 

from waves or storm water floods and not for load-bearing application. 
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this resin/glass bond aids in developing stiffness in the part. The type of resin used 

determines corrosion resistance, flame resistance, and maximum operating 

temperature as well as contributing significantly to certain strength characteristics 

including resistance to impact and fatigue. 

The following sections describe the development and manufacturing process of Fiber 

Reinforced Plastic Piles. 

 

5.5.1. Pultrusion 

Pultrusion is a manufacturing process for producing continuous lengths of FRP 

structural shapes. Raw materials include a liquid resin mixture (containing resin, 

fillers and specialized additives) and reinforcing fibers. The process involves pulling 

these raw materials (rather than pushing as is the case in extrusion) through a heated 

steel forming die using a continuous pulling device. 

The reinforcement materials are in continuous forms such as rolls of fiberglass mat or 

doffs of fiberglass roving. As the reinforcements are saturated with the resin mixture 

("wet-out") in the resin impregnator and pulled through the die, the gelation (or 

hardening) of the resin is initiated by the heat from the die and a rigid, cured profile is 

formed that corresponds to the shape of the die. While pultrusion machine design 

varies with part geometry, the basic pultrusion process concept is described in the 

following schematic. 
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Figure 13 - Manufacturing FRP with Pultrusion method (Creative Pultrusion 2016) 

 

The creels position the reinforcements for subsequent feeding into the guides. The 

reinforcement must be located properly within the composite and controlled by the 

reinforcement guides. The resin impregnator saturates (wets out) the reinforcement 

with a solution containing the resin, fillers, pigment, and catalyst plus any other 
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additives required. The interior of the resin impregnator is carefully designed to 

optimize the “wet-out" (complete saturation) of the reinforcements. 

On exiting the resin impregnator, the reinforcements are organized and positioned for 

the eventual placement within the cross section form by the preformer. The preformer 

is an array of tooling which squeezes away excess resin as the product is moving 

forward and gently shapes the materials prior to entering the die. In the die the 

thermosetting reaction is heat activated (energy is primarily supplied electrically) and 

the composite is cured (hardened).  

On exiting the die, the cured profile is pulled to saw for cutting to length. It is 

necessary to cool the hot part before it is gripped by pull block (made of durable 

urethane foam) to prevent cracking and /or deformation by the pull blocks. Two 

distinct pulling systems are used: a) Caterpillar counter-rotating type, b) hand-over-

hand reciprocating type. In certain applications an RF (radio frequency wave 

generator) unit is used to preheat the composite before entering the die. When in use, 

the RF heater is positioned between the resin impregnator and the pre-former. 

5.5.2. Hand Lay-up 

This method involves building up layers of chopped glass or woven glass mat 

impregnated with catalyzed resin around a suitable mold. The reinforcement is then 

rolled for better wet-out and removing trapped air. This method does not appear to be 

practical for FRP piles. 
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Figure 14 – Hand Lay-up method (Wacker 2015) 

 

5.5.3. Compression Molding 

This method is used for thermosets or thermoplastics. The process consists of placing 

a charge in the mold, which is subsequently closed and held at a high pressure, and 

then heating the mold to initiate cure reaction. Because of limitations in the size of the 

mold, this method of manufacturing does not appear to be practical for FRP piles 

which demand considerable length. 
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5.5.4. Resin Transfer Molding Process 

This method is similar to compression molding and appears not to be practical for 

FRP piles 

 

Figure 15 – Resin Transfer Molding Method (Aero Consultants AG 2015) 

 

5.5.5. Injection Molding 

This method is for thermoplastic resins, commonly with short glass fibers as 

reinforcements. No chemical reaction occurs during the molding process. 

5.5.6. Filament Winding 

Filament winding is a process where continuous fiber filaments called rovings, are 

saturated with catalyzed resin and helically wound around a mandrel. The fibers are 

fed through a device which moves up and down the length of rotating mandrel. The 

result is a high fiber-to-resin ratio (high strength-to-weight ratio) product. This 

method can produce circular or close to circular (e.g. octagonal) cross sections. In this 
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dissertation a new solution is proposed to make any elliptical shape using this 

method. As shown in Figure 5, the rotating mandrel can be modified for production of 

elliptical shapes. 

 

 

Figure 16 - Filament Winding (Nuplex 2015) (Direct Industry 2015) 
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Fiberglas Corporation. When the two companies joined to produce and promote glass 

fiber, they introduced continuous filament glass fibers.  

The glass fibers are divided into three classes -- E-glass, S-glass and C-glass. The E-

glass is designated for electrical use and the S-glass for high strength. The C-glass is 

for high corrosion resistance, and it is uncommon for civil engineering application. Of 

the three fibers, the E-glass is the most common reinforcement material used in civil 

structures. It is produced from lime-alumina-borosilicate which can be easily obtained 

from an abundance of raw materials like sand. The fibers are drawn into very fine 

filaments with diameters ranging from 2 to 13 x10-6 m. The glass fiber strength and 

modulus can degrade with increasing temperature. Although the glass material creeps 

under a sustained load, it can be designed to perform satisfactorily. The fiber itself is 

regarded as an isotropic material and has a lower thermal expansion coefficient than 

that of steel. (Tang, 1997) 
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Table 1 - Typical cured epoxy/glass mechanical properties (Composite Material Handbook 

(DOD) 2013) 

 

 

Table 2 - Typical properties of glass fibers (Composite Material Handbook (DOD) 2013) 

    E    S-2    HR   

 Density   
 lb/in3    0.094    0.089    0.090   

gr/cm3    2.59    2.46    2.49   

 Tensile Strength   
 ksi    500    665    665   

 MPa   34,450   45,818    45,818   

 Modulus of 

Elasticity   

 Msi    10.5    12.6    12.6   

 GPa    72.35    86.81    86.81   

 % Ult. Elongation    4.8    5.4    5.4   

 Dielectric Constant  at   6.3-6.7    4.9-5.3    NA   

 
 
 
 

E Glass, Woven 7781 Style   
 Standard 

Structural   

  Dual Purpose   

Structural/Adhesive  

 Tensile Strength, ksi (MPa)    63 (430)    48 (330)   

 Tensile Modulus, Msi (GPa)    3.8 (36)    2.8 (19)   

 Compressive Strength, ksi (MPa)    60. (410)    50. (340)   

 Compressive Modulus, Msi (GPa)    3.6 (25)    3.2 (22)   

 Flexural Strength ksi, (MPa)    80. (550)    65 (450)   

 Flexural Modulus Msi, (GPa)    3.7 (26)    3.3 (23)   

 Interlaminar Shear ksi, (MPa)    2.6 (18)    3.8 (26)   

 Sandwich Peel, lb/in width (N/m width)    N.A.    30. (3.4)   

 Metal-to-Metal Peel, lb/lin. in. (N/lin. m)    N.A.    55 (6.3)   

 Specific Gravity gm/cm3 (lb/in3)    1.8 (0.065)    1.6 (0.058)   

 Cured Resin Content % Wt.    33    48   
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Table 3 - Chemical compositions of Glass Fibers 

    %(wt)   E-Glass   S-2 Glass 
(Nominal)  

 HR Glass (B)  

 Silicon Dioxide (SiO2)      52-56 (A)   65    63.5 -65.0   
 Aluminum Oxide (Al2O3)      12-16 (A)   25    24.0 -25.5   
 Boron Oxide (B2O3)      5-10 (A)       
 Calcium Oxide (CaO)      16-25 (A)     <0.5   
 Magnesium Oxide (MgO)      0-5 (A)    10    9.5 - 10.5   
 Lithium Oxide (Li2O)           
 Potassium Oxide (K2O)    O.C.    0.0-0.2       
 Sodium Oxide (Na2O)    O.C.    0-2       
 Titanium Oxide (TiO2)    O.C.    0-1.5       
 Cerium Oxide (CeO2)           
 Zirconium Oxide (Zr2O2)           
 Beryllium Oxide (BeO)           
 Iron Oxide (Fe2O3)    O.C.    0.0-0.8       
 Fluorine (F2)    O.C.    0.0-0.1       
 Sulfate (SO2)           
 Alkaline Oxides    PPG    0.5-1.5       
 Calcium Fluoride (CAF)    PPG    0.0-0.8       
 Finishes/Binders      0.5/3.0       

 

 

Table 4 - Typical corrosion resistance of glass fibers wt. loss % (Conditions: 200°F (96°C) - 

one week immersion)  (Composite Material Handbook (DOD) 2013) 

Fluid   E S-2  SR   
 10% H2SO4    42    6.8    NA   
 10% HCL    43    4.4    NA   
 10% HNO3    43    3.8    NA   
 H2O (Distilled)    0.7    0.7    NA   
 10% Na OH    29    66    NA   
 10% KOH    23    66    NA   
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carbon composites may be considered as typical disadvantages. When compared to 

Aramid composites, glass has a disadvantage as to tensile properties but an advantage 

as to ultimate compression, shear properties, and moisture pick-up. 

Commercial uses for glass products are many-fold. These include filtration devices, 

thermal and electrical insulation, pressure and fluid vessels, and structural products 

for automotive and recreation vehicles.  

Because of the many product forms, structural applications are limitless to fabricate. 

If there are limitations, compared to other fibers, they may include low thermal and 

electrical conductivity or perhaps melting temperatures when compared to carbon 

fibers. (Composite Material Handbook (DOD) 2013) 

5.7.3. Aramid Fibers  

These are synthetic organic fibers consisting of aromatic polyamides. The Aramid 

fibers have excellent fatigue and creep resistance. Although there are several 

commercial grades of Aramid fibers available, the two most common ones used in 

structural applications are Kevlar® 29 and Kevlar® 49. The Young's Modulus curve 

for Kevlar® 29 is linear to a value of 83 GPa but then becomes slightly concave 

upward to a value of 100 GPa at rupture; whereas, for Kevlar® 49 the curve is linear 

to a value of 124 GPa at rupture (see Error! Reference source not found.). As an 

anisotropic material, its transverse and shear modulus are an order of magnitude less 

than those in the longitudinal direction. The fibers can have difficulty achieving a 

chemical or mechanical bond with the resin. 
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Table 6 – Typical properties of Aramid fibers (Tang 1997) 

 

 

 

 

 

 

 

 
Figure 18 – Aramid fibers used in FRP (Dupont 2015) 

 

5.7.4. Carbon Fibers (Graphite)  

Carbon fibers are selected to achieve a high modulus (stiffer) composite. The carbon 

also makes the part electrically conductive. Carbon fiber reinforcements are 10 to 100 

times as expensive as standard glass reinforcements depending on the grade used. 

The graphite or carbon fiber is made from three types of polymer precursors -- 

polyacrylonitrile (PAN) fiber, rayon fiber, and pitch. The tensile stress-strain curve is 

linear to the point of rupture. Although there are many carbon fibers available on the 

open market, they can be arbitrarily divided into three grades as shown.  

Typical Properties Kevlar 29 Kevlar 49 

Density (g/cm3) 1.44 1.44 

Young's Modulus (GPa) 83/100 124 

Tensile Strength (GPa) 2.27 2.27 

Tensile Elongation (%) 2.8 1.8 
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They have lower thermal expansion coefficients than both the glass and Aramid 

fibers. The carbon fiber is an anisotropic material, and its transverse modulus is an 

order of magnitude less than its longitudinal modulus. The material has a very high 

fatigue and creep resistance. (Tang, 1997) 

Table 7 – Typical properties of Carbon Fibers (Tang 1997) 

Typical Properties 
High 

Strength

High 

Modulus

Ultra-High 

Modulus 

Density (g/cm3) 1.8 1.9 2.0 - 2.1 

Young's Modulus (GPa) 230 370 520 - 620 

Tensile Strength (GPa) 2.48 1.79 1.03 - 1.31 

Tensile Elongation (%) 1.1 0.5 0.2 

 

Since its tensile strength decreases with increasing modulus, its strain at rupture will 

also be much lower. Because of the material brittleness at higher modulus, it becomes 

critical in joint and connection details, which can have high stress concentrations. As 

a result of this phenomenon, carbon composite laminates are more effective with 

adhesive bonding that eliminates mechanical fasteners. 

  
Figure 19 - Carbon fiber (Tap Plastics 2015) 
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In this program, specimens representative of real world stacking sequences were 

impacted with various energy levels but not higher than those corresponding to the 

creation of visible impact damages. 

Usually impact damages that are to be assumed for fatigue (safe-life) investigations 

are those not sufficiently visible for being readily detectable. Those more severe, 

easily detectable, should not have to prove their capability to sustain a large number 

of fatigue cycles in service. These specimens were then tested in compression-

compression fatigue (R = 10) in order to: 

i) Plot Wöhler curves for several energy levels, 

ii) Monitor damage growth and residual static strength versus time. 

Wöhler curves for the IM7/977-2 and the T800H/F-655-2 material references are 

reported in Figure 22 for various energy levels. The ratio between the endurance limit 

at 106 cycles and the initial static strength turned out to be between 0.50 and 0.75. 

This means that sizing a structure (with these materials) using ultimate loads should 

push fatigue loads down to a level likely to limit fatigue problems with low energy 

impact damages. 

Figure 23 illustrates damage growth, measured by C-SCAN, versus fatigue cycles for 

the T800H/F655-2 material. Unrealistic fatigue stresses (above 75% of the static 

strength) were needed to allow such measurement. This illustration shows that, 

despite the log axis, damage growth starts very close to the end of the specimen 

lifetime (between 85% and 95% for all cases investigated in this program), with a 

very high slope. 
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From these results it is apparent that, as far as low velocity impact damages are 

concerned, assuming the possibility of a stable (or slow) growth approach for 

certification purposes may not be possible. This conclusion is also supported by other 

laboratory results such as, for example, those presented in “Damage Propagation in 

Composite Structural Element-Coupon Experiment and Analyses” (Ireman T. 1996) 

where very high slopes have also been shown for da/dN versus ΔG curves. These data 

were obtained on Double Cantilever Beam specimens made of two composite 

materials – the IM7/8552 and the HTA/6376 - and are representative of a mode I 

delamination growth phenomenon. 

 

Figure 22 - Failure stress versus cycles for impact damaged laminates. (Composite Material 

Handbook (DOD) 2013) 
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Figure 23 - Post-impact delamination size versus load cycles (Composite Material 

Handbook (DOD) 2013) 

 

Since Integral Abutment Bridges are not subjected to high numbers of loading cycles 

and the maximum stresses are due to temperature changes, the FRP piles could be 

used under bridges. 
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However this procedure does not help in the evaluation of alternate laminates for 

which test data do not exist. 

7.2.2. Ply or Lamina Level 

For this type of analysis, average values of the stress components within each ply are 

utilized. Ply level stresses are the commonly used approach to laminate strength. The 

average stresses in a given ply are used to calculate first ply failure and then 

subsequent ply failure leading to laminate failure.  

7.2.3. Constituent Level 

In this method, average values of the stress components within each phase (fiber or 

matrix) of each ply are utilized. Constituent level, or phase average stresses, 

eliminates some of the complexity of the micro-level stresses. They represent a useful 

approach to the strength of a unidirectional composite or ply. Micromechanics 

provides a method of analysis, presented in Section 8.4, for constituent level stresses. 

Micromechanics is the study of the relations between the properties of the 

constituents of a composite and the effective properties of the composite. 

7.2.4. Micro Level 

In micro-level analysis, local stresses of each point within each phase are utilized. 

Micro-level stresses could be used in appropriate failure criteria for each constituent 

to determine the external loads at which local failure would initiate. However, the 

uncertainties, due to departures from the assumed regular local geometry and the 

statistical variability of local strength make such a process impractical. 
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7.4.1. Elastic Properties 

The elastic properties of a material are a measure of its stiffness. This information is 

necessary to determine the deformations which are produced by loads. In a UDC, the 

stiffness is provided by the fibers; the role of the matrix is to prevent lateral 

deflections of the fibers. For engineering purposes, it is necessary to determine such 

properties as Young's modulus in the fiber direction, Young's modulus transverse 

to the fibers, shear modulus along the fibers and shear modulus in the plane 

transverse to the fibers, as well as various Poisson's ratios. These properties can be 

determined in terms of simple analytical expressions. In the following equations, the 

subscript f refers to fiber and m refers to matrix. The subscript 1 refers to the fiber 

direction and 2 refers to the transverse to the fiber direction. V refers to volume 

fraction and ߥ refers to Poisson's ratio. Plane strain bulk moduli for isotropic fibers 

and matrix is defined in the following equations (Composite Material Handbook 

(DOD) 2013): 

Plane strain bulk moduli for isotropic fibers 

(Equation 7-1): ݇௙ = ௙2൫1ܧ − ௙ߥ −  ௙ଶ൯ߥ2

Plane strain bulk moduli for matrix  

(Equation 7-2): ݇௠ = ௠2(1ܧ − ௠ߥ − ௠ଶߥ2 ) 
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The effective elastic stress-strain relations of a typical transverse section of a UDC, 

based on average stress and average strain, have the form (Composite Material 

Handbook (DOD) 2013) : 

 

(Equation 7-3): 

ቐ തଵଵߪ = ଵ̅ଵߝ∗݊ + ଶ̅ଶߝ∗݈ + തଶଶߪଷ̅ଷߝ∗݈ = ଵ̅ଵߝ∗݈ + (݇∗ + ଶ̅ଶߝ(∗ଶܩ + (݇∗ − തଷଷߪଷ̅ଷߝ(∗ଶܩ = ଵ̅ଵߝ∗݈ + (݇∗ − ଶ̅ଶߝ(∗ଶܩ + (݇∗ +  ଷ̅ଷߝ(∗ଶܩ

(Equation 7-4): 

ቐߪതଵଶ = തଶଷߪଵ̅ଶߝ∗ଵܩ2 = തଵଷߪଶଷߝ∗ଶܩ2 =  ଵ̅ଷߝ∗ଵܩ2

with inverse: 

(Equation 7-5): 

۔ۖۖەۖۖ
ۓ ଵ̅ଵߝ = ∗ଵܧ1 തଵଵߪ − ∗ଵܧ∗ଵଶߥ തଶଶߪ − ∗ଵܧ∗ଵଶߥ ଶ̅ଶߝതଷଷߪ = − ∗ଵܧ∗ଵଶߥ തଵଵߪ + ∗ଶܧ1 തଶଶߪ − ∗ଶܧ∗ଶଷߥ ଷ̅ଷߝതଷଷߪ = − ∗ଵܧ∗ଵଶߥ തଵଵߪ − ∗ଶܧ∗ଶଷߥ തଶଶߪ + ∗ଶܧ1 തଷଷߪ

 

Where an asterisk (*) denotes effective values. Figure 24 illustrates the loadings 

which are associated with these properties. The effective modulus k* is obtained by 

subjecting a specimen to the average state of stress ߝଶ̅ଶ =  ଷ̅ଷ with all other strainsߝ

vanishing, in which case it follows that:   
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∗ଶܧ4 = ∗ଶܩ1 + ∗ଵܧଵଶ∗ଶߥ4  

(Equation 7-10): 21 − ∗ଶଷߥ = 1 + ݇∗൬1 + 4݇∗ ∗ଵܧଶଷ∗ଶߥ ൰  ∗ଶܩ

 
Effective Transverse Shear Modulus,  
 
(Equation 7-11): ܩଶ∗ = ଶ∗2(1ܧ + ∗ଶଷߥ ) 

Computation of effective elastic moduli is a very difficult problem in elasticity theory 

and only a few simple models permit exact analysis. One type of model consists of 

periodic arrays of identical circular fibers, e.g., square periodic arrays or hexagonal 

periodic arrays (Sendeckyj 1974). These models are analyzed by numerical finite 

difference or finite element procedures. Note that the square array is not a suitable 

model for the majority of UDCs since it is not transversely isotropic. 

The composite cylinder assemblage (CCA) permits exact analytical determination of 

effective elastic moduli (Z. a. Hashin 1964). Consider a collection of composite 

cylinders, each with a circular fiber core and a concentric matrix shell. The size of the 

cylinders may vary but the ratio of core radius to shell radius is held constant. 

Therefore, the matrix and fiber volume fractions are the same in each composite 

cylinder. One strength of this model is the randomness of the fiber placement, while 

an undesirable feature is the large variation of fiber sizes. It can be shown that the 

latter is not a serious concern. 

The analysis of the CCA gives closed form results for the effective properties, ݇∗,ܧଵ∗, ߥଵଶ∗ , ݊∗, ݈∗  and ܩଵ∗ and closed bounds for the properties ܩଶ∗, ܧଶ∗ and ߥଶଷ∗ . Such results 
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will now be listed for isotropic fibers with the necessary modifications for 

transversely isotropic fibers (Z. Hashin 1979). 

Plane strain bulk modulus,  
 
(Equation 7-12):  
 ݇∗ = ݇௠൫݇௙ + ௠൯ܩ ௠ܸ + ݇௙(݇௠ + (௠ܩ ௙ܸ൫݇௙ + ௠൯ܩ ௠ܸ + (݇௠ + (௠ܩ ௙ܸ = ݇௠ + ௙ܸ1݇௙ − ݇௠ + ௠ܸ݇௠ +  ௠ܩ

 
Modulus in the fiber direction ܧଵ ,  
 
(Equation 7-13): 
∗ଵܧ  = ௠ܧ ௠ܸ + ௙ܧ ௙ܸ + ௙ߥ)4 − ௠)ଶߥ ௠ܸ ௙ܸ௠ܸ݇௙ + ௙ܸ݇௠ + ܩ1 ≈ ௠ܧ ௠ܸ + ௙ܧ ௙ܸ 

 

The last is an excellent approximation for all UDC. 

Major Poisson's ratio,  
 
(Equation 7-14): 

∗ଵଶߥ = ௠ߥ ௠ܸ + ௙ߥ ௙ܸ + ௙ߥ) − (௠ߥ ൬ 1݇௠ − 1݇௙൰ ௠ܸ ௙ܸ௠ܸ݇௙ + ௙ܸ݇௠ + ௠ܩ1  

Effective In Plane Shear Modulus,  
 
(Equation 7-15): 
∗ଵܩ  = ௠ܩ ௠ܩ ௠ܸ + ௙൫1ܩ + ௙ܸ൯ܩ௠൫1 + ௙ܸ൯ + ௙ܩ ௠ܸ = ௠ܩ + ௙ܸ1൫ܩ௙ − ௠൯ܩ + ௠ܸ2ܩ௠ 

 

As indicated earlier, the CCA analysis for ܩଶ∗ does not yield a result but only a pair of 

bounds which are in general quite close. (Z. Hashin 1974), (Z. a. Hashin 1964) and 

(Z. Hashin 1979). A preferred alternative is to use a method of approximation which 
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has been called the Generalized Self Consistent Scheme (GSCS). According to this 

method, the stress and strain in any fiber is approximated by embedding a composite 

cylinder in the effective fiber composite material. The volume fractions of fiber and 

matrix in the composite cylinder are those of the entire composite. Such an analysis 

results in a quadratic equation for ܩଶ∗ (Christensen 1984). Thus, 

(Equation 7-16): ܣ ൬ܩଶ∗ܩ௠൰ଶ + ܤ2 ൬ܩଶ∗ܩ௠൰ + ܥ = 0 

where: 

(Equation 7-17): 
ܣ  = ௠ଶߥ௙ߥ3 ߛ) − 1)൫ߛ + +௙൯ߟ ௠ߟߛൣ + ௠ߟ௙ߟ − ൫ߟߛ௠ − ߛ)௠ߟ௙ߥ௙ଷ൧ൣߥ௙൯ߟ − 1) − ௠ߟߛ) + 1)൧ 
 
(Equation 7-18): ܤ = ௠ଶߥ௙ߥ3− ߛ) − 1)൫ߛ + +௙൯ߟ 12 ௠ߟߛൣ + ߛ) − ௙ߥ(1 + 1൧ൣ(ߟ௠ − 1)൫ߛ + ௙൯ߟ − ௠ߟߛ)2 − +௙ଷ൧ߥ(௠ߟ ௙2ߥ ௠ߟ) + ߛ)(1 − ߛൣ(1 + ௙ߟ + ൫ߟߛ௠ −  ௙ଷ൧ߥ௙൯ߟ
 
(Equation 7-19): ܥ = ௠ଶߥ௙ߥ3 ߛ) − 1)൫ߛ + ௙൯ߟ + ௠ߟߛൣ + ߛ) − ௙ߥ(1 + 1൧ൣߛ + ௙ߟ + ൫ߟߛ௠ −  ௙ଷ൧ߥ௙൯ߟ
 

where:  

(Equation 7-20): ߛ =  ௠ܩ௙ܩ

(Equation 7-21): ݉ߟ = 3 −  ݉ߥ4
(Equation 7-22): ݂ߟ = 3 −  ݂ߥ4
 

Using ܩଶ∗ calculated, the resulting ܧଶ∗ and ߥଶଷ∗ can be calculated.  
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It is of interest to note that when the GSCS approximation is applied to those 

properties for which CCA results are available (see above). For transversely isotropic 

fibers, the following modifications are necessary (Z. Hashin 1974) and (Z. Hashin 

1979): 

For ݇∗    ݇௙ is the fiber transverse bulk modulus 

For ܧଵ∗, ∗ଵଶߥ ௙ܧ   = ௙ߥ , ଵ௙ܧ =  ଵ௙ and ݇௙ as aboveߥ

For ܩଵ∗   ܩ௙ =  ଵ௙ܩ

For ܩଶ∗   ܩ௙ = ௙ߟ , ଶ௙ܩ = 1 + 2 ீమ೑௞೑  

Numerical analysis of the effective elastic properties of the hexagonal array model 

reveals that the values are extremely close to those predicted by the CCA/GSCS 

models as given by the above equations. The results are generally in good to excellent 

agreement with experimental data.  

The simple analytical results given here predict effective elastic properties with 

sufficient engineering accuracy. They are of considerable practical importance for 

two reasons. First, they permit easy determination of effective properties for a variety 

of matrix properties, fiber properties, volume fractions, and environmental conditions. 

Second, they provide the only approach known today for experimental determination 

of carbon fiber properties. 

For purposes of laminate analysis, it is important to consider the plane stress version 

of the effective stress-strain relations. Let ݔଷ be normal to the plane of a thin 

unidirectionally-reinforced lamina.  

The plane stress condition is defined by 

(Equation 7-23): 
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തଷଷߪ = തଵଷߪ = തଶଷߪ = 0 
 
 
(Equation 7-24): 

۔ۖۖەۖۖ
ۓ ଵ̅ଵߝ = ∗ଵܧ1 തଵଵߪ − ∗ଵܧ∗ଵଶߥ ଶ̅ଶߝതଶଶߪ = − ∗ଵܧ∗ଵଶߥ തଵଵߪ + ∗ଶܧ1 ଵ̅ଶߝതଶଶ2ߪ = ∗തଵଶGଵߪ

 

 
 
 
The inversion gives the following equations: 
 
(Equation 7-25): ቐߪതଵଵ = Cଵଵ∗ ଵ̅ଵߝ + Cଵଶ∗ തଶଶߪଶ̅ଶߝ = Cଵଶ∗ ଵ̅ଵߝ + Cଶଶ∗ തଵଶߪଶ̅ଶߝ = 2Gଶ∗ εതଵଶ  

where: 

(Equation 7-26): 

ەۖۖ
۔ۖۖ
∗ଵଵܥۓۖۖ = ଵ∗1ܧ − ∗ଵଶܥଵܧ∗ଶܧଵଶ∗ଶߥ = ∗ଵଶߥ ଶ∗1ܧ − ∗ଶଶܥଵܧ∗ଶܧଵଶ∗ଶߥ = ଶ∗1ܧ − ଵܧ∗ଶܧଵଶ∗ଶߥ

 

For polymer matrix composites, at the usual 60% fiber volume fraction, the square of ߥଵଶ∗  is close enough to zero to be neglected and the ratio of ܧଶ∗ ⁄∗ଵܧ  is approximately 

0.1 - 0.2. Consequently, the following approximations are often made. 

(Equation 7-27): ቐ ∗ଵଵܥ ≈ ∗ଵଶܥ∗ଵܧ ≈ ∗ଵଶߥ ∗ଶଶܥ∗ଶܧ ≈ ∗ଶܧ  
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This dissertation uses maximum stress, Tsai-Wu and Tsai-Hill failure criteria for 

composite pile study. The failure criteria are described in the following paragraphs. 

7.7.1. Maximum Stress Failure Criteria 

Failure will occur when any one of the stress components exceeds the corresponding 

strength in that direction. All stresses are independent. Stresses occurring in one 

direction will not affect the strength of the material in the other directions.  

This assumes no interaction between the modes of failure, i.e. the critical stress for 

one mode is unaffected by the stresses tending to cause the other modes. Failure then 

occurs when one of these critical values, ߪଵ௨,  ଶ௨ and ߬ଵଶ௨ is reached. These valuesߪ 

refer to the laminar principal axes and can be resolved from the applied stress system 

by using the equation (Composite Material Handbook (DOD) 2013): 

(Equation 7-28): 

൥ ଶ߬ଵଶ൩ߪଵߪ = [ܶ] ൥  ௬߬௫௬൩ߪ௫ߪ

where  [ܶ] = ൥ ߠଶݏ݋ܿ ߠଶ݊݅ݏ ߠଶ݊݅ݏߠ݊݅ݏ ߠݏ݋2ܿ ߠଶݏ݋ܿ ߠ݊݅ݏ ߠݏ݋ܿ−ߠ݊݅ݏ ߠݏ݋2ܿ− ߠ݊݅ݏ ߠݏ݋ܿ ߠଶݏ݋ܿ −  ൩ߠଶ݊݅ݏ 

It follows that under an applied uniaxial tension ൫ߪ௬ = ߬௫௬ = 0൯ the critical values of ߪ௫ for each failure mode are: 

(Equation 7-29): ߪ௫௨ = ߠଶݏ݋ଵ௨ܿߪ  , ௫௨ߪ = ߠଶ݊݅ݏଶ௨ߪ  , ௫௨ߪ = ߬ଵଶ௨ߠݏ݋ܿ ߠ݊݅ݏ 
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7.7.2. Maximum Strain Failure Criteria 

Failure occurs when at least one of the strain components exceeds the ultimate strain. 

This criterion considers that the composite fails when the strain exceeds the 

respective allowable, being a simple and direct way to predict failure of composites. 

Three different conditions of failure are considered in correspondence with a 

maximum strain in fiber direction, matrix or transversal direction and for shear 

strains. (Camanho 2002) 

(Equation 7-30): 

ቐ ଵߝ ≥ ଵ௨்ߝ |ଵߝ| ݎ݋   ≥ ଵ஼௨ߝ ଶߝݎܾ݂݁݅ ݎ݋ܨ                       ≥ ଶ௨்ߝ |ଶߝ| ݎ݋   ≥ ଶ஼௨ߝ |ଵଶߝ|ݔ݅ݎݐܽܯ ݎ݋ܨ                   ≥ ଵଶ௨ߝ  ݎℎ݁ܽܵ ݎ݋ܨ                                            

 

As described in the following chapters, each material has a strain limit as well. The 

orthotropic materials have three different strain limits. That means if a strain is within 

acceptable rage, the same strain may not be acceptable in a different axis. Also, the 

tensile strain and the compressive strain may be different for orthotropic or isotropic 

materials. 
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7.7.3. Tsai-Hill Failure Criteria 

Tsai-Hill failure criteria takes into account interactions between different failure 

modes. It is based on the von-Mises failure criteria for metals.  The Tsai-Hill failure 

criteria cannot predict different failure modes (Fiber failure, matrix failure, fiber-

matrix interface failure, …) 

Von Mises Criterion for metals: 

(Equation 7-31):  (ߪଵ − ଶ)ଶߪ + ଶߪ) − ଷ)ଶߪ + ଷߪ) − ଵ)ଶߪ =  ௬ଶߪ2

where ߪ௬ is the metal yield stress. 

For most of composites in-plane stress states is either ߪଷ = 0 or relatively low. This 

reduces the Von Miss Criterion to the following: 

ቆߪଵߪ௬ቇଶ + ቆߪଶߪ௬ቇଶ − ௬ଶߪଶߪଵߪ = 1 

This is then modified to take into account the anisotropy of composites and the 

different failure mechanisms to give the following expression: 

ቆ ଵ௬ቇଶߪଵߪ + ቆ ଶ௬ቇଶߪଶߪ − ଵ௬ଶߪଶߪଵߪ − ଶ௬ଶߪଶߪଵߪ + ଷ௬ଶߪଶߪଵߪ + ቆ ߬ଵଶ߬ଵଶ௬ቇଶ = 1 

The metal yield stresses can be regarded as composite failure stresses and since 

composites are transversely isotropic ߪଶ௨ =  ଷ௨ we arrive at the Tsai-Hill criterionߪ

for composites: 

(Equation 7-32):  

൬ ଵ௨൰ଶߪଵߪ + ൬ ଶ௨൰ଶߪଶߪ − ଵ௨ଶߪଶߪଵߪ + ൬ ߬ଵଶ߬ଵଶ௨൰ଶ = 1 

The maximum stress criterion suggests possible modes of failure whereas the Tsai-

Hill criterion does not account for that.  
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7.7.4. Tsai-Wu Failure Criteria 

The Tsai–Wu failure criterion is a phenomenological material failure theory which is 

widely used for anisotropic composite materials which have different strengths in 

tension and compression. The Tsai-Wu criterion predicts failure when the failure 

index in a laminate reaches 1. This failure criterion is a specialization of the general 

quadratic failure criterion proposed by Gol'denblat and Kopnov and can be expressed 

in the form 

(Equation 7-33): ܨ௜ߪ௜ + ௝ߪ௜ߪ௜௝ܨ  ≤ 1 

where i , j = 1 …..6 and repeated indices indicate summation, and ܨ௜ ,  ௜௝ areܨ

experimentally determined material strength parameters. The stresses ߪ௜ are expressed 

in Voigt notation. If the failure surface is to be closed and convex, the interaction 

terms ௜݂௝ must satisfy 

(Equation 7-34): ܨ௜௜ܨ௝௝ − ௜௝ଶܨ  ≥ 0 

which implies that all the ܨ௜௝ terms must be positive. 

For orthotropic materials with three planes of symmetry oriented with the coordinate 

directions, if we assume that ܨ௜௝ =  ௝௜ and that there is no coupling between theܨ

normal and shear stress terms (and between the shear terms), the general form of the 

Tsai–Wu failure criterion reduces to ܨଵߪଵ + ଶߪଶܨ + ଷߪଷܨ + ସߪସܨ + ହߪହܨ + ଺ߪ଺ܨ + ଵଶߪଵଵܨ + ଶଶߪଶଶܨ + ଷଶߪଷଷܨ + +ସଶߪସସܨ ହଶߪହହܨ + ଺ଶߪ଺଺ܨ + ଶߪଵߪଵଶܨ2 + ଷߪଵߪଵଷܨ2 + ଷߪଶߪଶଷܨ2 ≤ 1 



 

81 

Let the failure strength in uniaxial tension and compression in the three directions of 

anisotropy be ߪଵ௧, ,ଵ௖ߪ ,ଶ௧ߪ ,ଶ௖ߪ ,ଷ௧ߪ  ଷ௖. Also, let us assume that the shear strengths inߪ

the three planes of symmetry are ߬ଶଷ, ߬ଵଶ, ߬ଷଵ (and have the same magnitude on a 

plane even if the signs are different). Then the coefficients of the orthotropic       

Tsai–Wu failure criterion are: 

ଵܨ = ଵ௧ߪ1 − ଵ௖ߪ1  ; ଶܨ = ଶ௧ߪ1 − ଶ௖ߪ1  ; ଷܨ = ଷ௧ߪ1 − ଷ௖ߪ1  ; ସܨ = ହܨ = ଺ܨ = 0 

ଵଵܨ = ଵ௧ߪଵ௖ߪ1 ; ଶଶܨ = ଶ௧ߪଶ௖ߪ1 ; ଷଷܨ = ଷ௧ߪଷ௖ߪ1 ; ସସܨ  = 1߬ଶଷଶ ହହܨ ; = 1߬ଷଵଶ ଺଺ܨ ; = 1߬ଵଶଶ ;  
The coefficients ܨଵଶ, ,ଵଷܨ  ଶଷ can be determined using equibiaxial tests. If the failureܨ

strengths in equibiaxial tension are ߪଵ = ଶߪ = ଵߪ , ௕ଵଶߪ = ଷߪ = ଶߪ                  , ௕ଵଷߪ = ଷߪ =  :௕ଶଷ  thenߪ

(Equation 7-35): 

ଵଶܨ = ௕ଵଶଶߪ12  [1 − ଵܨ)௕ଵଶߪ + (ଶܨ − ௕ଵଶଶߪ ଵଵܨ) +  [(ଶଶܨ
ଵଷܨ = ௕ଵଷଶߪ12  [1 − ଵܨ)௕ଵଷߪ + (ଷܨ − ௕ଵଷଶߪ ଵଵܨ) +  [(ଷଷܨ
ଶଷܨ = ௕ଶଷଶߪ12  [1 − ଶܨ)௕ଶଷߪ + (ଷܨ − ௕ଶଷଶߪ ଶଶܨ) +  [(ଷଷܨ

The near impossibility of performing these equibiaxial tests has led to there being a 

severe lack of experimental data on the parametersܨଵଶ, ,ଵଷܨ  ଶଷ. It can be shown thatܨ

the Tsai-Wu criterion is a particular case of the generalized Hill yield criterion. 

Tsai-Wu failure criteria takes into account interactions between different failure 

modes. Differences in tensile and compression strengths are considered in this failure 

criteria. It cannot predict different failure modes (Fiber failure, matrix failure, fiber-
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7.7.7. Failure Criteria Terms 

e = strain s = stress 

1 = material 1 direction 

2 = material 2 direction 

3 = out-of-plane normal direction 

12 = in-plane shear 

13 and 23 = out-of-plane shear terms 

I = principal I direction 

II = principal II direction 

III = principal III direction 

t = tension, c = compression 
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7.7.8. Comparison between different Failure Criteria 

Table 8 shows the failure more comparison among different criteria. 

Table 8 – Failure mode comparison among different criteria  

Maximum Strain Failure modes  e1t, e1c, e2t, e2c, e12  

Maximum Stress  s1t, s1c, s2t, s2c, s3t, s3c, s12, s23, s13  

Tsai-Wu 2D and 3D  tw  

Tsai-Hill 2D and 3D  th  

Hashin  

hf (fiber failure)  

hm (matrix failure)  

hd (delamination failure)  

Puck (simplified, 2D and 3D)  

pf (fiber failure)  

pmA (matrix tension failure)  

pmB (matrix compression failure)  

pmC (matrix shear failure)  

pd (delamination)  

LaRC (2D)  

lf (fiber failure)  

lmt (matrix failure tension)  

lmc (matrix failure compression)  

Cuntze 2D and 3D  

cft (fiber tension failure)  

cfc (fiber compression failure)  

cmA (matrix tension failure)  

cmB (matrix compression failure)  

cmC (matrix wedge shape failure)  

Sandwich Failure Wrinkling  
wb (wrinkling bottom face)  

wt (wrinkling top face)  

Sandwich Failure Core  cf (core failure)  
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8. Structural Analysis of the Models Using ANSYS 
Workbench 

Before ANSYS workbench, the ANSYS Parametric Design Language (APDL) was 

used to model structures in ANSYS. Generally, most of the structural analysis 

software was run on machines that did not have the capability of today’s computers. 

Therefore, nearly all of them were using a programing environment to create and 

solve the stiffness, load, displacement matrixes to aid in analyzing the structure. With 

everyday improvement in the computer industry, especially with great improvements 

in processing speed, memory and graphical capabilities, the software industry is 

shifting toward graphical data entry. This method makes a better understanding of 

modeling the structure and reducing the errors drastically. The user can see the 

structure as it is completed. Besides, mistakes in data entries are detected before the 

analysis. 

Since there are still engineers and designers from previous generations that resist 

switching to new methods, the APDL is still in use. Obviously, the more modern and 

user-friendly methods such as ANSYS Workbench will eventually replace the 

programing methods.  

The difference between the APDL and other commercial programing applications is 

that APDL uses parameters that can be changed during multiple runs. Other similar 

software does not present this capability. Also the APDL has a variety of FE element 

types,each being useful for special types of model. For example, SOLID46 is a three-

dimensional structural solid that can accommodate 256 layers.  
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ANSYS Workbench is a very modern and strong tool which combines the strength of 

APDL with the tools necessary to manage the projects. It was first introduced as 

ANSYS 12.0 in 2009. The Workbench is modified and improved in each release 

since then. In 2013 the ANSYS Composite PrepPost (ACP) was added to the 

program. ANSYS Composite PrepPost (ACP) is an add-on to ANSYS Workbench 

and is integrated with the standard analysis features. The entire workflow for 

composite structure can be completed from design to final production as a result. The 

ACP made it possible to model layered composites, with changing parameters from 

size to layers and to batch process multiple similar models. This was exactly what 

was needed to create FE models for this dissertation.  

The geometry of the tooling surfaces of a composite structure is the basis for analysis 

and production. Based on this geometry and a FE mesh, the boundary conditions and 

composite definitions are applied to the structure in the pre-processing stage. After a 

completed solution, the post-processing is used to evaluate the performance of the 

design and laminate. In the case of an insufficient design or material failure, the 

geometry or laminate has to be modified and the evaluation is repeated. ACP has a 

pre- and post-processing mode. In the pre-processing mode, all composite definitions 

can be created and are mapped to the geometry (FE mesh). These composite 

definitions are transferred to the FE model and the solver input file. In the post-

processing mode, after a completed solution and the import of the result file(s), post-

processing results (failure, safety, strains and stresses) can be evaluated and 

visualized. Figure 26 shows the typical ANSYS Workbench using ACP.  
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Figure 26 – Typical view of ANSYS Workbench using ACP PrepPost 

 

As shown in the figure the ACP Preprocessing with the header “A” on the left side of 

project schematic screen creates the stiffness and force matrixes. Then the data is 

transferred to the Static Structural Processing section in the middle with the header 

“B”. Eventually the processed data is transferred to Post processing section on the 

right with the header “C”. 

All three stages are in communication with the “Parameter Set” (PS). This means they 

get or send the values of the parameters to or from the PS section. This network is 

specifically designed according to the dissertation requirements. 

Figure 27 shows the Post Processing window for one the pile models created for this 

project. 
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Figure 27 – Typical view of ACP Post Processing 

 

 

Figure 28 – Typical view of Parameter Set for a FRP pile with varying fiber orientation 

angle and vertical load 
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Figure 29 – Typical view of orthotropic material properties 

 

Later in the models, a variety of composite materials such as E-Glass Epoxy, S-Glass 

Epoxy, E-Glass Polyester, Kevlar 49 Epoxy, E-Glass LY556 (25), E-Glass MY750 

(25), E-Glass Epoxy (32), AS4-3501-6, AS4-3501-6 (25), T300-914-C (25), T800-

3900-2, IM7-8551-7, IM7-8552, AS4-APC2 and Avimid-K-III are compared. The 

following table shows the material properties of these materials. 
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Table 9 – Material properties of the composite materials (Barbero 2011) 
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Table 10 – Material properties of the carbon fiber materials (Barbero 2011) 
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Figure 33 – Element axis 3 (top left) axis 2 (top right)- axis 1 for 30 degree (bottom left) 

and 70 degree (bottom right) 
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Figure 38 – Lateral Spring model for Soft Clay 

 

 
Figure 39 – Lateral soil spring model for Stiff Clay 
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Figure 40 - Lateral soil spring model for Very Stiff Clay 

 

 
Figure 41 - Lateral soil spring model for Loose Sand 
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Figure 42 - Lateral soil spring model for Medium Sand 

 

 
Figure 43 – Lateral soil spring model for Dense Sand 

 



 

T

F

 

8

T

m

pr

al

an

af

The spring fo

igure 44 sho

 Outp8.12.

The piles are 

maximum pri

rocessing un

lso calculate

nd 3D curve

ffect the pile

orce is evenly

ows the pinb

Figur

put Resul

analyzed for

incipal stress

nit determine

es the maxim

es to provide

e stresses. Fi

y distributed

ball region an

 

re 44 – Pinba

lts 

r the applied

s and maxim

es which fail

mum failure r

e more under

igure 45 show

104 

d on the pile 

nd the distrib

ll region for f

d loads and d

mum shear st

lure criteria 

ratio for each

rstanding of 

ws the samp

body using 

bution of spr

force distribu

displacemen

tress are calc

have caused

h case. The r

how change

ple output. 

the pinball r

ring force. 

 

ution 

nts. In all cas

culated. The 

d each eleme

results are p

es in paramet

region. 

ses the 

ACP post 

ent to fail. It 

printed in 2D

ters will 

 

D 



 

 

8

F

st

“t

Figure 4

 Failu8.13.

igure 47 sho

tress, Tsai-W

th” indicates

45 – Maximu

ure criter

ows the setup

Wu and Tsai-

s those eleme

um principal s

ria 

F

p of failure c

-Hill criteria

ents have fai

105 

 

stress (left) an

Figure 46 and

 

 

 

criteria. As d

a are used to 

iled under T

nd maximum

d  

described pre

define the fa

Tsai-Hill crite

m shear stress

eviously, the

failure. The f

eria. 

 

s (right) 

e maximum 

failure note 



 

106 

 
Figure 46 – Governing failure criteria 
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For the design method to be developed in Table 11 to Table 16, the rather 

complicated variation of soil properties with depth has also been used. Instead, 

simpler expressions for ݇௛ and ݌௨ are used. For cohesive soils (clay), both ݇௛ and ݌௨will be assumed to have a constant value for all depths. 

(Equation 9-1) ݇௛ = 67 ܿ௨ 

(Equation 9-2) ݌௨ = 9 ܿ௨ ܤ 

For cohesionless soils (sand), both ݇௛ and ݌௨ will be assumed to vary linearly with 

depth. 

(Equation 9-3) ݇௛ = ݊௛ݔ 

(Equation 9-4) 

݊௛ =  1.35ߛܬ

(Equation 9-5) ݌௨ = ൫3݇ܤߛ௣൯ݔ 

The value ݊௛ is the constant of subgrade reaction. (A. M. Amde August 1984) 

As shown in Table 11 to Table 16, the highlighted green columns represent the 

simpler solutions compared to the original equation. The following equations 

represent the modified Ramberg-Osgood model for lateral resistance. 
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(Equation 9-6): p-y lateral resistance 

݌ = ݇௛ ݕ൬1 + ฬ ௨ฬ௡൰ଵݕݕ ௡ൗ  

in which:  ݕ௨ = ௣ೠ௞೓ 

  ݇௛ = Initial Lateral Stiffness 

݌   = Generalized Soil resistance 

௨݌   = Ultimate lateral soil resistance 

  ݊ = Shape Parameter 

ݕ   = Generalized displacement 

This model offers certain advantages over the other soil models and also includes the 

commonly used hyperbola as a special case. The soil lateral resistance has been 

calculated for three types of clay and three types of sand. The following tables and 

graphs show the calculated values. (A. M. Amde August 1984) 
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8.242 413.3
8.242 433.6
8.242 453.9
8.242 474.
8.242 494.5
8.242 514.8

curve for Stif

Stiff Clay 

St
iff

ne
ss

 

Si
m

pl
ifi

ed
 In

iti
al

 
la

te
ra

l S
tif

fn
es

s 

) 

kh = 
67cu 
(ksf) 

0 105.123 
3 105.123 
6 105.123 
9 105.123 
2 105.123 
5 105.123 
8 105.123 
1 105.123 
4 105.123 
7 105.123 

3 105.123 
3 105.123 
6 105.123 
9 105.123 
2 105.123 
5 105.123 
8 105.123 

ff clay 

Ul
tim

at
e 

Di
sp

la
ce

m
en

t 

yu = pu / 
kh 

(in) 

0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 

Ge
ne

ra
liz

ed
 

Di
sp

la
ce

m
en

t 

Ge
ne

ra
liz

ed
 

La
te

ra
lR

es
ist

an
ce

y 
(in) 

p
(klf)

0.00 0.00
0.25 1.13
0.50 1.53
0.75 1.73
1.00 1.86
1.25 1.94
1.50 2.00
1.75 2.04
2.00 2.07
2.25 2.10
2.50 2.13
2.75 2.14
3.00 2.16
3.25 2.17
3.50 2.19
3.75 2.20
4.00 2.21

La
te

ra
l R

es
ist

an
ce

 

 

0
3
3
3
6
4
0
4
7
0
3
4
6
7
9
0
1

 



 

Bl
ow

 C
ou

nt
 

N 
(p

50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1
50 1

 

Un
it 

W
ei

gh
t 

Un
dr

ai
ne

d 
Co

he
sio

n 

g 
pcf) 

Cu 
(psf) 

130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 
130 5000 

Table 13 – 

Sh
ap

e 
Pa

ra
m

et
er

 

Pi
le

 W
id

th
 

n B 
(ft) 

2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 
2 2 

Figure 5

Lateral Resis

De
pt

h 
fro

m
 

Su
rfa

ce
 

Ul
tim

at
e

La
te

ra
l

x 
(ft) 

Pu

(klf)

0 2.4
1 2.8
2 3.2
3 3.6
4 4 
5 4.4
6 4.8
7 5.2
8 5.6
9 6 

10 6.4
11 6.8
12 7.2
13 7.2
14 7.2
15 7.2
16 7.2

50 – Lateral R
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stance calcula

Ul
tim

at
e 

La
te

ra
l 

so
il 

re
sis

ta
nc

e 

Si
m

pl
ifi

ed
Ul

tim
at

e

Pu 
(k/in) 

Pu

c
(k

0.2 9
0.233 9
0.267 9

0.3 9
0.333 9
0.367 9

0.4 9
0.433 9
0.467 9

0.5 9
0.533 9
0.567 9

0.6 9
0.6 9
0.6 9
0.6 9
0.6 9

esistance cur

ation for Very

Si
m

pl
ifi

ed
 U

lti
m

at
e 

La
te

ra
l R

es
ist

an
ce

 

In
iti

al
 La

te
ra

l 
St

iff
ne

ss

u = 9 
cu B 
klf) 

kh

(ksf)

90 24
90 28.05
90 32.1
90 36.15
90 40.2
90 44.25
90 48.3
90 52.35
90 56.4
90 60.45
90 64.5
90 68.55
90 72.6
90 73
90 73
90 73
90 73

rve for Very S

y Stiff Clay 

St
iff

ne
ss

 

Si
m

pl
ifi

ed
 In

iti
al

 
la

te
ra

l S
tif

fn
es

s 

) 

kh = 
67cu 
(ksf) 

335 
5 335 

1 335 
5 335 

2 335 
5 335 

3 335 
5 335 

4 335 
5 335 

5 335 
5 335 

6 335 
335 
335 
335 
335 

Stiff clay 

Ul
tim

at
e 

Di
sp

la
ce

m
en

t 

G
li

d

yu = pu / 
kh 

(in) 

0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 
0.2687 

Ge
ne

ra
liz

ed
 

Di
sp

la
ce

m
en

t 

Ge
ne

ra
liz

ed
 

La
te

ra
l R

es
ist

an
ce

 

y 
(in) 

p 
(klf)

0.00 0.00
0.25 5.11
0.50 6.61
0.75 7.06
1.00 7.24
1.25 7.33
1.50 7.38
1.75 7.41
2.00 7.43
2.25 7.45
2.50 7.46
2.75 7.46
3.00 7.47
3.25 7.47
3.50 7.48
3.75 7.48
4.00 7.48

 



 

Un
it 

W
ei

gh
t 

An
gl

e
of

Fr
ict

io
n

g 
(pcf) 

f
(de

110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3
110 3

 

An
gl

e 
of

 F
ric

tio
n 

Sh
ap

e 
Pa

ra
m

et
er

 

Pi
le

W
id

th

f 
eg) 

n B 
(ft

0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 

Table 14 

Pi
le

 W
id

th
 

De
pt

h 
fro

m
 su

rfa
ce

 

Ul
tim

at
e

La
te

ra
ls

oi
l

) 
x 

(ft) (

0 0.
1 0
2 1
3 
4 4
5 
6 8
7 1
8 1
9 1

10 1
11 2
12 2
13 3
14 3
15 4
16 4

Figure 

– Lateral Res

Ul
tim

at
e 

La
te

ra
l s

oi
l 

re
sis

ta
nc

e 

Pa
ss

iv
e 

Pr
es

su
re

 
Co

ef
fic

ie
nt

 

Pu 
(klf) kp 

0058 3.00
0.72 3.00
1.72 3.00

3 3.00
4.56 3.00
6.4 3.00

8.52 3.00
10.92 3.00
13.6 3.00

16.56 3.00
19.8 3.00

23.32 3.00
27.12 3.00
31.2 3.00

35.56 3.00
40.2 3.00

45.12 3.00

51 – Lateral R
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sistance calcu

Si
m

pl
ifi

ed
 U

lti
m

at
e 

La
te

ra
l R

es
ist

an
ce

 

In
iti

al
La

te
ra

lS
tif

fn
es

s

P u
 = 

(3
 g

 B
 k

p 
) x

 
(k

lf)
 k

(ks

0 0.1
2 1
4 3
6 4
8 6

10 8
12 9
14 11
16 12
18 14
20 16
22 17
24 19
26 20
28 22
30 24
32 25

Resistance cu

ulation for Lo

In
iti

al
 La

te
ra

l S
tif

fn
es

s 

Co
he

sio
nl

es
s s

oi
l 

t

kh 
sf) J 

16 200 16
6 200 16
2 200 16
8 200 16
4 200 16
0 200 16
6 200 16

12 200 16
28 200 16
44 200 16
60 200 16
76 200 16
92 200 16
08 200 16
24 200 16
40 200 16
56 200 16

urve for Loos

oose Sand 

pa
ra

m
et

es
 

In
iti

al
 la

te
ra

l S
tif

fn
es

s 
(S

im
pl

ifi
ed

)

n h
 =

 J 
g

 /1
.3

5 

k h
 = 

n h
 x 

(k
sf

)

6,296 0 
6,296 16 
6,296 33 
6,296 49 
6,296 65 
6,296 81 
6,296 98 
6,296 114
6,296 130
6,296 147
6,296 163
6,296 179
6,296 196
6,296 212
6,296 228
6,296 244
6,296 261

se Sand 

(S
im

pl
ifi

ed
) 

Ul
tim

at
e 

Di
sp

la
ce

m
en

t 

(k
sf

) 

y u
 = 

p u
 / 

k h
 

(in
) 

0.1215
0.1215
0.1215
0.1215
0.1215
0.1215
0.1215

 0.1215
 0.1215
 0.1215
 0.1215
 0.1215
 0.1215
 0.1215
 0.1215
 0.1215
 0.1215

Ge
ne

ra
liz

ed
 

Di
sp

la
ce

m
en

t 

Ge
ne

ra
liz

ed
 La

te
ra

l 
Re

sis
ta

nc
e

y 
(in) 

p
(klf)

0.00 0.00
0.25 0.16
0.50 0.33
0.75 0.49
1.00 0.66
1.25 0.82
1.50 0.99
1.75 1.15
2.00 1.32
2.25 1.48
2.50 1.65
2.75 1.81
3.00 1.98
3.25 2.14
3.50 2.31
3.75 2.47
4.00 2.64

 



 

Un
it 

W
ei

gh
t 

An
gl

e
of

Fr
ict

io
n

g 
(pcf) 

f
(de

120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35
120 35

 

An
gl

e 
of

 F
ric

tio
n 

Sh
ap

e 
Pa

ra
m

et
er

 

Pi
le

 W
id

th
 

f 
eg) 

n B 
(ft)

5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 
5 3 2 

Table 15 – 

De
pt

h 
fro

m
 su

rfa
ce

 

Ul
tim

at
e

La
te

ra
ls

oi
l

) 
x 

(ft) (

0 0.0
1 1
2 2
3 5
4 8
5 1
6 16
7 20
8 2
9 32

10 3
11 46
12 54
13 63
14 72
15 82
16 92

Figure 5

Lateral Resis

Ul
tim

at
e 

La
te

ra
l s

oi
l 

re
sis

ta
nc

e 

Pa
ss

iv
e 

Pr
es

su
re

 
Co

ef
fic

ie
nt

 

Pu 
(klf) kp 

0082 3.69
1.13 3.69
2.88 3.69
5.25 3.69
8.24 3.69
1.85 3.69
6.08 3.69
0.93 3.69

26.4 3.69
2.49 3.69

39.2 3.69
6.53 3.69
4.48 3.69
3.05 3.69
2.24 3.69
2.05 3.69
2.48 3.69

2 – Lateral Re
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stance calcula

Si
m

pl
ifi

ed
 U

lti
m

at
e 

La
te

ra
l R

es
ist

an
ce

 

In
iti

al
La

te
ra

lS
tif

fn
es

s

P u
 = 

(3
 g

 B
 k

p 
) x

 
(k

lf)
 k

(k

0 0.
3 5
5 10
8 15

11 21
13 26
16 31
19 37
21 42
24 47
27 53
29 58
32 63
35 68
37 74
40 79
43 84

esistance cur

ation for Med

In
iti

al
 La

te
ra

l S
tif

fn
es

s 

Co
he

sio
nl

es
s s

oi
l 

kh 
sf) J 

53 600 5
53 600 5
06 600 5
59 600 5
12 600 5
65 600 5
18 600 5
71 600 5
24 600 5
77 600 5
30 600 5
83 600 5
36 600 5
89 600 5
42 600 5
95 600 5
48 600 5

rve for Mediu

dium Sand 

pa
ra

m
et

es
 

In
iti

al
 la

te
ra

l S
tif

fn
es

s 
(S

im
pl

ifi
ed

)

n h
 =

 J 
g

 /1
.3

5 

k h
 = 

n h
 x 

(k
sf

)

3,333 1 
3,333 53 
3,333 107
3,333 160
3,333 213
3,333 267
3,333 320
3,333 373
3,333 427
3,333 480
3,333 533
3,333 587
3,333 640
3,333 693
3,333 747
3,333 800
3,333 853

um Sand 

(S
im

pl
ifi

ed
) 

Ul
tim

at
e 

Di
sp

la
ce

m
en

t 

(k
sf

) 

y u
 = 

p u
 / 

k h
 

(in
) 

0.0498
0.0498

7 0.0498
0 0.0498
3 0.0498
7 0.0498
0 0.0498
3 0.0498
7 0.0498
0 0.0498
3 0.0498
7 0.0498
0 0.0498
3 0.0498
7 0.0498
0 0.0498
3 0.0498

Ge
ne

ra
liz

ed
 

Di
sp

la
ce

m
en

t 

Ge
ne

ra
liz

ed
 La

te
ra

l 
Re

sis
ta

nc
e

y 
(in) 

p
(klf)

0.00 0.00
0.25 0.22
0.50 0.44
0.75 0.66
1.00 0.89
1.25 1.11
1.50 1.33
1.75 1.55
2.00 1.77
2.25 1.99
2.50 2.21
2.75 2.44
3.00 2.66
3.25 2.88
3.50 3.10
3.75 3.32
4.00 3.54

Re
sis

ta
nc

e 

 
 

4 
 
 
 
 
 
 
 
 

4 
 
 
 
 

4 

 



 

Un
it 

W
ei

gh
t 

An
gl

e
of

Fr
ict

io
n

g 
(pcf) 

f
(de

130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40
130 40

 

An
gl

e 
of

 F
ric

tio
n 

Sh
ap

e 
Pa

ra
m

et
er

 

Pi
le

 W
id

th
 

 
g) 

n B 
(ft)

0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 
0 3 2 

Table 16 –

De
pt

h 
fro

m
 su

rfa
ce

 

Ul
tim

at
e 

La
te

ra
l s

oi
l 

 
x 

(ft) 
P

(k

0 0.0
1 1.
2 4.
3 8.
4 12
5 18
6 25
7 32
8 41
9 51

10 62
11 74
12 87
13 101
14 115
15 131
16 14

Figure 

– Lateral Res

re
sis

ta
nc

e 

Pa
ss

iv
e 

Pr
es

su
re

 
Co

ef
fic

ie
nt

 

Pu 
klf) kp 

115 4.60
65 4.60
32 4.60
01 4.60
.72 4.60
.45 4.60

5.2 4.60
.97 4.60
.76 4.60
.57 4.60

2.4 4.60
4.25 4.60

.12 4.60
1.01 4.60
5.92 4.60
1.85 4.60

48.8 4.60

53 – Lateral R
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sistance calcu

Si
m

pl
ifi

ed
 U

lti
m

at
e 

La
te

ra
l R

es
ist

an
ce

 

In
iti

al
La

te
ra

lS
tif

fn
es

s

P u
 = 

(3
 g

 B
 k

p 
) x

 
(k

lf)
 k

(ks

0 1.
4 14
7 28

11 42
14 56
18 70
22 84
25 98
29 11
32 12
36 140
39 154
43 168
47 18
50 19
54 210
57 224

Resistance cu

ulation for De

In
iti

al
 La

te
ra

l S
tif

fn
es

s 

Co
he

sio
nl

es
s s

oi
l 

kh 
sf) J 

.4 1500 1
40 1500 1
80 1500 1
20 1500 1
60 1500 1
00 1500 1
40 1500 1
80 1500 1
20 1500 1
60 1500 1
00 1500 1
40 1500 1
80 1500 1
20 1500 1
60 1500 1
00 1500 1
40 1500 1

urve for Dens

ense Sand 

pa
ra

m
et

es
 

In
iti

al
 la

te
ra

l S
tif

fn
es

s 

n h
 =

 J 
g

 /1
.3

5 

k h
= 

n h
 x 

144,444 
144,444 1
144,444 2
144,444 4
144,444 5
144,444 7
144,444 8
144,444 1,0
144,444 1,1
144,444 1,3
144,444 1,4
144,444 1,5
144,444 1,7
144,444 1,8
144,444 2,0
144,444 2,1
144,444 2,3

se Sand 

(S
im

pl
ifi

ed
) 

Ul
tim

at
e 

Di
sp

la
ce

m
en

t 

h 
h

(k
sf

) 

y u
 = 

p u
 / 

k h
 

(in
) 

1 0.0248
44 0.0248
89 0.0248
33 0.0248
78 0.0248
22 0.0248
67 0.0248
011 0.0248
156 0.0248
300 0.0248
444 0.0248
589 0.0248
733 0.0248
878 0.0248
022 0.0248
167 0.0248
311 0.0248

Ge
ne

ra
liz

ed
 

Di
sp

la
ce

m
en

t 

Ge
ne

ra
liz

ed
 La

te
ra

l 

y 
(in) 

p
(k

8 0.00 0.0
8 0.25 0.3
8 0.50 0.6
8 0.75 0.9
8 1.00 1.
8 1.25 1.4
8 1.50 1.7
8 1.75 2.0
8 2.00 2.3
8 2.25 2.6
8 2.50 2.9
8 2.75 3.
8 3.00 3.5
8 3.25 3.8
8 3.50 4.
8 3.75 4.4
8 4.00 4.7

 

Re
sis

ta
nc

e 

p 
lf) 

00 
30 
60 
90 
20 
49 
79 
09 
39 
69 
99 
29 
59 
89 
19 
48 
78 
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urve are the i

he shape par
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e modified R

ring Resistan݇௤ ݖቀ1 + ቚ ௨ቚ௡ቁݖݖ
fness, q= Ge

Bearing resi

acement 

initial point s

rameter n. Th

Ramberg-Os

nce 

ቁଵ ௡ൗ  

eneralized S

istance 

stiffness ݇௤ 

hese parame

sgood model

Soil resistanc
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eters are 

l: 
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Bl
ow

 C
ou

nt
 

Sh
ap

e 
Pa

ra
m

et
er

 

N n 

3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 

 

Gr
os

s P
er

m
ite

r o
f 

pi
le

 

Un
dr

ai
ne

d 
C

h
i

fC
l

lg 
(ft) 

Cu 
97

N+1
(psf

5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405
5 405

Table 17 –

Co
he

sio
n 

of
 C

la
y 

Sh
ea

r S
tr

en
gt

h 
Re

du
ct

io
n 

Fa
ct

or
 

= 
7 
14 
f) 

a 

5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 
5 1 

Figure 5

– Vertical Slip 

Ad
he

sio
n 

of
  s

oi
l 

an
d 

pi
le

 

M
ax

im
um

 S
he

ar
 

St
re

ss

Ca = 
aCa

(psf) 

fmax =
min(lg

, lg ca
(klf)
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10. FRP Pile models 

In order to study the behavior of the piles, 14,310 different FE models of the piles 

have been created. The total data volume of the created models exceeds 1.5 TB. The 

results generated 1,341 charts. In each series of the models, two variables are 

changed. The maximum principal stress and maximum shear stress are calculated for 

changing variables. A 3D chart is drawn in which the vertical Z axis is the maximum 

principal or shear stress and the other two perpendicular horizontal X and Y axes 

represent each variables. Then the 3D chart is transformed to 2D curves by slicing the 

chart according to each axis. These two pairs of charts show the stress changes in the 

pile while each variable changes. 

Another set of charts is created using the ACP post-processing tool. The failure ratio 

is calculated on each pile and the failure criteria are set to maximum stress, Tsai-Wu 

and Tsai-Hill controls. The ratios above 1.0 represent failure of the pile by either 

criterion. So, all points below the failure ratio of 1.0 are considered acceptable. 

The failure ratio curves also define the lowest values which are the optimum points. 

This is useful when there is no limitation for the pile and the engineer or designer 

wants to find the most economical combination.  

Table 29 shows the summary of pile models and the variables used on each series. 

The FE models are named FRP and then the series three-digit numbers. Pile model 

series FRP100 and FRP200 have elastic supports. FRP300 series represents models 

with nonlinear supports. FRP400 series is created for comparison between the circular 

and elliptical sections. 
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Table 29 – FRP pile variables 
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FRP101 99 24 Var. Var. 10 1   10   Ep. Gl. UD 50 3 3 3   

FRP102 99 Var. 24 Var. 10 1   10   Ep. Gl. UD 50 3 3 3   

FRP103 99 24 Var. Var. 10   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP104 99 Var. 24 Var. 10   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP111 121 Var. Var. 15, -15 10 1   10   Ep. Gl. UD 50 3 3 3   

FRP112 121 Var. Var. 30, -30 10 1   10   Ep. Gl. UD 50 3 3 3   

FRP113 121 Var. Var. 45, -45 10 1   10   Ep. Gl. UD 50 3 3 3   

FRP114 121 Var. Var. 60, -60 10 1   10   Ep. Gl. UD 50 3 3 3   

FRP115 121 Var. Var. 75, -75 10 1   10   Ep. Gl. UD 50 3 3 3   

FRP121 121 Var. Var. 15, -15 10   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP122 121 Var. Var. 30, -30 10   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP123 121 Var. Var. 45, -45 10   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP124 121 Var. Var. 60, -60 10   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP125 121 Var. Var. 75, -75 10   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP131 110 24 Var. 15, -15 Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP132 110 24 Var. 30, -30 Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP133 110 24 Var. 45, -45 Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP134 110 24 Var. 60, -60 Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP135 110 24 Var. 75, -75 Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP141 90 24 4 Var. Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP142 90 24 8 Var. Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP143 90 24 12 Var. Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP144 90 24 16 Var. Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP145 90 24 20 Var. Var.   10 10   Ep. Gl. UD 50 3 3 3 3 

FRP146 90 24 24 Var. Var.   10 10   Ep. Gl. UD 50 3 3 3 3 
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Table 29 – FRP pile variables (continued) 
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FRP151 110 24 Var. 15, -15 Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP152 110 24 Var. 30, -30 Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP153 110 24 Var. 45, -45 Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP154 110 24 Var. 60, -60 Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP155 110 24 Var. 75, -75 Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP161 90 24 4 Var. Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP162 90 24 8 Var. Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP163 90 24 12 Var. Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP164 90 24 16 Var. Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP165 90 24 20 Var. Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP166 90 24 24 Var. Var. 1   10   Ep. Gl. UD 50 3 3 3   

FRP171 99 24 Var. Var. 10 1   10 Y Ep. Gl. UD 50 3 3 3   

FRP172 99 Var. 24 Var. 10 1   10 Y Ep. Gl. UD 50 3 3 3   

FRP173 99 24 Var. Var. 10   10 10 Y Ep. Gl. UD 50 3 3 3 3 

FRP174 99 Var. 24 Var. 10   10 10 Y Ep. Gl. UD 50 3 3 3 3 

FRP175 99 24 Var. Var. 10   100 Y Ep. Gl. UD      

FRP176 99 24 Var. Var. 10   100  Ep. GL UD      

FRP181 110 24 Var. 15, -15 20   10 10   Ep. Gl. UD Var. 3 3 3 3 

FRP182 110 24 Var. 30, -30 20   10 10   Ep. Gl. UD Var. 3 3 3 3 

FRP183 110 24 Var. 45, -45 20   10 10   Ep. Gl. UD Var. 3 3 3 3 

FRP184 110 24 Var. 60, -60 20   10 10   Ep. Gl. UD Var. 3 3 3 3 

FRP185 110 24 Var. 75, -75 20   10 10   Ep. Gl. UD Var. 3 3 3 3 

FRP191 110 24 Var. 15, -15 20   10 10 Y Ep. Gl. UD Var. 3 3 3 3 

FRP192 110 24 Var. 30, -30 20   10 10 Y Ep. Gl. UD Var. 3 3 3 3 

FRP193 110 24 Var. 45, -45 20   10 10 Y Ep. Gl. UD Var. 3 3 3 3 

FRP194 110 24 Var. 60, -60 20   10 10 Y Ep. Gl. UD Var. 3 3 3 3 

FRP195 110 24 Var. 75, -75 20   10 10 Y Ep. Gl. UD Var. 3 3 3 3 
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Table 29 – FRP pile variables (continued) 
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FRP201 77 24 Var. 15, -15 20   10 10   
Var. Built 

in 
50 3 3 3 3 

FRP202 77 24 Var. 30, -30 20   10 10   
Var. Built 

in 
50 3 3 3 3 

FRP203 77 24 Var. 45, -45 20   10 10   
Var. Built 

in 
50 3 3 3 3 

FRP204 77 24 Var. 60, -60 20   10 10   
Var. Built 

in 
50 3 3 3 3 

FRP205 77 24 Var. 75, -75 20   10 10   
Var. Built 

in 
50 3 3 3 3 

FRP211 165 24 Var. 15, -15 20 2   10   
Var. 

Manual 
50 2 2 2   

FRP212 165 24 Var. 30, -30 20 2   10   
Var. 

Manual 
50 2 2 2   

FRP213 165 24 Var. 45, -45 20 2   10   
Var. 

Manual 
50 2 2 2   

FRP214 165 24 Var. 60, -60 20 2   10   
Var. 

Manual 
50 2 2 2   

FRP215 165 24 Var. 75, -75 20 2   10   
Var. 

Manual 
50 2 2 2   

FRP221 99 24 12 15, -15 20 Var.   Var.   Ep. Gl. UD 50 3 3 3   

FRP222 99 24 12 30, -30 20 Var.   Var.   Ep. Gl. UD 50 3 3 3   

FRP223 99 24 12 45, -45 20 Var.   Var.   Ep. Gl. UD 50 3 3 3   

FRP224 99 24 12 60, -60 20 Var.   Var.   Ep. Gl. UD 50 3 3 3   

FRP225 99 24 12 75, -75 20 Var.   Var.   Ep. Gl. UD 50 3 3 3   

FRP231 120 24 12 15, -15 20 Var.   10   
Var. 

Manual 
50 3 3 3   

FRP232 120 24 12 30, -30 20 Var.   10   
Var. 

Manual 
50 3 3 3   

FRP233 120 24 12 45, -45 20 Var.   10   
Var. 

Manual 
50 3 3 3   

FRP234 120 24 12 60, -60 20 Var.   10   
Var. 

Manual 
50 3 3 3   

FRP235 120 24 12 75, -75 20 Var.   10   
Var. 

Manual 
50 3 3 3   
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Table 29 – FRP pile variables (continued) 
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FRP241 75 24 12 Var. 10 Var.   20   Ep. Gl. UD 50 3 3 3   

FRP242 75 24 12 Var. 10 Var.   40   Ep. Gl. UD 50 3 3 3   

FRP243 75 24 12 Var. 10 Var.   60   Ep. Gl. UD 50 3 3 3   

FRP244 75 24 12 Var. 10 Var.   80   Ep. Gl. UD 50 3 3 3   

FRP245 75 24 12 Var. 10 Var.   100   Ep. Gl. UD 50 3 3 3   

FRP251 100 24 12 Var. 10 0   Var.   Ep. Gl. UD 50 3 3 3   

FRP252 100 24 12 Var. 10 1   Var.   Ep. Gl. UD 50 3 3 3   

FRP253 100 24 12 Var. 10 2   Var.   Ep. Gl. UD 50 3 3 3   

FRP254 100 24 12 Var. 10 3   Var.   Ep. Gl. UD 50 3 3 3   

FRP255 100 24 12 Var. 10 4   Var.   Ep. Gl. UD 50 3 3 3   

FRP261 75 24 12 Var.+ 0 20 Var.   20   Ep. Gl. UD 50 3 3 3   

FRP262 75 24 12 Var.+ 0 20 Var.   40   Ep. Gl. UD 50 3 3 3   

FRP263 75 24 12 Var.+ 0 20 Var.   60   Ep. Gl. UD 50 3 3 3   

FRP264 75 24 12 Var.+ 0 20 Var.   80   Ep. Gl. UD 50 3 3 3   

FRP265 75 24 12 Var.+ 0 20 Var.   100   Ep. Gl. UD 50 3 3 3   

FRP271 100 24 12 Var.+ 0 20 0   Var.   Ep. Gl. UD 50 3 3 3   

FRP272 100 24 12 Var.+ 0 20 1   Var.   Ep. Gl. UD 50 3 3 3   

FRP273 100 24 12 Var.+ 0 20 2   Var.   Ep. Gl. UD 50 3 3 3   

FRP274 100 24 12 Var.+ 0 20 3   Var.   Ep. Gl. UD 50 3 3 3   

FRP275 100 24 12 Var.+ 0 20 4   Var.   Ep. Gl. UD 50 3 3 3   

FRP281 75 24 12 
Var.+ 

90 
20 Var.   20   Ep. Gl. UD 50 3 3 3   

FRP282 75 24 12 
Var.+ 

90 
20 Var.   40   Ep. Gl. UD 50 3 3 3   

FRP283 75 24 12 
Var.+ 

90 
20 Var.   60   Ep. Gl. UD 50 3 3 3   

FRP284 75 24 12 
Var.+ 

90 
20 Var.   80   Ep. Gl. UD 50 3 3 3   

FRP285 75 24 12 
Var.+ 

90 
20 Var.   100   Ep. Gl. UD 50 3 3 3   
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Table 29 – FRP pile variables (continued) 
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FRP301 100 24 12 Var. 10 0   Var.   Ep. Gl. UD 
Soft 
Clay 

3 3 3   

FRP302 100 24 12 Var. 10 1   Var.   Ep. Gl. UD 
Soft 
Clay 

3 3 3   

FRP303 100 24 12 Var. 10 2   Var.   Ep. Gl. UD 
Soft 
Clay 

3 3 3   

FRP304 100 24 12 Var. 10 3   Var.   Ep. Gl. UD 
Soft 
Clay 

3 3 3   

FRP305 100 24 12 Var. 10 4   Var.   Ep. Gl. UD 
Soft 
Clay 

3 3 3   

FRP311 100 24 12 Var. 10 0   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP312 100 24 12 Var. 10 1   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP313 100 24 12 Var. 10 2   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP314 100 24 12 Var. 10 3   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP315 100 24 12 Var. 10 4   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP321 100 24 12 Var. 10 0   Var.   Ep. Gl. UD V. S. 
Clay 3 3 3   

FRP322 100 24 12 Var. 10 1   Var.   Ep. Gl. UD V. S. 
Clay 3 3 3   

FRP323 100 24 12 Var. 10 2   Var.   Ep. Gl. UD V. S. 
Clay 3 3 3   

FRP324 100 24 12 Var. 10 3   Var.   Ep. Gl. UD V. S. 
Clay 3 3 3   

FRP325 100 24 12 Var. 10 4   Var.   Ep. Gl. UD V. S. 
Clay 3 3 3   



 

137 

Table 29 – FRP pile variables (continued) 

  Inputs Outputs Charts 
M

od
el

 
N

am
e 

D
es

ig
n 

po
in

ts
 

Z 
D

ia
 (i

n)
 

X 
D

ia
 (i

n)
 

Fi
be

r O
rie

nt
. 

An
gl

e 
(d

eg
) 

N
um

be
r o

f l
ay

er
s 

H
or

z.
 D

is
p.

 (i
n)

 

H
or

z.
 X

 L
oa

d 
(K

ip
s)

 

Ve
rt.

 L
oa

d 
(K

ip
s)

 

C
on

cr
et

e 
Fi

ll 

M
at

er
ia

l 

Su
bg

. M
od

. 
(lb

f/i
n3

) o
r t

yp
e 

M
ax

 P
rn

. S
tr.

 

M
ax

 S
hr

. S
tr.

 

Fa
ilu

re
 R

at
io

 

To
ta

l D
is

p.
 

FRP331 100 24 12 Var. 10 0   Var.   Ep. Gl. UD 
Loose 
Sand 

3 3 3   

FRP332 100 24 12 Var. 10 1   Var.   Ep. Gl. UD 
Loose 
Sand 

3 3 3   

FRP333 100 24 12 Var. 10 2   Var.   Ep. Gl. UD 
Loose 
Sand 

3 3 3   

FRP334 100 24 12 Var. 10 3   Var.   Ep. Gl. UD 
Loose 
Sand 

3 3 3   

FRP335 100 24 12 Var. 10 4   Var.   Ep. Gl. UD 
Loose 
Sand 

3 3 3   

FRP341 100 24 12 Var. 10 0   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP342 100 24 12 Var. 10 1   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP343 100 24 12 Var. 10 2   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP344 100 24 12 Var. 10 3   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP345 100 24 12 Var. 10 4   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP351 100 24 12 Var. 10 0   Var.   Ep. Gl. UD 
Den. 
Sand 

3 3 3   

FRP352 100 24 12 Var. 10 1   Var.   Ep. Gl. UD 
Den. 
Sand 

3 3 3   

FRP353 100 24 12 Var. 10 2   Var.   Ep. Gl. UD 
Den. 
Sand 

3 3 3   

FRP354 100 24 12 Var. 10 3   Var.   Ep. Gl. UD 
Den. 
Sand 

3 3 3   

FRP355 100 24 12 Var. 10 4   Var.   Ep. Gl. UD 
Den. 
Sand 

3 3 3   
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Table 29 – FRP pile variables (continued) 
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FRP401 100 24 24 Var 10 4   Var.   Ep. Gl. UD 50 3 3 3   

FRP402 100 28 20 Var 10 4   Var.   Ep. Gl. UD 50 3 3 3   

FRP403 100 32 14 Var 10 4   Var.   Ep. Gl. UD 50 3 3 3   

FRP404 100 36 7 Var 10 4   Var.   Ep. Gl. UD 50 3 3 3   

FRP411 100 24 24 Var 10 4   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP412 100 28 20 Var 10 4   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP413 100 32 14 Var 10 4   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP414 100 36 7 Var 10 4   Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP421 100 24 24 Var 10 4   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP422 100 28 20 Var 10 4   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP423 100 32 14 Var 10 4   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP424 100 36 7 Var 10 4   Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

FRP431 100 24 Var. 45, -45       Var.   Ep. Gl. UD 
Stiff 
Clay 

3 3 3   

FRP441 100 24 Var. 45, -45       Var.   Ep. Gl. UD 
Med. 
Sand 

3 3 3   

Total 14,310   
412 412 412 105

Totally 1341 charts 
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11. FRP Pile Behavior 

As described in earlier chapters, in each sets of models two variables have been 

studied. Since the stress is assigned to the vertical axis of a 3D chart, in fact there can 

be a maximum of two variables to be assigned to the other two axes. Table 30 

represents the variables used in each series of FRP models. The following pages show 

the graphs for each case. In each group only one case is represented. 

Table 30 –Variables of FRP Finite Element models 
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FRP101 and 103   Var. Var.               
FRP102 and 104 Var.   Var.               
FRP111 to 115 Var. Var.                 
FRP121 to 125 Var. Var.                 
FRP131 to 135   Var.   Var.             
FRP141 to 146       Var.             
FRP151 to 155   Var.   Var.             
FRP161 to 166     Var. Var.             

FRP171 and 173   Var. Var.         Y     
FRP172 and 174 Var.   Var.         Y     
FRP181 to 185   Var.               Var. 
FRP191 to 195   Var.           Y   Var. 
FRP201 to 205   Var.             Var.   
FRP211 to 215   Var.             Var.   
FRP221 to 225         Var.   Var.       
FRP231 to 235         Var.       Var.   
FRP241 to 245     Var.   Var.           
FRP251 to 255     Var.       Var.       
FRP261 to 265     Var.+ 0   Var.           
FRP271 to 275     Var.+ 0       Var.       
FRP281 to 285     Var.+ 90   Var.           
FRP301 to 305     Var.       Var.     Soft Clay 
FRP311 to 315     Var.       Var.     Stiff Clay 
FRP321 to 325     Var.       Var.     V. S. Clay 
FRP331 to 335     Var.       Var.     Loose Sand 
FRP341 to 345     Var.       Var.     Med. Sand 
FRP351 to 355     Var.       Var.     Den. Sand 
FRP401 to 441 Var. Var. Var.       Var.     Var. 
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 Figure 67 compares the principal stress in a 24x6 section with 10- and 60-degree 

fiber orientation. The stress is reduced in piles with higher fiber orientation angle. 

   

   

Figure 67 – Principal and shear stress for 24”x6” section with 10 deg. (up) and 60 deg. 

(down) 
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As shown in Figure 68, pile the failure ratio will decrease with an increase in fiber 

orientation. It is also observed that with increase in pile dimension the failure ratio 

decreases. Figure 69 compares the principal stress in a 24x12 and 24x24 (round) 

section with 45-degree fiber orientation. As expected, the stress is reduced in the 

round section. 

   

   

Figure 69 – Principal and shear stress for round (up) 24” and 24”x12”section (down) 
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Figure 74Figure 69 compares the principal and shear stresses in a 24x12 section with 

a 40-degree fiber orientation. As expected, the stress is reduced as the layers are 

increased. 

   

   

   

Figure 74 – Principal and shear stress for 4 (up) 12 (middle) and 20 (down) layers 
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As shown in Figure 75Figure 66, the failure ratio is changing for narrow sections but 

remains relatively constant for rounder sections. It is also observed that piles with a 

60-degree fiber orientation have a lower failure ratio. Figure 76Figure 67 compares 

the principal stress in a 24”x12” section filled with concrete with 10- and 60-degree 

fiber orientation. The stress is reduced in piles with a 60-degree fiber orientation 

angle. 

 

Figure 76 – Principal and shear stress for 24”x12” section with 10 deg. (up) and 60 deg. 

(down) 
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Figure 80 – Principal and shear stress for E-Glass Epoxy (up) and Kevlar 49 (down) 
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Figure 85 shows the pile capacity will be maximum, with 70 degree fiber orientation. 

The pile capacity depends on many failure criteria.  

Figure 86 compares the failure criteria in a 24”x12” section with 20 and 70 degree 

fiber orientation. Failure is reduced in piles with higher fiber orientation angle. 

    

Figure 86 – Failure of elements in 24”x12” section with 20 deg. (left) and 70 deg. (right) 
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Figure 88 shows the decrease in Failure Ratio around 80 to 90 degrees. This 

obviously happens because additional layers are included with 0 degree fibers. When 

rests of the layers are closer to 90 degree a balance in forces and shear of the element 

reduces the failure in elements. When all of the layers are approximately in the same 

direction the element shear stress limit may be lower than the applied shear. This will 

result the failure in the element. 

Figure 89 compares the failure criteria in a 24”x12” section with 20 and 90 degree 

fiber orientation. Failure is reduced in piles with higher fiber orientation angle. 

  

Figure 89 – Failure of elements in 24”x12” section with 90 deg. (left) and 20 deg. (right) 
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Figure 91 shows the decrease in Failure Ratio around 80 to 90 degrees. This 

obviously happens because additional layers are included with 90 degree fibers. 

When rests of the layers are closer to 90 degree a balance in forces and shear of the 

element reduces the failure in elements. When all of the layers are approximately in 

the same direction the element shear stress limit may be lower than the applied shear. 

This will result the failure in the element. 

Figure 92 compares the failure criteria in a 24”x12” section with 40 and 90 degree 

fiber orientation. Failure is reduced in piles with higher fiber orientation angle. 

  

Figure 92 – Failure of elements in 24”x12” section with 40 deg. (left) and 90 deg. (right) 
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Figure 94 shows the increase in Failure Ratio around 80 to 90 degrees. Figure 95 

compares the stresses in a 24”x12” section with 10 and 80 degree fiber orientation. 

Stress is increased in piles with higher fiber orientation angle. 

  

   

Figure 95 – Principal and shear stress contour line of 24”x12” section with 10 deg. (up) and 

80 deg. (down) with soft clay soil 
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Figure 97 shows the increase in Failure Ratio around 80 to 90 degrees. Figure 98 

compares the stresses in a 24”x12” section with 10 and 80 degree fiber orientation. 

Stress is increased in piles with higher fiber orientation angle. 

  

   

Figure 98 – Principal and shear stress contour line of 24”x12” section with 10 deg. (up) and 

80 deg. (down) with stiff clay soil 
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Figure 100 shows Failure Ratio remains almost constant with changes in fiber 

orientation angle. Figure 101 compares the stresses in a 24”x12” section with 10 and 

80 degree fiber orientation. Stress remains approximately constant. 

  

   

Figure 101 – Principal and shear stress contour line of 24”x12” section with 10 deg. (up) 

and 80 deg. (down) with very stiff clay soil 
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Figure 103 shows Failure Ratio increases with increase in fiber orientation angle. 

Figure 104 compares the stresses in a 24”x12” section with 10 and 80 degree fiber 

orientation. Stress increases with higher orientation angle. 

  

   

Figure 104 – Principal and shear stress contour line of 24”x12” section with 10 deg. (up) 

and 80 deg. (down) with loose sand soil 
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Figure 106 shows Failure Ratio increases with increase in fiber orientation angle. 

Figure 107 compares the stresses in a 24”x12” section with 10 and 80 degree fiber 

orientation. Stress increases with higher orientation angle. 

  

   

Figure 107 – Principal and shear stress contour line of 24”x12” section with 10 deg. (up) 

and 80 deg. (down) with medium sand soil 
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Figure 109 shows Failure Ratio increases with increase in fiber orientation angle. 

Figure 110 compares the stresses in a 24”x12” section with 10 and 80 degree fiber 

orientation. Stress increases with higher orientation angle. 

  

   

Figure 110 – Principal and shear stress contour line of 24”x12” section with 10 deg. (up) 

and 80 deg. (down) with dense sand soil 
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suggested formula can calculate approximate values. (Equation 12-1):(Equation 12-1) 

appear to be the most common equation. 

The ellipse surface is calculated from  

A simpler following equation: 

(Equation 12-2):      ܵ =  ܾܽߨ
 

Table 31 calculates the perimeter and surface are for four elliptical sections. The short 

diameters of the sections are defined to have equal perimeter in all sections. 

Table 31 – Sections with equal perimeter 

a 
(in) 

b 
(in) 

2a 
(in) 

2b 
(in) h P 

(in) 
S 

(in2) 
12.00 12.00 24.00 24.00 0 75.398 452.38 

14.00 9.83 28.00 19.66 0.03063 75.399 432.31 

16.00 7.16 32.00 14.32 0.145644 75.399 359.94 

18.00 3.48 36.00 6.96 0.45721 75.399 196.64 

 

Figure 112 to Figure 117 show increase in the stress level and the Failure Ratio 

resulted by more elongated sections in Stiff Clay soil. It is expected to have more 

stress since the displacement is fixed 4 inches and the pile projection area is 

increased. 
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Figure 114 – Principal stress for piles with 50 degree fiber orientation and 50 kips vertical 

load in stiff clay 
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Figure 117 - Principal stress for piles with 50 degree fiber orientation and 50 kips vertical 

load in medium sand 

As described earlier the stress and failure ratio increases in both type of soil due to 

increase in pile width and therefore the soil spring stiffness. In order to eliminate this 

problem the long diameter of the ellipse should be kept constant as it is done in earlier 

models. 
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piles do not require high bearing capacity of the soil under the pile cap. Therefore, 

when soft soil is encountered at the bridge foundation, it would be a good sign to 

build IAB. Deep piles can take big axial loads while the soft soil on top allows lateral 

displacement. 
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13. Conclusions  

This dissertation studies FRP piles with elliptical cross section. The elliptical cross 

section is the best and most economical cross section for the piles under Integral 

Abutment Bridges. Several parameters can affect the file behavior. The known 

parameters are listed as layer orientation, number of layers, ellipse eccentricity, 

concrete fill, composite material and soil stiffness.  

In order to study the behavior of the pile, various models were created. In each model 

two variables are set as parameters. The maximum principal stress and maximum 

shear stress as well as pile failure are defined by changing each parameter. The result 

is shown in 3D and 2D curves. The study of the curves concluded the following 

results: 

• Stiffer soil creates more stress and results in earlier failure in the composite 

material. This makes softer soils ideal for IAB structures. In softer soils, 

stresses generated by horizontal displacement are better absorbed and 

distributed in pile body. 

• Piles filled with concrete have considerably lower stress compared to hollow 

piles. In another words, concrete fill drastically reduces the stress in the 

composite and transfers the stress from the composite to the concrete. 

• Piles filled with concrete have considerable lower vertical displacement 

compared to hollow piles. Orientation angles of the fibers have minimal 

effects on the vertical displacement. 

• Among different sections with similar perimeter the circle cross section has 

the lowest failure since it has the lease width of soil profile. This does not 
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mean that the elliptical sections are not the best choice. It means increasing 

the pile width will simply increase the soil profile and therefore increase the 

soil resistance unwantedly. The desired lower stiffness can be achieved by a 

smaller diameter in the directions of load. This makes the circular section the 

worst section among all the elliptical sections. 

• For piles with constant displacement and varying fiber orientation and pile 

dimension, the pile stress will decrease with an increase in fiber orientation. It 

is also observed that beyond a 60-degree fiber orientation the failure ratio 

decreases considerably. 

• For piles with constant top of  pile displacement and constant vertical force 

and varying pile dimensions, pile failure ratio will decrease with an increase 

in fiber orientation. It is also observed that with an increase in pile dimension 

the failure ratio decreases.  

• For piles with constant lateral force and varying pile dimensions, pile failure 

ratio will be at a maximum in 45-degree fiber orientation. The stress decreases 

when the shorter diameter is more than half of the longer diameter of the 

elliptical cross section. This happens regardless of orientation angle. 

• For piles with constant top of pile horizontal and vertical force and varying 

number of composite layers, pile failure ratio will decrease with an increase in 

number of layers. The ratio falls drastically when the number of layers is 

small. 

• For concrete filled piles with constant displacement and varying fiber 

orientation and pile dimensions, the failure ratio varies for oval sections but 
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remains relatively constant for rounder sections. Piles with a 60-degree fiber 

orientation have a lower failure ratio. The stress is reduced in piles with a 60-

fiber orientation angle. 

• For piles with constant displacement and vertical load and varying composite 

material, pile stress varies drastically with the type of composite material. The 

stress is reduced with the closer to round sections for all types of material. 

• For piles with constant displacement and varying fiber orientation and pile 

dimensions, the piles stress changes linearly with displacement and 

nonlinearly with orientation angle. Pile capacity will be maximum with a 70-

degree fiber orientation. 

• For piles with constant displacement and varying fiber orientation and pile 

dimensions with additional parallel fibers, failure ratio decreases around 80 to 

90 degrees. Failure is reduced in piles with higher fiber orientation angle. 

• For piles with constant displacement and varying fiber orientation and pile 

dimensions with additional perpendicular fibers, failure ratio also decreases 

around 80 to 90 degrees. Failure is reduced in piles with a greater fiber 

orientation angle. 

• For piles with constant displacement and varying fiber orientation with 

nonlinear soft clay, the failure ratio increases around 80 to 90 degrees. 

• For piles with constant displacement and varying fiber orientation with 

nonlinear stiff clay, similar to soft clay, the failure ratio increases around 80 to 

90 degrees. 
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• For piles with constant displacement and varying fiber orientation with 

nonlinear very stiff clay, the failure ratio remains constant. 

• For piles with constant displacement and varying fiber orientation with 

nonlinear loose sand, the failure ratio increases with an increase in fiber 

orientation angle. 

• For piles with constant displacement and varying fiber orientation with 

nonlinear medium sand, the failure ratio increases with an increase in fiber 

orientation angle. 

• For piles with constant displacement and varying fiber orientation with 

nonlinear dense sand, the failure ratio slightly increases with an increase in 

fiber orientation angle.  

• As expected, in all cases the stress increases with an increase in displacement 

and load. Just like any other structure the stress is proportional to the 

displacement and forces. Composite material may not behave equally in all 

directions, but the stress always is proportional to the applied loads. If for 

example the load is doubled, the stress will be doubled, which can bring pile 

to failure. 

• Piles with more layers of composite fibers have less stress when subjected to 

displacement and vertical loads. This makes sense since the moment of inertia 

of the thin section is increased by increasing the thickness of the pile body. 

 

This concludes the study on FRP piles with elliptical cross sections. As mentioned, 

the composite material is relatively new to the bridge industry and requires years of 
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experiment and data collection. When concrete was introduced to the construction 

industry there were many unknown aspects. This combined with a higher cost of 

production and poor initial quality of concrete may have appeared undesirable in the 

early stages. Today, the composite industry is in its early stages. There will certainly 

be improvements to the quality, better strength and more economically feasible 

materials. Designers and engineers will start using composite once it becomes more 

common. More usage will bring more study and more study will lead to more 

standards, codification and regulations. 

Composite will eventually replace concrete and steel since it is much lighter and 

stronger than traditional materials. It is also durable especially in harsh and corrosive 

environments. Its weaknesses are high cost and low resistance to heat and UV 

radiation. Currently there is no code or proven design method for composites. 

Handbooks and design guides have been recently developed, but no national code is 

available at this time as it is for concrete, timber and steel. Production is limited and 

often less economically feasible. Where concrete was in the nineteen century, the 

composite industry is now.  

Among all bridges, the IAB bridges have a small percentage of usage. FRP piles in 

IAB structures are rare. FRP piles with elliptical cross sections are even rarer. There 

has been very little or no study on elliptical cross sections. This dissertation 

introduced a new method to build elliptical shapes with less expensive cost and faster 

production method. It highlighted a new approach to FRP piles and demonstrated the 

behavior of FRP piles with elliptical cross sections.   
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 Release 16.2 

      

 Point Releases and Patches installed:    

      

 ANSYS, Inc. Products Release 16.2    

 ANSYS Mechanical Products Release 16.2   

 ANSYS Customization Files for User Programmable Features Release 16.2    

 ANSYS Autodyn Release 16.2   

 ANSYS LS-DYNA Release 16.2   

 ANSYS CFX (includes ANSYS CFD-Post) Release 16.2 

 ANSYS Fluent (includes ANSYS CFD-Post) Release 16.2  

 ANSYS TurboGrid Release 16.2 

 ANSYS Polyflow (includes ANSYS CFD-Post) Release 16.2    

 ANSYS CFD-Post only Release 16.2 

 ANSYS ICEM CFD Release 16.2  

 ANSYS Composite PrepPost Release 16.2    

 ANSYS Icepak (includes ANSYS CFD-Post) Release 16.2  

 ANSYS, Inc. License Manager Release 16.2 

 

 

          *****  ANSYS COMMAND LINE ARGUMENTS  ***** 

  BATCH MODE REQUESTED (-b)    = NOLIST 

  INPUT FILE COPY MODE (-c)    = COPY 

  SHARED MEMORY PARALLEL REQUESTED 

    SINGLE PROCESS WITH   2 THREADS REQUESTED 

    TOTAL OF     2 CORES REQUESTED 

  DESIGNXPLORER REQUESTED 
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  START-UP FILE MODE           = NOREAD 

  STOP FILE MODE               = NOREAD 

 

 RELEASE= Release 16.2         BUILD= 16.2      UP20150629   VERSION=WINDOWS x64  

 CURRENT JOBNAME=file  13:19:49  FEB 20, 2016 CP=      0.812 

 

 

 PARAMETER _DS_PROGRESS =     999.0000000     

 

 /INPUT FILE= ds.dat  LINE=       0 

 

 

 

 DO NOT WRITE ELEMENT RESULTS INTO DATABASE 

 

 *GET  _WALLSTRT  FROM  ACTI  ITEM=TIME WALL  VALUE=  13.3302778     

 

 TITLE=  

 FRP305 - Varying Orientation Angle and Vertical Load in Soft Clay - Constant 4 

 

  ACT Extensions: 

 

 SET PARAMETER DIMENSIONS ON  _WB_PROJECTSCRATCH_DIR 

  TYPE=STRI  DIMENSIONS=      248        1        1 

 

 PARAMETER _WB_PROJECTSCRATCH_DIR(1) = E:\FRP\_ProjectScratch\ScrEB4D\ 

 

 SET PARAMETER DIMENSIONS ON  _WB_SOLVERFILES_DIR 

  TYPE=STRI  DIMENSIONS=      248        1        1 

 

 PARAMETER _WB_SOLVERFILES_DIR(1) = E:\FRP\FRP305 - Varying Orientation Angle and 

Vertical Load in Soft Clay - Constant 4 in displacement , material and 24x12 in pile 

dimension_files\dp4\SYS\MECH\ 

 

 SET PARAMETER DIMENSIONS ON  _WB_USERFILES_DIR 

  TYPE=STRI  DIMENSIONS=      248        1        1 

 

 PARAMETER _WB_USERFILES_DIR(1) = E:\FRP\FRP305 - Varying Orientation Angle and 

Vertical Load in Soft Clay - Constant 4 in displacement , material and 24x12 in pile 

dimension_files\user_files\ 

 --- Data in consistent BIN units. See Solving Units in the help system for more 

 

 U.S. CUSTOMARY INCH UNITS SPECIFIED FOR INTERNAL     

  LENGTH      = INCHES (IN) 

  MASS        = LBF-S**2/IN  

  TIME        = SECONDS (SEC)   

  TEMPERATURE = FAHRENHEIT 

  TOFFSET     = 460.0 
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  FORCE       = LBF 

  HEAT        = IN-LBF 

  PRESSURE    = PSI (LBF/IN**2) 

  ENERGY      = IN-LBF 

  POWER       = IN-LBF/SEC 

 

 INPUT  UNITS ARE ALSO SET TO BIN  

 

 *** ANSYS - ENGINEERING ANALYSIS SYSTEM  RELEASE Release 16.2     16.2     *** 

 ANSYS Academic Research                            

 00427805  VERSION=WINDOWS x64   13:19:49  FEB 20, 2016 CP=      0.859 

 

 FRP305 - Varying Orientation Angle and Vertical Load in Soft Clay - Constant 4 

 

 

 

          ***** ANSYS ANALYSIS DEFINITION (PREP7) ***** 

 *********** Nodes for the whole assembly *********** 

 *********** Elements for Body 1 "Surface Body" *********** 

 *********** Send User Defined Coordinate System(s) *********** 

 *********** Set Reference Temperature *********** 

 *********** Send Materials *********** 

 *********** Send Sheet Properties *********** 

 *********** Sending Coordinate Systems for External Layered Section*********** 

 *********** Sending Materials for External Layered Section*********** 

 *********** Send External Layered Section Properties *********** 

 *********** Define Force Using Surface Effect Elements *********** 

 *********** Create Remote Point "Internal Remote Point 4" *********** 

 *********** Create Remote Point "Internal Remote Point 6" *********** 

 *********** Create Remote Point "Internal Remote Point 7" *********** 

 *********** Create Remote Point "Internal Remote Point 9" *********** 

 *********** Create Remote Point "Internal Remote Point 11" *********** 

 *********** Create Remote Point "Internal Remote Point 13" *********** 

 *********** Create Remote Point "Internal Remote Point 15" *********** 

 *********** Create Remote Point "Internal Remote Point 17" *********** 

 *********** Create Remote Point "Internal Remote Point 19" *********** 

 *********** Create Remote Point "Internal Remote Point 21" *********** 

 *********** Create Remote Point "Internal Remote Point 23" *********** 

 *********** Create Remote Point "Internal Remote Point 25" *********** 

 *********** Create Remote Point "Internal Remote Point 27" *********** 

 *********** Create Remote Point "Internal Remote Point 29" *********** 

 *********** Create Remote Point "Internal Remote Point 31" *********** 

 *********** Create Remote Point "Internal Remote Point 33" *********** 

 *********** Create Remote Point "Internal Remote Point 35" *********** 

 *********** Create Remote Point "Internal Remote Point 37" *********** 

 *********** Create Remote Point "Internal Remote Point 39" *********** 

 *********** Create Remote Point "Internal Remote Point 41" *********** 

 *********** Create Remote Point "Internal Remote Point 43" *********** 
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 *********** Create Remote Point "Internal Remote Point 45" *********** 

 *********** Create Remote Point "Internal Remote Point 47" *********** 

 *********** Create Remote Point "Internal Remote Point 49" *********** 

 *********** Create Remote Point "Internal Remote Point 51" *********** 

 *********** Create Remote Point "Internal Remote Point 53" *********** 

 *********** Create Remote Point "Internal Remote Point 55" *********** 

 *********** Create Remote Point "Internal Remote Point 57" *********** 

 *********** Create Remote Point "Internal Remote Point 59" *********** 

 *********** Create Remote Point "Internal Remote Point 61" *********** 

 *********** Create Remote Point "Internal Remote Point 63" *********** 

 *********** Create Remote Point "Internal Remote Point 65" *********** 

 *********** Create Remote Point "Internal Remote Point 67" *********** 

 *********** Create Remote Point "Internal Remote Point 69" *********** 

 *********** Create Remote Point "Internal Remote Point 71" *********** 

 *********** Create Remote Point "Internal Remote Point 73" *********** 

 *********** Create Remote Point "Internal Remote Point 75" *********** 

 *********** Create Remote Point "Internal Remote Point 77" *********** 

 *********** Create Remote Point "Internal Remote Point 79" *********** 

 *********** Create Remote Point "Internal Remote Point 81" *********** 

 *********** Create Remote Point "Internal Remote Point 83" *********** 

 *********** Create Remote Point "Internal Remote Point 85" *********** 

 *********** Create Remote Point "Internal Remote Point 87" *********** 

 *********** Create Remote Point "Internal Remote Point 89" *********** 

 *********** Create Remote Point "Internal Remote Point 91" *********** 

 *********** Create Remote Point "Internal Remote Point 93" *********** 

 *********** Create Remote Point "Internal Remote Point 95" *********** 

 *********** Create Remote Point "Internal Remote Point 97" *********** 

 *********** Create Remote Point "Internal Remote Point 99" *********** 

 *********** Create Remote Point "Internal Remote Point 101" *********** 

 *********** Create Remote Point "Internal Remote Point 103" *********** 

 *********** Create Remote Point "Internal Remote Point 105" *********** 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body" ** 

             Real Constant Set For Above Spring Connection Is 110 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body" ** 

             Real Constant Set For Above Spring Connection Is 111 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 3"  

             Real Constant Set For Above Spring Connection Is 112 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 4"  

             Real Constant Set For Above Spring Connection Is 113 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 5"  

             Real Constant Set For Above Spring Connection Is 114 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 6"  

             Real Constant Set For Above Spring Connection Is 115 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 7"  

             Real Constant Set For Above Spring Connection Is 116 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 8"  

             Real Constant Set For Above Spring Connection Is 117 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 9"  
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             Real Constant Set For Above Spring Connection Is 118 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 10" 

             Real Constant Set For Above Spring Connection Is 119 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 11" 

             Real Constant Set For Above Spring Connection Is 120 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 12" 

             Real Constant Set For Above Spring Connection Is 121 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 13" 

             Real Constant Set For Above Spring Connection Is 122 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 14" 

             Real Constant Set For Above Spring Connection Is 123 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 15" 

             Real Constant Set For Above Spring Connection Is 124 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 16" 

             Real Constant Set For Above Spring Connection Is 125 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 17" 

             Real Constant Set For Above Spring Connection Is 126 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 18" 

             Real Constant Set For Above Spring Connection Is 127 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 19" 

             Real Constant Set For Above Spring Connection Is 128 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 20" 

             Real Constant Set For Above Spring Connection Is 129 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 21" 

             Real Constant Set For Above Spring Connection Is 130 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 22" 

             Real Constant Set For Above Spring Connection Is 131 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 23" 

             Real Constant Set For Above Spring Connection Is 132 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 24" 

             Real Constant Set For Above Spring Connection Is 133 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 25" 

             Real Constant Set For Above Spring Connection Is 134 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 26" 

             Real Constant Set For Above Spring Connection Is 135 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 27" 

             Real Constant Set For Above Spring Connection Is 136 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 28" 

             Real Constant Set For Above Spring Connection Is 137 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 29" 

             Real Constant Set For Above Spring Connection Is 138 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 30" 

             Real Constant Set For Above Spring Connection Is 139 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 31" 

             Real Constant Set For Above Spring Connection Is 140 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 32" 

             Real Constant Set For Above Spring Connection Is 141 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 33" 
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             Real Constant Set For Above Spring Connection Is 142 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 34" 

             Real Constant Set For Above Spring Connection Is 143 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 35" 

             Real Constant Set For Above Spring Connection Is 144 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 36" 

             Real Constant Set For Above Spring Connection Is 145 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 37" 

             Real Constant Set For Above Spring Connection Is 146 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 38" 

             Real Constant Set For Above Spring Connection Is 147 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 39" 

             Real Constant Set For Above Spring Connection Is 148 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 40" 

             Real Constant Set For Above Spring Connection Is 149 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 41" 

             Real Constant Set For Above Spring Connection Is 150 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 42" 

             Real Constant Set For Above Spring Connection Is 151 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 43" 

             Real Constant Set For Above Spring Connection Is 152 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 44" 

             Real Constant Set For Above Spring Connection Is 153 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 45" 

             Real Constant Set For Above Spring Connection Is 154 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 46" 

             Real Constant Set For Above Spring Connection Is 155 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 47" 

             Real Constant Set For Above Spring Connection Is 156 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 48" 

             Real Constant Set For Above Spring Connection Is 157 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 49" 

             Real Constant Set For Above Spring Connection Is 158 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 50" 

             Real Constant Set For Above Spring Connection Is 159 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 51" 

             Real Constant Set For Above Spring Connection Is 160 

 *********** Create Spring Connection "Longitudinal - Ground To Surface Body 52" 

             Real Constant Set For Above Spring Connection Is 161 

 *********** Construct Weak Springs, Prototype 1 *********** 

 *********** Create Displacement Tables and Functions ****** 

 

 

 ***** ROUTINE COMPLETED *****  CP =         1.109 

 

 

 --- Number of total nodes = 5740 

 --- Number of contact elements = 1320 
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 --- Number of spring elements = 24 

 --- Number of bearing elements = 0 

 --- Number of solid elements = 5566 

 --- Number of total elements = 7060 

 

 *GET  _WALLBSOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  13.3302778     

 **************************************************************************** 

 *************************    SOLUTION       ******************************** 

 **************************************************************************** 

 

 *****  ANSYS SOLUTION ROUTINE  ***** 

 

 

 PERFORM A STATIC ANALYSIS 

  THIS WILL BE A NEW ANALYSIS 

 

 USE SPARSE MATRIX DIRECT SOLVER 

 

 CONTACT INFORMATION PRINTOUT LEVEL       1 

 

 NLDIAG: Nonlinear diagnostics CONT option is set to ON.  

         Writing frequency : each ITERATION. 

 

 DEFINE RESTART CONTROL FOR LOADSTEP LAST 

 AT FREQUENCY OF LAST AND NUMBER FOR OVERWRITE IS    0 

 

 DELETE RESTART FILES OF ENDSTEP 

 **************************************************** 

 ******************* SOLVE FOR LS 1 **************** 

 

 SELECT       FOR ITEM=TYPE COMPONENT=     

  IN RANGE         5 TO          5 STEP          1 

 

         46  ELEMENTS (OF       7060  DEFINED) SELECTED BY  ESEL  COMMAND. 

 

 SELECT      ALL NODES HAVING ANY ELEMENT IN ELEMENT SET. 

 

       46 NODES (OF     5740  DEFINED) SELECTED FROM 

       46 SELECTED ELEMENTS BY NSLE COMMAND. 

 

 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  1   KVAL = 1 

      SET ACCORDING TO TABLE PARAMETER = _LOADVARI123X                    

 

 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  2   KVAL = 1 

      SET ACCORDING TO TABLE PARAMETER = _LOADVARI123Y                    

 

 SPECIFIED SURFACE LOAD PRES FOR ALL SELECTED ELEMENTS  LKEY =  3   KVAL = 1 

      SET ACCORDING TO TABLE PARAMETER = _LOADVARI123Z                    
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 ALL SELECT   FOR ITEM=NODE COMPONENT=     

  IN RANGE         1 TO       5740 STEP          1 

 

       5740  NODES (OF       5740  DEFINED) SELECTED BY NSEL  COMMAND. 

 

 ALL SELECT   FOR ITEM=ELEM COMPONENT=     

  IN RANGE         1 TO       7219 STEP          1 

 

       7060  ELEMENTS (OF       7060  DEFINED) SELECTED BY  ESEL  COMMAND. 

 *** Set Displacements *** 

 CMBLOCK read of NODE component _CM116UX_XP  completed 

 

 SELECT      COMPONENT _CM116UX_XP                      

 

 SPECIFIED CONSTRAINT UX   FOR SELECTED NODES         1 TO     5740 BY        1 

 SET ACCORDING TO TABLE PARAMETER = _LOADVARI116XP 

 

 ALL SELECT   FOR ITEM=NODE COMPONENT=     

  IN RANGE         1 TO       5740 STEP          1 

 

       5740  NODES (OF       5740  DEFINED) SELECTED BY NSEL  COMMAND. 

 

 PRINTOUT RESUMED BY /GOP 

 

 USE AUTOMATIC TIME STEPPING THIS LOAD STEP 

 

 USE       1 SUBSTEPS INITIALLY THIS LOAD STEP FOR ALL  DEGREES OF FREEDOM 

 FOR AUTOMATIC TIME STEPPING: 

   USE     10 SUBSTEPS AS A MAXIMUM 

   USE      1 SUBSTEPS AS A MINIMUM 

 

 TIME=  1.0000     

 

 ERASE THE CURRENT DATABASE OUTPUT CONTROL TABLE. 

 

 

 WRITE ALL  ITEMS TO THE DATABASE WITH A FREQUENCY OF NONE 

   FOR ALL APPLICABLE ENTITIES 

 

 WRITE NSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 

 

 WRITE RSOL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 

 

 WRITE STRS ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 
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 WRITE EPEL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 

 

 WRITE EPPL ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR ALL APPLICABLE ENTITIES 

 

 PRINTOUT RESUMED BY /GOP 

 

 WRITE MISC ITEMS TO THE DATABASE WITH A FREQUENCY OF ALL  

   FOR THE ENTITIES DEFINED BY COMPONENT _ELMISC  

 

 NONLINEAR STABILIZATION CONTROL: 

 KEY=OFF  

 

 

 *GET  ANSINTER_  FROM  ACTI  ITEM=INT        VALUE=  0.00000000     

 

 *IF  ANSINTER_                         ( =   0.00000     )  NE   

      0                                 ( =   0.00000     )  THEN     

 

 *ENDIF 

 

 *****  ANSYS SOLVE    COMMAND  ***** 

 

 *** WARNING ***                         CP =       1.141   TIME= 13:19:49 

 Element shape checking is currently inactive.  Issue SHPP,ON or          

 SHPP,WARN to reactivate, if desired.                                     

 

 *** NOTE ***                            CP =       1.141   TIME= 13:19:49 

 The model data was checked and warning messages were found.              

  Please review output or errors file (                                   

 E:\FRP\_ProjectScratch\ScrEB4D\file.err ) for these warning messages.    

 

 *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** 

      --- GIVE SUGGESTIONS AND RESET THE KEY OPTIONS --- 

 

 ELEMENT TYPE    1 IS SHELL181. IT IS ASSOCIATED WITH ELASTOPLASTIC  

 MATERIALS ONLY. KEYOPT(8) IS ALREADY SET AS SUGGESTED. KEYOPT(3)=2  

 IS SUGGESTED FOR HIGHER ACCURACY OF MEMBRANE STRESSES; OTHERWISE, 

 KEYOPT(3)=0 IS SUGGESTED. KEYOPT(3) CAN NOT BE RESET HERE. PLEASE RESET  

 IT MANUALLY IF NECESSARY. 

 

 

 

 *** ANSYS - ENGINEERING ANALYSIS SYSTEM  RELEASE Release 16.2     16.2     *** 

 ANSYS Academic Research                            

 00427805  VERSION=WINDOWS x64   13:19:49  FEB 20, 2016 CP=      1.172 
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 FRP305 - Varying Orientation Angle and Vertical Load in Soft Clay - Constant 4 

 

 

 

                       S O L U T I O N   O P T I O N S 

 

   PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D                   

   DEGREES OF FREEDOM. . . . . . UX   UY   UZ   ROTX ROTY ROTZ 

   ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) 

   OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . .  459.67     

   EQUATION SOLVER OPTION. . . . . . . . . . . . .SPARSE              

   NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN    

   GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC   

 

 *** NOTE ***                            CP =       1.172   TIME= 13:19:49 

 Poisson's ratio PR input has been converted to NU input.                 

 

 *** WARNING ***                         CP =       1.172   TIME= 13:19:49 

 Material number 110 (used by element 5567 ) should normally have at      

 least one MP or one TB type command associated with it.  Output of       

 energy by material may not be available.                                 

 

 *** NOTE ***                            CP =       1.203   TIME= 13:19:49 

 The step data was checked and warning messages were found.               

  Please review output or errors file (                                   

 E:\FRP\_ProjectScratch\ScrEB4D\file.err ) for these warning messages.    

 

 *** NOTE ***                            CP =       1.203   TIME= 13:19:49 

 This nonlinear analysis defaults to using the full Newton-Raphson        

 solution procedure.  This can be modified using the NROPT command.       

 

 *** NOTE ***                            CP =       1.203   TIME= 13:19:49 

 Internal nodes from 5741 to 5792 are created.                            

 52 internal nodes are used for handling degrees of freedom on pilot      

 nodes of rigid target surfaces.                                          

 

                      L O A D   S T E P   O P T I O N S 

 

   LOAD STEP NUMBER. . . . . . . . . . . . . . . .     1 

   TIME AT END OF THE LOAD STEP. . . . . . . . . .  1.0000     

   AUTOMATIC TIME STEPPING . . . . . . . . . . . .    ON 

      INITIAL NUMBER OF SUBSTEPS . . . . . . . . .     1 

      MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . .    10 

      MINIMUM NUMBER OF SUBSTEPS . . . . . . . . .     1 

   MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . .    15 

   STEP CHANGE BOUNDARY CONDITIONS . . . . . . . .    NO 

   TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT)   
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   CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS 

   PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT 

   DATABASE OUTPUT CONTROLS 

      ITEM     FREQUENCY   COMPONENT 

       ALL       NONE                

      NSOL        ALL                

      RSOL        ALL                

      STRS        ALL                

      EPEL        ALL                

      EPPL        ALL                

      MISC        ALL       _ELMISC  

 

 

 SOLUTION MONITORING INFO IS WRITTEN TO FILE= 

file.mntr                                                                             

                                                                                      

                                                                                      

   

 *WARNING*: Some MPC/Lagrange based elements (e.g.5856) in real constant  

 set 6 overlap with other MPC/Lagrange based elements (e.g.7187) in       

 real constant set 108 which can cause overconstraint.                    

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 It is highly recommended to use the auto contact setting option by       

 issuing CNCHECK,AUTO command for this problem in order to achieve        

 better convergence.                                                      

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Rigid-constraint surface identified by real constant set 6 and contact   

 element type 6 has been set up.  The degrees of freedom of the rigid     

 surface are driven by the pilot node 5614 which connects to other        

 element 5567.  Internal MPC will be built.                               

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 *WARNING*: Certain contact elements (for example 5862&7194) overlap      

 each other.                                                              

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 8 and          

 contact element type 8 has been set up.  The pilot node 5616 is used     

 to apply the force which connects to other element 5568.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 
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 Force-distributed-surface identified by real constant set 10 and         

 contact element type 10 has been set up.  The pilot node 5618 is used    

 to apply the force which connects to other element 5581.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 12 and         

 contact element type 12 has been set up.  The pilot node 5620 is used    

 to apply the force which connects to other element 5585.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 14 and         

 contact element type 14 has been set up.  The pilot node 5622 is used    

 to apply the force which connects to other element 5589.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 16 and         

 contact element type 16 has been set up.  The pilot node 5624 is used    

 to apply the force which connects to other element 5593.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 18 and         

 contact element type 18 has been set up.  The pilot node 5626 is used    

 to apply the force which connects to other element 5597.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 20 and         

 contact element type 20 has been set up.  The pilot node 5628 is used    

 to apply the force which connects to other element 5601.  Internal MPC   
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 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 22 and         

 contact element type 22 has been set up.  The pilot node 5630 is used    

 to apply the force which connects to other element 5605.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 24 and         

 contact element type 24 has been set up.  The pilot node 5632 is used    

 to apply the force which connects to other element 5609.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 26 and         

 contact element type 26 has been set up.  The pilot node 5634 is used    

 to apply the force which connects to other element 5613.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 28 and         

 contact element type 28 has been set up.  The pilot node 5636 is used    

 to apply the force which connects to other element 5617.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 30 and         

 contact element type 30 has been set up.  The pilot node 5638 is used    

 to apply the force which connects to other element 5621.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 
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 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 32 and         

 contact element type 32 has been set up.  The pilot node 5640 is used    

 to apply the force which connects to other element 5625.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 34 and         

 contact element type 34 has been set up.  The pilot node 5642 is used    

 to apply the force which connects to other element 5629.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 36 and         

 contact element type 36 has been set up.  The pilot node 5644 is used    

 to apply the force which connects to other element 5633.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 38 and         

 contact element type 38 has been set up.  The pilot node 5646 is used    

 to apply the force which connects to other element 5637.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 40 and         

 contact element type 40 has been set up.  The pilot node 5648 is used    

 to apply the force which connects to other element 5641.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 
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 Force-distributed-surface identified by real constant set 42 and         

 contact element type 42 has been set up.  The pilot node 5650 is used    

 to apply the force which connects to other element 5645.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 44 and         

 contact element type 44 has been set up.  The pilot node 5652 is used    

 to apply the force which connects to other element 5649.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 46 and         

 contact element type 46 has been set up.  The pilot node 5654 is used    

 to apply the force which connects to other element 5653.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 48 and         

 contact element type 48 has been set up.  The pilot node 5656 is used    

 to apply the force which connects to other element 5657.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 50 and         

 contact element type 50 has been set up.  The pilot node 5658 is used    

 to apply the force which connects to other element 5661.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 52 and         

 contact element type 52 has been set up.  The pilot node 5660 is used    

 to apply the force which connects to other element 5665.  Internal MPC   
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 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 54 and         

 contact element type 54 has been set up.  The pilot node 5662 is used    

 to apply the force which connects to other element 5669.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 56 and         

 contact element type 56 has been set up.  The pilot node 5664 is used    

 to apply the force which connects to other element 5673.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 58 and         

 contact element type 58 has been set up.  The pilot node 5666 is used    

 to apply the force which connects to other element 5677.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 60 and         

 contact element type 60 has been set up.  The pilot node 5668 is used    

 to apply the force which connects to other element 5681.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 62 and         

 contact element type 62 has been set up.  The pilot node 5670 is used    

 to apply the force which connects to other element 5685.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 
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 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 64 and         

 contact element type 64 has been set up.  The pilot node 5672 is used    

 to apply the force which connects to other element 5689.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 66 and         

 contact element type 66 has been set up.  The pilot node 5674 is used    

 to apply the force which connects to other element 5693.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 68 and         

 contact element type 68 has been set up.  The pilot node 5676 is used    

 to apply the force which connects to other element 5697.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 70 and         

 contact element type 70 has been set up.  The pilot node 5678 is used    

 to apply the force which connects to other element 5701.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 72 and         

 contact element type 72 has been set up.  The pilot node 5680 is used    

 to apply the force which connects to other element 5705.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 
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 Force-distributed-surface identified by real constant set 74 and         

 contact element type 74 has been set up.  The pilot node 5682 is used    

 to apply the force which connects to other element 5709.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 76 and         

 contact element type 76 has been set up.  The pilot node 5684 is used    

 to apply the force which connects to other element 5713.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 78 and         

 contact element type 78 has been set up.  The pilot node 5686 is used    

 to apply the force which connects to other element 5717.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 80 and         

 contact element type 80 has been set up.  The pilot node 5688 is used    

 to apply the force which connects to other element 5721.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 82 and         

 contact element type 82 has been set up.  The pilot node 5690 is used    

 to apply the force which connects to other element 5725.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 84 and         

 contact element type 84 has been set up.  The pilot node 5692 is used    

 to apply the force which connects to other element 5729.  Internal MPC   
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 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 86 and         

 contact element type 86 has been set up.  The pilot node 5694 is used    

 to apply the force which connects to other element 5733.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 88 and         

 contact element type 88 has been set up.  The pilot node 5696 is used    

 to apply the force which connects to other element 5737.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 90 and         

 contact element type 90 has been set up.  The pilot node 5698 is used    

 to apply the force which connects to other element 5741.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 92 and         

 contact element type 92 has been set up.  The pilot node 5700 is used    

 to apply the force which connects to other element 5745.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 94 and         

 contact element type 94 has been set up.  The pilot node 5702 is used    

 to apply the force which connects to other element 5749.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 
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 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 96 and         

 contact element type 96 has been set up.  The pilot node 5704 is used    

 to apply the force which connects to other element 5753.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 98 and         

 contact element type 98 has been set up.  The pilot node 5706 is used    

 to apply the force which connects to other element 5757.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 100 and        

 contact element type 100 has been set up.  The pilot node 5708 is used   

 to apply the force which connects to other element 5761.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 102 and        

 contact element type 102 has been set up.  The pilot node 5710 is used   

 to apply the force which connects to other element 5765.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 104 and        

 contact element type 104 has been set up.  The pilot node 5712 is used   

 to apply the force which connects to other element 5769.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 
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 Force-distributed-surface identified by real constant set 106 and        

 contact element type 106 has been set up.  The pilot node 5714 is used   

 to apply the force which connects to other element 5773.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 **************************************** 

   

 

 *** NOTE ***                            CP =       1.484   TIME= 13:19:49 

 Force-distributed-surface identified by real constant set 108 and        

 contact element type 108 has been set up.  The pilot node 5716 is used   

 to apply the force which connects to other element 5777.  Internal MPC   

 will be built.                                                           

 The used degrees of freedom set is  UX   UY   UZ   ROTX ROTY ROTZ 

 *WARNING*: Certain contact elements (for example 7194&5861) overlap      

 each other.                                                              

 **************************************** 

   

 

 *** WARNING ***                         CP =       1.484   TIME= 13:19:49 

 Overconstraint may occur for Lagrange multiplier or MPC based contact    

 algorithm.                                                               

 The reasons for possible overconstraint are:                             

 *Certain contact elements (for example 7194 & 5861) overlap with other.  

 **************************************** 

   

   

 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS HAS BEEN MODIFIED               

  TO BE, NEQIT = 26, BY SOLUTION CONTROL LOGIC.                           

 

 *** NOTE ***                            CP =       1.547   TIME= 13:19:49 

 Predictor is ON by default for structural elements with rotational       

 degrees of freedom.  Use the PRED,OFF command to turn the predictor      

 OFF if it adversely affects the convergence.                             

 

   

 The FEA model contains 0 external CE equations and 582 internal CE       

 equations.                                                               
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   ***********  PRECISE MASS SUMMARY  *********** 

 

   TOTAL RIGID BODY MASS MATRIX ABOUT ORIGIN 

               Translational mass               |   Coupled translational/rotational mass 

         2.6087        0.0000        0.0000     |     0.0000       0.35525E-03   -313.04     

         0.0000        2.6087        0.0000     |   -0.35525E-03    0.0000      -0.29323E-04 

         0.0000        0.0000        2.6087     |     313.04       0.29323E-04    0.0000     

     ------------------------------------------ | ------------------------------------------ 

                                                |         Rotational mass (inertia) 

                                                |     50254.       0.35130E-02   0.19866E-01 

                                                |    0.35130E-02    232.75      -0.42636E-01 

                                                |    0.19866E-01  -0.42636E-01    50151.     

 

   TOTAL MASS =  2.6087     

     The mass principal axes coincide with the global Cartesian axes 

 

   CENTER OF MASS (X,Y,Z)=  -0.11241E-04    120.00       0.13618E-03 

 

   TOTAL INERTIA ABOUT CENTER OF MASS 

         12689.      -0.57822E-05   0.19866E-01 

       -0.57822E-05    232.75      -0.61754E-05 

        0.19866E-01  -0.61754E-05    12587.     

     The inertia principal axes coincide with the global Cartesian axes 

 

 

  *** MASS SUMMARY BY ELEMENT TYPE *** 

 

  TYPE      MASS 

     1   2.60867     

 

 Range of element maximum matrix coefficients in global coordinates 

 Maximum = 2396838.35 at element 4236.                                    

 Minimum = 1.032861979E-02 at element 7206.                               

 

 *** WARNING ***                         CP =      23.156   TIME= 13:20:10 

 Coefficient ratio exceeds 1.0e8 - Check results.                         

 

   *** ELEMENT MATRIX FORMULATION TIMES 

  TYPE    NUMBER   ENAME      TOTAL CP  AVE CP 

 

     1      5566  SHELL181     42.422   0.007622 

     5        46  SURF156       0.000   0.000000 

     6        46  CONTA175      0.000   0.000000 

     7         1  TARGE170      0.000   0.000000 

     8        10  CONTA174      0.000   0.000000 

     9         1  TARGE170      0.000   0.000000 

    10        22  CONTA174      0.000   0.000000 

    11         1  TARGE170      0.000   0.000000 

    12        22  CONTA174      0.000   0.000000 
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    13         1  TARGE170      0.000   0.000000 

    14        22  CONTA174      0.000   0.000000 

    15         1  TARGE170      0.000   0.000000 

    16        22  CONTA174      0.000   0.000000 

    17         1  TARGE170      0.000   0.000000 

    18        21  CONTA174      0.000   0.000000 

    19         1  TARGE170      0.000   0.000000 

    20        22  CONTA174      0.000   0.000000 

    21         1  TARGE170      0.000   0.000000 

    22        22  CONTA174      0.000   0.000000 

    23         1  TARGE170      0.000   0.000000 

    24        23  CONTA174      0.000   0.000000 

    25         1  TARGE170      0.000   0.000000 

    26        23  CONTA174      0.000   0.000000 

    27         1  TARGE170      0.000   0.000000 

    28        24  CONTA174      0.000   0.000000 

    29         1  TARGE170      0.000   0.000000 

    30        23  CONTA174      0.000   0.000000 

    31         1  TARGE170      0.000   0.000000 

    32        23  CONTA174      0.000   0.000000 

    33         1  TARGE170      0.000   0.000000 

    34        22  CONTA174      0.000   0.000000 

    35         1  TARGE170      0.000   0.000000 

    36        22  CONTA174      0.000   0.000000 

    37         1  TARGE170      0.000   0.000000 

    38        21  CONTA174      0.000   0.000000 

    39         1  TARGE170      0.000   0.000000 

    40        22  CONTA174      0.000   0.000000 

    41         1  TARGE170      0.000   0.000000 

    42        22  CONTA174      0.000   0.000000 

    43         1  TARGE170      0.000   0.000000 

    44        22  CONTA174      0.000   0.000000 

    45         1  TARGE170      0.000   0.000000 

    46        22  CONTA174      0.000   0.000000 

    47         1  TARGE170      0.000   0.000000 

    48        20  CONTA174      0.000   0.000000 

    49         1  TARGE170      0.000   0.000000 

    50        41  CONTA174      0.031   0.000762 

    51         1  TARGE170      0.000   0.000000 

    52        41  CONTA174      0.000   0.000000 

    53         1  TARGE170      0.000   0.000000 

    54        44  CONTA174      0.031   0.000710 

    55         1  TARGE170      0.000   0.000000 

    56        43  CONTA174      0.000   0.000000 

    57         1  TARGE170      0.000   0.000000 

    58        42  CONTA174      0.000   0.000000 

    59         1  TARGE170      0.000   0.000000 

    60        43  CONTA174      0.000   0.000000 
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    61         1  TARGE170      0.000   0.000000 

    62        44  CONTA174      0.000   0.000000 

    63         1  TARGE170      0.000   0.000000 

    64        41  CONTA174      0.000   0.000000 

    65         1  TARGE170      0.000   0.000000 

    66        41  CONTA174      0.000   0.000000 

    67         1  TARGE170      0.000   0.000000 

    68        10  CONTA174      0.000   0.000000 

    69         1  TARGE170      0.000   0.000000 

    70        22  CONTA174      0.000   0.000000 

    71         1  TARGE170      0.000   0.000000 

    72        22  CONTA174      0.000   0.000000 

    73         1  TARGE170      0.000   0.000000 

    74        22  CONTA174      0.000   0.000000 

    75         1  TARGE170      0.000   0.000000 

    76        22  CONTA174      0.000   0.000000 

    77         1  TARGE170      0.016   0.015625 

    78        22  CONTA174      0.000   0.000000 

    79         1  TARGE170      0.000   0.000000 

    80        21  CONTA174      0.000   0.000000 

    81         1  TARGE170      0.000   0.000000 

    82        22  CONTA174      0.000   0.000000 

    83         1  TARGE170      0.031   0.031250 

    84        23  CONTA174      0.000   0.000000 

    85         1  TARGE170      0.000   0.000000 

    86        23  CONTA174      0.000   0.000000 

    87         1  TARGE170      0.016   0.015625 

    88        24  CONTA174      0.000   0.000000 

    89         1  TARGE170      0.000   0.000000 

    90        23  CONTA174      0.000   0.000000 

    91         1  TARGE170      0.016   0.015625 

    92        23  CONTA174      0.000   0.000000 

    93         1  TARGE170      0.000   0.000000 

    94        22  CONTA174      0.000   0.000000 

    95         1  TARGE170      0.000   0.000000 

    96        21  CONTA174      0.000   0.000000 

    97         1  TARGE170      0.016   0.015625 

    98        22  CONTA174      0.000   0.000000 

    99         1  TARGE170      0.000   0.000000 

   100        22  CONTA174      0.000   0.000000 

   101         1  TARGE170      0.000   0.000000 

   102        22  CONTA174      0.000   0.000000 

   103         1  TARGE170      0.000   0.000000 

   104        22  CONTA174      0.000   0.000000 

   105         1  TARGE170      0.000   0.000000 

   106        22  CONTA174      0.000   0.000000 

   107         1  TARGE170      0.000   0.000000 

   108        10  CONTA174      0.000   0.000000 
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   109         1  TARGE170      0.000   0.000000 

   110         1  COMBIN39      0.016   0.015625 

   111         1  COMBIN39      0.000   0.000000 

   112         1  COMBIN39      0.000   0.000000 

   113         1  COMBIN39      0.000   0.000000 

   114         1  COMBIN39      0.000   0.000000 

   115         1  COMBIN39      0.000   0.000000 

   116         1  COMBIN39      0.000   0.000000 

   117         1  COMBIN39      0.000   0.000000 

   118         1  COMBIN39      0.000   0.000000 

   119         1  COMBIN39      0.000   0.000000 

   120         1  COMBIN39      0.000   0.000000 

   121         1  COMBIN39      0.000   0.000000 

   122         1  COMBIN39      0.000   0.000000 

   123         1  COMBIN39      0.000   0.000000 

   124         1  COMBIN39      0.000   0.000000 

   125         1  COMBIN39      0.000   0.000000 

   126         1  COMBIN39      0.000   0.000000 

   127         1  COMBIN39      0.000   0.000000 

   128         1  COMBIN39      0.000   0.000000 

   129         1  COMBIN39      0.000   0.000000 

   130         1  COMBIN39      0.000   0.000000 

   131         1  COMBIN39      0.000   0.000000 

   132         1  COMBIN39      0.000   0.000000 

   133         1  COMBIN39      0.000   0.000000 

   134         1  COMBIN39      0.000   0.000000 

   135         1  COMBIN39      0.000   0.000000 

   136         1  COMBIN39      0.016   0.015625 

   137         1  COMBIN39      0.000   0.000000 

   138         1  COMBIN39      0.000   0.000000 

   139         1  COMBIN39      0.000   0.000000 

   140         1  COMBIN39      0.000   0.000000 

   141         1  COMBIN39      0.000   0.000000 

   142         1  COMBIN39      0.031   0.031250 

   143         1  COMBIN39      0.016   0.015625 

   144         1  COMBIN39      0.016   0.015625 

   145         1  COMBIN39      0.000   0.000000 

   146         1  COMBIN39      0.016   0.015625 

   147         1  COMBIN39      0.016   0.015625 

   148         1  COMBIN39      0.016   0.015625 

   149         1  COMBIN39      0.000   0.000000 

   150         1  COMBIN39      0.000   0.000000 

   151         1  COMBIN39      0.016   0.015625 

   152         1  COMBIN39      0.000   0.000000 

   153         1  COMBIN39      0.000   0.000000 

   154         1  COMBIN39      0.000   0.000000 

   155         1  COMBIN39      0.000   0.000000 

   156         1  COMBIN39      0.000   0.000000 
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   157         1  COMBIN39      0.000   0.000000 

   158         1  COMBIN39      0.000   0.000000 

   159         1  COMBIN39      0.000   0.000000 

   160         1  COMBIN39      0.000   0.000000 

   161         1  COMBIN39      0.000   0.000000 

   162        24  COMBIN14      0.016   0.000651 

 Time at end of element matrix formulation CP = 23.15625.                 

 

 ALL CURRENT ANSYS DATA WRITTEN TO FILE NAME= file.rdb 

  FOR POSSIBLE RESUME FROM THIS POINT 

     FORCE CONVERGENCE VALUE  = 0.1139E+08  CRITERION= 0.5811E+05 

     MOMENT CONVERGENCE VALUE = 0.1469E+08  CRITERION= 0.7496E+05 

 

 SPARSE MATRIX DIRECT SOLVER. 

  Number of equations =       33356,    Maximum wavefront =    360 

  Memory allocated for solver =         131.022 MB 

  Memory required for in-core =         113.439 MB 

  Memory required for out-of-core =      23.922 MB 

 

 

 *** NOTE ***                            CP =      23.984   TIME= 13:20:12 

 The Sparse Matrix solver is currently running in the in-core memory      

 mode.  This memory mode uses the most amount of memory in order to       

 avoid using the hard drive as much as possible, which most often         

 results in the fastest solution time.  This mode is recommended if       

 enough physical memory is present to accommodate all of the solver       

 data.                                                                    

 curEqn=  33356  totEqn=  33356 Job CP sec=     24.641 

      Factor Done= 100% Factor Wall sec=      0.198 rate=   13884.2 Mflops 

 Sparse solver maximum pivot= 970675347 at node 5614 ROTY.                

 Sparse solver minimum pivot= 4346.20939 at node 3052 UZ.                 

 Sparse solver minimum pivot in absolute value= 4346.20939 at node 3052   

 UZ.                                                                      

     DISP CONVERGENCE VALUE   =  4.000      CRITERION= 0.2041     

    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=   4.000     

     DISP CONVERGENCE VALUE   =  4.000      CRITERION= 0.2082     

     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =   4.000     

     FORCE CONVERGENCE VALUE  =  8264.      CRITERION=  83.68     

     MOMENT CONVERGENCE VALUE =  46.08      CRITERION=  35.07     

    EQUIL ITER   2 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  -1.704     

     DISP CONVERGENCE VALUE   =  1.704      CRITERION= 0.2125     

     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  -1.704     

     FORCE CONVERGENCE VALUE  =  3298.      CRITERION=  86.79     

     MOMENT CONVERGENCE VALUE =  57.44      CRITERION=  36.38     

    EQUIL ITER   3 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  -34.61     

     DISP CONVERGENCE VALUE   =  34.61      CRITERION=  2.000     

     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  -34.61     

     FORCE CONVERGENCE VALUE  =  1787.      CRITERION=  92.71     
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     MOMENT CONVERGENCE VALUE =  48.17      CRITERION=  38.86     

    EQUIL ITER   4 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  -98.88     

     DISP CONVERGENCE VALUE   =  98.88      CRITERION=  7.510     

     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC =  -98.88     

     FORCE CONVERGENCE VALUE  = 0.3176E-03  CRITERION=  106.4     <<< CONVERGED 

     MOMENT CONVERGENCE VALUE = 0.1801E-04  CRITERION=  44.62     <<< CONVERGED 

    EQUIL ITER   5 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC= -0.3430E-04 

     DISP CONVERGENCE VALUE   = 0.3430E-04  CRITERION=  7.664     <<< CONVERGED 

     LINE SEARCH PARAMETER =   1.000     SCALED MAX DOF INC = -0.3430E-04 

    >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION   5 

 

   *** ELEMENT RESULT CALCULATION TIMES 

  TYPE    NUMBER   ENAME      TOTAL CP  AVE CP 

 

     1      5566  SHELL181     30.156   0.005418 

     5        46  SURF156       0.000   0.000000 

     6        46  CONTA175      0.000   0.000000 

     8        10  CONTA174      0.000   0.000000 

    10        22  CONTA174      0.000   0.000000 

    12        22  CONTA174      0.000   0.000000 

    14        22  CONTA174      0.000   0.000000 

    16        22  CONTA174      0.000   0.000000 

    18        21  CONTA174      0.000   0.000000 

    20        22  CONTA174      0.000   0.000000 

    22        22  CONTA174      0.000   0.000000 

    24        23  CONTA174      0.000   0.000000 

    26        23  CONTA174      0.000   0.000000 

    28        24  CONTA174      0.000   0.000000 

    30        23  CONTA174      0.000   0.000000 

    32        23  CONTA174      0.000   0.000000 

    34        22  CONTA174      0.000   0.000000 

    36        22  CONTA174      0.000   0.000000 

    38        21  CONTA174      0.000   0.000000 

    40        22  CONTA174      0.000   0.000000 

    42        22  CONTA174      0.000   0.000000 

    44        22  CONTA174      0.000   0.000000 

    46        22  CONTA174      0.000   0.000000 

    48        20  CONTA174      0.000   0.000000 

    50        41  CONTA174      0.000   0.000000 

    52        41  CONTA174      0.000   0.000000 

    54        44  CONTA174      0.000   0.000000 

    56        43  CONTA174      0.000   0.000000 

    58        42  CONTA174      0.000   0.000000 

    60        43  CONTA174      0.000   0.000000 

    62        44  CONTA174      0.000   0.000000 

    64        41  CONTA174      0.000   0.000000 

    66        41  CONTA174      0.000   0.000000 

    68        10  CONTA174      0.000   0.000000 
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    70        22  CONTA174      0.000   0.000000 

    72        22  CONTA174      0.000   0.000000 

    74        22  CONTA174      0.000   0.000000 

    76        22  CONTA174      0.000   0.000000 

    78        22  CONTA174      0.000   0.000000 

    80        21  CONTA174      0.000   0.000000 

    82        22  CONTA174      0.000   0.000000 

    84        23  CONTA174      0.000   0.000000 

    86        23  CONTA174      0.000   0.000000 

    88        24  CONTA174      0.000   0.000000 

    90        23  CONTA174      0.000   0.000000 

    92        23  CONTA174      0.000   0.000000 

    94        22  CONTA174      0.000   0.000000 

    96        21  CONTA174      0.000   0.000000 

    98        22  CONTA174      0.000   0.000000 

   100        22  CONTA174      0.000   0.000000 

   102        22  CONTA174      0.000   0.000000 

   104        22  CONTA174      0.000   0.000000 

   106        22  CONTA174      0.000   0.000000 

   108        10  CONTA174      0.000   0.000000 

   110         1  COMBIN39      0.016   0.015625 

   111         1  COMBIN39      0.000   0.000000 

   112         1  COMBIN39      0.000   0.000000 

   113         1  COMBIN39      0.000   0.000000 

   114         1  COMBIN39      0.000   0.000000 

   115         1  COMBIN39      0.000   0.000000 

   116         1  COMBIN39      0.000   0.000000 

   117         1  COMBIN39      0.000   0.000000 

   118         1  COMBIN39      0.000   0.000000 

   119         1  COMBIN39      0.000   0.000000 

   120         1  COMBIN39      0.000   0.000000 

   121         1  COMBIN39      0.000   0.000000 

   122         1  COMBIN39      0.000   0.000000 

   123         1  COMBIN39      0.000   0.000000 

   124         1  COMBIN39      0.000   0.000000 

   125         1  COMBIN39      0.016   0.015625 

   126         1  COMBIN39      0.000   0.000000 

   127         1  COMBIN39      0.000   0.000000 

   128         1  COMBIN39      0.000   0.000000 

   129         1  COMBIN39      0.000   0.000000 

   130         1  COMBIN39      0.000   0.000000 

   131         1  COMBIN39      0.000   0.000000 

   132         1  COMBIN39      0.000   0.000000 

   133         1  COMBIN39      0.000   0.000000 

   134         1  COMBIN39      0.000   0.000000 

   135         1  COMBIN39      0.000   0.000000 

   136         1  COMBIN39      0.000   0.000000 

   137         1  COMBIN39      0.000   0.000000 
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   138         1  COMBIN39      0.000   0.000000 

   139         1  COMBIN39      0.000   0.000000 

   140         1  COMBIN39      0.000   0.000000 

   141         1  COMBIN39      0.000   0.000000 

   142         1  COMBIN39      0.000   0.000000 

   143         1  COMBIN39      0.000   0.000000 

   144         1  COMBIN39      0.000   0.000000 

   145         1  COMBIN39      0.000   0.000000 

   146         1  COMBIN39      0.000   0.000000 

   147         1  COMBIN39      0.000   0.000000 

   148         1  COMBIN39      0.000   0.000000 

   149         1  COMBIN39      0.000   0.000000 

   150         1  COMBIN39      0.000   0.000000 

   151         1  COMBIN39      0.000   0.000000 

   152         1  COMBIN39      0.000   0.000000 

   153         1  COMBIN39      0.000   0.000000 

   154         1  COMBIN39      0.000   0.000000 

   155         1  COMBIN39      0.000   0.000000 

   156         1  COMBIN39      0.000   0.000000 

   157         1  COMBIN39      0.000   0.000000 

   158         1  COMBIN39      0.000   0.000000 

   159         1  COMBIN39      0.000   0.000000 

   160         1  COMBIN39      0.000   0.000000 

   161         1  COMBIN39      0.000   0.000000 

   162        24  COMBIN14      0.000   0.000000 

 

   *** NODAL LOAD CALCULATION TIMES 

  TYPE    NUMBER   ENAME      TOTAL CP  AVE CP 

 

     1      5566  SHELL181      0.234   0.000042 

     5        46  SURF156       0.000   0.000000 

     6        46  CONTA175      0.000   0.000000 

     8        10  CONTA174      0.000   0.000000 

    10        22  CONTA174      0.000   0.000000 

    12        22  CONTA174      0.000   0.000000 

    14        22  CONTA174      0.000   0.000000 

    16        22  CONTA174      0.000   0.000000 

    18        21  CONTA174      0.000   0.000000 

    20        22  CONTA174      0.000   0.000000 

    22        22  CONTA174      0.000   0.000000 

    24        23  CONTA174      0.000   0.000000 

    26        23  CONTA174      0.000   0.000000 

    28        24  CONTA174      0.000   0.000000 

    30        23  CONTA174      0.000   0.000000 

    32        23  CONTA174      0.000   0.000000 

    34        22  CONTA174      0.000   0.000000 

    36        22  CONTA174      0.000   0.000000 

    38        21  CONTA174      0.000   0.000000 
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    40        22  CONTA174      0.000   0.000000 

    42        22  CONTA174      0.000   0.000000 

    44        22  CONTA174      0.000   0.000000 

    46        22  CONTA174      0.000   0.000000 

    48        20  CONTA174      0.000   0.000000 

    50        41  CONTA174      0.000   0.000000 

    52        41  CONTA174      0.000   0.000000 

    54        44  CONTA174      0.000   0.000000 

    56        43  CONTA174      0.000   0.000000 

    58        42  CONTA174      0.000   0.000000 

    60        43  CONTA174      0.000   0.000000 

    62        44  CONTA174      0.000   0.000000 

    64        41  CONTA174      0.000   0.000000 

    66        41  CONTA174      0.000   0.000000 

    68        10  CONTA174      0.000   0.000000 

    70        22  CONTA174      0.000   0.000000 

    72        22  CONTA174      0.000   0.000000 

    74        22  CONTA174      0.000   0.000000 

    76        22  CONTA174      0.000   0.000000 

    78        22  CONTA174      0.000   0.000000 

    80        21  CONTA174      0.000   0.000000 

    82        22  CONTA174      0.000   0.000000 

    84        23  CONTA174      0.000   0.000000 

    86        23  CONTA174      0.000   0.000000 

    88        24  CONTA174      0.000   0.000000 

    90        23  CONTA174      0.000   0.000000 

    92        23  CONTA174      0.000   0.000000 

    94        22  CONTA174      0.000   0.000000 

    96        21  CONTA174      0.000   0.000000 

    98        22  CONTA174      0.000   0.000000 

   100        22  CONTA174      0.000   0.000000 

   102        22  CONTA174      0.000   0.000000 

   104        22  CONTA174      0.000   0.000000 

   106        22  CONTA174      0.000   0.000000 

   108        10  CONTA174      0.000   0.000000 

   110         1  COMBIN39      0.000   0.000000 

   111         1  COMBIN39      0.000   0.000000 

   112         1  COMBIN39      0.000   0.000000 

   113         1  COMBIN39      0.000   0.000000 

   114         1  COMBIN39      0.000   0.000000 

   115         1  COMBIN39      0.000   0.000000 

   116         1  COMBIN39      0.000   0.000000 

   117         1  COMBIN39      0.000   0.000000 

   118         1  COMBIN39      0.000   0.000000 

   119         1  COMBIN39      0.000   0.000000 

   120         1  COMBIN39      0.000   0.000000 

   121         1  COMBIN39      0.000   0.000000 

   122         1  COMBIN39      0.000   0.000000 
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   123         1  COMBIN39      0.000   0.000000 

   124         1  COMBIN39      0.000   0.000000 

   125         1  COMBIN39      0.000   0.000000 

   126         1  COMBIN39      0.000   0.000000 

   127         1  COMBIN39      0.000   0.000000 

   128         1  COMBIN39      0.000   0.000000 

   129         1  COMBIN39      0.000   0.000000 

   130         1  COMBIN39      0.000   0.000000 

   131         1  COMBIN39      0.000   0.000000 

   132         1  COMBIN39      0.000   0.000000 

   133         1  COMBIN39      0.000   0.000000 

   134         1  COMBIN39      0.000   0.000000 

   135         1  COMBIN39      0.000   0.000000 

   136         1  COMBIN39      0.000   0.000000 

   137         1  COMBIN39      0.000   0.000000 

   138         1  COMBIN39      0.000   0.000000 

   139         1  COMBIN39      0.000   0.000000 

   140         1  COMBIN39      0.000   0.000000 

   141         1  COMBIN39      0.000   0.000000 

   142         1  COMBIN39      0.000   0.000000 

   143         1  COMBIN39      0.000   0.000000 

   144         1  COMBIN39      0.000   0.000000 

   145         1  COMBIN39      0.000   0.000000 

   146         1  COMBIN39      0.000   0.000000 

   147         1  COMBIN39      0.000   0.000000 

   148         1  COMBIN39      0.000   0.000000 

   149         1  COMBIN39      0.000   0.000000 

   150         1  COMBIN39      0.000   0.000000 

   151         1  COMBIN39      0.000   0.000000 

   152         1  COMBIN39      0.000   0.000000 

   153         1  COMBIN39      0.000   0.000000 

   154         1  COMBIN39      0.000   0.000000 

   155         1  COMBIN39      0.000   0.000000 

   156         1  COMBIN39      0.000   0.000000 

   157         1  COMBIN39      0.000   0.000000 

   158         1  COMBIN39      0.000   0.000000 

   159         1  COMBIN39      0.000   0.000000 

   160         1  COMBIN39      0.000   0.000000 

   161         1  COMBIN39      0.000   0.000000 

   162        24  COMBIN14      0.016   0.000651 

 *** LOAD STEP     1   SUBSTEP     1  COMPLETED.    CUM ITER =      5 

 *** TIME =   1.00000         TIME INC =   1.00000     

 

 

 *** ANSYS BINARY FILE STATISTICS 

  BUFFER SIZE USED= 16384 

        0.875 MB WRITTEN ON ELEMENT MATRIX FILE: file.emat 

      285.250 MB WRITTEN ON ELEMENT SAVED DATA FILE: file.esav 
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       17.188 MB WRITTEN ON ASSEMBLED MATRIX FILE: file.full 

       39.562 MB WRITTEN ON RESULTS FILE: file.rst 

 *************** Write FE CONNECTORS ********* 

 

 WRITE OUT CONSTRAINT EQUATIONS TO FILE= 

file.ce                                                                               

                                                                                      

                                                                                      

   

 **************************************************** 

 *************** FINISHED SOLVE FOR LS 1 ************* 

 

 PARAMETER _DS_PROGRESS  DELETED. 

 

 *GET  _WALLASOL  FROM  ACTI  ITEM=TIME WALL  VALUE=  13.3822222     

 

 PRINTOUT RESUMED BY /GOP 

 

 FINISH SOLUTION PROCESSING 

 

 

 ***** ROUTINE COMPLETED *****  CP =       186.125 

 

 

 

 *** ANSYS - ENGINEERING ANALYSIS SYSTEM  RELEASE Release 16.2     16.2     *** 

 ANSYS Academic Research                            

 00427805  VERSION=WINDOWS x64   13:22:56  FEB 20, 2016 CP=    186.125 

 

 FRP305 - Varying Orientation Angle and Vertical Load in Soft Clay - Constant 4 

 

 

 

          ***** ANSYS RESULTS INTERPRETATION (POST1) ***** 

 

 *** NOTE ***                            CP =     186.125   TIME= 13:22:56 

 Reading results into the database (SET command) will update the current  

 displacement and force boundary conditions in the database with the      

 values from the results file for that load set.  Note that any           

 subsequent solutions will use these values unless action is taken to     

 either SAVE the current values or not overwrite them (/EXIT,NOSAVE).     

 

 Set Encoding of XML File to:ISO-8859-1 

 

 Set Output of XML File to: 

     PARM,     ,     ,     ,     ,     ,     ,     ,     ,     ,     ,     , 

         ,     ,     ,     ,     ,     ,     , 
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 DATABASE WRITTEN ON 

FILE  parm.xml                                                                        

                                                                                      

                                                                                      

         

 

 EXIT THE ANSYS POST1 DATABASE PROCESSOR 

 

 

 ***** ROUTINE COMPLETED *****  CP =       186.125 

 

 

 

 PRINTOUT RESUMED BY /GOP 

 

 *GET  _WALLDONE  FROM  ACTI  ITEM=TIME WALL  VALUE=  13.3822222     

 

 PARAMETER _PREPTIME =     0.000000000     

 

 PARAMETER _SOLVTIME =     187.0000000     

 

 PARAMETER _POSTTIME =     0.000000000     

 

 PARAMETER _TOTALTIM =     187.0000000     

 

 EXIT ANSYS WITHOUT SAVING DATABASE 

 

 

 NUMBER OF WARNING MESSAGES ENCOUNTERED=          4 

 NUMBER OF ERROR   MESSAGES ENCOUNTERED=          0 

 

 *** WARNING ***                         CP =     186.141   TIME= 13:22:59 

 During this session the elapsed time exceeds the CPU time by 104%.       

 Often this indicates either a lack of physical memory (RAM) required     

 to efficiently handle this simulation or it indicates a particularly     

 slow hard drive configuration.  This simulation can be expected to run   

 faster on identical hardware if additional RAM or a faster hard drive    

 configuration is made available.  For more details, please see the       

 ANSYS Performance Guide which is part of the ANSYS Help system.          

 

+--------------------- A N S Y S   S T A T I S T I C S ------------------------+ 

 

Release: Release 16.2       Build: 16.2       Update: UP20150629   Platform: WINDOWS 

x64  

Date Run: 02/20/2016   Time: 13:22 

Windows Process ID:        10296 

 

Processor Model: Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz 
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Compiler: Intel(R) FORTRAN Compiler Version 14.0.0  (Build: 20140422) 

          Intel(R) C/C++ Compiler Version 14.0.0  (Build: 20140422) 

          Intel(R) Math Kernel Library Version 11.1.3 Product Build 20140917 

 

Total number of cores available         :    8 

Number of physical cores available      :    4 

Number of processes requested           :    1 

Number of threads per process requested :    2 

Total number of cores requested         :    2 (Shared Memory 

Parallel)                     

 

GPU Acceleration: Not Requested 

 

Job Name: file 

Working Directory: E:\FRP\_ProjectScratch\ScrEB4D 

 

Total CPU time for main thread                    :       93.9 seconds 

Total CPU time summed for all threads             :      186.1 seconds 

 

Elapsed time spent pre-processing model (/PREP7)  :        0.1 seconds 

Elapsed time spent solution - preprocessing       :        0.1 seconds 

Elapsed time spent computing solution             :      186.3 seconds 

Elapsed time spent solution - postprocessing      :        0.0 seconds 

Elapsed time spent post-processing model (/POST1) :        0.0 seconds 

 

Equation solver computational rate                :     9855.6 Mflops 

Equation solver effective I/O rate                :     7047.5 MB/sec 

 

Maximum total memory used                         :      211.0 MB 

Maximum total memory allocated                    :     2112.0 MB 

Maximum total memory available                    :         16 GB 

 

+------------------ E N D   A N S Y S   S T A T I S T I C S -------------------+ 

 

 

 *---------------------------------------------------------------------------* 

 |                                                                           | 

 |                            ANSYS RUN COMPLETED                            | 

 |                                                                           | 

 |---------------------------------------------------------------------------| 

 |                                                                           | 

 | Ansys Release 16.2          Build 16.2         UP20150629     WINDOWS x64 | 

 |                                                                           | 

 |---------------------------------------------------------------------------| 

 |                                                                           | 

 | Database Requested(-db)  1024 MB    Scratch Memory Requested      1024 MB | 

 | Maximum Database Used       8 MB    Maximum Scratch Memory Used    203 MB | 
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 |                                                                           | 

 |---------------------------------------------------------------------------| 

 |                                                                           | 

 |        CP Time      (sec) =        186.141       Time  =  13:22:59        | 

 |        Elapsed Time (sec) =        192.000       Date  =  02/20/2016      | 

 |                                                                           | 

 *---------------------------------------------------------------------------* 
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Solution Information  

Results 

Material Data  

Epoxy E-Glass UD 

Units 

Table 33 - Units 

Unit System U.S. Customary (in, lbm, lbf, s, V, A) Degrees rad/s Fahrenheit
Angle Degrees 

Rotational Velocity rad/s 
Temperature Fahrenheit 

 

Model (A4, B4, C4) 
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Geometry 
Table 34 - Model (A4, B4, C4) > Geometry 

Object Name Geometry
State Fully Defined 

Definition 

Source 
E:\FRP\1 - FE Models\FRP305 - Varying Orientation Angle and 

Vertical Load in Soft Clay - Constant 4 in displacement , material 
and 24x12 in pile dimension_files\dp4\ACP-Pre\DM\ACP-Pre.agdb 

Type DesignModeler 
Length Unit Meters 

Element Control Program Controlled 
Display Style Body Color 

Bounding Box 
Length X 12. in 
Length Y 240. in 
Length Z 24. in 

Properties 
Volume 1396.6 in³ 

Mass 100.91 lbm 
Surface Area(approx.) 13966 in² 

Scale Factor Value 1. 
Statistics 

Bodies 1 
Active Bodies 1 

Nodes 5612 
Elements 5566 

Mesh Metric None 
Basic Geometry Options 

Parameters Yes 
Parameter Key DS 

Attributes No 
Named Selections No 

Material Properties No 
Advanced Geometry Options 

Use Associativity Yes 
Coordinate Systems No 

Reader Mode Saves Updated 
File No 

Use Instances Yes 
Smart CAD Update No 

Compare Parts On Update No 
Attach File Via Temp File Yes 

Temporary Directory C:\Users\Yahya\AppData\Roaming\Ansys\v162 
Analysis Type 3-D 

Decompose Disjoint Geometry Yes 
Enclosure and Symmetry 

Processing Yes 
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Table 35 - Model (A4, B4, C4) > Geometry > Parts 

Object Name Surface Body
State Meshed 

Graphics Properties 
Visible Yes 

Transparency 1 
Definition 

Suppressed No 
Stiffness Behavior Flexible 

Coordinate System Default Coordinate System 
Reference Temperature By Environment 

Thickness 0.1 in 
Thickness Mode Manual 

Offset Type Middle 
Material 

Assignment Epoxy E-Glass UD 
Nonlinear Effects Yes 

Thermal Strain Effects Yes 
Bounding Box 

Length X 12. in 
Length Y 240. in 
Length Z 24. in 

Properties 
Volume 1396.6 in³ 

Mass 100.91 lbm 
Centroid X 3.3327e-005 in 
Centroid Y 120. in 
Centroid Z 1.7908e-005 in 

Moment of Inertia Ip1 4.8938e+005 lbm·in² 
Moment of Inertia Ip2 8148.9 lbm·in² 
Moment of Inertia Ip3 4.8538e+005 lbm·in² 

Surface Area(approx.) 13966 in² 
Statistics 

Nodes 5612 
Elements 5566 

Mesh Metric None 
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Coordinate Systems 

Table 36 - Model (A4, B4, C4) > Coordinate Systems > Coordinate System 

Object Name Global Coordinate System
State Fully Defined 

Definition 
Type Cartesian 

Coordinate System ID 0.  
Origin 

Origin X 0. in 
Origin Y 0. in 
Origin Z 0. in 
Directional Vectors 

X Axis Data [ 1. 0. 0. ] 
Y Axis Data [ 0. 1. 0. ] 
Z Axis Data [ 0. 0. 1. ] 

 

Connections 

Table 37 - Model (A4, B4, C4) > Connections 

Object Name Connections 
State Fully Defined 

Auto Detection 
Generate Automatic Connection On Refresh Yes 

Transparency 
Enabled Yes 
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Table 38 - Model (A4, B4, C4) > Connections > Springs 

Object Name 

Longitud
inal - 

Ground 
To 

Surface 
Body 1 

Longitud
inal - 

Ground 
To 

Surface 
Body 2 

Longitud
inal - 

Ground 
To 

Surface 
Body 3

Longitud
inal - 

Ground 
To 

Surface 
Body 4

Longitu
dinal - 

Ground 
To 

Surface 
Body 5

Longitud
inal - 

Ground 
To 

Surface 
Body 6

Longitud
inal - 

Ground 
To 

Surface 
Body 7

Longitu
dinal - 

Ground 
To 

Surface 
Body 8 

Longitud
inal - 

Ground 
To 

Surface 
Body 9 

Longitud
inal - 

Ground 
To 

Surface 
Body 10

Longitud
inal - 

Ground 
To 

Surface 
Body 11

State Fully Defined 
Graphics Properties 

Visible Yes 
Definition 

Type Longitudinal 
Spring Behavior Both 

Longitudinal 
Stiffness Tabular Data 

Longitudinal 
Damping 0. lbf·s/in 

Preload None 
Suppressed No 

Spring Length 24. in 12. in 
Scope 

Scope Body-Ground 
Reference 

Coordinate System Global Coordinate System 
Reference X 

Coordinate 0. in 18. in 

Reference Z 
Coordinate 0. in 

Reference Location Defined 
Mobile 

Scoping Method Geometry Selection 
Applied By Remote Attachment 

Scope 1 
Edge 1 Face 

Body Surface Body 
Coordinate System Global Coordinate System 

Mobile X Coordinate 0. in 6. in 
Mobile Z Coordinate 0. in 

Mobile Location Defined 
Behavior Rigid Deformable 

Pinball Region All 5. in 
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Figure 125 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 

 

 

Table 39 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 

Displacement [in] Force [lbf]
0. 0. 

0.25 11846 
0.5 12419 
0.75 12622 
1. 12727 

1.25 12790 
1.5 12833 
1.75 12863 
2. 12886 

2.25 12904 
2.5 12919 
2.75 12931 
3. 12940 

3.25 12949 
3.5 12956 
3.75 12962 
4. 12968 
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Figure 126 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 

 

 

Table 40 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 127 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 3 

 

 

Table 41 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 3 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 128 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 4 

 

 

Table 42 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 4 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 129 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 5 

 

 

Table 43 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 5 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 130 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 6 

 

 

Table 44 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 6 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 131 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 7 

 

 

Table 45 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 7 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 132 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 8 

 

 

Table 46 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 8 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 133 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 9 

 

 

Table 47 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 9 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 134 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 10 

 

 

Table 48 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 10 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 135 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 11 

 

 

Table 49 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 11 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Table 50 - Model (A4, B4, C4) > Connections > Springs 

Longitudi
nal - 

Ground 
To 

Surface 
Body 12 

Longitudi
nal - 

Ground 
To 

Surface 
Body 13 

Longitudi
nal - 

Ground 
To 

Surface 
Body 14 

Longitud
inal - 

Ground 
To 

Surface 
Body 15

Longitudin
al - 

Ground To 
Surface 
Body 16 

Longitudin
al - 

Ground To 
Surface 
Body 17 

Longitudin
al - 

Ground To 
Surface 
Body 18 

Longitudin
al - 

Ground To 
Surface 
Body 19 

Longitudin
al - 

Ground To 
Surface 
Body 20 

Longitudin
al - 

Ground To 
Surface 
Body 21 

Longitudin
al - 

Ground To 
Surface 
Body 22 

State Fully Defined 
Graphics Properties

Visible Yes 
Definition

Type Longitudinal 
Spring 

Behavior Both 

Longitudinal 
Stiffness Tabular Data 

Longitudinal 
Damping 0. lbf·s/in 

Preload None 
Suppressed No 

Spring Length 12. in 
Scope

Scope Body-Ground 
Reference

Coordinate 
System Global Coordinate System 

Reference X 
Coordinate 18. in 0. in 

Reference Y 
Coordinate 120. in 108. in 96. in 84. in 72. in 60. 

in 
48. 
in 36. in 24. in 12. in 240. in 

Reference Z 
Coordinate 0. in 24. in 

Reference 
Location Defined 

Mobile
Scoping 
Method Geometry Selection 

Applied By Remote Attachment 
Scope 1 Face 
Body Surface Body 

Coordinate 
System Global Coordinate System 

Mobile X 
Coordinate 6. in 0. in 

Mobile Y 
Coordinate 120. in 108. in 96. in 84. in 72. in 60. 

in 
48. 
in 36. in 24. in 12. in 240. in 

Mobile Z 
Coordinate 0. in 12. in 

Mobile Location Defined 
Behavior Deformable 

Pinball Region 5. in 
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Figure 136 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 12 

 

 

Table 51 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 12 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 137 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 13 

 

 

Table 52 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 13 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 



 

261 

 
Figure 138 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 14 

 

 

Table 53 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 14 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 139 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 15 

 

 

Table 54 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 15 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 140 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 16 

 

 

Table 55 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 16 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 141 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 17 

 

 

Table 56 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 17 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 



 

265 

 
Figure 142 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 18 

 

 

Table 57 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 18 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 143 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 19 

 

 

Table 58 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 19 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 144 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 20 

 

 

Table 59 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 20 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 145 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 21 

 

 

Table 60 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 21 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 146 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 22 

 

 

Table 61 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 22 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Table 62 - Model (A4, B4, C4) > Connections > Springs 

Object 
Name 

Longitudin
al - 

Ground To 
Surface 
Body 23 

Longitudin
al - 

Ground To 
Surface 
Body 24 

Longitudin
al - 

Ground To 
Surface 
Body 25 

Longitudin
al - 

Ground To 
Surface 
Body 26

Longitudin
al - 

Ground To 
Surface 
Body 27

Longitudin
al - 

Ground To 
Surface 
Body 28

Longitudin
al - 

Ground To 
Surface 
Body 29

Longitudin
al - 

Ground To 
Surface 
Body 30 

Longitudin
al - 

Ground To 
Surface 
Body 31 

Longitudin
al - 

Ground To 
Surface 
Body 32

Longitudin
al - 

Ground To 
Surface 
Body 33

State Fully Defined 
Graphics Properties 

Visible Yes 
Definition 

Type Longitudinal 
Spring 

Behavior Both 

Longitudin
al Stiffness Tabular Data 

Longitudin
al 

Damping 
0. lbf·s/in 

Preload None 
Suppresse

d No 

Spring 
Length 12. in 9. in 

Scope 
Scope Body-Ground 

Reference 
Coordinate 

System Global Coordinate System 

Reference 
X 

Coordinate 
0. in -6. in 

Reference 
Y 

Coordinate 
216. in 192. in 168. in 144. in 120. in 96. in 72. in 48. in 24. in 249. in 237. in 

Reference 
Z 

Coordinate 
24. in 0. in 

Reference 
Location Defined 

Mobile 
Scoping 
Method Geometry Selection 

Applied By Remote Attachment 
Scope 1 Face 

Body Surface Body 
Coordinate 

System Global Coordinate System 

Mobile X 
Coordinate 0. in -6. in 

Mobile Y 
Coordinate 216. in 192. in 168. in 144. in 120. in 96. in 72. in 48. in 24. in 240. in 228. in 

Mobile Z 
Coordinate 12. in 0. in 

Mobile 
Location Defined 

Behavior Deformable 
Pinball 
Region 5. in 
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Figure 147 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 23 

 

 

Table 63 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 23 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 148 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 24 

 

 

Table 64 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 24 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 149 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 25 

 

 

Table 65 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 25 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 150 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 26 

 

 

Table 66 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 26 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 151 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 27 

 

 

Table 67 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 27 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 152 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 28 

 

 

Table 68 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 28 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 153 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 29 

 

 

Table 69 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 29 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 154 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 30 

 

 

Table 70 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 30 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 



 

279 

 
Figure 155 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 31 

 

 

Table 71 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 31 

Displacement [in] Force [lbf]
0. 0. 

0.25 292.82 
0.5 395.17 
0.75 447.28 
1. 478.85 

1.25 500.03 
1.5 515.22 
1.75 526.65 
2. 535.56 

2.25 542.7 
2.5 548.55 
2.75 553.43 
3. 557.57 

3.25 561.12 
3.5 564.19 
3.75 566.89 
4. 569.27 
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Figure 156 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 32 

 

 

Table 72 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 32 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 157 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 33 

 

 

Table 73 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 33 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Table 74 - Model (A4, B4, C4) > Connections > Springs 

Object 
Name 

Longitudin
al - 

Ground To 
Surface 
Body 34 

Longitudin
al - 

Ground To 
Surface 
Body 35 

Longitudin
al - 

Ground To 
Surface 
Body 36 

Longitudin
al - 

Ground To 
Surface 
Body 37

Longitudin
al - 

Ground To 
Surface 
Body 38

Longitudin
al - 

Ground To 
Surface 
Body 39

Longitudin
al - 

Ground To 
Surface 
Body 40

Longitudin
al - 

Ground To 
Surface 
Body 41 

Longitudin
al - 

Ground To 
Surface 
Body 42 

Longitudin
al - 

Ground To 
Surface 
Body 43

Longitudin
al - 

Ground To 
Surface 
Body 44

State Fully Defined 
Graphics Properties 

Visible Yes 
Definition 

Type Longitudinal 
Spring 

Behavior Both 

Longitudin
al Stiffness Tabular Data 

Longitudin
al 

Damping 
0. lbf·s/in 

Preload None 
Suppresse

d No 

Spring 
Length 9. in 

Scope 
Scope Body-Ground 

Reference 
Coordinate 

System Global Coordinate System 

Reference 
X 

Coordinate 
-6. in 

Reference 
Y 

Coordinate 
225. in 213. in 201. in 189. in 177. in 165. in 153. in 141. in 129. in 117. in 105. in 

Reference 
Z 

Coordinate 
0. in 

Reference 
Location Defined 

Mobile 
Scoping 
Method Geometry Selection 

Applied By Remote Attachment 
Scope 1 Face 

Body Surface Body 
Coordinate 

System Global Coordinate System 

Mobile X 
Coordinate -6. in 

Mobile Y 
Coordinate 216. in 204. in 192. in 180. in 168. in 156. in 144. in 132. in 120. in 108. in 96. in 

Mobile Z 
Coordinate 0. in 

Mobile 
Location Defined 

Behavior Deformable 
Pinball 
Region 5. in 
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Figure 158 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 34 

 

 

Table 75 – Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 34 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 159 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 35 

 

 

Table 76 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 35 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 160 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 36 

 

 

Table 77 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 36 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 161 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 37 

 

 

Table 78 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 37 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 



 

287 

 
Figure 162 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 38 

 

 

Table 79 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 38 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 163 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 39 

 

 

Table 80 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 39 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 164 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 40 

 

 

Table 81 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 40 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 165 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 41 

 

 

Table 82 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 41 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 166 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 42 

 

 

Table 83 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 42 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 167 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 43 

 

 

Table 84 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 43 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 168 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 44 

 

 

Table 85 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 44 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Table 86 - Model (A4, B4, C4) > Connections > Springs 

Object 
Name 

Longitudina
l - Ground 
To Surface 

Body 45 

Longitudina
l - Ground 
To Surface 

Body 46 

Longitudina
l - Ground 
To Surface 

Body 47 

Longitudina
l - Ground 
To Surface 

Body 48 

Longitudina
l - Ground 
To Surface 

Body 49 

Longitudina
l - Ground 
To Surface 

Body 50 

Longitudina
l - Ground 
To Surface 

Body 51 

Longitudina
l - Ground 
To Surface 

Body 52 
State Fully Defined 

Graphics Properties 
Visible Yes 

Definition 
Type Longitudinal 

Spring 
Behavior Both 

Longitudina
l Stiffness Tabular Data 

Longitudina
l Damping 0. lbf·s/in 

Preload None 
Suppresse

d No 

Spring 
Length 9. in 

Scope 
Scope Body-Ground 

Reference 
Coordinate 

System Global Coordinate System 

Reference 
X 

Coordinate 
-6. in 

Reference 
Y 

Coordinate 
93. in 81. in 69. in 57. in 45. in 33. in 21. in 9. in 

Reference 
Z 

Coordinate 
0. in 

Reference 
Location Defined 

Mobile 
Scoping 
Method Geometry Selection 

Applied By Remote Attachment 
Scope 1 Face 

Body Surface Body 
Coordinate 

System Global Coordinate System 

Mobile X 
Coordinate -6. in 

Mobile Y 
Coordinate 84. in 72. in 60. in 48. in 36. in 24. in 12. in 0. in 

Mobile Z 
Coordinate 0. in 

Mobile 
Location Defined 

Behavior Deformable 
Pinball 
Region 5. in 
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Figure 169 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 45 

 

 

Table 87 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 45 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 170 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 46 

 

 

Table 88 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 46 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 171 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 47 

 

 

Table 89 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 47 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 172 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 48 

 

 

Table 90 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 48 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 173 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 49 

 

 

Table 91 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 49 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 174 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 50 

 

 

Table 92 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 50 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 175 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 51 

 

 

Table 93 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 51 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Figure 176 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 52 

 

 

Table 94 - Model (A4, B4, C4) > Connections > Longitudinal - Ground To Surface Body 52 

Displacement [in] Force [lbf]
0. 0. 

0.25 1217.6 
0.5 1275.9 
0.75 1296.6 
1. 1307.2 

1.25 1313.6 
1.5 1317.9 
1.75 1321. 
2. 1323.4 

2.25 1325.2 
2.5 1326.7 
2.75 1327.9 
3. 1328.9 

3.25 1329.7 
3.5 1330.5 
3.75 1331.1 
4. 1331.6 
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Mesh 

Table 95 - Model (A4, B4, C4) > Mesh 

Object Name Mesh 
State Solved 

Display 
Display Style Body Color 
Defaults 

Physics Preference Mechanical 
Relevance 0 

Sizing 
Use Advanced Size Function On: Curvature 

Relevance Center Coarse 
Initial Size Seed Active Assembly 

Smoothing Medium 
Span Angle Center Coarse 

Curvature Normal Angle 5.0 ° 
Min Size 1.0 in 

Max Face Size 2.0 in 
Growth Rate Default 

Minimum Edge Length 58.1310 in 
Inflation 

Use Automatic Inflation None 
Inflation Option Smooth Transition 
Transition Ratio 0.272 

Maximum Layers 2 
Growth Rate 1.2 

Inflation Algorithm Pre 
View Advanced Options No 
Patch Conforming Options 

Triangle Surface Mesher Program Controlled 
Patch Independent Options 

Topology Checking No 
Advanced 

Number of CPUs for Parallel Part Meshing Program Controlled 
Shape Checking Standard Mechanical 

Element Midside Nodes Program Controlled 
Straight Sided Elements No 

Number of Retries Default (4) 
Extra Retries For Assembly Yes 

Rigid Body Behavior Dimensionally Reduced 
Mesh Morphing Disabled 
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Table 96 – Meshing Data 

Defeaturing 
Use Sheet Thickness for Pinch No 

Pinch Tolerance Default (0.90 in) 
Generate Pinch on Refresh No 

Sheet Loop Removal No 
Automatic Mesh Based Defeaturing On 

Defeaturing Tolerance Default (0.750 in) 
Statistics 

Nodes 5612 
Elements 5566 

Mesh Metric None 
Table 97 - Model (A4, B4, C4) > Mesh > Mesh Controls 

Object Name MultiZone Quad/Tri Method 
State Fully Defined 

Scope 
Scoping Method Geometry Selection 

Geometry 1 Body 
Definition 

Suppressed No 
Method MultiZone Quad/Tri 

Surface Mesh Method Program Controlled 
Element Midside Nodes Use Global Setting 

Free Face Mesh Type All Quad 
Advanced 

Preserve Boundaries Protected 
Mesh Based Defeaturing On 

Defeaturing Tolerance Default(0.75 in) 
Sheet Loop Removal No 

Minimum Edge Length 58.131 in 
Write ICEM CFD Files No 

 

 

Table 98 - Model (A4, B4, C4) > Imported Plies 

Object Name Imported Plies
State Solved 

Definition 
Type Imported Plies

Suppressed No 
Material 

Nonlinear Effects Yes 
Thermal Strain Effects Yes 

Graphics Properties 
Layer To Display All Layers 
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ModelingGroup.1 

ModelingPly.1 

P1__ModelingPly.1 

Table 99 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.1 > 

P1__ModelingPly.1 > P1L1__ModelingPly.1 

 

Object Name P1L1__ModelingPly.1
State No State 

Definition 
Name in Source P1L1__ModelingPly.1

ID in Source P1L1__ModelingPly.1
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
ModelingPly.2 

P1__ModelingPly.2 

Table 100 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.2 > 

P1__ModelingPly.2 > P1L1__ModelingPly.2 

 

Object Name P1L1__ModelingPly.2
State No State 

Definition 
Name in Source P1L1__ModelingPly.2

ID in Source P1L1__ModelingPly.2
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
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ModelingPly.3 

P1__ModelingPly.3 

Table 101 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.3 > 

P1__ModelingPly.3 > P1L1__ModelingPly.3 

 

Object Name P1L1__ModelingPly.3
State No State 

Definition 
Name in Source P1L1__ModelingPly.3

ID in Source P1L1__ModelingPly.3
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
 

ModelingPly.4 

P1__ModelingPly.4 

Table 102 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.4 > 

P1__ModelingPly.4 > P1L1__ModelingPly.4 

 

Object Name P1L1__ModelingPly.4
State No State 

Definition 
Name in Source P1L1__ModelingPly.4

ID in Source P1L1__ModelingPly.4
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
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ModelingPly.5 

P1__ModelingPly.5 

Table 103 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.5 > 

P1__ModelingPly.5 > P1L1__ModelingPly.5 

 

Object Name P1L1__ModelingPly.5
State No State 

Definition 
Name in Source P1L1__ModelingPly.5

ID in Source P1L1__ModelingPly.5
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
 

ModelingPly.6 

P1__ModelingPly.6 

Table 104 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.6 > 

P1__ModelingPly.6 > P1L1__ModelingPly.6 

 

Object Name P1L1__ModelingPly.6
State No State 

Definition 
Name in Source P1L1__ModelingPly.6

ID in Source P1L1__ModelingPly.6
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
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ModelingPly.7 

P1__ModelingPly.7 

Table 105 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.7 > 

P1__ModelingPly.7 > P1L1__ModelingPly.7 

 

Object Name P1L1__ModelingPly.7
State No State 

Definition 
Name in Source P1L1__ModelingPly.7

ID in Source P1L1__ModelingPly.7
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
 

ModelingPly.8 

P1__ModelingPly.8 

Table 106 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.8 > 

P1__ModelingPly.8 > P1L1__ModelingPly.8 

 

Object Name P1L1__ModelingPly.8
State No State 

Definition 
Name in Source P1L1__ModelingPly.8

ID in Source P1L1__ModelingPly.8
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
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ModelingPly.9 

P1__ModelingPly.9 

Table 107 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.9 > 

P1__ModelingPly.9 > P1L1__ModelingPly.9 

Object Name P1L1__ModelingPly.9
State No State 

Definition 
Name in Source P1L1__ModelingPly.9

ID in Source P1L1__ModelingPly.9
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
ModelingPly.10 

P1__ModelingPly.10 

Table 108 - Model (A4, B4, C4) > Imported Plies > ModelingGroup.1 > ModelingPly.10 > 

P1__ModelingPly.10 > P1L1__ModelingPly.10 

Object Name P1L1__ModelingPly.10
State No State 

Definition 
Name in Source P1L1__ModelingPly.10

ID in Source P1L1__ModelingPly.10
Material Epoxy E-Glass UD 

Thickness 0.1 in 
Angle 0. ° 

Number of Elements 5566. 
 
Static Structural (B6) 

Table 109 - Model (A4, B4, C4) > Analysis 

Object Name Static Structural (B6)
State Solved 

Definition 
Physics Type Structural 

Analysis Type Static Structural 
Solver Target Mechanical APDL 

Options 
Environment Temperature 71.6 °F 

Generate Input Only No 
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Table 110 - Model (A4, B4, C4) > Static Structural (B6) > Analysis Settings 

Object Name Analysis Settings
State Fully Defined 

Step Controls 
Number Of Steps 1. 

Current Step Number 1. 
Step End Time 1. s 

Auto Time Stepping Program Controlled 
Solver Controls 

Solver Type Program Controlled 
Weak Springs Program Controlled 

Solver Pivot Checking Program Controlled 
Large Deflection Off 

Inertia Relief Off 
Restart Controls 

Generate Restart Points Program Controlled 
Retain Files After Full Solve No 

Nonlinear Controls 
Newton-Raphson Option Program Controlled 

Force Convergence Program Controlled 
Moment Convergence Program Controlled 

Displacement Convergence Program Controlled 
Rotation Convergence Program Controlled 

Line Search Program Controlled 
Stabilization Off 

Output Controls 
Stress Yes 
Strain Yes 

Nodal Forces No 
Contact Miscellaneous No 
General Miscellaneous No 

Store Results At All Time Points 
Analysis Data Management 

Solver Files Directory E:\FRP\1 - FE Models\FRP305 
Future Analysis None 

Scratch Solver Files 
Directory  

Save MAPDL db No 
Delete Unneeded Files Yes 

Nonlinear Solution Yes 
Solver Units Active System 

Solver Unit System Bin 
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Table 111 - Model (A4, B4, C4) > Static Structural (B6) > Loads 

Object Name Displacement Force
State Fully Defined 

Scope 
Scoping Method Geometry Selection 

Geometry 1 Edge 
Definition 

Type Displacement Force 
Define By Components 

Coordinate System Global Coordinate System 
X Component 4. in (ramped) 0. lbf (ramped) 
Y Component Free -50000 lbf (ramped) 
Z Component Free 0. lbf (ramped) 

Suppressed No 
 

 
Figure 177 - Model (A4, B4, C4) > Static Structural (B6) > Displacement 

 

 
Figure 178 - Model (A4, B4, C4) > Static Structural (B6) > Force 
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Solution (B7) 

Table 112 - Model (A4, B4, C4) > Static Structural (B6) > Solution 

 

Object Name Solution (B7)
State Solved 

Adaptive Mesh Refinement 
Max Refinement Loops 1. 

Refinement Depth 2. 
Information 

Status Done 
Post Processing 

Calculate Beam Section Results No 
 

 

Table 113 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Solution 

Information 

Object Name Solution Information 
State Solved 

Solution Information 
Solution Output Solver Output 

Newton-Raphson Residuals 0 
Update Interval 2.5 s 
Display Points All 

FE Connection Visibility 
Activate Visibility Yes 

Display All FE Connectors 
Draw Connections Attached To All Nodes 

Line Color Connection Type 
Visible on Results No 

Line Thickness Single 
Display Type Lines 
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Table 114 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Results 

Object Name Maximum Principal 
Stress 

Maximum Shear 
Stress Directional Deformation

State Solved 
Scope 

Scoping Method Geometry Selection 
Geometry All Bodies 

Sub Scope By Layer   
Layer Entire Section   

Position Top/Bottom   
Definition 

Type Maximum Principal 
Stress 

Maximum Shear 
Stress Directional Deformation

By Time 
Display Time Last 

Calculate Time 
History Yes 

Identifier 
Suppressed No 
Orientation   X Axis 

Coordinate System   Global Coordinate 
System 

Integration Point Results 
Display Option Averaged   

Average Across 
Bodies No   

Results 
Minimum -13.23 psi 13.439 psi -2.3313 in 
Maximum 1544.7 psi 1595.2 psi 4. in 

Information 
Time 1. s 

Load Step 1 
Substep 1 

Iteration Number 5 
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Figure 179 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Maximum 

Principal Stress 

 

 

 

Table 115 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Maximum Principal 

Stress 

Time [s] Minimum [psi] Maximum [psi]
1. -13.23 1544.7 
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Figure 180 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Maximum Shear 

Stress 

 

 

 

Table 116 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Maximum Shear 

Stress 

Time [s] Minimum [psi] Maximum [psi]
1. 13.439 1595.2 
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Figure 181 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Directional 

Deformation 

 

 

 

Table 117 - Model (A4, B4, C4) > Static Structural (B6) > Solution (B7) > Directional 

Deformation 

Time [s] Minimum [in] Maximum [in]
1. -2.3313 4. 
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Material Data  

Epoxy E-Glass UD 

Table 118 - Epoxy E-Glass UD > Constants 

Density 7.2255e-002 lbm in^-3
Table 119 - Epoxy E-Glass UD > Orthotropic Elasticity 

Temper
ature F 

Young's 
Modulus 

X 
direction 

psi 

Young's 
Modulus 

Y 
direction 

psi 

Young's 
Modulus 

Z 
direction 

psi

Poiss
on's 

Ratio 
XY 

Poiss
on's 

Ratio 
YZ 

Poiss
on's 

Ratio 
XZ 

Shear 
Modulus 

XY psi 

Shear 
Modulus 

YZ psi 

Shear 
Modulus 

XZ psi

 
6.5267e

+006 
1.4504e

+006 
1.4504e

+006 0.3 0.4 0.3 7.2519e
+005 

5.5784e
+005 

7.2519e
+005 

 
Table 120 - Epoxy E-Glass UD > Orthotropic Strain Limits 

Temperatu
re F 

Tensile 
X 

directio
n 

Tensile 
Y 

directio
n 

Tensile 
Z 

directio
n 

Compressi
ve X 

direction 

Compressi
ve Y 

direction 

Compressi
ve Z 

direction 

She
ar 

XY 

She
ar 

YZ 

She
ar 

XZ 

 
2.44e-

002 
3.5e-
003 

3.5e-
003 -1.5e-002 -1.2e-002 -1.2e-002 1.6e-

002 
1.2e-
002 

1.6e-
002

 

Table 121 - Epoxy E-Glass UD > Orthotropic Stress Limits 

Temperat
ure F 

Tensile X 
direction 

psi 

Tensil
e Y 

directi
on psi 

Tensil
e Z 

directi
on psi

Compressi
ve X 

direction 
psi

Compressi
ve Y 

direction 
psi

Compressi
ve Z 

direction 
psi 

She
ar 

XY 
psi 

She
ar 

YZ 
psi

She
ar 

XZ 
psi

 
1.5954e+0

05 5076.3 5076.3 -97900 -17405 -17405 1160
3 

669
4 

1160
3 

 

Table 122 - Epoxy E-Glass UD > Puck Constants 

Temperature 
F 

Compressive 
Inclination XZ 

Compressive 
Inclination YZ 

Tensile 
Inclination XZ 

Tensile 
Inclination YZ 

0.25 0.2 0.3 0.2 
 

Table 123 - Epoxy E-Glass UD > Additional Puck Constants 

Interface Weakening Factor Degradation Parameter s Degradation Parameter M 
0.8 0.5 0.5 

Table 124 - Epoxy E-Glass UD > Tsai-Wu Constants 

Temperature F Coupling Coefficient XY Coupling Coefficient YZ Coupling Coefficient XZ 
-1 -1 -1 
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0 -30 30 -3
0 -30 30 -3
0 -40 40 -4
0 -40 40 -4
0 -40 40 -4
0 -40 40 -4
0 -40 40 -4
0 -40 40 -4
0 -40 40 -4

ta 

project are:
7 - P8 - P9 - P

nes the name
6 P7 P8 P

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

10 10 -10
10 10 -10
10 10 -10
10 10 -10
10 10 -10
10 10 -10
10 10 -10
10 10 -10
10 10 -10
10 10 -10
20 20 -20
20 20 -20
20 20 -20
20 20 -20
20 20 -20
20 20 -20
20 20 -20
20 20 -20
20 20 -20
20 20 -20
30 30 -30
30 30 -30
30 30 -30
30 30 -30
30 30 -30
30 30 -30
30 30 -30
30 30 -30
30 30 -30
30 30 -30
40 40 -40
40 40 -40
40 40 -40
40 40 -40
40 40 -40
40 40 -40
40 40 -40
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P10 P11 P12 

e of the colum
P9 P10 P11

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

10 -10 10
10 -10 10
10 -10 10
10 -10 10
10 -10 10
10 -10 10
10 -10 10
10 -10 10
10 -10 10
10 -10 10
20 -20 20
20 -20 20
20 -20 20
20 -20 20
20 -20 20
20 -20 20
20 -20 20
20 -20 20
20 -20 20
20 -20 20
30 -30 30
30 -30 30
30 -30 30
30 -30 30
30 -30 30
30 -30 30
30 -30 30
30 -30 30
30 -30 30
30 -30 30
40 -40 40
40 -40 40
40 -40 40
40 -40 40
40 -40 40
40 -40 40
40 -40 40

P17 P18 -P1

mns by refer
P12 P17 P1

0 4 -1
0 4 -2
0 4 -3
0 4 -4
0 4 -5
0 4 -6
0 4 -7
0 4 -8
0 4 -9
0 4 -10

-10 4 -1
-10 4 -2
-10 4 -3
-10 4 -4
-10 4 -5
-10 4 -6
-10 4 -7
-10 4 -8
-10 4 -9
-10 4 -10
-20 4 -1
-20 4 -2
-20 4 -3
-20 4 -4
-20 4 -5
-20 4 -6
-20 4 -7
-20 4 -8
-20 4 -9
-20 4 -10
-30 4 -1
-30 4 -2
-30 4 -3
-30 4 -4
-30 4 -5
-30 4 -6
-30 4 -7
-30 4 -8
-30 4 -9
-30 4 -10
-40 4 -1
-40 4 -2
-40 4 -3
-40 4 -4
-40 4 -5
-40 4 -6
-40 4 -7

3 - MaP15 - M

ence to the p
8 P13
10000 675.3
20000 709.6
30000 985.6
40000 1262.
50000 1544.
60000 1827.
70000 2109.
80000 2391.
90000 2672.
00000 2954.
10000 695.2
20000 718.1
30000 990.3
40000 1274.
50000 1563.
60000 1853.
70000 2145.
80000 2436.
90000 2728.4
00000 3022.
10000 891.44
20000 904.5
30000 1042.
40000 1307
50000 1620.
60000 1934.
70000 2248.
80000 2562.
90000 2880
00000 3197.4
10000 1054.
20000 1008.
30000 1110.4
40000 1359.
50000 1691.4
60000 2024.
70000 2361.
80000 2699.
90000 3037.
00000 3375.
10000 1218.
20000 1100.
30000 1138.
40000 1375.
50000 1719.
60000 2066.
70000 2413.

MaxiP16 - Par

parameters.
P15

786 692.582
636 849.341
399 1017.15
273 1287.41
671 1595.16
106 1902.9
306 2210.
237 2518.31
898 2825.80
329 3133.21
113 896.310
101 1062.48
566 1230.64
363 1433.6
752 1678.34
822 1974.00
075 2291.80
122 2609.44
448 2926.91
699 3244.24
478 1076.99
936 1256.02
994 1417.31

7.39 1632.89
842 1887.51
742 2144.41
674 2441.49
671 2778.07

0.11 3114.45
475 3450.65
122 1185.49
024 1353.32
438 1574.94
539 1812.04
477 2070.44
239 2330.60
139 2647.99
166 3010.25
252 3373.62
368 3736.81
908 1224.2
363 1464.62
582 1702.01
039 1937.53
869 2197.37
234 2489.84
387 2880.11

rameter.1

P16
28 0.153646
14 0.190338
57 0.23509
18 0.27657
66 0.318598
98 0.369125
.7 0.422244
11 0.47639
09 0.530417
14 0.587486
09 0.167289
85 0.212795
47 0.25204
67 0.291004
45 0.332616
02 0.37529
06 0.429352
47 0.483326
18 0.537216
45 0.59268
93 0.175075
22 0.220328
13 0.260709
91 0.301958
12 0.346578
11 0.391274
98 0.443432
78 0.499774
53 0.556051
52 0.612274
99 0.171084
25 0.2187
44 0.266223
44 0.313405
43 0.363818
07 0.41434
91 0.467133
53 0.527322
24 0.587444
12 0.647536
22 0.161584
28 0.218547
19 0.274066
32 0.331007
76 0.390386
45 0.449565
18 0.514413
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DP 47 12 6 40 -40 40 -40 40 -40 40 -40 40 -40 4 -80000 2761.006 3271.173 0.582101
DP 48 12 6 40 -40 40 -40 40 -40 40 -40 40 -40 4 -90000 3123.129 3662.002 0.650194
DP 49 12 6 40 -40 40 -40 40 -40 40 -40 40 -40 4 -100000 3488.363 4052.631 0.718584
DP 50 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -10000 1332.383 1266.806 0.159632
DP 51 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -20000 1003.554 1496.805 0.224124
DP 52 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -30000 1041.56 1718.318 0.293192
DP 53 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -40000 1374.439 1938.566 0.367468
DP 54 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -50000 1711.051 2247.543 0.450592
DP 55 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -60000 2064.977 2655.505 0.533724
DP 56 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -70000 2420.132 3065.565 0.616809
DP 57 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -80000 2775.562 3475.31 0.699824
DP 58 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -90000 3131.174 3884.816 0.782788
DP 59 12 6 50 -50 50 -50 50 -50 50 -50 50 -50 4 -100000 3486.909 4294.09 0.865704
DP 60 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -10000 1375.386 1213.727 0.169273
DP 61 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -20000 1180.394 1411.263 0.240992
DP 62 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -30000 1242.292 1592.51 0.334292
DP 63 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -40000 1499.58 1881.444 0.4308
DP 64 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -50000 1858.251 2283.648 0.528866
DP 65 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -60000 2221.041 2689.375 0.626856
DP 66 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -70000 2583.904 3096.4 0.724747
DP 67 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -80000 2946.672 3503.005 0.822519
DP 68 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -90000 3309.402 3909.395 0.920218
DP 69 12 6 60 -60 60 -60 60 -60 60 -60 60 -60 4 -100000 3672.059 4315.506 1.017844
DP 70 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -10000 1368.986 1095.497 0.16568
DP 71 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -20000 1313.006 1238.354 0.268868
DP 72 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -30000 1517.175 1426.076 0.369426
DP 73 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -40000 1733.287 1779.304 0.47342
DP 74 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -50000 1977.629 2147.368 0.579269
DP 75 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -60000 2226.103 2517.986 0.684975
DP 76 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -70000 2476.345 2891.165 0.790515
DP 77 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -80000 2802.427 3263.976 0.895886
DP 78 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -90000 3134.651 3636.614 1.001151
DP 79 12 6 70 -70 70 -70 70 -70 70 -70 70 -70 4 -100000 3472.259 4008.971 1.10631
DP 80 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -10000 1221.944 918.6146 0.178134
DP 81 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -20000 1240.034 1018.343 0.281019
DP 82 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -30000 1538.817 1264.475 0.379158
DP 83 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -40000 1850.344 1563.259 0.481044
DP 84 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -50000 2184.19 1876.707 0.586059
DP 85 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -60000 2521.867 2191.439 0.690884
DP 86 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -70000 2861.236 2506.56 0.795494
DP 87 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -80000 3201.281 2824.541 0.899895
DP 88 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -90000 3541.963 3143.042 1.004167
DP 89 12 6 80 -80 80 -80 80 -80 80 -80 80 -80 4 -100000 3882.837 3461.382 1.108304
DP 90 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -10000 847.6283 717.8108 0.181785
DP 91 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -20000 880.9169 874.4762 0.282454
DP 92 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -30000 1230.726 1082.321 0.376281
DP 93 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -40000 1605.315 1372.318 0.46951
DP 94 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -50000 1994.967 1697.28 0.568019
DP 95 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -60000 2389.785 2027.409 0.667649
DP 96 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -70000 2787.547 2360.481 0.767204
DP 97 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -80000 3187.17 2695.417 0.866531
DP 98 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -90000 3588.091 3031.649 0.965715
DP 99 12 6 90 -90 90 -90 90 -90 90 -90 90 -90 4 -100000 3989.929 3368.8 1.064951  
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