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Peer-to-peer information sharing has fundamentally changed customer decision-

making process. Recent developments in information technologies have enabled 

digital sharing platforms to influence various granular aspects of the information 

sharing process. Despite the growing importance of digital information sharing, little 

research has examined the optimal design choices for a platform seeking to maximize 

returns from information sharing. My dissertation seeks to fill this gap.  Specifically, I 

study novel interventions that can be implemented by the platform at different stages 

of the information sharing. In collaboration with a leading for-profit platform and a 

non-profit platform, I conduct three large-scale field experiments to causally identify 

the impact of these interventions on customers’ sharing behaviors as well as the 

sharing outcomes.  

 

The first essay examines whether and how a firm can enhance social contagion by 

simply varying the message shared by customers with their friends. Using a large 



  

randomized field experiment, I find that i) adding only information about the sender’s 

purchase status increases the likelihood of recipients’ purchase; ii) adding only 

information about referral reward increases recipients’ follow-up referrals; and iii) 

adding information about both the sender’s purchase as well as the referral rewards 

increases neither the likelihood of purchase nor follow-up referrals. I then discuss the 

underlying mechanisms. 

 

The second essay studies whether and how a firm can design unconditional incentive 

to engage customers who already reveal willingness to share. I conduct a field 

experiment to examine the impact of incentive design on sender’s purchase as well as 

further referral behavior. I find evidence that incentive structure has a significant, but 

interestingly opposing, impact on both outcomes. The results also provide insights 

about senders’ motives in sharing. 

 

The third essay examines whether and how a non-profit platform can use mobile 

messaging to leverage recipients’ social ties to encourage blood donation. I design a 

large field experiment to causally identify the impact of different types of information 

and incentives on donor’s self-donation and group donation behavior. My results 

show that non-profits can stimulate group effect and increase blood donation, but 

only with group reward. Such group reward works by motivating a different donor 

population. 
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Chapter 1: Overview 
 

Recent advances in digital technologies have provided firms unprecedented ability to 

monitor consumer behavior and provide information across all stages of marketing funnel. 

With the availability of rich data, strong processing power and new intervention channels, 

centralized information provision approaches -- such as search advertising, context-based 

display ads, personalized email, tailored messaging, hyper-localized mobile targeting -- 

have improved dramatically. In the era of ‘Big Data’, firms can increasingly deliver ‘the 

right information to the right person at the right time’ in a directed and controlled fashion. 

Despite these improvements, an alternative paradigm of information provision – peer-

to-peer information sharing -- remains of central importance in customer decision-making 

process. Rather than from a centralized and controlled source, information in peer-to-peer 

sharing is served by friends and peers of the customers that are dispersed in the crowd. 

Such a decentralized information provision approach may outperform or complement 

direct information provision in at least three ways: 1) (knowledge advantage) due to 

disperse nature of knowledge (Hayek 1945), peers of the customer often have more and 

different information about the the preferences of their social connections than the firm; 

hence the information they provide is often more relevant to the customer; 2) (persuasion 

advantage) the information from peers is usually more credible and persuasive; 3) (social 

advantage) in the case of consuming products with network externality, information 

sharing among peers essentially serves as a way for group coordination and could lead to 

collective consumption with higher surplus. Though peer to peer information sharing 
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offers various desirable properties, firms have had little control over this process in 

traditional settings. 

With the wide spread growth of digital technologies, a large volume and variety of 

information is now shared through digital sharing platforms in the form of website-

mediated emails, social media posts, and mobile messages. An interesting aspect of the 

digital information sharing is that while consumers are able to quickly disseminate online 

word of mouth about firms and products, firms are also increasingly able to mediate these 

interactions among customers. Firms have transitioned from being passive observers of 

information sharing to becoming more active mediators and moderators (Godes et al 

2005). Today’s technologies provide firms unprecedented capacity to mediate and control 

various granular aspects of the information sharing process including - the motivations of 

the referrers, the choice and recipients, and the message, among others. Firms now could 

engineer digital sharing platforms to amplify the advantages of information sharing and 

create social contagion. For the first time, firms can apply centralized interventions on 

decentralized sharing process thus enjoy the benefits of the both information provision 

paradigm.  

Despite the importance of information sharing and newly available interventions, 

little research has been done on how firms can strategically use and impact them. This 

represents an exciting research opportunity (Godes et.al. 2005). In particular, there are 

very few studies that have examined the optimal design choices for a firm seeking to 

maximize returns from information sharing. My dissertation seeks to fill this gap. 

Specifically, my dissertation studies novel interventions that can be implemented by 

firms on digital sharing platform (for example, interventions in the form of message 
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design, incentive design, and group rewards) at different stages of the information sharing 

process. In collaboration with a leading for-profit platform and a non-profit platform, I 

combine large-scale field experiments with big data to causally identify the impact of 

these interventions on customers’ sharing behaviors as well as the sharing outcomes.  In 

addition to identification of main effect, the exogenous variation from experiment and the 

rich heterogeneity in big data allows me to infer and test underlying mechanism at work. 

In this way, my dissertation will also help build a better understanding on the antecedents 

and consequence of information sharing 

The three essays are summarized as following: the first essay examines whether and 

how a firm can enhance social contagion by simply varying the message shared by 

customers with their friends. I focus on two key components of information contained in 

the messages – information about the sender’s purchase status prior to referral, and 

information about the existence of referral rewards – and their impacts on the recipient’s 

purchase decision and further referral behavior. In collaboration with an online daily deal 

platform I design and conduct a large scale randomized field experiment to identify the 

effect of each message component, as well as the interaction effects between them, in 

creating social contagion. I find that small variations in message content can have a 

significant impact on both recipient’s purchase and referral behaviors. Specifically, I find 

that i) adding only information about the sender’s purchase status increases the likelihood 

of recipients’ purchase, but has no impact on follow-up referrals; ii) adding only 

information about referral reward increases recipients’ follow-up referrals, but has no 

impact on purchase likelihood; and iii) adding information about both the sender’s 

purchase as well as information about the referral rewards increases neither the likelihood 
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of purchase or follow-up referrals. The study also examines the underlying mechanisms 

(i.e. social learning and social utility) that drive social contagion by exploiting the rich 

heterogeneity in product, recipient, sender and social tie characteristics. 

The message design intervention is implemented to influence recipients’ behavior 

only after the sender has organically initiated the shares. The firm could also take a more 

active role and engage senders when they reveal willingness to share. The second essay 

studies whether and how a firm can uncover the (self-, other-, or group-regarding) motive 

underlying an individual’s share, and design novel incentives (e.g. shareable promo code) 

to influence the individual’s purchase and further sharing decision. Specifically, a large 

number of customers share product information with each other everyday. While such 

sharing indicates the purchase intent of either sender or recipient (or both), most of these 

‘shares’ do not lead to successful conversions. With increasing availability of data on 

sharing traffic, as well as the ability to process such data in real time, firms can now 

monetize the sharing traffic by targeting customers in the share. In collaboration with an 

online daily deal platform, I design and conduct a large scale field experiment to examine 

the impact of incentive design on sender’s purchase as well as further referral behaviors 

by randomly assigning more than 20,000 promotional emails to senders who shared but 

did not purchase. I find evidence that incentive structure has a significant, but 

interestingly opposing, impact on both outcomes; ii) the firm can customize incentives 

based on senders’ sharing motives predicted from their behavioral traits. 

While the first two studies focus on intervention on individuals who have already 

expressed willingness to share, it is also equally interesting to learn how firms could 

motivate individual to share information at the first place. Specifically, my third essay 
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examines how non-profits can leverage mobile messaging and design novel incentives to 

motivate donors to coordinate amongst themselves offline and donate in a group. I design 

a large field experiment to causally identify the impact of different types of information 

and incentives on donor’s self-donation and group donation behavior. The results show 

that 1) both individual reward and group reward have an positive effect on blood 

donation, but only group reward increase group donation significantly; 2) donors who 

donate in a group donate significantly more blood; 3) group reward is working through a 

novel mechanisms and motivating a different donor population from that of individual 

reward. In summary, the results suggest that non-profits can stimulate group effect and 

increase blood donation, but only with appropriate economic incentives.	  

Overall, the findings from the three studies will provide valuable insights for 

platforms and social enterprises on how to engineer digital platforms to create social 

contagion. The rich data from randomized experiments and complementary sources 

(archive and survey) also allows me to test the underlying mechanism at work. In this 

way, my dissertation provides both managerial implication and theoretical contribution to 

the phenomenon of peer-to-peer information sharing.	  
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Chapter 2:  
Essay 1 -- Creating Social Contagion through Firm-Mediated 
Message Design: Evidence from a Randomized Field 
Experiment 
 
 
2.1. Introduction 
Online social interactions in the form of website-mediated emails, social media posts, and 

mobile messages, are becoming increasingly important and have been studied extensively 

(Godes et al. 2005, Trusov et al. 2009, Schmitt et al. 2011, Skiera et al. 2014, Berger 

2014, Aral and Walker. 2011a, 2012, Bapna and Umyarov 2014). An interesting aspect of 

the online setting is that while consumers are able to quickly disseminate online word of 

mouth about firms and products, firms are also increasingly able to mediate these 

interactions among customers. Firms have transitioned from being passive observers and 

moderators to becoming more active mediators (Godes et al. 2005) of online social 

interactions and referrals.  

An important element of online social interactions and the primary medium by which 

social influence is transmitted is the message that is shared between senders and 

recipients. In the case of “firm-mediated messaging” among users, while the sender can 

choose the recipients with whom she shares the message, the firm nevertheless, has the 

ability to control several aspects of the message. Such firm-mediated messaging is 

increasingly the norm in a large number of online websites, retailers, and social platforms. 

Despite the increasing use of such mechanisms by firms online, there is very little 

understanding of how different messages impact social contagion. Given the ability of the 

firm to partially control the content of the message that is shared between the sender and 

the recipient, my study seeks to examine whether and how a firm can enhance social 
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contagion, by simply varying the message shared by customers with their social 

connections. 

Identifying the effect of message content on social contagion (recipient’s purchase 

and further referrals) has been traditionally difficult for two reasons: first, the content of 

the message in interpersonal communications is usually unobservable to researchers 

(Godes et al. 2005); second, and probably more fundamental, is the issue of endogeneity 

(Hartmann et al. 2008), i.e. content of the message may be correlated with the tie strength, 

the characteristics of the recommended product as well as external incentives, as 

interpersonal communications are often strategic (Crawford & Sobel 1982). Several 

approaches for identifying peer effects have been proposed, including dynamic matched 

sampling (Aral.et.al. 2009), structural models (Ghose and Han 2010) and instrumental 

variables (Tucker 2008). However, most of above methods are not appropriate to study 

the causal impact of message design on referral outcomes because of unobserved data 

and potential endogeneity. I therefore design and conduct a large-scale randomized field 

experiment to test the causal impact of message design on social contagion.  

I focus on two key components of information contained in the message – 

information about the sender’s purchase of the product prior to referral, and information 

about the existence of monetary reward for referrals – and their impacts on two key 

outcomes – the recipient’s purchase decision, and the recipient’s further referrals (see 

Figure 1). In collaboration with a leading daily deal platform in the US, I design a 

randomized field experiment to study the causal impact of each message component, as 

well as their interaction effects, in creating social contagion. I create four versions of the 

message by including or excluding each message component, and randomly assign the 
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shared messages into one of these four variants (see Figure 2).  I find that small variations 

in the message content can have large impacts on both recipient’s purchases and referral 

behaviors. The results are both statistically and economically significant, suggesting that 

a minor change in message design at zero cost can potentially have a substantial impact 

on customer behaviors and firm’s profits. Specifically, I find that i) adding information 

about the sender’s purchase status increases the likelihood of recipients’ purchases by 

more than 15%, but has no impact on follow-up referrals; and ii) adding information 

about the referral reward increases recipients’ follow-up referrals by more than 60%, but 

has no impact on purchase likelihood; iii) when the two components of information are 

made available, surprisingly, neither purchase likelihood nor follow-up referrals increase. 

The negative interaction effect between the two components highlights a potential 

tradeoff faced by the firm in designing the message: should the firm increase adoption or 

enhance diffusion? Detailed analysis reveals that firms should design messages that can 

increase adoption when baseline adoption rate is relatively low (as in my case), but may 

choose message that encourages diffusion when baseline adoption rate is relatively high 

(e.g. free products, content and services). My findings also indicate that implementation 

of the optimal message design (with sender’s purchase status) can lead to a significant 

increase in net profits, even after accounting for the cost of referral rewards. 

I then unpack the black box to investigate the underlying mechanisms at work. Prior 

literature (Zhang 2010, Aral et al. 2011) suggests two primary mechanisms – social 

learning, and social utility (or local network effects) -- may be at work. I am able to 

distinguish between these two underlying mechanisms by exploiting the rich 

heterogeneity in product, sender, recipient, and social tie characteristics. In the process, 
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my study not only contributes to examining whether message design can enhance social 

contagion, but also sheds light on the underlying mechanisms at work, in line with the 

recent call by researchers (Iyengar et al. 2011b, Godes 2011, Aral 2011) who highlight 

the need to move from understanding “whether” to “why” in social contagion research. 

Information about the sender’s purchase of the deal serves as a social learning cue 

and such information could positively influence the recipient’s belief about the quality of 

the product or service, and consequently increase her likelihood of purchase. I find that 

this is indeed the case for recipients with less experience as compared to those with 

greater experience, for less popular deals as compared to more popular ones, and for 

purchases at early stage of product sales cycle as compared to those in later stages – 

instances where information gleaned from the sender’s purchase status is more valuable. I 

also find that, it is under these same conditions characterized by higher uncertainty, 

adding information about the presence of sharing rewards attenuates the positive effects 

of sender’s purchase information.  

Information about the sender’s purchase status could also serve another important 

purpose: for social products that are characterized by positive local network effects (e.g. 

social events), knowledge about a friend’s purchase of a product/service could provide 

additional utility to the recipient and increase her likelihood of purchase. I find this is 

indeed the case for social products as compared to stand-alone products, indicating the 

role of social utility in driving conversion.  

My empirical findings suggest that both mechanisms are at play, social utility, in the 

case of social products/services, and social learning in instances of higher uncertainty. 

Identifying these different underlying mechanisms is not only of theoretical importance 
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but also of practical value as firms can adopt alternative mechanisms to drive conversions 

depending on whether social learning or social utility is at work.  

Identifying optimal design of firm-mediated message at an aggregate level is a 

valuable endeavor, but not the end in itself. With the availability of large amount of data 

on the behaviors of senders and recipients and their historical interactions, as well as the 

ability to process requests in real time, firms can actually personalize firm-mediated 

messages at the product level or even at an individual level. Thus, it is crucial to identify 

potential moderators at various levels. While personalization is a common practice in the 

context of firm-customer interactions, personalization of firm-mediated customer-

customer social interaction is still in its infancy. To investigate its potential, I further 

explore the heterogeneity in sender characteristics as well as social tie characteristics, in 

additional to the product and recipient characteristics discussed above. I find that both 

sender characteristics (for instance, the target-iveness of the share) and social tie 

characteristics (for instance, the reciprocity of historical sharing) strongly moderate the 

effect of message design on social contagion. 

Finally, I examine the welfare implications of message design. While social learning 

may lead to more purchases and benefit the seller, it may nevertheless, lead to irrational 

herding and harm customers. On the other hand, social utility is always welfare 

enhancing. Using customer feedback data from email surveys, I find evidence that 

message design enhances customer experience in general, and especially so for social 

products. 

My study is among the first to analyze the potential of firm-mediated messaging and 

the findings of the study not only add to our understanding of the role of different 
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messages on referral outcomes, but also provides valuable guidelines for optimal design 

of such information sharing mechanisms at an aggregate level as well as a more granular 

level. 

2.2. Related Research 
There is a growing literature on social interactions (see Godes et al 2005, Berger 2014, 

Libai et al. 2011 and Hartmann et al. 2008 for excellent reviews) and my study is closely 

related to three streams of research that spans marketing, information systems and 

economics, among others.  

The first stream of research examines the causal effect of peer influence. Researchers 

have used secondary data (Aral et al. 2009), lab experiments (Asch 1951), simulations 

(Goldenberg et al. 2001), and field experiments (Cai 2014, Miller and Mobarak 2014) to 

study the effects of peer influence across a wide variety of settings. Observational studies 

(e.g. using propensity score matching or instrumental variables) need to separate peer 

influence from homophily (Ma et al. 2014), marketing efforts (Van Den Bulte and Lilien 

2001), simultaneity (Hartmann et.al. 2008), and often have difficulty in cleanly 

identifying influence as well as underlying mechanisms (Manski 1993). Such problems 

are even more acute for my focal research questions, as researchers usually cannot 

observe the message content in interpersonal communications. More importantly, the 

choice of message content is fundamentally endogenous (as it can be correlated with 

social-tie characteristics, sender characteristics, and product characteristics, among 

others). An emerging stream of research has used field experiments to separate social 

influence from homophily (Aral and Walker 2011a, Bapna and Umyarov 2014), and to 

identify the impact of specific drivers of social influence (Aral and Walker 2012, 2014). I 

complement this literature and leverage a large-scale randomized field experiment to 
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identify the effect of message design on social contagion. While previous experiment has 

focused on creating exogenous variation on sender’s behavior such as adoption (Bapna 

and Umyarov 2014) and sharing (Aral and Walker 2011), I devise a novel randomization 

approach and create exogenous variation at more granular level (i.e. message content), 

conditional on sender’s organic adoption and sharing decision. I also demonstrate how 

firms (such as the daily deal platform) can utilize such field experiments to identify 

optimal message design. 

Previous studies on peer influence (Aral et al. 2012, 2014, Iyengar et al. 2011a, Bapna 

and Umyarov 2014) have mostly focused on the effect of other’s adoption on one’s own 

adoption decision. However, at a more granular level, such influence is mediated by 

messages (online or offline WOM, or observational learning). My study, with its primary 

focus on firm-mediated messaging, extends the literature on peer influence by identifying 

the incremental contribution of different “components” of a message on social contagion 

outcomes. By varying different features within a message, I am able to decompose social 

influence at the component level. In addition to the main effects, the wide range of 

product characteristics included in my study also enables me to differentiate between the 

two key mechanisms of social contagion: social learning (wherein the recipient infers the 

high quality of products from sender’s purchase) and social utility or local network 

effects (wherein the recipient gets additional utility from sender’s adoption of product, 

e.g. social events). Godes 2011 and Aral 2011 call for studies on the role of product 

characteristics in moderating social contagion. Taking advantage of the wide range of 

product included in my data, I am able to show that contagion effect becomes smaller for 

more popular products and for products in later stages in their lifecycle. I also identify 
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additional moderators using sender’s sharing pattern as well as historical social 

interactions and suggest optimal message design at granular level. 

The second important stream of research relates to the study of online word of mouth. 

There is a growing body of work that examines the aggregate impacts of WOM on 

adoption and diffusion of products (Godes et al. 2004, 2009, Stephen and Galak 2012, 

Trusov et al. 2009). A more relevant stream of research is one that examines the 

underlying processes that drive consumer’s WOM and their impacts. As noted by Berger 

(2014), prior work relating to online WOM has focused on the following key components 

- the sender, the recipient, the social tie characteristics, the channel, and the message. 

Prior research has examined the role of sender characteristics including the credibility 

and the motives of the source/sender (for instance, see (Tuk et al. 2009), transmitter 

activity (Stephen et.al. 2012), as well as the role of recipient’s attitude towards a product 

(e.g. Stephen and Lehmann 2009), and how these impact the effectiveness of WOM. 

Katona et al. (2011), Golderberg et al. (2009), and Naylor et al (2011), among others 

have studied how the social ties between the sender and the recipients impact social 

contagion. As for the role of the channel, Berger and Iyengar (2013), have examined the 

implications of channel characteristics for the design of WOM campaigns. Of these key 

components of WOM, the message is widely considered as the most fundamental factor 

driving social influence (Berger 2014, Godes et al. 2005), and the role of the message on 

social contagion is perhaps the least understood. As far as the message in WOM is 

concerned, the focus has largely been on aggregate aspects of the message such as the 

valence of the message (whether it is positive or negative) and whether the message is 

emotional or factual (Berger and Milkman 2012). My study contributes to our growing 



 

	  

 

	  
14	  

understanding of the focal role of the WOM message on social contagion by examining 

how different components of the message can influence social contagion. More 

importantly, my study is among the first studies to examine the firm’s role in the 

emerging phenomenon of firm-mediated WOM (Godes et al. 2005). 

Another closely related stream of research is the role of observational learning in 

driving social contagion. Research in a number of disciplines (for instance, Banerjee 

1992, Bikchandani, et al 1998, Chen et al 2011, Cai et al. 2007, Zhang 2010) has studied 

observational learning. Chen et al. (2011), for instance, compare the impacts of 

observation learning with online WOM and find that while negative WOM has a stronger 

impact than positive WOM, the opposite is true of observational learning. My study 

contributes to this stream of research by examining the impacts of observational learning 

in a context where observational learning is embedded within online WOM. My study 

focuses on the impacts of observability of two specific components of online WOM – the 

sender’s purchase status and the referral rewards for the sender. As for sender’s purchase 

status, previous studies (Tucker and Zhang 2011, Chen et al. 2011) have examined the 

effect of product popularity (others’ purchases at aggregated level) on one’s own 

purchase decision (learning from crowd). My study complements previous literature by 

using micro-level data to examine the effect of a friend’s purchase information 

(transmitted by organic WOM) on one’s own purchase decision (learning from friends). I 

also examine the underlying mechanisms of observational learning using rich 

heterogeneity in sender, recipient, product, and social-tie characteristics, and provide rich 

evidence that highlights observational learning at work. Finally, though separating 

saliency/attention from observational learning is notoriously difficulty (Cai et al. 2007), I 
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am able to deactivate this channel with my experimental design (using same subject line 

in emails) and cleanly identify the effect of observational. 

As for information about referral rewards in the message, there have been a number 

of analytical models examining the optimal design of referral rewards from firm’s 

perspective (for instance see, Biyalogorsky et al 2001, Kornish and Li, 2010, Xiao et al 

2011). A few experimental studies (Wirtz and Chew 2002; Ryu and Feick 2007) have 

examined the impact of referral rewards on the likelihood of referrals. A couple of studies 

(Tuk et al 2009; Verlegh et al 2013) that have focused on the role of rewarded referrals 

on recipient’s purchase decision have been small scale lab experiments. Mine is the first 

large scale field experiment to examine the role of monetary rewards for the sender on 

both recipient’s purchase and further referrals. By varying sender’s purchase information 

in the message, my study also extends current work through analysis of the interaction 

effects between referral awards and recipient’s perception of the sender. Finally, the rich 

heterogeneity in my data allows me to identify nuanced moderating effects (e.g. the role 

of moderating variables such as tie strength), and link them back to detailed mechanisms 

of social influence. 

2.3. Research Context 
In collaboration with a leading online daily-deal platform, I design a randomized field 

experiment to study the causal impact of firm-mediated message on recipient’s behaviors. 

The platform offers a wide range of daily deals for local services and standard products at 

a high discount and has a large customer base. On each deal page on the firm’s website, 

the platform provides channels through which customers (senders) can share these deals 

with their social connections. Customers (senders) can share deals with their friends both 

before and after purchase by clicking specific channel buttons which are prominently 
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displayed. Specifically, senders who wish to share through email can add a recipient’s 

email address in the pop-up window and click “send”1. For email referrals, the platform 

will then automatically deliver emails to each recipient’s email address separately using a 

pre-defined message template2. The current experiment focuses on the post-purchase 

sharing through email. Every day, a large volume of shares is made by customers through 

the platform3. After purchasing the deal, the customer gets a voucher that she can use to 

redeem the specific service or product within a period of time (usually 6 months or more). 

The vast majority of senders have not actually consumed the service or product at the 

time of share.  

The platform sometimes uses a referral program to encourage social interactions. To 

participate in this program, a user is first required to purchase a particular deal. Then, the 

user is given the option to share the deal with as many friends as desired. The user gets a 

referral reward when certain number of the recipients, as pre-determined by the platform, 

purchase the deal.  

2.4. Experiment Design 
While previous experiments on social influence (Aral and Walker 2011a, 2012, 2014, 

Bapna and Umyarov 2014, Miller and Mobarak 2014) have identified how users’s 

adoption of a product/service influence others, the objective of this study is to identify the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The message that the recipients see does not appear in the window. 
2 Even though the sender may specify multiple recipients in a single ‘send’, each email is 
sent separately and hence, each recipient receives the email as a one-to-one personal 
share. Hence, I define each sender-recipient pair in a multi-recipient share as an 
“independent share”. 
3 A fraction of the senders also share deals through their own channels (e.g. copy-paste 
the deal URL into their own social media or email account), leading to successful 
referrals. The firm has no control on the message content of such social interactions. My 
field experiment focuses only on senders using the firm’s platform/website for 
sharing/referrals. 
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effect of message design, conditional on a user organically sharing the deal with her 

social connections. Specifically, my study seeks to understand the effect of two 

components of information in the message i) information about the sender’s purchase 

status and ii) information about the referral reward program, on recipient’s purchase and 

further referrals. I create four versions of message by varying the visibility of sender’s 

purchase status and referral reward program, as illustrated in Figure 3. After the sender 

confirms her share by clicking the ‘send’ button, all of her messages are randomly 

assigned to one of the four test groups (Figure 4) (1 control (C), and 3 treatments (T1-

T3)). The randomization happens after the sender’s share and thus, the message content is 

completely orthogonal to the sender’s sharing behavior. Any difference in the recipient’s 

purchase and further referral behavior can therefore, be directly attributed to the 

difference in message design. Using the 2 x 2 design, I am able to identify the main 

effects as well as the interaction effects of both components in the message on the 

recipient’s purchase and further referrals. Similar to Aral and Walker 2011, when 

analyzing effectiveness of sharing I focus on the initial senders, rather than recipients 

who share after they make a purchase from the initial sender’s referral. I analyze 

effectiveness of recipient’s sharing only to calculate the successful further referrals from 

her. In addition, when a recipient purchases the shared deal and initiates a new set of 

shares, she is randomly assigned to one of the four test groups. Thus, the difference in 

successful further referrals is mainly driven by difference in recipient’s sharing behavior, 

rather than the message content (similar design choice is discussed Aral and Walker 

2011a, 2011b). 

Level of Randomization & Control of Contamination 
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My intervention (message design) by nature can happen at the level of each sender-

recipient share. However, to prevent potential contamination, I design the randomization 

at the level of the sender, i.e., all recipients of a sender for a specific deal that is shared, 

receive the same message. Randomization at the level of the sender (rather than at the 

level of recipients) allows for better control of potential spillovers between control and 

treatment groups and helps ensure that the stable unit treatment value assumption 

(SUTVA) is not violated (Wooldridge 2012). Such spillovers are more likely to happen 

within the local network of a sender as compared to across senders’ networks (Aral and 

Walker 2011a). For instance, two friends of sender S are much more likely to 

communicate about a specific deal (through sharing the deal or through other modes of 

communication) and influence each other’s decision as compared to recipients of two 

different senders. (however this is still a possibility, and I later (see online Appendix 1) 

discuss approaches to mitigate this concern). My randomization design (‘inside out’) is 

similar to ones adopted in previous research (for instance see, Aral and Walker 2011b).   

Ruling out attention/saliency as a Contagion Mechanism  

In addition to identifying main effect of message design, I also carefully design my 

experiment to identify specific mechanisms underlying social contagion. As noted in 

previous literature (e.g. Godes 2011, Cai et al. 2007), contagion may be driven by several 

mechanisms including attention/saliency, social learning, local network effect, status 

competition, etc. In my context, the first three channels will be most prominent; 

Attention/saliency is expected to strongly influence contagion. For instance, the increased 

attention resulting from the awareness of a friend’s purchase of an item could in itself 

lead to a higher likelihood of purchase. Since my focus is on the role of social learning 
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and social utility, I utilize a two-stage structure to deactivate the role of attention/saliency 

in creating social contagion.  

Specifically, I maintain the same subject line in the sharing email (“[Friend name] 

thinks you may like the product”). Thus, prior to opening the email, there should not be 

any difference in attention/awareness as the email and its subject line are exactly the 

same. Once the email is opened and read (indicating recipient is paying attention & 

interested in the content of the message), the contained information in the email is simple, 

clear, and concise and should not lead to any differences in product awareness or 

attention. Thus my design eliminates potential contamination that could arise from 

differences in awareness or attention and enables me to focus on the two mechanisms of 

interest. Moreover, since the sender’s purchase status can attract increased attention from 

the recipient, I expect my current treatment effect to be stronger if such information is 

also incorporated into subject line of email. In future work, I plan to vary the subject line 

to further identify the role of saliency/attention in driving social contagion. 

2.5. Data 
The randomized field experiment lasted for a period of few weeks and resulted in a large 

and random sample comprising more than 20,000 unique senders (i.e. more than 5000 

senders in each test group) sharing more than 5000 unique deals. The number of 

recipients who were exposed to the deals in my study period exceeds 50,000 (as a sender 

may share a deal with multiple recipients). The data for my study comes from customer- 

to-customer email shares/referrals through the platform. For every firm-mediated email 

share, I record the unique hashed identifier of the sender (customer ID), the recipient 

(hashed email address), the shared deal, as well as the assigned test group. I record the 

number of recipients the sender specifies in the batch of sent messages, the timestamp of 
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share as well as purchase decisions of the recipient. I further augment the above main 

dataset with the historical data on sender and recipient's purchase history, the interactions 

between them as well as detailed characteristics of deals (price, category, subcategory, 

popularity, time stamp of every purchase of the deal, etc.). The resulting dataset enables 

me to analyze the impact of message design at a granular level (i.e. heterogeneous 

treatment effect, or moderating effect of sender, recipient, product and social tie 

characteristics). To control spillover, I follow the procedures as detailed in the online 

Appendix 1 and remove all the recipients who are exposed to more than one types of 

message during my experiment	  

2.6. Empirical Strategy 
To identify the effect of each component of information on the recipient’s likelihood of 

purchase and further referrals, I run the regressions (OLS, poisson, and negative binomial) 

of the following specification at the sender level without and with controls. A similar 

strategy is used in field experiment studies in economics and marketing, as illustrated in 

Duflo et al. (2008). 

Yj = Σ  𝛽g * Tg + errorj	  

Yj = Σ  𝛽g * Tg + SenderCharj + ProductCharj + errorj 

Yj indicates the total number of referrals from sender j’s share. Later I also use it to 

indicate alternative measures such as total net revenue brought by each sender’s referral 

or total number of recipient’s further referrals that originate from the sender. The dummy 

variable Tg indicates the test group that sender is assigned to. The omitted category is 

usually the baseline message in most of the cases but later, I use the message with only 

information on sender’s purchase as the baseline to identify the attenuation effect. 

SenderCharj indicates sender level characteristics including the number of sender’s past 
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purchases and account length. ProductCharj indicates all product control variables 

including price of the deal, category of the deal and popularity of the deal. The error is 

clustered at deal level4.  

I also run additional models at the recipient level (OLS, probit and logit) using the 

following specification similar to Duflo et al. (2011). 

Yij = Σ  𝛽g * Tg + error ij 

Yij = Σ𝛽g*Tg+ SenderCharj + ProductCharj + RecipientChari + SocialTieCharij + error ij 

Yij indicates individual i‘s purchase decision after receiving sender j’s share. I also use it 

to indicate the recipient’s further referrals as well as the recipient’s feedback about the 

consumption experience. RecipientChari indicates all recipient characteristics including 

number of past purchases and account length. SocialTieCharij indicates the social-tie 

strength between the sender and the recipients based on sharing history. The error term is 

clustered at deal level. To further identify heterogeneous treatment effect of message 

design at both the sender and recipient level, I interact the moderating variables with the 

test group indicator and run the regression at recipient level using the following 

specification, 

Yij = Σ 𝛾1 * Tg * Indicator (ModeratingVarij = 1) +  Σ 𝛾0 * Tg * Indicator (ModeratingVarij 

= 0)  + SenderCharj + ProductCharj + RecipientChari + SocialTieCharij + error ij 

where ModeratingVarij can denote different moderating variables such as recipient’s past 
purchase experience, tie strength, social-ness of the product and target-iveness of the 
share. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 For both sender level and recipient level analysis, I also run regression with errors 
clustered at sender-deal pair level, sender level or using a double cluster structure 
(Cameron et al. 2007). The standard deviations from all these choices are smaller than 
that in current model. My results are more significant under alternative clustering 
choices. 
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2.7. Empirical Findings 
As a check of the randomization, I present in Table 1 the tests of equality of sender, 

recipient, product, and social tie covariates across the four test groups. The sample is well 

balanced across all the covariates, indicating that my randomization is at work.  

2.7.1. Main Effect on Recipient’s Purchase and Further Referrals 

I first present my main findings on the effect of different messages on recipient’s 

purchase decision as well as further referral behavior.  

I. Effect of message design on recipient’s purchases  

I show the effect of message on recipient’s purchase at both the sender level and the 

recipient level, using various specifications estimated in OLS (see Table 2). At the sender 

level, the outcome variable is the average number of successful referral purchases per 

sender. At the recipient level, the outcome variable is the recipient’s binary purchase 

decision.  

I begin by estimating a model at the sender level using only the indicator variable for 

each message group and not including controls. Compared to the baseline message, 

simply adding information about the sender’s purchase status leads to a large increase in 

the average number of referral purchases per sender. The increase is statistically 

significant and economically sizable (an increase of over 15% compared to the baseline 

purchase rate). Interestingly, once information about the referral reward is provided in 

addition to information on the sender’s purchase status, the increase in purchases is 

attenuated and the increase over control becomes insignificant. The negative incremental 

effect of adding referral reward information (T3-T1) is sizable and statistically significant, 

indicating the negative interaction effect of information about referral reward with 
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information about the sender’s purchase. This finding is consistent with previous work 

(Verlegh et al. 2013) on sender’ credibility/motivation. Once the recipient realizes the 

sender may be eligible for a referral reward, she may question the credibility of the 

referral or infer ulterior motivations from such sharing (Tuk et al. 2009).  Finally, the 

difference between the referral-reward-information only treatment and control is 

relatively small and not statistically significant. In keeping with perfect randomization, I 

obtain consistent results after I add a full set of controls using sender and product 

characteristics. Moreover, similar results hold for analysis at the recipient level (with and 

without controls), with error grouped at the deal level. 

With the increase in recipient’s purchases, the firm may incur an additional cost in the 

form of sender’s referral reward. Thus, I examine the net profit the firm can gain by 

aggregating net revenue and cost from referrals at the sender level. Consistent with 

previous results, I find that adding information about sender’s purchase leads to a 

significant increase in the net profit for the platform, after accounting for the cost of 

referral rewards.  

 I also run a series of robustness checks. First, my results are robust across alternative 

specifications at both levels, including count models at the sender level and limited 

dependent variable model at the recipient level. I obtain consistent results using Poisson 

and Negative Binomial models at the sender level and probit and logit models at the 

recipient level (see Appendix A, Table A1). Second, I observe shares on a wide range of 

deals in my sample following a long tail distribution. For some of deals, the number of 

senders is very small. Even though the deals are randomized into one of the four groups 

and the number of deals is very large in my test, it is still possible (though unlikely given 
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the large sample size) that my estimates can be biased if some of the ‘good’ deals are all 

randomized into the same group (I define a deal as ‘good’ for a specific treatment if the 

treatment can lead to an increase in purchases for the deal). Thus, I run an OLS model 

with deal fixed effect and take advantage of within deal variation for my identification 

(Appendix A, Table A2). The results are consistent (and even more significant) after I 

include deal fixed effects. 

II. Effect of message design on recipient’s further referral 

Adding information about referral rewards may increase recipient’s awareness of the 

monetary reward and raise the likelihood of making further referrals. I observe such a 

response in my data (see Table 3). On average, recipients who are exposed to messages 

containing only the referral reward information make 68% more successful referrals after 

purchase, compared to recipients in the control group. Interestingly, recipients who 

receive the message with both pieces of information are much less likely to make further 

referrals. Such a decrease may be due to the concern about one’s own image in further 

referrals (Ryu and Feick 2007). I do not observe a significant increase in further referral 

behaviors for recipients who are only exposed to information about the sender’s purchase. 

In summary, I find that a simple variation in message design can greatly enhance 

social contagion. On the one hand, adding information about the sender’s purchase 

greatly increases the recipient’s likelihood of purchase, with an increase of more than 15% 

relative to the control group. On the other hand, adding information about referral reward 

alone significantly increase the recipient’s further referrals. Both effects are economically 

significant, especially considering the large volume of customer shares through the 

platform every day. However, adding information about sender’s purchase and referral 
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rewards at the same time dampens the positive effect on both recipient’s purchase as well 

as recipient’s further referrals.  

2.7.2. What are Friends For? Mechanisms Underlying Social Contagion 

Having identified the main effect at the aggregate level, I further examine how message 

design affects the effectiveness of information sharing, by exploring the heterogeneity in 

treatment effect on different types of deals, different types of individuals, as well as 

different tie strength. 

Social Learning vs. Social Utility 

As discussed earlier, two mechanisms – Social learning and Social utility -- may be at 

work in driving the increase in recipient’s purchases5. If social learning is at work, I 

should see an increase in purchases for less experienced users when they observe their 

friend’s purchase, as they may place more weight on the new information relative their 

own knowledge/signal. Similarly, I should see an increase in purchases for recipients who 

receive deals about less popular products and for recipients who receive messages about 

deals that are in the earlier stage of the product sales cycle. Under each of these 

circumstances, the recipients are likely to have less information and face more 

uncertainty about the product, and thus, more likely to rely on the information implicit in 

their friend’s purchases. On the other hand, if social utility is at work, I should see an 

increase in purchases for recipients of ‘social’ products as they can gain additional social 

utility (local network effect) from their friends’ participation. 

My rich dataset enables me to construct measures for recipient experience, product 

popularity, and the stage of the product’s sales cycle, and ‘social-ness’ of the product. 

First, using complete purchase history of each recipient from the beginning of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Increase in conversions may also occur due to an increase in awareness/attention rather 
than due to the treatment (i.e., the content of the message). As noted earlier, my 
experiment design deactivates this channel. 
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platform, I am able to identify whether the recipient has experience with platform in 

general as well as with the specific product category. I define a recipient as experienced if 

she has at least one past purchase in the same product category. Second, I define product 

popularity based on product sales within each category. If the product sales is within the 

top 50 percentile of all shared deals in my experiment, then I categorize it as popular; if 

the product sales is within the bottom 50 percentile, I categorize it as unpopular. Third, 

since I observe the timing of each purchase for every product in my experiment 

(including purchases from non-sharing channels), I can calculate the percentage of sales 

that have occurred for the deal when it is shared with the recipient. I define a recipient as 

an early customer/purchaser if she received the share in the early part (initial 50%) of the 

product sales cycle. Finally, the shared deals in my sample range across eight categories 

and more than 100 subcategories (including restaurant, entertainment, fast food / desserts, 

home service, retail products, active/fitness, beauty/spa and escape at category level). I 

manually go over the deals in each subcategory. Based on the nature of the subcategory 

(whether it involves a group activity or not) and the redemption pattern (whether friends 

redeem the deal at the same time or not), I code and classify the category/subcategory 

into social vs. non-social categories/subcategories. I report the main results based on 

category-level coding. I also test alternative categorization for each of the above 

constructs using alternative cutoff points and more granular measures6. My results are 

robust across alternative definitions of each construct. 

I conduct my analysis at the recipient level and interact each of the above moderating 

variables with the indicator of treatment group while controlling for all other factors (as 

specified in the empirical strategy). The empirical findings in Table 4 indicate that social 

learning is at work in the instances with higher uncertainty for the recipient. I find that 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 These results are available upon request from the authors. 
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the effect of adding information about the sender’s purchase status (T1-C) varies across 

the different types of individuals and products. Information about the sender’s purchase 

has a larger and more significant effect on recipients who are less experienced, on less 

popular products, and on products in the earlier stages of the product sales cycle. Second, 

the incremental effect of information about referral rewards greatly attenuates the 

increase in recipient’s purchase for the recipients described above, but less so for the 

comparison group.   

On the other hand, I also find evidence that social utility also plays a role (see Table 

5). The increase in purchases is higher and more significant for social products when 

information about friend’s purchase is revealed to the recipient.  This is because the 

recipient may enjoy additional utility from a friend’s participation in the event. In other 

words, friends serve two important roles in my context: they serve as credible sources of 

information to their social connections and facilitating social learning; they also serve as 

companions and confer social utility for social product and events.  

2.7.3. Additional Moderators in Treatment Effect: Social Tie Strength and Targeted Shares  

I further explore the heterogeneity in the treatment effect, which may help me better 

understand the underlying mechanism at work. There are two important variables that 

would lead to further heterogeneity in treatment effect: social-tie strength and target-

iveness of the share. Tie strength may moderate both social learning and social utility. On 

the one hand, the recipient can learn more from a friend with a stronger social tie, as she 

places more trust when observing a share from such friend (Cai 2014). On the other hand, 

if the shared product is a social product, the recipient may gain additional utility from 

consuming the product with a closer friend (Sundararajan 2007).  Whether the sharing is 

targeted or not, may also affect the effect of information about the sender’s purchase. If 

the share from the sender is targeted to a specific customer, then it is more likely that 

there is a good fit between the shared product and the customer. In such case, the 
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recipient may already find the product attractive and the information about the friend’s 

purchase is less informative. Thus, I may see less increase for more targeted shares. 

I construct the measure for social-tie strength using the sharing history between 

sender and recipient since the beginning of the platform. If the historical share within a 

pair is reciprocal (i.e. both parties have sent and received shares from the other party), 

then I define the social-tie strength of the pair as strong (Granovetter 1973); otherwise the 

social tie strength is considered weak. I construct the target-iveness of the share based on 

the number of recipients in the sender’s share. I choose the threshold to be two as about 

half of the senders share with 1 or 2 people. If there are more than two recipients, then I 

consider the share as non-targeted; if the share is only made to one or two recipients, then 

I consider it as targeted. 

Table 6 and 7 illustrate the additional results on heterogeneity in treatment effect by 

decomposing recipients into two groups, based on the two measures discussed above. I 

find that the strength of the social-tie between a sender and a recipient significantly 

moderates the treatment effect of different message designs. Adding information about 

sender’s purchase leads to a much higher lift in purchases for sender-recipient pairs with 

reciprocal social interactions (‘strong tie’), compared to those pairs without reciprocal 

social interactions (‘weak tie’) (See Table 6 left panel and Table 7). The difference is 

more salient for social products (see Table 7). This indicates the importance of tie 

strength in both social learning and social utility. I also find that, adding information 

about the sender’s purchase leads to higher lift in purchases for non-targeted shares, 

compared to targeted shares, providing additional evidence of social learning at work (see 

Table 6 right panel). 

2.7.4. Welfare Implications of Message Design 

Finally, I explore the welfare implications of message design. The platform sends 

automated customer surveys upon customer’s redemption of vouchers. The survey is 
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simple and includes two questions: 1) thumbs-up or thumbs-down for your visits; 2) will 

you ever return? (yes or no). For the first question, I code a thumbs-up as 1 and a thumbs-

down as 0; for the second question, I code a yes as 1 and a no as 0. The automated email 

survey is sent out only if the merchant has reported a customer’s redemption of vouchers, 

or if the customer labels her voucher as used. Thus, the final data I have for the 

automated survey is determined by two factors: 1) the merchant’s report (or a customer’s 

self-report) of customer’s redemption; 2) the response rate to the emails sent out. The 

final recipients who have provided feedback are slightly less than 10% of the total 

purchasers. The sample size in each test group is approximately the same. Table 8 

illustrates the difference in customer feedback data across the four groups at the 

aggregate level as well as decomposed into social product vs. standalone product. I find 

evidence that recipients who receive message with sender’s purchase information are 

more likely to report a positive experience (thumbs-up) and to report a willingness to 

return. This increase is larger for social products than for standalone products, suggesting 

that social utility might play an important role in determining customer experience. 

 

2.8. Future Research 

Identifying optimal design of firm-mediated message at a group level is a useful first step. 

With the availability of large amount of data on sender and recipient behaviors and their 

historical interactions, as well as the ability to process requests in real time, firms can 

actually personalize messages at an individual level. While personalization is a common 

practice in the context of firm-customer interactions, personalization of firm-mediated 

customer-customer social interactions is still in its infancy. I plan to further extend the 
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current study along this direction, specifically in two ways: first, I plan to explore more 

heterogeneity in the data, strengthen descriptive positioning of current article (“what 

works best when”) and emphasize its managerial contribution; second, I plan to identify 

optimal intervention at subgroup or even individual level, utilizing large number of 

covariates in the big data (on characteristics of senders, recipients, strength of ties, and 

products) and advanced predictive modeling approach (e.g. SVM, LASSO). I envision 

that in the near future when a firm gets a request of email share from a sender, it would 

leverage historical information to extract product characteristics, sender and recipient’s 

purchase and interaction histories, calculate optimal content and message design, and 

deliver the message in real time in a personalized fashion. My ongoing work serves as a 

valuable proof-of-concept of this impending development 
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Figures and Tables for Chapter 2 (Essay 1) 
 

Figure 1: Key social contagion outcomes under tracking: 
Recipient’s purchase and Recipient’s further referrals 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
* Note: in the scenario illustrated above, two recipients out of three have purchased the deal 
through the sender’s share. Furthermore, one recipient (the one on the left) has brought one 
successful referral after her own purchase. 

 
Figure 2: Experiment Design: Random assignment of Sender with one of the test 

messages 
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Figures 3: Messages used in the randomized field experiment 

 
 

Figure 4: Illustration of implementation of message design experiment 
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Figure 5: Overall Effect of Message Design on Recipient’s Purchase and Further Referrals 

	  	  	  	  	  	  	  	  Info	  about	  Referral	  Rewards	  
Info	  about	  Sender’s	  Purchase	  

Invisible	   Visible	  

Invisible	  	   Baseline	  
	  
(Group	  C)	  

No	  significant	  effect	  on	  
recipient’s	  purchase	  

Increase	  further	  referrals	  
(Group	  T2)	  

Visible	   Significant	  increase	  in	  
recipient’s	  purchases	  

No	  effect	  on	  further	  referrals	  
(Group	  T1)	  

No	  significant	  effect	  on	  
recipient’s	  purchase	  

No	  effect	  on	  further	  referrals	  
(Group	  T3)	  
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Table 1: Descriptive Statistics and Randomization Check 

	  
Control	  	  

Treatment	  
Group	  1	  

Treatment	  
Group	  2	  

Treatment	  
Group	  3	  

p-‐value	  	  
(C=T1=	  
T2=T3)	  

 Mean	   SD	   Mean	   SD	   Mean	   SD	   Mean	   SD	  
	  Sender Characteristics (N=5626)	   (N=5684)	   (N=5687)	   (N=5643)	  
	  Total Number of Past 

Purchases (before test) 0.000	   9.335	   -‐0.064	   9.305	   -‐0.155	   9.115	   0.180	   9.488	   0.269	  
Total Spending (before 
test) 0.000	   458.1	   3.156	   471.4	   -‐5.920	   428.8	  

10.82
6	   445.7	   0.255	  

Days after Creating 
Account  0.000	   422.2	   1.276	   422.4	   -‐5.794	   425.7	   5.155	   424.3	   0.587	  

 
	   	   	   	   	   	   	   	   	  Shared Deal 

Characteristics (N=1457)	   (N=1493)	   (N=1529)	   (N=1492)	  
	  Average price 0.000	   123.1	   1.6	   120.6	   -‐0.5	   103.1	   0.4	   117.9	   0.815	  

Popularity 0.000	  
1571.

0	   -‐34.9	  
1318.

6	   -‐55.3	  
1242.

7	   -‐20.0	  
1362.

4	   0.181	  
Category dummy  

	   	   	   	   	   	   	   	   	  Restaurant 0.000	   0.391	   0.004	   0.394	   0.009	   0.398	   0.004	   0.395	   0.722	  
Entertainment 0.000	   0.481	   -‐0.001	   0.481	   -‐0.016	   0.477	   -‐0.006	   0.480	   0.279	  
Fast Food/QSR 0.000	   0.163	   -‐0.003	   0.154	   -‐0.003	   0.156	   -‐0.001	   0.160	   0.709	  
Home Service 0.000	   0.281	   -‐0.003	   0.276	   -‐0.008	   0.270	   -‐0.003	   0.276	   0.536	  
Retail product 0.000	   0.180	   0.005	   0.192	   -‐0.001	   0.177	   0.005	   0.191	   0.197	  
Active/Fitness (group) 0.000	   0.361	   -‐0.009	   0.353	   -‐0.002	   0.359	   -‐0.004	   0.357	   0.598	  
Beauty & Spa 0.000	   0.300	   0.006	   0.308	   0.016	   0.321	   0.004	   0.306	   0.136	  
Escape 0.000	   0.206	   0.001	   0.209	   0.004	   0.214	   0.002	   0.210	   0.836	  

	   	   	   	   	   	   	   	   	   	  
 

	   	   	   	   	   	   	   	   	  Recipient 
Characteristics (N=13161)	   (N=13746)	   (N=13509)	   (N=13548)	  

	  Total Number of Past 
Purchases (before test) 0.000	   6.331	   -‐0.022	   6.278	   -‐0.094	   5.928	   -‐0.039	   6.276	   0.639	  
Total Spending (before 
test) 0.000	   283.4	   -‐1.649	   265.6	   -‐3.304	   257.4	   -‐3.424	   255.2	   0.688	  
Days after Creating 
Account  0.000	   512.7	   5.174	   513.4	   3.539	   511.3	   7.277	   514.3	   0.698	  

 
	   	   	   	   	   	   	   	   	  

 
	   	   	   	   	   	   	   	   	  Social Tie 

Characteristics	  
	   	   	   	   	   	  Average number of 

shares between a pair  0.000	   0.885	   0.012	   0.893	   -‐0.012	   0.869	   -‐0.013	   0.876	   0.165	  
Percentage of reciprocal 
tie 0.000	   0.271	   -‐0.003	   0.266	   -‐0.004	   0.264	   -‐0.003	   0.265	   0.621	  
 	   	   	   	   	   	   	   	   	  

* The figures provided are demeaned values obtained by subtracting the mean value of treatment 
groups from that of control group. Demeaning preserves the difference in mean value between 
test groups as well as the t-test (i.e. randomization check). Pairwise t-test is available upon 
request.  
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Table 2: Effect of Message Design on Purchase 

	   	   	   	   	  Outcome	   Purchase	  Decision	  	   Net	  Revenue	  	  

	  
(0/1)	  

(Net	  Cost	  of	  Referral	  
Reward)	  

Level	   Sender	  Level	   Recipient	  Level	   Sender	  Level	  
T1-‐C	   	  	  	  	  0.0366***	   	  	  	  	  0.0312***	   	  	  	  0.0116**	   	  0.0130***	   1.489**	   1.392**	  
T2-‐C	   -‐0.00467	   -‐0.00526	   -‐0.00362	   -‐0.00242	   	  -‐0.208	   -‐0.243	  
T3-‐C	   	  	  0.0127	   	  	  0.00837	   	  	  0.00250	   	  0.00330	   	  1.004	   0.939	  

	   	   	   	   	   	   	  
	   	   	   	   	   	   	  Sender-‐level	  Controls	  

	   	   	   	   	   	  Sender	  Tier	  1	  
	  

0.0282***	  
	  

0.00585	  
	  

-‐0.275	  
Sender	  Tier	  2	  

	  
0.0259**	  

	  
4.61e-‐05	  

	  
0.562	  

Sender	  Tier	  3	  
	  

0.0495***	  
	  

0.00583	  
	  

1.514	  
Sender	  Tier	  4	  

	  
0.0372**	  

	  
-‐0.00242	  

	  
2.108	  

Account	  length	  
	  

-‐1.21e-‐05	  
	  

-‐8.05e-‐06*	  
	  

-‐0.00061	  

Number	  of	  Recipients	  
	  

0.0648***	  
	  

	  
0.0060***	  

	  
0.974***	  

	   	   	   	   	   	   	  Product-‐related	  Controls	  
	   	   	   	  Product	  Price	  

	  
0.00049***	   0.000216***	   0.0266	  

Product	  Popularity	  
	  

-‐1.74e-‐06	  
	  

-‐1.71e-‐06	  
	  

5.57e-‐05	  
Category	  dummy	  

	  
Yes	  

	  
Yes	  

	  
Yes	  

	   	   	   	   	   	   	  Recipient	  Controls	  
	   	   	   	   	   	  Recipient	  Tier	  1	  
	   	   	  

0.0607***	  
	   	  Recipient	  Tier	  2	  

	   	   	  
0.0885***	  

	   	  Recipient	  Tier	  3	  
	   	   	  

0.115***	  
	   	  Recipient	  Tier	  4	  

	   	   	  
0.133***	  

	   	  Account	  Length	  
	   	   	  

-‐1.01e-‐05***	  
	  

	   	   	   	   	   	   	  Social	  Tie	  Characteristics	  
	   	   	   	  Reciprocity	  in	  shares	  

	   	   	  
-‐0.00459	  

	   	  Total	  past	  shares	  
	   	   	  

-‐0.00172	  
	   	  

	   	   	   	   	   	   	  Observations	   22,640	   22,640	   53,964	   53,964	   22,640	   22,640	  
p-‐value	  (T3-‐T1)	   0.0448	   0.0484	   0.0643	   0.0413	   0.631	   0.645	  
	   	   	   	   	   	   	  

*	  Sender	  and	  recipient	  tier	  is	  defined	  based	  on	  the	  number	  of	  total	  past	  purchases.	  Customers	  in	  
higher	  tiers	  have	  made	  more	  purchases.	  	  
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Table 3: Effect of Message Design on Successful Follow-up Referrals 

Outcome	   Number	  of	  Successful	  Referrals	  
Level	   Sender	  level	   Recipient	  level	  
T1-‐C	   0.0376	   0.0315	   0.00328	   -‐0.00167	  
T2-‐C	   0.0683*	   0.0717*	   0.0414**	   0.0404*	  
T3-‐C	   0.00767	   0.00338	   -‐0.00198	   -‐0.00146	  

	   	   	   	   	  Sender	  controls	   No	   Yes	   No	   Yes	  
Product	  controls	   No	   Yes	   No	   Yes	  
Recipient	  controls	   No	   No	   No	   Yes	  
Social	  tie	  controls	   No	   No	   No	   Yes	  
	   	   	   	   	  

	   	   	   	   	  	  

Table 4: Social Learning  

	  	   Recipient	  Experience	   Product	  Popularity	   Late	  Stage	  in	  Product	  Lifecycle	  

	  
Only	  adding	  information	  about	  sender's	  purchase	  (T1-‐C)	  

Treatment	  Effect	  for	  Subgroup	  
More	  	   0.00282	   0.00371	   0.00322	   0.00529	   0.00807**	   0.00922	  
Less	   0.0114***	   0.0126**	   0.0182***	   0.0197***	   0.0257***	   0.0269***	  
Coefficient	  for	  
Moderator	   0.104***	   0.133***	   0.00523	   0.00461	   0.0387***	   0.0433***	  

	   	   	   	   	   	   	  Sender	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  
Product	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  
Recipient	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  
Social	  tie	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  

	   	   	   	   	   	   	  
	  

Incremental	  effect	  of	  adding	  information	  about	  sharing	  reward	  (T3-‐T1)	  
More	  	   0.0207*	   0.0181	   0.00441	   0.00276	   -‐0.00717*	   -‐0.00792	  
Less	   -‐0.0126***	   -‐0.0118**	   -‐0.0193***	   -‐0.0172***	   -‐0.0179**	   -‐0.0173*	  
Coefficient	  for	  
Moderator	   0.0952***	   0.0991***	   -‐0.00970*	   -‐0.00770	   0.0211***	   0.0254***	  

	   	   	   	   	   	   	  Sender	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  
Product	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  
Recipient	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  
Social	  tie	  controls	   No	   Yes	   No	   Yes	   No	   Yes	  
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Table 5: Social Utility (Local Network Effects) 
	  Information about Sender's Purchase Status 
	  (T1-‐C)	   	  	  
Treatment	  for	  Social	  Product	   0.0172***	   0.0171**	  
Treatment	  for	  Non-‐social	  Product	  
Category	   0.00588	   0.00813	  
Indicator	  of	  Social	  Category	   0.0308***	   0.0380***	  
	  
Sender	  controls	   No	   Yes	  
Product	  controls	   No	   Yes	  
Recipient	  controls	   No	   Yes	  
Social	  tie	  controls	   No	   Yes	  
	  
Observations	   26,907	   26,907	  
p-‐value	  (T3-‐T1)	   0.145	   0.145	  
	   	   	  

 
 

Table 6: Social Learning (Moderated by Tie Strength and Share Targetiveness)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Tie	  Strength	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Targetiveness	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Recipient	  Experience	  
	   Weak	  Tie	   Strong	  Tie	  

	  
Targeted	  

Non-‐
targeted	  

Information	  about	  
Sender's	  Purchase	  Status	   More	   -‐0.0175	   0.0411*	  

	  
0.00451	   -‐9.88e-‐05	  

(T1-‐C)	   Less	   0.0113***	   0.0618**	  
	  

0.00437	   0.0168***	  
	   	   	   	   	   	   	  

* A full set of controls has been applied.  
 

 
Table 7: Social Utility (Moderated by Tie Strength) 

	  
Social	  Product	  

	   	  
No	   Yes	  

Information	  about	  Sender's	  
Purchase	  Status	   Weak	  Tie	   0.00534	   0.0139**	  
(T1-‐C)	   Strong	  Tie	   0.0300*	   0.0612***	  
	  
Information	  about	  Sender's	  
Purchase	  Status	  &	  Reward	  for	  
Sharing	  minus	  Information	  about	  
Sender's	  purchase	  status	   Weak	  Tie	   -‐0.00787	   -‐0.0144**	  
(T3-‐T1)	   Strong	  Tie	   0.00720	   0.0369*	  
	   	   	   	  
   * A full set of control has been applied. 
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Table 8: Customer Feedback After Consuming the Deal 

Outcome	  A:	   Thumbs-‐Up	  

	  
All	   Stand-‐Alone	  Product	  

Social	  
Product	  

T1-‐C	   0.0845*	   0.0449	   0.119*	  
T2-‐C	   0.0535	   0.0274	   0.0696	  
T3-‐C	   0.0185	   -‐0.0533	   0.0864	  

	   	   	   	  Outcome	  B:	   Will	  Return	  

	  
All	   Stand-‐Alone	  Product	  

Social	  
Product	  

T1-‐C	   0.0843*	   0.0686	   0.111	  
T2-‐C	   0.0907*	   0.0457	   0.176*	  
T3-‐C	   0.0139	   0.00364	   0.0357	  

	   	   	   	  Observations	   314	   203	   111	  
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Table A1: Alternative Specification for Main Effect on Purchase 

	  
Sender	  level	  

	  
	  	  	  	  Poisson	  Model	   	  	  Negative	  Binomal	  

T1-‐C	   0.134***	   0.121***	   0.134***	   0.123***	  
T2-‐C	   -‐0.0185	   -‐0.0211	   -‐0.0185	   -‐0.0128	  
T3-‐C	   0.0486	   0.0255	   0.0486	   0.0331	  
Marginal	  effects	   	   	   	   	  
T1-‐C	   0.0357***	   0.0317***	   0.0357***	   0.0368***	  
T2-‐C	   -‐0.00491	   -‐0.00571	   -‐0.00491	   -‐0.00401	  
T3-‐C	   0.0129	   0.0645	   0.0129	   0.0923	  
Controls	   No	   Yes	   No	   Yes	  

	   	   	   	   	  
	  

Recipient	  level	  

	  
Probit	   Logit	  

T1-‐C	   0.0598**	   0.0692***	   0.114**	   0.135***	  
T2-‐C	   -‐0.0196	   -‐0.0153	   -‐0.0379	   -‐0.0241	  
T3-‐C	   0.0133	   0.0197	   0.0255	   0.0417	  
Marginal	  effects	  

	   	   	   	  T1-‐C	   0.0115***	   0.0124***	   0.0115***	   0.0122***	  
T2-‐C	   -‐0.00370	   -‐0.00271	   -‐0.00372	   -‐0.00218	  
T3-‐C	   0.00252	   0.00264	   0.00253	   0.00291	  
Controls	   No	   Yes	   No	   Yes	  
	   	   	   	   	  

 
Table A2: Robustness Check on Main Effect with Deal Fixed Effect 

Outcome	   Number	  of	  Successful	  Referrals	  
Level	   Sender	  level	   Recipient	  level	  

	   	   	   	   	  T1-‐C	   0.0424***	   0.0375***	   0.0118***	   0.0136***	  
T2-‐C	   -‐0.000508	   -‐0.000839	   -‐0.00282	   -‐0.00221	  
T3-‐C	   0.00696	   0.00420	   -‐0.00159	   0.000116	  

	   	   	   	   	  Sender	  controls	   No	   Yes	   No	   Yes	  
Product	  controls	   No	   Yes	   No	   Yes	  
Recipient	  controls	   No	   No	   No	   Yes	  
Social	  tie	  controls	   No	   No	   No	   Yes	  

	   	   	   	   	  Observations	   22,640	   22,640	   53,964	   53,964	  
p-‐value	  (T3-‐T1)	   0.00876	   0.0119	   0.00223	   0.00200	  
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Appendix 1: Controlling Spillover 
 
Similar to previous random trial studies in networked environments (Aral and Walker 

2011, Bapna and Umyarov 2014), my intervention may also face potential spillover 

problems. As discussed in the experiment design section, I choose the random assignment 

to be the same within each sender’s local network. Thus, any observed or unobserved 

spillovers (e.g. online or offline communication between two recipients about the 

sender’s purchase status or referral reward) is of less concern under my randomization 

approach.  

Nonetheless, there are two potential spillover channels that may affect my analysis. 

First, some recipients may receive shares for the same product from multiple senders 

(either in different or the same treatment group). In the former case, the recipient is 

contaminated as the she is exposed to different messages. In the latter case, there is an 

attribution problem as it is not reasonable to completely ascribe recipient’s potential 

purchase to any one of the sender. Following similar procedures to previous studies (Aral 

and Walker 2011a, Bapna and Umyarov 2014), I exclude those recipients who are 

exposed to shares from multiple friends, which comprises a very small subset of my 

sample. 

Another potential spillover channel which is unique to my context is that some 

recipients may receive shares of multiple products during my experiment as it runs for a 

short period of time. The share may come from either the same sender or a different 

sender and may either be in the same treatment or in a different treatment group. I 

exclude all such shares except the message for first product. It has a negligible impact on 

the size of my sample. 
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When a sender shares a different deal after the first time, she is again randomly 

assigned to one of the four test groups. However, I also exclude such senders (as they 

comprise a very small fraction of all senders) to maintain consistency in my empirical 

analysis, and as the sender may self-select into sharing again based on referral outcomes 

in the previous share. 

Finally, I want to highlight that such exclusion may be very unlikely to bias my 

results as: 1) the dropped sample is very small (<4% of my sample); 2) the randomization 

on the message is orthogonal to the sharing pattern. However, it is possible that such 

exclusion may slightly reduce the heterogeneity in my sample. 

 
Appendix 2: Optimal Message Design 

 
Tradeoff between increasing purchases or further referrals 
 
I provide a simplified analysis on the tradeoff between increase in purchases and increase 

in further referrals. The goal is to examine under what circumstances the firm should 

encourage more purchases rather than further referrals, and vice versa. 

Assume there are N senders and on average each sender shares with M people. Let the 

baseline adoption rate be c and the number of successful further referrals be s. I focus on 

the further referrals from recipient who have made the purchase, as referrals from 

recipients who have not made the purchase are extremely rare in my case and probably in 

many other online shopping contexts. Ignoring the spillover (i.e. recipients who receives 

shares from more than one sender) which is relative small and also orthogonal to my 

randomized treatment, I can derive the total number of purchases from sharing within the 

first and second degree of the sender's social network as: 

N*M*c + N*M*c*s 
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Now consider there are two treatment groups (i=1,2) in the message design experiment; 

the increase in baseline adoption rate and number of successful further referrals is ∆𝑐! 

and ∆s! respectively (all in absolute magnitude instead of percentage). Thus, the total 

number of purchases from sharing for the two treatment groups is: 

N*M*(c+∆c!) + N*M* (c+∆𝑐!)* (s+∆s!) 

Define ∆𝑐!-∆𝑐!=∆𝑐, ∆𝑠!-∆𝑠!=∆𝑠; Assume ∆𝑐!>∆𝑐! and ∆𝑠!<∆𝑠! (i.e. treatment 1 results 

in more purchases and treatment 2 in more referrals by the recipients), thus the difference 

in the two treatment groups are: 

{N*M*(c+∆c!) + N*M* (c+∆𝑐!)* (s+∆s!)} – {N*M*(c+∆c!) + N*M* (c+∆𝑐!)* (s+∆s!)} 
= N*M* (∆𝑐!-∆𝑐!) + N*M*(∆𝑐!-∆𝑐!)*(s+∆s!) – N*M*(c+∆𝑐!)*(∆𝑠!-∆𝑠!) 

= N*M* {∆𝑐+∆c*(s+∆s!) - (c+∆𝑐!)*  ∆𝑠} 
The three terms represent the key tradeoffs in the comparison and correspond to the two 

outcomes illustrated in Figure 1. The first and second term indicates the difference in 

increased purchases from the new adopters as well as the second degree of those new 

adopters. The third term mainly indicates the difference in increased further referrals 

from existing adopters. The condition that treatment 1 brings more purchases than 

treatment 2 is given by, 

N*M* {∆𝑐+∆c*(s+∆s!) - (c+∆𝑐!)*  ∆𝑠} > 0 

  𝑖. 𝑒.,
∆𝑐
∆𝑠 >

𝑐 + ∆𝑐!  
1+ s+ ∆s!

 

In my case, ∆s!~0 and ∆𝑐!~0 (i.e. treatment 1 increases purchases but does not increase 

further referrals, treatment 2 increases further referrals but not purchases). Thus the firm 

should pursue Treatment 1 to encourage more purchases if: 

∆𝑐
∆𝑠 >

𝑐  
1+ s 

 
In other words, the firm should pursue Treatment 1 
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1) (right hand side) when baseline adoption rate (i.e. number of existing customers) is 

relatively low and the baseline number of successful further referrals is relatively high.  

2) (left hand side) when the difference in increased adoption rate is relative high 

compared to the difference in increased further referrals. 

The intuition behind the comparison is very simple: when baseline adoption rate is 

relatively low, then the increase in further referrals from existing customer is small; thus 

there is no large gain from encouraging more referrals. When the baseline further 

referrals is relatively high, one additional first degree adopter can bring more second 

degree adopters; the high social multiplier effect makes an increase in baseline adoption 

rate even more desirable. Thus, both cases favor more purchases over more additional 

referrals.  

In my case, the baseline adoption rate is not high (compared to online games or content 

consumption) as it is costly for the recipients. Thus, the firm in my context (and probably 

in many other similar online shopping contexts) should encourage an increase in 

purchases by providing information about the sender’s purchase rather than an increase in 

further referrals by displaying information about the referral reward. 
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Chapter 3: 
Essay 2 -- Monetizing Sharing Traffic through Incentive Design: 
Evidence from a Randomized Field Experiment 
 
3.1. Introduction 
Online social sharing platforms such as Facebook, Pinterest, Groupon and LivingSocial 

have dramatically increased the ability of customers to share product information with 

their social connections. A huge volume of product information is shared daily through 

those digital channels. While the sharing of a product indicates the purchase intent of 

either the sender or the recipient, or both, most of such ‘shares’ do not lead to successful 

conversions of either the sender or the recipient7.  This presents an interesting opportunity 

to the firm. With increasing availability of data on sharing among peers, as well as the 

ability to process such data in real time, firms can now monetize the sharing traffic by 

targeting customers in the share with promotions. Despite its huge volume and growing 

importance, no study has investigated how firms can take advantage of such online 

sharing traffic and convert senders and recipients involved in the shares. My paper aims 

to fill this gap by examining whether and how firms can engage customers in information 

sharing, through the design of novel incentives.  

Specifically, this study has three objectives. The first objective is to test the 

effectiveness of different incentive designs in converting sharing traffic. Sharing traffic is 

similar to website and online search traffic to the extent that such sharing is reflective of 

the sender’s own interest in the shared product. However, sharing behavior also 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7  In my context, the number of senders exceeds five million but only less than 10% of them ever 
purchased the shared product; even a smaller percent of share recipients ever made a purchase. The 
opportunity size in engaging those customers is huge. Even a marginal increase in conversion rate would 
lead to huge increase in net revenue. 
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fundamentally differs from online browsing and search behavior in two key aspects – 

first, a share could indicate the interest of the recipient, or the group (the sender as well as 

the recipient), rather than just the interest of a single customer for that particular deal. 

Thus the firm should look beyond the focal customer (i.e. sender) and take into account 

the purchase decision of her social connections when designing the targeting strategy; 

second, a share reveals sender’s strong willingness to share information with friends. 

Thus the firm can take advantage of this behavior trait and leverage the sender as an 

influencer to engage the recipients. Those two unique features indicate that firms should 

customize their behavioral targeting strategy for sharing behavior. Specifically, firms can 

target the sender with novel incentives: not only to improve her own adoption, but also to 

leverage her to influence and engage the recipients. Iconduct a randomized field 

experiment to empirically test the effect of different incentive designs on these two 

outcomes. 

The second objective of the study is to gain insights on the sender’s motives in 

sharing.  The act of sharing (albeit, information) could reflect the sender’s other-

regarding motives, or sender’s group-regarding motives, in addition to her self-regarding 

motives. Despite the prevalence and importance of all three types of motives (List 2007, 

Chen et al. 2009), there are no studies that have investigated them in the same 

framework. Taking advantage of the unique context of online information sharing, my 

study seeks to disentangle the three motives using a randomized field experiment. 

Specifically, the sender’s response to different incentive designs can reveal the self-

regarding, other-regarding, or group-regarding motives underlying her sharing behavior. 
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The final objective of my study is to combine the first two objectives and customize 

the targeting strategy (i.e. incentive design) at individual level based on the sender’s 

sharing motive. While all three motives in sharing can be beneficial to the firm, they have 

very different implications for the firm’s optimal targeting strategies. Understanding the 

underlying motivations of a share can enable the firm to identify appropriate incentives in 

individual level targeting.  

To achieve the above objectives, I design and implement a large-scale randomized 

field experiment in collaboration with a leading daily deal platform to identify the causal 

effect of incentive design in monetizing the sharing traffic and to tease out the underlying 

motives of the sender. Specifically, I target the sender with incentives (single-use 

promotional-codes or promo-codes for short) aimed at converting the sender, the 

recipients, or the group (the sender and the recipients). I focus on two dimensions in my 

incentive design – the number of promo codes available to the sender and whether these 

promo codes can be shared. By varying the two dimensions, I create four versions of 

emails – (i) a reminder email with no promo-code (T1), (ii) an email containing one 

promo-code for the sender (T2), (iii) an email containing one promo-code that can either 

be used either by the sender or be shared with her friends (T3), (iv) an email containing 

two promo-codes, one for use by the sender and another to be shared with her friends 

(T4). By allowing the sender to share the promo-code with her connections (in T3), I 

essentially create a tension in the sender’s decision. On the one hand, the sender can use 

the code and enjoy the monetary benefits herself. On the other hand, the sender can share 

the promo-code with her social connections and gain (non-material payoff) utility from 

her friend’s consumption. Thus the sender’s decision resembles a classical dictator game 



 

	  

 

	  
47	  

in which one participant is endowed with a fixed amount of money and can decide how 

much to allocate to others. 

I choose participants in my experiment to be senders who had shared deals with 

friends the previous day but did not purchase themselves. I randomly assigned eligible 

senders into one of the five test groups (See Figure 2), and target the senders in treatment 

groups with different emails. The randomization allows me to identify the impact of 

incentive design on sender’s purchase as well as further referral behaviors with recipients 

and other friends (See Figure 1). The experiment was successfully implemented in late 

2014. I find evidence that the incentive structure has a significant impact on both 

purchase and referral decisions of the sender, but in different ways. Specifically, I find 

that the provision of one (non-shareable) promo-code for the sender significantly 

increases her probability of purchasing the shared product; the increase can be explained 

by the additional usage of promo-codes. I find the promo codes are most likely to be used 

when the sender has purchased deals before in the same category as the shared deal – 

indicating that the self-regarding motive at work. I also find that the provision of one 

shareable promo-code (T3) to the sender, leads to an increase in sender’s purchases but to 

a lesser degree than the case (T2) with a non-shareable promo-code; however, it leads to 

a significant increase in referral purchases by recipients. I find that the sender is less 

likely to use the promo code herself compared to T2, but is more likely to refer friends 

who purchase the deal using the shared promo-code. An established stream of literature 

in psychology and economics has found consistent evidence in other context that people 

care not only about their own material payoff but also about others’ welfare, due to 

altruism, fairness, or reciprocity. My findings from T3 are consistent with this central 
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insight. Finally, the provision of two promo-codes (T4) leads to an increase in both the 

sender’s purchases as well as in referral purchases; however, there is a significant 

increase in group purchases (or purchases by both the sender and the recipient).  The use 

of two promo-codes reveals the group-regarding motive at work. I find that the incentive 

is especially effective for the purchase of social products (such as tickets to social events) 

that are typically characterized by a positive social network effect with group 

consumption dominating stand-alone purchase of the deal. 

The results of my field experiment provide practical implications for firms seeking to 

monetize sharing traffic. At the aggregate level, the firm can adopt the optimal incentive 

design – one shareable code – as suggested by my experiment results. However, the firm 

can further customize targeting strategies based on the sender’s sharing motive. As in 

other contexts such as channel-based advertising (e.g. search ads for specific keyword, 

display ads on specific web page), the sender involved in sharing also self-selects into the 

sharing process before they are targeted. Thus, the effect of the targeting may critically 

depend on the motivation of the senders who share information with her social 

connections at the first place. My results highlight how the effectiveness of incentive 

design depends on the underlying motives of the sender sharing the deal. In the case of a 

self-regarding motive, providing incentives targeted at the sender’s interest categories as 

reflected in her historical purchases can prove to be effective. On the other hand, if the 

sender’s sharing is driven by other-regarding motives, then she is less likely to respond to 

non-shareable promo-codes but is more likely to respond to the shareable promo-codes 

by spreading the influence to her friends. Under such circumstances the firm could also 

benefit from providing incentives to the recipients. Finally, in the case of social events 
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where senders and recipients are likely to benefit from joint consumption, the firm should 

provide incentives for both the sender and recipient to promote joint purchase.    

Besides its direct managerial implications, the study also helps build our theoretical 

understanding of information sharing -- especially the motives that drive sharing. As 

noted earlier, understanding the antecedences of pre-purchase sharing is hard, as the 

action is driven by a combination of complex motives (i.e. self-regarding, other-

regarding, or group-regarding). The unobserved motives may further affect the 

consequence of share, i.e. the sender’s and recipient’s adoption decisions. Thus, analysis 

of pre-purchase sharing behavior using secondary data may suffer from strong 

endogeneity problems. My field experiment helps address this issue. Senders are 

randomly assigned into one of the five test groups after they initiate the pre-purchase 

share organically. The exogenous variation created by randomization helps reveal the 

underlying motives at work in pre-purchase sharing. My field experiment also offers 

clear evidence on whether people share information with others because of altruism. 

Previous studies on word-of-mouth has proposed multiple psychological drivers for 

information sharing, including self-enhancement (Dichter 1966, Wojnicki and Godes 

2011), emotion (Berger and Milkman 2012), and accessibility (Berger and Schwartz 

2011). While few studies (Sundaram, et al. 1998) have suggested altruism or helping 

others as a potential driver, there has been no definitive evidence. In contrast, the 

comparison between T2 and T3 in my experiment design is especially informative on this 

point. By simply allowing the sender to share the promo-code (in T3), the experiment 

essentially creates a tension in sender’s decision-making process. Since the promo-code 

can only be used once, the sender now needs to choose whether to keep the code for 



 

	  

 

	  
50	  

herself or share it with her friends. This could potentially lead to a tradeoff between the 

sender’s own purchases and the purchases from her friends. I indeed see evidence of such 

a tradeoff in my results. In summary, my study is among the first to study how firms 

could distinguish between different sharing motives and customize the design of targeting 

strategies accordingly.  

 
3.2. Related Literature 

My study is closely related three streams of research: first, my study joins a large 

stream of literature on behavioral targeting based on online browsing and search 

behaviors (Lambert and Tucker 2013, Ghose and Yang 2009). Similar to those in search 

and website traffic, customers in sharing traffic reveals precious purchase intent and are 

valuable for targeting. Despite its large volume and growing importance, no study has 

provided guidelines on how to monetize such sharing traffic. I study a novel type of 

behavioral targeting based on sharing behavior. 

My study also complements the network intervention literature (Hill et.al. 2006) by 

using real time data on sharing traffic to target and influence customers. Rather than 

focusing on ‘who to target’, I examine ‘how to target’ customers through the design of 

new incentive schemes. Previous targeting strategies (Lambert and Tucker 2013), 

including those used in social advertising (Agarwal and Hosanagar 2014), are designed to 

engage individual customers. In the context of sharing, individuals beyond the focal 

customer may have strong purchase interest. My study shows that novel incentives, 

designed to engage customers and their friends, can be powerful in driving both 

customer’s own purchase as well as further referrals. Under appropriate incentives, social 



 

	  

 

	  
51	  

influence can be spread even without sender’s own adoption. In this way, my study 

proposes a new type of network intervention to inject social influence into the network.  

Finally, my study complements an emerging stream of literature that investigates the 

underlying motivation that drives information sharing. A large stream of literature has 

studied the tension between self-regarding preference and other-regarding preferences in 

individual decision making, using lab experiments (List 2007, Kahneman et.al. 1986), 

field experiments (DellaVigna et.al. 2012) and observational data (Lactera et.al. 2011). 

The literature finds that individuals care not only about their own material payoff, but 

also other's welfare, at least to some extent (e.g. in  the classical dictator game, more than 

20% of the participants split their benefits with the other participant). In parallel, an 

emerging literature examines group-regarding preferences and other-regarding motives 

(Duell 2015, Kranton et.al. 2013, Chen et.al. 2009). They find that individuals have more 

care and less envy towards other individuals within the group than outside the group 

(Chen et.al. 2009); they are also more likely to take destructive action towards out-of-

group member. However, despite the importance of understanding the underlying 

motivations of the sender who shares, it is very difficult to tease out these three 

motivations using secondary data. My field experiment helps address the endogeneity 

problems and provides additional insights. 

 

3.3. Research Context 
In collaboration with a leading online daily-deal platform, I design and implement a 

randomized field experiment to study the causal impact of incentive design on sender’s 

purchase and further referral behaviors. The platform offers a wide range of daily deals 

for local services and standard products at a high discount and has a large customer base. 
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On each deal page on the firm’s website, the platform provides channels through which 

customers (senders) can share these deals with their social connections. Customers 

(senders) can share deals both before and after purchase by clicking specific channel 

buttons which are prominently displayed. The current experiment focuses on the pre-

purchase sharing. Every day, a large volume of pre-purchase shares are made by 

customers through different sharing channels on the platform; but only a small percentage 

of senders in such share finally purchase the shared product. The platform observes the 

sender, the recipients, as well as the shared product, for every share through the platform; 

and can target email promotions at any time after observing such sharing. 

3.4. Experiment Design 
My experiment focuses on senders who had shared deals with friends the previous 

day but did not end up purchasing the shared deal themselves8. I randomly assign eligible 

senders into one of the five test groups (See Figure 2), and target the senders in treatment 

groups with different emails. By varying the number of promo-codes available to the 

sender as well as whether the promo-code can be shared or not, I create four versions of 

emails, as follows: 

Control group: No email 

Treatment 1 (T1): Email with reminder to the sender to purchase the deal she just 

shared 

Treatment 2 (T2): Email with one 15% promo-code for the sender to purchase the 

shared deal 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 I choose one day as the time lag after based on historical data. Most senders purchase the deal within few 
hours. 
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Treatment 3 (T3): Email with one 15% promo-code (sender can either use it herself 

or pass on the savings to a friend) 

Treatment 4 (T4): Email with two 15% promo-codes (one for the sender & one that 

can be shared with a friend) 

The emails are sent out once a day at the same time. Each user on the platform is 

eligible to receive the email at most once during the test period. The randomization 

happens after the sender’s share and thus, incentives in the email are completely 

orthogonal to the sender’s sharing behavior. Any difference in the sender’s purchase and 

referral behaviors can therefore, be directly attributed to the difference in the received 

incentives. Using the experiment design, I seek to identify the impact of incentive design 

on sender’s purchase as well as referral behaviors. Specifically, I focus on two key 

outcomes in the experiment: 1) sender’s purchase; 2) sender’s further referrals. The first 

outcome represents the conversion of the focal customer and the second outcome shows 

whether the influence has spread beyond the customers under targeting. 

3.5. Data 
The randomized field experiment has been run on the platform for a period of time 

and I am able to collect a large and random sample including more than 20000 unique 

senders (i.e. more than 4000 senders in each test group). The number of recipients who 

are exposed exceeds 25000. The data for my study comes from customer- to-customer 

shares/referrals through the platform. For every firm-mediated email share, I record the 

unique hashed identifier of the sender (customer ID), the recipient (hashed email address), 

the shared deal, as well as the assigned test group. I record the purchase status of the 

sender (pre- or post-purchase share), the number of recipients she specifies in the batch of 

sent messages, the timestamp of share. Finally, the final purchase status of the sender for 
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her successful referrals is also recorded. I further augment the above main dataset with 

the historical data on sender and recipient's purchase history before experiment as well as 

price and subcategory of deals. The resulting dataset enables me to analyze the impact of 

incentive design at a granular level (i.e. heterogeneous treatment effect or moderating 

effect of sender and product characteristics) 

3.6. Empirical Results 
I first check the validity of my randomization. In table 1 I provide the breakdown of 

major covariates in the five groups. As shown in the results, there is no detectable 

variation across groups in sender characteristics (number of past purchases, total past 

spending, length of accounts) and shared deal characteristics (deal price and deal 

category dummies). The t-tests on these variables across groups are insignificant at the 

conventional level. The well-balanced sample indicates that my randomization works. 

I find evidence that all incentive schemes have a significant impact on both purchase 

and referral decisions of the sender, but in a different ways. Specifically, I find i) the 

incentive with one (non-shareable) code for the sender significantly increase her 

probability of purchasing the shared product and the increase can be explained by the 

additional usage of promo codes; ii) the incentive that allows sharing of the code (T3) 

results in lower increase in sender’s purchases (as compared to T2), but further motivates 

senders to serve as influencers for the firm and leads to significantly more referrals. In 

fact, most of such referrals are brought by senders who did not purchase the shared deals 

themselves; iii) the incentive with two codes leads to increases in both the sender’s 

purchase as well as referrals, and works best for social products. I present the detailed 

results of my field experiment in the following sections.. 

The Effect of Incentive Design at Aggregate Level 
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I first present main findings using linear model without controls (linear probability 

model for sender’s purchase, OLS model for sender’s referrals, see Table 2, 3 and 4).  

The results are robust under alternative models (probit/logit for sender’s purchase and 

count model for sender’s referrals), as well as with controls, with little difference in the 

magnitude of treatment effects. 

1) Effect of non-shareable incentive on sender’s purchase, T2: I find that the reminder 

message alone has no significant impact on sender’s purchase. However, once the 

incentive is added there is a large and significant increase in the sender’s purchase. The 

relative increase over control group is more than 60%. The increase is sizable even after 

taking into account the cost of the promo codes. This increase suggests that firms can 

monetize sharing traffic with promotions and self-regarding preference is important in 

driving sender’s purchase. 

2) Effect of shareable incentive on sender’s purchase and referrals, T3: Interestingly, 

once the incentive (i.e., one promo-code) is allowed to be shared, the effect on the 

sender’s purchase is greatly attenuated and the increase over control becomes less 

significant. In parallel, there is a significant increase in sender’s further referrals (Table 

2). The decrease in sender’s own purchase, combined with the increase in sender’s 

referrals, provides strong evidence that senders have other-regarding preferences and 

would share the code with friends even at the cost of their own purchase. In a 

complementary analysis, I also find that senders under shareable incentives are more 

likely to make follow-up shares through the platform 

3) Effect of two codes on sender’s purchase and referrals, T4: Finally, when there are 

two promo-codes in the email, both the sender’s purchase and referrals increase. 
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However, detailed examination (outlined in next subsection) shows that the increase is 

mainly driven by group regarding preferences. 

In summary, firms can convert senders and recipients in sharing traffic through 

incentive design. On average, the sender under the incentive treatment generates more 

purchases and referrals. This effect is economically significant considering the large 

number of customers who share through the platform. Detailed calculation on the net 

revenue (based on sender’s purchase plus sender’s referrals minus the promo code cost) 

shows that the incentive design with one shareable promo code is most effective in 

increasing firm’s profits. 

Exploring Underlying Mechanisms Using Heterogeneity in the Data 

Having identified the main effect at aggregate level, I further look into my data to 

untangle the motives underlying sender’s sharing. I first report two heterogeneities in the 

treatment effect, based on the sender’s purchase history as well as the recipient’s 

purchase history. Specifically, I construct a continuous variable capturing the ‘alignment’ 

between the shared deal and the customer’s revealed preference. I do it in two steps: first, 

I build a category-level preference vector capturing customer’s historical purchases in 

each category and normalize the category-specific count using the total number of 

purchases; second, I represent the shared deal using a category-level dummy vector and 

calculate its product with the above preference vector. Thus, the more the customer has 

purchased deals in the same category as the shared deal before, the higher this variable 

will be. A customer who always bought deals in the same category as the shared deal 

would have a preference for shared deal with value 1 (and a customer who never bought 

deals in the same category as the shared deal would have preference value 0). I run the 
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same set of linear models after interacting the preference variable with the treatment 

dummies and adding all corresponding controls (see results in Table 5). 

The results confirm that senders share with different underlying motives. Those 

senders with a strong preference on the shared deal (self-regarding) are more likely to 

make purchases themselves and are much less likely to make referrals. Those senders 

who share with recipients with a strong preference on the shared deal (other-regarding) 

are more likely to make referrals. The magnitude of the interaction terms is also 

significant from an economic perspective. 

I further examine how incentive design affects the sender’s group purchase decision, 

by i) decomposing the outcome (total number of referrals) into specific scenarios 

( “referral only” and “both referral and purchase”); and ii) by exploring the heterogeneity 

in treatment effect on different types of deals. The shared deals in my sample range 

across more than 40 subcategories. I manually classify the subcategories into social 

product (e.g. group events) and standalone product (e.g. retail product), and run analysis 

on the two types of products separately.  

The empirical findings in table 3 show that the increase the sender’s referrals under 

shareable incentive are largely attributable to the “sender making only referrals but no 

purchases herself”. In contrast, the increase in sender’s referrals in T4 is coming from co-

purchases, i.e. sender makes both purchases and referrals. Detailed examination of 

incentive on shares for social products vs. standalone products (table 4) shows that group 

incentive works best for social products that require group participation. The finding 

confirms my hypotheses that group regarding preference dominates customers’ sharing of 

social products. 

Customizing Incentive Design Based on the Sharing Motives of the Sender 
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My results show that the firm can customize the incentive design based on the 

underlying motives of the sender sharing the deal. Such motive can be inferred based on 

sender and recipient’s purchase history. In the case of a self-regarding motive, providing 

incentives targeted at the sender’s interest categories as reflected in her historical 

purchases can prove to be effective. On the other hand, if the sender’s sharing is driven 

by other-regarding motives, then she is less likely to respond to non-shareable promo-

code but is more likely to respond to the shareable promo-code by spreading the 

influence to her friends. Under such circumstances the firm could also benefit from 

providing incentives to the recipients. Finally, in the case of social events where senders 

and recipients are likely to benefit from joint consumption, the firm should provide 

incentives for both the sender and recipient to promote joint purchase.   

3.7. Discussion 
With the explosion of online social platforms and the availability of data, there is an 

increased desire to improve our understanding of online sharing. As noted by Watts 

(2012), while “no one doubts that influence is an important cause of correlated behavior, 

it is surprisingly hard to prove it”. Watts (2012) goes on to note that while researchers 

have recently conducted field experiments on social platforms such as Facebook and 

Twitter to track the diffusion of individual pieces of content over interpersonal networks 

on a massive scale, these studies of retweets and likes are relatively trivial actions, and 

highlights the need to execute studies of this type for more consequential behaviors such 

as shopping. My study is among the first to answer this call by reporting on the results of 

a large-scale randomized field experiment (with thousands of real transactions) to 

untangle the underlying motives behind sharing and uncover the causal impact of 

incentives on the purchase and referral behaviors of individuals.     
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Distinguishing between these underlying motives of sharing is not only important 

from a theoretical perspective but also from a practical perspective. If self-regarding 

behavior is the underlying motive, then the firm can design incentives and promotional 

strategies targeted at the sender based on her historic purchase patterns to encourage 

adoption. On the other hand, if other-regarding motives are at work, then the firm can 

design shareable incentives as well as better target the recipients rather than the senders. 

Finally, in the case of group-regarding behaviors, the incentives and promotions can 

focus on social-products such as tickets to events and games that lend themselves to joint 

consumption.   

With the availability of large amount of data on sender and recipient behaviors and 

their historical interactions, as well as the ability to process requests in real time, firms 

can actually personalize incentives at an individual level. Ongoing work examines 

various moderators to shed light on the variations in treatment effect for different types of 

senders, recipients, strength of ties, and product categories. I envision that in the near 

future when a firm gets a request of share from a sender, it would leverage historical 

information to extract product characteristics, sender and recipient’s purchase and 

interaction histories, calculate optimal incentive design, and deliver them in real time in a 

personalized fashion. My work serves as a valuable proof-of-concept of this impending 

development.  

In conclusion, my study represents one of the first large-scale field experiments to 

understand the causal role of incentive design on converting customers in sharing traffic. 

My study not only contributes to our understanding of the motives behind online sharing, 

but my findings also provide valuable guidelines for firms seeking to monetize such 
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online social interactions through incentive design. The quantitative estimates and 

qualitative understanding gained from this series of studies can guide the optimal design 

of incentives for improving the targeting based on sharing. More importantly, targeting 

sharing traffic through incentive design is complementary to other social marketing 

approaches such as targeting influencers (Manchanda et al. 2008), network seeding (Hinz 

et al. 2011), viral product design (Aral and Walker 2011), viral content design (Berger 

and Milkman 2012), and referral programs (Schmitt et al. 2011), among others. It would 

be valuable to examine how incentive designs complements these traditional approaches. 

I hope that my study serves as a first step in that direction 
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Figures and Tables for Chapter 3 (Essay 2) 
 

Figure 1: Key Outcome of Interest 
a) Sender’s purchase; 

b) & c) Sender’s follow-up referrals 
 

 
 
 
 

Figure 2: Experiment Design 
 

Control group: No Message 
Treatment Groups: Firm sends an automated email with different incentive designs 
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Table 1: Randomization check 

Test Group 

 Sender Characteristics Deal Characteristics 

Sample 
size 

Number of 
past purchase 

Total past 
spending  

Days after 
creating 
account 

% of share 
through 

Facebook 
Deal Price Deal 

Category 

C 4309 0.00 0.00 0.00 0.00% 0.00 
A list of 

dummies for 
every major 

deal category 

T1 4045 -0.12 -6.01 6.08 -1.32% 4.14 
T2 4050 0.14 -0.16 -14.09 0.96% -1.51 
T3 4007 -0.16 1.86 4.19 -1.36% -2.29 
T4 4069 0.17 0.52 -0.09 1.25% 3.52 

p value for joint test 
(C=T1=T2=T3=T4=T5) 

0.82 0.99 0.44 0.33 0.34 

No 
significant 

difference for 
all deal 

categories 
* To respect NDA, the figures provided are demeaned values obtained by subtracting the mean value of treatment groups from that of control group. Demeaning 

preserves the difference in mean value between test groups as well as the t-test (i.e. randomization check). Pairwise t-test is available upon request. 
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Table 2: Self-regarding preference 

Main Effect of each treatment on sender’s purchase decision 
	  

 Sender’s Purchase Sender’s Referral 

Dependent Variables Percentage lift in 
sender’s purchase 

p-value 
 

Percentage lift in 
sender’s referral 

p-value 
 

Effect of Reminder on Sender's Purchase 
or Referrals 

(T1-C)/C 
14.1% 0.198 7.8% 0.598 

Effect of one non-shareable code on 
Sender's Purchase or Referrals: 

(T2-C)/C 
64.5% 0.000 18.3% 0.286 

Effect of one shareable code on 
Sender's Purchase or Referrals: 

(T3-C)/C 
31.6% 0.002 67.4% 0.005 

Effect of two codes on Sender's Purchase 
or Referrals: 

(T4-C)/C 
27.8% 0.007 29.5% 0.125 
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Table 3: Other-regarding preference 
Main Effect of each treatment on sender’s referral behavior 

	  
 Total Referrals Sender only makes referral 

(without purchase) 
Sender makes both referral 

and purchase 

Dependent Variables 

Percentage lift in 
average number of 

referrals from 
each sender 

p-value 
 

Percentage lift in 
average number 
of referral from 

each sender 

p-value 
 

Percentage lift in 
average number 
of referral from 

each sender 

p-value 
 

Effect of Reminder on Sender's referral 
(T1-C)/C 7.8% 0.598 9.60% 0.809 -4.7% 0.840 

Effect of one non-shareable code on 
Sender's Referral: 

(T2-C)/C 
18.3% 0.286 17.4% 0.481 20.5% 0.388 

Effect of one shareable code on 
Sender's Referrals: 

(T3-C)/C 
67.4% 0.005 92.5% 0.013 26.2% 0.283 

Effect of two codes on Sender's Referrals: 
(T4-C)/C 29.5% 0.125 11.3% 0.799 47.1% 0.116 
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Table 4: Group-regarding preference 

Main Effect of each treatment on the Co-Purchase decision with friends (sender makes both purchase and referrals) 
	  

 All products Social product Standalone product 

Dependent Variables 

Percentage lift in the 
number of senders 
who makes both 

purchase and 
referrals 

p-value 
 
 

Percentage lift in 
the number of 
senders who 
makes both 

purchase and 
referrals 

p-value 
 

Percentage lift in 
the number of 

senders who makes 
both purchase and 

referrals 

p-value 
 

Effect of Reminder on Co-Purchase 
(T1-C)/C -4.7% 0.840 -25.7% 0.542 3.4% 0.899 

Effect of one non-shareable code on 
Co-Purchase: 

(T2-C)/C 
20.5% 0.388 42.7% 0.360 12.3% 0.642 

Effect of one shareable code on 
Co-Purchase: 

(T3-C)/C 
26.2% 0.283 45.1% 0.347 19.4% 0.487 

Effect of two codes on Co-Purchase: 
(T4-C)/C 47.1% 0.116 103.2% 0.051 14.2% 0.595 
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Table 5: Heterogeneity in treatment effect 

Based on the sender’s and the recipient’s revealed preference on the shared deal 
	  

Moderator Sender’s Preference  
on the shared deal  

Recipient’s Preference  
on the shared deal 

Dependent Variables 
Sender’s  

Purchase 

Sender’s 

Referral 

Sender’s 
Purchase 

Sender’s 
Referral 

Effect of one non-shareable code on 
Sender's Purchase: 

 (T2-C)/C 
0.002 -0.043** -0.025 0.011 

Effect of one shareable code on 
Sender's Purchase: 

(T3-C)/C 
0.026* -0.032* 0.002 0.036* 

Sample size 20,375 20,375 16,481 16,481 
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Chapter 4:  
Essay 3 -- Motivating Group Donation: Evidence from a Large Field 
Experiment 
 

4.1. Introduction 

Information technology has greatly reduced the communication and coordination cost 

among individuals. As a result, individuals are connected online and offline, ready to 

influence each other’s behavior on an unprecedented scale. In light of this trend, 

organizations have increasingly used social interventions (Godes et al. 2005, Hill et al. 

2006, Valente 2012), but academic research is lagged behind. More specifically, a large 

stream of literature has studied online information sharing (Aral and Walker 2011, 2012, 

Bapna and Umyarov 2014, Ma et al. 2014, Susarla et al. 2012), while much less is known 

about how firms use digital interventions to improve offline social interaction. As Aral 

(2015) points out, “…there remains a danger in relying too heavily on digital substrates 

to explore human behavior. Not only are digital samples biased toward those who are 

more active online, potentially missing large swaths of society, but limiting inquiry to 

digital behaviors constrains the theoretical reach of experimental work.” Hence Aral 

(2015) calls for networked experiments to link online treatment with offline response.  

My study is one attempt to answer this call. Specifically, I use mobile messaging to 

leverage recipients’ social ties for an important offline behavior – blood donation. Blood 

shortage is prevalent worldwide, partly due to the low level of voluntary donation, 

especially among developing countries (WHO 2015). While individual incentives are 

important9, recent literature finds that donors behave differently when surrounded by 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 On economic rewards, see Lacetera, Macis and Slonim 2012, 2013, 2014, Iajya et al. 2013, Goette and 
Stutzer 2008. On mechanism design, see Kessler and Roth 2012, 2014. On behavioral interventions, see 
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other donors or watched by third-party observers (Goes et al. 2014, Toubia et al. 2013, 

Jabr et al. 2013, Ozbay and Ozbay 2014, Ariely et.al. 2009). Such a group effect usually 

leads to more donations, although its effectiveness depends on group size (Zhang and 

Zhu 2011), group composition (Chen and Li 2009), and information structure (Chen et al. 

2010). In light of this literature, my study offers a new approach to address the global 

challenge of blood shortage. 

Up till now, most studies on group effects employ a researcher-controlled 

environment that defines group exogenously. In reality donor groups are often formed 

endogenously even before the charitable event organizer greets any potential donor. 

Therefore, important questions are left unanswered such as: How can we use mobile 

interventions to encourage potential donors to form a group? Why do people donate or 

not donate as a group? What kinds of individuals are more prone to the digital 

interventions in offline social interactions? In this paper, I examine how to take 

advantage of endogenous group formation to increase donation in a real world setting. 

There are multiple reasons why leveraging offline group formation can be more 

beneficial to society than addressing each donor separately. First, donating in front of a 

friend may generate extra value to the donor in terms of a more positive social image or 

warm glow. Second, to the extent that friends are alike, the friend of an active donor is 

likely a prospective donor. Third, coming to the charitable event together may generate a 

shared experience valuable to both the donor and her friend. This will in turn enhance the 

likelihood of the two coming as a group. Fourth, if we can identify what types of donors 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Andreoni and Rao 2011. On social pressure and social image, see DellaVigna, List and Malmendier 2012, 
Kessler 2013, Ariely, Bracha and Maier 2009, Karlan and McConnell 2014, Andreoni and Bernheim 2009. 
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are more likely to enjoy group donation, reaching out to them can have a long run ripple 

effect that further spread the benefits of group donation. 

If it is so desirable to donate as a group, why don’t all donors already donate in a 

group? One explanation is coordination failure: a donor may need to reach out to her 

friend and educate him/her about the charitable event, and to coordinate schedule and 

transportation. The other explanation reflects more fundamental issues such as negative 

peer pressure (Calvó-Armengol and Jackson 2010): the donor may be reluctant to ask a 

friend to donate together if doing so amounts to asking for a favor or imposing social 

pressure on the friend. Whether the lack of group donation is due to coordination failure 

or negative peer pressure, I argue that encouraging group donation has a potential to 

improve Pareto efficiency. For example, suppose group donation can generate an extra 

value of $1,000 to the charity (as compared to solo donation), but it does not occur 

because the private benefit of group donation is only $500 to the donor and her friend, 

while the coordination cost and the negative social pressure of asking or being asked sum 

up to $600.  In this case, the charity can offer a $200 reward for group donation, which 

allows the donor and her friend to receive a net benefit of $100 via group donation and 

the charity to realize a net benefit of $800.  

To study ways to motivate group donation, I collaborated with a Chinese blood bank 

and conducted a large field experiment in December 2014. I randomly assigned 80,000 

potential donors into seven test groups. The first one is a control group with 14,000 

subjects. For the remaining six groups (with 11,000 subjects in each), I sent out a mobile 

message and varied its content across groups.  The message content explored two tools to 

overcome the hurdle of group donation. One is behavioral intervention: some treatments 
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do not mention group donation at all, while the others explicitly request a potential donor 

to donate together with friend(s). The second tool is providing economic reward for solo 

or group donation. My experimental design incorporates six combinations of these two 

tools (Table 1). 

In particular, message 1 only reminded subjects to donate, message 2 added an 

explicit reward for donation (a supermarket voucher that is worth 30-50 RMB, equivalent 

to 6-8.3 US dollars). The average daily wage in this city in 2014 was about 100 RMB, so 

the reward amount is non-trivial. Neither message 1 nor 2 mentions group donation. In 

message 3, I reminded the subject to donate with friend(s), but did not mention the 

economic reward for donation; message 4 included both a reminder for donating with 

friend(s) and the economic reward. Note that in both message 2 and message 4, the 

reward is presented as reward per donor, without any condition on whether the donor 

comes alone or with friend(s). Message 5 is similar to message 4, except that I made the 

reward conditional on donating with friends (“…if you and your friend(s) donate together, 

each one of you will get a reward of…”). Message 6 is similar to message 4, but 

highlighted additional gifts available for all donors that come in group (“… you will get a 

reward of … upon donation. If you and your friend(s) donate together, each one of you 

will get an additional gift.”). Table 1 summarizes the behavioral intervention and 

economic rewards in each treatment group, together with their corresponding parameters 

in my model (introduced in Section 3). For every donor who showed up during the 

experiment period, I also conducted a detailed survey that includes questions on their 

perception of social image and donating in a group.  
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My experiment generates three main findings. First, a subject’s donation decision – 

none, solo, or group donation – depends on both the reminder to donate and the economic 

reward for donation. Compared with the control group, receiving a message that 

encourages donation (message 1) has a positive effect on the overall donation rate, but 

receiving a message that encourages donation with a friend (message 3) has no 

significant effect. This suggests that simply mentioning group donation does not work: 

while the message reminds donors of the pleasure of donating with a friend, it also 

increases the perceived costs associated with getting a friend and convincing him to 

donate, which might even backfire and hurt donation rate. When I added economic 

reward to the mobile message (messages 2,4,5,6), the effect on donation rate is always 

positive and significant, but the effect is of the largest magnitude when the reward is 

conditional on donating with friends (message 5), especially for those who have donated 

within the past 9 months.  Not only does the conditional reward lead to a higher donation 

rate from message recipients, but these recipients are also more likely to bring friends 

who also donate at the same time.  

The second main finding is that different messages tend to attract different types of 

donors. Thanks to my randomization design, all seven control and treatment groups are 

similar in observable demographics. However, the donors who respond to message 5 

(with economic reward conditional on group donation) are more likely to be married, to 

be older than 35, to have local resident permit (hukou) in the city, to have donated more 

recently, and to have donated more times before the experiment than donors responding 

to other messages. It is interesting to note that this group of people tends to be less active 

in online social platforms compared to those who are younger and single (Pew Research 
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Center 2014). However, my finding suggests that they are more prone to my digital 

interventions, possibly because of stronger social ties in local area. Survey results 

confirm that donors responding to message 5 are more willing to share the donation 

experience with family and friends, to bring a friend next time, and to believe that 

encouragement from friends are important to motivate donation.  

Thirdly, across all treatments, message recipients donate a greater amount of blood if 

their friends are present, regardless of whether their friends donate or not. This confirms 

the group effect demonstrated in the literature, and suggests that a friend’s presence 

provides another margin to increase donation even if the friend does not donate.  

I further fit my experimental data into a structural model, in order to shed light on the 

optimal design of incentive scheme and targeting strategy. I find that rewarding group 

donors is four times more cost-effective than rewarding individual donors in motivating 

blood donation, as the bank only needs to reward donors who come in groups and enjoy 

even more donation amount when people donate in front of friends. The cost that the 

bank needs to pay to donors is calculated to be 50RMB per unit of blood (400ml) under 

individual reward and 10.2RMB under group reward, both of which are arguably well 

below the social value of having one additional blood unit available. The blood bank can 

further improve the cost efficiency by targeting a subset of donors that tend to respond 

more positively to group reward, namely female donors who are local, married, highly 

educated and have donated recently.  

Altogether, my experiment suggests that charities can leverage endogenous group 

formation to stimulate voluntary donation, but only if it is bundled with appropriate 

economic incentives. With group reward conditional on donating together with friends, 
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charities can attract a special group of donors that are more pro-social and more likely to 

share donation experience and recruit donors through their social networks. In the rest of 

the paper, I first present a simple model in Section 2, and then describe the field 

experiment design in Section 3.  Reduced-form results are reported in Section 4, followed 

by structural estimation and counterfactual simulations in Section 5. A brief discussion is 

offered in Section 6. 

 

4.2. Model 

Consider a potential donor i who faces the decisions of not donating (d=0), donating 

alone (d=1, g=0), and donating with a friend (d=1, g=1)10. Let me normalize the utility 

from non-donation as zero (𝑈! 𝑑 = 0 = 0). If i donates Yd amount of blood, her utility 

consists of a fixed component and a variable component. The fixed component captures 

the economic and non-economic rewards of donating the minimum amount (200ml) 

minus the related time, transportation, health and psychological cost (𝛼! −   𝐶! ). 

Additional economic reward for the donor is reflected in 𝑀!" . If i brings a friend, 

donating 200ml also generates positive social image or warm glow in front of the friend 

(𝛼!), but it also entails a cost of asking and coordinating with the friend (  𝐶!).  This 

includes the cost of finding such a friend, educating him/her, persuading him/her to 

donate together, and in the future returning the favor if the friend consents to donation 

due to the social pressure from i. Here I abstract from the detailed search process that i 

may engage in to find friend and form a group. It is worth noting that the cost of 

persuading a friend to donate together may depend on the reward that the blood bank 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 For simplicity I assume the friend will donate blood. In Section 5, I introduce another variable f to 
differentiate the two situations: the friend donates (g =1, f=0), and the friend does not donate (g=1, f =1).  



 

	  

 

	  
74	  

offers to the donating friend. The bank can also offer group reward to i for bringing in a 

donating friend, which is included in the benefit of bringing a donating friend (𝑀!")	  11.  

In the fixed component of donation utility, I assume there is one cognitive cost of 

remembering to donate at all and another cognitive cost of remembering to bring a friend. 

Receiving the reminder message to donate (DMSG=1) or a reminder to bring a friend 

(GMSG=1) will therefore increase the utility of donation (Karlan et.al. 2010). In addition, 

if a subject receives GMSG from the bank but donates alone, this incurs a cost associated 

with the social pressure, because she may feel guilty for not fulfilling the request. I 

denote this social pressure from the bank as 𝐶!", which by definition only occurs when 

d=1 and g=0.  

In combination, the utility from the decisions {d, g} can be expressed as: 

𝑈! 𝑑 = 0 = 0 

𝑈! 𝑔|𝑑 = 1 = 𝛼! −   𝐶! + 𝛽!"#$ ∙ 𝐷𝑀𝑆𝐺 − 𝐶!" ∙ 𝐺𝑀𝑆𝐺 ∙ 1− 𝑔 +   𝛽!" ∙𝑀!" 

+ 𝛼! − (  𝐶! − 𝛽!" ∙𝑀!" + 𝛽!"#! ∙ 𝐺𝑀𝑆𝐺 +   𝛽!" ∙𝑀!") ∙ 𝑔+𝜀!"# 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑑,𝑔 = 𝑝𝑟𝑜𝑏 𝑈! 𝑑,𝑔 > 𝑈! 𝑑!,𝑔′  

  ∀  {𝑑!    ,𝑔′} = 0,0 , 1,0 , 1,1  

Individual i chooses {d, g} to maximize her utility. As described in Section 1, my 

field experiment varies DMSG, GMSG, 𝑀!" ,𝑀!"   and  𝑀!".  

This model captures several incentives for group donation. First, if bringing a friend 

yields net positive benefits to individual i, it may convert her from no donation or solo 

donation to group donation. Second, from the bank’s perspective, if the incentives for 

group donation through 𝛼!  and 𝑀!" are not high enough, the request for group donation 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 My model in section 5 has a more general setup where reward can be separately given to each group 
member. 
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may backfire because it introduces social pressure 𝐶!"  on the donor. Such social pressure, 

if substantial, may persuade a potential solo donor into no donation at all. Third, in the 

presence of a friend, one may donate a higher amount, and the extra benefits of donating 

more in front of a friend may affect the donor’s decision of whether and how to donate in 

the first stage.   

The first and second points can be illustrated in Figures 1-4. For the purpose of 

illustration, I ignore the option of bringing a non-donating friend and restrict donation 

amount to a fixed level of 200ml – more variations are included in the full model and 

empirical analysis.  In Figure 1, I define the vertical axis ℋ  as the benefit of donation that 

individual i expects to get regardless of whether she brings a friend or not. Following 

previous notation, ℋ = 𝛼! −   𝐶! + 𝛽!"#$ ∙ 𝐷𝑀𝑆𝐺 + 𝛽!" ∙𝑀!" .  The horizontal axis 

ℒ  is defined as the extra benefit i can get from group donation if she brings a friend. 

Mathematically, ℒ = 𝛼! − (  𝐶! − 𝛽!" ∙𝑀!" + 𝛽!"#! ∙ 𝐺𝑀𝑆𝐺 +   𝛽!" ∙𝑀!"). Figure 1 

describes a benchmark case where 𝐷𝑀𝑆𝐺 = 𝐺𝑀𝑆𝐺 = 𝑀!" = 𝑀!" = 𝑀!" = 0 (which 

corresponds to my control group). In this case, Figure 1 shows that (1) i will not donate in 

the yellow area because ℋ < 0,ℋ + ℒ < 0; (2) i will donate alone in the green area 

where ℋ > 0  &  ℒ < 0, and (3) i will donate with a friend in the blue area where 

ℒ > 0  &  ℋ + ℒ > 0.  

Figure 2 increases the return to solo donation from ℋ to ℋ + Δℋ. This can be 

achieved by offering more economic reward to solo donation (i.e. increase 𝑀!") or by 

sending a reminder message to the donor and reducing her cost of remembering to donate 

(i.e. change 𝐷𝑀𝑆𝐺 from zero to one). Comparing with Figure 1, an increase in ℋ leads 

some non-donating people to donate alone (the black-line shaded area that turns green 
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from yellow), and some non-donating subjects to donate with a friend (the white-line 

shaded area that turns blue from yellow).  

Similarly, compared to Figure 1, Figure 3 increases the extra return to group donation 

(as compared to solo donation) from ℒ to ℒ + Δ𝐿. This can be achieved by rewarding i 

for donating with a friend (i.e. increasing 𝑀!"), providing economic reward 𝑀!"to the 

donating friend and therefore reducing the cost of i persuading a friend, or sending a 

reminder message for i to bring a friend (i.e. changing 𝐺𝑀𝑆𝐺 from zero to one but 

assuming 𝐶!" = 0).  

Figure 2 and Figure 3 show some interesting contrasts. Compared to Figure 1, both of 

them convert some non-donors into group donors (the lower shaded area with white 

lines). This is because for some people group donation is more desirable than solo 

donation (ℒ > 0), but the total benefits are not big enough to overcome the associated 

cost (ℋ + 𝐿 < 0) . The introduction of Δℋ  or Δℒ  helps to boost them into group 

donation. In addition to this common effect, Figure 2 brings in another group of donors 

who do not donate in Figure 1 but become solo donors in Figure 2 (the shaded area with 

dark lines). These new donors are primarily those who expect negative benefit from 

group donation (ℒ < 0) but are almost ready to donate solo (ℋ < 0 & ℋ + Δℋ > 0). In 

comparison, Figure 3 brings in another group of donors who would have donated by 

themselves in Figure 1 but now donate in group in Figure 3 (the upper shaded area with 

white lines). These always donors need a nudge to overcome some small net cost of 

group donation (ℒ < 0 & ℒ + Δℒ > 0). In summary, the difference between Figure 2 and 

Figure 3 suggests that all donors responding to the increased reward for group donation 
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will come in group, while some donors responding to the increased reward for solo 

donation will come solo.  

Figure 4 allows for social pressure for not bringing a friend upon the bank’s message 

for group donation (Csp>0). In this case, receiving a group message but donating alone 

needs to overcome the social pressure 𝐶!". Therefore, compared to Figure 1, the yellow 

no-donation area expands (ℋ − 𝐶!" < 0,ℋ + ℒ < 0), the green donation-alone area 

shrinks (ℋ > 𝐶!"&  ℒ < −𝐶!"), and the blue group-donation area expands (ℋ + ℒ >

0  &  ℒ > −  𝐶!").   In other words, when the bank’s request for group donation imposes a 

social pressure, the pressure may lead to more group donation (the white-line shaded area) 

but less solo donation (the dark-line shaded area).  

In summary, the model has a few testable implications: 1) DMSG will lead to more 

solo donation and more group donation, GMSG will lead to less solo donation but more 

group donation; 2) An increase in the reward for solo donation will lead to more solo 

donation and more group donation; 3) An increase in the reward for group donation will 

lead to more group donation and less solo donation, but the total donation should always 

increase; 4) Reward for solo donation and reward for group donation are driving different 

types of donors. Donors who are motivated by individual reward are likely to have 

relatively high utility for solo donation; donors who are motivated by group reward are 

likely to have relatively high utility for group donation. 	  

 

4.3. Background and Experiment Design 

I collaborated with a centralized blood bank in a provincial capital city in China with 

a population of over 8 million. The blood bank is responsible for supplying blood to 18 
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hospitals in the city and is encouraged to be self-sufficient in blood supply. In the past ten 

years, the blood bank has recruited more than 400,000 whole blood donors, who have 

contributed more than 500,000 donation episodes. The donations are collected using 17 

bloodmobiles spread across the city and by special drives at specific universities, 

companies and government agencies. My experiment focuses on individual donations 

collected by bloodmobiles. 

The experiment was run in the 15-day period from late December 2014 to early 

January 2015. I started by choosing participants from past donors of the blood bank based 

on three criteria: first, the blood donated by the particular donor must pass a battery of 

blood test, which is important because the bank aims to increase supply of qualified 

blood; second, the donor has not donated in the last six months, as a 1998 nationwide law 

disallows any donor from donating whole blood twice within six months; third, the donor 

has made at least one donation in the past 25 months.  Because donors that only donated 

long time ago may have moved out of the city, the last criterion is used to better capture 

donors that are still living in the city.  

A sample of 80,000 participants who were registered as past donors was randomly 

assigned into seven test groups. The first one is the control group with 14,000 subjects 

who received no message from the blood bank. The remaining six groups (with 11,000 

subjects in each) received different mobile messages as described in Section 1.	   

Once the participants decided to donate and visited the bloodmobile (either alone or 

in group), they first filled out a standard questionnaire on demographics and medical 

conditions, designed by the blood bank to evaluate their eligibility of making donation. 

The donors then underwent a blood screening test. While waiting for the test results, they 
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were asked to fill out an additional survey designed by the researchers (approximately 10 

minutes). The nurse then collected the survey and informed donors of the standard gifts 

and special rewards they would receive based on the donation amount. The donors would 

then decide how much to donate and make the donation.  

In particular, donors who choose to donate 200ml would receive standard gifts (e.g. 

souvenir such as cup or t-shirt). Donors who donate 300ml of blood were eligible for a 

30RMB supermarket voucher (around $5), and those donating 400 ml were eligible for a 

50RMB supermarket voucher. In addition, group donors received an additional gift: a 

fruit cutting gear (worth about 10RMB) for each of them. These rewards were dispensed 

to all donors, regardless of whether they were in my experiment or what text message 

they have received from the bank. In other words, participants in different treatments 

only differ in the message from the bank, not the actual gifts upon donation. Because all 

my messages with economic reward mentioned the reward as “30-50 RMB in 

supermarket voucher” and did not link the exact reward to donation amount, I believe 

most participants in my experiment did not know the correlation between reward and 

donation amount until they came near a bloodmobile. This implies that the differential 

reward by donation amount should not affect the decision of whether to donate (solo or 

with a friend) but it will affect the donation amount after one has approached the 

bloodmobile. 

After each donation, the nurse completed two tasks. First, the nurse marked the donor 

ID on each survey, which would help me link the survey to the donor; second, if the 

donors donated in a group or a donor brought non-donor friends, the nurse recorded 

donor ID of each donor in the group, as well as the number of non-donor friends with 
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them. All nurses on the bloodmobile went through a centralized training session before 

the campaign and are instructed to strictly follow the same procedures in administrating 

the donation. 

For every donor who participated during the experiment period, I also conducted a 

detailed survey which is designed to help me identify unobserved constructs such as a 

donor’s social environment (e.g. whether friends and family donated before, coordination 

cost), image motivation (willingness to share donation experience, and the channel to 

share) and relationship with other donors in group. Finally, I augment the data from the 

field experiment with rich archival data, including demographics (age, gender, education, 

occupation, marriage status, resident status, and health indicators) and donation history 

(across 10 years) for the 80,000 subjects in my experiment. 

 

4.4. Reduced-form Evidence 

This section reports the reduced-form effect of treatments on the share of donors who 

choose to donate (d=1), the amount of donation by donors, and the total amount of 

donation by donors and their friends. From now on, I use “donors” to refer to the donors 

that are my experiment subjects. Friends of donors who donated are referred to as 

“donating friends”.  

Before presenting the main results, I first check the validity of randomization. As 

shown in Table 2, there is no detectable variation across the groups in terms of gender, 

age, marriage status, residency, and the number of past donations. The t-tests on these 

variables across groups are insignificant at conventional level. The well-balanced sample 

indicates that my randomization is at work. 
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Table 3 summarizes key outcomes across treatment groups. Panel A focuses on 

subjects’ own decision to donate (d). On average, the donation rate in my sample during 

the campaign period is about 1%, which is consistent with previous studies on blood 

donation (e.g. Lacetera et.al. 2012, 2014). Comparing T1 to T0 shows that there is a 

sizable reminder effect. While the donation rate is 0.71% in T0, that number jumped to 

0.98% in T1. More interestingly, groups with economic rewards (T2, T4, T5, and T6) 

show additional gain in boosting donation rate beyond the reminder effect, with donation 

rates all greater that 1%. This suggests that economic reward have a noticeable effect in 

motivating potential donors. The most striking increase is T5, with a relative increase of 

more than 60% over the control group (from 0.71% to 1.17%).  

Further examination reveals that donor demographics differ by treatment, as 

presented in the right columns of Table 3 Panel A. Donors from the group reward 

treatment (T5) are more likely to be married, local, older, more recent in the last donation, 

and have more donations in the past. In contrast, subjects who donate under individual 

reward treatment (T2) are more likely to be unmarried, non-local, younger, last donated 

long time ago, and have fewer past donations. In summary, this panel shows evidence 

that both individual reward and group reward are effective, but they may motivate 

different types of donors. This is consistent with my model. 

Table 3 Panel B focuses on the subjects’ decision to donate in group, conditional on 

self donation (d=1). There are two outcomes related to a donor’s group donation decision: 

whether to donate with a friend, and her own amount of donation. Both outcomes vary 

across treatments. Since the friend might or might not donate, I focus on the percentage 

of donors who bring donating friends, as my research goal is to motivate more donations. 
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One might think that reminding a donor to bring a friend (T3) will lead to more donating 

friends. As shown in Column 7 (second to last column), this is not true. The behavior 

intervention alone (T3) is not effective in motivating friends at all. However, once the 

group reward is added to the treatment, there is a large increase in donating friends (1.05% 

in T3 vs. 10.85% in T5). In contrast, individual reward does not lead more group 

donations when compared to the control group. As to the amount of donation, I find that 

donors are likely to donate more blood when friends are present (Column 8), even when 

the friends do not donate (Column 6). This is consistent with the image motivation effect 

identified in the literature (Ariely et al. 2009)  

While the summary statistics provide suggestive evidence on the impact of treatments, 

I formally test such impact using regressions. Table 4 provides reduced form estimates of 

the treatment effects on various outcomes. Panel A presents results of an OLS regression 

on the full sample (80,000 donors)12. First, results in Columns 1 and 2 suggest that the 

effects of reminder message (T1) and individual reward (T2) on a donor’s donation 

decision (d) are both positive and significant. Then adding request to bring friends on top 

of reminder message (T3) seems to dampen donation (though the difference between T1 

and T3 is not statistically significant). This may be driven by the fact that the request to 

bring friends imposes social pressure on the subject and therefore discourages those 

donors who cannot meet the request. Interestingly, once the individual reward is coupled 

with the friend reminder (T4), the negative social pressure is overcome and there is a 

large increase in donation rate. The group reward (T5) works even better in promoting 

donation. Comparing T4 to T3, as well as T5 to T3, suggest that the economic reward has 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 I report estimates based on linear OLS in Table 4 for easy interpretation of the results. The findings are 
robust to alternative estimation methods such as the logit regression. 
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a significant impact on donation. In contrast, adding an additional group gift on 

individual reward (T6) does not lead to a significant lift in donation rate, which suggests 

that the incentive might have saturated.  

Columns 3-4 of Table 4 Panel A reports the effect of treatments on an alternative 

outcome variable: the subject’s amount of blood donation. The value is set to 0 if the 

subject does not come to donate. The result is similar to findings in Columns 1-2, 

suggesting a substantial increase in T1, T2, T4, and especially T5, but not T3.  

I also examine the effect of treatments on the volume of friend donation in Columns 

5-6 of Table 4 Panel A. The dependent variable is created by aggregating the donation 

amount of all donating friend(s) in a donor’s group. Consistent with the above summary 

statistics, only the group reward is effective in increasing the amount of donation from 

friends. The magnitude of increase is non-trivial as compared to solo donation (0.50ml 

increase in donation from friends vs. 1.88ml increase in donation from self).  

Finally, I construct the volume of total donation by adding the donation amount from 

the subject herself and the donation amount from her friends (if any). In this way, the 

dependent variable can capture the additional blood supply due to group donation, which 

is of central interest to the blood bank. As shown in Columns 7-8, the effect of economic 

reward on the total blood supply is significant. Compared to the average donation amount 

in the control group (2.49ml per subject), adding group reward leads to an increase of 

2.47ml, almost 100 percent more in supply, which is bigger than the effect of individual 

reward (1.59ml) at the 10% significance level after I control for subject age, gender and 

weight (Column 8).  
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Panel B of Table 4 evaluates the treatment effects on the same set of outcomes, but 

conditional on a subject’s donation (d=1). While the sample size is much smaller, Table 4 

provides statistically significant evidence that group reward is effective in motivating 

subjects to donate with friends, which leads to great blood supply through extensive 

margin.  

Panel C of Table 4 divides the experimental sample according to whether a subject’s 

last donation was no more than 9 months ago, 10-14 months ago, or more than 14 months 

ago. Consistent with Lacetera et al. (2014), I find that economic rewards are more 

effective on the subjects that donated more recently last time. Interestingly, if I focus on 

the subjects that donated no more than 9 months ago, group reward (T5) motivates 

significantly more blood donations than individual reward (T2). This difference is driven 

by both a higher likelihood of solo donation and a higher likelihood of bringing a 

donating friend. One explanation is that it is easier to share a donation experience with 

friends if it happened not long time ago. It is also possible that those who donated more 

recently last time are more pro-social.  

Table 5 switches perspective and focuses on the intensive margin. I regress the 

donor’s donation amount on whether she is donating with (donating or non-donating) 

friends. The positive and significant coefficient on the binary indicator suggests that 

donors who donate in group are also donating more blood, regardless of the treatments 

they are exposed. This finding is well aligned with the previous literature and provides 

another key rationale for the higher efficacy of group donation. In this way, I close the 

loop and confirm benefits on both extensive margin and intensive margin yielded by the 

group reward. 
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Analyses of the heterogeneous treatment effects and the survey data are presented in 

Tables 6 and 7. In particular, Table 6 looks at two outcomes – the dummy of self 

donation and the total amount of blood donated by self and friends. Each column includes 

the interaction of one demographic variable and all the treatment dummies.13 These 

regressions suggest that group reward encourages more donation from subjects that are 

married, local, older, and with more recent donation and more past donations, probably 

because these people are likely to have a lower cost of bringing friends. While these 

people are generally less active in online social setting, my study suggests that with the 

right incentive design, digital interventions can be used to leverage their offline social 

connections. In this way, organizations may take advantage of the relative strength of this 

population in social interactions. Using survey data, Table 7 shows that donors that are 

motivated by group reward are more likely to hear about friends donating in the past, 

more willing to share the donation experience, and more willing to bring friends to 

donate together in the future.  

 

4.5. Structural Estimation and Counterfactuals  

So far, the reduced-form estimates suggest that economic reward matters and group 

reward can be effective in motivating donation from a specific type of donors. In this 

section, I estimate a structural model, which is closely tied to my experiment design, and 

brings several advantages compared to the reduced-form estimates. First, by leveraging 

the variation of messages in my experiment design, the structural model can separate and 

quantify the effect of each element in my treatments. Second, the structural model allows 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 I do not put all demographics in one regression because many of them are highly correlated. 
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me to simulate different combinations of behavior intervention and economic reward, and 

the counterfactual simulations provide deeper insights for optimizing the incentive design. 

Finally, by allowing certain parameters to vary by demographic variables of donors, the 

structural model also enables me to assess donor heterogeneity, which generates insights 

on targeting different types of donors with the most effective mobile interventions.  

 

4.5.1 Structural Model 

In the first stage, the subject makes a joint decision {d, g} about whether to donate 

and whether to donate with friend(s) in a group, based on her own primitives as well as 

the exogenous treatment. Her own primitive includes the utility derived from the 

donation 𝛼!, cost of making the donation 𝐶!, as well as the utility of donating in a group 

𝛼!, and the cost of bringing friend(s) to form a group   𝐶!. The exogenous variations in 

my field experiment include sending a reminder message for donation sending a reminder 

message for donation (DMSG), requesting for group donation in the reminder message 

(GMSG), offering reward for the message recipient’s donation herself (𝑀!", referred to 

as self reward), offering reward for the message recipient if she donates with a friend in a 

group (𝑀!", referred to as group reward), and offering the economic reward for the 

donating friend of the message recipient (𝑀!" ,  referred to as friend reward). It is worth 

noting that the three types of rewards work in different ways.  𝑀!"directly compensates 

the donation cost of the focal donor;  𝑀!" compensates the sum of donation cost and cost 

of bringing friends; in contrast; 𝑀!"indirectly influences the focal donor by reducing 

his/her cost of persuading friends to donate. 
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In the second stage, the subjects who come to the bloodmobile are informed of the 

standard gifts and special rewards they will receive based on donation amount upon their 

choice (Yd). Donating 300ml or 400ml (instead of 200ml) would earn the donor an 

additional economic reward, which I denote as M300 or M400; but at the same time 

donating more blood in a single episode incurs a higher cost, which I denote as  𝐶!"" or 

  𝐶!"". In addition, donating 300ml or 400ml in front of a non-donating friend (f=1) or 

donating friend (g=1) may allow the donor to gain additional utility (either through 

positive image or altruism), which I denote as 𝑆!""!/𝑆!""! or 𝑆!""!/𝑆!""!.  

Since my mobile messages is designed such that no information is given about how 

reward may differ by donation amount, a donor’s first-stage decision on {d,g} is 

independent of the second stage decision of donation amount. This allows me to model 

the two stages separately. Another simplification is that I do not consider the possibility 

of bringing a non-donating friend separately from coming alone in the first stage. This is 

because all the group reward offered in my mobile message treatment is conditional on 

bringing a donating friend. Because the two stages are modeled separately, I allow 

donation amount to be dependent on whether a non-donating friend is present, in order to 

capture the potential effect of being observed by a friend.  

Assuming the impact of all rewards is linear, I can write the latent utility function for 

the donor’s decisions in the first stage as:   

 

First Stage: 

𝑈! 𝑑 = 0 = 0 

𝑈! 𝑔|𝑑 = 1 = 𝛼! −   𝐶! + 𝛽!"#$ ∙ 𝐷𝑀𝑆𝐺 − 𝐶!" ∙ 𝐺𝑀𝑆𝐺 ∙ 1− 𝑔 +   𝛽!" ∙𝑀!" 



 

	  

 

	  
88	  

+ 𝛼! − (  𝐶! − 𝛽!" ∙𝑀!" + 𝛽!"#! ∙ 𝐺𝑀𝑆𝐺 +   𝛽!" ∙𝑀!") ∙ 𝑔

+   𝛾!" ∙ 1− 𝑔 ∙ 𝑋! + 𝛾!! ∙ 𝑔 ∙ 𝑋! + 𝜀!"# 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑑,𝑔 = 𝑝𝑟𝑜𝑏 𝑈! 𝑑,𝑔 > 𝑈! 𝑑!,𝑔′  

  ∀  {𝑑!    ,𝑔′} = 0,0 , 1,0 , 1,1  

Second Stage:  

𝑉! 𝑌!|𝑑 = 1,𝑔, 𝑓 = 𝑀!"" − 𝐶!"" + 𝛽!""! ∙ 𝑓 + 𝛽!""! ∙ 𝑔 ∙ (  𝑌! = 300) 

+ 𝑀!"" −   𝐶!"" + 𝑆!""! ∙ 𝑓 + 𝑆!""! ∙ 𝑔 ∙ 𝑌! = 400  

+  𝜃!" ∙ 𝑌! = 300 ∙ 𝑋! + 𝜃!! ∙ 𝑌! = 400 ∙ 𝑋! + 𝜀!"#$ 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑌! = 𝑝𝑟𝑜𝑏 𝑉! 𝑌! > 𝑉! 𝑌!!  

∀    {𝑌!|𝑑 = 1} = 200,300,400  

For each stage, I estimate a conditional logit model using maximum likelihood. The 

vector of parameters that I estimate for the first-stage decision are: i) the net utility 

derived from donation minus donation cost: 𝛼!-𝐶!; ii) the decrease in mental cost when 

receiving the reminder message for donation: 𝛽!"#$; iii) the increased donation cost of 

social pressure if request to bring friend cannot be met: 𝐶!"; iv) the decreased mental cost 

of bringing a friend thanks to the reminder message: 𝛽!"#!; v) the increased utility 

derived from receiving economic rewards: 𝛽!"and  𝛽!" ; vi) the utility derived from 

donating in front of a friend (like warm glow) 𝛼!, and the cost of persuading a friend to 

join as a group. Specifically,   𝐶! is the default cost of persuasion if no incentive is 

offered to the friend, and 𝛽!" represents the cost savings if an economic reward is offered 

to a friend, in forms of either direct economic reward 𝑀!", or group incentive 𝑀!", or 

both. 𝛽!" represents the increased benefits for the message recipient to bring a donating 

friend if the group reward 𝑀!" increases by one unit; vi) a vector of coefficients on 
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individual characteristics (including gender, age, weight, local resident or not, years of 

education) for each outcome: 𝛾!", 𝛾!!. 

The vector of parameters I estimate for the decision in the second stage are: i) the 

utility derived from donating more than 200 ml net of the additional donation cost: 

𝑀!"" − 𝐶!"", 𝑀!"" − 𝐶!""; ii) the increased utility from donating more than 200ml in 

front a non-donating friend: 𝑆!""!,  𝑆!""!; iii) the increased utility from donating more 

than 200ml in front a donating friend: 𝑆!""!, 𝑆!""!; and iv) a vector of coefficients on 

individual demographics (including gender, age, weight, local resident or not, education 

years) for each outcome: 𝜃!",𝜃!! . For the above parameters, the main sources of 

identification are my experimental treatments and individual demographics.  

 

4.5.2 Structural estimates 

Table 8 reports the MLE estimates for the first stage decision. The net utility of solo 

donation (𝛼!-𝐶!) is precisely estimated as -5.84. In comparison, the most effective 

behavior intervention (reminder message) or economic rewards (50 RMB of group 

reward) only lead to an increase of utility by 0.31 and 1.11, respectively. The highly 

significant negative cost for solo donation is consistent with the observation that only 1% 

of subjects come to donate during the campaign. Moreover, the net utility of bringing 

donating friends is estimated to be -2.81, which represents the additional cost involved in 

donating with friends. This suggests that many donors may have significant difficulty in 

getting donating friends. 

I now turn to the effect of behavioral intervention and economic rewards in 

overcoming these costs. The reminder message for solo donation is effective in reducing 
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the mental cost, with an estimated value of 0.31. However, the reminder to bring a friend 

has little extra impact on either solo donation or group donation. On the other hand, I find 

that the reward for self-donation contributes relatively little value beyond the reminder 

message. The estimated utility increase from self reward is about 0.10 for 50 RMB. In 

contrast, the group reward significantly increases the utility of group donation. The 

estimated utility increase from a reward for group reward is about 1.11 for 50RMB. I also 

find friend reward is effective in reducing the cost of bringing a donating friend (about 1 

for 50RMB).  

Table 9 reports the MLE estimates for the second stage decision on donation amount. 

I find that the presence of both non-donating friends and donating friends would increase 

the probability of the donor donating more blood. Interestingly, the effect of non-

donating friend on this intensive margin is larger, which is consistent with previous 

literature documenting a strong impact of observer on donor’s behavior (Ozbay and 

Ozbay 2014). In addition, I also find the economic rewards for donating more blood 

outweigh the cost of additional blood donation (the estimated value of both "net utility 

for donating 300ml" and "net utility for donating 400ml" is positive and significant). 

Such effect is stronger for the choice of donating 400ml as compared to that of 300ml.  

Overall, the structural estimates echo my reduced-form findings. Below I take a 

further look into the distribution of primitives for different demographic groups.  

 

4.5.3 Heterogeneity in the population 

Panel B in Table 8 shows a large heterogeneity in the distribution of donation cost for 

both solo and group donations across demographic subgroups. I focus on four 
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demographic variables in my discussion: marriage status, local residency, gender, and 

education. As illustrated in Figures 5 and 6, I find marriage and local residency of a 

subject strongly affect her/his cost of donation, and the demographic variations follow the 

same pattern for solo and group donations. More specifically, married subjects are likely 

to enjoy greater cost reduction in solo and group donations (around 0.53 and 0.56 for 

each cost, respectively). Being local also significantly reduces the cost of solo and group 

donations, with a magnitude similar to that of age (around 0.50 for each cost). In contrast, 

gender and education have a significant impact on donation cost but its impact is opposite 

for solo and group donations. Taking gender as an example, while male subjects are in 

general more likely to have lower cost for solo donation than females, they on average 

have a higher cost to bring friends. These findings echo previous studies on the gender 

difference in altruism (Andreoni and Vesterlund 2001). Similarly, less educated donors 

have lower cost for solo donation than highly educated donors, but in general have more 

difficulty identifying and bringing a friend to donate together. Finally, the correlation 

between gender and education is as low as 0.013, suggesting that the two demographics 

variables may influence the cost of solo and group donations through separate channels. 

Interestingly, the heterogeneity in the distribution of donation cost for the intensive 

margin (i.e. donation amount) is also large. Donors who are female, local, married and 

less educated are more likely to donate larger amount of blood. 

The two types of heterogeneity, namely age and local residence, affect solo and group 

donations in the same direction. On the other hand, gender and education affect the two 

donation costs in opposite directions (Figures 5 and 6). These have important 

implications for blood banks. On one hand, blood banks can target past donors who are 
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male, less educated, married and local to increase the conversion rate in donor 

recruitment. On the other hand, if blood banks wish to take advantage of group effect and 

motivate group donation, they should target past donors who are female, highly education, 

married and local.  Overall, my findings suggest that blood banks should carefully align 

their campaign goal with donor targeting strategy. 

 

4.5.4. Counterfactuals 

Equipped with the structural estimates, I perform a series of policy simulations to 

compare different combinations of behavior intervention and economic rewards, reported 

in Table 10. Consistent with the previous discussion, I find that a reminder message for 

donation is the only effective approach in behavioral interventions. In comparison, all 

three types of economic reward – self, friend and group rewards – are effective in driving 

total blood supply. However, they increase total donation through different margins. Self 

reward mainly increases the solo donation rate; Friend reward alone or group reward 

alone only increase the group donation rate by 0.04 to 0.05 percentage points; however, 

when the two are combined, group donation increases by 0.13 percentage points. The 

joint use of friend and group rewards are effective in that group reward motivates the 

donor to bring friends, while friend rewards helps her to persuade and compensate her 

friend. Finally, when the three rewards are used together, I see increase in both solo and 

group donations, but no synergy effect is observed. This finding is consistent with my 

model that reward for solo donation and reward for group donation tend to motivate two 

different types of donors in the population. 
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More interesting is the comparison between the effect of self reward and that of friend 

plus group rewards. The former has been commonly used by the blood bank, while the 

later is new and not used until the experiment. I want to highlight two key differences. 

First, compared with self reward, the joint use of friend and group rewards encourages 

the group donation rate to increase 0.1 percentage points but leads the solo donation rate 

to decline 0.06 percentage points. This pattern reflects the nature of group reward: when 

there is no reward for solo donation but high reward for group donation (for both the 

donor and her friend), then donors are much more likely to sort into group donation. The 

absence of self reward shifts solo donors to group donors. This shift is only possible if the 

inherent cost of group formation is not too high, as compared to the cost of solo donation; 

otherwise the decline in solo donation would outweigh the increase in group donation.  

Second, I wish to emphasize the cost advantage of friend/group reward over self 

reward. As suggested in the last column in Table 10, the payment per unit of blood 

supply for friend or group reward is more than four times cost effective than that in self 

reward. This is because friend/group rewards would only occur if donors donate in a 

group. Thus in the majority cases where donors donate alone, the blood bank would not 

pay any reward --- those donors are willing to donate anyway. The saved budget may be 

used to increase the stakes in friend/group rewards. As shown in Table 10, at the same 

level of reward (75RMB (1.5unit) for group reward + 75RMB for friend rewards vs. 

75RMB for self reward, or 100RMB (or 2 unit) for group reward + 100RMB for friend 

rewards vs. 100RMB for self reward), the joint use of group and friend rewards would 

lead to more blood supply at significant lower cost per donor.    
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Finally, friend and group rewards can be combined with targeting. As reflected in 

Figures 5 and 6, the blood bank can target group rewards on female donors who are local, 

married and highly educated, to generate even higher cost-benefit efficiency in increasing 

blood supply. 

 

4.6. Discussion 

How should charities use digital intervention to encourage offline social interactions? 

My field experiment reveals the complex nature of using mobile messaging to leverage 

blood donor’s social connections, and generates insights on a donor’s decision making 

process. I show that appropriate economic rewards are needed for the donor to overcome 

the social cost of motivating friends to donate; otherwise the mobile message of soliciting 

friends can backfire. The counterfactual analyses using simulation provide more precise 

recommendations for policy application.  

This study answers a recent call to link online treatments with offline response (Aral 

2015). It expands IS studies on social interactions using experiments (ex. Aral and 

Walker 2011, Bapna and Umyarov 2014, Zhang and Zhu 2011), by examining how 

charities take advantage of endogenous group formation to encourage one important 

offline behavior – blood donation. Specifically, my study suggests that individuals who 

are traditionally less active in online social interactions may have a lower social cost in 

the offline setting. Thus, firms and organization can take advantage of such comparative 

strength and use digital interventions to leverage their offline social connections. 

Methodologically, my behavioral model is linked tightly to the experiment design, which 

allows me to structurally estimate the parameters of interest. To my best knowledge, my 
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work is among the first to integrate field experiments with structural modeling in the IS 

field, and my approach can be applied to examine the effect of other IT interventions. 

The study also contributes to the growing literature of voluntary donation (ex. Jabr et 

al. 2014, Goes et al. 2014, Lacetera et al 2012, 2014; Andreoni and Rao 2011; 

DellaVigna et al 2012). While various monetary and behavioral interventions have been 

examined in the literature, they mostly focus on individual donors. Building on the 

existing studies, I am among the first to extend the scope of the study to examine how to 

motivate a donor to bring her friends to donate together. While this paper focuses on 

blood donation, I conjecture that my results are likely to be applicable to other pro-social 

activities, such as environmental protection, social work to help children in poverty or 

seniors with chronic illness, and other community services. My results should especially 

benefit those organizations that are constrained by financial resources and face difficulty 

recruiting volunteers. 

My study also carries practical value. In recent years, the need for better policies to 

motivate voluntary donation in healthcare has been signified due to the increasing 

shortages in human blood, organs and tissues (Bergstrom et al. 2009; Kessler and Roth 

2012, 2014). My study shows that the additional blood collected using group reward can 

support more than a good number of additional surgeries. In addition, Rewarding group 

donors is four times cost effective than rewarding individual donors in motivating blood 

donation.  Such cost is well below the value of having one additional blood unit available. 

In this way, my study opens a new path to address the above challenge in healthcare 

using mobile messaging to leverage a donor’s social network. 
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Figures and Tables for Chapter 4 (Essay 3) 

 
Figure 1: Benchmark with Csp=0 

 
 
  ℋ:	  Utility	  for	  self	  donation	  
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Figure 2: Add Δ𝐻 > 0 to Figure 1 
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Figure 3: Add Δℒ > 0 to Figure 1 
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Figure 4: Add Csp>0 to Figure 1 
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Figure 5: Heterogeneity in both costs across gender, local and marriage status 

	  
* F is short for female; M is short for male 

 
 

Figure 6: Heterogeneity in both costs across education, local and marriage status 

	  
*	  	  H	  is	  short	  for	  more	  educated;	  L	  is	  short	  for	  less	  education
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Table 1: Experimental Design 

 
 

Test Group Behavior Intervention Economic Reward 

Message Components 
Reminder 
to Donate Reminder to bring friend 

Reward for 
Self 

Donation 

Reward for group donation 

to self to friend 

(Parameter in model) (DMSG) (GMSG) (Csp) (Msr) (Mgr) (Mfr) 
T0 

      T1 X 
     T2 X 
  

X 
 

X 
T3 X X X 

   T4 X X X X 
 

X 
T5 X X X 

 
X X 

T6 X X X X X+Small gift X+Small gift 
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Table 2: Randomization check 

Test Group 
Number of 

subjects Male 
Age 

(as of 2014) Married Local resident 
Number of Past 

Donations 
T0 14000 60.6% 27.87 39.3% 38.3% 1.43 
T1 11000 60.6% 27.93 39.3% 38.4% 1.44 
T2 11000 60.2% 27.96 39.3% 37.8% 1.42 
T3 11000 60.9% 27.84 39.7% 37.9% 1.42 
T4 11000 60.0% 28.01 39.6% 38.8% 1.44 
T5 11000 60.9% 27.85 39.6% 37.9% 1.44 
T6 11000 60.8% 27.73 38.6% 38.3% 1.44 
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Table 3: Summary statistics 

Panel A: donation rate and donor demographics 

    
Donor Demographics 

Test 
Group 

  

 Total 
 
 

Not Donate  
 

(%) 

Donate  
  

(%) Male Age Married Local 

Number  
of Past 

Donations 
T0 14,000 13,901 99 70.71% 31.25 59.72% 21.21% 2.13 
    (99.29%) (0.71%)           

T1 11,000 10,892 108 60.19% 31.49 63.41% 19.44% 2.42 
    (99.02%) (0.98%)           

T2 11,000 10,880 120 65.00% 30.53 57.45% 16.67% 1.92 
    (98.91%) (1.09%)           

T3 11,000 10,905 95 72.63% 32.02 71.83% 25.26% 2.07 
    (99.14%) (0.86%)           

T4 11,000 10,878 122 66.39% 31.07 53.68% 24.59% 2.22 
    (98.89%) (1.11%)           

T5 11,000 10,871 129 63.57% 32.60 65.31% 31.01% 2.55 
    (98.83%) (1.17%)           

T6 11,000 10,876 124 73.39% 29.99 50.52% 20.97% 2.26 
    (98.87%) (1.13%)           

Total 80,000 79,203 797 67.25% 31.26 59.77% 22.84% 2.23 
 

  



 

	  

 
 

104 

Table 3: Summary statistics 

Panel B: Group donation behavior conditional on self donation 

Test group 
 
 
 

Total number of 
participants that 

donate 
 

Solo donation 
Donation with  

non-donating friend(s) 
Donate with donating 

friend(s) 

% 

Amount of 
Self 

Donation 
(ml) % 

Amount of 
Self 

Donation 
(ml) % 

Amount of 
Self 

Donation 
(ml) 

T0 99 87.88% 327.59 8.08% 375.00 4.04% 300.00 
T1 108 88.89% 345.83 9.26% 380.00 1.85% 250.00 
T2 120 84.17% 348.51 9.17% 381.82 6.67% 350.00 
T3 95 89.47% 340.00 9.47% 388.89 1.05% 300.00 
T4 122 86.07% 352.38 8.20% 390.00 5.74% 385.71 
T5 129 83.72% 354.62 5.43% 400.00 10.85% 378.57 
T6 124 82.26% 348.03 13.71% 382.35 4.03% 400.00 
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Table 4: Reduced-form regression results 

Panel A: Full Sample with and without demographic controls, linear OLS 

 Dependent 
Variable 

Donate or not 
(1 or 0) 

Amount of Self 
Donation (ml) 

Amount of Friend 
Donation (ml) 

Amount of Self + Friend 
Donation (ml) 

[Sample avg] [0.0071] [2.336] [0.15] [2.486] 
T1 0.00275** 0.00274** 1.073** 1.071** -0.0864 -0.0868 1.023** 1.020** 
T2 0.00384*** 0.00379*** 1.501*** 1.479*** 0.105 0.103 1.605*** 1.582*** 
T3 0.00156 0.00171 0.637 0.686 -0.0955 -0.0942 0.542 0.592 
T4 0.00402*** 0.00399*** 1.628*** 1.611*** 0.114 0.112 1.742*** 1.723*** 
T5 0.00466*** 0.00478*** 1.882*** 1.929*** 0.495*** 0.503*** 2.414*** 2.469*** 
T6 0.00420*** 0.00427*** 1.664*** 1.697*** 0.141 0.143 1.842*** 1.877*** 

Male   0.00101   -0.0156   -0.0733   -0.0928 
Age   0.000399***   0.177***   0.00980**   0.189*** 

Weight   0.000118***   0.0521***   0.000889   0.0534*** 
Test of equivalence (p-value) 

T2=T5 0.541 0.462 0.426 0.350 0.0146 0.0130 0.132 0.100 
T3=T5 0.0210 0.0228 0.00945 0.0102 0.000223 0.000220 0.000488 0.000528 
T1=T3 0.377 0.442 0.363 0.425 0.955 0.964 0.370 0.428 
T4=T6 0.892 0.832 0.940 0.858 0.865 0.849 0.852 0.776 
T3=T4 0.0668 0.0902 0.0389 0.0552 0.191 0.201 0.0254 0.0362 

N of obs 80000 79,662 80000 79,662 80000 79,662 80000 79,662 
R2 0.0003 0.002 0.0003 0.003 0.0002 0.0003 0.0003 0.003 

Note: ***p<0.01, **p<0.05, * p<0.1. 
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Table 4: Reduced-form regression results 

Panel B: Conditional on self donation, without demographic controls, linear OLS 

Dependent Variable 
 

Bring donating 
friend(s) 

Amount of Self 
Donation 

Amount of Friend 
Donation 

Amount of Self + Friend 
Donation 

[Sample Average] [0.0404] [330.30] [21.21] [351.52] 
T1 -0.021 16.92 -17.51 -0.59 
T2 0.026 21.36** 2.12 23.48 
T3 -0.030 13.91 -18.05 -4.15 
T4 0.017 27.07*** 2.56 29.63 
T5 0.068** 29.39*** 36.93** 66.31*** 
T6 -8.15E-05 24.54** 1.37E+04 25.90 

Test of equivalence (p-value) 
T2=T5 0.133 0.403 0.0474 0.0369 
T3=T5 0.00101 0.13 0.00154 0.000611 
T1=T3 0.796 0.777 0.973 0.855 
T4=T6 0.543 0.792 0.935 0.832 
T3=T4 0.12 0.203 0.185 0.0743 

N of Obs 797 797 797 797 
R2 0.019 0.014 0.018 0.024 

Note: ***p<0.01, **p<0.05, * p<0.1. 
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Table 4: Reduced-form regression results 

Panel C: subsamples by last donation time 

Last 
Donation 

Top Quartile 
(within recent 9 months) 

Second Quartile 
(within 10-14 months) 

Bottom Half 
(more than 14 months) 

Dependent 
Variable 

 

Amount 
of Self 

Donation 
(ml) 

Amount 
of Friend 
Donation 

(ml) 

Amount of 
Self+ Friend 

Donation 
(ml) 

Amount 
of Self 

Donation 
(ml) 

Amount of 
Friend 

Donation 
(ml) 

Amount of 
Self+ Friend 

Donation 
(ml) 

Amount 
of Self 

Donation 
(ml) 

Amount of 
Friend 

Donation 
(ml) 

Amount of 
Self+ Friend 

Donation 
(ml) 

T1 2.036* -0.250 1.920 1.519 -0.102 1.414 0.334 0.00150 0.336 
T2 2.703** -0.0132 2.690** 2.177** 0.297 2.473** 0.429 0.0739 0.503 
T3 2.172* -0.349 1.822 -0.00429 -0.129 -0.133 0.0381 0.0557 0.0938 
T4 3.613*** 0.237 3.850*** 1.512 0.164 1.673 0.412 0.000507 0.413 
T5 4.279*** 0.942** 5.352*** 1.769* 0.105 1.872 0.635 0.432*** 1.067** 
T6 4.257*** 0.321 4.578*** 1.171 0.0581 1.383 0.475 0.0742 0.549 

Male -0.223 0.294 0.132 1.134 -0.423* 0.630 -0.202 -0.0885 -0.291 
Age 0.462*** 0.0239* 0.487*** 0.115*** 0.0212** 0.143*** 0.0674*** -0.00207 0.0653*** 

Weight 0.0385 -0.0201 0.0183 0.0422 0.00573 0.0498 0.0428*** 0.00878* 0.0516*** 
Test of equivalence (p-value) 

T2=T5 0.194 0.0210 0.0522 0.713 0.562 0.623 0.659 0.0334 0.278 
T3=T5 0.0836 0.00190 0.0104 0.109 0.482 0.100 0.204 0.0264 0.0630 
T1=T3 0.912 0.813 0.944 0.166 0.936 0.203 0.526 0.748 0.642 
T4=T6 0.599 0.840 0.600 0.756 0.747 0.810 0.892 0.659 0.791 
T3=T4 0.238 0.160 0.142 0.167 0.374 0.136 0.424 0.744 0.541 

N of obs 21,796 21,796 21,796 18,619 18,619 18,619 39,247 39,247 39,247 
R2 0.009 0.001 0.008 0.002 0.001 0.002 0.001 0.000 0.001 

Note: ***p<0.01, **p<0.05, * p<0.1. 
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Table 5: Donation amount and friend presence 

Sample = Subjects in the experiment and donate 

Dependent Variable Amount of Self donation 
[Sample Average] [326.68] 

 
(1) (2) (3) 

T1 17.21* 13.57 12.31 
T2 20.28** 22.36** 19.57** 
T3 14.37 11.06 10.90 
T4 26.55*** 27.81*** 24.81*** 
T5 28.18*** 25.15*** 24.51*** 
T6 22.90** 26.36*** 22.68*** 

1(if come with friend) 29.14*** 31.85*** 26.53*** 
Male 

 
-22.44*** -22.80*** 

Age 
 

2.552*** 2.083*** 
Weight 

 
1.204*** 1.291*** 

Local Resident 
  

4.306 
Married 

  
-9.454 

Observations 797 797 797 
R2 0.032 0.211 0.288 

Note: ***p<0.01, **p<0.05, * p<0.1. 
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Table 6: Heterogeneous Treatment Effects 

Dependent Var. Donate or Not Amount of Self + Friend Donation 
Demographic 

Dummy Married Local Age>35 
Past 

Donation>2 Married Local Age>35 
Past 

Donation>2 

         T1 0.00151 0.00272** 0.00238* 0.00150 0.439 1.024* 0.879 0.595 
T2 0.00276* 0.00404*** 0.00397*** 0.00387*** 1.110* 1.574*** 1.564*** 1.683*** 
T3 8.40e-07 0.000993 0.00129 0.00143 -0.0503 0.336 0.388 0.581 
T4 0.00351** 0.00322** 0.00401*** 0.00309** 1.450** 1.372** 1.718*** 1.310** 
T5 0.00270* 0.00294** 0.00235 0.00259* 1.362** 1.744*** 1.448** 1.441*** 
T6 0.00397*** 0.00386*** 0.00458*** 0.00327** 1.657*** 1.598*** 1.786*** 1.526*** 

Demo Dummy 0.00574*** 0.00447* 0.00647*** 0.0145*** 2.232*** 1.825* 2.607*** 6.596*** 
T1 x demo 0.00429 0.000174 0.00161 0.0122*** 2.032* -0.0151 0.632 4.137** 
T2 x demo 0.00374 -0.00136 -0.000582 -0.000274 1.738 0.284 0.203 -0.834 
T3 x demo 0.00529* 0.00439 0.00135 0.00223 2.009* 1.586 0.744 -0.127 
T4 x demo 0.00169 0.00597 -1.92e-05 0.00964** 0.970 2.750* 0.0822 4.458** 
T5 x demo 0.00665** 0.0123*** 0.0107*** 0.0217*** 3.592*** 4.812*** 4.467*** 10.22*** 
T6 x demo 0.000901 0.00251 -0.00154 0.00994** 0.663 1.794 0.364 3.371* 
N of Obs 80,000 80,000 80,000 80,000 80,000 80,000 80,000 80,000 

R2 0.001 0.001 0.002 0.005 0.001 0.001 0.002 0.006 
Notes: Columns for Married control for the dummy variable that indicates missing values in Married. ***p<0.01, **p<0.05, *p<0.1 
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Table 7: Survey Responses 
 

Panel A: Responses across test groups 

Test Group Ever hear your friends donate? Will you share this donation 
experience? Willing to bring friend next time? 

 No Yes No Yes No Yes Not Sure 

0 16 33 8 41 5 27 16 
32.65% 67.35% 16.33% 83.67% 10.42% 56.25% 33.33% 

1 13 43 14 46 15 29 15 
23.21% 76.79% 23.33% 76.67% 25.42% 49.15% 25.42% 

2 10 50 9 46 7 34 22 
16.67% 83.33% 16.36% 83.64% 11.11% 53.97% 34.92% 

3 10 30 10 31 8 20 16 
25% 75% 24.39% 75.61% 18.18% 45.45% 36.36% 

4 11 42 8 43 8 32 14 
20.75% 79.25% 15.69% 84.31% 14.81% 59.26% 25.93% 

5 13 53 10 56 7 44 18 
19.7% 80.3% 15.15% 84.85% 10.14% 63.77% 26.09% 

6 24 40 19 41 13 26 28 
37.5% 62.5% 31.67% 68.33% 19.4% 38.81% 41.79% 

Total 97 291 78 304 63 212 129 
25% 75% 20.42% 79.58% 15.59% 52.48% 31.93% 

 
Panel B: Responses between donors who come with friend and donors who come without friend 

 

Ever hear your friends 
donate? 

Will share donation 
experience? Willing to bring friend next time? 

 
No Yes No Yes No Yes Not Sure 

Without Friend 92 230 73 244 56 166 109 

 
28.57 71.43 23.03 76.97 16.92 50.15 32.93 

With Friend 5 61 5 60 7 46 20 

 
7.58 92.42 7.69 92.31 9.59 63.01 27.4 
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Table 8: Structural Estimates for First Stage Decision (none, solo, group donation) 
 

Base outcome: Do not donate 
 

Panel A: Individual Primitives and the Effect of Interventions 
(Alternative-Invariant Coefficient) 

 Coefficient Standard Error 

Net Utility from Donation -5.84 0.14 
Net Utility for Bringing Friend(s) -2.81 0.50 

      
Reminder for self-donation 0.31 0.13 

Social Pressure for solo donation after 
receiving reminder for bringing friend(s) 0.02 0.08 

Reminder for Bringing Friend -0.52 0.42 
      

Reward to subject for self-donation 0.10 0.08 
Reward for subject's friend donation 1.01 0.46 
Reward to subject for group donation 1.11 0.41 

   Panel B: Individual Demographics (Alternative-Specific Coefficient) 
Solo Donation Alternative Coefficient Standard Error 

Male and Weight in Upper Half  0.07 0.09 
Female and Weight in Upper Half  0.58 0.14 

Male 0.51 0.10 
Current Age >33 0.24 0.09 

Married 0.56 0.10 
Local Resident 0.50 0.09 

Education <=9 years 0.17 0.10 

   Group Donation Alternative Coefficient Standard Error 
Male and Weight in Upper Half  -0.20 0.49 

Female and Weight in Upper Half  0.68 0.44 
Male -0.37 0.40 

Current Age >33 0.23 0.42 
Married 0.53 0.44 

Local Resident 0.54 0.38 
Education <=9 years -0.97 0.62 
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Table 9: Structural Estimates for Second Stage Decision (200ml, 300ml, 400ml) 
 

Base outcome: Donate 200ml 
 

Panel A: Individual Primitives & Effect of the Presence of Friend(s) 

 
Coefficient Standard Error 

Net utility from donating 300ml 1.18 0.39 
Net utility from donating 400ml 1.50 0.37 

      
Donating 300ml with the presence of 

donating friend(s) 0.86 0.69 

Donating 300ml with the presence of  
non-donating friend(s) 1.99 1.07 

Donating 400ml with the presence of 
donating friend(s) 0.86 0.66 

Donating 400ml with the presence of  
non-donating friend(s) 2.86 1.03 

   Panel B: Individual Demographics (Alternative-Specific Coefficient) 
Solo Donation Alternative Coefficient Standard Error 

Male and Weight in Upper Half  0.30 0.31 
Female and Weight in Upper Half  -0.36 0.61 

Male -1.30 0.38 
Current Age >33 -0.66 0.42 

Married 0.52 0.43 
Local Resident 0.35 0.43 

Education <=9 years 1.18 0.67 

   Group Donation Alternative Coefficient Standard Error 
Male and Weight in Upper Half  0.67 0.27 

Female and Weight in Upper Half  0.63 0.56 
Male -0.81 0.36 

Current Age >33 0.55 0.35 
Married 0.47 0.38 

Local Resident 0.68 0.37 
Education <=9 years 2.01 0.61 
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Table 10: Policy Simulation 
	  

  

Average Prob. of 
Subject Coming for  

Solo Donation 
(1) 

Average Prob. of 
Subject Coming for  

Group Donation 
(2) 

Total 
Number of 

Donors  
(1)+(2)*2 

Total Unit of 
Reward 

 to the Donors 

Reward 
per Donor 

No treatment 0.69% 0.02% 0.73% 0.00% 0.00 
Reminder for self-donation 0.94% 0.03% 0.99% 0.00% 0.00 

Reminder for self-donation +  
Reminder for bringing friend(s) 0.97% 0.02% 1.00% 0.00% 0.00 

  
    

  
Reward to subject for self-donation (SR) 1.03% 0.03% 1.09% 1.06% 0.97 
Reward for subject's friend donation (FR) 0.97% 0.04% 1.05% 0.04% 0.04 

Reward to subject for group donation (GR) 0.97% 0.05% 1.06% 0.05% 0.04 
  

    
  

SR + GR 1.06% 0.05% 1.16% 1.16% 1.00 
FR + GR 0.97% 0.13% 1.22% 0.26% 0.21 
SR + FR 1.06% 0.05% 1.15% 1.15% 1.00 

SR + FR + GR 1.06% 0.14% 1.34% 1.48% 1.10 
  

    
  

SR (1.5 Unit) 1.09% 0.03% 1.15% 1.12% 0.97 
SR (2 Unit) 1.15% 0.03% 1.21% 1.18% 0.97 

FR (1.5 Unit) + GR (1.5 Unit) 0.95% 0.36% 1.67% 0.72% 0.43 
FR (2 Unit) + GR (2 Unit) 0.96% 1.04% 3.04% 2.08% 0.68 
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Chapter 5: Conclusion  
 

My dissertation seeks to examine the optimal design choices for firms seeking to 

engineer digital sharing platforms and maximize returns from information sharing.  

Specifically, I study novel interventions that can be implemented by the platform at 

different stages of information sharing process. In collaboration with a for-profit platform 

and a non-profit platform, I conduct three large-scale field experiments to causally 

identify the impact of these interventions on customers’ sharing behaviors as well as the 

sharing outcomes.  

The first essay examines whether and how a firm can enhance social contagion by 

simply varying the message shared by customers with their friends. Despite its central 

importance in creating social contagion, there is very little understanding of how different 

components of a message impact social contagion. My study is among the first to address 

this issue by examining granular aspects of the message and their differential impacts on 

the outcomes of social contagion in the context of online purchase behaviors of 

individuals. Using a large randomized field experiment, I find that small variations in 

message content can have a significant impact on both recipient’s purchase and referral 

behaviors. In my case the message containing only information about the sender’s 

purchase outperforms all the other message designs and is recommended as the optimal 

message design for the firm. Based on the results of my field experiment, the 

implementation of optimal message design leads to significant increase in net profits, 

even after accounting for the cost of referral rewards. The increased profits far outweigh 

the costs for the field experiment and implementation. Interestingly, I also find evidence 
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that the same message design is also optimal from the customer welfare perspective, as it 

reveals product information and facilitates coordination. 

The second essay studies whether and how a firm can design unconditional incentive 

(i.e. varying the number of promo code and whether it can be shared) to engage 

customers who already reveal willingness to share but did not purchase themselves. 

Using a large field experiment, I examine the impact of incentive design on sender’s 

purchase as well as further referral behavior. I find evidence that incentive structure has a 

significant impact on both outcomes, but in a different way. 

The third essay examines whether and how a non-profits can design group incentive 

to motivate donors to donor in a group. I design a large field experiment to causally 

identify the impact of different types of information and incentives on donor’s individual 

and group donation behavior. My results show that non-profits can stimulate group effect 

and increase blood donation, but only by providing appropriate economic incentives.  

In summary, the findings from the three studies will provide valuable insights for 

platforms and social enterprises on how to engineer digital platforms to create social 

contagion. The rich data from randomized experiments and archival also allows me to 

test the underlying mechanism at work. In this way, my dissertation provides both 

managerial implication and theoretical contribution to the phenomenon of peer-to-peer 

information sharing. 

While the design of messages and incentives is often open-ended and done in an ad-

hoc fashion, my study demonstrates how to use field experiments in a networked 

environment to identify the causal impact of different design of messages or incentives. 

In this way, my study paves the way for a more structured approach for engineering 
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digital sharing platform to create social contagion. Based on the context and the nature of 

the product, other components of the message or other types of incentive may be 

important in driving the effectiveness of information sharing in driving social contagion. 

However, the empirical framework in my studies could still apply. 

Putting together, the three studies in my dissertation have shown that firms can 

engineer digital sharing platforms to amplify the advantages of information sharing and 

create social contagion. All studies are proof-of-concept of a central theme: firms can 

apply centralized interventions on decentralized sharing process thus enjoy the benefits of 

the both information provision paradigm. Small changes to the information sharing 

process can be accomplished with very little cost and promise substantial gains to the 

firm. 

Looking forward, my dissertation can be extended in three ways. First the proposed 

interventions in my dissertation is complementary to other traditional and social 

marketing approaches such as price discrimination, targeting influencers (Manchanda et 

al. 2008), network seeding (Hinz et al. 2011), viral product design (Aral and Walker 

2011a), viral content design (Berger and Milkman 2012), and referral programs (Schmitt 

et al. 2011), among others. It would be valuable to examine how the proposed 

interventions complement these traditional approaches. I hope that my studies serve as a 

first step in that direction. 

Second, identifying optimal intervention at aggregate level is a useful first step. With 

the availability of large amount of data on sender and recipient behaviors and their 

historical interactions, as well as the ability to process requests in real time, firms can 

actually personalize intervention at a subgroup or even individual level. While 
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personalization is a common practice in the context of firm-customer interactions, 

personalization of customer-customer social interactions is still in its infancy. As an 

important step in this direction, my dissertation examines various moderators to shed 

light on the variations in treatment effect for different types of senders, recipients, 

strength of ties, and products. I envision that in the near future when a firm gets a request 

of email share from a sender, it would leverage historical information to extract product 

characteristics, sender and recipient’s purchase and interaction histories, calculate 

optimal content and message design, and deliver the message in real time in a 

personalized fashion. My work serves as a valuable proof-of-concept of this impending 

development. 

Finally, firms or social planner can apply centralized interventions into other types of 

social interactions. Besides information sharing, interpersonal behaviors such as gifting, 

renting, managing and mentoring also constitute a large portion of social life and impact 

huge volume of economic transactions. They are increasingly mediated by digital 

platforms. Optimal design of centralized interventions for those interpersonal behaviors 

would have a profound impact on human life. 
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