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Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits 

of both fixed wing vehicles and rotary vehicles.  However, flight time is limited due 

to limited on-board energy storage capacity.  For most Unmanned Aerial Vehicle 

(UAV) operators, frequent recharging of the batteries is not ideal due to lack of 

nearby electrical outlets.  This imposes serious limitations on FWAV flights.  The 

approach taken to extend the flight time of UAVs was to integrate photovoltaic solar 

cells onto different structures of the vehicle to harvest and use energy from the sun.  

Integration of the solar cells can greatly improve the energy capacity of an UAV; 

however, this integration does effect the performance of the UAV and especially 

FWAVs.  The integration of solar cells affects the ability of the vehicle to produce the 

aerodynamic forces necessary to maintain flight.  This PhD dissertation characterizes 

the effects of solar cell integration on the performance of a FWAV.  Robo Raven, a 



  

recently developed FWAV, is used as the platform for this work.  An additive 

manufacturing technique was developed to integrate photovoltaic solar cells into the 

wing and tail structures of the vehicle. An approach to characterizing the effects of 

solar cell integration to the wings, tail, and body of the UAV is also described.  This 

approach includes measurement of aerodynamic forces generated by the vehicle and 

measurements of the wing shape during the flapping cycle using Digital Image 

Correlation.  Various changes to wing, body, and tail design are investigated and 

changes in performance for each design are measured.  The electrical performance 

from the solar cells is also characterized. A new multifunctional performance model 

was formulated that describes how integration of solar cells influences the flight 

performance.  Aerodynamic models were developed to describe effects of solar cell 

integration force production and performance of the FWAV.   Thus, performance 

changes can be predicted depending on changes in design.  Sensing capabilities of the 

solar cells were also discovered and correlated to the deformation of the wing.  This 

demonstrated that the solar cells were capable of: (1) Lightweight and flexible 

structure to generate aerodynamic forces, (2) Energy harvesting to extend operational 

time and autonomy, (3) Sensing of an aerodynamic force associated with wing 

deformation. Finally, different flexible photovoltaic materials with higher efficiencies 

are investigated, which enable the multifunctional wings to provide enough solar 

power to keep the FWAV aloft without batteries as long as there is enough sunlight to 

power the vehicle.   
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Chapter 1: Introduction 

1.1 Background 

 Unmanned Aerial Vehicles (UAVs) have gained a significant amount of 

attention in recent years due to their versatility in a wide range of missions and 

applications.  UAVs are heavily utilized in the military for reconnaissance missions.  

With onboard cameras and sensors, specialists can observe an area of interest without 

endangering any lives.  Similarly, UAVs can also be used in rescue efforts where an 

inhospitable area can be surveyed quickly.  UAVs have also gained considerable 

attention from civilians that have found several commercial applications for these 

vehicles.  Farmers could easily use a small UAV to survey their fields and check on 

their crops saving time, fuel, and energy. UAVs have even been used for 

cinematography and video production to safely obtain an aerial shot for certain 

scenes.  Besides the aforementioned military and commercial uses, hobbyist have had 

a huge interest in UAVs for years.  There are model airplanes, helicopters, and 

quadrotors that have been built by people from all walks of life.   

 UAVs can be broadly classified into rotorcraft, airplanes, or flapping wing 

aerial vehicles (FWAV).  Rotorcraft are very maneuverable and generate a large 

amount of lift.  This enables them to hover very well, but lack the speed to cover a 

large distance in a short amount of time.  On the other hand, airplanes or fixed wing 

aircraft use thrust force to generate aerodynamic lift.  This means they can cover large 

distances very quickly, but cannot hover and lack the maneuverability of a rotorcraft.  

FWAVs are unique in that they provide a versatile compromise between these two 
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extremes.  Depending on how they are designed, FWAVs can hover just like 

rotorcraft or cover large distances like fixed wing aircraft.  Smaller scale FWAVs 

take inspiration form insect based flight [5].  These FWAVs can hover and move very 

much like rotorcraft.  Larger scale FWAVs take more inspiration from avian flight 

[1].  These UAVs can achieve greater speeds than their smaller counterparts while 

still maintaining more maneuverability than fixed winged aircraft. 

 Figure 1.1: Left) Insect based UAV design [5] Right) UMD avian inspired UAV 

design [1] 

 

 Prior work at the Advanced Manufacturing Laboratory (AML) in the 

University of Maryland has demonstrated the utility of FWAVs as research platforms 

and as practical flying prototypes capable of transmitting live video, morphing wings, 

and having relatively large payload capacities [1]. These UAVs used a single DC 

motor to drive the wings in a synchronized symmetric manner.  The FWAVs 

developed previously in AML lay the groundwork for the work presented in this 

dissertation. 

1.2 Motivation for Research 

 A major factor in the performance of an UAV is onboard energy capacity.  

For UAVs that are powered and flown with an onboard battery, the size of the battery 

is limited by the payload capacity of the vehicle.  This limitation hinders the flight 
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endurance for the UAV, a problem seen throughout the UAV field.  A possible way 

to overcome this challenge would be to increase the available energy capacity by 

using on-board solar cells. This allows for increased flight time while decreasing the 

payload contribution of a large power source, thus potentially allowing for either: (1) 

battery size reduction or battery removal with the same performance capability, or (2) 

an increase in overall payload capacity.  By integrating solar cells into the existing 

structures of UAVs, multifunctional structures are created.  Multi-functional 

structures combine multiple functional requirements into a single structural 

component to create better efficiency in the overall design.  Successful development 

of multifunctional structures can be expanded to other UAVs, including fixed wing 

and rotary craft.  However to integrate commercial solar cells to the structures of an 

UAV, a large UAV must be developed to have enough surface area for solar cell 

integration.   

 It is unclear how the integration of photovoltaic (PV) solar cells will effect 

vehicle performance.  Integrating these solar cells will add mass to the vehicle, 

causing inertial changes to various structures of the vehicle.  Also, integrating PV 

solar cells into the wing will alter wing deformation. PV solar cells are expected to 

alter the stiffness of any vehicle component that they are integrated into. This change 

in stiffness alters how the wings deform while flapping. Wing deformation is an 

important aspect in force generation [1].  Altering the wing design is expected to 

affect wing force generation.  However, due to a lack of wing models for FWAVs, we 

cannot predict the severity of these changes.  It is clear that solar cell integration can 

be beneficial by increasing the vehicle’s onboard energy capacity; however, how 
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beneficial and at what cost are unknown.  This dissertation aims to determine the 

benefits of PV cell integration and the cost in performance associated with that 

integration.   

 

1.3 Goal and Scope 

 
 This work aims to characterize solar cell integration into the structures of a 

flapping wing unmanned aerial vehicle.  Successful integration can lead to self-

charging and increased flight endurance.  With efficient enough solar cells, infinite 

flight time with direct sunlight may be achieved.  However, it is the modeling work in 

multifunctional UAV design that has the most significant impact on the field. The 

goals of this work are as follows: 

 

1. Develop an approach to integrate photovoltaic solar cells to the existing wing 

structure of the UAV: The wings offer the largest surface area for solar cell 

integration.  The wings are also responsible for the lift and thrust generation of a 

FWAV.  A new manufacturing technique is required to integrate these cells while still 

maintaining the necessary compliance for flight.   

 

2. Characterize the impact of solar cell integration: New wing designs with 

solar cells integrated into the wings must be developed, characterized, and tested.  

Changes in wing deformation must be measured and characterized to understand how 

these design changes affect performance.  A multifunctional performance model must 

be developed to evaluate and predict how the changes in performance and mass affect 
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flight time of the FWAV. Aerodynamic models must be developed to explain how the 

changes in design are expected to alter the performance of the vehicle. 

 

3. Limitations created by solar cell integration: Since the existing wings have 

been completely saturated with solar cells, new larger wings that can incorporate 

more PV cells can be designed.  The changes in performance caused by scaling up to 

larger wings must be measured, understood, and modeled.  The tail and body are the 

last two places on the UAV where solar cells can be integrated. The body is not 

responsible for force generation so is only expected to contribute to an increase in 

mass. Since the tail is responsible for control of the UAV, performance is expected to 

be affected.  This change in performance should be quantified and modeled as well as 

the electrical benefits from the additional PV solar cells.   

 

4. Investigate new photovoltaic cell technologies: Newer more efficient PV cell 

technologies exist and must be investigated.  The best technology that will have the 

smallest effect on performance while still providing benefits in electrical power must 

be identified.  Then, the actual effects on performance through solar cell integration 

must be identified by designing a FWAV based off of these cells.  The goal is to 

design a FWAV that can be completely powered by the sun and fly as long as there is 

sunlight without a battery. 
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Chapter 2: Literature Review    

 In this chapter, literature related to the goals of the proposed work is surveyed.  

Due to the multidisciplinary nature of this work, this literature review covers several 

topics that give intellectual insight to the different issues and challenges faced in this 

work.  First, previous UAV designs and accomplishments are observed.  Next, a 

review of photovoltaic solar cell technology is conducted, followed by a review of 

multifunctional design.  Previously used measurement techniques are also reviewed 

as well as modeling efforts from the UAV community. 

 In Section 2.1 previously built UAVs are observed.  In doing so, a clear 

distinction can be made from what has already been accomplished and areas where 

significant progress can be made.  This section serves to explain how the developed 

FWAV is different from what has already been built, and how the FWAV developed 

progresses the field of UAVs. 

 Section 2.2 is a review of photovoltaic (PV) solar cell technology.  Certain 

information on PV solar cells must be known if we plan to integrate them to the 

structures of an UAV.  Here we investigate different PV technologies, the mechanical 

properties of the PV solar cells, and how current UAV designs integrate them to their 

systems.   

 Section 2.3 reviews aspects of multifunctional design.  A general overview of 

multifunctional design is introduced to help define our goal for solar cell integration. 

Current UAVs with multifunctional designs are also observed. 

 Measurement and data collection techniques are very important in obtaining 

information about UAV performance.  This information is also critical for model 



 

 7 

 

generation.  To compare the results obtained in this work to any previous work, an 

understanding of how the previous data was collected is important. Section 2.4 

investigates current and previous methods being used to measure the aerodynamic 

forces being generated by UAVs.  Section 2.5 investigates how to extract the 

deformation of the wings through Digital Image Correlation (DIC).   

 Section 2.6 covers information that previous researchers have been able to 

determine, through their efforts, about certain aspects that enable these UAVs to 

obtain flight. This section also investigates current modeling efforts for FWAV 

wings.  It is with this section that we aim to identify key components of wing design 

that have a direct correlation to flight performance.    

2.1.1  Vertical Based Flight 
 

 The majority of research thus far has been accomplished on the micro scale.  

These small vehicles are known as Micro Aerial Vehicles (MAVs).  At this size, 

flight behavior mimics the flights of insect and small birds.  Researchers design these 

MAVs to fly vertically and to be capable of great maneuverability. The following 

section investigates the advances in vertical-based flight to understand the challenges 

other researchers have faced. 

 Vijay Kumar designed and created the smallest autonomous quadrotors 

capable of exploring, mapping and scouting an unknown three-dimensional building-

like environment [2]. This UAV is capable of vertical flight with very controllable 

maneuverability (similar to insects and small birds).  Even though this UAV is not a 

FWAV, it runs into similar challenges faced by FWAVs.  Due to the necessary 

onboard components needed to achieve the mapping capabilities, the UAV is limited 
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to a minimum length of 0.75m and a mass a little less than 2 kg.  This leads to a 

power consumption of over 400 Watts.  With the best available battery, this UAV is 

only capable of a mission time of 10-20 minutes.  This work introduces the need for 

more power or a more efficient system.  Since this is a quadrotor design, the only way 

to obtain more power is through advances in battery technology. 

 The MFI project at the University of Berkeley [4] is looking at using flapping 

wings instead of rotor technology.  They are studying wing behavior with 2 degrees 

of freedom.  Their design calls for a wing with a length of 25cm with an average 

chord length of 6.7cm.  Though these wings are not small, they are 2.3 mm thick 

which make them more comparable to the behavior of wings used for MAVs.  The 

wings experience a 90 degree rotation at the end of each up and down stroke with a 

140 degree flapping range.  This group is simply observing flapping wing behavior 

and do not have an actual flying vehicle; however, they are collecting the 

aerodynamic forces generated by the flapping wing.  To do so, they use a 2 degree of 

freedom (DOF) load transducer attached to the supporting structure of the wing.  

Minimizing friction, they are able to collect the lift and thrust forces generated by the 

wings.  The flapping velocity and rotation of the wing are altered and the results are 

compared.  Using their methods of data collection they are able to decouple the 

rotational contributions of the wings from the simple flapping motion. 

 The wings used in the MFI group are very similar in design to the wings used 

in Robert Wood’s group out of Harvard [5].  They created a MAV at a very small 

scale.  They were able to achieve much more flight control by using two piezoelectric 

actuators. 
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Figure 2.1:  Robotic fly design with a pair of independently actuated wings [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Laterally controlled movement of robotic fly [5] 
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 Having two piezoelectric actuators allows for more flight control.  Flapping 

one wing differently than the other alters the symmetry causing the body to roll and 

change the trajectory of the vehicle. Independent wing control is certainly an 

advantage to gaining maneuverability and is something that can be applied to larger 

more lateral based FWAV designs.  However, a major drawback of these vehicles is 

their power source.  Because they are so small and demand such high power, these 

vehicles are tethered to a nearby power supply.  This can be seen in Figure 2.1, where 

the two copper wires are attached to the moving vehicle.  This is a huge limitation to 

this design.  A battery may simply add too much payload at this scale.  Even with a 

battery small enough, it may not provide enough power to achieve the same flight 

observed experimentally.   

 Another small tethered design from Virginia Tech uses a rotary actuator [6]. 

The flight dynamics are very similar to the Berkeley and Harvard MAVs however 

this MAV uses a small pager motor to drive the wing instead of the piezoelectric 

actuator.  The use of a motor to drive the wings makes this design easier to scale up.  

This design also introduces a tail consisting of 4 flaps to stabilize the MAV’s flight.  

Instead of using independent wing control to alter the vehicle’s flight path, the tail is 

actuated to control the vehicle’s flight.  This MAV is tethered to a power supply, but 

it can be easily scaled to a larger body using DC motors and available batteries.  This 

was the direction taken with the SF-3 Mentor robot [7].  This vertical flight UAV is 

much larger than the FWAVs previously mentioned.  It weighs 440 grams with a 0.36 

meter wingspan.  Unlike the previous designs, this UAV uses 4 wings, and is 

powered by a NiCd battery pack. However, the power required to lift 440 grams was 
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very demanding on the 8 pack NiCd battery used and as a result the maximum flight 

time of this UAV was only 20 seconds.  However short the flight may have been, it 

was able to fly without a tether. 

 
Figure 2.3: Tethered MAV with rotary actuator [6] 

 

 
Figure 2.4: SF-3 Mentor Robot [7] 

 

 The final vertical flight MAV observed was the Nano Humingbird [8]. This 

vehicle is similar to the previous two in that it is powered by a DC motor, but unlike 
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the Mentor Robot it is much smaller scale. It weighs a total of 19 grams and has a 

wingspan of 16.5 cm.  With less weight and a smaller battery, the maximum flight 

time was 4 minutes.  What is interesting about this system is that the linkage that 

transfers power to the wings is cable driven.  Turning is done by changing the tension 

at the bottom of the wings.  This shows that by tensioning one wing more than the 

other, the performance of the FWAV is altered.  Powering this much smaller design is 

a Lihium Polymer battery.  The result is a tailless hummingbird-like robot. 

 
Figure 2.5: Nano Hummingbird [8] 

 

2.1.2 Lateral Based Flight 

 
  When transitioning from vertical flight to lateral flight, there are a few 

common consistencies.  First, the size of the UAV tends to increase.  This is in 

agreement with flight dynamics observed in nature. Smaller animals, such as insects 
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and small birds, have the ability to hover and use a high flapping frequency.  Larger 

birds propel themselves forward and have a more lateral flight path.  They also flap 

slower than smaller animals.  For these vehicles, the body of the MAV is no longer is 

seen as an upright object but as a mostly horizontal object.  This is conveyed in flight 

and how people perceive these vehicles.  Pictures are no longer taken with the UAV 

standing vertically, but with the body horizontal.  These UAVs are built to travel 

larger distances and therefore are mostly battery powered.  An external power supply 

is simply no longer an option. 

 The Microbat was the first FWAV to use an onboard battery [9].  A Ni-Cd 

battery was used to power a small DC motor with linkage that flaps the wings 

simultaneously.  This palm-sized FWAV weighs 12.5 grams and is capable of a 42 

second flight.  By adjusting the frequency of this MAV the vehicle was able to 

control its pitch, while adjusting the vertical rudder on the tail allowed for left and 

right control.  Two challenges were faced in the design of the Microbat. First, the 

weight constraints were met for the small size of this vehicle.  Going any smaller 

would not allow the vehicle to fly due to the requirements for power production. 

Second, the size and energy capacity of their battery was a huge limitation.  For a 

UAV of this size, the only way to improve energy capacity is through battery 

technology.  A smaller more powerful battery with a higher energy capacity is the 

only way to increase flight time. 
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Figure 2.6: Microbat [9] 

 

 In the Netherlands, the Aerospace Software and Technologies Institute of the 

Technical University of Delft developed the Delfy [10]. This small UAV consisted of 

a DC motor that was used to drive a cranking mechanism to flap four wings. It is very 

similar in design to the Microbat [9]. 

 
Figure 2.7: DelFly Micro next to a Euro coin [10] 

 

 The Delfly group’s goal was to reduce the size of their platform as much as 

possible.  They discovered is that was easy to reduce the physical size of their 



 

 15 

 

structural components with today’s manufacturing capabilities.  The difficult part was 

reducing the weight.  Components that they did not have the luxury of manufacturing 

such as the motor and battery could not be scaled down any further.  If they were to 

scale down the manufactured components, the vehicle would not be able to produce 

enough aerodynamic force to lift the larger weight of the motor and battery.  These 

scale-power limitations play a major factor in UAV design. 

 Since 2009, the University of Maryland’s Advanced Manufacturing 

Laboratory has been designing, building, testing, and flying FWAVs [11].  

Previously, the focus of these research platforms was to develop new manufacturing 

techniques for FWAVs, but they do serve as a stepping stone for continuing UMD 

UAV research.  Small Bird and Big Bird are two UAVs that came out of this research 

effort that have very similar designs.  They flap their wings with a single degree of 

freedom and use a horizontally moving tail for maneuverability.  The wings are used 

to produce the aerodynamic forces necessary for lift and thrust while the tail 

movement controls the turning.  The passive deformation of th wings is what allows it 

to produce enough force to achieve flight.  The small bird uses a magnetic actuator as 

the tail driver while the big bird uses a small servo motor.  Big bird weighs more and 

therefore is scaled up accordingly. 
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Figure 2.8: Small Bird [11] 

 

 
Figure 2.9: Big Bird [11] 

 

 An unconventional FWAV design was generated by the Air Force Institute of 

Technology in their NPS Flapping–Wing MAV [12].  This UAV uses an actuator that 

opens and closes in a clapping motion to move two wings at the rear of the vehicle.  

At the front of the vehicle is a stationary airfoil that uses simple airfoil theory to 

generate lift.  The two rear wings are driven to generate substantial thrust.  This UAV 

is a hybrid between a fixed wing vehicle and a flapping wing vehicle. All forces are 

not reliant on the flapping wing but shared among the flapping wing and airfoil 

structure.  Although this FWAV is vastly different in design compared to the previous 
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FWAVs mentioned, its efficiency of this vehicle is remarkable.  The NPS Flapping–

Wing MAV is capable of a 15 minute continuous flight.   

 
Figure 2.10: NPS Flapping-Wing MAV [12] 

 

 Typically, in nature the when comparing wingspans, the smaller wingspans 

are more capable of vertical flight than larger wingspans.  Where insects and 

humming birds can simply take off vertically, larger birds need some forward 

movement to initiate flight. Figures 2.11 and 2.12 demonstrate just that.  Based off of 

the power produced by available solar cell technologies (W/m2) [45], we can begin to 

understand the FWAV that needs to be developed to have enough surface are for solar 

cell integration to power itself. 
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Figure 2.11: Great Flight Diagram [29] 
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Figure 2.12: Flight Cost of Real Birds [53] 

 

 Based off of the avian inspired flight [53], we can understand the mass to 

power ratio of most birds. The mass to wingspan squared for birds can be observed in 

Figure 2.13. The power for scaling appears to follow P = c*Mass(0.5685) where P is the 

power required, and c is a fitting constant (26.83).  Following this relationship and 

knowing the power that can be produced by current solar cell technology, we can 

develop a plot for the power needed vs wingspan.  A small bird with a wingspan less 

than 0.1m simply does not have enough surface area for the solar cells to power the 

FWAV. This means a wingspan of at least 0.1m is needed for solar powered flight.  

This a already in the horiozntal flight regime as depicted in Figures 2.11 and 2.12. 

The wingspan needed comparable to small birds like the Red Knot to birds the size of 

Albatrosses. 
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Figure 2.13: Wing Characteristics of Actual Birds [54] 

 

 

 
Figure 2.14: Calculated Power Needed vs Solar Flux 

 

 

 

 



 

 21 

 

2.1.3 Summary of Findings in FWAV Design 

 
 This section reviewed several UAV designs to determine where the FWAV 

field is and where it needs areas of improvement.  Clearly FWAVs have the 

advantage of taking on characteristics of fixed wing UAVs and rotary wing UAVs.  

The vehicles shown varied by design and size. Some were able to hover and some 

were able to cover some distance.  Limitations were also observed in terms of scale 

and power.  Current battery technology only allows these FWAVS to fly for short 

periods of time.  The longest flight time observed was 15 minutes.  There is clearly a 

need for more power, but a larger battery is not ideal since it adds weight to these 

vehicles that already have a limited payload capacity.  The best solution is to harvest 

energy during flight.  Efforts towards this idea have already been implemented in 

other platforms.  In Virginia Tech, energy harvesting techniques have been 

implemented to a fixed wing UAV [13].  This UAV has cantilever vibrational 

harvesting modules on the wings to harvest energy from wing vibrations and small 

photovoltaic panels on each wing. These efforts assist the battery to have an overall 

longer flight time.  Since the wing is fixed, these techniques are much easier to 

implement for their vehicle; however, for a FWAV it is much more difficult.  The 

onboard payload capacity is much smaller and the wing must deform making 

integration of solar cells much more difficult.   

2.2  Photovoltaic Solar Cell Technology 

 
 To effectively integrate solar cells into any UAV, a general knowledge of 

current photovoltaic solar cells must be acquired.  In this section we review the 

different kinds of flexible PV cells available as well as their mechanical properties. 



 

 22 

 

This review is very important because unlike fixed wing UAVs with PV cells [13]. 

Putting them on the wing of FWAVs can alter their flight characteristics by changing 

how the wing deforms.   

 Shah et al. made the case for flexible solar cells [14].  They showed that 

besides the several new application for thin film solar cell technologies, the amount of 

material and energy needed to continue to create the currently favored crystalline 

silicon solar cells will run out.  Different kinds of solar cell technologies were 

investigated.  Amorphous Silicon (a-Si), Cadmium Telluride (CdTe), and Copper 

Indium Gallium Selenide (CIGS) were the reported candidates.  Shah et al. also 

touched on polycrystalline or multicrystalline silicon solar cells.  These cells tend to 

be less stiff than their monocrystalline counterparts but are less efficient.  These are 

commercially available with an efficiency of 17-18%.  Commercially available solar 

cells of A-Si were reported to be between 4-8% efficient, were some laboratory 

samples reported a record efficiency of 13%.  Commercially available samples of 

CdTe cells were reported to have 16% efficiencies.  Finally, commercially available 

samples of CIGS were found to have 18.8 % efficiency.  However, the market for 

CIGS solar cells and CdTe Solar cells has dried up.  Since this study was performed a 

new thin film photovoltaic solar cell technology has emerged.  Gallium Arsenide 

(GaAs) photovoltaic solar cell have become the newest most efficient solar cell 

technology.  GaAs solar cells are normally 28% efficient [44], surpassing even 

monocrystalline technology.  AltaDevices recently commercialized a 28.8% 

efficiency GaAs cell and MicroLink Devices a 31% efficient CIGS cell.  In terms of 

tin-film solar cell efficiency, GaAs cells are the best choice.  However,  
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 In choosing the best PV cell for our application other factors besides 

efficiency must be observed. The mechanical substrate that the PV material is 

deposited on plays a major role in wing deformation and weight.  This eliminates 

CdTe cells since their substrate is limited to rigid glass [15].  Cost is another major 

aspect that determines which type of PV cell we can obtain.  A-Si and polycrystalline 

solar cells are relatively cheap compared to the CIGS or GaAs cells.  This is due to 

the difficulty in the manufacturing process for A-Si cell compared to the CIGS and 

GaAs cells.  When we need a high quantity of solar cells and can afford to not worry 

about efficiency, A-Si PV cells are the best choice. However, to really stretch the 

electrical capability of the system, GaAs PV cells are the best yet much more 

expensive. 

 To integrate these cells into the wings of an UAV, the mechanical properties 

of these cells must be known.  This data serves as the basis for predictions of 

mechanical failure and efficiency loss under more complex loading situations like 

ours.  Antartis et al. investigated the residual stress and mechanical properties in A-Si 

PV thin films [16]. They found that the performance of the PV cells was found to be 

unaffected after 100 loading cycles at up to 0.3% strain. However, degradation 

occurred when the cells were gradually loaded to 1% strain.  It was found that the 

buckling stress of the A-Si cell measured was (-114 ± 27) MPa and the mean residual 

stress was (-661 ± 93) MPa.  This results in a maximum allowable strain of 0.1 ± 

0.02% for the entire cell. In Blakers et al. they use bending equations to determine the 

minimum survivable radius (ρ) for a curved piece of A-Si cells.   
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Where E is the modulus of Elasticity (168 GPa), x is the half thickness of the piece of 

silicon, and σ is the tensile yield strength (7.0 GPa).  Depending on the thickness of 

the cells we obtain, we can safely bend them as along as we do not reach the 

minimum curvature necessary to cause damage to the solar cells. 

2.3 Multifunctional Design  

 
 By integrating PV solar cells into the various functional structures of an UAV, 

we are implementing multifunctional design.  Multifunctional structures combine 

multiple functional requirements into a single structural component to create better 

efficiency in the overall design.  Multifunctional design has already been used in 

biologically inspired technologies for electromagnetic functionality, heating 

functionality, healing functionality, and sensing functionality [17].  Multifunctional 

structures can be used in miniaturization [18], which is an important concept in 

current MAV design.  As we have already seen out of the group from VA Tech [13].  

The wings are also being used to harvest both solar and vibrational energy on a fixed-

wing vehicle. 

 
Figure 2.15: Fixed wing vehicle with vibrational harvesting capability as well as 

solar harvesting capability [13] 
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 Another multifunctional UAV consists of integrating the actual batteries into 

the wings of a fixed wing UAV [19, 20].  For this vehicle, the batteries were actually 

integrated into the wing and assist the structure in making an airfoil shape to generate 

lift for the aircraft. This UAV was propeller driven. 

 

 
Figure 2.16: UAV with batteries integrated into the wing [19, 20] 

 

 Multifunctional structures have been used in FWAVs as well. In the 

Department of Mechanical & Electromechanical Engineering at Tamkang University, 

researchers are using a polyvinylidene fluoride (PVDF) skin on the wings for self 

sensing [21, 22].  Although this FWAV does not fly, it plays a critical role in 

determining how wing deformation characteristics correlate to force generation.  

Some self-sensing multifunctional work was also done on the MFI platform [4].  

Strain gauges were placed along the spar components of the wings to observe strains 

during the flapping motion.  At the University of Maryland, elastomeric strain gauges 
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were painted onto the surface of the wings of a UAV.  A correlation was found 

between the strains observed and thrust production [23]. 

 
Figure 2.17: Sensing results showing a correlation between thrust (grey) and strain 

(black) on a FWUAV Top) Time Resolved, Bottom) Angular Position of the Wing 

[23] 

 

 Multifunctional design has the ability to make current designs more efficient 

by freeing up volumetric space and allowing for more payload.  Integrating more than 

one functionality into existing structures is beneficial, however, one must always 

worry about how the integration will affect overall performance.  If the change in 

performance in minimal, then adding another functionality to an existing structure is 

beneficial.  An acceptable multifunctional design should minimize the effects that any 

additional integrated function has on the existing performance. 
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 Oh et al. [52] also used multifunctional structures on a FWAV.  A vertical 

based flight FWAV was developed that had a thin film membrane that had an antenna 

integrated.  The actual flight performance was not observed, but the capabilities of the 

antenna and performance of the antenna were measured. This is simply another 

example of a multifunctional effort for FWAVs. 

2.4  Force Measurement Techniques 

 
 To evaluate how changes in design affect vehicle performance, the lift and 

thrust forces generated by the vehicle should be measured before and after design 

changes are made.  Similar methods of extracting this data can be observed 

throughout the field.  In the case where a 1 degree of freedom (DOF) load cell is 

used, there are two basic ways to extract the forces.  The first method requires only 

aerodynamic lift to be measured [21, 22].  A wind tunnel is set to the exact speed of 

forward velocity of the UAV.  This is accomplished when the average thrust value 

equals zero.  The only force that should be generated by the flapping UAV is 

aerodynamic lift force.  The load cell is set vertically and the aerodynamic lift can be 

recorded.   

 Another way that a 1 DOF load cell can be used to measure aerodynamic lift 

and thrust forces is to run two tests separately.  This is the method used at UMD for 

many years [11, 23, 24, 25, and 26].  The aerodynamic thrust forces were measured 

with the UAVs wings parallel to the wind direction with the UAV pointed towards 

the wind.  A load cell is attached to a linear air bearing and the resulting forces 

generating during operation are measured and recorded. 
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Figure 2.18:  Load cell test configurations for early UMD UAVs Top) Lift Bottom) 

Thrust [25] 
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Figure 2.19: a) Thrust response from load cell b) Lift response from load cell [25] 

 

 The lift forces are measured similarly.  For lift the orientation of the UAV on 

the test stand is changed so that the load cell can measure aerodynamic lift.  The test 

stand is also placed in the wind tunnel at an alternate angle so that the UAV is still 

facing the direction the wind is coming from.  Again since these are two separate tests 

the aerodynamic lift and thrust forces cannot be measured and recorded 

simultaneously.  However, this method does not require that the wind tunnel be set to 

the exact forward velocity of the UAV. 

 A much more straightforward and easier way to obtain the aerodynamic forces 

generated by a UAV is to use a 2 DOF load cell [9].  This enables both lift and thrust 

forces to be measured and recorded simultaneously.  The last way to extract the most 

amount of information about flight dynamics is to use a 6 DOF force transducer like 
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in Wright State University [27].  This enables the researcher to study lift, thrust, yaw, 

and the moments generated by different UAV designs.   

 Being able to quantify the difference in force generation by altering wing, tail 

and body designs will become a paramount aspect of this work.  A consistent and 

accurate test stand and wind tunnel are critical components in getting accurate and 

comparable results.   

2.5  Digital Image Correlation Techniques 

 
 An important aspect that should be quantified to further understand FWAV 

flight dynamics is wing deformation during the flapping cycle.  The wings of most 

FWAV go through passive deformation while flapping.  The passive deformation is 

responsible for generating the forces necessary for flight.  Further understanding of 

wing deformation and wing shape will encourage better wing design and 

development of a wing model that allows performance to be predicted.  Past attempts 

have been used to extract the wing shape during the flapping cycle.  Previously two 

high speed cameras were used to track fifteen points on a wing surface [26].  This is a 

very tedious way to collect the wing shape since it involves someone going through 

and measuring the displacements one by one for each picture.  It is also prone to error 

since an individual is making the measurements.   

 In Wu et al., three dimensional Digital Image Correlation (DIC) was used to 

track the wing deformation through the flapping cycle [28].  3D DIC uses a system of 

at least two cameras to track the surface of a deforming body.   
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Figure 2.20: Speckled wing used for 3D DIC [28] 

 

 The surface being observed is painted with a speckled pattern to allow the 

cameras to track up to thousands of points throughout the surface.  Pictures of the 

deforming speckled wing were taken simultaneously with 4 cameras.  The images are 

processed using a DIC software.  This software tracks the speckles in relationship to 

each other in 3D space and determines how much the wing has deformed in 3D space.  

From this information strains along the wing surface can also be determined.  

However, in this case, all that was observed were the contours of the wings during the 

flapping cycle. 

 
Figure 2.21: Wing contours while flapping [28] 

 

 DIC is an important tool used in this work to determine how altering wing 

designs changes the shape of the wings during the flapping cycle. Using this data, 

knowledge can be gained that allows a predictive model for wing performance to be 
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made based on how the wing is expected to deform.  This shows a better 

understanding of wing dynamics and wing design for FWAVs. 

2.6  Efforts in Modeling 

 
 Pines et al. describes the challenges faced in future MAV/UAV development 

[29].  One major challenge is the lack of models for MAV/UAV flight behavior.  A 

major contribution to the field would be general models that enable UAV designers to 

anticipate how the UAV will behave under flight conditions.  FWAV design is 

different in that wing design has a huge impact on flight performance.  The generic 

airfoil model will not work for these dynamic structures.  However, previous papers 

and findings can lead us to developing a model for FWUAVs. 

 Generally it has been found that different UAV sizes will encounter different 

Reynold’s Numbers [30].  Smaller UAVs will encounter higher Reynold’s number 

requiring them to flap faster.  Larger UAVs will encounter smaller Reynold’s 

numbers allowing them to flap slower yet still obtain flight.  This is reminiscent of 

behavior and patterns in nature.  

 From work done at the Micro level, we know that Leading Edge Vortices 

(LEVs) play a role in enabling small insects to fly [31, 32].  Under general 

aerodynamic theory, small insect with large thoraxes should not be able to fly; 

however, through LEVs on surface of rapidly moving wings, these animals are able to 

fly.  The small insect like MAVs take advantage of this as well. 

 The rotation of the leading spar also plays a role in wing dynamics.  For 

insect-like flight with front wing rotation [3], the ability for the front spar to rotate 

during the flapping cycle correlated well with lift generation.   This enables us to 
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extend traditional translation based wing models since rotation plays also plays a role 

in force generation. 

 Wing stiffness also plays a role in flight dynamics [33].  A wing that is too 

stiff will not deform enough to generate lift; whereas, a wing that is not stiff enough 

will not push the air through the wing in a direction to generate thrust. A balance in 

stiffness is critical in flight dynamics.  

 Using PVDF sensors on the wings showed a correlation between wing 

deformation and lift [21, 22].  Using smaller strain gauges on the wing spars 

correlated the strains to thrust measurements [23].  A better understanding of wing 

shape and kinematics can help to model wing behavior through deformation. 

 These findings all come from observations of wing dynamics.  Putting these 

factors together can help derive a model that will enable designers to mathematically 

predict how a wing will perform before it is even built.  Development of such a model 

will lead to a better understanding of FWAV design. 

2.7  Summary of Literature Review 

 
 This literature review demonstrates the need for the proposed work. Section 

2.1 demonstrates the need for more electrical power from these UAVs.  With the 

maximum flight time currently at 15min, and the limitations imposed by the payload 

capacities of these vehicles, solar cell integration is needed for more power 

generation.  Section 2.2 highlights the benefits A-Si and GaAs PV solar cells.  

Section 2.3 introduces multifunctional design and the anticipated effects that solar 

cell integration will have in vehicle performance.  Sections 2.4 and 2.5 investigate 

data collecting techniques using load cells and DIC.  Section 2.6 introduces the need 
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for UAV models to help predict how changes in design will effect flight performance.  

Through the integration of solar cells, the need for more power can be met, but the 

cost in overall performance needs to be understood.  This work serves as a trade-off 

analysis for this issue.  Through this investigation, more knowledge towards FWAV 

behavior is gained allowing for models to be derived that enable performance to be 

predicted based off of changes in vehicle design.   
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Chapter 3: Design and Manufacturing of Robo Raven 

 
 In this chapter, a new FWAV named Robo Raven is introduced.  This vehicle 

was designed and manufactured in the Advanced Manufacturing Laboratory at the 

University of Maryland.  This is the base platform used for solar cell integration.  It is 

an ideal candidate thanks to a wingspan of over 1 meter that provides a large surface 

area for PV solar cells. The following is an overview of the development of Robo 

Raven and its characteristics.  This content of this chapter is presented similarly to 

what was published in Soft Robotics [38] 

3.1 Introduction 

 
 There was high interest in developing a platform that can be used to 

investigate outdoor aerobatics maneuvers, so inspiration was taken from the Common 

Raven, a relatively large bird capable of aerobatics. Moreover, to provide 

customizable flapping motions, each wing was powered with a separately controlled 

independent drive train, consisting of a motor, gears, position sensor, and feedback 

control loop. The benefit of this approach is to allow completely arbitrary wing 

motions, which provides increased freedom to explore some aggressive and 

interesting maneuvers.  These include asymmetric roll initiation, upflap-downflap 

asymmetry, gliding and soaring dynamics, gust rejection, and blending of tail and 

wing steering modes. 

 In the present effort, many of the same techniques previously developed to 

characterize and understand changes in wing design are applied.  The results 

culminate in a flying prototype vehicle called Robo Raven, a FWAV that overcomes 

the substantial challenge of producing sufficient lift and thrust for sustained flight 
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with fully independent wing control.  This newly designed FWAV has a larger wing 

surface area making it a great candidate for solar cell integration. 

3.2  System Overview 

 

3.2.1  Design Requirements 

 
 The primary objective was to build a FWAV that can be used to learn about 

the effects of changing wing kinematics while improving the maneuverability of 

flapping wing air vehicles outdoors. Since nature provides the best examples of flight 

it was sought to replicate avian-based flight dynamics. This effort was inspired by the 

Common Raven, Corvus Corax, with properties listed in Table 3.1. 

Table 3.1: Properties of the Common Raven, Corvus Corax 

Parameter Common 

Raven 

Unit 

Total Mass 0.69-2.00 kg 

Length 0.63 m 

Wingspan 1.00-1.50 m 

Average Chord 0.21 m 

Aspect Ratio 2.77  

Flight Speed 9.80-12.50 m/s 

 

For vehicle design, the following eight requirements were identified: 

1. Flap wings of at least 0.20m2 surface area at 3.5 Hz. This requirement came 

 by observing raven wings and was necessary to enable outdoor flight.  

2. Flap each wing independently with the ability to synchronize wing motions 

 when needed.  This requirement was needed to perform normal flight and do 

 aerobatics. 

3. Have ability to program wing velocity and position as a function of time.  This 

 requirement was needed to optimize normal and aerobatic maneuvers. 

4. Minimize weight to achieve flight and a climb rate of 0.5m/s.  
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5. Achieve minimum turning radius of 10m. This requirement was needed to  

 conduct tests in indoor stadiums and fly in outdoor fields with trees. 

6. Remotely control the flight from a distance of 500m.   

7. Land unpowered at glide speed from a height of at least 3m without 

 sustaining structural damage. 

3.2.2 System Decomposition 

 
 The design requirements for Robo Raven assisted in determining how to 

control and power the entire system.  A functional decomposition that demonstrates 

the energy and signal flow through the system was developed.  This allowed for the 

individual components that were going to be needed for the system to be selected. 

 
Figure 3.1: Functional Decomposition of Robo Raven: dotted lines (- - -) denote 

energy flows and solid lines (—) denote signal flows 
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 Each component that was selected was the lightest component that was 

commercially available.  This would allow for maximum payload capacity when the 

vehicle is completely assembled.  Additionally, each component was chosen for its 

small size.  This allows for easier mounting on the fuselage of the UAV.  A 

breakdown of the components and weights are shown below. 

Table 3.2: Weight breakdown of Robo Raven for electronics, frame, wings, tail, and 

total 

Component Weight 

(g) 

Drive Actuators 

(2 - Futaba S9352HV) 
136.0 

Tail Actuator (Futaba S3114) 7.8 

Controller (Arduino Nano) 6.0 

Wiring 19.8 

LiPo Battery 27.0 

Spektrum 2.4 GHz Receiver 3.0 

Wings (2) 26.0 

Tail 8.0 

Actuator Mount Assembly 

(for the S9352HV servos) 
16.4 

Frame 30.0 

Foam Crash Protection 5.0 

Assembly Fasteners 5.3 

Total 290.3 

 

3.3  Design and Fabrication of Wings 

 

3.3.1  Wing Design 

 
 Wing design was adapted from a previously used approach developed for 

successfully realizing a FWAV platform with synchronized wing motion, which has 

been shown to be effective in generating lift and thrust forces across a variety of 

applications and size scales [11, 23, & 24]. The design is shown in Figure 3.2. 
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Figure 3.2: Characteristic wing design: S is the semi-span, C is the chord, and tn are 

the diameters of carbon fiber stiffening rods 

 

 The parameters of the wing are as follows: S is the semi-span, C is the chord, 

and tn are the diameters of carbon fiber stiffening rods.  The wing membrane is a 

0.0254mm thick film of biaxially-oriented polyethylene terephthalate (Mylar) which 

provides light weight, flexibility, and good toughness. 

 Due to extensive usage of lightweight materials, this wing design changes 

shape passively in response to loads from the flapping motion.  As the wings flap, 

aerodynamic loads on the compliant wing surface generate a significant camber 

change.  The cambered wing is a thin airfoil, which captures and expels a large 

volume of air with each stroke.  The induced shape change alternates with upstroke 

and downstroke producing lift and thrust. Thus, the selection of parameters in Figure 

3.2 plays a major role generating the aerodynamic loads. 

3.3.2  Experimental Wing Design Procedure 

 
  To identify the best wing design for this new vehicle, a series of experiments 

with different wings were conducted to help characterize this design. The objective of 

this experimental wing characterization was to select a wing geometry that would 
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result in the servos operating as close as possible to their peak power operating 

condition. Each wing design was evaluated using a custom-built test stand with a 6 

degree of freedom load cell in a wind tunnel to measure the forces generated by the 

vehicle.  This test stand was mostly made of wood.  It was deigned to keep the 

FWAV at a pitch of 20 degrees, which was the angle taken by the vehicle during 

flight.  An aluminum slab separated the load cell from the rest of the test stand 

providing a smooth flat surface for accurate results.  The load cell used was an ATI 

Mini 40 Force Transducer, capable of measuring a maximum load of 40 N for thrust 

with a resolution of 1/100 N and a maximum load of 120 N for lift with a resolution 

of 1/50 N.  A National Instruments PXI system was used to measure voltages from 

the load cell during wind tunnel testing, and these voltages were post-processed to 

obtain the lift and thrust forces. 

 High speed video footage was recorded during all load cell tests to visually 

observe the difference in flapping for each wing design. These tests were repeated 

under no air flow and significant air flow conditions with varying angles of attack. 

The load cell testing quantitatively revealed which wing created the most lift and 

thrust, while high speed video footage offered qualitative explanations for the results 

and provided design insight.  The test stand is shown in Figure 3.3.  The load cell 

testing quantitatively revealed which wing created the most lift and thrust. 
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Figure 3.3: Custom built test stand fixture with 6 DOF load cell in the wind tunnel 

 

3.3.3 Characterization of the Selected Wing Design 

 
 Each of the experimentally designed wings were built by hand using a 

template matching the parameters in Table 3.3.  The Mylar membrane was taped flat 

on a clean flat table and carbon fiber tubes were installed according to the template 

using Uhu Por glue. Mylar strips were then used to cover and secure the carbon fiber 

stiffeners on the wing’s membrane, and additional reinforcement Mylar was bonded 

to areas of higher stress concentrations to prevent tearing.  Five holes were melted 

into the wing next to the chord-wise spar and 5 rubber bands were tied through for 

tensioning the wing attachment to the frame.  A completed wing can be seen in Figure 

3.4. 
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Table 3.3: Wing Design Parameters 

Parameter Value Units 

S 605.8 mm 

C 362.0 mm 

t1 3.18 mm 

t2 1.63 mm 

t3 1.63 mm 

t4 1.63 mm 

θ1 20 degrees 

θ2 40 degrees 

 

 
Figure 3.4: Completed wing with geometry defined by Table 3.3 

 

 These wings were tested in a wind tunnel (airspeed approximately 5 m/s) 

using the load cell test stand. The wings generated averages of 243 g of lift and 120 g 

of thrust at a 20 degree angle of attack.  Lift and residual thrust data as a function of 

time from a sample trial are shown in Figure 3.5. 
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Figure 3.5: Lift and thrust production during multiple flapping cycles 

 

 It is important to note that the response of these wings is similar to the 

response of previously developed FWAVs [25]. The lift demonstrated a smooth 

almost sinusoidal response where the thrust was more complex.  There are several 

peaks within one flapping cycle.  In this case, there are two different magnitudes 

demonstrating the difference in magnitude in thrust produced in the up and 

downstroke at an incline of 20 degrees. 

3.4  Design and Fabrication of Wing Drive Subsystem 

 
 The wing drive subsystem is responsible for producing the wingbeat 

kinematics that result in lift and thrust. The design of this subsystem is an important 

aspect of the vehicle design. Therefore, nature was used for inspiration and provided 

some insight into the trends that exist among feasible designs. 

 Power density is a key design factor for FWAVs to ensure lift and thrust 

forces are sufficient to overcome the weight and drag of the vehicle.  The design of 

custom actuators was beyond the scope of this effort, so commercially available 
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actuator for the wing drive subsystem were selected. Vehicle size limited the 

selection to the slower and more powerful actuators, including electric motors, shape 

memory alloys, bimetal benders, and dielectric elastomers.  Of these choices, only 

electric motors and dielectric elastomers offer acceptably high efficiency of 

operation.  However, the very high operating voltage presents integration challenges 

and required additional voltage step-up electronics on-board.  Therefore, electric 

motors were used for this application. 

 Electric motors must be paired with a flapping mechanism to provide 

reasonable speeds of operation.  In addition, integration with a position sensor and a 

feedback loop is required for programmable kinematics.  These requirements lead to 

increased weight, part count, complexity, and integration difficulty.  To avoid the 

challenges associated with matching all of those components and designing the 

required hardware and software, servos were chosen for this effort to actuate the 

wings, due to their high power output, programmable motions, and integrated 

packaging including the motor, drive train, speed controller, and position sensor.  The 

Futaba S9352HV was chosen due to its high figure of merit, computed as the power 

output divided by the mass.  The available servos exhibit a linear relationship 

between available power and figure of merit.  While other servos exist on the market 

that offer either higher torque, higher speed, or lower mass, none are sufficiently 

strong performers in all three categories to justify their selection for our efforts. 

 The Futaba S9352HV servo motors were tested with a dynamometer and 

power analyzer to provide details about the electrical power input as well as the 

mechanical power output. The test results included the power and efficiency curves as 
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a function of motor speed.  The objective was to determine the location of the power 

band, the operating condition that provided peak power output, and the operating 

condition that provided peak efficiency. The results of our testing are summarized in 

Table 3.4.  The maximum torque and speed are not reachable simultaneously.  The 

peak power output of 9.4 W is reached at a final drive speed of about 509.9 deg/s 

which corresponds to approximately half the peak torque and speed. 

Table 3.4: Performance Test Results for Futaba S9352HV 

Parameter Value Units 

Stall Torque 12.5 mN-m 

Top Speed 1008.4 deg/s 

Peak Power Output 9.4 Watts 

Peak Efficiency 63.9 % 

Mass 72.0 g 

 

 Due to the importance of weight minimization, 3D printing was used to 

manufacture the frame that comprised the primary structure of the vehicle. The ability 

to produce a part with complex geometry eliminated many assembly steps and 

hardware that would have otherwise been required. The frame was sized to minimize 

the weight and to ensure that it was capable of withstanding the expected load.  The 

part is manufactured using ULTEM 9085 material, which has a tensile strength of 

71.6 MPa.  The design has substantially less stress than this during normal operation.  

Iterative testing has shown that crashes imparting loads of over 5 kg can be survived 

without part failure, yet the weight of the final part is only 8.0 grams. 

 The custom servo horns were laser cut out of 1/4” Delrin®. These servo horns 

fit over aluminum servo horns that physically attach to the servos and have 1/8” holes 
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for the wings’ front spars to fit into.  To prevent off-axis loads from damaging the 

gear train inside each servo as well as to provide crash protection, a stiff 3D printed 

nose is attached to the front, labeled Torque Lock in Figure 3.6.  Carbon fiber tubes 

are used to connect the front section to the tail and the rest of the body. An exploded 

view of the CAD model of the main drive system is shown in Figure 3.6. 

 
Figure 3.6: Main drive assembly (exploded view) 

 

3.5  Design and Fabrication of Steering Subsystem 

 
 A steering system consisting of a tail surface mounted to the rear of the 

fuselage was included to control the direction of the FWAV during flight.  The tail 

maintains a fixed elevator angle while providing a variable roll angle relative to the 

fuselage.  A flat trailing edge allows for simplified manufacturing and is also an 

aerodynamically ideal solution.  Any portion of the tail that contracts in span will be 

subject to the upstream wake and produce primarily drag, with a minimal contribution 

to lift.   
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Figure 3.7: Tail drive subsystem assembled (left) and exploded view (right) 

 

 This design provides the option of fully controlling the steering with the tail 

alone, or blending the steering control with wing motions to explore bio-inspired 

techniques of flight control.  This enables the operator to execute aggressive 

maneuvers.  In addition, this layout gives us the ability to explore some behaviors that 

would be challenging or impossible to train an animal to execute, yet could still be 

informative from a research perspective. Flight testing of this design revealed a 

minimum turn radius of 6 m at a 40 degree tail angle, with an almost linear increase 

in turn radius proportional to reduced tail deflection. 

3.6  Design and Evaluation of Normal Flapping Gaits 

  
 The selection of a flapping gait simultaneously controls the selection of a 

number of important parameters including the flapping amplitude, rate, average 

dihedral, and periodic symmetry, among others.  All of these parameters affect the 

flight speed and body pose, which significantly influence the forces produced during 

flight. At a minimum, our objective with the Robo Raven would be to reach the point 

that corresponds to minimum power required to sustain flight, and thus provides the 

greatest endurance. 
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 The prototype vehicle shown in Figure 3.8 was used for flight testing.  

Initially, the angle of attack required adjustment, as early flights exhibited a very high 

forward speed and gradual loss of altitude. This was likely due to the large 

concentration of weight at the front attributed to the servos.  Therefore, a small 

extension was added to the rear of the fuselage from which the battery was 

suspended, which shifted the center of mass rearward, and thus the angle of attack 

increased, directing the net force vector closer to vertical.  The flapping gait was also 

adjusted by increasing the flapping amplitude and slightly increasing the flapping 

rate.  This brought the prototype within the range commonly exhibited by flying 

animals, and resulted in sustained flight with the ability to climb and maneuver. 

 
Figure 3.8:  Fully Assembled Robo Raven 

 

 The flapping gait was programmed on the Arduino Nano. Average force 

production during testing was 242.9 g (5.5 g standard deviation) lift and 119.6 g (6.4 

g standard deviation) thrust.  Due to some turbulence in the wind tunnel a small 

amount of variability was present across trials.  The typical flight duration of the 
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system with a 370 mAh onboard LiPo battery is 4 minutes and 30 seconds. Flight 

testing the Robo Raven has helped us to understand the capabilities and operational 

conditions during cruising, which are summarized in Table 3.5. 

Table 3.5: Flight test results of the Robo Raven 

Parameter Value Units 

Flap Rate 4.0 Hz 

Flap Amplitude 100 degrees 

Angle of Attack 20 degrees 

Climb Rate 0.53 m/s 

Reynolds Number 124,000 - 

Strouhal Number 0.395 - 

Minimum Turning radius 6.1 m 

 

3.7  Conclusions 

 
 A new FWAV platform called Robo Raven was developed that flies with 

wings independently controlled by digital servo motors. This represents an 

improvement in flight capability and takes a step closer towards replicating avian 

flight. Thus, this platform represents a significant advance towards biomimicry of 

birds using a FWAV platform.  

 Successfully realizing this design required a multi-faceted approach.  First, 

advanced manufacturing processes such as 3D printing and laser cutting were used to 

create lightweight polymer parts to reduce the weight. Second, wing motion profiles 

were programed that ensured that wings maintain the optimal velocity during the flap 

cycle to achieve the right balance between the lift and the thrust. Third, a method to 

measure aerodynamic forces generated during the flapping cycle was developed. This 

allowed for quick evaluations of many different wing designs to select the best one. 
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Finally, a systems approach was adopted to make sure that all components worked 

well as an integrated system. 

 Due to the relatively large size of the FWAV, it is an ideal candidate for solar 

cell integration.  The current maximum flight time is currently 4 minutes and 30 

seconds and the current aerodynamic forces have been measured and recorded.  

Changes in design can be easily tested and quantified using the current methods.   
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Chapter 4: Design, Fabrication, and Characterization of  

         Multifunctional Wings to Harvest Solar Energy in        

        Flapping Wing Aerial Vehicles 

 
 This chapter is the work presented in Smart Materials and Structures [47]. In 

this section we describe a layered fabrication method that was developed for realizing 

multifunctional composite wings for Robo Raven by creating compliant wing 

structure from flexible solar cells.  The deformed wing shape and aerodynamic 

lift/thrust loads were characterized throughout the flapping cycle to understand wing 

mechanics. A multifunctional performance analysis was developed to understand how 

integration of solar cells into the wings influences flight performance under two 

different operating conditions: (1) directly powering wings to increase operation time, 

and (2) recharging batteries to eliminate need for external charging sources. The 

experimental data is then used in the analysis to identify a performance index for 

assessing benefits of multifunctional compliant wing structures. The resulting 

platform, Robo Raven III, was the first demonstration of a robotic bird that flew using 

energy harvested from solar cells. We developed three different versions of the wing 

design to validate the multifunctional performance analysis. It was also determined 

that residual thrust correlated to shear deformation of the wing induced by torsional 

twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It 

was also found that shear deformation of the solar cells induced changes in power 

output directly correlating to thrust generation associated with torsional deformation. 

Thus, it was determined that multifunctional solar cell wings were capable of three 

functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2) 
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energy harvesting to extend operational time and autonomy, and (3) sensing of an 

aerodynamic force associated with wing deformations. 

  

4.1 Introduction 

 
 As a part of previous work, we have developed a highly maneuverable FWAV 

named Robo Raven [38]. These vehicles rely on flapping wings and their deformation 

to generate the aerodynamic forces necessary for flight.  The size of these vehicles are 

comparable to the size of actual birds found in nature.  This platform features 

independently controlled programmable wings. In FWAV such as Robo Raven, flight 

endurance is one of the primary concerns. To perform missions in remote regions, the 

UAV cannot charge batteries using electrical outlets. A possible way to overcome this 

challenge would be to charge batteries using on-board solar cells. Since Robo Raven 

has a large wing area, solar cells can be integrated into the wings.  The resulting 

compliant wing structure with integrated solar cells can be considered both 

multifunctional and smart because it not only provides lift and thrust, but also acts as 

a method of harvesting energy and sensing changes in deformation caused by 

aerodynamic loading, which can be used to determine changes in the flapping profile 

to improve flight control.  This combination allows for increased flight time while 

decreasing the payload contribution of a large power source, thus potentially allowing 

for either: (1) size reduction with the same performance capability, or (2) an increase 

in overall payload capacity.  It also introduces new capabilities for control schemes 

through new sensing capabilities.  Successful development of multifunctional 

compliant wing structures through the integration of multiple functions can be 

expanded to other aspects of all UAVs, including fixed wing and rotary craft. 
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 Integrating solar cells into the wings presents the following three challenges. 

First, a new manufacturing process is needed to integrate solar cells into wings 

without substantially increasing weight.  Second, we need to ensure that wings with 

integrated solar cells maintain the appropriate deformation during the flapping cycle 

to ensure production of adequate aerodynamic lift and thrust.  Finally, we need to 

make sure the modified version of Robo Raven with multifunctional wings produces 

enough thrust and lift to compensate for the heavier wings and enable flight. 

 In this chapter, we describe a new layered fabrication method for integrating 

commercial off-the-shelf solar cells into wings for a new solar-powered FWAV: 

Robo Raven III. Different wing designs were tested to observe how adding different 

quantities of solar cells affects flight performance through wing deformation, and 

how this leads to changes in power output that can be measured for potential onboard 

sensing and control.  A new multifunctional performance analysis is also developed 

to quantify the effects of solar cell integration on recharge time and flight time to 

determine trade-offs from the multifunctional effects of solar cell integration to be 

considered by examining the impact of lift and thrust on power requirements versus 

the gains from recharging by harvesting solar energy. 

4.2 Design and Layered Manufacturing Process for Compliant 

Multifunctional Wings  
 

4.2.1  Design of Compliant Multifunctional Wing 

 
 Multifunctional wings were created for Robo Raven III (Figure 4.1). The 

design of the multifunctional wing, also seen in Figure 4.1, was adapted from a 

design we used previously for Robo Raven, which has been shown to be effective in 

generating lift and thrust forces necessary for flight [38]. The parameters of the wing 
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are as follows: S is the semi-span, C is the chord, and tn are the diameters of carbon 

fiber stiffening rods. Table 4.1 presents values of the wing parameter used in the 

design reported in this paper. The wing membrane is a 0.001” thick film of biaxially-

oriented polyethylene terephthalate (Mylar) which provides flexibility and toughness 

while remaining lightweight.  Table 4.2 lists the properties of the base Robo Raven 

platform with batteries. 

 

Figure 4.1: (left) Robo Raven III, the first solar powered robotic bird using 

multifunctional wings, and (right) parameters for the multifunctional wing design: S 

is the semi-span, C is the chord, and  are the diameters of carbon fiber stiffening 

rods 

 

Table 4.1: Parameters for multifunctional wing design 

Parameter Value Units 

S 605.8 mm 

C 362.0 mm 

t1 3.18 mm 

t2 1.63 mm 

t3 1.63 mm 

t4 1.63 mm 

θ1 0.358 Rad 

θ2 0.750 Rad 
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Table 4.2: Properties of Robo Raven. 

Parameter Robo 

Raven 

Unit 

Total Mass 0.29 kg 

Length 0.554 m 

Wingspan 1.168 m 

Average Chord 0.248 m 

Aspect Ratio 2.01  

Flight Speed 6.7 m/s 

 

4.2.2  Multifunctional Wing Fabrication 

 
 To produce appropriate aerodynamic lift and thrust forces, many ornithopters 

rely on large deformations using compliant wings at lower flapping frequencies to 

achieve airfoil shapes [24].  The basic compliant wing structure weighs 16.8g with a 

total area of 1420cm2.  To maintain compliance when creating a multifunctional wing 

with a similar structure, Powerfilm’s© MPT6-75 flexible solar cell modules were 

chosen.  These flexible 7.3 x 11.4 cm amorphous silicon solar cell modules are 

reported by the manufacturer to produce 50mA of current at 6V at 100% sunlight 

flux, which represents their maximum power point.  However, the bending stiffness 

and mass of the solar cells as packaged and was much higher than the Mylar, and 

therefore would not allow the wing to deform enough to maintain flight. Therefore, 

modifications had to be made to the solar cells to reduce the mass and bending 

stiffness to be more compatible with the Mylar. By heating and peeling off the 

protective encapsulation on the solar cells, the bending stiffness of the solar cells and 
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mass was substantially reduced. Then, solar modules were glued and soldered 

together in parallel to produce more current.  Creating the multifunctional wings from 

the de-encapsulated solar cells modules involved a layered manufacturing process 

(Figure 4.2), and the completed multifunctional wing structure integrated into Robo 

Raven III can be seen in Figure 4.3. 

 
Figure 4.2: Layered manufacturing process for multifunctional solar cells wings 

(bottom side of wing is shown). 

 

 To fabricate the wing, a layered manufacturing process was developed to 

provide precise control over the location of each element of the wing (Figure 2). The 

layered manufacturing process consisted of the following steps:  

(a) 

(f) 

(e) 

(d) 

(c) 

(b) 
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(a) A sheet of Mylar is secured to a work table with the use of magnets.  

(b) The wing shape including the hole for the solar modules is cut from the 

 secured sheet of Mylar.  

(c) The solar modules are applied to the wing. 

(d) A Mylar frame is adhered around the solar modules that holds the solar cells 

 in place.  

(e) The spars are held in place using magnetic holders with notches while they are 

 adhered to the wing.  

 
Figure 4.3: (Left) Assembled multifunctional wing with 6 solar cell modules, (Right) 

multifunctional wings integrated into Robo Raven III. 

 

 Once Robo Raven III was completed, a flight test was conducted and it was 

determined that the platform could achieve flight. The first version of Robo Raven III 

used 6 solar cell modules in each wing to generate 300 mA at 6V, so a second row of 

solar cells consisting of 5 modules were used to replace as much of the original wing 

material as possible (Figure 4.4). This version of Robo Raven III was also flight 

tested, and it was determined that the new wing design was incapable of continuous 

flight for more than 10 seconds due to increase in mass and decrease in thrust and lift 

force generation. Based on our previous experience, additional compliance at the 

trailing edge of the wing can compensate for the increase in stiffness over the area of 
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the wing when solar modules are integrated, so the wing was redesigned accordingly. 

The modified wing design compared to the original wing design can also be seen in 

Figure 4.4. There are three main differences between the new design and the 

previous.  The first two involve extending carbon fiber tubes in the inside part of the 

wings to permit increase in wing area and compliance of the wing at the trailing edge.  

The final modification involved changing the shape of the Mylar skin into a 

“teardrop”. It was determined that the modified wing design was capable of restoring 

flight capability to Robo Raven III. 

  
Figure 4.4: (Left) original Robo Raven III wing design with 11 solar cell modules, 

and (Right) the modified wing design. 

 

4.2.3 Integrating Multifunctional Wings into Robo Raven for Energy 

Harvesting  

 
 Robo Raven uses a two-cell Lithium Polymer battery rated at 7.4V and 

370mAh. To maintain the balance of the battery cells when charging with the 

multifunctional wings, a charging circuit was design as seen in Figure 4.5. Each 

module produces 50mA at 6V at 100% sunlight flux with the voltage from each wing 

depicted in Figure 4.5 as V1 and V2. A zener diode with a breakdown voltage of 4.3 

V is used to regulate the voltage so it does not exceed the maximum of 4.2 V for each 

cell. The resistor in the circuit was chosen to achieve the appropriate voltage drop 



 

 59 

 

from the modules based on their current, reducing the power generation by 25%.  The 

drop is transformed to heat and can be felt radiating from the electronics. 

 
Figure 4.5: (Left) Schematic of battery charging circuit used for multifunctional wing 

structures, and (Right) the actual wiring of the solar cells for the circuit. 

 

 For direct powering of the servomotors, the solar cells were directly connected 

to the servomotors instead of the battery. This is possible since servos can operate at 

up to 7.2V and the solar cell output has been measured up to 7.8V. This would 

optimize performance of the solar cells for powering the UAV in series with the 

battery pack, as opposed to the 25% reduction in power experienced when utilizing 

the recharge circuit for the battery. This has an additional benefit of prolonging the 

life of the battery by allowing the solar cells to assist the battery in powering the 

UAV, thereby reducing the current draw on the battery and extending the discharge 

time.   

 

 

 

4.2V Reference 

Wire 

8.4V Reference Wire 
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4.3  Experimental Characterization of Wing Mechanics 
 

4.3.1 Measurement of Lift and Residual Thrust Forces  

 
 Since existing computational models are inadequate for accurately predicting 

aerodynamic loads acting on compliant flapping wings, direct measurement of these 

loads during the flapping cycle was selected as the method for gaining insight into the 

effects of wing design parameters on the wing mechanics.  For this study, we adapted 

the previous test stand we developed, but used the same 6 DOF ATI Mini40 load cell 

mounted on a wood and Delrin frame for measuring aerodynamic lift and thrust loads 

simultaneously, as well as the moments generated (Figure 4.6).  The test stand also 

allowed the UAV to be set to any angle of attack from 0 to 20 degrees, which was the 

angle of the bird body relative to the wind direction. Unlike the previous test stand the 

load cell is horizontal to the ground and allows for the lift and thrust forces to be 

measured directly. To simulate the actual flight conditions, the test stand is placed at 

the end of a wind tunnel operating at 6 m/s, which is near the actual flight speed.   
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Figure 4.6: Test stand used in wind tunnel to characterize aerodynamic lift and thrust 

loads on the compliant multifunctional wings. 

 

 

 
Figure 4.7: Time resolved load cell results for all four wing designs: (top left) 

regular, (top right) 6 module, (bottom left) 11 module, (bottom right) modified 11 

module. 
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 The wings were testing at a flapping frequency of 4 Hz and were programmed 

to flap with a range of 60 degrees. The wings flapped symmetrically orthogonal to the 

body of the UAV.  Time resolved load profiles for wings with and without solar cells 

can be seen in Figure 4.7 for Robo Raven. These thrust and lift profiles are consistent 

with previous measurements and models of flapping wings where the lift produces a 

sinusoidal profile consistent with aerodynamic drag while the residual thrust exhibits 

a double peak consistent with a “blowback” effect from the rear of the wing during 

the flapping cycle [26, 38]. As a result, the peaks appear 180° out-of-phase when they 

overlap on the time-resolved plot.  

 Comparing these profiles for each wing design, it can be seen that there is a 

slight change in performance caused by the addition of solar cells on the wings.  

Because the solar cells stiffen the wings and reduce compliance in sections of the 

wing structure, it was predicted that the solar cell wings would underperform the 

regular wings.  However, from the profiles it seems that the 6 module wings actually 

have slightly larger values for lift compared to the regular wings.  For the 11 module 

wings, the values for thrust decreased significantly compared to the original wings 

with only a slight increase in lift, which was consistent with the observed loss of 

flight capability.  The modified wing design had an increase in lift force generation 

compared to the original wings, consistent with the observed restoration of flight 

capability.  The average values of lift and residual thrust load for each trial can be 

seen in Table 4.3. 

Table 4.3: Lift and residual thrust loads generated by each wing design 
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 In a wind tunnel, a residual thrust value of 0 g would correlate to steady-state 

flight conditions. However, our low speed wind tunnel has a maximum velocity of ~5 

m/s, while the actual flight velocity for Robo Raven is 6.7 m/s. Since this meant the 

aerodynamic force would be approximately 25% greater during flight, a scaling factor 

of 1.4 X was determined using this value combined with a measured maximum 

payload of 40 g for Robo Raven. Thus, this scaling factor made it possible to predict 

the corresponding payload capacity of Robo Raven from the wind tunnel data (Force 

Magnitude X Scaling Factor = Total Flight Weight).  The corresponding results, seen 

in Table 4, clearly explain why the original 22 module UAV did not fly given the 

predicted payload of -4 g, which was recovered to 21 g with the modified wing 

design. 

Table 4.4: Weight and payload characteristics for each UAV design 

 Robo 

Raven 

12 Module 

Robo Raven 

III 

22 Module 

Robo Raven 

III 

Modified 22 

Module Robo 

Raven III 

Weight of UAV (g) 290 317 331 346 

Force Magnitude (g) 234 235 232 260.1 

Total Flight Weight (g) 330 332 327 367 

Payload (g) 40 15 -4 21 

 

 Robo Raven 12 Module 

Robo Raven 

III 

22 Module Robo 

Raven III 

Modified 22 Robo 

Raven III 

 Residual 

Thrust 

(g) 

Lift 

(g) 

Residual 

Thrust 

(g) 

Lift 

(g) 

Residual 

Thrust (g) 

Lift 

(g) 

Residual 

Thrust (g) 

Lift 

(g) 

Trial 1 111 218 105 201 70.6 240 77.4 247 

Trial 2 104 220 98 219 75.2 242 101 229 

Trial 3 109 221 98 218 91.9 237 74.8 268 

         

Average 108 220 100 212 79.2 240 84.5 248 

Std. 

Dev. 

3.36 1.79 3.86 10.1 11.2 2.53 14.7 19.5 
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4.3.2 3D Digital Image Correlation (DIC) Characterization of Wing 

Shape 

 
 Previously, Stanford et al. used 3D Digital Image Correlation (DIC) to study 

wing deformations in fixed membrane wings for MAVs to optimize their design for 

aerodynamic forces [40]. We utilized 3D DIC to study the effects of deformation on 

the different multifunctional wing designs by quantifying differences in shapes and 

strain and relating it to the aerodynamic loads generated during flapping. For our 3D 

DIC investigation, two Flea3 FL3-FW-03S1M cameras were used to acquire 

stereoscopic high speed images at 80 HZ while the wings were flapping at 4 Hz.  

Speckle patterns were applied to the surface of the wings, and the software package 

VIC-3D (Correlated Solutions, Inc) was used to obtain deformation measurements at 

20 different angles during a single flapping cycle. 
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Figure 4.8: Comparison of out-of-plane displacement (W) for each wing at the 

horizontal position while flapping downward, which was found to be most 

representative of the relative deformations between the wing designs for the 20 

different wing positions that were measured during a single flapping cycle. (top left) 

regular, (top right) 6 module, (bottom left) 11 module, (bottom right) modified 11 

module. Dashed lines indicate approximate location of the modules 

 

 Representative DIC data associated with wing shape be seen in Figure 4.8, 

which was obtained by taking the out-of-plane displacement (W) in the z-direction 

normal to the wing while it is in a horizontal position while flapping downwards.  For 

these measurements, the x-axis and corresponding U displacements were chosen to 

run along the leading spar of the wings, while the y-axis and V displacements runs 

along the body of the UAV.  At the horizontal position, wings are generating the most 

aerodynamic lift and exhibit the greatest deformation.  It is clear that the regular wing 

has greater deformation towards the trailing edge of the wing than the 6 module wing 

or the 11 module wing, where the deformations are more indicative of bending on the 
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leading edge.  These larger deformations are intuitive since the wings are not 

stiffened by the addition of solar cells.   

 
Figure 4.9: Comparison of time resolved residual thrust and shear strain: (top left) 

regular, (top right) 6 module, (bottom left) 11 module, (bottom right) modified 11 

module. 

 

 A comparison was also made between the four wings and the time-resolved 

resolved thrust and aerodynamic lift loads versus the average shear strain and biaxial 

strain respectively of the entire surface of the wing throughout the flapping cycle 

(Figures 4.9 and 4.10). The aerodynamic lift and thrust correlate strongly with the 

biaxial strain and shear deformation from the DIC results. Since we are interested in 

the change in biaxial strain, the mean strain was subtracted from the strain observed 

throughout the flapping cycle to compare the differences.  As mentioned earlier, it is 

clear that the integration of solar cells has an effect on the wing shape during the 

flapping cycle due to the increased stiffness of the solar cell material relative to 
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Mylar. This in turn reduces the amount of thrust and lift as the solar cells are 

integrated into the regular wing design. However, by increasing the wing area in the 

modified 11 module wing design, residual thrust and lift could be recovered, although 

greater deformation was also observed that could influence performance.  The 17% 

increase in wing area provided an additional 7% of thrust force and 4% of lift force. 

The correlation between the lift and thrust forces to the biaxial and shear strains have 

been measured using the correlation coefficient. These values are shown in Table 4.5. 

 

Figure 4.10: Comparison of time resolved aerodynamic lift and biaxial strain relative 

to mean biaxial strain for the entire wing: (top left) regular, (top right) 6 module, 

(bottom left) 11 module, (bottom right) modified 11 module. 
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Table 4.5: Correlation coefficients between thrust and lift forces and shear and 

biaxial strains respectively.   

 

 As the majority of the wing becomes covered in solar cells, the deformation of 

the wing decreases.  By observing the time resolved results from the 6 module and 11 

module wings, it is clear that the shear strain slightly decreases as solar cells are 

added.  Where the 6 module wing achieved a strain of 2% the 11 module wing 

remains under 2%.  By increasing the wing size and allowing for more deformation, a 

large increase in shear strain in the modified 11 module wing is observed.  These 

results are also mirrored in the cyclic results.  The shear strain for the 6 module wing 

and 11 module wings have a much lower value than the regular wings.  However, the 

modified 11 module wings have a much higher shear strain value.  This increase in 

deformation is the difference between the original 11 cell wing and the modified 11 

cell wing.  The increase in compliance is what allows the modified 22 module UAV 

to maintain flight.  The increase stiffness and weight of the solar cells is counteracted 

by the increase in overall wing deformation. 

4.4  Multifunctional Performance Modeling of Wings 

 
 A new model was developed to characterize the multifunctional performance 

of the wings based on the aerodynamics of flapping wing UAVs. Let Ft be the thrust 

generated by the flapping wings, V be the flight velocity due to Ft, and Fl be the 

 Robo 

Raven 

12 Module 

Robo Raven 

III 

22 Module 

Robo Raven 

III 

Modified 

22 Robo 

Raven III 

Thrust/Shear Strain  

Correlation 

Coefficient 

 

0.45 

 

0.39 

 

0.65 

 

0.66 

Lift/Biaxial Strain  

Correlation 

Coefficient 

 

0.56 

 

0.19 

 

0.45 

 

0.77 
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aerodynamic lift at flight velocity V for the baseline UAV. Let Mm be the mass of the 

baseline UAV, and Mb be the mass of battery on the baseline UAV. To maximize the 

flight time, the largest possible battery permitted by the lift can be used, leading to the 

following condition: 

Fl = (Mm + Mb)g   (4.1)  

or       

Mb = Fl/g - Mm    (4.2) 

Let U be the energy capacity of battery on the baseline UAV. In general, U is 

proportional to the mass of the battery Mb. So,  

U = kbMb      (4.3) 

 

where, kb is battery coefficient. The flight time for this baseline configuration will 

therefore be: 

 

   T = U/P = kbMb/P = kb(Fl/g - Mm)/P   (4.4) 

 

Where P is the power consumed by the UAV during flight.  P is a variable that 

changes with each vehicle.  It is measured by observing the amount of time it takes to 

deplete a fully charged battery and knowing the battery’s energy capacity.   

For multifunctional wings, Ms is the mass of solar cells in the wings.  The 

solar cells have the following effects:  

 They are expected to alter the thrust due to stiffening of the wings.  The changed 

thrust leads to a different flight velocity, V’ , due to a relative change in drag 

force, k1 = V’/V= (F’t/Ft)
0.5 
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 They also change the aerodynamic lift coefficient by a ratio, k2, resulting in a total 

aerodynamic lift k1k2Fl.  

Equation (4.1) becomes, 

    k1k2Fl = (Mm + Ms + M’b)g   (4.5)  

 

Where M’b is the mass of battery on the UAV with solar cell integrated wings. So,  

 

    M’b = k1k2Fl /g - Mm - Ms   (4.6) 

 

Flight time for the multifunctional wings will therefore be as follows when directly 

providing power during flight:  

    T’ = kbM’b/ (P-ksMs)    (4.7) 

In this expression, the power produced by the solar cells is assumed proportional to 

the mass of the solar cell, and ks is the solar coefficient influenced by factors such as 

the conversion efficiency of the solar cell and the solar energy flux. Flight time for 

the multifunctional vehicle would be as follows if the solar cells do not provide power 

during the flight (i.e., baseline flight time): 

        T’ = kbM’b/ P    (4.8) 

 

Using Equation (4.6), we can determine the flight time when the solar cells provide 

power as follows: 

   T’ = kb (k1k2Fl /g - Mm - Ms)/(P-ksMs)   (4.9) 
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Provided the current output of the solar cells does not exceed the recharge limit of the 

battery, the battery recharge time for an UAV with integrated solar cells can also be 

determined as follows: 

   Tr = fckb (k1k2Fl /g - Mm - Ms)/ksMs.   (4.10) 

 

Where fc is the fraction of the battery charge that was consumed before recharging.  

For most situations, flight time is considered a system design problem, 

resulting in a constraint on the minimum value of flight time, 

    Tflight ≥ Tmin    (4.11) 

 

If T ≥ Tmin, then there is no benefit in integrating solar cells into the wings such (i.e., 

T’= Tmin). Therefore, the objective in that case would be to select Ms such that Tr is 

minimized without T’ exceeding Tmin. Since there are complex interactions between 

the baseline wings and solar cells, solar cells should be placed such that k1 and k2 are 

maximized in order to maximize T’.  

Equation (4.7) enables the multifunctional criterion ks to be determined that 

allows for the mass of the solar cells to generate the same amount of current as 

consumed by the UAV (i.e., infinite flight time), and can be considered a critical 

multifunctional criteria, ks
*, under the following condition,   

               

                 

(4.12) 
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Therefore, a comparison between the multifunctional criterion for the solar cells, ks
*, 

and the mass of the UAV, Mm, can also be made for design purposes based on: (1) 

area of solar cell coverage, and (2) power consumed by the UAV. 

4.5  Experimental Results for Multifunctional Performance 
 

 Inputs for the multifunctional performance model were obtained from 

experimental results. Since flight conditions can be different for each flight, these 

experiments were conducted while holding the vehicle in place and pointing the 

wings towards the sun.  These experiments were conducted on clear sunny days at 

noon with the planform area of the wings parallel to the sun.  The wings allowed to 

flap where Battery energy storage is typically stated as Ampere-hour (A-hr). Hence 

for the power calculations, energy storage is multiplied by the operating voltage of 

the battery and get power in terms of Watt-hour (W-hr).  The value kb is obtained by 

dividing battery capacity by battery mass, resulting in 106.54 W-hr/kg. To determine 

flight time, a fully charged battery was used to power the UAV until depleted by 

flapping, resulting in 4.50 min.  Using this in Equation (4.8), the average current draw 

from the batteries was found to be 4.9 A.  The UAV mass, battery mass, and solar cell 

module mass were determined using a DigiWeigh model DWP-1001 scale with 0.1 g 

resolution, resulting in 263.3 g for the UAV, 25.7 g for the battery, and 1.7 g per 

module. Therefore, the minimum total mass without solar cells is 289 g, and the Fl is 

2.83 N.  

 Due to the change in wing design for the modified 22 module UAV, the Mm 

increases to 278.3 g, resulting in a Fl of 2.98 N. The actual lift force generated by the 

UAV was previously measured to be 3.23 N.  To compare the aerodynamic lift 
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changes caused by the integration of solar cells, the raw lift forces were compared for 

all wing designs.  Thus, the k2 was found to be 1.023 for the 12 solar cell UAV, 1.029 

for the original 22 module UAV, and 1.194 for the modified 22 module UAV.  

Similarly, k1 had to be calculated for each of the new wing designs since a change in 

thrust production was observed on the load cell.  Using the thrust forces observed on 

the load cell, k1 was 0.970 for the 12 solar cell UAV, 0.912 for the 22 module UAV, 

and 0.922 for the modified 22 module UAV. 

4.5.1 Direct Powering of Motors 

 
 To calculate T’, ks must be found first. Since ksMs gets subtracted from P, ksMs 

is equal to the power being supplied by the solar panels, which was measured to be 

4.10 W for the 12 module UAV.  Therefore, using the previously reported mass of the 

solar cells of 27 g, ks equals 0.152 W/g. This makes the new predicted maximum 

flight time 5.05 minutes. This represents an 11.5% increase in operation time using 

the solar cell wings. Thus, the overall effect of using the solar cell wings on flight 

time turns out to be positive despite the additional mass and rigidity that it adds to the 

wings.  

 The calculation is slightly different for the 22 module UAV.  Since the body 

of the UAV was modified to accommodate the new wing design, a different flight 

time can be expected since the weights of the UAVs are different.  To lift the 

difference in weight, the servos must pull more power from the battery, shortening 

the flight time.  The new flight time for this wing was 4.32 minutes, which is 

consistent with the increased weight and area requiring more energy to power the 

wings at the same frequency and amplitude.  The average current draw was calculated 
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to be 5.14 A, which results in an average power consumption of 37 W.  Next, the new 

ks for the modified 22 module UAV must be calculated.  The solar cells add an 

additional 42 g to the UAV and were found to generate 7.41 W, making ks a value of 

0.176 W/g.  Using these numbers, we can predict the new maximum time of flight of 

the 22 module UAV using Equation (4.9).  The new time was calculated to be 5.23 

minutes.  This is 12.5 seconds more than the 12 module UAV and a 15.4% increase in 

operational time compared to the original Robo Raven design.  

 The prediction of the multifunctional performance model demonstrates the 

potential gain from the solar cells. However, it does not take into account the power 

generation variations introduced by flapping the UAV.  While flapping we expect a 

deviation from perfect conditions because the solar cells are constantly changing their 

position relative to the sun.  We experimentally measured the increase on the 

operation time by using both battery and solar cells to power motors. During actual 

flight tests with the solar cells electrically connected, large variations in flight times 

were observed due to variations in flight conditions.  Variations in flight conditions 

cannot be predicted or accounted for, so all flight endurance tests were done outdoors 

but on a test stand.  All outdoor tests were done on a clear sunny day at noon.  The 

wings were held at an angle where the most solar energy could be collected by the 

solar cells.  The actual operation time for the 12 solar cell UAV increased by 10.2% 

(flight time of 5.00 minutes) which was close to predicted.  The same test was done 

for the modified 22 module UAV.  The actual operational time for the 22 module 

UAV was 5.17 min, representing a 14.1% increase in operational time, which was 
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also close to the prediction. Results for changes in power and flight time are 

summarized in Table 4.6. 

 It is important to note that while increasing the modules from 12 to 22 on the 

UAV only increased the operational time by 3.9%, the low increase was primarily 

due to the extra power required for the new wing design that reduced some of the 

solar cell benefit. This further reinforces the trade-off that is assessed when using 

more solar cells. Therefore, in addition to the time of flight, we also determined the 

critical ks
* according to Equation (4.12) which would require improving the solar cell 

production output instead of adding more solar cells or redesigning the wing.  Given 

Ms and P for the 12 module UAV, ks
* equals 1.34 W/g.  Given the value of 0.152 W/g 

for the flexible solar cells used in this investigation, we are at only 11.3% of the value 

needed for infinite flight. Thus, ~8.8X improvement is needed to reach infinite flight 

time.  Doing the same calculation for the Modified 22 module UAV, ks
* equals 0.787 

W/g.  With a ks
 value of 0.176 W/g, we are generating 22.4% of the power necessary 

for infinite flight.  Only ~4.5X improvement is needed for infinite flight.  Since the 

efficiency of the flexible solar cells we are using is only 5%, infinite flight time 

would only require increasing the efficiency to 22.5%, which would obviate the need 

for batteries and render them a secondary power source. 
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Table 4.6: Comparison of predicted and measured flight time for regular and 

multifunctional wings (dnf denotes “did not fly”) 

 

 

 

 

 

 

 

4.5.2 Recharging of Batteries 

 
 To determine recharge performance to compare with the multifunctional 

performance model, the UAV was placed in sunlight, and measurements were taken 

to see how long it would take to completely recharge a depleted battery.  The 2 cell 

Lithium Polymer battery is completely recharged when it reads 8.4V.  The results for 

both the 12 solar cell and 22 module UAV are shown in Figure 4.11. It took 149 

minutes for the 12 solar cell UAV to completely recharge the battery and 90 minutes 

for the 22 module UAV.  These results are compared to the fastest theoretical results 

in Table 4.7 below. Differences can be attributed to the passive recharge circuit that 

minimized weight and power consumption. A more active circuit using maximum 

 Power 

Consumpti

on 

Solar 

Power 

Generation 

Predicted 

Increase in 

Flight Time 

Measured 

Increase in 

Flight Time 

 W W Time 

(sec) 

% Time 

(sec) 

% 

Regular UAV 35.8 n/a n/a n/a n/a n/a 

12 module 

UAV 

36.4 4.10 29.4 10.8 27.6 10.2 

22 module 

UAV 

36.8 7.41 dnf dnf dnf dnf 

22 module 

UAV 

(modified 

wings) 

37.0 7.41 41.9 15.4 38.1 14.1 
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power point tracking could optimize recharge time, but at the expense of adding more 

weight and increasing the power requirements for the UAV. 

 
Figure 4.11: Recharging time profiles for the 12 and 22 module UAVs. 

 

 

 

 

Table 4.7: Comparison of theoretical charging to actual charging results. 

 Theoretical Fastest 

Recharging Time (Min) 

Actual Recharging Time 

(Min) 

12 module UAV 74.0 149 

22 module UAV 40.4 90 

 

4.5.3  Impact of Aerodynamic Forces of Power Output Solar Cells for 

Sensing 

 
The time-resolved power generated by the multifunctional wings was 

determined by measuring the voltage and current during flapping. In Figure 4.12a, 

results for the 22 module UAV, generating an average of 7.42 W, are compared with 

the 12 module UAV, generating 4.10 W.  The power output was expected to change 
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sinusoidally while flapping, due to its position relative to the sun. However, the 

response is not sinusoidal, which indicates the deformation of the wings must have an 

effect on power output as well.  In Figures 4.12b and 4.12c, it was found that changes 

in the power output appear to directly correlate with the thrust generation of the wing. 

Since the thrust has been found to correlate with the amount of torsional deformation 

being produced, it is likely the cause of the changes is due to local rotations from the 

torsional deformations that can reorient cells more towards or away from the sun. 

Therefore, the solar cells wings are not only multifunctional in being able to harvest 

solar energy and serve as skin to generate aerodynamic force during flapping, but it 

can also be used to sense those forces due to the effects of the shear deformation.  The 

shear strains on the surface of the wings for both the 12 and 22 module UAVs were 

compared to the % change in power output to observe their correlation.  The two 

signals are compared in Figure 4.13.  The correlation coefficients for percent change 

in power output to thrust and shear strain were found to validate their relationship, 

and are shown in Table 4.8.   

  The implications of sensing thrust using solar cells has many applications 

going forward.  Gusts of winds can be detected during flights using the same structure 

that is used to help power the UAV.  Thus, this information can be used to change the 

flapping profile in reaction to the changes in aerodynamic loads.  These changes can 

be potentially automated to allow for correction while it is being piloted or flown 

autonomously, in which case the wings would be used as smart structures.  Because 

the solar cells are being used to achieve longer flights, being able to adjust to flight 
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conditions using solar cell sensing can be a very powerful new tool for further 

increasing flight time.   

 
(a) 

 
(b) 
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(c) 

Figure 4.12: (a) Electrical power generated by the 12 and 22 module UAVs while 

flapping, and thrust versus % change in power output for (b) 22 module and (c) 12 

module UAVs indicating that the solar cells can be used to sense aerodynamic forces 

due to the shear deformations. 

 

 
(a) 
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(b) 

Figure 4.13: Shear strain versus % change in power output for (a) 22 module and (b) 

12 module UAVs 

 

Table 4.8: Correlation factors between thrust and % change in power output for each 

wing design 

 12 Module UAV 22 Module UAV 

Thrust/% Change 

in Power Output 

Correlation 

Coefficient 

 

0.87 

 

0.79 

Shear Strain/% 

Change in Power 

Output Correlation 

Coefficient 

 

0.53 

 

0.26 

 

4.6  Conclusions 

 
 This chapter investigates the mechanics that affect the potential benefits of 

introducing multifunctional structures to harvest solar energy on the wings of a 

flapping wing UAV.  We used Robo Raven as our base platform for this 

investigation.  Three different wing designs were initially observed: (1) the regular 

wings without solar cells, (2) wings with 6 solar cell modules that constitute a 12 
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module UAV, and (3) wings with 11 solar cell modules that constitute a 22 module 

UAV.  Immediately, a deterioration in flight performance was observed when solar 

cells were added.  The 12 module UAV was still able to fly, but the wings of the 22 

module UAV were too stiff and heavy to generate enough aerodynamic lift, resulting 

in a calculated negative payload capacity.  Knowing that deformation plays a major 

role in force production, the wing design for the 11 module wings was altered, and a 

modified wing design was developed for the 22 module UAV to recover aerodynamic 

forces.   

 With these four wing designs, the force production of each wing design was 

compared to understand the mechanical effects the solar cells had on the aerodynamic 

performance of the wing.  Therefore, the lift and thrust forces generated by each wing 

design were quantified. Next, the deformation of each wing surface was quantified 

while flapping using 3D DIC to determine the specific effects of the mechanical 

properties of the solar cells as the wing design was varied. There was a clear 

correlation between the measured DIC deformations and the aerodynamic forces, in 

particular the correlation of the thrust force to the shear strain and biaxial strain to lift 

force which is critical to providing the forward velocity necessary to generate 

aerodynamic lift that enables the UAV to achieve flight.  It was also found that the 

shear deformation of the solar cells induced changes in power output that directly 

correlated to the thrust generation, indicating that the multifunctionality of the solar 

cell wings was not limited to just harvesting solar energy and serving as skin to 

generate aerodynamic forces, but that they could also be used to sense those forces. 
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 Next, the electrical benefits of adding solar cells were determined. A charging 

circuit was developed so that the UAV can be charged by the solar cells.  The solar 

cells were also directly integrated to the electrical power of the UAV to extend the 

operating time of the UAV.  A performance model was developed to model the 

change in operating time due to the integration of solar cells. It was determined that it 

takes 149 minutes to completely recharge the battery with 12 solar cells and 90 

minutes to recharge with 22 modules.  Theoretically we could have a maximum 

13.9% increase in flight time with the 12 module UAV and a 21.2% increase for the 

22 module UAV.  Unfortunately the model does not take into account the flapping 

motion of the solar cells nor the heat of running these tests outdoors.  We observed a 

10.2% and 18.7% increase in operational time for the 12 module and 22 module 

UAVs respectively.  The current solar cells have an efficiency of 5%; however, with 

recent developments in flexible PV solar cell technology provide more efficient solar 

cells can be integrated to provide for a longer and maybe infinite flight time.  We 

found we would need a flexible PV solar cell that is 22.5% efficient to achieve 

infinite flight, and there are flexible PV solar cells that are more than 24% efficient 

commercially available. 

 In summary, the fundamental mechanics of adding solar cells to flapping wing 

UAVs has been established. The added stiffness of the solar cells prevents the wings 

from deforming resulting in a loss in aerodynamic force generation.  The shear and 

biaxial strains on the surface on the wing were directly correlated to the thrust and lift 

generated by the wings.  This new information is utilized in developing a 

multifunctional performance model to predict the effects on the flight time of the 
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UAV. Although the stiffness and weight of the solar cells were quantified and 

determined to have a negative effect on the aerodynamic force production, this was 

offset by the power generation of the solar cells to result in significant gains in the 

flight time. From this model, further addition of solar cells to larger wings, the body, 

or the tail of a UAV can be expected to result in increased flight time.  However, the 

greatest benefit to flight time is expected to result from higher efficiency flexible 

solar cells, such as thin film GaAs multi-junction solar cells, where a 4.5X 

improvement in efficiency will theoretically result in infinite flight time and obviate 

the need for batteries other than as a secondary power source.  Finally, it was 

determined that multifunctional solar cell wings were capable of three functions: (1) 

lightweight flexible structure to generate aerodynamic forces, (2) energy harvesting to 

extend operational time, and (3) sensing of aerodynamic forces. 
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Chapter 5:  Integrating Solar Cells into Flapping Wing Air  

  Vehicles for Enhanced Flight Endurance 

 
 This chapter investigates ways to redesign Robo Raven to significantly 

increase the wing area and incorporate more solar cells into the wings, tail and body. 

This was the work presented in the Journal of Mechanisms and Robotics [51].  

Increasing wing area allows for additional solar cells to be integrated, but there are 

tradeoffs due to the torque limitations of the servo motors used to actuate the wings as 

well changes in the lift and thrust forces that affect payload capacity.  These effects 

were modeled and systematically characterized as a function of the wing area to 

determine the impact on enhancing flight endurance. In addition, solar cells were 

integrated into the body and the tail.  The new design of Robo Raven generated a total 

of 64% more power using on-board solar cells, and increased flight time by 46% over 

the previous design.  They were also able to recharge batteries at a similar rate to 

commercial chargers. 

5.1 Introduction  

 
 Recently, Robo Raven was developed at the University of Maryland [38,42].  

It features independent wing control that allows the wing motions to be programmed 

to perform complex aerobatic maneuverers. A picture of Robo Raven can be seen in 

Figure 1. Its flight endurance was limited by the small battery pack used to power the 

vehicle, which was a 370 mAh 7.4V LiPo.  Robo Raven was able to continually flap 

for around 4.5 minutes before the battery was depleted and significant decrease in 

flapping frequency was observed. 
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Figure 5.1: Robo Raven I [38] 

 

 Energy harvesting techniques can be implemented in FWAVs to meet the 

need for more available energy during flight and at rest, while increasing payload 

capacity by generating more lift can provide more energy storage.  As part of 

previous work, Robo Raven IIIv1 was developed, which took advantage of a large 

amount of surface area in the wings to integrate solar cells [27].  Through this 

integration, the wings became multifunctional structures.  The wings not only 

performed the function of providing the vehicle with the aerodynamic forces 

necessary for flight, but also provided electrical power for charging the battery. 

Initially, the Robo Raven III platform consisted of 12 solar modules integrated into 

the wing structure of the original Robo Raven design (Robo Raven IIIv1). These 

modules were integrated to the front most area of the wing, which minimized the 

changes in deformation of the flapping wings.  The solar cells produced 3.6 Watts and 

resulted in a 27 second increase in flight time with the ability to recharge the battery 

to 8.4V in 149 minutes.  To produce more power, more solar modules were integrated 

into the rest of original wings’ surface area.  This resulted in a different wing design 
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that allowed the FWAV to maintain flight.  Ultimately, Robo Raven IIIv2 featured 22 

solar modules that increased the flight time by 38 seconds representing a 14% 

improvement in endurance [42]. 

 This version of Robo Raven III was also able to completely recharge the 

battery in 90 minutes. However, the integration of solar cells had an effect on the 

flight performance of the FWAV.  The additional mass and increase in stiffness to the 

wings affected the wing deformations, which were necessary to achieve the shape 

changes responsible for aerodynamic performance.  They also caused the motors to 

pull 2.2 W more than the original Robo Raven IIIv1 design, however an additional 

7.4 W was produced by the solar cells resulting in an additional 5.2 W of power 

generation.   

 With infinite flight time being the ultimate goal, two approaches have been 

considered: (1) higher efficiency solar cells, and (2) integrating more solar modules 

into the FWAV.  This paper focuses on the latter.  By increasing the size of the wings 

to provide room for more solar cells and integrating solar cells into the body and tail 

of the vehicle, the harvested energy could be increased significantly.  Integration of 

solar cells into the body should have minimal effects on the performance of the 

vehicle, whereas integrating solar cells into larger wings and the tail should have 

much more significant effect on vehicle’s aerodynamic performance.  This paper 

investigates ways to redesign Robo Raven to significantly increase the wing area for 

incorporating additional solar cells and adding solar cells into the tail and body. 

5.2  Increasing Solar Cell Coverage by Increasing Wing Area 

 

5.2.1 Designing and Building Larger Solar Wings 
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 The carbon fiber spar arrangement utilized in this paper was based on a 

previously successful wing design [26].  This geometry allowed the wings to deform 

favorably under actuation.  This spar layout was shown to be scalable when it was 

used for a larger platform [38].  Using this spar arrangement provides a good starting 

point when making further changes to the wings.  The parametric design 

configuration is the same as shown in Chapter 3&4 and is shown again in Figure 5.2. 

It is repeated to show exactly how the designs differ.  The angle between the spars is 

kept the same as the previous Robo Raven designs. 

 
Figure 5.2: Parameters for wing design: S is the semi-span, C is the chord, and tn are 

the diameters of carbon fiber stiffening rods 

 

 The solar cell configuration for each wing design was also based on a 

previous successful design [47].  This design showed that keeping the rear of the 

wing free to deform allows the wing to maintain a shape under actuation that aid 

generation of aerodynamic forces.  Moreover, adding solar cells to the front most part 

of the wing has the least effect on the deformation of the wing than integrating them 

anywhere else.  When integrating solar cells into new wing designs, it is best to 
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integrate them from the front spar of the wing and expanding towards the rear. This 

configuration allows for wing to deform under aerodynamic loading and enable 

generation of appropriate aerodynamic forces. 

 In a previously reported study, we have investigated how scaling the wing size 

affects the performance [42].  Wings of 133%, 166%, and 200% of the size of the 

original Robo Raven wings were evaluated.  An increase in performance was 

observed for the 133% and 166% wings but not for the 200% sized wings.  Based on 

these findings, the 133% size wings and 166% size wings were considered as 

candidates for solar cell integration.   

 By increasing the stiffness and mass through the number and location of the 

solar cells, the deformation is more constrained and less aerodynamic force can be 

generated. Thus, a limit to the endurance gains was found to exist for the Robo Raven 

IIIv2 wing design (shown in Figure 5.3) when integrating solar cells into the wings. 

Therefore, in order to harvest more energy, larger wings are needed to increase the 

number of solar cells. However, increasing the number of solar cells and the wing 

area will not only alter the aerodynamic forces generated by the larger wing size, but 

also affect the flapping characteristics (e.g., flapping frequency and amplitude) due to 

the torque limitations of the servo motors.  The maximum torque the servo can handle 

is 22 kg-cm.  The closer the servos operate to the maximum torque, the slower they 

become until they eventually stall. The wings designed are not large enough or heavy 

enough to stall the servos. However, they were large enough to reduce the motor 

speed. Thus, a slight adjustment in the programmed frequency was used to 
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compensate for the slowing down of servos.  Table 5.1 summarizes the characteristics 

of the new larger wing designs used in this investigation. 

Table 5.1: Characteristics of the different wing designs 

Wing Design 

Semi-

Span 

(cm) 

Chord 

(cm) 

Wing 

Area 

(cm2) 

Mass  

(g) 

Solar 

Cells 

Robo Raven I 

Wing 
52.71 31.12 1017.3 15.3 No 

Robo Raven III 

v2 
52.71 34.57 1229.5 33.2 Yes 

A 62.23 35.56 1368.0 19.3 No 

AS 62.23 35.56 1368.0 45.2 Yes 

B 66.68 39.37 1627.6 25.4 No 

BS 66.68 39.37 1627.6 50.0 Yes 
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Figure 5.3: Wings designed, built, and characterized to determine the effects of solar 

cell integration on flight endurance for Robo Raven 

 

 Wings AS and BS are geometrically just like wings A and B respectively, 

except they have solar cells integrated into them.  We use Powerfilm’s© MPT6-75 

solar cell modules. These are flexible 7.3 x 11.4 cm solar cell modules produce 50 

mA of current at 6 V for a power output of 0.3 W.  More efficient commercial solar 

cells are available, but they tend to be several orders of magnitude more expensive 

compared to the solar cells used in this investigation.  Cost considerations prohibited 

us from using expensive high efficiency solar cells in our experimental studies. Low-

cost solar cells can be considered as surrogate material for this study focused on the 

mechanical design.   
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 Modifications had to be made to the solar cells to reduce the mass and the 

bending stiffness to be more compatible with the Mylar® membrane of the wings and 

tail. By removing the protective encapsulation on the solar cells, the bending stiffness 

of the solar cells was minimized, and the weight of the cells was reduced to 

approximately 1.8 g. The solar modules were connected to one another to make 

panels that fit on the wings.  A total of 30 modules were integrated into the wings.  A 

hole was made in the Mylar to fit the panels into the membrane of the wing.  Once in 

place they were attached to the Mylar membrane and the spars were put in place to 

complete the wing.  In Figure 5.3, the original wing designs for Robo Raven and 

Robo Raven IIIv2 are compared to the newly developed wings A, AS, B, and BS. 

5.2.2 Modeling Performance Changes Based on Design Changes to the 

Wing 
 

 One important parameter for flapping wing flight is the Strouhal number [49]. 

It is a dimensionless number that is used to describe oscillating flow mechanisms.  

The formula for the Strouhal number (St) is shown in equation (5.1). 

 

          (5.1) 

 

Where f is the flapping frequency, A is the flapping amplitude in meters, and vf is the 

forward velocity in m/s.  It was found that a Strouhal number between 0.2 and 0.4 

provided the most efficient flight for animals in nature [48].  The first design of Robo 

Raven was slightly under this metric.  By increasing the Strouhal number, more 

efficient flight can be achieved.  However, the servo motors used to actuate the wings 

constrained the available power to drive the wings. Increasing the size and mass of 

wings will cause the flapping amplitude to decrease for a given motor, as well as the 
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move the motor operation point to the low efficiency regime. Smaller amplitudes for 

flapping are detrimental to thrust production, since thrust relies on the volume of air 

that can be moved by the wings in the direction opposite to the forward velocity. In 

turn the velocity of any point on the wing moving through the air is a major factor in 

thrust production.  The equation for the magnitude of the velocity profile, v, of the 

rotating wing is: 

 

       (5.2) 

 

Where f is the flapping frequency, r is the distance any given point on the wing from 

the axis of rotation, and 𝜃 is the angle of the wing during the flapping cycle.  This 

equation was adapted from the angular velocity of the wing and described in terms 

that can be used in predictive models.  The velocity is limited by the motor torque 

motor.  The power effects for the drag of the wing through air and against gravity 

were adapted from Wu et al. [28] and can be calculated as follows: 

 

        (5.3) 

 

Where CD is the drag coefficient of the wing, ρ is air density, A is the wing area, m is 

the mass of the wing, cg is the center of gravity for the wing measured from the motor 

that actuates the wing, and ω is the angular velocity of the wing.  However, power 

effects are expected to change under different operating conditions and for different 

wing designs. As described in previous findings [38], they can be easily transformed 

when the axis of rotation is reoriented to the angle of attack during flight. Therefore, 

the power effects can be accounted for when the velocity, mass of the wing, center of 

gravity, and flapping angle change for each wing design.   
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 Our previous studies on compliant wing structures have shown that there is a 

direct correlation between spar deformations and thrust [25]. In these studies, 

analytical models of the wing shape and aerodynamic forces generated (FL and FT) 

due to drag during flapping have been employed and adapted from previous work, 

and then were modified to include aerodynamic lift as follows [26]: 

 

        (5.4) 

 

        (5.5) 

 

where CL is the coefficient of lift, S is the planform area of the wing, and vf is the 

forward velocity of the platform. These equations describe the forces generated when 

the axis of rotation is in the direction of thrust due to the drag of the wing as it rotates, 

along with the lift generated as it is dragged forward through the air during flight. 

This model produced good correlation with observed trends in lift and thrust, which 

conformed to assumed characteristics of the wings generating these loads. Therefore, 

these models can be used to predict the changes in lift and thrust production for each 

wing design due to the integration of solar cells.   

 In addition, empirical terms have been employed for the thrust to account for 

the compliance of the wing while the wing captures air during its deformed state and 

pushes air towards the rear of the vehicle at the apex and nadir of the flapping cycle, 

known as the “blowback effect”, as follows [38]: 

 

       (5.6) 

 

                          (5.7) 
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where  is the change in total drag force that is decomposed into corresponding 

contributions to lift and thrust as given in Equations (5.4) and (5.5) based on the angle 

of attack, k is an empirical constant of proportionality previously determined to be 

0.2, f is the flapping frequency, θ is the angle of the wing during the flapping cycle, 

Df is the level of the drag force above the point at which the deformation transitions 

from global to local during blowback, c is the global stiffness of the wing, δ is the 

displacement of the mid-chord of the semi-span of the wing if it were infinitely rigid, 

and vo is the corresponding rigid wing velocity. It is important to note that the 

contribution from   to thrust and lift only occurs when the wing is near apex or 

nadir [25] and corrects for the duty cycle on force generation for the platform.  

5.2.3 Wing Testing 

 
 Each wing was tested using a force measurement system similar to the one 

introduced in the previous chapter to determine the differences in force production. 

Using the same 6 degree-of-freedom (DOF) load transducer, the relevant lift and 

thrust forces associated with flight were measured simultaneously.  Changes to the 

previous test stand were made to measure the lift and residual thrust generated by the 

vehicle.  This test stand is set higher to compensate for the larger wings tested.  The 

Delrin platform was also switched for a wooden structure to further eliminate 

vibrational effects.  The test stand allows the vehicle to be pitched to a 20° incline to 

replicate flight conditions.  The entire test stand is placed at the end of a wind tunnel 

to measure aerodynamic lift and residual thrust under actual flight conditions.  The 

wind tunnel was set up to replicate the flight conditions of Robo Raven and its 
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inflight Reynolds number of 120,000.  The test stand and its components can be seen 

holding the FWAV in Figure 5.4. 

 
Figure 5.4: Test stand with residual thrust and lift directions identified. The ATI 

Mini40 6 DOF load cell is capable of measuring up to 40 N of force with a resolution 

of 0.01 N in the thrust direction and 120 N of force with a resolution of 0.02 N in the 

lift direction 

 

 In addition to measuring the aerodynamic forces generated by the wing during 

flapping, the test stand is also capable of measuring the position of the wings using an 

optical encoder to characterize the flapping range.  All of the signals are 

simultaneously collected using a National Instruments NI DAQ-9188 data acquisition 

module.  The raw data is sent to a LabVIEW VI that converts the raw signal to the 

actual loads being measured, and then the final loads are saved to an Excel template. 

 To effectively characterize the change in performance between the wing 

designs, tests were conducted over a range of frequencies with no tail attached.  

Larger wings were expected to perform better while flapping slower than the original 

wings, which flapped at 4 Hz.  Therefore, each wing design was tested at 3, 3.25, 3.5, 

3.75, and 4 Hz.  The frequencies were measured in real time using the encoder on the 
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test stand and the LabVIEW VI software.  The frequency was adjusted manually 

using a remote control until the desired frequency was achieved.  A minimum of 3 Hz 

was required to maintain flight. A significant drop in flapping amplitude, and 

subsequent lift and thrust force generation, was observed beyond 4 Hz.  To ensure the 

wings were operating at their peak performance, the FWAV was powered by a 

constant voltage power supply.  The load cell measurements were then compared 

with model predications. 

 The load cell results from testing Robo Raven in a wind tunnel at speeds of 6 

m/s were found to be representative of force production during actual flight after 

using a correction factor related to the difference in the actual flight conditions [47].  

Integrating solar cells into Wing AS added 51.8 g, compared to its counterpart 

without solar cells (Wing A). The previously reported payload for Wing A was 46.8 g 

[42]. Therefore, the only way for Wing AS to maintain flight is if it could produce 

higher lift forces than Wing A.  Wing BS weighed 49.2 g more than Wing B. Wing B 

had a previously reported payload of 76.6 g [42]. Therefore, Wing BS However could 

underperform Wing B by 27.4 g, and still maintain flight.  The results from load cell 

testing are shown below and are compared to the predicted results from the wing 

models in equations (5.4) and (5.5). 
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(a) 

 
(b) 
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(c) 

Figure 5.5: Load cell results and subsequent changes in payload capacities compared 

to predicted results from models for different wing designs: Top) Residual Thrust, 

Middle) Aerodynamic Lift, Bottom) Difference in Payload. Mass of each single wing: 

Wing A = 19.3g, Wing AS = 45.2g, Wing B = 25.4g, Wing BS = 50.0g 

 

 As the flapping frequency is increased from 3 to 4 Hz, the thrust decreased for 

each wing design. Wings with solar cells produced the least amount of thrust, 

however Wing BS produced the least amount of thrust where its non-solar powered 

counterpart, Wing B, produced the most amount of thrust.  For each frequency that 

was tested, Wing A produced the least amount of lift, Wing AS the second least, 

Wing B the second most, and Wing BS produced the most amount of lift.  The largest 

lift forces were observed at 3.5 Hz. 

  As previously noted, the weight of solar cells integrated into Wing A was 

beyond the inherent payload capacity of the wing design, so the increase in lift was 
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barely sufficient to achieve flight, as seen in Figure  5.5.  On the other hand, the 

weight of solar cells added to Wing B was less than the inherent payload capacity of 

the wing design, and with the measured increase in lift and thrust, a total of 48.1 g of 

additional payload capacity was achieved by integrating solar cells into the Wing B 

design at 3.5 Hz.  Further evidence of these effects was also observed during actual 

flight tests, where Wing AS was not able to climb and maintain flight while Wing BS 

was able to.   By observing the Strouhal number for each wing design under each 

flapping frequency, the best overall flapping performance can be predicted that is 

consistent with the lift and thrust measurements.   

Table 5.2: Strouhal number for each wing design under each flapping condition 

 
Strouhal Number 

3 Hz 3.25 Hz 3.5 Hz 3.75 Hz 4 Hz 

Wing A 0.192 0.198 0.224 0.220 0.199 

Wing AS 0.175 0.179 0.182 0.180 0.178 

Wing B 0.194 0.199 0.203 0.204 0.208 

Wing BS 0.175 0.183 0.192 0.190 0.184 

  

 The models were also able to predict how changes in the wing design affected 

the vehicle performance.  By using the actual recorded amplitude in the predictive 

models, the limitations imposed on wing performance by the available torque of the 

motors were simulated.  The trends were all consistent with the actual trends observed 

with the measured data. The changes in thrust were larger than expected.  The 

predictions for the wings with solar cells were lower than the actual measured values, 

where the predictions for the wings without solar cells were over the measured 

values. The lift model was slightly different.  Where the predictive model suggested 

that the largest lift force would be observed by Wing BS at 4 Hz, it was actually 

measured with Wing BS at 3.5 Hz.  This showed that we are reaching a torque 
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limitation in the servo motors that is accounted for by changing the flapping range 

used to calculate lift and thrust in the models.  The models were able to predict that 

integrating solar cells would ultimately decrease the thrust produced and increase the 

lift.  When solar cells are integrated into the wings, they stiffen the wings causing the 

wing deformations to decrease, subsequently reducing the amount of air the wings 

could capture and move towards the rear of the vehicle to produce thrust.  On the 

other hand the increase in inertial forces due to solar cell integration can affect the 

aerodynamic forces generated during “transitions” in the flapping direction where a 

“whipping” effect that increases the contribution to both lift and thrust forces. The 

additional weight of the wings will also increase the moment acting on the motors, 

resulting in a great power draw from the servo motors while rotating the wings at a 

given frequency. 

5.3  Increasing Solar Cell Coverage by Utilizing the Tail 

 

5.3.1  Modeling Performance Based on Design Changes to the Tail  

 
 Integration of solar cell into the tail allows for several different tail designs to 

be developed and characterized.  The solar modules chosen to be integrated to the 

body and tail are the same as those used for the wings.  Based on the 676 cm2 surface 

area of the original tail, it was possible to integrate a maximum of 4 solar cell 

modules.  To provide uniform charging of the lithium polymer battery from each 

module, an even number of solar modules had to be introduced to the system.  On the 

body there was enough space for 2-3 more solar cell modules.  With this constraint, a 

maximum of 6 additional solar cell modules could be integrated into the system, since 
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2 modules are required in series to generate the 8.4 V necessary to charge the battery 

or operate the servo motors. 

 In addition to the wings, the tail also plays a crucial role in flight performance.  

Actuated by a small servo, it allows the vehicle to turn left and right.  It also plays a 

role in flight stability, allowing the vehicle to maintain its pitch through the moment 

generated by the drag force acting on the tail.  Therefore, integration of solar cells 

into the tail is expected to affect aerodynamic performance of the FWAV.  The tail’s 

effective drag changes with geometry.  This alters the vehicle’s ability to convert 

thrust force into aerodynamic lift.  Two main design changes were identified that 

would allow for the tail to keep its current functionality while making it possible to 

integrate solar cells.  First, the surface area of the tail can be increased. This change 

will cause more drag, and is expected to reduce thrust while increasing lift.  However, 

it also allows for more solar cells to be integrated to the tail.  The second aspect is the 

geometry of the tail, which can have its spread angle altered.  This allows for 

different orientations of solar module integration to be tested, and for determining the 

effects of changing the drag moment by changing the width of the tail while 

maintaining a constant surface area. 

 In order to determine the effects of the tail design on the aerodynamic forces 

and moments generated during flight, it was necessary to develop an appropriate 

analysis.  Using previously developed models for downwash effects on lift and thrust 

[48], predictive equations can be developed to describe tail effects on aerodynamic 

forces.  Assuming that the vehicle has a constant forward velocity (i.e., steady state 

flight condition) and no pitch, the changes caused by the tail on the thrust force 
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generated by the flapping wings, FtT, can be predicted from the drag and lift acting on 

the tail surface area by partitioning it. One portion of the wing, βAT, will be in the 

blowback area of the wake of the flapping wings where the velocity increases to vf+af 

proportion to the flapping frequency f. The other portion, (1-β)AT will be near the 

centerline of the body not exposed to the blowback, and experiences the normal 

forward velocity of vf. The flapping frequency factor, a, can be determined by varying 

the flapping frequency. The portion of the tail exposed to the wake, β, is determined 

by flapping with and without air flow.  Therefore, we can calculate the total change in 

the thrust force due to the tail as follows: 

     (5.8) 

where Cd is the drag coefficient determined from conventional drag equations  for a 

plate with aspect ratio, AR, as  follows:  

    (5.9) 

where 𝜃T is the pitch of the tail on the body of the FWAV, 𝜃0 is the angle of attack at 

which the drag goes to 0, and e is the efficiency factor of the shape. Therefore, a taller 

tail will have a lower value of β, and a wider tail will have value closer to 1.  

Similarly, the contribution to the lift force from the tail, FlT, can also be derived 

similar to the drag force produced by the tail and the increase from the blowback 

effects from the wings: 

     (5.10) 

where the coefficient of lift, Cl, is given by: 

     (5.11)  
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5.3.2 Designing and Fabricating Solar Tails 

 
 To validate the effects of these design changes and the model, new tails with 

solar modules were designed and fabricated.  Tail geometries were limited by the size 

of the solar modules integrated into tail.  The new tails were designed to be as small 

as possible while still being able to integrate 3 or 4 solar modules.  The 120° design 

was the largest angle that enables 3 modules to fit inside and the 90° design was the 

smallest angle that enabled 4 modules to fit inside the tail while still having a similar 

surface area to the 120° 4 module design.  These four designs allowed us to 

characterize how tail geometry affects FWAV performance.  The design 

specifications for each new tail design can be seen in Table 5.3 and a schematic of 

each geometry is shown in Figure 5.6.   These tails were tested using the same force 

measurement system as the wings.  However, to understand the drag effects of each 

tail design, one extra set of data with the vehicle parallel to the ground was collected. 

Table 5.3: Specifications for solar cell tail designs 

Tail Design 

Specifications 

Surface 

Area 

(cm^2) 

Angle 

(degrees) 

Mass 

(grams) 

Number 

of Solar 

Cells 

Original (0) 354 120 6.2 0 

1 678 90 16.0 4 

2 546 90 13.1 3 

3 683 120 17.0 4 

4 546 120 14.0 3 
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Figure 5.6: Solar cell tail designs that were tested: a) Tail 1 b) Tail 2 c) Tail 3 d) Tail 

4 (dimensions in cm) 

 

 Each of these designs is expected to have different effects on vehicle 

performance. However the number of solar modules introduced to the FWAV system 

was constant because the voltage requirements limited the addition of solar cells to an 

even number. Thus, the new tail designs contribute up to 1.2 W of additional power, 

increasing the maximum power that can be generated to 10.8 W, or a 12.5% increase. 

5.3.3  Tail Testing 
 

 The results from wind tunnel testing gave new insights to the benefits of each 

tail design.  The lift and thrust loads produced by each tail design under the 4 

conditions were found with a wind velocity of 6 m/s, which is consistent with the 

velocity of the FWAV during flight.  By comparing the drag at 0°, thrust at 20°, lift at 

20° we can characterize the role of tail in the vehicle flight. 

 The static response of each tail is consistent with the physics of drag and the 

model.  A larger tail is expected to create a larger drag force in the wind tunnel.  That 

is evident when comparing the tails that simply differ in the amount of solar modules 

integrated.  If the geometry of the tail is the same, the tail with more solar modules 
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and a larger surface area will create more drag.  This can be observed in the drag 

results for each tail design presented in Figure 5.7.  The 120° angle spread tails 

generate more drag than their 90° spread counterparts.  Tail 1 and Tail 4 have the 

same amount of solar modules but the 120° spread tail generates more drag.  The 

same observation can be made when comparing Tails 2 and 3, but with 4 solar 

modules instead of 3.  The 90° tails have longer spars that give the vehicle a larger 

height, thus the aerodynamic forces on the taller tails create larger drag moments 

causing the spars to bend into a more aerodynamic shape.  This aerodynamic shape 

and bending means that less surface area is orthogonal to the incoming airstream, 

creating less drag for the vehicle, which is why the drag for Tail 1, the tallest tail 

design tested, is so low compared to the predicted model. 

 
Figure 5.7: Comparison of the drag from each tail design while wings are stationary 

and vehicle at a 0° angle of attack 

 

 The static response of the vehicle while completely horizontal was observed 

for each tail design and measured.  However, in actual flight the FWAV has a pitch of 
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20°, and additional drag forces are generated by the tail because of the blowback from 

the flapping wing that results in thrust.  The best way to understand these effects is to 

run the same test with the FWAV at a pitch of 20° with the wings flapping at 3.5 Hz.  

Since the wings are flapping, a net positive residual thrust force is expected to 

overcome the drag.  This residual thrust exists because the air speed of the wind 

tunnel is not high enough to equate the average thrust force generated.  The effects of 

the wings for these tests can be seen in Figure 5.8.  It is clear that 90° tails have less 

of a drag effect on the FWAV while flapping.  This is due to the tails being narrower 

and capturing less of the air generated by the flapping wings.  All of the 120° spread 

tails experience a larger drag force, thus generating a smaller thrust force.  When 

comparing just the 90° tails, the effects from surface area are intuitive.  The larger 90° 

tail (Tail 1) causes a larger drag force, thus a smaller residual thrust is observed than 

the smaller 90° tail (Tail 2).  The opposite seems to be true for the 120° tails.  The 

smaller tail (Tail 4) with a smaller surface area and fewer solar modules has the 

higher drag force than its 4 module counterpart (Tail 3).  This can even be seen with 

the original tails with no solar modules, where it generates the largest drag force.  The 

larger 120° tail is more susceptible to the air blown back by the wings flapping 

allowing the tail to bend slightly more than the smaller wing.  This more streamline 

shape causes less drag at a 20° pitch.  The model was able to take the geometry of the 

tail and predict what would happen to the thrust force for each of these changes (see 

Figure 5.8). 
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Figure 5.8: Comparison of the residual thrust from each tail design while wings are 

flapping and vehicle pitched at 20° 

 

 The thrust forces with the FWAV at a 20° pitch are clearly shown.  Given the 

position of the vehicle and that incoming air is present the thrust result make sense.  

The tail plays a major role in lift generation.  The tail of the FWAV is positioned at a 

45° incline relative to the body.  During flight, incoming air generates a moment with 

the tail that causes the FWAV to have a pitch of 20°.  Tails of different shapes, sizes, 

and design are expected to have an effect on lift generation.  The lift results, seen in 

Figure 5.9, help to further explain the effects of these different designs.  When 

comparing the tails against each other they are the complete opposite to the thrust 

results.  Excluding the original tail, the tail that provided the smallest thrust actually 

provided the most lift. Tail 3 and 4 were both 120° spread tails and generated the most 

lift.  Since these tails are wider, they are able to capture more of the air generated by 

the wings flapping.  The same effect that caused more drag and reduced thrust 

assisted in generating more lift. This is what the model predicted and this is exactly 

what was seen by the measured results. 
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Figure 5.9: Comparison of the lift from each Tail Design while wings are flapping 

and vehicle is pitched at 20 degrees. Mass of each tail: Tail 0 = 6.2g, Tail 1 = 16.0g, 

Tail 2 = 13.1g, Tail 3 = 17.0g, Tail 4 = 14.0g 

 

 Wind tunnel testing provides a comparison amongst the five tail designs. This 

new information allows improvements in actual flight performance and payload can 

be estimated.  Using the known payload with the original tail, the payload can be 

estimated for the new tail designs. These predictions can be seen in Table 5.4.   

Table 5.4: Payload calculation from total force generation 

Tail 

Design 

FWAV Mass 

(g) Including 

Battery 

Total Force 

Generated (g) 

Estimated 

Total Flight 

Weight (g) 

Estimated 

Payload (g) 

 

0 346 131 367 21 

1 364 137 373 9 

2 362 153 389 27 

3 365 153 389 25 

4 363 161 397 34 

 

 Each of the new tail designs should be capable of generating enough force for 

flight.  In fact, an increase in payload of up to 57% can be expected from all of the 

new tail designs except for 1.  Tail design 4 was found to produce the greatest energy 

increase with 120% more than the original tail design 0 that did not have solar cells. 
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These estimations were confirmed during actual flight tests, where it was observed 

that the vehicle was able to fly with each of the tail designs.  From load cell tests, 

integrating Tail 4 for our design would produce the best results and was the tail 

chosen for integration. This version of Robo Raven III with the same 22 solar module 

wings as Robo Raven IIIv2 and solar cells integrated into the tail and body of the 

vehicle was named Robo Raven IIIv3. 

5.4 Increasing Solar Cell Coverage by Utilizing Body 

 
 Integration of solar cells into both the wings and tail are expected to have 

significant effects on the flight performance of the FWAV. However, integrating 

solar cells into the body should have a minimal effect on vehicle performance. The 

integration of solar cells into the body should simply add mass to the system, which 

takes away from the payload capacity, and does not affect the force generation or 

aerodynamics of the wing and tail structures.  To integrate solar modules into the 

body, it was necessary to design two mounts that allow solar modules to attach to the 

carbon skeleton of the FWAV’s body, but allow as much area as possible to orient 

towards the sun. 

 Tail mount that houses the tail servo was re-designed to provide a surface for 

the solar cells to be attached to the top of the vehicle.  Another mount was designed 

as a simple clip with the same surface to hold the other end of the solar cell panel. 

Depending on the configuration of solar modules used for the tail (3 or 4), 2 or 3 

modules were used to create the solar panel to be integrated with the two body 

mounts. The new mounts for the solar cells added 4.4 grams to the vehicle.  The two 

module configuration adds a total of 7.8 grams to the FWAV and the three module 
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configuration adds 9.5 grams to the system (1 solar cell module = 1.7g). The 

integration of the 6 new solar modules to the body and tail of Robo Raven IIIv3 can 

be seen in Figure 5.10.   

 
Figure 5.10: Two different design configuration for integrating 6 additional solar cell 

modules: (Top) 2 modules in body, 4 modules in tail; (Bottom) 3 modules in body, 3 

modules in tail 

 

5.5 Results and Discussion 

 

5.5.1 Flight Tests 
 

 The fabricated wings and tails were all flight tested to validate the results from 

load cell testing.  Each wing design that did not have solar cells was tested first to 

determine their fundamental flight capability.  The best metrics to observe the best 

flight were the vehicle’s climb rate and total flight times.  A design with a fast climb 

rate shows good aerodynamic force production and affords a higher payload capacity.   
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Consistent with load cell results, it was determined that Wing B flew the best.  It 

clearly had a faster climb rate than Wing A.  However, the first new phenomenon 

observed was that the larger wings seemed to operate better while flapping slightly 

slower than the smaller wings where they could achieve the desired flapping range 

with the torque-limited servo motors. 

  Next, the wing designs with solar cell were tested. It was determined that 

Wing AS was not able to maintain flight due to an inability to achieve sufficient lift to 

maintain an adequate climb rate.  This flight behavior was consistent with the results 

from load cell testing, because Wing AS produced only slightly more lift than Wing 

A, which was inadequate to carry the additional 51.8 g from the solar cells.  However, 

Wing BS were able to produce enough extra lift and thrust to maintain flight.  The 

total payload for these wings must have only been slightly greater than the 51.8 g of 

the solar cells, because there was a notable decrease in overall vehicle performance.   

 Flight testing the new tail designs with the Robo Raven III v3 wings was 

consistent with the results observed from load cell testing.  First, the FWAV was able 

to fly with each new tail design. However, the worst flight was with Tail 1.  It simply 

did not climb like the others.  It had a notably slower climb rate.  Due to changes in 

wind and condition variability, it was not possible to observe many more differences 

in performance between the tail designs.  However, from our load cell results Tail 4 

was chosen to be the best design.  Using Wing BS and Tail 4 designs, Robo Raven 

IIIv4 was built and flown, and is shown in Figure 5.11. 
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Figure 5.11: Robo Raven IIIv4 

 

 This final Robo Raven IIIv4 design was thoroughly flight tested to determine 

its flight characteristics.  With the improvements that went into this design, a total of 

36 solar modules were successfully integrated into the wings, tail, and body of this 

FWAV.  This final design was able to maintain flight.  The FWAV weighed 361.4 

grams without the battery.  With the battery, the vehicle weighed 388 grams.  The 

vehicle was able to carry an extra 6 grams before it would no longer climb.  The flight 

characteristics of Robo Raven III v4 are shown in Table 5.5 below and compared to 

the original Robo Raven design.   
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Table 5.5: Flight Characteristics of Robo Raven and Robo Raven IIIv4 

Flight 

Characteristics 
Robo 

Raven [26] 

Robo Raven 

IIIv4 

Vehicle Mass 263.3 g 361.4 g 

Forward Velocity 7 m/s 5.6 m/s 

Climb Rate 0.53 m/s 0.23 m/s 

Turning Radius 6.1 m 5.5 m 

Payload (without 

batteries) 
54 g 32.6 g 

 

 As seen in Table 5.6, the FWAV with 36 solar modules produced 10.8 W. 

However, since the wings were larger, they required more current from the battery.  

Where the previous version took 4.5 minutes to deplete the battery, the larger wings 

took 3 minutes and 45 seconds due to the aforementioned increase in torque required 

to drive the heavier wings.  The 36 module FWAV flapped for 4 minutes 35 seconds. 

This 50 second increase demonstrated a 22.2% increase in total flight time, which is a 

46% increase over the previous design.  It is important to note that these 

measurements were conducted at the highest flapping frequency of 4 Hz (due to 

limitations of the remote control used outdoors), and that lowering the flapping 

frequency decreases power consumption and increases flight time while also 

generating optimal aerodynamic force at a frequency of 3.5 Hz as previously 

reported. 
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Table 5.6: Flight Time Results for Different Numbers of Solar Cell Modules 

Robo Raven 

Version 

Number of 

Solar Cell  

Modules 

Maximum 

Power 

Generated (W) 

Increase in 

Flight 

Time(sec) 

% increase 

Robo Raven I 0 0 0 0 

Robo Raven III v2 22 6.6 38 15.2 

Robo Raven III v4 36 10.8 50 22.2 

 

5.5.2  Battery Recharge Tests 
 

 While wind tunnel testing provided new insight into the change in flight 

performance for different design changes, the electrical benefits of adding solar cells 

to the FWAV needed to be characterized as well.  The solar modules were expected 

to extend the flight time of the FWAV and decrease the recharge time for the battery.  

Outdoor tests were conducted to determine the effects that the 36 modules will have 

on harvesting solar energy.   

 To measure flight endurance, the FWAV was flapped outdoors until the 

battery was completely depleted.  The FWAV was held in place with the normal 

surface of the wings pointed directly at the sun before the test began.  This ensured 

that the photovoltaic cells were exposed to the maximum amount of sunlight for 

maximum power production.  Upon plugging in the battery, the FWAV started 

flapping and a timer was started.  The timer was stopped as soon as the FWAV 

stopped flapping due to the lack of power.  These times were recorded and compared.  

To measure the recharging time of the FWAV a recharging circuit was built to safely 

recharge the battery to full charge.  A zener diode with a breakdown voltage of 4.3 V 

was used as a voltage regulator. This value is necessary as the charging voltage of the 

Lithium Polymer battery is limited to 4.2 V per cell. The resistor in the circuit is 
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placed to dissipate power so a 1.3 W zener diode can be used instead of a higher 

wattage.  This circuit is designed under the assumption that the solar panel acts 

primarily as a current source at constant voltage. A schematic of the recharging 

circuit used to test the recharging capabilities of the 36 module design is shown in 

Figure 5.12. 

 
Figure 5.12: Recharging circuit that regulates voltage going to the battery for safe 

recharging where 4.2V are supplied to the battery at the blue node and 8.4V are 

supplied at the red node 

 

 The 2 cell Lithium Polymer battery uses a three node plug for safe charging.  

However, the consequence of charging a single battery using this recharge circuit is to 

reduce the effective charging current from 600 mA to only 300 mA. Furthermore, the 

maximum power output is also not maintained since the voltage is decreased to a 

limit of 4.2 V. This obviates the advantage of using a Maximum Power Point 

Tracking circuit. However, commercially available MPPTs have a negative effect on 

FWAV performance by increasing weight beyond the payload capability. In this 

circuit, the battery is charged only when the D2 diode has a minimum of 4.2 V across 

it and D1 has a minimum of 8.4 V. Current flows from high voltage to low voltage, so 
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the solar cells must always be higher than the voltage of the battery.  The diodes are 

capable of reaching the minimum voltage even on a party cloudy day. It is expected 

that on an overcast day the diodes would not give enough solar power to reach the 

required voltage. Testing was conducted with a measured solar flux of 102 mW/cm2 

(i.e., full sun) in order to prove the solar cells were capable of charging the battery. 

 
Figure 5.13. Comparison of recharging results 

 

 The total recharging time of the 22 module FWAV was previously found to be 

73 minutes.  The new 36 module FWAV was able to recharge a depleted battery in 44 

minutes.  More solar cells allow for more current to be transferred to the batteries.  

With a power increase of 4.2 W, or 64% more power, we were able to recharge faster 

than a typical LiPo battery charger (Figure 5.13).   

5.6  Conclusions 

 
 This chapter investigates the tradeoff in flight performance when changing the 

design of wings and tail in FWAVs to integrate solar cells for harvesting energy and 

enhancing flight endurance. New wings were designed to successfully fly with the 
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amount of solar cells integrated.  To utilize all the surface area available, solar cells 

were integrated to the body and tail of the vehicle.  Even though the effects of 

integrating the solar cells to the body were negligible, the effects of integrating solar 

cells to the tail and wings were significant.  

 Predictive models were implemented and shown to predict how changes to the 

wings and tail can affect performance.  These models can be used for other FWAVs 

that are forward flying and rely on a deforming membrane to generate thrust. Using 

larger wings allows greater forces to be generated.  However, integrating solar cells 

increases the inertial effects of the wings and stiffens the wings. Therefore, 

appropriate design of wings to achieve the necessary deformations during flapping 

was determined to be key to producing adequate thrust and lift for flight performance 

when solar cells are integrated into the wings.  Thus, a properly designed wing that is 

larger and heavier due to solar cell integration was shown to achieve better flight 

performance than one that is smaller and lighter, while also providing the wings with 

the ability to harvest solar energy. 

 This study also investigated improving performance through altering the 

FWAV tail design and integrating solar cells into them.  It was determined that the 

spread angle between the spars had the greatest effect on aerodynamic forces, where a 

tail spread of 120° will produce more lift and less thrust than a tail with a 90° spread 

of the same surface area due to these tails capturing more of the air pushed back by 

the flapping wings.  Based on how a FWAV is performing, the tail can be altered to 

accommodate the necessary tradeoff in lift and thrust that is characteristic of the tail 

design as follows:  (a) a wider tail can be used to generate more lift from faster 



 

 119 

 

moving air associated with the blowback effect from the wings, while (b) a narrower 

tail can be used to generate more thrust by avoiding this effect. 

 The resulting Robo Raven IIIv4 design produced 10.8W of the 37W needed 

for continuous flight during sunlight.  The flexible Amorphous Silicon cells used are 

only 5-6% efficient. Flexible  Gallium Arsenide cells that are 28-30% efficient would 

produce a total of 54W using the same vehicle design while only adding 5g to the 

total vehicle weight.  Realizing this design with GaAs cells would allow us to achieve 

flight using only solar cells during sunlight.   

 Lessons learned from this study will be applicable to the broad FWAV 

community. Wing deformation significantly affects the production of aerodynamic 

forces.  Integration of solar cells should be done to minimize the negative impact on 

the wing deformation during the flapping cycle.  Our studies show that it is better to 

integrate solar cells towards the front spar of the wing. Bigger wings help in 

harvesting more energy, but they also need more power to flap at higher frequencies, 

as evidenced by a significant drop in flapping amplitude and subsequent lift and 

thrust generation.  The approach described in this chapter can be used to find the right 

size of solar integrated wings for a given actuator. 
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Chapter 6:   Designing a Flapping Wing Air Vehicle Capable of 

    Continuous Solar Flight by Integrating High  

    Efficiency Photovoltaic Solar Cells 

 
 This chapter is completed work that has yet to be submitted.  Up to this point, 

flexible solar cells have been integrated into the wings, body, and tail of our flapping 

wing air vehicle.  The solar cells have allowed the vehicle to stay in flight for longer 

periods of time and allows for the battery to recharge without using a battery charger.  

However, the technology used in the previous versions of Robo Raven III use 

amorphous silicon solar cells that have an efficiency of 6%.  Using flexible high 

efficiency solar cells, creating a FWAV that stays in flight using only solar power is 

possible.  This paper investigates more efficient photovoltaic technologies and 

establishes GaAs photovoltaic solar cells as the best option going forward. A model 

that predicts the mechanical performance due to a change in stiffness and material 

used in the wings was developed.  A new wing design using a material similar to the 

GaAs commercially available as developed, tested, and flown.  The new wing design 

was lighter and more deformable than the previous version allowing for better 

performance.  By actually integrating the GaAs solar cells in place of the mock 

material, the first FWAV capable of flying continuously in sunlight can be developed. 

6.1 Introduction 

 
 A major drawback of flapping winged flight is the continuous need of power 

to keep the vehicle flapping. Typically payload is extremely limited since flapping 

winged flight is challenging to achieve and the vehicle must be as light as possible to 

maintain flight. With a limited payload, the battery that is used to power the vehicle is 
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typically small.  This small battery can only store so much energy which usually 

results in short flight times.  Shorter flights restrict the UAVs overall mission 

capabilities.  If the vehicle could harvest energy while in flight, the UAV would have 

longer flight times.  Harvesting enough energy would allow the UAV to stay in flight 

indefinitely.     

 The previous versions of Robo Raven III demonstrate the development of 

solar cell integration into our Robo Raven vehicle. Robo Raven III v1 was an 

investigative study to see if solar cell integration was possible.  By achieving flight 

and increasing flight time, we knew that solar cell integration was a viable way to 

increase flight time.  To investigate the limitations of solar cell integration, the solar 

cell wings were redesigned for Robo Raven III v2.  This design consisted of 11 solar 

modules integrated to each wing.  This was the maximum amount of solar cells that 

could be integrated into the original Robo Raven wings and still maintain flight.  

Robo Raven III v3 consisted of the same wings developed for Robo Raven III v2 

however, with solar cells integrated into the body and tail of the vehicle.  This 

allowed 6 more solar cells to be integrated into the vehicle.  This also demonstrated 

just how important the tail of the FWAV is for generating lift. The different tail 

designs tested gave new insight to how the tail translates the thrust generated by the 

wings into aerodynamic lift. 
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Figure 6.1: Previous Robo Raven & Robo Raven III design: Top left: Robo Raven I, 

Top right: Robo Raven III v1, Bottom left: Robo Raven III v2, Bottom right: Robo 

Raven III v3 

 

 With Robo Raven III v3, the total available surface area of the original Robo 

Raven design was completely saturated with A-Si solar cells.  However, with 28 A-Si 

solar modules, the FWAV was harvesting a maximum of 8.4W while it was 

consuming 37W. For completely solar powered flight the FWAV would need to 

harvest 37 or more Watts.  Using the same solar cell technology, the best option was 

to increase the available surface area for solar cell integration.  By designing larger 

wings for the FWAV we can increase the surface area while also generating more 

thrust and lift.  A previous study [42] observed the effects of using larger wings for 

Robo Raven.  It was found that larger wings can actually generate larger forces while 

flapping at a slower rate than the current design. However, going too large can be 

detrimental since the flapping is limited to the torque the motors can output.  Another 

study was done where solar cells were integrated to larger wings for a Robo Raven III 

design that would carry the maximum amount of solar cells [51].  The largest wings 
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that allowed the most amount of solar cells to be integrated were found.  These wings 

had a wingspan that was 66% larger than the original Robo Raven wings.  This 

allowed a total of 30 A-Si solar modules to be integrated into the wings.  With the 

additional solar cells on the body and tail of the FWAV, a total of 36 solar modules 

made up Robo Raven III v4.  Producing a total of 10.8W, we are producing 29% of 

the energy we need for completely solar flight.  At this point, the limits of A-Si 

technology has been reached.  New more efficient materials must be investigated to 

help reach the goal of completely solar flight.  However, integrating different 

materials, instead of the A-Si solar cells that are currently integrated, is expected to 

alter the way the wings deform, thus changing the performance of the FWAV.  A new 

investigation must be done where different solar cell technologies are tested and their 

effects on wing performance are estimated, measured, understood, and modeled. 

6.2 Solar Cell Technologies 

 

6.2.1  Amorphous Silicon Solar Cells 

 
 For photovoltaic solar cells to be a viable method for energy harvesting, thin 

flexible solar cells must be used for the wings to deform correctly and generate the 

lift and thrust necessary for flight.  Currently Amorphous Silicon (A-Si) solar cells 

are being integrated into the wings.  The specific solar modules chosen for integration 

were provided by Powerfilm Inc. They provide several off-the-shelf models to choose 

from.  To steadily increase the number of modules integrated into the body while still 

providing an appropriate voltage, model MPT6-75 was chosen.  This module had an 

operating voltage of 6V and an operating current of 50mA.  Each module can cover 

an area of 72.5mm by 111mm.  The A-Si modules have a protective encapsulation to 
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protect the surface of the solar cells.  With the encapsulation each module weighed 

2.0 grams and had a thickness of 0.18mm.  However, the encapsulation made the cells 

too stiff when compared to the Mylar membrane of the wings.  By removing the 

encapsulation, the stiffness of the solar cells was reduced as well as shedding a 

considerable amount of the module’s total weight.  Each module now weighed 1.6g 

while the thickness was reduced to 0.14mm.  This was a 20% drop in mass and 22.2% 

drop in thickness.  These solar cells have proven to be a material that can be 

integrated into the wings of a FWAV.  However, producing a FWAV that would fly 

continuously in sunlight would be impossible with the low amount of electrical 

energy produced with these cells.  These A-Si cells were found to be 6% efficient 

under the best conditions.  While the MPT6-75 modules were the perfect candidate 

for exploratory research, their lackluster electrical performance influenced further 

investigations into more efficient photovoltaic technology.   

 
Figure 6.2: Powerfilm MPT6-75 A-Si Solar Module 
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6.2.2  Semi-flexible Polycrystalline Solar Cells 

 
 The next photovoltaic solar cells considered for integration into FWAVs were 

polycrystalline solar cells.  These semi flexible solar cells were 17.6% efficient.  The 

solar cells are silicon based and the silicon material is melted then poured into a mold.  

As the silicon cools, it crystalizes in an imperfect manner.  The grains of the crystals 

can actually be observed on the surface of the solar cells.  On the back side of the 

cells is a thin piece of aluminum that serves to electrically connect each of the cells 

together. These cells are not as efficient as monocrystalline solar cells, but are more 

flexible.  These solar cells came in various sizes but the cells we observed were 8cm 

x 15.5cm and weighed 6g.  If the A-Si solar cells were simply swapped out for the 

polycrystalline solar cells, the FWAV would be harvesting 31.7 Watts of the 37 

needed for continuous solar flight.  However, these solar cell feel much stiffer than 

the A-Si cells and proved very difficult to integrate.  When these cells were integrated 

into the wings, they shattered during the wing fabrication process. By being very 

careful and gentle during the wing fabrication process, we were able to complete a set 

of wings with these solar cells. However, when it came to flapping these wings, the 

cells shattered while flapping. 
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Figure 6.3: Polycrystalline Solar Cell 

 

6.2.3  Gallium Arsenide Solar Cells 

 
 The final solar cell technology that was considered for integration were 

gallium arsenide (GaAs) photovoltaic cells.  The manufacturer use a metalorganic 

chemical vapor deposition process to grow a thin layer of GaAs,  then remove this 

thin layer via an epitaxial lift-off (ELO) process which leaves a thin, flexible, and 

lightweight solar cell. These thin film flexible solar cells can be up to 30.8% efficient 

if they are dual junction, however the single junction cell observed was 24% efficient. 

The flexibility of these cells are more comparable to the flexibility of the A-Si cells.  

Comparing the efficiencies of these two cells, completely solar flight could not only 

be achieved by these solar cells, but with less surface area than the total surface area 

of solar cells in the current Robo Raven III v4 design.   A sample GaAs module 

produced can be seen below.  However, custom GaAs cells can be ordered for 

specific voltages and shapes. 
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Figure 6.4: Sample GaAs photovoltaic solar module 

 Through previous investigations, the effects of integrating the A-Si cells is 

well known; however, integrating other solar cell materials will be slightly different 

due to their difference in mass and stiffness.  The physical properties of these 

materials must be compared so that the change in performance can be predicted.  A 

stiffness coefficient must be found for each of the materials to understand how much 

more or less the wings will deform while flapping.  The density of the cells must also 

be found to determine the change in weight of the vehicle and wings.  To determine 

the stiffness coefficient, the elastic modulus of each material was found using a micro 

tensile testing machine.  A sample was cut from all of the solar cell materials as well 

as the Mylar material that makes up the membrane of the Robo Raven’s wings.  The 

surface of the sample was painted in a speckle pattern.  This machine applied a 

continuous tensile load on the sample while a 2D Digital Image Correlation system 

measure the strain on the speckled surface of the sample.  This enables us to measure 
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the force and strain on sample.  Using the cross-sectional area of each sample, the 

Elastic modulus was calculated by observing the elastic region of the results.   

 The thickness of all of these materials will play a major role in stiffness.  

However, the Mylar was the only material that was isotropic.  The other materials 

consisted of layered materials and the weakest layer of that material would cause the 

failure.  Below are the physical characteristics of the different materials that were 

investigated. 

Table 6.1: Comparison of photovoltaic materials 

Material Thicknes

s 

(mm) 

Elastic 

Modulus 

(GPa) 

Stiffness 

Coefficien

t 

 

Volumetric 

Density 

(kg/m3) 

Density 

by 

Area 

(kg/m2) 

Mylar 0.025 3.2 0.08 1390 0.0353 

A-Si Cell 0.14 1.7 0.24 1420 0.199 

Polycrystalline 

Cell 

0.23 7.1 1.63 2110 0.486 

GaAs Cell 0.14 1.5 0.21 1580 0.221 

 

 Analyzing these results, it becomes quite clear which high efficiency solar 

technology would be the best fit for the next Robo Raven III design.  The 

polycrystalline cells were 6.8 times stiffer than the A-Si cells and 2.4 times heavier 

per unit surface area.  The integration of the polycrystalline solar cells would clearly 

have a negative effect on performance when compared to the performance of Robo 

Raven III v4.  The large increase in mass will make it more difficult for the motors to 

actuate the wings.  The large increase in stiffness will not allow the wings to deform 

when the deformation is necessary to produce the thrust and lift forces to maintain 

flight.  The only way to integrate polycrystalline cells into the FWAV is to limit the 

integration to just the body and tail of the vehicle. 
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6.3  A-Si and Polycrystalline Powered Vehicle 

 
 To determine the benefits that using polycrystalline photovoltaic cells can 

potentially bring, a FWAV was designed that incorporated them into the body and tail 

of Robo Raven III.  As previously stated, Polycrystalline cells were initially 

integrated into the wing; however, through the fabrication process these cells began 

cracking and falling apart.  Even when the wings were fabricated without breaking 

the solar cells, upon initial testing, the forced deformation of the wing induced by 

flapping caused the cells to crack and eventually completely fracture.  Integrating 

these cells into the wings was simply not an option.   

 To stay consistent with the aerodynamic performance of the previous Robo 

Raven III v4 vehicle [51], the same wing geometry was chosen for the new 

polycrystalline tail.  To sufficiently cover a similar area, two different sized 

polycrystalline modules were integrated into the tail. The first were 2 large 15x8cm 

modules that can each generate 1.9W. The second were 8 small 5.8x1.9cm modules 

that each generated 0.14W.  One additional large polycrystalline module was 

integrated to the body of the FWAV.  These polycrystalline solar cells alone generate 

6.82W of power.  Including the 30 A-Si modules already integrated into the wings, 

this platform generates 15.82W.  The new tail design can be seen in Figure 6.5. 
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Figure 6.5: Polycrystalline tail and body integrated to Robo Raven III v4 

 

 Outdoor testing was performed to understand how the increase in power 

translates to an increase in flight time.  First, the FWAV was held in place and 

oriented so that the solar cells produced the most power.  The vehicle was first 

flapped with just the battery integrated to determine the flight time without the solar 

cells.  Then, the vehicle was flapped with the solar cells to determine the benefit the 

solar cells provide.  Without the solar cells, the vehicle flapped for 3 minutes and 35 

seconds.  With the solar cells the vehicle flapped for 4 minutes 45 seconds.  This was 

10 seconds more than the 36 A-Si FWAV.  The previous design demonstrated a 22% 

increase in power for the vehicle where the new design that includes the 

polycrystalline cells had a 33% increase in power.  This vehicle generated the most 

power out of any Robo Raven III design manufactured and can be seen in Figure 6.6. 
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Figure 6.6: Robo Raven with polycrystalline solar cells in the tail and body, and 

Powerfilm flexible solar cells in the wings. 

 

 The benefits in power generation are clearly there; however, the 

polycrystalline cells added a substantial amount of weight compared to the previous 

design with the A-Si cells.  Robo Raven III v4 only had a payload of 32.6g [51].  

When the battery is considered, this is only an extra 6g of payload capacity.  The new 

tail and body weighed 11.1g more than the previous design.  This increase in mass 

proved to be detrimental during actual flight tests. The FWAV could not maintain 

flight simply due to the increase in mass.  From this it was concluded that the benefits 

provided by the polycrystalline cells did not outweigh their negative effects on flight. 

 The best path forward is to use the GaAs solar cells.  The GaAs cells are less 

stiff than the A-Si cells.  This means that the integration of these solar cells is 

expected to be similar to the integration of the solar cells used for Robo Raven III v4.  

The GaAs cells are slightly denser than the A-Si cells but they are so much more 
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efficient that they will not take the same surface area to achieve completely solar 

flight.   

6.4  Modeling of the Effects of Wing Characteristics on Flapping Power, 

Thrust, and  Lift 
 

 Integrating different materials into the wing structure changes the 

aerodynamic forces the wing can produce.  It changes how the wings deform and 

therefore how much air the wings can interact with during the flapping cycle.  For this 

vehicle, the design of the flapping wing plays a major role in force production.  The 

planform area of the wing, weight of the wing, and stiffness of the wing are expected 

to alter the performance of the FWAV.  The weight of the wing will alter the flapping 

amplitude and frequency of the wing.  Applying a larger load makes it more difficult 

for the motors to actuate the wings.  This result in a slower flapping rate with a 

smaller amplitude.  The velocity profile of the flapping wing, vo, is given by the 

following equation [51]. 

      (6.1) 

Where f is the flapping frequency, r is the distance any given point on the wing from 

the axis of rotation, and 𝜃 is the angle of the wing during the flapping cycle. This 

equation was adapted from the angular velocity of the wing and described in terms 

that can be used in predictive models.  The velocity is limited by the motor torque 

motor. 

 The power effects for the drag of the wing flapping through air and against 

gravity were adapted from Wu et al. [45] and can be calculated as follows: 

       (6.2) 
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Where CD is the drag coefficient of the wing, ρ is air density, A is the wing area, m is 

the mass of the wing, cg is the center of gravity for the wing measured from the motor 

that actuates the wing, and w is the angular velocity of the wing.  However, power 

effects are expected to change under different operating conditions and for different 

wing designs. As described in previous findings [38], they can be easily transformed 

when the axis of rotation is reoriented to the angle of attack during flight. Therefore, 

the power effects can be accounted for when the velocity, mass of the wing, center of 

gravity, and flapping angle change for each wing design. 

 Our previous studies on compliant wing structures have shown that there is a 

direct correlation between spar deformations and thrust [25]. In these studies, 

analytical models of the wing shape and aerodynamic forces generated (FL and FT) 

due to drag during flapping have been employed and adapted from previous work, 

and then were modified to include aerodynamic lift as follows [38]: 

      (6.3) 

       (6.4) 

where CL is the coefficient of lift, S is the planform area of the wing, 𝜃 is the angle of 

attack, and vf is the forward velocity of the platform. These equations describe the 

forces generated when the axis of rotation is in the direction of thrust due to the drag 

of the wing as it rotates, along with the lift generated as it is dragged forward through 

the air during flight. This model produced good correlation with observed trends in 

lift and thrust, which conformed to assumed characteristics of the wings generating 

these loads. Therefore, these models can be used to predict the changes in lift and 

thrust production for each wing design due to the integration of solar cells. 
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 In addition, empirical terms have been employed for the thrust to account for 

the compliance of the wing while the wing captures air during its deformed state and 

pushes air towards the rear of the vehicle at the apex and nadir of the flapping cycle, 

known as the “blowback effect”, as follows [38]: 

       (6.5) 

                    (6.6) 

where  is the change in total drag force that is decomposed into corresponding 

contributions to lift and thrust as given in equations (4) and (5) based on the angle of 

attack, k is an empirical constant of proportionality previously determined to be 0.2, f 

is the flapping frequency, θ is the angle of the wing during the flapping cycle, Df is 

the level of the drag force above the point at which the deformation transitions from 

global to local during blowback, c is the global stiffness of the wing, δ is the 

displacement of the mid-chord of the semi-span of the wing if it were infinitely rigid, 

and vo is the corresponding rigid wing velocity. It is important to note that the 

contribution from   to thrust and lift only occurs when the wing is near apex or 

nadir [25]. 

The global stiffness of the wing will change with different solar cell materials 

and allows for the change in lift and thrust to be predicted.  Based off Equation (6.6), 

increasing the global stiffness will decrease the flapping velocity of the wing. This 

decrease in velocity decreases the aerodynamic forces given in Equations (6.3) and 

(6.4).  The global stiffness can be found using the following equation that follows the 

linear rule of mixtures: 

     (6.7) 



 

 135 

 

where km and ks are the stiffness coefficients of the Mylar membrane and solar cell 

material respectfully and Am and As are the percent area of the wing taken up by the 

mylar and solar cell material.  Using this global wing stiffness in the velocity 

equation (6.6) allows the lift and thrust forces to be predicted for different wing 

designs. 

6.5  Wing Design for Integrated GaAs Solar Cells 

 
 Integrating the GaAs solar cells into wings follows the same process as the A-

Si cells except slightly easier.  The manufacturer can develop custom photovoltaic 

solar cells to meet the needs of Robo Raven. They can provide a cell module that 

operates at 7.68V while providing a 233mA current.  Each module measures 

141.8mm x 50mm and provides 1.712 W.  This means we will only need 22 GaAs 

solar modules to reach the 37W needed to completely power Robo Raven IIIv5.  That 

is a total area of 0.156m2 that needs to be taken up by solar cells on the vehicle.  Robo 

Raven III v4 has 0.290m2 taken up by solar cells with 0.241m2 on the wings.  With 6 

of the new GaAs cells being integrated into the tail and body, only 16 modules need 

to be integrated into the wings.  That is a total area of 0.113m2 of the wings that needs 

to be taken up by GaAs solar cells.  That is 53% less surface area than is taken up by 

the A-Si cells in Robo Raven III v4’s wing design.  Since less surface area of the 

wing is taken up by the solar cells, this new wing design will go through larger 

deformations while flapping than the Robo Raven III v4 design. 

 Not only do these modules take up less surface area, preparing them for wing 

integration is much easier.  The A-Si modules came with an encapsulation that 

needed to be removed to reduce the module’s stiffness and mass.  The manufacturer 
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of the GaAs cells is able to send the custom modules without any encapsulation.  This 

eliminates a very time consuming process in wing fabrication. 

 To build these new wings, the GaAs cells must be available.  Due to the high 

demand for this newer more efficient technology, using a mock material instead of 

the actual GaAs cells is preferable.  The best option was to use a material that had a 

similar or higher stiffness coefficient with the same density.  If flight can be achieved 

with a stiffer material, then flight can be achieved with the GaAs cells; however, the 

same density is required to replicate the load on the motors and total payload of the 

vehicle.  The material used as the mock material was 110 copper.  A 0.025mm thick 

roll was cut into the same shape as the GaAs cells.  The copper shim was about twice 

the stiffness of the GaAs cells, but had the exact same density as the solar cells.  If the 

new wings can achieve flight with these mock copper cells, then they would be able 

to achieve flight with the actual GaAs cells. 

 To actually make the new wings, the layout of the solar cells must be 

determined.  Keeping the solar cell at the front most section of the wing allows for the 

best performance [47].  Using the same size and geometry of the Robo Raven III v4 

wings, 8 mock GaAs cells can be easily integrated into the front most portion of the 

wings.  This design calls for the 8 modules to be laid in two horizontal rows.  When 

complete this wing looks very similar to a larger version of Robo Raven III v1.  

Interestingly though this design will harvest enough energy to completely power the 

FWAV. This wing weighed 37.2g which was 21.5g less than Robo Raven III v4’s 

wing.  A picture of the completed wing can be seen in Figure 6.7. 
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Figure 6.7: Left: Mock GaAs wings Right: Completed Robo Raven III v5 design 

 

 With the additional 6 cells on the tail and body of the FWAV, this vehicle 

mimics a solar cell powered FWAV.  If this vehicle were to have the actual high 

efficiency GaAs solar cells, it would have the capability to stay in flight as long as 

there is sunlight.  However, this vehicle must be able to maintain flight.  Comparing 

this vehicle’s performance to the performance of Robo Raven III v4 would show a 

clear understanding of the effects of the vehicle’s performance and the effects of 

changing the design and material used for solar cell integration.   

6.6  Performance of Mock GaAs Wings 

 
 To quantify the difference in performance that these changes to the wing 

cause, the previous wing performance was compared to the performance of the new 

design.  The forces generated by each wing design were measured and compared.  

The same test stand with a 6 degree of freedom from Chapter 5 was used to measure 

the forces produced by the wings.  This 6 DOF load cell is capable of measuring up to 

40 N of force with a resolution of 0.01 N in the thrust direction and 120 N of force 

with a resolution of 0.02 N in the lift direction.  It allows us to simultaneously record 

the lift and thrust forces being produced. The raw signal is sent through a Labview 
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program that converts the raw voltage to forces and the data is platted in an Excel file.  

The raw time resolved results can be seen below. 

 
Figure 6.8:  Time resolved results of Robo Raven III v4 and v5 

 

 To compare the difference in performance the average forces produced by 

each wing design were observed.  These lift and thrust forces are necessary to 

maintain flight and can be predicted using the models mentioned before.  The results 

demonstrate that the new Robo Raven III v5 wings produce more thrust and less lift 

than Robo Raven III v4 as was predicted by the models.  This was expected because 

the ability for the wing to deform increased causing more thrust to be generated while 

flapping.  However, the greater mass of the Robo Raven III v4 wing allows more lift 

to be generated during the downwards portion of the flapping cycle.  
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Figure 6.9: Average lift and thrust generated and compared to the predicted results 

 

 From these measured results, a prediction can be made about the actual flight 

results.  Like airplane or a fixed wing aircraft, this type of FWAV relies heavily on 

the production of thrust to generate lift.  However, this vehicle has the advantage of 

also generating lift by flapping.  Ideally to measure the actual lift force each vehicle is 

capable of producing, the average thrust force should reach 0g.  The extra thrust 

produced by Robo Raven III v5 would translate to more lift.  How much is unclear 

for this new design.  The best way to discover the lift is to run payload tests with the 

new design.  Actual flight tests are the final real test to directly compare the two 

designs.  The results from actual flight tests can be seen below. 

 

Table 6.2:  Flight Characteristics of Robo Raven III v4 and v5 

 Total 

Vehicle 

Mass (g) 

Forward 

velocity 

(m/s) 

Climb Rate 

(m/s) 

Payload 

(g) 

Robo Raven III v4 381 5.6 0.23 32 

Robo Raven III v5 340 7 0.55 42 
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 Robo Raven III v5 had an additional 10 grams of payload.  Even though the 

wing from Robo Raven III v4 generated more force, it had to overcome a larger 

vehicle mass.  The payload measured did not include the battery necessary for flight. 

If the payload included the 27 gram battery, the payload actually goes down to 5 

grams for Robo Raven III v4.  Since this FWAV developed had a material that 

mimicked the actual high efficiency solar cells, a battery had to be used to power this 

vehicle.  However, with the actual high efficiency GaAs cells, only a very small 

battery or large capacitor must be used to safely help power the vehicle.  The payload 

will still be close to 40 grams with the GaAs cells.  Not only will this FWAV fly 

longer than its predecessor, it will actually have better performance as well. 

6.7  Expected Electrical Impact of New Design 

 
 The combination of wing design and solar cell technology in Robo Raven III 

v5 is expected to outperform any previous version and produce enough energy 

through solar power to completely power the vehicle.  The percentage of the wing 

covered by solar cell material and efficiency of the solar cell material play a major 

role in the amount of power that can be produced.  The following plot demonstrates 

the potential of the wing design used. 
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Figure 6.10: Potential Power produced by Robo Raven III v5 wing design 

 

 Ignoring the fact that the maximum theoretical photovoltaic efficiency is 86% 

and a wing that is completely covered by would never fly, this wing design can 

produce 327.5 Watts of electrical power. However, we are limited to the efficiency of 

thin film solar cell technology.  Figure 6.11 demonstrates the potential of the A-Si 

cell and the GaAs cell. 

 
Figure 6.11: Power produced by available solar cell technology for Robo Raven III 

v5 wing design 

 

Robo Raven III v4 

Robo Raven III v5 
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 Needing only 37 Watts to power the entire vehicle, the new wing design with 

GaAs cells requires less than half of the total wing area to produce that power.  Using 

the A-Si cell, this goal would never have been reached. The Robo Raven III v4 wing 

used more than 50% of it wing area and was still capable of flight. This means that 

The GaAs version will be able to fly.  It will also be able to rely solely on solar power 

to fly. 

6.8  Conclusions 

 
 Current battery technology has limitations when applied to FWAVs.  The 

necessity for a small lightweight battery limits how much energy can be stored to be 

used during flights.  This means that typical flights and missions for FWAVs can only 

span a short distance for a limited amount of time.  Previous energy harvesting efforts 

have proven that solar cells can be integrated to the wings, tail and body of FWAVs 

and more specifically Robo Raven.  Previous versions of Robo Raven III used 

amorphous silicon cells.  These cells allowed for investigations of how wing 

deformation is affected by solar cell integration; however, lacked the efficiency to 

provide prolonged or completely solar flight.  

 This investigation sought to understand the integration of high efficiency solar 

cells into an already established viable design.  Different solar cell technologies were 

observed and gallium arsenide cells were determined to be the best material to be 

integrated to the wings.  With a similar stiffness and density to the A-Si cells, not 

much difference was expected in terms of performance.  Using this stiffness, a model 

that was previously developed was adapted to include a change in performance 
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caused by changes in stiffness to the wing.  This model allowed the performance of 

the new wing design to be predicted. 

 Without being able to acquire the GaAs solar cells, copper shim material was 

used as a substitute material.  This copper shim was the same density, but twice as 

stiff as the solar cells.  This meant that if the new wing design was capable of flight 

with this material, it would be capable of flight with the GaAs cells.  The increase in 

efficiency from the A-Si cell to the GaAs cells is dramatic enough that less of the 

win’s surface area is used to harvest all of the energy needed to power the FWAV 

while in flight.  The new design called for 16 GaAs modules to be integrated to the 

front most portion of the wing, 4 modules in the tail, and an additional 2 modules in 

the body.  The final completed design was named Robo Raven III v5. 

 Load cell testing was done to compare the performance of Robo Raven III v5 

to the previous design (Robo Raven III v4).  It was found that the new design 

outperformed the previous version with respect to thrust but underperformed with 

respect to lift.  The increase in deformation is what caused this increase in thrust.  The 

additional mass of the previous version allowed it to achieve a larger force in lift.  

Even though the previous version generated more lift it also had a larger mass to 

overcome to achieve flight.  The new Robo Raven III v5 had a smaller overall mass 

and had a larger payload capacity than Robo Raven III v4. Taking into account the 

weight of the battery, Robo Raven III v4 had a total payload capacity of 5g.  Since 

Robo Raven III v5 does not need a battery, it has a total payload of 40g.  This means 

that Robo Raven III v5 mechanically outperforms the previous version.  By actually 
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integrating the GaAs cells into the wings of this final design.  The first FWAV with 

the capability to fly indefinitely with sunlight will be developed.   
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Chapter 7:  Conclusions 

 
 There were several contributions to the field of FWAVs that came from this 

work.  Although this work can be seen as pioneering in terms of solar cell integration 

to different structures of FWAVs, there were many small contributions along the way 

that gave new insight to the field in general.  These contributions include new testing 

methods, new fabrication methods, and intellectual contributions. 

7.1  FWAV Fabrication 

 
 The integration of solar cells into various structures of the Robo Raven 

platform required new fabrication techniques to be developed.  The methods for 

developing these new structures have been established through this work using an 

additive manufacturing approach based on layered object manufacturing. The 

fabrication technique for wings with integrated solar cells was also used to integrate 

solar cells into the tail structure. This included both mechanical and electrical 

integration of the solar cells into these structures. Thus a FWAV that flew on both 

battery and solar power was created and flown.   

 This work also developed 5 new versions of the Robo Raven III vehicle.  The 

effects of hanging the wings design were clearly investigated.  Even though the larger 

version consumed more power, they lead to a design that has the ability to rely solely 

on solar power for flight.  Although Robo Raven III v5 was not actually made with 

the GaAs solar cells, it is the most impressive.  While still capable of flight, a swap of 

the copper used to simulate the GaAs cells for the actual solar cell will produce a 

FWAV that has the potential to fly completely on solar power.   
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7.2 Characterization 

 

7.2.1 Characterization of Aerodynamic Forces 

 
 The forces produced by new wing designs was a major aspect of this work.  

Even though these loads have been measured in different ways in the past, the 

development of our test stand was novel.  Not only was the technology used better 

than what was used previously, but the flexibility to test different conditions while 

only making small adjustments to the test stand was new.   

 Previously, a single axis load transducer was used to measure the forces 

generated by a smaller FWAV [23,25,26].  This did not allow for simultaneous lift 

and thrust to be collected.  With the new test stand, a 6 DOF load transducer was used 

to simultaneously collect all of the loads and moments generated by the FWAV.  We 

focused on just lift and thrust; however, this test stand is capable of measuring much 

more.  As the work developed so did the test stand.  We were able to measure the 

actual flapping amplitude using an optical encoder and the power consumed by the 

vehicle.  We also made the test stand able to adjust the angle of the vehicle with the 

incoming air from the wind tunnel. This enabled actual flight conditions to be tested.  

This final test stand is a great tool that can be replicated in any lab and used to 

compare the behavior of different UAVs.   

7.2.2 Characterization of Deformation using DIC 

 
 This work is also one of the few times that 3D DIC has been implemented on 

a flapping wing.  This gave us valuable information as to what is occurring during the 

flapping process of the wing.  Obtaining the deformation of a flapping wing at 4 Hz is 

a difficult task that required knowledge of both the actual testing technique and the 
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behavior of the FWAV.  Even though DIC has been used for a FWAV before [28], 

these are the largest wings yet to be observed. This provided new challenges that 

needed to be overcome.  For example the appropriate distance and location of the 

camera to the flapping wing needed to be found.  Also the correct amount of lighting 

for the indoor high speed cameras was also found.  Since the wings were so large 

typical speckling techniques could not be used and the wing needed to be hand 

painted.  These difficulties lead to an accurate and correct process that enable anyone 

to of similar wing size to use these techniques and find more information in wing 

deformation and performance. 

 One major contribution that was touched on before is the information 

extracted from the 3D DIC data.  A correlation between shear strain observed on the 

surface of the wing and thrust force generated was found.  A correlation between the 

biaxial strain observed on the surface of the wing and lift force generated was also 

found.  This new information in wing deformation allowed for a better wing design 

and lead to Robo Raven III v2. 

7.2.3 Electrical Performance Characterization 

 
  Since the advantages of implementing solar cells into a FWAV needed to be 

observed, this lead to the development of electrical testing procedures for Robo 

Raven III.  An endurance test was created that enables the new endurance of a solar 

powered FWAV to be determined.  This required new circuitry that enables the 

FWAV to operate using two power sources.  This circuitry involved a boost controller 

to increase the voltage of the solar cells to make it comparable to the voltage of the 

battery.  The test itself involved several aspect that cannot be controlled.  For example 
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the weather had to be a clear day with no clouds.  Also, the FWAV needed to be held 

still at the correct azimuth to the sun to gain the most power possible.   

 The ability to recharge the battery was also tested for serval versions of Robo 

Raven III.  This required the development of a new circuit to safely charge the lithium 

polymer battery using the energy harvest by the solar cells.  Like the previous test, the 

weather also needs to be accommodating for these tests to take place.  Although these 

electrical tests were conducted for a FWAV, these tests can be conducted for any 

vehicle using solar power. 

7.2.4 Characterization of Self Sensing 

 
 An interesting finding in this work was how the solar cell was affected by the 

wing’s deformation.  This provides the wing with the ability to sense its own 

deformation using the power produced by the solar cell.  The correlation to shear 

strain and thrust provides available onboard information on vehicle performance. 

 Thus, it was determined that multifunctional solar cell wings may be capable 

of three functions:  

 (1) Lightweight and flexible structure to generate aerodynamic forces,  

 (2) Energy harvesting to extend operational time and autonomy,  

 (3) Sensing of an aerodynamic force associated with wing deformation. 

7.3  Modeling 

 

7.3.1  Multifunctional Modeling 

 
 A multifunctional performance model was developed.  This model broke the 

vehicle down in terms of mass and energy and allowed the increase in flight time to 

be predicted.  This model can be used for any UAV and is not limited to FWAVs. 
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This means that the feasibility of introducing solar cells to any UAV can be 

determined before the project is started. 

7.3.2  Aerodynamic Modeling 

 
 The information gained from vehicle performance allowed for predictive 

aerodynamic models for lift and thrust to be generated.  The predictive models allow 

for changes in performance to be based off changes in design.  These models can be 

applied to FWAVs that are designed to fly laterally (usually with a wingspan of 

0.25m to 2.5).  One model was used to predict changes in wing performance.  The 

change in design causes a change in wing velocity that is used to predict the change in 

lift and thrust of the vehicle. The other predictive model was used to predict how 

changes in the tail would affect tail performance.  These models were based off the 

coefficient of lift and drag of a plane through air.   

 Finally by introducing stiffness as a component in wing design, the effects of 

integrating other materials to the wings can be predicted.  The model produced altered 

the previously mentioned wing lift and thrust models to compensate for global 

stiffness.   An equation for global stiffness allowed for a wing with different materials 

to obtain one global stiffness coefficient and be plugged into the lift and thrust model.  

This allowed for a more robust model that can be used not only for solar cells but 

different membrane materials.  In result from the fabrication, characterization and 

modeling work accomplished for the different version of Robo Raven III, the new 

flight times, recharge times, thrust forces, and lift forces were predicted and measured 

for each version created.  A table summarizing the work accomplished can be 

observed below. The total flight weight is the total weight of the FWAV and how 
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much payload the vehicle can carry during flight.  By subtracting the vehicle’s 

weight, the payload for each Robo Raven III version can be found. 

Table 7.1: Summary of each version of Robo Raven III fabricated 

 Robo 

Raven III 

Version 1 

Robo 

Raven III 

Version 2 

Robo 

Raven III 

Version 3 

Robo 

Raven III 

Version 4 

Robo 

Raven III 

Version 5 

Predicted 

Increase in Flight 

Time (sec) 

29 42 54 68 

Infinite 

with 100% 

Sunlight 

Measured 

Increase in Flight 

Time (sec) 

27 38 42 50 
Was Not 

Measured 

Predicted 

Increase 

Recharge Time 

(min) 

74 41 27 20 0 

Measured 

Increase in 

Recharge Time 

(min) 

149 90 52 44 
Was Not 

Measured 

Predicted Total 

Flight Weight 

(grams) 

332 367 405 410 380 

Measured Total 

Flight Weight 

(grams) 

332 361 399 413 382 

Predicted 

Payload 

Including Battery 

(grams) 

41 53 35 29 40 

Measured 

Payload 

Including Battery 

(grams) 

41 47 29 32 42 

 

7.4 Future Work 

 
 Based off the progress and findings in this work, there are several directions 

that that can be taken for future work.  First, the actual GaAs solar cells can be 

integrated into the current Robo Raven III v5 design.  This would be a culmination of 

all of the concept and findings presented in this dissertation.  The results from the 
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actual GaAs can also be compared to the predicted results obtained by the mock cells 

used.  To successfully power this FWAV on solar power, some investigation must be 

done on using a capacitor to control the flow of energy to the vehicle. From flapping 

the power supplied by the solar cells is expected to constantly change, so a capacitor 

is needed to supply constant power. 

 Another aspect that can be further explored is the solar sensing that was 

discovered in this work.  Actually using these solar cells as a sensor can provide real 

time feedback that would allow for autonomous flight corrections.   

 A valuable tool that can be developed from using more DIC data would be an 

aerodynamic model for FWAVs.  This model would incorporate the deformation and 

translation of the wing with the load produced due to the incoming air during flight.  

This involves simultaneous mechanical and fluid simulations. The results from the 

simulation can be compared to the measured DIC and load cell results.  This is a huge 

undertaking, but would be an extremely valuable tool for FWAVs. 

 One final direction that can be taken going further is to integrate flexible 

batteries to the wings.  With the development of thin flexible batteries, it is not far off 

to integrate these batteries similar to how the solar cells have already been integrated.  

This can be taken further and batteries and solar cells can both be integrated.  These 

are all extension of the work that has been accomplished in this dissertation. 
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