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Symbolic execution is a powerful program analysis technique, but it is very

challenging to apply to programs built using event-driven frameworks, such as An-

droid. The main reason is that the framework code itself is too complex to sym-

bolically execute. The standard solution is to manually create a framework model

that is simpler and more amenable to symbolic execution. However, developing and

maintaining such a model by hand is difficult and error-prone.

We claim that we can leverage program synthesis to introduce a high-degree

of automation to the process of framework modeling. To support this thesis, we

present three pieces of work. First, we introduced SymDroid, a symbolic executor

for Android. While Android apps are written in Java, they are compiled to Dalvik

bytecode format. Instead of analyzing an app’s Java source, which may not be

available, or decompiling from Dalvik back to Java, which requires significant en-

gineering effort and introduces yet another source of potential bugs in an analysis,

SymDroid works directly on Dalvik bytecode.



Second, we introduced Pasket, a new system that takes a first step toward

automatically generating Java framework models to support symbolic execution.

Pasket takes as input the framework API and tutorial programs that exercise

the framework. From these artifacts and Pasket’s internal knowledge of design

patterns, Pasket synthesizes an executable framework model by instantiating design

patterns, such that the behavior of a synthesized model on the tutorial programs

matches that of the original framework.

Lastly, in order to scale program synthesis to framework models, we devised

adaptive concretization, a novel program synthesis algorithm that combines the

best of the two major synthesis strategies: symbolic search, i.e., using SAT or

SMT solvers, and explicit search, e.g., stochastic enumeration of possible solutions.

Adaptive concretization parallelizes multiple sub-synthesis problems by partially

concretizing highly influential unknowns in the original synthesis problem.

Thanks to adaptive concretization, Pasket can generate a large-scale model,

e.g., thousands lines of code. In addition, we have used an Android model syn-

thesized by Pasket and found that the model is sufficient to allow SymDroid to

execute a range of apps.
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Chapter 1: Introduction

In recent years, the research community has proposed many useful program analysis

tools. Among many others, symbolic execution [53, 14, 41, 66] is an appealing

technique because it is able to either verify properties of interest or else provide

counterexamples, which could be used as test inputs. Depending on the input type,

a symbolic executor is essentially a binary or bytecode interpreter, but with the

additional ability to operate on symbolic expressions, which represent potentially

unknown quantities. The executor may branch its execution if a symbolic expression

is used as the guard of a conditional, in the case that both true and false branches

are feasible. The main feature of symbolic execution is to maintain path conditions

comprised of symbolic expressions at such branching points, which are in turn used

to check assertions and discard infeasible paths in later executions. At the same

time, those path conditions are used to represent paths that have been taken by

symbolic execution. Such path conditions could explain under what conditions apps

may reach program points of interest, e.g., assertions, system calls, permission-

associated APIs, to name a few.

Although symbolic execution is a powerful program analysis technique, apply-

ing it to event-driven frameworks, such as Android, is challenging. The main reason
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is that apps that run on top of event-driven frameworks are tightly tied to the frame-

work: Apps can define their own event handlers which the framework will callback

when events happen. The control-flows from event creations through the framework

to apps’ own event handlers are implicit, and thus symbolic execution cannot be

performed properly if it reaches the boundary between apps and the framework.

For example, consider an Android app that creates a button, registers a callback

for it, and later receives the callback when the button is clicked. A symbolic execu-

tor that simulates only application code would miss the last step, since the control

transfer to the callback happens in the framework.

One possible solution is to symbolically execute the framework code along with

the application, but in our experience this is unlikely to succeed. Frameworks are

large, complicated, and designed for extensibility and maintainability. As a result,

behavior that appears simple externally is often implemented in complex ways.

Frameworks also contain details that may be unimportant for a given analysis. For

instance, for Android, the details of how UI elements are displayed may not be

relevant to an analysis that is only concerned with control flow. Finally, frameworks

may contain native code that is not understood by the symbolic executor.

The standard solution to this issue is to manually create a framework model

that mimics the framework but is much simpler, more abstract, and can be symbol-

ically executed. For example, Java PathFinder (JPF) [71], a static analysis frame-

work for Java, includes a model of Java Swing [59] that is written in Java and can be

symbolically executed along with an application. However, while such models work,

they suffer from several potential problems. Since the models are created by hand,
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they likely contain bugs, which can be hard to diagnose. Moreover, models need to

be updated as frameworks change over time. Finally, applying symbolic execution

to programs written with new frameworks carries a significant upfront cost, putting

applications that use new or unpopular frameworks out of reach.

In this dissertation, we propose to leverage program synthesis [58, 57] to intro-

duce a high-degree of automation to the process of generating a model of framework

that can make symbolic execution more effective and efficient. The model, which

abstracts away unimportant details yet encompasses essential behavior of the frame-

work, will enable symbolic execution to proceed even when it reaches the boundary

between an app and the framework.

Our thesis is following:

Program synthesis can help apply symbolic execution to event-driven

frameworks and make that technique more effective and efficient by gen-

erating a framework model that enables symbolic execution to perform

even across the boundary between apps and the framework.

To support this thesis, we present three pieces of work. First, we introduced Sym-

Droid, a symbolic executor for Android. In our preliminary study using a manual

model, SymDroid was able to reason under what conditions privacy-sensitive APIs

are used in a tutorial app. Although that study was promising, such hand-written

model hindered us from rapidly applying the tool to newer apps. The main bot-

tleneck was incrementally adding more APIs into the model whenever SymDroid

stopped due to missed APIs, which motivated this dissertation. Second, we in-
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troduced Pasket, a new system that synthesizes a Java framework model. We

replaced the manual model in SymDroid with the model automatically synthesized

by Pasket and showed that the synthesized model is sufficient to enable SymDroid

to execute a range of apps. Lastly, in order to scale program synthesis to frame-

work model domain, we devised adaptive concretization, a new program synthesis

algorithm that combines the best of two other extreme approaches and naturally

parallelizes. Each piece will be more described in the next three sections.

1.1 Symbolic Execution for Android

Google’s Android is currently the most popular mobile device platform, running

on a majority of all smartphones. Android provides a certain level of security by

protecting sensitive framework APIs using permissions. When installing an app,

the user will be presented with the list of permissions requested by the app, and

have only two choices: either proceeding with installation, which grants the app

all the permissions it asks for, or aborting installation. In this context, the user

can see what permissions apps request, but the reasons why apps require those

permissions are unclear. We opt to use symbolic execution in order to reason under

what circumstance apps use permission-protected, privacy-sensitive APIs.

While Android apps are written in Java, they are compiled to Google’s Dalvik

Virtual Machine bytecode format. Thus, while existing Java-based program analysis

tools could potentially be used to reason about properties of apps, including cor-

rectness, security, and privacy, in practice doing so requires either access to an app’s
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Java source, or decompilation from Dalvik back to Java. The former is problematic

for many uses (e.g., any case where we want to analyze an app without source), and

the latter requires significant engineering effort and introduces yet another source

of potential bugs in an analysis.

To address this limitation, we opt to develop a program analysis tool that

works directly on Dalvik bytecode. In Chapter 2, we introduced SymDroid [43], a

symbolic executor [53, 14, 41, 66] for Dalvik. Due to the constrained mobile envi-

ronment, Dalvik is carefully designed to reduce the overall size of the application,

resulting in redundant instructions. To make as clean and simple symbolic execu-

tion rules as possible, we designed µ-Dalvik, a simpler language that contains just

16 instructions, compared to more than 200 Dalvik bytecode instructions, and to

which it is easy to translate Dalvik. In addition to modeling the bytecode itself,

for purposes of the evaluation, we manually created a model of Android and Java

libraries in part.

We evaluated the correctness and feasibility of the prototype of SymDroid via

Android Compatibility Test Suite (CTS) [7] and a case study that discovers under

what conditions certain privileged operations can be used in a tutorial app. CTS acts

as a collection of unit tests that thoroughly exercise Dalvik bytecode semantics and

platform functionality. As long as input apps do not introduce symbolic variables,

we can regard SymDroid as a sort of Dalvik virtual machine, since it will simply

execute given apps step by step. Tests in CTS do not involve in symbolic variables,

and thus we can use CTS as regression tests. We found that SymDroid passed all

test cases that did not require more modeling of Android and Java libraries. We
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also ran SymDroid on a tutorial app, named PickContact, and found it could discover

the correct conditions under which the READ CONTACTS permission was used.

1.2 Framework Synthesis

Although the preliminary study on SymDroid was promising, using a manual model

obstructed us from swiftly expanding the target apps. We manually modeled parts

of the framework that were sufficient only to a selection of apps; figured out which

parts should be for other apps; and repeated the aforementioned process in an

incremental manner. Not unexpectedly, that process was tedious and error-prone,

which motivated the next system.

In Chapter 3, we introduced Pasket [48], a new system that applies pro-

gram synthesis to generating framework models. In particular, Pasket’s focus is

to create an executable model of event-driven frameworks, which is able to produce

implicit control-flows due to the event handling mechanism. Besides, to synthesize

a symbolically executable model, Pasket abstracts away unimportant parts from

the analysis perspective, e.g., GUI layouts.

To automatically synthesize framework models, Pasket relies on two key

insights: First, from the perspective of a client app, only the surface behavior of

the framework matters, and not the framework internals. That is, a framework

model is sufficient as long as it produces the same call-return sequences between

the framework and the app. Second, looking at event-driven frameworks in more

detail, we find that most of the major control flow decisions are captured in design
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patterns [29] used by the framework. For example, event-driven frameworks make

heavy uses of the observer pattern, in which observers register for callbacks with a

subject.

Pasket builds on these insights with a multi-modal (i.e., consuming several

different kinds of input) synthesis process. The first input to Pasket is the frame-

work API, in terms of its classes, methods, and types; this gives the basic structure

of the expected model. The second input is logs gathered by running a tutorial pro-

gram against the actual framework and recording the call-return sequence between

the program and the framework. Pasket uses such tutorials to enforce log confor-

mity : a correct framework model, run against the same tutorial program, should

produce the same logs.

In addition to these inputs, Pasket has internal knowledge of design patterns,

which place structural constraints on the space of possible framework models that

Pasket considers. For example, in the observer pattern, Pasket knows there must

be subject and observer classes, and the subject must have a method to attach an

observer, among other things. Given all this information, Pasket performs design

pattern matching : instantiating the design patterns to the framework API, such

that log conformity is satisfied.

We used Pasket to produce a model of the Java Swing GUI framework and

the Android framework. For the given ten Swing tutorials, Pasket took just a

few minutes and generated a model consisting of 95 classes and 2,676 lines of code,

making it one of the largest pieces of code ever synthesized using constraint-based

synthesis. For the given three Android tutorials, Pasket took just a few seconds
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and produced a model consisting of 50 classes and 1,419 lines of code.

We empirically validated those models: We ran the Swing tutorials under

Java PathFinder [71] (JPF), and found that JPF with our synthesized model could

successfully execute input tutorials, whereas JPF’s own model failed due to some

missing methods. We selected eight code examples from a different source that use

the same part of the framework and verified that they ran under JPF using our

synthesized model for Swing. We also selected two Android code examples and

verified they ran under SymDroid using our synthesized model for Android.

Currently, to specify the expected behaviors and structures of the framework

model, Pasket relies on logs—calls that cross the boundary—and design patterns.

However, it is likely that there exist some more important features of the target

framework whose behaviors and structures may not be properly captured via logs

and/or design patterns, e.g., APIs with internal side effects, framework’s own pro-

gramming idioms, etc. As a consequence, a model synthesized by Pasket is neither

sound nor complete: it may include wrong behaviors and/or may miss some im-

portant features. Nonetheless, the key point is that we can easily regenerate an

enhanced model by using Pasket’s semi-automated process. We discuss the ab-

straction, soundness and completeness of synthesized models in detail.

1.3 Adaptive Concretization

The way we reduced the automatic construction of a framework model to program

synthesis is groundbreaking, and so is the size of encoded problems. In the course
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of Pasket development and evaluation, we often encountered performance bot-

tlenecks, where Sketch simply failed due to timeout or out of memory. Those

performance issues motivated us to study and devise a scalable program synthesis

algorithm.

Program synthesis [58, 57] is an attractive programming paradigm in which

an automated algorithm derives a program from a given specification. One popular

style of program synthesis is syntax-guided synthesis, which starts with a structural

hypothesis describing the shape of possible programs, and then searches through the

space of candidates until it finds a solution. The structural hypothesis is represented

as a partial program or template, which encompasses unknowns that are resolved

by the synthesizer. There are two common approaches to syntax-guided synthesis:

explicit search—either stochastically or systematically enumerating the candidate

program space—and symbolic search—encoding the search space as constraints that

are solved using a SAT solver. The SyGuS competition has recently revealed that

neither approach is strictly better than the other [4].

In Chapter 4, we proposed adaptive concretization [46, 45], a new algorithm

that greatly improves scalability of program synthesis. Adaptive concretization

combines many of the benefits of explicit and symbolic search while also parallelizing

very naturally, allowing us to leverage large-scale, multi-core machines.

The key observation behind our algorithm is that in synthesis via symbolic

search, the unknowns that parameterize the search space are not all equally impor-

tant in terms of solving time. However, it is impossible to accurately calculate how

influential an unknown is with respect to solution time in adaptive concretization,
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and thus we estimate the influence of an unknown by means of its dependent terms

in the translated formulae. Since the influence is an estimate, there is a chance that

concretizing even highly influential unknowns may not affect solving time. Thus,

we opt to randomize what to concretize and how much to concretize by introducing

a notion of degree of concretization. Then the influence estimation as well as degree

of concretization will determine the probability of concretizing certain unknowns.

The degree of concretization poses its own challenge: an optimal degree varies

from benchmark to benchmark. Due to the lack of fixed optimal degrees, the crux of

adaptive concretization is to search for the optimal degree online. We assume that

the tradeoff between degree and solution time forms a “vee”: at degree 0, which

corresponds to pure explicit search, the synthesis may take long due to the low

chance of finding a solution; at degree∞, which corresponds to pure symbolic search,

the synthesis may take long, too, due to the complexity of the synthesis problem

itself; and between them, there would exist a sweet spot, where partially concretizied

problems may not take that long, while the probability of finding a solution is much

higher, achieving overall improvement in solution time. We empirically validate

our insight about “vee” and utilize its shape and the existence of optimum: Our

algorithm begins with hill climbing to dramatically reduce the range of target degrees

and performs binary search between the refined range.

The adaptive concretization algorithm involves several “magic numbers” in

the influence estimations and concretization probability. We thoroughly explored

potential design choices and empirically showed that our algorithm is robust to

those design decisions. We implemented our algorithm for Sketch and evaluated
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it against 26 benchmarks from a number of synthesis applications. We found our

algorithm outperforms Sketch on 22 of 26 benchmarks, sometimes achieving sig-

nificant speedups of 3× up to 18×. In one case, adaptive concretization succeeds

where Sketch runs out of memory. We also ran adaptive concretization on 1, 4,

and 32 cores, and found it generally has reasonable parallel scalability.
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Chapter 2: Symbolic Execution for Android

In this chapter, we take a first step toward developing a suite of program analysis

tools that work directly on Dalvik bytecode. We introduce SymDroid [43], a sym-

bolic executor [53, 14, 41, 66, 33, 75, 17, 34, 70] for Dalvik. SymDroid is essentially a

Dalvik bytecode interpreter, but with the additional ability to operate on symbolic

expressions, which represent potentially unknown quantities. SymDroid uses an

SMT solver to test whether assertions involving those expressions are always true;

if not, SymDroid can produce a counter-example showing a cause of the assertion

failure. SymDroid may also branch its execution if a symbolic expression is used

as the guard of a conditional, in the case that both the true and false branch are

feasible.

One way to view a symbolic executor is as a runnable operational semantics,

and thus we envision that SymDroid’s semantics for Dalvik might be of independent

interest. Thus, we aimed to develop as clean and simple a semantics as possible. The

result is µ-Dalvik, a language that contains just 16 instructions, compared to more

than 200 Dalvik bytecode instructions, and to which it is easy to translate Dalvik.

µ-Dalvik achieves its compactness through three basic transformations. First, it co-

alesces multiple Dalvik instructions that are distinguished only by bit widths, e.g.,
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goto +AA, goto/16 +AAAA, and goto/32 +AAAAAAAA become a single µ-Dalvik goto

statement. Second, it encodes operand types in the operand, rather than in the op-

erator, e.g., aput-byte, aput-char, and aput-short all map to the same µ-Dalvik

instruction, and we store the operand type in the operand. Finally, µ-Dalvik ex-

pands some complex Dalvik instructions into sequences of simpler instructions, e.g.,

packed-switch becomes a sequence of conditions. Note that µ-Dalvik aims to min-

imize the number of instructions (and thus keep the semantics cleaner), whereas

Dalvik’s goal is to maximize performance and minimize code size. (Section 2.1

presents µ-Dalvik in detail.)

The core of SymDroid, the symbolic execution rules for each µ-Dalvik instruc-

tion, are standard and quite straightforward, as µ-Dalvik is so compact. Section 2.2

fits essentially all of the main rules on a couple of pages of text, and those rules cor-

respond directly to our implementation, which comprises approximately 17K lines

of OCaml code. Of course, in addition to modeling the bytecode itself, SymDroid

also needs to provide models of the platform, including the system libraries (many

of which contain native code, and hence cannot be directly executed by SymDroid)

and the Android control framework (which is quite complex). As a prototype tool,

currently SymDroid implements just enough of these to support a range of apps.

(Section 2.3 describes our Android platform model in more detail.)

We evaluated SymDroid in two ways. First, we used it to run the Android

Compatibility Test Suite (CTS) [7], which tries to thoroughly exercise Dalvik byte-

code and platform functionality. We found that SymDroid passed 26 out of 92 CTS

tests. It failed the remaining tests not because of errors in instruction handling, but
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because we do have not yet implemented all the Java and Android libraries used by

CTS. Thus, SymDroid passes all the tests that it could be expected to pass. We

also measured SymDroid’s performance, and found it is roughly 2x slower than the

Dalvik virtual machine, and roughly 2x faster than a Java virtual machine. Note

that in these experiments there was no symbolic computation—all values were con-

crete. Thus, these results suggest that SymDroid is likely fast enough in practice,

especially since in our experience symbolic executors spend much of their time in

the SMT solver.

Second, we used SymDroid to discover under what conditions certain privileged

operations were used in PickContact, an Activity from the API demonstration app

supplied with the Android SDK. This problem is a good fit for symbolic execution

as the interaction between the user and the system is complex on Android, and

determining whether a call is privileged can depend on subtle semantics. We ran

SymDroid on the PickContact and found it was able to discover the correct conditions

under which the READ CONTACTS permission was used. (Section 2.4 describes our

experimental results.)

In summary, the contributions of this chapter are

• A clean and concise core bytecode language, µ-Dalvik, to which Dalvik can be

easily translated (Section 2.1), and which has a simple semantics (Section 2.2).

• A discussion of the issues of modeling the Android platform and other chal-

lenges in building SymDroid, a symbolic executor for µ-Dalvik (Section 2.3).

• Experiments demonstrating the correctness of SymDroid and suggesting how

14



it may be useful in practice (Section 2.4).

2.1 µ-Dalvik

Dalvik bytecode is designed to run in a resource constrained environment, namely

on mobile devices. Among others, Dalvik is carefully designed to reduce the overall

size of applications and for performance [15]. In contrast, we are interested in

performing more expensive, off-device analyses, in particular symbolic execution.

For easier maintenance and improvement, we also want to have as simple and concise

a semantics as possible. µ-Dalvik represents our attempt to achieve these aims.

µ-Dalvik has three main differences compared to Dalvik:

• Dalvik includes many instruction variants that differ only in the number

of bits reserved for operands. For example, consider three Dalvik move in-

structions, move vA, vB; move/from16 vAA, vBBBB; and move/16 vAAAA,

vBBBB. These instructions all move values of the same size among registers;

the only difference between them is how many bits they use to represent regis-

ters indices (vA, vAA, and vAAAA require 4, 8, and 16 bits, respectively). Since

we are not constrained in terms of bytecode space representation, we instead

always use 32-bit indices to refer to registers.

• Many Dalvik instructions encode their operand type in the operator. For

example, to read an instance field, Dalvik includes opcodes iget (read an

integer or float instance field), iget-object (read an Object instance field),

iget-boolean (read a boolean instance field), iget-byte (read a byte instance
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P ::= 〈cls∗, f ld∗,mtd∗, str∗〉 DEX binary
cls ::= class @s < @c imp @c∗ {@f∗ @m∗} Class definition
fld ::= field @s : @c Field definition
mtd ::= method @s : @c∗ → @c {b} Method definition

b ::= · | s ; b Method body

Figure 2.1: µ-Dalvik syntax (program).

field), etc. From the perspective of an analysis tool, we prefer to have one

generic instruction of each kind, but allow the operand type to vary.

• Dalvik includes some complex instructions that µ-Dalvik desugars to sim-

pler instruction sequences. For example, the filled-new-array(/range) and

fill-array-data instructions fill the given array with the supplemental data.

In SymDroid, these instructions are desugared into a sequence of µ-Dalvik in-

structions that copy constant bytes into the array.

2.1.1 µ-Dalvik Syntax

Figures 2.1 presents the syntax of µ-Dalvik programs, which are made up of defini-

tions of classes, fields, and methods, and also contain a string pool mapping integer

indices to string values. In full Dalvik, the string pool exist to make the bytecode

compact by reusing strings across the entire codebase of an app; even such strings as

class names, method names, and types are shared in the string pool. We maintain

this indirect representation, and thus, in µ-Dalvik, all strings are accessed via their

indices, which we write as @c (class index), @f (field index), @m (method index),

and @s (program string index).

Class definitions contain the class name, its superclass, its implemented inter-
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s ::= goto pc Unconditional branch
| if r < r then pc Conditional branch
| lhs← rhs Move
| r ← r ⊕ r Binary operation
| r ← � r Unary operation
| r ← new @c New instance
| r ← newarray @c[r] New array
| r ← (@c) r Type cast
| r ← r instanceof @c Instance of
| r.@m(argv) Dynamic method invocation
| @m(argv) Static method invocation
| return Method return
| r ← sym New symbolic variable
| assert r Assertion

Figure 2.2: µ-Dalvik syntax (statements).

faces, and its fields and methods. Field definitions are comprised of the field name

and type. Finally, method definitions include the method name, argument types,

return type, and method body.

A method body is a sequence of statements, which are defined in Figure 2.2.

As execution progresses we maintain the program counter pc, which is the index of

the currently executing statement in the sequence. (Note that in Dalvik, the pro-

gram counter is a pointer to the bytecode instruction’s offset, which can be slightly

different as different bytecodes have different numbers of operands, and hence use

different numbers of bytes.) As in many imperative languages, we distinguish the

left- and right-hand side operands of move statements, whose definitions are de-

scribed in Figure 2.3. On the left-hand side we allow a single register name; an

array access; and instance and static field access with field index @f . Right-hand

side operands of a move statement can have any left-hand side operands as well as

constants.

17



⊕ ::= + | − | × | ÷ | · · · Binary operators
< ::= < | > | · · · Comparison operators
� ::= − | ¬ | · · · Unary operators

lhs ::= r Register
| r[r] Array access
| r.@f Instance fields
| @f Static fields

rhs ::= lhs
| c Constants

argv ::= · | r, argv Arguments
c ::= n Integers
| @s String indexes
| true | false Booleans
| null Null

Figure 2.3: µ-Dalvik syntax (operators, etc.).

Next, µ-Dalvik includes binary and unary operations. new and newarray

statements create a new instance of @c and an array of class @c, respectively. For

array allocation, a register containing the array size is also required. µ-Dalvik also

includes type cast and instanceof. Method calls refer to method index @m, and all

arguments must be in registers; dynamically dispatched method calls also include

a receiver object. Finally, µ-Dalvik includes a special statement to insert symbolic

variables and an assert statement that checks a property of interest.

2.1.2 Translation from Dalvik to µ-Dalvik

Translating Dalvik bytecode into µ-Dalvik is a fairly straightforward process. Fig-

ure 2.4 illustrates the translation process from Java source code (left column) into

Dalvik (middle column) and then into µ-Dalvik (right column). For the sake of

clarity, we label key statements to represent program counters. The example code

includes method call and return, array initialization, and various instructions that
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Java source code Dalvik instructions µ-Dalvik instructions
static byte foo(int x) { parameter x = v2

const/16 v0 1000 r0 ← 1000
if(x > 1000) { if-le v2 v0 +9 if r2 ≤ r0 then `2

byte y = foo(x % 1000);

rem-int/lit16 v0 v2 1000 r0 ← r2%1000
invoke-static v0 @m0 @m0(r0)
move-result v0 r0 ← rret

return y; return v0 `1 : rret ← r0
return

} const/4 v0 2 `2 : r0 ← 2

byte [] data = {7, 9}; new-array v0 v0 @c0 r0 ← newarray @c0[r0]
fill-array-data v0 +8 rt ← 0; r0[rt]← 7

rt ← 1; r0[rt]← 9

byte z = data[x % 2];
rem-int/lit8 v1 v2 2 r1 ← r2%2
aget-byte v0 v0 v1 r0 ← r0[r1]

return z; goto -11 goto `1
} [0: 7] See fill-array-data

[1: 9] translation above
@c0 = byte array @m0 = foo()

Figure 2.4: Translation example.

can be translated into simpler µ-Dalvik instructions. Note that µ-Dalvik’s return

statement does not have any operands; instead, there is a special register rret for hold-

ing method return values, so return values must be copied into rret before return,

as depicted in the figure.

This example demonstrates all three of µ-Dalvik’s key differences from Dalvik.

First, we can see that const/16 and const/4, which both load constant values

into registers, are translated into the same µ-Dalvik instruction, and similarly for

rem-int/lit16 and rem-int/lit-8. Second, we can see that the aget-byte in-

struction is translated into µ-Dalvik’s generic array access instructions; the other

variants, such as aget, aget-boolean, etc., would be translated similarly. Finally,

this example shows how SymDroid translates the complex fill-array-data in-

struction, which loads an array appended to the end of the code segment, into a
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` ∈ Heap locations
x ∈ Symbolic variables

π, φ ::= x | c | � π | π ⊕ π | π < π Symbolic expressions
υ ::= c | ` | π Values
R ::= {r 7→ υ, . . .} Register file
L ::= pc, b, R Local state
C ::= L | L :: C Call stack
o ::= 〈@c; {@f 7→ υ, . . .}〉 Objects
α ::= @c[υ, . . .] Arrays
β ::= o | α Memory block
H ::= {` 7→ β, . . .} Heap
S ::= {@f 7→ υ, . . .} Static field state
Σ ::= 〈C, φ,H, S〉 Program state

Figure 2.5: Semantic domains.

sequence of multiple µ-Dalvik move instructions.

2.2 Symbolic Execution

In this section, we present a formalism for symbolic execution of µ-Dalvik and discuss

our implementation in detail.

2.2.1 Domains

Figure 2.5 summarizes the domains used by our symbolic executor. There are three

basic kinds of values υ used in the semantics: constants (defined in Figure 2.3),

heap locations `, and symbolic expressions π or φ, which are comprised of symbolic

variables and constants combined with unary, binary, and relational operators.

As the symbolic executor runs, it maintains a program state Σ, which includes

a call stack C, path condition φ, heap H, and static field state S. The call stack is

a list of local states comprising a program counter, method body, and register file

mapping registers to values. (Notice that each method gets its own registers, and
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@c ≤P @d

SUBrefl

@c ≤P @c

SUBtrans
@b ≤P @c @c ≤P @d

@b ≤P @d

SUBsuper

@c ≤P superclass(P,@c)

SUBitf
@d ∈ interface(P,@c)

@c ≤P @d

SUBarr
@c ≤P @d

@c array ≤P @d array

Figure 2.6: Subtyping.

hence these are used for local variables.) The top of the call stack is on the left, and

represents the state of the currently executing method.

The state also contains a path condition φ, which records which conditional

branches have been taken thus far. (For clarity, we will use φ to denote a symbolic

expression that is a path condition, and π for other symbolic expression.)

The heap maps locations to memory blocks β, which are either objects o, which

record their class and field values, and arrays α, which record the array type and

the values in the array. Finally, the static field state is a mapping from static field

names to their values.

In what follows, we will write Σ.x for the x component of Σ, e.g., 〈C ′, φ′, H ′, S ′〉.H =

H ′. When we write Σ.pc, Σ.b, or Σ.R, we will mean those components of the current

(top-most) local state in Σ.C. Similarly, we write o.@c and α.@c for the class of

an object or array type, respectively, and refer to object fields and array elements

via o[@f ] and α[i], respectively. We also write Σ+ to mean state Σ but with the

program counter of the current local state incremented by one.

Figure 2.6 defines the usual Java subtype relation, which is the reflexive, tran-

sitive closure of the superclass and interface relations defined in the program. Note
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ΣJrhsK = v

Ereg

ΣJrK = Σ.R[r]

Estt

ΣJ@fK = Σ.S[@f ]

Econst

ΣJcK = c

Earr
` = ΣJraK α = Σ.H[`] i = ΣJriK

ΣJra[ri]K = α[i]

Eobj
` = ΣJroK o = Σ.H[`]

ΣJro.@fK = o[@f ]

Figure 2.7: Evaluation of right-hand sides.

that Java allows covariant subtyping on arrays (SUBarr). This is statically un-

sound, and so Java dynamically tracks the type of each array and forbids writes of

objects that are not subtypes of the contents type.

Finally, Figure 2.7 defines a convenience relation ΣJrhsK = v for evaluating the

right-hand side of a move expression. These rules are straightforward: constants are

evaluated to themselves, and registers, static fields, array accesses, and field accesses

are evaluated based on the state Σ.

2.2.2 Semantics

Figures 2.8 and 2.9 give the symbolic semantics for µ-Dalvik statements, which

prove judgments of the form 〈Σ, s〉 ⇓P Σ′, meaning in program P , starting in state

Σ, statement s updates the state to Σ′. The rules are mostly standard.

The rule SEgoto updates the program counter unconditionally. Rules SEif-

true and SEif-false model conditional branches. Here SAT(φ) asserts that φ is

satisfiable. In SEif-true, we evaluate the guard and conjoin it with the current

path condition. If the resulting path condition is satisfiable, it means the true

branch is feasible, so we can branch to the specified program counter, and we update
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〈Σ, s〉 ⇓P Σ′

SEgoto

〈Σ, goto pc′〉 ⇓P Σ[pc 7→ pc′]

SEif-true
π = (ΣJr1K < ΣJr2K) φt = π ∧ Σ.φ SAT(φt)

〈Σ, if r1 < r2 then pct〉 ⇓P Σ[φ 7→ φt, pc 7→ pct]

SEif-false
π = ¬ (ΣJr1K < ΣJr2K) φf = π ∧ Σ.φ SAT(φf )

〈Σ, if r1 < r2 then pct〉 ⇓P Σ+[φ 7→ φf ]

SEmove-reg
υ = ΣJrhsK R′ = Σ.R[r 7→ υ]

〈Σ, r ← rhs〉 ⇓P Σ+[R 7→ R′]

SEmove-static-fld
υ = ΣJrhsK S′ = Σ.S[@f 7→ υ]

〈Σ,@f ← rhs〉 ⇓P Σ+[S 7→ S′]

SEmove-inst-fld
υ = ΣJrhsK l = ΣJroK o = Σ.H[l] H ′ = Σ.H[l 7→ o[@f 7→ υ]]

〈Σ, ro.@f ← rhs〉 ⇓P Σ+[H 7→ H ′]

SEmove-arr
υ = ΣJrhsK l = ΣJraK α = Σ.H[l]

α.@c = @c′ array υ.@c ≤ @c′ i = ΣJriK H ′ = Σ.H[l 7→ α[i 7→ υ]]

〈Σ, ra[ri]← rhs〉 ⇓P Σ+[H 7→ H ′]

SEbop
υ = (ΣJrs1K⊕ ΣJrs2K) R′ = Σ.R[rd 7→ υ]

〈Σ, rd ← rs1 ⊕ rs2〉 ⇓P Σ+[R 7→ R′]

SEuop
υ = � (ΣJrsK) R′ = Σ.R[rd 7→ υ]

〈Σ, rd ← � rs〉 ⇓P Σ+[R 7→ R′]

Figure 2.8: Symbolic semantics for µ-Dalvik statements.

the path condition. SEif-false is similar, permitting fall-through if the guard is

satisfiable. Notice that these rules may be simultaneously valid, hence we have non-

determinism in the semantics. As is standard in symbolic execution, we can choose

whatever heuristics we like to decide whether to explore zero, one, or both possible

branches.

Rules SEmove-reg evaluates the right-hand side subexpression and then

updates the current register file. Rules SEmove-arr, SEmove-inst-fld, and

SEmove-static-field are analogous, updating the appropriate array element, in-
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stance field, or static field. Rule SEmove-arr checks whether the given value is a

subtype of the contents type, as mentioned earlier. Rules SEbop and SEuop com-

pute a binary or unary expression and store the results in the appropriate register.

Rule SEnew-obj allocates a new object in the heap, giving it the appropriate

class and an empty set of fields. Note that we do not call a constructor here—

Dalvik bytecode will contain an explicit call to method <init> to initialize any

object fields. Rule SEnew-arr is analogous, initializing the array elements with

null values. Notice here we require that the type passed to newarray is an array

type, which is also required in Dalvik [8]. Rules SEcast and SEinstance-of

check subtype relations defined in Figure 2.6, and either allow the cast or return the

appropriate boolean value. Note that, for simplicity, we do not model exceptions

in these semantics; hence a failed cast is simply not allowed, rather than raising an

exception.

Rules SEcall-static, SEcall-dyn and SEreturn model method call and

return. Both method call rules look up the appropriate method, in the dynamic

case from the receiver object. We omit the definition of lookup, which is standard.

The Dalvik virtual machine conforms to the ARM architecture’s calling convention,

in which the caller and callee share part of their register files; thus, the caller passes

arguments by setting the appropriate range of registers. We do the same in µ-Dalvik,

to make the translation from Dalvik to µ-Dalvik simple. We assume here the lookup

function returns the first register ri that should be set as a parameter. In dynamic

dispatch, that first register is set to the receiver object. In both cases we advance

the current program counter (so that return will continue at the correct instruction)
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〈Σ, s〉 ⇓P Σ′

SEnew-obj
o = 〈@c, ∅〉 ` /∈ dom(Σ.H) H ′ = Σ.H[` 7→ o] R′ = Σ.R[ro 7→ `]

〈Σ, ro ← new @c〉 ⇓P Σ+[H 7→ H ′][R 7→ R′]

SEnew-arr

j = ΣJriK α = 〈@c array, [

j︷ ︸︸ ︷
null, . . .]〉

` /∈ dom(Σ.H) H ′ = Σ.H[` 7→ α] R′ = Σ.R[ra 7→ `]

〈Σ, ra ← newarray @c array[ri]〉 ⇓P Σ+[H 7→ H ′][R 7→ R′]

SEcast
β = ΣJrsK β.@c ≤P @c′ R′ = Σ.R[rd 7→ β]

〈Σ, rd ← (@c′) rs〉 ⇓P Σ+[R 7→ R′]

SEinstance-of
β = ΣJrsK R′ = Σ.R[rd 7→ (β.@c ≤P @c′)]

〈Σ, rd ← rs instanceof @c′〉 ⇓P Σ+[R 7→ R′]

SEcall-static
bm, ri = lookup(P,@m)

R′ = {ri 7→ ΣJr1K, . . . , ri+n−1 7→ ΣJrnK}
C ′ = 〈0, bm, R′〉 :: Σ.C

〈Σ,@m(r1, . . . , rn)〉 ⇓P Σ+[C 7→ C ′]

SEreturn
C :: C ′ = Σ.C

R′ = C ′.R[rret 7→ ΣJrretK]
〈Σ, return〉 ⇓P Σ[C 7→ C ′][R 7→ R′]

SEcall-dyn
` = ΣJrthisK o = Σ.H[`] bm, ri = lookup(P,@m, o)
R′ = {ri 7→ `, ri+1 7→ ΣJr1K, . . .} C ′ = 〈0, bm, R′〉 :: Σ.C

〈Σ, rthis.@m(r1, . . . , rn)〉 ⇓P Σ+[C 7→ C ′]

SEsym
fresh(x) R′ = Σ.R[r 7→ x]

〈Σ, r ← sym〉 ⇓P Σ+[R 7→ R′]

SEassert
¬SAT(¬ΣJrK)

〈Σ, assert r〉 ⇓P Σ+

Figure 2.9: Symbolic semantics for µ-Dalvik statements (cont’d).

and push another frame onto the call stack. Rule SEreturn models return, which

copies the value from a special return register rret from the callee back to the caller,

and pops the call stack.

Finally, the last two rules are for symbolic execution. The rule SEsym intro-

duces a fresh symbolic variable, and SEassert checks that the argument assert is

always true (i.e., that its negation is not satisfiable).
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SEseq
〈Σ, s〉 ⇓P Σs s′ = Σs.b[Σs.pc] 〈Σs, s

′〉 ⇓P Σn

〈Σ, s〉 ⇓P Σn

SEprogram
L = 0, bdrv, ∅ Σinit = 〈L, true, ∅, ∅〉 s = bdrv[0] 〈Σinit, s〉 ⇓P Σf

` P ⇒ Σf

Figure 2.10: Symbolic execution for µ-Dalvik

Based on the rules in Figures 2.8 and 2.9, rules in Figure 2.10 define how

to execute µ-Dalvik program symbolically. The rule SEseq executes the current

statement s, and moves to the next designated statement. Finally, the rule SEpro-

gram explains how to execute µ-Dalvik program symbolically. Note that, unlike

general programs, Android applications do not have an explicit entry point, such

as main function. Thus, we will execute the app via “driver” codes that literally

drive the app as desired. After initializing all the elements inside the state, the rule

SEprogram starts the symbolic execution by running driver codes.

Additional Instructions. Our formalism includes almost every feature in our

implementation (and thus almost every feature of Dalvik), except for two. First,

we omitted Dalvik’s array-length instruction; SymDroid includes the same in-

struction, and its semantics is straightforward to implement. (Using a separate

instruction rather than making it a unary operator was an arbitrary choice.)

Second, we omitted exception handling and propagation from our formalism,

but these can be supported with some minor tedium: First, we need to attach excep-

tion handlers to method definitions, and add a rule that searches for an appropriate

26



1 module IntMap = Map.Make(int)

2 type value = (∗ υ ∗)
3 | Const of const (∗ c ∗)
4 | Loc of loc (∗ ` ∗)
5 | Sym of SMT.exp (∗ π ∗)
6 type regs = value IntMap.t (∗ R ∗)
7 type l state = pc ∗ instr list ∗ regs (∗ L ∗)
8 type c stack = l state list (∗ C ∗)
9 type block = (∗ β ∗)

10 | Obj of ( id c ∗ value IntMap.t) (∗ o ∗)
11 | Arr of ( id c ∗ value IntMap.t) (∗ α ∗)
12 type heap = block IntMap.t (∗ H ∗)
13 type static = value IntMap.t (∗ S ∗)
14 type state = c stack ∗ SMT.exp ∗ heap ∗ static (∗ Σ ∗)

Figure 2.11: Implementation of semantic domains.

handler and changes the control-flow accordingly when an exception is raised. Sec-

ond, for the case when an exception is raised but there is no handler, we need a

rule to propagate that exception to the caller. SymDroid includes both of these

features and the corresponding instruction throw. Recall that, compared to more

than 200 Dalvik bytecode instructions, µ-Dalvik has just 16 instructions, which are

made up of 14 instructions shown in the syntax as well as array-length and throw

instructions.

2.2.3 Implementation

Figures 2.11, 2.13, and 2.14 sketch our implementation, which follows the formal

system very closely. Figure 2.11 shows the OCaml definitions matching the formal

semantic domains from Figure 2.5; we omit some definitions of primitive types such

as pc etc. Notice that the representation of symbolic expressions comes from the

SMT solver (type SMT.exp).
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15 val deref H : state → loc → block
16 val adv pc : state → state
17 val upd pc : state → pc → state
18 val upd R : state → reg → value → state
19 val upd H : state → loc → block → state
20 val upd o : block → id f → value → block

Figure 2.12: Interfaces of utility functions.

Figure 2.12 lists the types of some utility functions whose names are self ex-

planatory. For instance, deref H is used to retrieve a memory block in the heap;

adv pc advances the program counter; and upd R updates the register file.

Then, Figure 2.13 gives a partial definition of the step function, which corre-

sponds to the 〈Σ, s〉 ⇓P Σ′ relation in Figures 2.8 and 2.9. The input to step is a

Dalvik bytecode file (of type dex), a program state, and a bytecode instruction, and

the output is a pair containing a state and a state option; the latter is None in all

cases except at a conditional branch when both branches are possible.

We give code for a few of the instruction handlers, for illustration. The first

case, for Mu move, evaluates the right-hand side and then updates the state appro-

priately depending on whether the left-hand side is a Register (SEmove-reg), an

instance field (SEmove-inst-fld), and so on. The second case, for Mu sym, gets

a fresh symbolic variable from the SMT solver and updates the corresponding reg-

ister. The last case, Mu if, checks satisfiability of the guard and the negated guard

cojoined with the current path condition, and then returns the state updated with

the new pc(s). Notice in the code for Mu if, the last match case, when both branches

are unsatisfiable, should never occur unless there is a bug in SymDroid.
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21 let step (p: dex) (st : state ): state ∗ state option = function
22 | Mu move (lh, rh) →
23 let v = eval st rh in
24 ( match lh with
25 | Register r → adv pc (upd R st r v)
26 | InstFld (ro , f) →
27 let l = eval st ro in
28 let o = deref H st l in
29 let o’ = upd o o f v in
30 adv pc (upd H st l (Obj o ’)), None
31 | ... )
32 | Mu sym r →
33 let x = SMT.fresh var () in
34 adv pc (upd R r (Sym x)), None
35 | Mu if (r1 , cmp, r2, pc) →
36 let v1 :: v2 ::[] = List .map (fun r → eval st r) [ r1 ; r2 ] in
37 let pi t :: pi f ::[] = ... in
38 let sat :: n sat ::[] = List .map (fun pi → SMT.query pi) [ pi t ; pi f ] in
39 ( match sat, n sat with
40 | true , true → upd pc st pc, Some (adv pc st)
41 | true , false → upd pc st pc, None
42 | false , true → adv pc st , None
43 | false , false → raise Infeasible )
44 | ...

Figure 2.13: Implementation of symbolic semantics.

Finally, Figure 2.14 shows the function vm that orchestrates the whole symbolic

execution process. It maintains a (mutable) queue worklist of states to explore. After

adding the initial state (which sets the pc to the beginning of the code passed as

drv), the vm function repeatedly picks a state off the worklist, single-steps it, and

then updates the worklist with the resulting state(s).

Notice that this implementation explores all possible program paths; in prac-

tice we must carefully limit the use of the Mu sym instruction so that full path

exploration is feasible. On the other hand, it would be very easy to modify this

driver to include heuristics for exploring a subset of paths [17, 34, 55].

Note also one other important design decision here: The state of the symbolic
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45 val worklist : state Queue.t

46

47 let vm (p: dex) (drv: mu instr list ) =

48 let local st = 0, drv, IntMap.empty in

49 let init st =

50 local st , SMT.true, IntMap.empty, IntMap.empty in

51 Queue.add init st worklist ;

52 while not (Queue.is empty worklist ) do

53 let st = Queue.pop worklist in

54 let ins = Dex.get ins dx st .pc in

55 let st1 , so = step st ins in

56 Queue.add st1 worklist ;

57 match so with Some st2 →Queue.add st2 worklist | → ()

58 done

Figure 2.14: Implementation of symbolic execution driver.

executor is fully captured in state, which is a purely functional data structure. This

makes path exploration very easy, since we can explore executions in any order.

In contrast, symbolic executors that actually run the program under test on the

underlying system [33, 75] must be careful that side effects from different executions

do not interfere with each other (see Section 3.10 for more discussion).

2.3 Manual Model of Android

To symbolically execute Android apps, we not only need to model each bytecode in-

struction, but we also need to model the platform that apps run on top of. Modeling

the platform is challenging even for C programs [17, 88], but in our opinion it is even

harder for Android, as there are many system libraries; the platform itself is quite

large and complex; apps have several different entry points; and the interaction with

Android is quite involved, with various layers of callbacks.

Thus, in our preliminary work, we manually implemented only as much of
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a model as we need to carry out our particular case study (Section 2.4). The

challenge of more fully modeling Android is the motivation of synthesizing a model

of frameworks (Chapter 3). To motivate that challenge, we briefly explain the three

main portions of our current model: system libraries, system services and views,

and the component lifecycle. Full details are discussed in a technical report [43].

2.3.1 System Libraries

On Android, third-party libraries are statically linked with apps, but system libraries

and the Java standard libraries are loaded at run time to reduce app size. Thus,

SymDroid includes the ability to add “hooks” in for invocation rules that are invoked

when the target method body is not in the app code (and thus it must be dynamically

linked, assuming type safety). These hooks then transfer control to our manual

model of Android that implements the desired functionality.

We found that two of the most important system classes to model are Intent

and Bundle, which are used to pass information between the system and an app, and

between components of an app; SymDroid includes special internal support for both

classes. In more detail, a Bundle is essentially a mapping from arbitrary string keys

to values, and it is up to the sender and receiver of a Bundle to agree on the meaning

of any particular element in the mapping. SymDroid stores Bundle keys and values in

the field map for the Bundle object. Intents are used to specify component names to

launch. Intents may also include extra Bundle-style key-value mappings, e.g., added

with intent.putExtra(“aa”, υ1). As with Bundles, we add those mappings directly to
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59 String name = Context.LOCATION SERVICE;

60 LocationManager lm =

61 (LocationManager)getSystemService(name);

62 Location l = lm.getLastKnownLocation(...);

(a) System services.

63 setContentView(R.layout. start );

64 Button b =

65 (Button)findViewById(R.id.startButton );

66 b. setOnClickListener (...);

(b) View object via findViewById.

Figure 2.15: Code snippets that retrieve runtime instances.

the field set of an Intent object. In addition to the above two classes, SymDroid

has a partial model for the basic components of Android, including Context, View,

and Activity. Additionally, SymDroid currently includes partial support for several

commonly used Java libraries, including String, StringBuilder, Object, Class, and Integer.

For those methods that are not modeled yet, SymDroid returns symbolic values with

the return type of the invoked method. (Although method bodies for system libraries

are not included in the bytecode, their signatures are declared in it, thus we can

retrieve return types.)

2.3.2 Runtime Instances

In the process of building a model of the Android platform, we found that several

key methods in Android return a variety of different object types, depending on their

arguments. We also found that such instance retrievals from the environment have

a common pattern: returning an instance of generic types and downcasting before

using it. Figure 2.15 shows such usage patterns for system services and runtime View

objects on the screen. System services are associated with unique service names,

and View objects are distinguishable by their distinct ids. Thanks to these features,

we can easily support such on-demand runtime instances: we extend state Σ to
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have two additional components for system services and View objects; generate an

instance on demand; and make a mapping from a service name or a resource id to

the newly generated instance. SymDroid keeps consistency by returning the same

instance when it is accessed later.

2.3.3 Component Lifecycle

Android apps run under quite a different model than standard desktop applications.

Rather than have a main method at which execution begins, Android apps instead

declare (in an XML “manifest” file) which components respond to which Intents, and

apps begin execution at these points when the system’s ActivityManager receives a

corresponding Intent. These Intents could be sent from another app (e.g., apps often

use this feature to launch the web browser to show a particular web page) and are

even sent when starting an app from the home screen: tapping an app’s icon sends

an Intent to the app’s launcher activity.

Moreover, even once an app is launched, apps are largely event-driven. Apps

dynamically register various event handlers (e.g., for GUI events or for handling ad-

ditional Intents), and control flow alternates between app code and the system’s event

dispatch loop. This is again in contrast to more standard, non-reactive systems.

For symbolic execution purposes, we need to model all of this behavior. We

chose to use client-oriented specifications [39] (co-spec) to model the system side of

an app’s execution. It is up to the developer to write such specifications so that they

drive the app under test as desired. In our preliminary work, we manually wrote
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67 class Driver {
68 public static void main(String [] args) {
69 String comp = ”Lcom/.../PickContact;”;

70 Object o = Mock. new (comp);

71 Mock. invoke (o, ”onCreate”, null );

72 Mock. click rand ();

73 }
74 // android.app. Activity . startActivityForResult (...)

75 public static void startActivityForResult (Object receiver , Intent i , int req) {
76 ... // the designated Activity is invoked

77 Object res = Mock. new sym (‘‘res’ ’ );

78 Mock. invoke ( receiver , ” onActivityResult ”, req, res , i );

79 }
80 // android.content.ContentResolver.query (...)

81 public static Cursor query(Object receiver , Uri uri , ...) {
82 String contacts = ”content://com.android.contacts”;

83 assert (! uri .getPath(). startsWith(contacts ));

84 ... // invokes the corresponding system API

85 } }
86 class Mock {
87 public static Object new ( String ty) { }
88 public static Object invoke (Object this , String mtd, Object ... args) { }
89 public static void click rand () { }
90 public static Object new sym (String var) { }
91 ...

92 }

Figure 2.16: Example client-oriented specification.

drivers as well as properties of interest, and we propose to automatically generate

them via program synthesis in Section 5.1.1 and Section 5.1.2, respectively.

For example, consider the specification code in Figure 2.16. This code defines

a class Driver with a main() method; SymDroid uses this as the entry point for

symbolic execution. The main() method first launches the PickContact activity of

the app under test (lines 69–71) by calling its onCreate method [10]. In turn, this

method registers several callbacks for button clicks, and then passes control back to

the system.

Now SymDroid continues with Driver.main(), which clicks on a non-deterministically
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chosen button (line 72). This is a symbolic execution branch point, where symbolic

execution will fork for all possible button clicks. A simulated button click turns into

a callback to the handler that was registered for that button.

Afterward, system-supplied methods will be treated specially by SymDroid.

If those methods are re-defined in Driver, e.g., startActivityForResult() and query() in

Figure 2.16, SymDroid passes control to Driver code, where we can, again, simulate

the component lifecycle (line 78) or check properties of interest, e.g., that the par-

ticular query was not for contacts (line 83). Otherwise, as we discussed earlier, the

control goes to the modeled APIs inside SymDroid.

Notice that in the example, Driver performs invocations using class Mock, which

has various unimplemented methods. This class is specially recognized by SymDroid,

which ignores Mock method bodies and instead performs the action specified by the

method name, e.g., creating a new instance of the given type string, invoking a

method, etc. We use Mock rather than calling app methods directly because doing

the latter would require linking against the app code, which would be complicated

because we expect SymDroid may often be used without direct access to app source

code.

2.4 Preliminary Experiments

We performed two kinds of experiments to evaluate SymDroid. First, we ran Sym-

Droid against the Android Compatibility Test Suite (CTS) [7], which tests whether

a Dalvik virtual machine implementation is correct. Our results suggest that Sym-
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Droid’s translation to µ-Dalvik and semantics thereof are correct. Second, we used

SymDroid to determine the conditions under which certain privileged system calls

would be invoked by a chosen activity in a target app. This case study, while

preliminary, demonstrates how SymDroid might be used in practice.

2.4.1 Compatibility Test Suite

We ran SymDroid against the Compatibility Test Suite version 4.0, which contains

93 test cases. We found that SymDroid passes 26 of the test cases. We manually

inspected the failing test cases and concluded that all of them were due to unimple-

mented system libraries (recall we only implemented as much of Android as needed

for our case study). Thus, despite the seemingly low coverage, SymDroid passed all

of the CTS tests it could be expected to pass without a complete system model. We

leave implementing the remaining libraries (including reflection, various I/O Streams

and Buffers, the System class, and several others) as future work.

Next, we compared the performance of SymDroid (compiled to native code

with OCaml version 3.12.1) to a Java virtual machine (Java 1.6.0 33) and a Dalvik

virtual machine (the Dalvik VM from the Android source branch 4.0.4 as of July 2,

2012). Figure 2.17 summarizes the results for the 26 test cases that passed. For each

test case, the figure lists its size (in terms of its Java source code), the size of the

corresponding Dalvik bytecode file, and its number of Dalvik bytecode instructions.

The next three columns report the test case’s running time on the DVM, SymDroid,

and JVM. The reported performance is the average of ten runs on a 1.8 GHz Intel
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DEX # Time (s)
Name LoC (B) Ins DVM SymDroid JVM

005-args 20 2,004 121 0.066 0.139 (2.1x) 0.257 (3.9x)
006-count10 8 720 10 0.072 0.124 (1.7x) 0.261 (3.6x)
007-exceptions 25 1,232 26 0.068 0.133 (2.0x) 0.249 (3.7x)
008-instanceof 63 2,684 102 0.070 0.122 (1.7x) 0.292 (4.2x)
009-instanceof2 59 2,380 64 0.069 0.154 (2.2x) 0.259 (3.8x)
012-math 78 2,696 382 0.062 0.120 (1.9x) 0.263 (4.2x)
013-math2 10 940 15 0.064 0.128 (2.0x) 0.261 (4.1x)
015-switch 80 2,576 217 0.065 0.126 (1.9x) 0.249 (3.8x)
017-float 14 1,212 53 0.065 0.126 (1.9x) 0.260 (4.0x)
019-wrong-array-type 13 960 18 0.066 0.124 (1.9x) 0.249 (3.8x)
022-interface 52 2,080 50 0.077 0.121 (1.6x) 0.302 (3.9x)
026-access 14 952 15 0.063 0.115 (1.8x) 0.248 (3.9x)
029-assert 12 1,276 29 0.066 0.121 (1.8x) 0.255 (3.9x)
034-call-null 14 1,188 28 0.072 0.128 (1.8x) 0.279 (3.9x)
038-inner-null 24 1,680 31 0.066 0.123 (1.9x) 0.251 (3.8x)
040-miranda 58 2,612 151 0.063 0.125 (2.0x) 0.289 (4.6x)
043-privates 33 1,816 105 0.061 0.123 (2.0x) 0.247 (4.0x)
047-returns 46 1,868 83 0.065 0.121 (1.9x) 0.263 (4.0x)
052-verifier-fun 90 2,276 80 0.067 0.124 (1.9x) 0.262 (3.9x)
056-const-string-jumbo 6 1,158K 17 0.069 3.207 (46x) 0.248 (3.6x)
076-boolean-put 20 1,580 31 0.063 0.118 (1.9x) 0.251 (4.0x)
081-hot-exceptions 23 1,688 45 0.066 0.129 (2.0x) 0.284 (4.3x)
085-old-style-inner-class 25 2,120 87 0.067 0.121 (1.8x) 0.255 (3.8x)
090-loop-formation 31 1,488 94 0.067 0.494 (7.1x) 0.280 (4.0x)
091-deep-interface-hierarchy 48 5,396 10 0.070 0.122 (1.7x) 0.319 (4.6x)
095-switch-MAX INT 9 964 12 0.067 0.121 (1.8x) 0.259 (3.9x)

Figure 2.17: Results for Android compatibility test suite.

Core i7 with 2 GB RAM, running 64-bit Ubuntu 12.04.

In almost every case, the DVM is the fastest, followed by SymDroid (about

twice as slow), followed by the JVM (another factor of two slower). The one ex-

ception to this trend is 056-const-string-jumbo, for which SymDroid is dramatically

slower than either the DVM or JVM. We investigated this further, and found that

SymDroid’s core is very fast in this case, and what is taking most of the time is

unpacking the apk (which is extremely large). The DVM and JVM take a .jar file as

input, and apparently need not pay the same cost. Nonetheless, SymDroid is sur-

prisingly fast, and we expect its performance to be adequate in practice, especially
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as SymDroid will be run on desktop machines that are much more powerful than

the mobile devices the DVM would more typically be run on.

2.4.2 Case Study: Finding Privileged Calls

There are many possible ways to use SymDroid, as the literature on symbolic exe-

cution in general suggests [53, 14, 41, 66, 33, 75, 17, 34, 70]. To get a sense for how

SymDroid might be used in practice, we applied it to the problem of discovering

under what conditions various privileged system calls could be made.

In more detail, Android’s security model includes permissions that protect

sensitive platform APIs, such as access to the Internet, telephony, GPS, and so on.

At app installation time, the user is presented with the set of permissions requested

by an app. The user can then decide to proceed with installation, in which case all

permissions are granted to the app; or the user can abort installation. While this

model shows the user what permissions apps request, it does not explain why those

permissions are needed, and under what circumstances they will be used. With

SymDroid, however, we can find this information out.

For purposes of this initial study, we decided it was particularly convenient

to analyze an app whose source code was available. Thus, we elected to study the

Android API demonstration app, which is included in the Android SDK [9]. We

looked in detail at one of this app’s activities (an Activity essentially corresponds to

a screen shown to the user): PickContact, which lets the user select a single contact

from the contacts database on the phone.
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Figure 2.18: Sequence of screens in the PickContact Activity.

PickContact Figure 2.18 shows a sequence of screenshots from PickContact.1 On

the left is the initial screen displayed when PickContact is launched within the demo

app. The user is presented with four choices to filter the set of contacts that will

be shown—any contact, those that are for a person, those with a phone number, or

those with an address. In this case, we clicked on the Pick a Contact button. The

app then sends an Intent to the standard Android contacts app, which launches that

app (if it is not already running) and brings up the contact picker window, shown

in the middle screenshot. We click to select a contact, and then control passes back

to PickContact, which displays the URI for the selected contact on screen.

We wanted to use SymDroid to investigate under what conditions PickCon-

tact’s READ CONTACTS permission was used in this sequence of events. Somewhat

confusingly, it is not used when the contact picker is launched, as that is done in a

1The misspellings in the screenshots are that way in the app source code.
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93 public class PickContact extends Activity {
94 class ResultDisplayer implements OnClickListener {
95 String mMimeType;

96 ResultDisplayer ( String msg, String mimeType) {
97 mMimeType = mimeType;

98 }
99 public void onClick(View v) {

100 Intent intent = new Intent(Intent.ACTION GET CONTENT);

101 intent .setType(mMimeType);

102 ...

103 startActivityForResult ( intent , 1);

104 } }
105 @Override

106 protected void onCreate (Bundle saved) {
107 ((Button)findViewById(R.id. pick contact )). setOnClickListener (

108 new ResultDisplayer (‘‘ Selected contact ’ ’ ,

109 ContactsContract.Contacts.CONTENT ITEM TYPE));

110 // set three more call−back listeners

111 }
112 @Override

113 protected void onActivityResult ( int req , int res , Intent data) {
114 if (data 6= null) {
115 Uri uri = data.getData();

116 if ( uri 6= null) {
117 Cursor c = getContentResolver().query (...);

118 ...

119 } } } }

Figure 2.19: PickContact source code (excerpt).

different app on the phone, which runs in its own process and has its own separate

set of permissions. Thus, for example, if the user gets to the contact picker but then

clicks the back button, PickContact will not try to read any contact information.

The permission will only be used if the user actually selects a contact, in which case

PickContact will query the contacts database. (The id returned from querying the

contacts database is shown in the right screenshot in Figure 2.18.)

Figure 2.19 gives a portion of the source code for the PickContact activity.

Recapping some of the earlier discussion, when this activity is started, its onCreate()
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method on line 106 is called. This method sets callbacks for the four buttons shown

in the left screenshot in Figure 2.18; the code for setting one callback is shown on

lines 107–109. In this case, the callbacks are instances of the ResultDisplayer class

parameterized by the mime type of the contacts to select.

When a button is clicked, the corresponding callback is invoked, in this case

calling the onClick() method on lines 99–104. This method then creates an Intent for

the contact picker app (the Intent kind is specified on line 100) and launches it on

line 103. When this returns, the system automatically calls onActivityResult() of the

Intent sender (line 113), which then performs the query call (line 115) that actually

requires the READ CONTACTS permission. Notice that this call will not occur if no

contact is selected (e.g., if the user clicked the back button), as in that case data

will be null. (The uri null check is an extra sanity check; that should always be

non-null.)

We ran SymDroid against this program using the co-spec in Figure 2.16. Recall

that in this case, there are four symbolic variables: three for onActivityResult parame-

ters (req, res, data) and one for information retrieved from another symbolic variable

(uri). SymDroid explored a total of 16 different paths, and 4 of them included a

privileged call that used READ CONTACTS:

privilege call :
android.content.ContentResolver→ query

requires READ CONTACTS
where NOT(sym3 = 0x0) AND NOT(sym3.getData = 0x0)

We can see that the only path triggering the condition is along the path when neither

the data (corresponding to sym3) nor uri (corresponding to sym3.getData, as it was

derived by calling getData on sym3) fields are null. This corresponds to the case when
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the user did not close the contact picker without selecting a contact, and the contact

they picked does indeed exist in the phone’s database. The path condition does not

include the check indicating that asserts the path begins with the URI specific to

the contacts database. However, while this path condition is asserted, the co-spec

uses only concrete instances of strings, rather than symbolic strings (as SymDroid

currently does not support symbolic strings). We verified manually that this is the

correct set of path conditions leading to privileged calls in this example.

Over all paths, SymDroid executed a total of 4,462 µ-Dalvik instructions,

which included 54 system calls that were hooked specially by SymDroid. The average

of ten runs on the same machine on which CTS tests were conducted is 30.93 seconds.

This running time shows, again, that SymDroid is fast enough to analyze real apps.

2.5 Literature Review

Concolic vs. Pure. Symbolic executors can roughly be divided into two kinds.

The first kind, so-called concolic executors, perform symbolic execution at program

run time by shadowing underlying concrete system values with symbolic expres-

sions [33, 75]. When faced with a call to unavailable (library or system) code,

concolic executors can simply call the actual external code with the underlying con-

crete values, extending the path condition to constrain the corresponding symbolic

expression to equal the concrete value.

The second kind of symbolic executors are “pure” in the sense that they do

not directly execute the subject program on the underlying platform. KLEE [17],

42



Otter [70], and SymDroid are examples of this kind of symbolic executor. The main

drawback to this approach is the significant effort required to model the underlying

system. To address this limitation, we propose to automate the process of generating

a model of framework via program synthesis in Chapter 3.

Search Strategy. Orthogonally to the type of symbolic executor, another key

research area has been search strategies to allow symbolic executors to find “inter-

esting” executions to explore, since in practice symbolic execution cannot cover all

paths. KLEE [17] uses a round-robin-based heuristic that attempts to reach the

closest uncovered nodes in the control-flow graph. SAGE [34] maintains a coverage-

guided worklist to explore execution paths in a generational order. Otter [55] ex-

plored shortest-distance symbolic execution and call-chain-backward symbolic exe-

cution to target particular lines of interest. Researchers have also begun exploring

how to symbolically execute multi-threaded programs [88, 16] As many Android

apps include some threading (although typically not in the main part of the app,

which is single-threaded), these techniques could be useful for developing a symbolic

executor for Android.

Applications to Android. The most closely related work is ACTEve [5], a

concolic executor for Android apps. The key contribution of ACTEve is mimick-

ing user interactions by automatically generating event sequences. SymDroid, in

contrast, requires the user to write a driver to reflect app usage. ACTEve uses

ded [28, 64] to translate from Dalvik to Java bytecode, and then performs symbolic
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execution inside of Soot. It is unclear how ACTEve deals with Android framework

code, as it does not run on top of Android. Another closely related study is a model

of Android libraries [62] in Java PathFinder (JPF) [71], which includes stub classes

to resolve incompatibility with Java and mock classes for Android’s own compo-

nents. Similar to SymDroid, it also use drivers to steer JPF toward program points

of interest.
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Chapter 3: Framework Synthesis for Symbolic Execution

In this chapter, we take a first step toward automatically synthesizing framework

models by introducing Pasket (“Pattern sketcher”) [48], a tool that synthesizes

Java framework models by instantiating design patterns. The key idea behind Pas-

ket is that many frameworks use design patterns heavily, and that use accounts

for significant control and data flow through the framework. For example, consider

an Android application that creates a button, registers a callback for it, and later

receives the callback when the button is clicked. A symbolic executor that simulates

only application code would miss the last step, since the control transfer to the call-

back happens in the framework. The button click callback mentioned above is an

instance of the Observer pattern [29]. Thus, by creating a model that includes an

equivalent instantiation of the observer pattern, Pasket helps symbolic execution

tools discover control flow that would otherwise be missed.

3.1 Overview

Figure 3.1 gives an overview of Pasket. Its two main inputs are a set of tutorial

programs that exercise relevant parts of the framework, and a summary of the

framework API to be modeled. For scalability of the synthesis problem, Pasket is
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Figure 3.1: Pasket architecture.

designed to be used with tutorial programs that each exercises a small part of the

framework, and Pasket then combines the information from each tutorial into a

full model. In the case of Swing, for example, Oracle provides tutorials for buttons,

checkboxes, and similar components, which are ideal for this purpose [65].

The framework API information can be extracted from the JAR or AAR files

of the framework, although some user input is needed to select the parts of the

framework API that should be modeled. This API provides the skeleton of the

expected model. Pasket’s goal is to generate code for that skeleton—insert the

bodies of constructors and methods—to yield a model that can be used to analyze

the tutorial programs and that, ideally, will also generalize to larger programs that

use the same parts of the framework.

Behavioral Constraints. As a first step in the model creation process, the logger

component inside Pasket executes the tutorial programs (perhaps requiring user

interaction with the tutorial) and logs the method names, arguments, and return

values that cross the boundary between the tutorial code and the framework (Calls
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internal to the framework are omitted from the log). For instance, in the Swing

button callback example, the user would run the application and press the button

while the logger records the execution. The log would therefore capture the button

creation, registration, and callback, including the precise identities of the objects,

so it captures the fact that the registered object is the one being called back when

the button is clicked.

These captured logs serve as a behavioral specification for the synthesis pro-

cess: the synthesizer aims to produce a model that achieves log conformity with the

original program, meaning if the application were to run using the model code in

place of the framework code under the same user inputs, we would observe the exact

same sequence of calls as in the original log. Section 3.3 details this.

Structural Constraints. To produce a model, the log conformity requirement

must be combined with a structural hypothesis to limit the space of possible models.

In Pasket, this structural hypothesis comes from Pasket’s internal knowledge of

design patterns. The idea is that by limiting the search to models that implement

design patterns we know to be used by the actual framework, we increase the like-

lihood the synthesized model will generalize and behave correctly with other appli-

cations. Pasket currently supports four main design patterns: Observer, Accessor,

Adapter, and Singleton. Section 3.4 explains how these patterns are instantiated to

match the given API and produce models satisfying log conformity.
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Implementation. Pasket uses the Sketch synthesis system to search for log-

conforming instantiations of the design patterns (hence the “sketcher” part of the

name Pasket) [80]. Sketch’s input is a sketch that describes a space of programs

and a set of semantic constraints, usually given as assertions the synthesized pro-

gram must satisfy. Sketch uses a symbolic search procedure to find a program in

that space that satisfies the constraints. Section 3.5 discusses Pasket’s Encoder

component, which translates the client app, logs, framework API, and design pattern

information into a sketch whose solution solves the Pasket synthesis problem.

The encoded synthesis problems are quite challenging due the large number

of possible design pattern instantiations as well as the difficulty of reasoning about

dynamic dispatch. Despite this, the problems are made tractable using recent re-

search on combining constraint-based synthesis with explicit search, together with

a careful encoding that allows the synthesizer to efficiently rule out large numbers

of incorrect solutions.

Evaluation. We used Pasket to produce a model of the Java Swing GUI frame-

work and the Android framework. For Swing, we used ten tutorials distributed by

Oracle. Synthesis took just a few minutes, and in the end produced a model consist-

ing of 95 different classes and 2,676 lines of code, making it one of the largest pieces

of code ever synthesized using constraint-based synthesis. For Android, we used

three tutorials gathered from the web. Synthesis took a few seconds and produced

a model consisting of 50 different classes and 1,419 lines of code.

We validated the models in three ways. First, we ran the Swing tutorials
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against the synthesized Swing model and checked that they match the original logs.

Second, we ran the Swing tutorials under Java PathFinder [71] (JPF). We found we

could successfully execute eight of the ten tutorials (two tutorials are not supported

by JPF’s event generating system), while JPF’s own model failed due to some miss-

ing methods. Finally, we selected eight code examples from O’Reilly’s Java Swing,

2nd Edition [54] that use the same part of the framework and verified that they run

under JPF using our merged model. We also selected two Android code examples

and verified they run under SymDroid, a Davlik bytecode symbolic executor [43],

using our merged model. (Section 3.7 describes our experiments.)

Scope and Limitation. Pasket’s main focus is to generate a symbolically exe-

cutable model whose control-flow behaviors conform to the original framework. As a

specification of control-flow behaviors, Pasket inputs logs composed of call–return

sequences, where we can observe implicit control-flows between apps and the frame-

work. To dramatically reduce the search space of candidate model implementations,

Pasket exploits its knowledge about design patterns and reduces the framework

synthesis to finding proper instantiations of design patterns.

Pasket’s approach will work well on certain features of the framework if the

corresponding behaviors are observable from outside the framework and underlying

structures can be expressed as any code patterns. On the other hand, Pasket’s

approach will not work properly if the feature of interest has side effects (i.e., not

observable via logs) or if the structural hypothesis should be described in very low-

level expressions. An example of the former case is hardware abstraction, such as
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socket or file. An example of the latter case is utility functions in libraries, such as

HashSet, where the detailed implementation might be too specific to be a general

code pattern. (In that case, specifying structural hypothesis requires just same

efforts as writing a corresponding model by hand.)

Properties of Synthesized Models. A model synthesized by Pasket is ab-

stract in the sense that some features of the framework could be safely discarded as

long as those are not related to symbolic execution. At the same time, a model is

neither sound nor complete: a model is unsound as it could encompass wrong be-

haviors that still conform to the logs, the observed behavior while running tutorials;

and a model is incomplete as it may miss some important features of the frame-

work if corresponding tutorials were not provided. Nevertheless, the main benefit of

using Pasket is that we can easily resynthesize an improved model, thanks to Pas-

ket’s semi-automated process. (Section 3.8 discusses the abstraction, soundness

and completeness of synthesized models.)

Contributions. In summary, this chapter makes the following contributions:

• We introduce Pasket, a new tool that takes a first step toward automatically

synthesizing framework models sufficient for symbolic execution.

• We formulate the synthesis problem as design pattern instantiation and show

how to use the framework API and log of framework/client calls to constrain

the design pattern instantiation process. (Sections 3.3 and 3.4)

• We show how to encode the synthesis problem as a Sketch synthesis problem.
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1 class ButtonDemo implements ActionListener {
2 public ButtonDemo() {
3 b1 = new JButton(”Disable middle button”, ...);

4 b1.setActionCommand(”disable”);

5 b2 = new JButton(”Middle button”, ...); ...

6 b3 = new JButton(”Enable middle button”, ...); ...

7 b1.addActionListener(this ); b3.addActionListener(this );

8 add(b1); add(b2); add(b3);

9 }
10 public void actionPerformed(ActionEvent e) {
11 if (” disable ”. equals(e.getActionCommand())) {
12 ...

13 } }
14 private static void createAndShowGUI() {
15 JFrame frame = new JFrame(”ButtonDemo”);

16 ButtonDemo newContentPane = new ButtonDemo(); ...

17 frame.setContentPane(newContentPane); ...

18 } }

Figure 3.2: ButtonDemo source code (simplified).

(Sections 3.5 and 3.6)

• We present experimental results showing Pasket can synthesize a model of

a subset of Swing and a subset of Android, and that model is sufficient to

symbolically execute a range of programs. (Section 3.7)

• We discuss the abstraction, soundness and completeness of synthesized models

in detail. (Section 3.8)

3.2 Running Example

As a running example, we show how Pasket synthesizes a Java Swing framework

model from the tutorial program in Figure 3.2, which is a simplified extract from

one of the tutorials for Java Swing.
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Here the main method (not shown) calls createAndShowGUI (line 14), which

instantiates a new window and adds a new instance of ButtonDemo to it. The

ButtonDemo constructor (line 2) creates and initializes button objects b1 through

b3, each of which are labeled (line 4). The code then registers this as an observer

for clicks to b1 and b3 (line 7) and then adds the buttons to the window. When

either button is clicked, Swing calls the actionPerformed method of the registered

observer (line 10), whose behavior depends on the label of the button that was

clicked (line 11).

In addition to the tutorial, the second input to Pasket is the framework API,

consisting of classes, methods and types. The API is then completed by Pasket to

produce a complete model like the Swing model that is partially shown in Figure 3.3.

The black text in the figure corresponds to the original API given as input; package

names are omitted for space reasons. The rest of the code (highlighted in blue) is

generated by Pasket given a log from a sample run of ButtonDemo. For example,

Pasket discovers that AbstractButton is a subject in the observer pattern—thus it

has a list olist of observers, initialized in the constructor—and its attach method is

addActionListener. The handle and handle 1 methods are introduced entirely by the

synthesizer to model the way in which the AbstractButton invokes the actionPerformed

methods in its registered listeners. In this model, the runtime posts events into

the EventQueue and dispatches them by calling run. The model then propagates

those events to any listeners that have been registered with a button. Pasket also

discovers that EventObject, AWTEvent, and ActionEvent participate in the accessor

pattern, with a field set via their constructor and retrieved via getSource in the case
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19 class EventDispatchThread {
20 private EventQueue q;

21 void run() {
22 EventObject e;

23 while ((e = q.getNextEvent()) != null) q.dispatchEvent(e);

24 }... }
25 class EventQueue {
26 private Queue<EventObject> q;

27 void postEvent(EventObject e) { q.add(e); }
28 void dispatchEvent(EventObject event) {
29 if (event instanceof ActionEvent) {
30 AbstractButton btn = (AbstractButton)event.getSource();

31 btn.handle((ActionEvent)event);

32 } ...

33 } ... }
34 class AbstractButton extends JComponent {
35 private List<ActionListener> olist;

36 AbstractButton() {olist = new LinkedList<ActionListener>();}
37 void addActionListener( ActionListener l ) {olist.add(l);}
38 void setActionCommand(String actionCommand) {// empty}
39 void handle(ActionEvent event) { handle 1(event); }
40 void handle 1(ActionEvent event) {
41 int i=0; while(0¡=i && i¡olist.size && (o=olist.get(i) != null))

42 { l.actionPerformed(event); i=i+1;}
43 } ... }
44 class JButton extends AbstractButton {
45 JButton(String text , Icon icon) { // empty } }
46 class JFrame extends Frame { ... }
47 class EventObject {
48 private Object source;

49 EventObject(Object source) {this.source = source;}
50 Object getSource() {return source;}
51 }
52 class AWTEvent extends EventObject { ... }
53 class ActionEvent extends AWTEvent {
54 priavte String command;

55 ActionEvent(Object source, int id , String command) {
56 super(source, id); this.command = command;

57 }
58 String getActionCommand() {return command;}
59 }

Figure 3.3: Framework API to be modeled (partial). Highlighted code produced by
synthesis.
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of EventObject.

Notice that Pasket abstracts several constructors and methods to have empty

bodies, because this particular tutorial program does not rely on their functionality.

For example, the argument to the JButton constructor is never retrieved. Thus, the

tutorials control Pasket’s level of abstraction. Unneeded framework features can

be omitted and then they will not be synthesized, and framework features can be

added by introducing tutorials that exercise them.

3.3 Logging and Log Conformity

As explained earlier, Pasket executes the tutorial program to produce a log of the

calls between an application and the framework. Figure 3.4 shows a partial log from

ButtonDemo. Each log entry records a call or return. In the figure, this is the first

parameter to each call, and we use indentation to indicate nested calls. Constructor

calls and object parameters are annotated with a Java object id. For example,

JButton@8 is a JButton with object id 8. Using object ids provides us with a simple

way to match the same object across different calls. Thus, the log contains detailed

information about both the values that flow across the API and the sequencing of

calls and returns.

That detailed information is exactly what is needed to sufficiently constrain

the synthesis problem. For example, line 65 has a call to addActionListener with

arguments JButton@8 and ButtonDemo@9. Subsequently, on line 69 an ActionEvent

associated with this button is created and immediately posted into the EventQueue;
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60 ButtonDemo.main()

61 ButtonDemo.createAndShowGUI()

62 ButtonDemo.ButtonDemo@9()

63 JButton.setActionCommand(JButton@8, ‘‘disable’’)

64 JButton.setEnabled(JButton@4, false)

65 JButton.addActionListener(JButton@8, ButtonDemo@9)

66 JButton.addActionListener(JButton@4, ButtonDemo@9)

67 JFrame.setContentPane(JFrame@8, ButtonDemo@9)

68 ...

69 ActionEvent.ActionEvent@7(JButton@8, 0, ”disable”)

70 EventQueue.postEvent(EventQueue@1, ActionEvent@7)

71 EventDispatchThread.run(EventDispatchThread@0)

72 ButtonDemo.actionPerformed(ButtonDemo@9, ActionEvent@7)

73 ActionEvent.getActionCommand(ActionEvent@7)

74 return ” disable ”

75 ...

76 ActionEvent.ActionEvent@5(JButton@4, 0, ”enable”)

77 EventQueue.postEvent(EventQueue@1, ActionEvent@5)

78 EventDispatchThread.run(EventDispatchThread@0)

79 ButtonDemo.actionPerformed(ButtonDemo@9, ActionEvent@5)

80 ActionEvent.getActionCommand(ActionEvent@5)

81 return ”enable”

82 ...

Figure 3.4: Sample output log from ButtonDemo.

after this, the run method in the EventDispatchThread is called. The details of what

happens inside the framework after the call to run are ignored by the logger because it

does not involve methods in the given API. The next log entry in line 72 corresponds

to the framework’s call to the actionPerformed method in the application. It will be

up to Pasket to infer that this sequence of log entries is part of the observer design

pattern. Pasket will then use its knowledge of this pattern to infer the contents of

postEvent, run, and all the other functions that were invoked inside the framework

to eventually call actionPerformed.

As another example, line 73 shows getActionCommand returning the string “dis-
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able”, which was set in the setter on line 63. Thus, again given Pasket’s library of

design patterns, these log elements must be part of an accessor pattern.

The log conformity constraint is that a correct framework model, run against

the same tutorial program under the same inputs, should produce the same log as

the actual framework. In reactive frameworks such as Swing or Android, however,

events such as button clicks are relayed by the runtime system to the framework,

and the framework interacts with the application in response to these events. For

such a reactive framework, these events are what constitute the “inputs” to the

framework/application pair, so to check log conformity, the system needs to check

that the combined framework model and application react to these events in the

same way as the original framework and application did.

One subtle point is that the actual calls from the runtime system to the frame-

work are likely to operate at a much lower level of abstraction than what we want to

capture in the model. Our solution is to treat every top-level entry in the log (i.e.,

every entry that appears without any previous entry in the stack) as if it is coming

from the runtime system. So for example, the call to the ActionEvent constructor in

line 69 might actually be coming from some code deep inside the framework in re-

sponse to an operating system event, but from the model viewpoint, we can assume

that the operating system is directly creating the ActionEvent and passing it to the

EventQueue, and the framework and application are reacting to those actions.

Another subtle aspect of the log conformity constraint is that the objects

created when running against the real framework will have different ids from those

created when running against the model, so the log conformity check must allow
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for the renaming of objects of the same type when comparing the logs for the two

executions.

In the next section, we discuss Pasket’s design patterns, and then in Sec-

tion 3.5 we show how to combine the API, logs, and design pattern knowledge to

synthesize a framework model using Sketch.

3.4 Design Pattern Instantiation

Pasket synthesizes the code in Figure 3.3 by instantiating design patterns. To

understand the synthesis process, consider Figures 3.5 and 3.6, which show four

design patterns supported by Pasket. The UML diagrams in these figures have

boxes for classes and interfaces, with fields at the top and methods at the bottom,

arrows for subclass or implements relationships, and diamond edges for containment.

Unless marked private, fields and methods are public.

The key novelty in these diagrams are design pattern variables, indicated in

colored italics. These are unknowns that Pasket solves to determine which classes

and methods play which roles in the patterns. For example, the observer pattern in

Figure 3.5 includes several different design pattern variables, including the names of

the Subject and Observer classes, the name of the IObserver interface, and the names

of the attach and detach methods. The main technical challenge for Pasket is to

match these pattern variables with class, interface, and method names from the API

description. In our running example, Pasket determines there must be an observer

pattern instance with AbstractButton as the Subject and addActionListener as the attach
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method. Thus to create the framework model, Pasket instantiates the field olist

from the pattern as a new field of AbstractButton, and it instantiates the body of

the attach method into addActionListener. The other roles are instantiated to other

classes in the API.

In addition to design pattern variables, the design pattern descriptions also

leave certain implementation details to be discovered by the synthesizer. For exam-

ple, inside the handle method, the synthesizer can decide what event types should

invoke which individual handlers, and in the handler handle i, the synthesizer is left

to choose in what direction to iterate over the observer list.

Pasket uses the same basic idea of design pattern instantiation to create the

entire framework model. We next discuss the patterns currently supported by Pas-

ket, and then discuss the problem of synthesizing multiple patterns simultaneously.

We selected this set of patterns to support the experiments in Section 3.7, but we

have designed Pasket to support extensibility with more patterns; if necessary, it

is even possible to create specialized patterns when we need very platform-specific

behavior.

Observers and Events. We have already discussed several aspects of the ob-

server pattern in Figure 3.5. The Subject maintains a list of IObserver’s, initialized in

the constructor. Observers can be attached or detatched to the list, and both meth-

ods are optional, i.e., they may or may not be present. Notice update i has no code

in the pattern, since the Observer is part of the client rather than the framework.

For example, in Figure 3.2, the update i method is actionPerformed.
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We mark the methods handle and handle i as auxiliary to indicate they are not

part of the original framework. The real framework has some (possibly complicated)

logic to determine how to call the update i methods when the run method of the

EventDispatchThread is called, and the methods handle and handle i are our way of

modeling this logic. Because we do not need to match them with methods in the

API, their names are not pattern variables. This is why they were added with these

same names to AbstractButton in Figure 3.3, where the synthesizer instantiated handle

to just call handle 1 and handle 1 to iterate forward through olist while calling the

update method actionPerformed.

The body of handle i includes a generator of the form [[e1 | . . . | en]], which

indicates the synthesizer must choose one of the expressions ei as a solution.1 In this

case, there are two generators, one to determine whether i starts at the beginning

or end of olist, and the other to determine whether i is incremented or decremented.

The right half of the figure shows the design pattern for an event queue, which

actually dispatches events to the subject. This pattern is instantiated in conjunction

with the observer pattern. Here the class EventQueue has an internal queue of events,

which can be added to by postEvent. There are also methods to get the next event

and to dispatch on an event by invoking the Subject’s handle method.

Singletons. Figure 3.6a shows the singleton pattern, used for classes that may

only have a single instance. Such a class contains a private, static field ins storing the

1We use [[·]] for generators, rather than Sketch’s standard {| · |} notation, because the former

is more readable in these figures.

60



private Singleton (void);
public static Singleton getIns() {
       if (ins == null) 
           ins = new Singleton();
       return ins;
}

private static Singleton ins;
Class Singleton

(a) Singleton pattern.

Accessor(T1 o1, …, Tj oj) {   /* j <= k */
  if ([[ true | false ]]) super( [[ o1 | … | oj ]]* );
  f1 = o1; … ; fj = oj;
  if ([[ true | false ]]) fj+1 = [[ new cls()│?? ]];
  …
  if ([[ true | false ]]) fk = [[ new cls()│?? ]];
}
Ti get_fi(void) { return [[ f1 | … | fk ]]; } /* i ∈ 1..r, r <= k */
void set_fi(Ti v) { [[ f1 | … | fk ]] = v; }  /* i ∈ 1..s, s <= k */

private Ti fi;   /* i ∈ 1..k */
Class Accessor

(b) Accessor pattern.

void method(T1 arg1, …, Tj argj) {
  T adaptee = [[ fld_1 | … | fld_k ]];
  adaptee.other_method(arg1, …, argj);
}

private T fld_i;   /* i ∈ 1..k */
Class Adapter

(c) Adapter pattern.

Figure 3.6: Other patterns in Pasket.

instance; a private constructor (so no other instances can be created); and method

getIns to get the instance (which is created on the first call to getIns). Notice that

Pasket solves for the name of the class and the name of its getIns method. The

name of ins is private, and thus Pasket can choose it arbitrarily, similarly to olist

from the observer pattern.
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Accessors. Figure 3.6b shows the accessor pattern, used for classes with getters

and setters. The class has k fields f1 through fk. As in Java, each field has a default

value before any initialization or update (0 for int, false for boolean, and null for all

object fields). There are also r getter methods get f1 through get fr and s getter

methods set f1 through set fs. Each getter method get fi retrieves the value of a field

chosen from f1 through fk; similarly, each setter method updates a field chosen from

f1 through fk with the input v.

The Accessor class also has a single constructor that accepts j arguments, for

some j ≤ k. The i-th argument is used to initialize the i-th field fi, respectively.

This incurs no loss of generality since Pasket can choose to enumerate the fields

in any order. For those fields beyond fj, i.e., fields fj + 1 through fk, Pasket

may opt to initialize some of them implicitly with either a new instance of some

class cls or some constant value (indicated by a hole ??), depending on field’s type.

For the former case, we assume that the new instance is constructed by a public,

no-argument constructor cls().

Before these fields are initialized, the constructor may or may not call the

superclass constructor with a subset of the j arguments, written [[o1 | . . . | oj]]∗.

For example, in Figure 3.3 we see that ActionEvent’s constructor passes only two

parameters to its superclass AWTEvent, which in turn passes only one parameter to

its superclass EventObject. Finally, the constructor initializes the fields appropriately.

Adapters. Figure 3.6c shows the adapter pattern, used to delegate method calls

to another object. In this pattern, there is a method with j arguments. When called,
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it retrieves an object adaptee from one of its k fields and calls one of its methods with

the same arguments. Here we assume the adapted method returns void, which was

always the case in our experiments. In practice, we allow multiple methods to be

adapted at once, but we show only one method here for simplicity. For example, in

Swing, InvocationEvent is an adapter with a protected field runnable of class Runnable

as its adaptee. When InvocationEvent’s dispatch() method is called, it simply calls

runnable.run().

Multi-pattern Synthesis. In practice, frameworks may have zero, one, or mul-

tiple instances of each pattern, and they may use multiple patterns. Currently, the

number of instances of each pattern is a parameter to Pasket. In our experiments,

for each framework we fix these numbers across all tutorial programs, and then

discard any unused pattern instances, as discussed further in Section 3.6.

Since the same class might be involved in multiple patterns, the design patterns

in Figures 3.5 and 3.6 should be taken as minimal specifications of classes—Pasket

always allows classes to contain additional fields and methods than are listed in

a diagram. Those additional class members either get their code from a different

pattern (or different instance of the same pattern), or are left with empty method

bodies (or return the default value of the return type). In our running example, the

AbstractButton class is involved in both the observer pattern and the accessor pattern:

its methods addActionListener, removeActionListener and fireActionPerformed instantiate

an observer pattern, and its methods getActionCommand and setActionCommand in-

stantiate an accessor pattern. Currently Pasket requires that each method body
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be instantiated from at most one pattern.

3.5 Framework Sketching

Pasket uses Sketch to discover how to instantiate the design patterns from Sec-

tion 3.4 into the method bodies in Figure 3.3 to satisfy log conformity.

3.5.1 From Java to Sketch

Background. The input to Sketch is a space of programs in a C-like language.

The space is represented as a program with choices and assertions. The choices can

include unknown constants, written ??, as well as explicit choices between alternative

expressions, written [[e1 | . . . | en]]. The goal of Sketch is to find a program in the

space that satisfies the assertions [81]. For example, given a program

83 void double(int x) { int t = [[ x | 0 ]] ∗ ??; assert t = x + x; }

Sketch will choose 2 for the constant ?? and x for the choice. Full details about

Sketch can be found elsewhere [80, 81].

The Encoder component in Pasket consumes the framework API, the tutorial

and the log, and produces a framework sketch, which is a Sketch input file. The

framework sketch is comprised of four main pieces: (1) the tutorial code, (2) driver

code to invoke the framework/tutorial with the sequence of events captured in the

log, (3) the framework API filled in with all possible design pattern implementations

guarded by unknowns that allow the synthesizer to choose which roles of which

patterns to use in each method, and (4) additional code to assert log conformity

64



and other constraints, e.g., from subtyping relationships. When Sketch finds a

solution, it will thereby discover the implementations of framework methods such

that when the framework is run in combination with the app, log conformity will

be satisfied.

Class Hierarchy. The first issue we face is that Sketch’s language is not object-

oriented. To solve this problem, Pasket follows a similar approach to [79] and

encodes objects with a new type V Object, defined as a struct containing all possible

fields plus an integer identifier for the class. More precisely, if C1, . . . , Cm are all

classes in the program, then we define:

84 struct V Object {
85 int class id ; fields-from-C1 ... fields-from-Cm

86 }

where each Ci gets its own unique id.

Pasket also assigns every method a unique id, and it creates various constant

arrays that record type information. For a method id m, we set belongsTo[m] to be its

class id; argNum[m] to be its number of arguments; and argType[m][i] to be the type

of its i-th argument. We model the inheritance hierarchy using a two-dimensional

array subcls such that subcls[i][j] is true if class i is a subclass of class j.

Encoding Names. When we translate the class hierarchy into Pasket, we also

flatten out the namespace, and we need to avoid conflating overridden or overloaded

method names, or inner classes. Thus, we name inner classes as Inner Outer , where

Inner is the name of the nested class and Outer is the name of the enclosing class.

We also handle anonymous classes by assigning them distinct numbers, e.g., Cls 1.
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To support method overriding and overloading, methods are named M C Ps,

where M is the name of the method, C is the name of the class in which it is declared,

and Ps is the list of parameter types. For example, in the Swing APIs shown in

Figure 3.3, JButton inherits method addActionListener from AbstractButton, hence the

method is named addActionListener AbstractButton ActionListener(V Object self, V Object

l) in Sketch. The first parameter represents the callee of the method.

Dynamic Dispatch. We simulate the dynamic dispatch mechanism of Java in

Sketch. For each method name M (suitably encoded, as above), we introduce a

function dyn dispatch M(V Object self, ...) that dispatches based on the class id field of

the callee:

87 void dyn dispatch M(V Object self , ...) {
88 int cid = self . class id ;

89 if (cid == R0 id) return M R0 P(self, ...);

90 if (cid == R1 id) return M R1 P(self, ...);

91 ...

92 return;

93 }

Note that if M is static, the self argument is omitted.

JSketch. Although we devised aforementioned Java-to-C translation for our own

purpose—framework synthesis atop Sketch—we later realized that such trans-

lation itself can be a standalone tool. We separated it from Pasket; named it

JSketch [47]; and added a few more general-purpose features, such as class-level

generators. Full details of JSketch’s general features are elaborated in Appendix A.

We currently do not use JSketch directly, for two reasons. First, for log

conformity, we need to retrieve runtime instances, which requires modifying an

66



object allocation function. Second, to check log conformity only for calls that cross

the boundary between the framework and the client app, we need to slightly modify

method signatures and call sites to include a framework/client flag.

3.5.2 Driving Execution

The next piece of the framework sketch is a driver that launches the client app and

injects events according to the log. More specifically, looking at Figure 3.4, we see

three items that come from “outside” both the client app and the framework: the

initial call to main (line 60) and the user inputs on lines 69 and 76. The driver

is responsible for triggering these events, which it does by calling the appropriate

(hard-coded) method names in Figure 3.5 for the event queue (or the appropriate

names for Android if applying Pasket to that domain).

Figure 3.7 shows the driver for our running example. The code begins by

creating a global array containing all the other log elements (the ones that are

“inside” the client app and framework) and a global counter (code not shown).

Next, the code (which is specific to Swing) begins by getting the system event

queue and calling the main method of ButtonDemo. Then it performs the button

click, mimicking Swing closely: The button click event object is created, added to

the event queue, removed from the event queue, and then dispatched. (Recall from

Figure 3.5 that this last call will trigger any subjects for this event.) The code for

the second button click is similar.

Notice that since the driver simulates events that are external to the app and
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94 void driver () {
95 // (code not shown) create global array of other log elements

96 V Object t = getDefaultToolkit ();

97 V Object q = getSystemEventQueue(t);

98

99 /∗ launch the client app∗/
100 main ButtonDemo();

101

102 /∗ perform the first button click ∗/
103 V Object e0 = ActionEvent(get JButton(0), 0, ” disable ”);

104 e0.kind AWTEvent = 0;

105 postEvent(q, e0); /∗ Add event to queue ∗/
106 V Object evt1 = getNextEvent(q);

107 dispatchEvent(q, evt1 ); /∗ And dispatch event right away ∗/
108

109 /∗ perform the second button click ∗/
110 ...

111 }

Figure 3.7: Sketch driver code for ButtonDemo.

framework, we are forced to hard-code some method names here—hence also the

hard-coded method names. We also need to know which items in the logs are events

that should be created in the driver. Currently, we simply assume any instance of a

class ending in Event is an event, and we generate one call to dispatchEvent for each

of these.

One subtlety in the driver is that an event sometimes refers to objects created

in the tutorial code. In our example, driver needs to refer to the button object

created inside main ButtonDemo, but that object is not in scope in driver. To address

this problem, Pasket maintains a mapping of objects to ids and provides functions

get C(i) to retrieve object number i of class C. We assign number to the objects

based on the order in which they are created, so here we call get JButton(0) to get

the first button that was created. The correct object to retrieve is determined by
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examining the @ object ids in the log.

3.5.3 Design Pattern Implementations

The next component of the framework sketch is the framework API itself, with code

for the design patterns, checks of log conformity, and constraints on design pattern

instantiation.

For each possible pattern instantiation, and each possible design pattern vari-

able, we introduce a corresponding variable in the framework sketch, initialized with

a generator. For example, to encode the observer pattern, every role name (in italics

in Figure 3.5) will be a variable in the framework sketch:

112 int Subject = [[ 1 | 2 | ... ]]; int Observer = [[ 1 | 2 | ... ]];

113 int attach = [[ 18 | 19 | ... ]]; int detach = [[ 18 | 19 | ... ]; ...

Here each design pattern variable’s generator lists the possible class or method ids

that could instantiate those roles. This approach helps greatly reduce Sketch’s

search space, compared to initializing the variables with unconstrained integers. (If

there were multiple occurrences of the observer pattern, there would be multiple

variables attach1, attach2, etc.)

Next, Pasket generates a series of assertions that constrain the design pattern

variables according to the structure of the pattern. Figure 3.8 shows some of the

constraints for the observer pattern. The first line requires that two different classes

are chosen as Subject and Observer. The next lines check that the attach and detach

methods are members of or inherited by the Subject, and that those methods have

the same signature—taking a single argument of an appropriate type (a superclass
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114 assert Subject 6= Observer;

115

116 assert subcls [Subject ][ belongsTo[attach ]];

117 assert subcls [Subject ][ belongsTo[detach ]];

118 assert argNum[attach] == 1;

119 assert argNum[detach] == 1;

120 assert argType[attach ][0] == IObserver;

121 assert argType[detach ][0] == IObserver;

122 assert retType[attach ][0] == VOID;

123 assert retType[detach ][0] == VOID;

124 assert subcls [Observer ][ IObserver ];

125

126 assert attach 6= detach;

Figure 3.8: Constraints on design pattern variables (partial).

of Observer) and returning void. Finally, it checks that distinct roles (e.g., attach and

detach) in the design pattern are instantiated with different methods.

Finally, for each API method, we add a corresponding function to the frame-

work sketch that checks log conformity at entrance and exit of the method, and in

between conditionally dispatches to every possible method of every possible design

pattern.

For example, Figure 3.9 depicts the framework sketch code corresponding to

addActionListener (Figure 3.3). The first statement (line 129) creates a call descriptor

that includes the method’s id and the object ids of the parameters. This call de-

scriptor is passed to check log (on line 130), which asserts it matches the next entry

in the global log array (created in the driver) and advances the global log counter.

Next the code dispatches to various design pattern method implementations based

on the role chosen for this method. Finally, the code checks that the return (indi-

cated by negating the method id) matches the log; here the method returns void.

70



127 void addActionListener AbstractButton ActionListener (V Object self , V Object l) {
128 /∗ addActionListener has id 19 ∗/
129 int [] params = { 19, self . obj id , l . obj id };
130 check log(params);

131 /∗ Check that ”params” is the next log entry ∗/
132 /∗ and advance the log counter by one ∗/
133 if (attach == 19) { /∗ code for attach ∗/ }
134 else if (detach == 19) { /∗ code for detach ∗/ }
135 else if ...

136 int [] ret = { −19 }
137 check log( ret );

138 }

Figure 3.9: Framework sketch (partial).

(Note that void returns are included in the actual log though we omitted them from

Figure 3.4.)

Putting this all together, the check log assertions will only allow this method to

be called at appropriate points in the trace, specifically lines 65 and 66 of Figure 3.4.

Sketch will determine that attach is 19, hence the attach method code will be called

in the function body.

There is one additional nit in the encoding of design patterns into Sketch

functions: Some patterns involve calls to methods whose names are determined

during solving, e.g., o.update i(e) in Figure 3.5. Since we are solving for these method

names, we cannot translate this as a direct function call in the framework sketch.

Instead, similarly to ObserverPatternMethod above, Pasket translates this as a call to

a function call indirect(int method id, ...) that invokes a method based on its id. The

number of arguments to the method determines both the arguments to call indirect

and the possible methods it can dispatch to. For the framework model for our
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running example, the function looks like:

139 void call indirect ( int method id, V Object rcv, V Object arg) {
140 if (mtd id == 40) actionPerformed(rcv, arg);

141 else if ...

142 ...

143 }

3.5.4 Model Generation

After Sketch has found a solution, the last step is to generate the framework

model. Pasket uses Sketch’s solution for each variable (attach, detach, etc.) to

emit the appropriate implementation of each method in the model. For example,

since we discover that addActionListener is the attach method of the observer pattern,

we will emit its body as shown in Figure 3.3, along with the other methods and fields

involved in the same pattern.

In some cases, methods in the framework API will be left unconstrained by

the tutorial program. In these cases, Pasket either leaves the method body empty

if it returns void, or adds a return statement with default values, such as 0, false, or

null, according to the method’s return type.

3.6 Implementation

We implemented Pasket as a series of Python scripts that invoke Sketch as a

subroutine. Pasket comprises roughly 14K lines of code, excluding the Java parser.

We specify name and type information for the framework via a set of Java files

containing declarations of the public classes and methods of the framework, with no

method bodies. Pasket parses these files using the Python front-end of ANTLR

72



v3.1.3 [67] and its standard Java grammar. After solving the synthesis problem,

Pasket then unparses these same Java files, but with method bodies and private

fields instantiated according to the synthesis results. We use partial parsing [26] to

make this output process simpler.

There are several additional implementation details.

Logging. For Swing tutorials, Pasket gathers logs via a logger agent, which is

implemented with the Java Instrumentation API [6] using javassist [24]. This allows

Pasket to add logging statements to the entry and exit of every method at class

loading time. Pasket also inserts logging statements before and after framework

method invocations. In this way, it captures call–return sequences from the frame-

work to clients, and vice versa. Altogether, the logger agent is approximately 368

lines of Java code.

For Android tutorials, Pasket uses Redexer [44], a general purpose binary

rewriting tool for Android, to instrument the tutorial bytecode. Similarly to our

approach for Swing, we use Redexer to add logging at the entry and exit of every

method in the app, and also insert logging statements before and after framework

method invocations. The logging statements emit specially tagged messages, and

we read the log over the Android Debugging Bridge (adb).

Currently, we manually ran instrumented apps to collect logs. Nonetheless, it

is relatively easy to explore all possible behaviors of simple tutorials. To make the

entire process of Pasket’s model generation fully automatic, running instrumented

apps and collecting logs should be automated as well, e.g., by using script-based
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testing tool [42]. We leave it as a future work.

Java Libraries. Among many other Java libraries, parameterized collections,

such as List<E>, Map<K,V>, Queue<E>, etc., are heavily used in tutorials, act-

ing like built-in types. Even design pattern knowledge in Pasket relies on them,

e.g., the observer list in the subject, event queue to asynchronously react to events,

etc. Pasket supports some of those collections and APIs by defining low-level data

structures and encoding functionalities. Recall that all class hierarhcy is merged

into one big V Object struct, and thus Pasket can easily support generic types.

Android Layouts. Android apps typically include XML layout files that specify

what controls (called views in Android) are on the screen. In addition to the class

of each control and its ID, the layout may specify the initial state of a control, such

as whether a checkbox is checked, or in some cases an event handler for the con-

trol. Since layout information is needed to analyze an app’s behavior, we manually

translate the layout files for each tutorial and subject app into equivalent Java code.

The translated layout files instantiate each view in the layout file, set properties as

specified in the XML, and add it to the Activity’s view hierarchy.

Optimization. The sketches passed to Sketch are relatively large compared to

sketches produced by other applications; they typically contain thousands of lines of

code and some very large arrays. Because of their size and complexity, they exposed

two performance issues we had to address.

First, Sketch transforms a program into a formula by inlining all function
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calls up to a per-function bound, which is provided as a command-line argument.

This caused problems for indirectly recursive functions like ObserverPatternMethod

shown earlier that are indirectly recursive and call many candidate functions, as

this causes the simple inlining heuristic to fail. We solved this by using an explicit

counter in our sketches to force inlining to stop at a (small) recursive depth. Nev-

ertheless, the depth-bounded inlining still blowed up the formula in Sketch, due

to the huge branching factor for those reflexive functions like call indirect, as they

call virtually all possible methods declared in the API. Our solution is to leverage

the call site information to reduce the branching factor. For example, if call indirect

is called in a call site where the second argument rcv is an instance of JButton, we

immediately know the indirect call must go to a method that can be accessed by

JButton. Hence instead of calling a all-in-one call indirect function, we call a spe-

cialized function call indirect for JButton, which enumerates JButton’s methods only,

reducing the branching factor by two orders of magnitude.

Second, Sketch treats constant-sized arrays as collections of scalar variables,

under the assumption that such arrays are generally small. However, the arrays

generated by Pasket, representing Java type information, have tens of thousands

of entries. To solve this issue, we modified Sketch to use its implementation of the

theory of arrays when dealing with large constants.

Multi-pattern Synthesis. Recall from Section 3.4 that we need to synthesize

models with multiple design patterns at once; thus Pasket needs to know how

many possible instances of each pattern are needed. For Swing, we choose 5 observer
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patterns, 9 accessor patterns, 1 adapter pattern, and 1 singleton pattern per tutorial

program, and for Android, we choose 1 observer pattern, 10 accessor patterns, and 5

singleton patterns per tutorial program. These counts are sufficient for the tutorial

programs in our experiments.

Most of the time, not all pattern instances will actually be needed. If this is

the case, the input we pass to Sketch will underconstrain the synthesis problem,

allowing Sketch to choose arbitrary values for holes in unused pattern instances.

In turn this would produce a framework model that is correct for that particular

tutorial program, but may not work for other programs. Thus, Pasket includes an

extra pass to identify and discard unused pattern instances.

Merging Multiple Models. As described so far, Pasket processes a single

tutorial program to produce a model of the framework. In practice, however, we

expect to have many different tutorials that illustrate different parts of the frame-

work. Thus, to make our approach scalable, we need to merge the models produced

from different tutorials.

Our merging procedure iterates through the solutions for each tutorial pro-

gram, accumulating a model as it goes along by merging the current accumulated

model with the next tutorial’s results. At each step, for each design pattern, we

need to consider only three cases: either the pattern covers classes and methods

only in the accumulated model; only in the new results for the tutorial program; or

in both. In the first case, there is nothing to do. In the second case, we add the

new pattern information to the accumulated model, since it covers a new part of
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the framework. In the last case, we check that both models assign the same classes

or methods to design pattern variables, i.e., that the results for those classes and

methods are consistent across tutorial programs. (Note for this check to work, we

must ensure class and method ids are consistent across runs of Pasket.)

3.7 Experiments

We evaluated Pasket by using it to separately synthesize a Swing framework model

and an Android framework model from tutorial programs. Table 3.1 summarizes

the results, which we discuss in detail next.

Synthesis Inputs. To synthesize the Swing model, we used ten tutorial programs

distributed by Oracle. The names of the tutorials are listed on the left of Swing group

in Table 3.1, along with their sizes. In total, the tutorials comprise just over 1,900

lines of code. The tutorial names are self explanatory, e.g., CheckBoxDemo illustrates

JCheckBox’s behavior. The last row of the Swing section reports statistics for the

merged model.

We ran each tutorial manually to generate the logs. For instance, for the

ButtonDemo code from Figure 3.2, we clicked the left-most button and then the

right-most button; only one is enabled at a time. It was very easy to exercise all

features of these small, simple programs. The third column in the table lists the

sizes of the resulting logs. We also created Java files containing the subset of the

API syntactically used by these programs. It contains 95 classes, 263 methods, and

92 (final constant) fields.
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To synthesize an Android model, we used three tutorial apps, listed in the

Android group of Table 3.1. Two of them, UIButton and UICheckBox, were ex-

amples in a 2014 Coursera class on Android programming. The third tutorial app,

Telephony, is from an online tutorial site.2 Table 3.1 gives the size of each tutorial

after translating the layout files into Java, as described above. We treated the tu-

torial apps similarly to the Swing programs: we ran the Android apps manually to

generate logs, and we created a subset API containing the 50 classes, 153 methods,

and 36 (final constant) fields referred to by these programs.

Synthesis Time. Given the logs and API information, we then ran Pasket

to synthesize a model from each tutorial program individually. The middle set of

columns in the table summarizes the results. Performance reports are based on

seven runs of the synthesis process on a server equipped with forty 2.4 GHz Intel

Xeon processors and 99 GB RAM, running Ubuntu 14.04.3 LTS.

The column Sketch LoC lists the lines of code of the framework sketch files.

We should emphasize that this is a very challenging synthesis problem, and these

sketches are much larger than Sketch has typically been used for, both in terms

of lines of code and search space. For example, based on the combinatorics of

the classes and methods available to fill the roles, the search space for the Swing

framework is at least size 9521 × 26347. In fact, one of the sketches is so hard to

solve that Sketch runs out of memory.

To address this problem, we adopted Adaptive Concretization (AC, which

2http://www.javatpoint.com/android-telephony-manager-tutorial
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will be discussed in Chapter 4), an extension to Sketch that adaptively combines

brute force and symbolic search to yield a parallelizable, and much more scalable,

synthesis algorithm. The remaining columns under Sketch in the table report the

results of running both with and without AC. The Std column lists the median

running time under Sketch without AC. The || column lists the median number

of parallel processes forked and executed before a solution is found under AC. The

next column reports the median running time of a single trial that found a solution.

The last column lists the median total running time under AC. We can see that

overall, synthesis just takes a few minutes, and AC tends to reduce the running

time, sometimes quite significantly for larger programs.

The bottom row of each section of the table lists the time to merge the indi-

vidual models together, which is trivial compared to the synthesis time.

Synthesis Results. The next group of columns summarizes how many instanti-

ations of each design pattern (O for observer, Ac for accessor, Ad for adapter, and

S for singleton) were found during synthesis. The last four columns report the lines

of code and the number of classes, methods, and empty methods (i.e., those that

are essentially abstracted away) in the synthesized model.

In Swing, most tutorials handle only one kind of event and one event type,

and hence have a single instance of the observer pattern. Looking at the bottom

row of the table, we can see there is a lot of overlap between the different tutorial

programs—in the end, the merged model has five observer pattern instances.

In terms of the accessor pattern, again there is a lot of overlap between different
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tutorials, resulting in nine total pattern instances in the merged model. Finally, all

tutorials have exactly one instance of the adapter pattern for InvocationEvent and

one instance of the singleton pattern for Toolkit, which are part of the Swing event-

handling framework.

We manually inspected the set of empty methods in the merged model, and

found that most of these methods influence how things are displayed on screen. E.g.,

Window.pack() resizes a window to fit its contents, and Component.setVisible() shows

or hides a window. Thus, while these methods are important in an actual running

Swing program, they can be left abstract in terms of control flow.

We also found some (5 of the 30 empty methods) cases of setter-like methods

that were called in a tutorial, but the set value was never retrieved, hence it did

not affect log conformity. Thus, for this set of tutorial programs these are safe to

abstract, while another set of tutorial programs might cause these to be matched

against the accessor pattern.

In general, synthesis results in Android are similar to those in Swing. Most

tutorials in Android also handle only one kind of event and one event type, resulting

in a single instance of the observer pattern. Similarly, for the observer pattern and

the accessor pattern, there is a lot of overlap between different tutorials.

One noticeable difference between Swing and Android is the number of in-

stances of the singleton pattern. In Android, many system-level services are run-

ning in background and providing useful features to applications. For easier main-

tainance, those system-level services are usually implemented as singletons.
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Correctness. To check the correctness of the merged Swing model, we developed

a sanity checker that verifies that a tutorial program produces the same logs when

run against the merged model as when run against Swing. Recall that the logs

include the events, i.e., the user interactions, that produced the original logs used

for synthesis. Thus, we developed a script to translate the logged events into a main()

method containing a sequence of Java method calls simulating reception of those

events. Then we replay the tutorial under the model by running this main() method

with the tutorial and model code, recording the calls and returns in the execution.

We then compare against the original log. Using this approach, we successfully

verified log conformity for all ten tutorial programs.

To check the correctness of the merged Android model, we ran the tutorial

apps under the SymDroid symbolic executor (discussed in Chapter 2). Since the An-

droid model is much smaller than that of Swing, we manually examined SymDroid’s

outputs to verify the correctness of the model: we ran SymDroid and recorded its

detailed execution steps; checked branching points of interest, while walking through

those symbolic execution traces; and double-checked that expected branches were

taken and that expected assertions passed accordingly.

Java PathFinder’s Model. Next, we compared our synthesized Swing model to

an existing, manually created model: the Swing model [59] that ships as part of Java

PathFinder [71] (JPF). We ran JPF, under both models, on eight of the ten tutorials.

We omitted two tutorials, ColorChooserDemo and FileChooserDemo, since those cannot

easily be run under JPF due to limitations in JPF’s Swing event generator.
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144 import gov.nasa. jpf .awt.UIActionTree;

145 import gov.nasa. jpf . util .event.Event;

146

147 public class TestEvent extends UIActionTree {
148 @Override

149 public Event createEventTree() {
150 return sequence(

151 click (”$Disable”, true),

152 click (”$Enable”, true)

153 );

154 } }

Figure 3.10: JPF driver for ButtonDemo.

Similar to SymDroid’s driver in Figure 2.16, we need JPF drivers so as to run

JPF on tutorials. Those drivers are designed to simulate the same user interactions

under which we ran the tutorials to collect logs. For example, Figure 3.10 shows

the JPF driver for ButtonDemo: as all identifiers are self explanatory, this driver

creates an event tree that simulates user’s clicks on buttons with labels “Disable”

and “Enable” in sequence. Note that there are no symbolic variables in this use of

JPF, i.e., we explore only the path taken to create the original log.

Surprisingly, we found that, run with JPF’s own model, JPF failed on all tuto-

rial programs, for a fairly trivial reason: Some method with uninteresting behavior

(i.e., that our synthesis process left empty) was missing. In contrast, all eight tu-

torials run successfully under JPF using Pasket’s merged model. This shows one

benefit of Pasket’s approach: By using automation, Pasket avoids simple but

nonetheless frustrating problems like forgetting to implement a method.
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Name LoC Tutorials

ToolbarFrame2 76 ToolBarDemo

ToolbarFrame3 156 ToolBarDemo + CustomIconDemo

JButtonEvents 40 ButtonDemo + CheckBoxDemo

JToggleButtonEvents 43 ButtonDemo + CheckBoxDemo

SimpleSplitPane 45 SplitPaneDividerDemo + FileChooserDemo

ColorPicker 35 ColorChooserDemo + ButtonDemo

ColorPicker3 72 ColorChooserDemo + ButtonDemo

SimpleFileChooser 94 FileChooserDemo

Table 3.2: Examples from O’Reilly’s Java Swing, 2nd Edition.

Applicability to Other Programs. Finally, we ran symbolic execution on sev-

eral other programs under each model, to demonstrate that a model derived from

one set of programs can apply to other programs.

We chose eight Java Swing code examples from O’Reilly’s Java Swing, 2nd

Edition [54] that use the same part of the framework as the Oracle tutorials we used.

Table 3.2 lists the eight examples, along with their sizes. All ran successfully using

JPF under our merged model. The rightmost column lists which Oracle tutorials are

needed to cover the framework functionality used by the O’Reilly example programs.

Interestingly, we found that in addition to the “obvious” Oracle tutorial (based on

just the name), often the O’Reilly example programs also needed another tutorial.

For example, ToolbarFrame3 needed functionality from both ToolBarDemo (the obvious

correspondence) and CustomIconDemo.

We also ran two apps under the synthesized model of Android; they are listed

in Table 3.3. Visibility is an activity extracted from the API Demos app in the

Android SDK examples.3 “Bump” is an app (created for an earlier project [60]) that

looks up a phone number and/or device ID from the TelephonyManager, depending

3http://developer.android.com/sdk/installing/adding-packages.html
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Name LoC Tutorials

Visibility 114 UIButton + UICheckBox

“Bump” 50 UIButton + UICheckBox + Telephony

Table 3.3: Example apps for Android.

on the state of two check boxes. We manually translated the layout files to Java

for these two apps, as we did for the tutorial apps. As with the O’Reilly examples,

these apps needed framework functionality from multiple tutorials.

In our earlier project [60], we introduced interaction-based declassification

policies along with a policy checker based on symbolic executions. Using the model

generated by Pasket, we conducted similar experiments. We ran the policy checker

against the original, secure version of the Bump app, and found the checker yielded

the correct results with the synthesized framework. For the Visibility app, we con-

ducted the same correctness check as the other tutorial apps: we ran the app under

SymDroid, and double-checked that the simulated events of user clicks were properly

propagated to the app’s event handlers via our synthesized framework model.

3.8 Properties of Synthesized Models

Although the experimental results look promising, it is worth discussing several

properties of synthesized models. Among many others, in this section, we will

discuss the abstraction, soundness and completeness of synthesized models.
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3.8.1 Abstraction

Judgement about Abstraction. Pasket aims to synthesize an abstract model

of the framework whose control-flow behaviors are the same as the observed behav-

iors of the framework yet amenable to symbolic execution. That is, only parts of the

framework that are necessary to reproduce the same control-flows will be reserved,

whereas unneeded parts will be discarded. The key evidence the synthesized models

are abstract is empty methods. Recall empty methods shown in Figure 3.3 and

the number of empty methods in Table 3.1. Those methods could be left as blank

because the input tutorial does not depend on their functionality.

Origin of Abstraction. There are two phases where a model is abstracted: slic-

ing the framework APIs, i.e., selecting parts of the APIs, and avoiding synthesizing

unimportant parts of the input APIs. Not surprisingly, the first phase compresses

synthesized models more than the second phase does, and Pasket currently takes

advantage of that fact. The main reason is that the first phase dramatically reduces

the search space for design pattern instantiations.

If the (partial) framework APIs given to Pasket have C classes and M meth-

ods, and the design patterns Pasket searches for have uc class-role unkonwns and

um method-role unknowns, then the search space is size Cuc ×Mum. Of course, a

smaller size of APIs (thanks to slicing) yields a smaller base, resulting in a much

smaller search space.

For example, our partial Android APIs have 50 classes and 153 methods. The
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numbers of unkonwns Pasket searches for are 15 class roles and 27 methods roles.

Hence the search space of size 5015 × 15327. The number of APIs that are newly

added to Android 5.0 is over 2000,4 and of course the total number of APIs is much

larger than that. If we add those new methods for the same design patterns, the

search space will be 31 orders of magnitude larger, a totally different scale.

The efficiency of the second phase depends on the given logs, i.e., test scenar-

ios for selected tutorials. If the functionality of certain methods is not exercised,

there will be no log conformity constraints for those methods, allowing Pasket to

unmodel them. In contrast, if logs utilize all the input APIs, all of them must be

modeled somehow. Indeed, we intentially selected a minimal set of APIs, but only

10 out of 153 methods for Android were left as unmodeled.

3.8.2 Soundness and Completeness

Soundness. A model synthesized by Pasket may not be sound, i.e., it may not

be correct, since the model only conforms to the input logs, the observed behaviors

of the framework. In other words, the model could have incorrect implementa-

tions as long as the reproduced behaviors still conform to the logs. To validate the

synthesized models, we used tutorials to check log conformity and ran other applica-

tions from other source. Of course, these are still insufficient, and the best solution

for checking the correctness of a synthesized model is to use the framework’s own

regression tests, such as CTS [7] for Android.

4http://developer.android.com/about/versions/android-5.0.html
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Completeness. It is intractable to provide a finite set of tutorials that cover all

aspects of the framework, and thus a model synthesized by Pasket may not be

complete. That is, the model may miss some important parts of the framework

if appropriate tutorials were not given. On the flip side, if we can identify which

aspects of the framework are missing, and which tutorials can cover those parts, we

can easily regenerate an enhanced model by taking advantage of Pasket’s high-

degree of automation.

Therefore, instead of the completeness of the model, the actual questions we

should address are: how to determine which aspects of the framework is missing

and how to find a right set of tutorials for those missed aspects. For addressing the

first question, we need co-simulation of a synthesized model and the original frame-

work. Here the framework acts as an oracle, the expected solution. By executing

a set of apps step by step, we might be able to capture noticeable behavior differ-

ences, which will in turn pinpoint where Pasket missed to model. Several testing

techniques, such as Gray-Box testing [52], could be used in order to drive the frame-

work to unexplored paths. Lastly, addressing the second question is straightforward:

syntactically searching for API usages in candidate tutorials.

3.9 Future Work

Pasket introduced a high-degree of automation to the process of generating frame-

work models, and the synthesized models made existing symbolic executors more

effective and efficient. However, there is still room for improvement. In particular,
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the whole process is not fully automated, such as selecting, running, and logging tu-

torials. Also, in addition to framework models, there are more artifacts that could

be automatically generated via program synthesis, such as drivers, properties of

interest, or search strategies. To support more design patterns or even arbitrary

programming idioms, we could devise a way to express code patterns in general. We

will discuss the aforementioned future directions in Chapter 5.

3.10 Literature Review

Modeling. As mentioned earlier, symbolic execution tools for framework-based

applications usually rely on manually crafted framework models. For example, as

discussed earlier JPF-AWT [59] models the Java AWT/Swing framework. The

model is tightly tied to the JPF-AWT tool and cannot easily be used by other

analysis tools. Moreover, as we saw in Section 3.7, the model is missing several

methods.

There are some studies that attempted to automatically create models of

Swing [19] and Android [90] for JPF. The techniques from these papers are quite

different as they rely primarily on slicing. One advantage of Pasket is that it could

generate more concise models for complex frameworks because it is unconstrained by

the original implementation’s structure. Nonetheless, the techniques used in those

papers could help identify which parts of the framework to model.

Several researchers have developed tools that generate Android models. EdgeM-

iner [18] ran backward data-flow analysis over the Android source code to find im-
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plicit flows. Modelgen [25] infers a model in terms of information flows, to support

taint analysis. To learn behaviors of the target framework, it inputs concrete exe-

cutions generated by Droidrecord, similarly to our logging using Redexer [44]. Both

of these systems target information flow, which is insufficient to support symbolic

execution.

Given an app, Droidel [13] generates a per-app driver that simulates the An-

droid lifecycle. This enables some program analysis of the app without requiring

analysis of the Android framework, which uses reflection to implement the lifecycle.

A key limitation of Droidel is that it is customized to the lifecycle and to a particular

Android version.

Mimic [40] aims to synthesize models that perform the same computations as

opaque or obfuscated Javascript code. Mimic uses random search inspired by ma-

chine learning techniques. Mimic focuses on relatively small but potentially complex

code snippets, whereas Pasket synthesizes large amounts of code based on design

patterns.

Some other authors researched variants of control-flows as models. Aver-

roes [2] generates an over-approximate call graph of a library, and then uses it

to create a model whose calling behavior mimics the call graph. Averroes thus

enables static analyses to conduct whole-program analysis even when missing the

actual code to that library. However, Averroes is not guaranteed to be sound with

respect to any state within the library. Yang et al. [94] introduce callback control-

flow graph (CCFG) that focuses on the same implicit flows as EdgeMiner. Their

CCFG construction inputs a client program; performs graph-reachability analysis
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using platform-specific knowledge about callbacks; and outputs CCFG for that client

program, which could be used by other static analyses. Again, neither of these tools

is designed to support symbolic execution.

Samimi et al. [72] propose automatically generating mock objects for unit

tests, using manually written pre- and postconditions. This is also quite different

from Pasket, which synthesizes a model using knowledge of design patterns.

Synthesis. There is a rich literature on algorithmic program synthesis since the

pioneering work by Pnueli and Rosner [68], which synthesizes reactive finite-state

programs. Most of these synthesizers aim to produce low-level programs, e.g., syn-

thesis techniques that are also sketch-based [82, 84, 85]. The idea of encoding a

richer type system as a single struct type with a type id was also used in the Auto-

grader work [79]. Component-based synthesis techniques [36, 51] aim at higher-level

synthesis and generate desired programs from composing library components. Our

approach is novel in both its target (abstract models for programming frameworks)

and its specification (logs of the interaction between the client and the framework,

and an annotated API).

The idea of synthesizing programs based on I/O samples has been studied for

different applications. Godefroid and Taly [32] propose a synthesis algorithm that

can efficiently produce bit-vector circuits for processor instructions, based on smart

sampling. Storyboard [78] is a programming platform that can synthesize low-level

data-structure-manipulating programs from user-provided abstract I/O examples.

Transit [89], a tool to specify distributed protocols, inputs user-given scenarios as
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concolic snippets, which correspond to call-return sequences Pasket logs. In our

approach, the synthesis goal is also specified in terms of input (event sequences) and

output (log traces), and our case studies show that the I/O samples can also help

synthesize complex frameworks that use design patterns.

Several researchers have explored synthesis to aid Java programmers. Prime [63]

takes partial programs with holes for call sites and aims to fill those holes with ap-

propriate API calls. To do so, Prime uses information gathered from tutorials and

code snippets from repositories such as GitHub. Automata-based synthesis, pro-

posed by Alur et al. [3], aims to algorithmically synthesize a dynamic interface for

Java classes that satisfies a given safety requirement. Such dynamic interfaces can

help program analysis tools check if client code interacts with a library correctly.

In contrast to both of these approaches, Pasket aims to produce a symbolically

executable framework model.

Design Patterns. In their original form, design patterns [29] are general “solu-

tions” to common problems in software design, rather than complete code. That is,

there is flexibility in how developers go from the design pattern to the details. Sev-

eral studies formalize design patterns, detect uses of design patterns, and generate

code using design patterns.

Mikkonen [61] formalizes the temporal behavior of design patterns. The for-

malism models how participants in each pattern (e.g., observer and subject) are as-

sociated (e.g., attach), how they communicate to preserve data consistency (e.g.,

update), etc. Mikkonen’s formalism omits structural concerns such as what classes
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or methods appear in.

Albin-amiot et al. [1] propose a declarative meta-model of design patterns and

use it to detect design patterns in user code. They also use their meta-model to

mechanically produce code. Jeon et al. [49] propose design pattern inference rules to

identify proper spots to conduct refactoring. These approaches capture structural

properties, but omit temporal behaviors, such as which observers should be invoked

for a given an event. In contrast, Pasket accounts for both structural properties

and temporal behaviors. We leverage design patterns as structural constraints and

logs from tutorial programs as behavioral constraints for synthesis.

Antkiewicz et al. [12] aim to check whether client code conforms to high-

level framework concepts. They extract framework-specific models, which indicate

which expected code patterns are actually implemented in client code. This is quite

different from the symbolically executable framework model synthesized by Pasket.
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Chapter 4: Adaptive Concretization for Parallel Program Synthesis

Program synthesis aims to construct a program satisfying a given specification. One

popular style of program synthesis is syntax-guided synthesis, which starts with a

structural hypothesis describing the shape of possible programs, and then searches

through the space of candidates until it finds a solution. Recent years have seen

a number of successful applications of syntax-guided synthesis, ranging from auto-

mated grading [79], to programming by example [35], to synthesis of cache coherence

protocols [89], among many others [23, 73, 85].

Despite their common conceptual framework, each of these systems relies on

different synthesis procedures. One key algorithmic distinction is that some use

explicit search—either stochastically or systematically enumerating the candidate

program space—and others use symbolic search—encoding the search space as con-

straints that are solved using a SAT solver. The SyGuS competition has recently

revealed that neither approach is strictly better than the other [4].

In this chapter, we propose adaptive concretization, a new approach to syn-

thesis that combines many of the benefits of explicit and symbolic search while also

parallelizing very naturally, allowing us to leverage large-scale, multi-core machines.

Adaptive concretization is based on the observation that in synthesis via symbolic
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search, the unknowns that parameterize the search space are not all equally impor-

tant in terms of solving time. In Section 4.1, we show that while symbolic meth-

ods can efficiently solve for some unknowns, others—which we call highly influential

unknowns—cause synthesis time to grow dramatically. Adaptive concretization uses

explicit search to concretize influential unknowns with randomly chosen values and

searches symbolically for the remaining unknowns. We have explored adaptive con-

cretization in the context of the Sketch synthesis system [80], although we believe

the technique can be readily applied to other symbolic synthesis systems, such as

Brahma [50] or Rosette [87].

Combining symbolic and explicit search requires solving two challenges. First,

there is no practical way to compute the precise influence of an unknown. Instead,

our algorithm estimates that an unknown is highly influential if concretizing it will

likely shrink the constraint representation of the problem. (Section 4.2 describes the

influence estimation.)

Second, because influence computations are estimates, even the highest in-

fluence unknown may not affect the solving time for some problems. Thus, our

algorithm uses as a series of trials, each of which makes an independent decision

of what to randomly concretize. This decision is parameterized by a degree of con-

cretization, which adjusts the probability of concretizing a high influence unknown.

At degree 1, unknowns are concretized with high probability; at degree ∞, the

probability drops to zero. (Section 4.3 introduces the degree of concretization and

concretization probability functions.)

The degree of concretization poses its own challenge: a preliminary experi-
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ment showed that there is a different optimal degree for almost every benchmark.

Since there is no fixed optimal degree, the crux of adaptive concretization is to

estimate the optimal degree online. Our algorithm begins with a very low degree

(i.e., a large amount of concretization), since trials are extremely fast. It then ex-

ponentially increases the degree (i.e., reduces the amount of concretization) until

removing more concretization is estimated to no longer be worthwhile. Since there

is randomness across the trials, we use a statistical test to determine when a dif-

ference is meaningful. Once the exponential climb stops, our algorithm does binary

search between the last two exponents to find the optimal degree, and it finishes by

running with that degree. At any time during this process, the algorithm exits if

it finds a solution. Adaptive concretization naturally parallelizes by using different

cores to run the many different trials of the algorithm. Thus a key benefit of our

technique is that, by exploiting parallelism on big machines, it can solve otherwise

intractable synthesis problems. (Section 4.4 discusses pseudocode for the adaptive

concretization algorithm.)

We implemented our algorithm for Sketch and evaluated it against 26 bench-

marks from a number of synthesis applications including automated tutoring [79],

automated query synthesis [23], and high-performance computing, as well as bench-

marks from the Sketch performance benchmark suite [80] and from the SyGuS’14

competition [4]. (Section 4.5 elaborates our selection of benchmarks.)

The original adaptive concretization algorithm involved a few arbitrary de-

sign decisions. We perform a systematic evaluation of the design space to better

understand the tradeoffs. We find that the algorithm is robust to changes in the
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original design decisions, but nevertheless the systematic exploration of the design

space made our algorithm simpler and intuitive while also putting our initial design

choices on a solid footing. (Sections 4.6.1 to 4.6.4 present a series of studies on

design choices.)

By running our algorithm over twelve thousand times across all benchmarks,

we are able to present a detailed assessment of its performance characteristics.

We found our algorithm outperforms Sketch on 22 of 26 benchmarks, sometimes

achieving significant speedups of 3× up to 18×. In one case, adaptive concretization

succeeds where Sketch runs out of memory. We also ran adaptive concretization on

1, 4, and 32 cores, and found it generally has reasonable parallel scalability. Finally,

we compared adaptive concretization to the winner of the SyGuS’14 competition on

a subset of the SyGuS’14 benchmarks and found that our approach is competitive

with or outperforms the winner. (Sections 4.6.5 and 4.6.6 discuss our performance

and scalability results in detail.)

4.1 Combining Symbolic and Explicit Search

To illustrate the idea of influence, consider the following Sketch example:

int foo(int x) implements spec{
if (??){

return x & ??; // unknown m1

}else{
return x | ??; // unknown m2

} }

int spec(int x){
return minus(x, mod(x, 8));

}

The specification on the right asserts that the synthesized code must compute

(x − (x mod 8)). Here the symbol ?? represents an unknown constant whose type
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is automatically inferred. Thus, the ?? in the branch condition is a boolean, and

the other ??’s, labeled as unknowns m1 and m2, are 32-bit integers. It is worth

emphasizing that a higher-level language may have more forms to represent un-

knowns, e.g., even Sketch has regular expressions, but when everything is taken

into consideration, it is about solving for constants.

The sketch above has 65 unknown bits and 233 unique solutions, which is too

large for a naive enumerative search. However, the problem is easy to solve with

symbolic search. Symbolic search works by symbolically executing the template to

generate constraints among those unknowns, and then generating a series of SAT

problems that solve the unknowns for well-chosen test inputs. Using this approach,

Sketch solves this problem in about 50ms, which is certainly fast.

However, not all unknowns in this problem are equal. While the bit-vector

unknowns are well-suited to symbolic search, the unknown in the branch is much

better suited to explicit search. In fact, if we incorrectly concretize that unknown to

false , it takes only 2ms to discover the problem is unsatisfiable. If we concretize it

correctly to true, it takes 30ms to find a correct answer. Thus, enumerating concrete

values lets us solve the problem in 32ms (or 30ms if in parallel), which is 35% faster

than pure symbolic search. For larger benchmarks this can make the difference

between solving a problem in seconds and not solving it at all.

The benefit of concretization may seem counterintuitive since SAT solvers

also make random guesses, using sophisticated heuristics to decide which variables

to guess first. To understand why explicit search for this unknown is beneficial,

we need to first explain how Sketch solves for these unknowns. First, symbolic
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execution in Sketch produces a predicate of the form Q(x, c), where x is the 32-bit

input bit-vector and c is a 65-bit control bit-vector encoding the unknowns. Q(x, c)

is true if and only if foo(x)=x−(x mod 8) for the function foo described by c. Thus,

Sketch’s goal is to solve the formula ∃c.∀x.Q(x, c). This is a doubly quantified

problem, so it cannot be solved directly with SAT [30].

Sketch reduces this problem to a series of problems of the form ∧xi∈EQ(xi, c),

i.e., rather than solving for all x, Sketch solves for all xi in a carefully chosen

set E. After solving one of these problems, the candidate solution c is checked

symbolically against all possible inputs. If a counterexample input is discovered,

that counterexample is added to the set E and the process is repeated. This is the

Counter-Example Guided Inductive Synthesis (CEGIS) algorithm, and it is used by

most published synthesizers (e.g., [50, 87, 89]).

Sketch’s solver represents constraints as a graph, similar to SMT solvers,

and then iteratively solves SAT problems generated from this graph. The graph

is essentially an AST of the formula, where each node corresponds to an unknown

or an operation in the theory of booleans, integer arithmetic, or arrays, and where

common sub-trees are shared (see [80] for more details). For the simple example

above, the formula Q(x, c) has 488 nodes and CEGIS takes 12 iterations. On each

iteration, the algorithm concretizes xi and simplifies the formula to 195 nodes. In

contrast, when we concretize the condition, Q(x, c) shrinks from 488 to 391 nodes,

which simplify to 82 nodes per CEGIS iteration. Over 12 iterations, this factor of

two in the size of the problem adds up. Moreover, when we concretize the condition

to the wrong value, Sketch discovers the problem is unsatisfiable after only one
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counterexample, which is why that case takes only 2ms to solve.

In short, unlike the random assignments the SAT solver uses for each individ-

ual sub-problem in the CEGIS loop, by assigning concrete values in the high-level

representation, our algorithm significantly reduces the sub-problem sizes across all

CEGIS loop iterations. It is worth emphasizing that the unknown controlling the

branch is special. For example, if we concretize one of the bits in m1, it only reduces

the formula from 488 to 486 nodes, and the solution time does not improve. Worse,

if we concretize incorrectly, it will take almost the full 50ms to discover the problem

is unsatisfiable, and then we will have to flip to the correct value and take another

50ms to solve, thus doubling the solution time. Thus, it is important to concretize

only the most influential unknowns.

Putting this all together yields a simple, core algorithm for concretization.

Consider the original formula Q(x, c) produced by symbolic execution over the

sketch. The unknown c is actually a vector of unknowns ci, each corresponding

to a different hole in the sketch. First, rank-order the ci from most to least influ-

ence, cj0, cj1, · · · . Then pick some threshold n smaller than the length of c, and

concretize cj0, · · · , cjn with randomly chosen values. Run the previously described

CEGIS algorithm over this partially concretized formula, and if a solution cannot

be found, repeat the process with a different random assignment. Notice that this

algorithm parallelizes trivially by running the same procedure on different cores,

stopping when one core finds a solution.

This basic algorithm is straightforward, but three challenges remain: How to

estimate the influence of an unknown, how to estimate the threshold of influence
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for concretization, and how to deal with uncertainty in those estimates. We discuss

these challenges in the next three sections.

4.2 Influence Estimation

An ideal measure of an unknown’s influence would model its exact effect on running

time, but there is no practical way to compute this. As we saw in the previous

section, a reasonable alternative is to estimate how much we expect the constraint

graph to shrink if we concretize a given node. However, it is still expensive to

actually perform substitution and simplification.

Our solution is to use a myopic measure of influence, focusing on the immediate

neighborhood of the unknown rather than the full graph. Following the intuition

from Section 4.1, our goal is to assign high influence to unknowns that select among

alternative program fragments (e.g., used as guards of conditions), and to give low

influence to unknowns in arithmetic operations. For unknown n we define

influence(n) =
∑

d∈children(n)

benefit(d, n)

where children(n) is the set of nodes that depend directly on n. Here benefit(d, n) is

a crude measure of how much the overall formula might shrink if we concretize the

parent node n of node d. The function is defined by case analysis on d:

• Choices. If d is an ite node,1 there are two possibilities. If n is d’s guard

(d = ite(n, a, b)) then benefit(d, n) = 1. This is a high-influence position, so 1

is our baseline for the ratio between high and low influence. If n corresponds

1ite(a, b, c) corresponds to if (a) b else c, as in SMT-LIB.
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to one of the choices (d = ite(c, n, b) or d = ite(c, a, n)), then benefit(d) = 0,

since replacing n with a constant has no effect on the size of the formula.

• Boolean nodes. If d is any boolean node except negation, its benefit should be

some fraction B of the baseline benefit 1. In our first attempt, we set B to

be 0.5, so that ite nodes are two times as important as boolean nodes. Our

intuition was that boolean nodes are often used in conditional guards, but

sometimes not. The choice of B will be empirically evaluated in Section 4.6.4.

If d = ¬(n), then benefit(d, n) equals influence(d), since the benefit in terms

of formula size of concretizing n and d is the same.

• Choices among constants. Sketch’s constraint graph includes nodes repre-

senting selection from a fixed sized array. If d corresponds to such a choice

that is among an array of constants, then benefit(d, n) = influence(d), i.e., the

benefit of concretizing the choice depends on how many nodes depend on d.

• Arithmetic nodes. If d is an arithmetic operation, benefit(d, n) = −∞. The

intuition is that these unknowns are best left to the solver. For example, given

??+in, replacing ?? with a constant will not affect the size of the formula.

Note that while the above definitions may involve recursive calls to influence, the

recursion depth will never be more than two due to prior simplifications. Before

settling on this particular influence measure, we tried a simpler approach that at-

tempted to concretize holes that flow to conditional guards, with a probability based

on the degree of concretization. However, we found that a small number of condi-

102



tionals have a large impact on the size and complexity of the formula. Thus, having

more refined heuristics to identify high influence holes is crucial to the success of

the algorithm.

4.3 Degree of Concretization

The next step is to decide the threshold for concretization. We hypothesize the

best amount of concretization varies—we will test this hypothesis in Section 4.6.2.

Moreover, since our influence computation is only an estimate, we opt to incorporate

some randomness, so that (estimated) highly influential unknowns might not be

concretized, and (estimated) non-influential unknowns might be.

Thus, we parameterize our algorithm by a degree of concretization (or just

degree). For each unknown n in the constraint graph, we calculate its estimated

influence N = influence(n). Then we concretize the node with certain probability p,

which will be determined by both degree d and influence N of the node. We opt to

design probability functions, where unknowns with high influence (i.e., with large

N) are assigned a higher probability, as the overall probability of concretization

decreases as d increases. (So, if d is 0, many unknowns are concretized, and if it is

∞, then none are.)

4.3.1 Discontinuous Probability Function

In our first attempt, we computed the probability p of concretization using the

following formula, which we refer to as the discontinuous probability function:
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p =


0 if N < 0

1.0 if N > 1500

1/(max(2, d/N)) otherwise

To understand this function, ignore the first two cases, and consider what

happens when d is low, e.g., 10. Then any node for which N ≥ 5 will have a

1/2 chance of being concretized, and even if N is just 0.5—the minimum N for an

unknown not involved in arithmetic—there is still a 1/20 chance of concretization.

Thus, low degree means many nodes will be concretized. In the extreme, if d is 0

then all nodes have a 1/2 chance of concretization. On the other hand, suppose d is

high, e.g., 2000. Then a node with N = 5 has just a 1/400 chance of concretization,

and only nodes with N ≥ 1000 would have a 1/2 chance. Thus, a high degree

means fewer nodes will be concretized. There are also two special cases: Nodes of

influence less than 0 are never concretized, and nodes of influence greater than 1500

are always concretized.

Figure 4.1a draws the discontinuous probability function at degree 512. There

is a linear slope from 0 until the ceiling of 0.5, followed by a straight line until the

degree cutoff 1500, and then the probability becomes 1.0.

While this function worked well, it is unsatisfying for a few reasons. First, the

choices of probability ceiling 0.5 and influence cut off 1500 are ad hoc, based on what

worked well for a subset of our benchmarks. Second, it has two large discontinuities

as shown in the figure. The one is a straight line; depending on the degree, its

length, which corresponds to the range of somewhat ambiguous influences, might be
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(a) Discontinuous (b) Smooth

Figure 4.1: Probability functions at degree 512.

too long; e.g., for degree 512, a node with 256 has the same 0.5 probability as a node

with influence 1499 has. The other one is the discontinuous jump at influence 1500;

a variable with influence 1499 is concretized with probability at most 0.5, whereas

a variable with influence 1500 is always concretized. Such discontinuity is why we

call this the discontinuous probability function.

4.3.2 Smooth Probability Function

To address these issues, we developed a new, smooth probability function:

p =

(
1

1 + e−N/d
− 0.5

)
× 2

Like the discontinuous function, the smooth function is parametrized only by degree

d and influence N of node n; the larger N is, the more likely node n is concretized;

and the larger d is, the less likely concretization is overall.

However, the smooth function addresses all the aforementioned issues. First,

it does not include any ad hoc constants. In addition to base e, there are two extra
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constants in the formula, 0.5 and 2, but they are only used to ensure the output lies

between 0 and 1. Second, it does not have any discontinuity. To visually compare

both functions, Figure 4.1b depicts the smooth function at the same degree 512. As

clearly shown in the figure, the smooth function has neither a straight line, where

nodes with quite different influences may have the same concretization probability,

nor discontinuous jumps at any points.

In Section 4.6.1, we empirically compared both probability functions. The

experimental results show that both functions behave similarly, hence we choose

the smooth function, which eliminates “magic constants” yet has the features we

want. In Section 4.6.2, we conducted a preliminary experiment to test whether the

optimal degree varies with subject program.

4.4 Adaptive, Parallel Concretization

Figure 4.2 gives pseudocode for adaptive concretization. The core step of our algo-

rithm, encapsulated in the run trial function, is to run Sketch with the specified

degree. If a solution is found, we exit the search. Otherwise, we return both the time

taken by that trial and the size of the concretization space, e.g., if we concretized n

bits, we return 2n. We will use this information to estimate the time-to-solution of

running at this degree.

Since Sketch solving has some randomness in it, a single trial is not enough to

provide a good estimate of time-to-solution, even under our heuristic assumptions.

For a practical algorithm, we cannot fix a number of trials, lest we run either too
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run trial(degree)

run Sketch with specified degree

if solution found then

raise success

else

return (running time,

concretization space size )

compare(deg a, deg b)

dist a ← ∅
dist b ← ∅
while |dist a | ≤ Max dist ∧

wilcoxon(dist a, dist b) > T do

dist a ∪← run trial(deg a)

dist b ∪← run trial(deg b)

if wilcoxon(dist a, dist b) > T then

return tie

elsif avg(dist a) < avg(dist b) then

return left

else

return right

climb()

low, high ← 0, 1

while high < Max exp do

case compare(2low, 2high) of

left : break

right:

low ← high

high ← high + 1

tie : high ← high + 1

return (low, high)

bin search(low, high)

mid ← (low + high) / 2

case compare(low, mid) of

left : return bin search(low, mid)

right: return bin search(mid, high)

tie : return mid

main()

(low, high) ← climb()

deg ← bin search(2low, 2high)

while (true) do run trial(deg)

Figure 4.2: Search Algorithm using Wilcoxon Signed-Rank Test.

many trials (which wastes time) or too few (which may give a non-useful result).

To solve this issue, our algorithm uses the Wilcoxon Signed-Rank Test [92] to

determine when we have enough data to distinguish two degrees. We assume we

have a function wilcoxon(dist a, dist b) that takes two equal-length lists of (time,

concretization space size) pairs, converts them to distributions of estimated times-

to-solution, and implements the test, returning a p-value indicating the probability

that the means of the two distributions are different.

Expected Running Time. Due to randomness introduced by hole concretiza-

tion, a hybrid approach that places somewhere between those two extreme algo-
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rithms should follows the geometric distribution2: it fails k − 1 times with proba-

bility 1 − p and then succeeds at k-th trial with probability p. Since the expected

value of the geometric distribution is 1/p, expected running time is t/p, where t is

measured running time, and p is empirical success rate. We use the same calculation

in this algorithm, except we need a different way to compute p, since the success

rate is always 0 until we find a solution, at which point we stop. Thus, we instead

calculate p from the search space size. We assume there is only one solution, so if

the search space size is s, we calculate p = 1/s.3

Comparing Degrees. Next, compare takes two degrees as inputs and returns

a value indicating whether the left argument has lower expected running time, the

right argument does, or it is a tie. The function initially creates two empty sets

of trial results, dist a and dist b. Then it repeatedly calls run trial to add a new

trial to each of the two distributions (we write x ∪← y to mean adding y to set

x). Iteration stops when the number of elements in each set exceeds some threshold

Max dist, or the wilcoxon function returns a p-value below some threshold T . Once

the algorithm terminates, we return tie if the threshold was never reached, or left

or right depending on the means.

In our experiments, we use 3 ×max(8, |cores|) for Max dist. Thus, compare

runs at most three “rounds” of at least eight samples (or the number of cores, if

that is larger). This lets us cut off the compare function if it does not seem to be

2http://en.wikipedia.org/wiki/Geometric_distribution

3Notice we can ignore the size of the symbolic space, since symbolic search will find a solution

if one exists for the particular concretization.
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finding any distinction. In our first attempt, we use 0.2 for the threshold T . This is

higher than a typical p-value (which might be 0.05), but recall our algorithm is such

that returning an incorrect answer will only affect performance and not correctness.

We conduct a more systematic analysis about T in Section 4.6.3.

Searching for the Optimal Degree. Given the compare subroutine, we can

implement the search algorithm. The entry point is main, shown in the lower-right

corner of Figure 4.2. There are two algorithm phases: an exponential climbing phase

(function climb) in which we try to roughly bound the optimal degree, followed by

a binary search (function bin search) within those bounds.

We opted for an initial exponential climb because binary search across the

whole range could be extremely slow. Consider the first iteration of such a process,

which would compare full concretization against no concretization. While the former

would complete almost instantaneously, the latter could potentially take a long time

(especially in situations when our algorithm is most useful).

The climb function aims to return a pair low, high such that the optimal degree

is between 2low and 2high. It begins with low and high as 0 and 1, respectively. It

then increases both variables until it finds values such that at degree 2high, search

is estimated to take a longer time than at 2low, i.e., making things more symbolic

than low causes too much slowdown. Notice that the initial trials of the climb will

be extremely fast, because almost all variables will be concretized.

To perform this search, climb repeatedly calls compare, passing in 2 to the

power of low and high as the degrees to compare. Then there are three cases.
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If left is returned, 2low has better expected running time than 2high. Hence we

assume the true optimal degree is somewhere between the two, so we return them.

Otherwise, if right is returned, then 2high is better than 2low, so we shift up to

the next exponential range. Finally, if it is a tie, then the range is too narrow to

show a difference, so we widen it by leaving low alone and incrementing high. We

also terminate climbing if high exceeds some maximum exponent Max exp. In our

implementation, we choose Max exp as 14, since for our subject programs this makes

runs nearly all symbolic.

After finding rough bounds with climb, we then continue with a binary search.

Notice that in bin search, low and high are the actual degrees, whereas in climb

they are degree exponents. Binary search is straightforward, maintaining the in-

variant that low has expected faster or equivalent solution time to high (recall this

is established by climb). Thus each iteration picks a midpoint mid and determines

whether low is better than mid, in which case mid becomes the new high; or mid is

better, in which case the range shifts to mid to high; or there is no difference, in

which case mid is returned as the optimal degree.

Finally, after the degree search has finished, we repeatedly run Sketch with

the given degree. The search exits when run trial finds a solution, which it signals

by raising an exception to exit the algorithm. (Note that run trial may find a

solution at any time, including during climb or bin search).

Parallelization. Our algorithm is easy to parallelize. The natural place to do this

is inside run trial: Rather than run a single trial at a time, we perform parallel trials.
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More specifically, our implementation includes a worker pool of a user-specified size.

Each worker performs concretization randomly at the specified degree, and thus

they are highly likely to all be doing distinct work.

Timeouts. Like all synthesis tools, Sketch includes a timeout that kills a search

that seems to be taking too long. Timeouts are tricky to get right, because it is

hard to know whether a slightly longer run would have succeeded. Our algorithm

exacerbates this problem because it runs many trials. If those trials are killed just

short of the necessary time, it adds up to a lot of wasted work. At the other extreme,

we could have no timeout, but then the algorithm may also waste a lot of time, e.g.,

searching for a solution with incorrectly concretized values.

To mitigate the disadvantages of both extremes, our implementation uses an

adaptive timeout. All worker threads share an initial timeout value of one minute.

When a worker thread hits a timeout, it stops, but it doubles the shared timeout

value. In this way, we avoid getting stuck rerunning with too short a timeout. Note

that we only increase the timeout during climb and bin search. Once we fix the

degree, we leave the timeout fixed.

4.5 Experimental Design

We evaluated adaptive concretization across 26 benchmarks collected from five cat-

egories of synthesis problems. Each category stems from a distinct application do-

main and varies in complexity, amount of symmetry, etc. We briefly describe each

category below, and Table 4.1 lists each benchmark, along with its lines of code and
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brief description.

• Pasket. The first three benchmarks, beginning with p , come from the applica-

tion that inspired this work: Pasket (discussed in Chapter 3), a tool that aims to

synthesize a framework model for symbolic execution. Pasket’s sketches are some

of the largest that have ever been tried, and we developed adaptive concretization

because they were initially intractable with plain Sketch.

Note that p button, p color, and p menu, correspond to ButtonDemo, ColorChooser-

Demo, and MenuDemo in Table 3.1, respectively. These sketches were generated by

an earlier version of Pasket, where we used fewer design patterns. Thus, their sizes

and running times will be different from what we have reported in Chapter 3.

• Data Structure Manipulation. The second set of benchmarks is from a project

aiming to synthesize provably correct data-structure manipulations [69]. Each syn-

thesis problem consists of a program template and logical specifications describing

the functional correctness of the expected program.

• Invariants for Stencils. The next set of benchmarks, beginning with a mom , are

from a system that synthesizes invariants and postconditions for scientific computa-

tions involving stencils. In this case, the stencils come from a DOE Miniapp called

Cloverleaf [31]. These benchmarks involve primarily integer arithmetic and large

numbers of loops.

• SyGuS Competition. The next set of benchmarks, beginning with ar and hd ,

are from the first Syntax-Guided Synthesis Competition [4], which compared syn-

112



Benchmark
Description

Name LoC

p button 3,436 aims to synthesize a model of JButton and ActionListener
p color 3,194 aims to synthesize a model of JColorChooser
p menu 4,099 aims to synthesize a model of JMenu and JMenuItem

l prepend 708 accepts a sorted singly linked list L and prepends a key k
l min 795 traverses a singly linked list via a while loop and returns the

smallest key in the list

a mom 1 229 stencil 1
a mom 2 231 stencil 2

ar s 4 313 array search SyGuS benchmark
ar s 5 334 larger array search benchmark
ar s 6 337 larger array search benchmark
ar s 7 322 larger array search benchmark
ar sum 328 array sum SyGuS benchmark
hd 13 d5 310 hackers delight bit-vector SyGuS benchmark
hd 14 d1 304 another bit-vector SyGuS benchmark
hd 14 d5 329 another bit-vector SyGuS benchmark
hd 15 d5 329 another bit-vector SyGuS benchmark

deriv2 1,444 automatically grades Python code to compute a derivative
deriv3 1,410 different automated grading Python benchmark
deriv4 1,410 different automated grading Python benchmark
deriv5 1,410 different automated grading Python benchmark
s cg 124 conjugate gradient benchmark from Sketch benchmark suite
s log2 49 computes the logarithm base two of a bit vector
s logcnt 30 counts the number of ones in a bit-vector in log n steps
s rev 136 reverses a list
q noti 262 SQL Query synthesis benchmark 1
q serv 2,005 SQL Query synthesis benchmark 2

Table 4.1: Benchmarks.

thesizers using a common set of benchmarks. We selected nine benchmarks that

took at least 10 seconds for any of the solvers in the competition, but at least one

solver was able to solve it.

• Sketch. The last group of benchmarks, beginning with s , deriv, and q , are

from Sketch’s performance test suite, which is used to identify performance re-

gressions in Sketch and measure potential benefits of optimizations.

Throughout this chapter, all performance reports are based on 13 runs on a
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server equipped with forty 2.4 GHz Intel Xeon processors and 99 GB RAM, running

Ubuntu 14.04.3 LTS. (We used the same machine for the experiments in Section 3.7.)

For the pure Sketch runs only, performance is also on 13 runs with a 2-hour timeout

and 32 GB memory bound.

4.6 Experimental Evaluation

First, we consider the two “magic constants” in degree of concretization: degree cut-

off 1500 and ceiling of probability 1/2 in the discontinuous probability function. We

simply avoid these constants by introducing the new, smooth probability function

whose shape and trend are similar to the previous function. In Section 4.6.1, we

empirically show that both functions indeed behave similarly.

One assumption underlying our algorithm is that if we make a graph with the

degree on the x-axis and the expected time to find a solution on the y-axis, the graph

forms a “vee” shape with a low point at the optimal degree. This justifies adaptive

concretization’s degree search process, which uses a combination of exponential hill

climbing and binary search. In Section 4.6.2, we empirically demonstrate on a subset

of the benchmarks that the “vee” shape indeed occurs under the smooth probability

function, hence justifying adaptive concretization’s search process.

Next, we consider the last two “magic constants” in adaptive concretization.

First, during degree search, the algorithm uses the Wilcoxon Signed-Rank Test [92]

to compare the mean expected synthesis time from two sets of trials at two different

degrees. That test returns a p-value indicating the probability any observed differ-
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ence in the mean is due to random chance. Once the p-value exceeds a threshold

T , adaptive concretization determines one degree is better than the other and then

continues searching at a different pair of degrees. In our original algorithm, we fixed

T at 0.2. In Section 4.6.3, we use a simulation of adaptive concretization to com-

pare five different T values ranging from 0.001 to 0.5. We find that choosing a T

anywhere between 0.05 and 0.2 seems to yield similarly good results.

Second, adaptive concretization’s original influence calculation assigns arbi-

trary boolean unknowns 0.5 times the influence of unknowns in guard positions of

if-then-else nodes. In Section 4.6.4, we empirically evaluate a range of different val-

ues for this ratio, B, ranging from 1/8 to 2. Surprisingly, we find no meaningful

differences among this wide range of choices, suggesting the influence calculation is

not sensitive to the choice of B. Cumulatively, our results put adaptive concretiza-

tion on a much firmer foundation by demonstrating that the algorithm is robust to

a wide range of design decisions.

Finally, in Sections 4.6.5 and 4.6.6, we empirically evaluated adaptive con-

cretization against a range of benchmarks with various characteristics. Compared

to regular Sketch (i.e., pure symbolic search), we found our algorithm is sub-

stantially faster in many cases; competitive in most of the others; and slower on

a few benchmarks. We also compared adaptive concretization with concretization

fixed at the final degree chosen by the adaption phase of our algorithm (i.e., to see

what would happen if we could guess this in advance), and we found performance

is reasonably close, meaning the overhead for adaptation is not high. We measured

parallel scalability of adaptive concretization of 1, 4, and 32 cores, and found it
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Bench Discontinuous Smooth speedup
mark d || Tm (s) d || Tm (s) (D/S)

p button 4,864 597 52 9 2,048 592 46 10 1.130

p color 3,072 462 36 12 640 336 21 2 1.714

p menu 212 590 70 14 3,072 601 72 28 0.972

l prepend 32 88 13 1 256 151 17 1 0.765

l min 128 204 41 12 256 204 34 10 1.206

a mom 1 256 306 248 20 1,024 222 198 12 1.253

a mom 2 4,096 355 1,130 144 2,048 219 848 98 1.333

ar s 4 32 11 4 0 16 3 5 0 0.800

ar s 5 16 18 5 0 16 11 5 1 1.000

ar s 6 32 38 9 2 16 15 9 0 1.000

ar s 7 64 106 49 10 16 37 40 10 1.225

ar sum 16 15 40 6 32 8 55 32 0.727

hd 13 d5 16 14 8 0 32 15 8 1 1.000

hd 14 d1 32 70 16 6 52 107 22 6 0.727

hd 14 d5 32 14 265 62 32 10 237 70 1.118

hd 15 d5 32 13 130 48 32 12 178 56 0.730

s cg 64 141 13 1 32 73 11 2 1.118

s log2 64 110 141 156 128 109 136 227 1.037

s logcnt 32 110 27 8 32 37 25 46 1.080

s rev 128 164 40 13 128 118 44 18 0.909

deriv2 16 20 7 2 16 25 8 1 0.875

deriv3 32 15 7 2 32 20 8 2 0.875

deriv4 16 17 6 0 32 18 5 0 1.200

deriv5 32 19 6 0 32 9 5 2 1.200

q noti 32 115 7 0 64 125 7 2 1.000

q serv 16 9 21 4 16 5 22 4 0.955

Table 4.2: Comparing AC with discontinuous vs. smooth probability function.

generally scales well. We also compared against the winner of the SyGuS’14 com-

petition on a subset of the benchmarks and found that adaptive concretization is

better than the winner on 6 of 9 benchmarks and competitive on the remaining

benchmarks.

4.6.1 Concretization Probability

The first question we address in this section is:
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Research Question 1 How does the smooth probability function compare to the

discontinuous probability function?

Table 4.2 compares both functions on our full benchmark suite, running on 32

cores. For each benchmark, we list its lines of code, followed by the results under

the discontinuous probability function, the smooth probability function, and the

speedup, which is the ratio of the running time under the smooth function to the

time under the discontinuous function.

For each probability function, we list the median of the final degrees chosen

by adaptive concretization (column d), the median number of calls to run trial

(column ||), and the median running time. The columns that include running time

are greyed for easy comparison, with the semi-interquartile range (SIQR) in a small

font. We boldface the fastest time in each row.

Overall, the degrees chosen by both functions are very similar in the sense

that they usually are within a factor of two, which indicates that the climbing phase

ended in about the same range. The two probability functions are about the same

in terms of performance. Indeed, each function outperforms the other one for half of

the benchmarks. The median speedup is 1.0, the average is 1.039, and the variance

is 0.05.

We applied Mann-Whitney U test [56], which tests whether one of given sample

sets is consistently better than the other, to the performance results under the two

probability functions. Notice that this test is different from Wilcoxon signed-rank

test [92] that we used to compare two degrees during the adaptive concretization.
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The main difference is the category of input samples: Wilcoxon signed-rank test

is applicable to repeatable samples on the single same benchmark, whereas Mann–

Whitney U test is applicable to two performance result samples from the whole

benchmark set.

According to the statistical test, we cannot reject the alternative hypothesis

that either performance set is exceeding the other, due to a very poor confidentiality:

0.88. Therefore, from a statistical point of view, it is difficult to identify which one

strictly outperforms the other, hence it is fairly safe to choose either function. The

smooth probability function is preferable, since it is much intuitive due to the lack of

design choices, i.e., magic numbers. In the remainder of the chapter, all experiments

use the new, smooth probability function.

Although there are no noticeable outliers, in the next subsection we investi-

gated some cases where the smooth function performs better and some cases where

the discontinuous function performs better, to get a better understanding of the

algorithm.

In the following discussion, we refer to unknowns as holes, which is Sketch’s

internal terminology for unknowns. Holes are named by prefixing their unique id

with H , e.g., H 26. Sometimes the same syntactic hole may appear multiple times

in the SAT formula due to inlining a function call or unrolling a loop. In this case,

the hole name is appended with addition unique IDs, e.g., H 26 22 and H 26 23

are two instances of the same original syntactic hole H 26.

While investigating the experimental results, we found the benchmarks can

be divided into three general categories: those with many influential holes; those
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D
e
g
re

e
1
6

Discontinuous Smooth
Success Rate 0 / 592 0 / 559

Success Time (ms) N/A N/A
Fail Time (ms) 2,598 343

Max Search Space 5.37e8 2.75e12
Concretization Histogram
H 26 23 321 (0) 559 (0)

H 26 22 312 (0) 559 (0)

H 27 19 35 36 (0) 16 (0)

H 8 23 25 18 (0) 17 (0)

· · · · · · · · ·
D
e
g
re

e
5
1
2

Discontinuous Smooth
Success Rate 0 / 624 0 / 320

Succeeded Tm(ms) N/A N/A
Failed Tm(ms) 10,243 9,485

Max Search Space 131,072 4,194,304
Concretization Histogram
H 26 23 301 (0) 140 (0)

H 26 22 322 (0) 160 (0)

H 27 27 35 56 (0) 11 (0)

H 30 27 33 49 (0) 7 (0)

· · · · · · · · ·

D
e
g
re

e
2
0
4
8

Discontinuous Smooth
Success Rate 1 / 523 37 / 320

Success Time (ms) 764,183 757,921
Fail Time (ms) 64,292 109,731

Max Search Space 32,768 1,024
Concretization Histogram

H 29 26 29 264 (1) 81 (6)

H 30 26 35 276 (1) 76 (9)

H 28 26 33 239 (1) 69 (3)

H 27 26 35 286 (0) 80 (7)

· · · · · · · · ·

Figure 4.3: Hole concretization histograms for a mom 2.

with few influential holes; and those with a lot of symmetry. The smooth probability

function tends to work better for the first two, and the discontinuous function better

for the last one. We discuss each category in depth next, using concrete examples.

Many Influential Holes. Suppose there are many holes that are influential, but

not above the cutoff of 1500 hard-coded into the discontinuous function. Then the

smooth function tends to do better because it gives these holes a much higher prob-

ability of concretization, whereas the discontinuous function caps the probability at
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0.5.

As an example, Figure 4.3 shows hole concretization statistics and histograms

for a mom 2 at low, medium, and high degrees: 16, 512, and 2048, respectively. In

each table, for each probability function, we list the success rate (how often we find

a solution out of how many trials); the median time for a successful trial; the median

time for a failed trial; and the maximum search space size.

We also give a partial histogram of the most often concretized holes, where

the number indicates the count of times a hole was concretized in the trials, and the

parenthesized number indicates in how many of those times synthesis was successful

when that hole was concretized. For example, under the discontinuous function at

degree 2048, hole H 29 26 29 was concretized 264 times (out of 523 trials), and 1

concretization (out of 264) was in a trial that succeeded.

Looking at the table for degree 16, we see that under the discontinuous func-

tion, even the most influential holes (H 26 23 and H 26 22) are concretized in at

most half the trials, whereas they are always concretized under the smooth function.

As a result, the maximum search space under the smooth function is four orders of

magnitude larger. However, the failed trials also speed up, here by a factor of seven,

thus leading the smooth function to give up sooner at this low degree. Under both

functions the probability of success is extremely low: no successful trials.

While the search algorithm climbs up to degree 2048, however, the two func-

tions behave differently. Under the discontinuous function, those influential holes

still have a 0.5 probability of concretization. In contrast, under the smooth function,

a concretization probability of those holes have dropped through 0.5 to around 0.16.
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D
e
g
re

e
1
6

Discontinuous Smooth
Success Rate 0 / 536 8 / 323

Success Time (ms) N/A 39,600
Fail Time (ms) 3,792 6,674

Search Space 2.028e+31 2.882e+17
Concretization Histogram

H 17 10 1 0 164 (0) 50 (2)

H 17 10 2 1 0 160 (0) 51 (1)

H 0 10 2 1 1 2 49 (0) 21 (1)

H 13 10 1 0 4 1 24 (0) 15 (1)

H 1 10 0 4 2 2 24 (0) 8 (1)

(. . . and more than 1,200 similar holes)

Figure 4.4: Hole concretization statistics and histogram for ar s 7.

Thus the overall level of concretization is much smaller, as is the concretization

search space (1,024 for smooth versus 32,768 for discontinuous).

In sum, many holes in this benchmark are equally influential, which makes

it hard to find an optimal degree as well as a right amount and subset of holes

for concretization. Our new smooth function achieves slightly better performance,

for two reasons. First, when degrees are low, it can quickly climb up, thanks to

faster individual trials caused by aggressive concretization. Second, when a degree

is high enough, it can balance the amount of concretization and the running time of

individual trials by generously lowering the concretization probability of influential

holes.

Few Influential Holes. If there are few influential holes, then it is better to use

symbolic search rather than explicit search. We observed that under the smooth

function, holes with smaller influence tend to have a lower probability of concretiza-

tion; thus the smooth function yields more symbolic search, which in turn achieves

slightly better performance.
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D
e
g
re

e
1
6 Discontinuous Smooth

Success Rate 10 / 110 6 / 60
Success Time (ms) 37,540 83,740

Fail Time (ms) 4,586 12,359
Search Space 7.556e+22 6.872e+11

Figure 4.5: Hole concretization statistics for ar sum.

For example, Figure 4.4 shows the concretization statistics and histogram for

ar s 7 at degree 16. This benchmark is very exceptional in that it has many equally

unimportant holes—more than 1,200 of them. Since their influence is small, the

probability of concretizing them under the smooth function is lower than under the

discontinuous function. For example, the concretization probability of the most in-

fluential hole, H 17 10 1 0, is around 0.3 under the discontinuous function, whereas

under the smooth function it is around 0.15. As a result, fewer holes are concretized

under the smooth function, and the search space is sixteen orders of magnitude

smaller.

Symmetry. If the synthesis problem has a lot of symmetry, then concretization

helps in general, because there’s a high probability of finding a solution. In this

case, the discontinuous function does better because it tends to concretize more.

For example, Figure 4.5 shows the concretization statistics for ar sum. This

benchmark is very similar to ar s 7 in that it has many low-influence holes. How-

ever, it also has many solutions, and thus even aggressive concretization under the

discontinuous function has a relatively good chance of concretizing correctly.

In this particular example, the discontinuous function has a search space that

is 11 orders of magnitude larger. This huge search space makes both successful
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Bench Degree
mark 16 32 64 128 256 512 1024 2048 4096

p button 7 6 5 5 6 6 7 8 18

p menu 1 1 2 163 196 196 196 196 196

l prepend >1M >1M >1M 908,067 474 19 6 4 4

l min 1 1 0 4 52 337 597 142 150

a mom 1 7,717 7,324 4,198 1,832 2,403 1,610 228 103 61

a mom 2 >1M >1M >1M >1M >1M >1M 8,697 1,571 641

hd 14 d5 23,142 10,010 4,184 N/A N/A N/A N/A N/A N/A

hd 15 d5 5,299 29 0 0 N/A N/A N/A N/A N/A

s log2 918 626 472 399 ∞ ∞ N/A N/A N/A

s rev >1M >1M >1M 39,290 13,111 146 N/A N/A N/A

Table 4.3: Expected running time (s) using empirical success rate. Fastest time
in dark grey, second-fastest in light grey, ∞ if all failed trials exceed the 2-hour
timeout, and N/A if there are no failed cases.

and failed trials around twice as fast as the ones under the smooth function. But

the empirical success rates are similar (10/110 vs. 6/60). Thus, the discontinuous

function, which has faster individual trials, outperforms the smooth function.

4.6.2 Degree/Time Tradeoff Curve

A critical hypothesis underlying adaptive concretization is that there exists an op-

timal degree such that the farther away from the optimal degree, the slower the

running time (i.e., the running time forms a “vee” around the optimal degree). We

should confirm this before investigating other research questions:

Research Question 2 Under the smooth probability function, do the expected run-

ning times across all concretization degrees form a vee shape around the optimal

degree?

To answer this question, we created a database of individual trials of Sketch

run on a particular benchmark under a given degree (i.e., the run on Sketch in
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run trial in Fig. 4.2). We gathered the data from the 13 runs used to generate

Table 4.2, and we also ran extra trials for various benchmark/degree combinations

to gather more information (more details below). We used a 2-hour timeout for the

extra trials. For each trial the database records whether it succeeded or failed, the

running time t, and the size of the concretization space n.

We assume the running is single-threaded, one trial after another, and compute

the expected time to success as t ∗ n, where t is the median running time of failed

trials, and n is search space of the failed trials after random concretization. Then

we can group the trials in the database by their benchmark and concretization

degree, and compute each benchmark/degree pair’s median expected running time.

Table 4.2 summarizes the results. Here we give data for the two longest-running

(according to Table 4.2) benchmarks from each category.

There are a few exceptional cases in SyGuS and Sketch benchmarks. For

SyGuS benchmarks, hd * d5, starting from degrees 128 or 256, randomly concretiz-

ing influential holes always succeeds in finding a solution, thanks to the low level

of concretization as well as the symmetry in those benchmarks. For s log2, at de-

grees 256 and 512, all the failed trials exceed the 2-hour timeout, hence∞ expected

running time. Starting from degree 1024, similar to SyGuS benchmarks, random

concretization always succeeds as well. The other Sketch benchmark, s rev, has

the same behavior at the same degrees (from 1024 to 4096). In case of no failed

cases, we cannot expect the running time of the random concretization because the

(empirical) success rate is 1. (Such cases are labeled as N/A.) In terms of the opti-

mal degree of the adaptive concretization, those degrees are out of scope, since the
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adaptive concretization eventually settles earlier on other beneficial degrees.

Except for those cases, we can generally see that the running times indeed

form a “vee” around the optimal degree, i.e., performance gets worse the farther

away from optimal in either direction. This matches our previous result for the

discontinuous function, and it suggests that hill climbing and binary search can

successfully find an optimal degree. The table also shows that the optimal degree

varies across all benchmarks; indeed, all degrees except 1024 are optimal for at least

one benchmark. This confirms our assumption that there is no fixed optimal degree,

and necessitates our adaptive search algorithm.

In addition, we also use the resampling method [27] to check if our sample size

is reasonable large to give us a reliable answer to Research Question 2. Specifically,

for each benchmark and for each degree, if there are n trials in the database we

resample from these trials n times, with replacement, and call the collected trials a

bootstrap sample. Then based on these bootstrap samples, we compute the median

expected running time for each benchmark/degree again, using the same formulation

we set forth above. Although the expected running times are slightly different from

those in Table 4.3 for most cases, bootstrap samples still show us the same “vee”,

with the same optimal degree. This experiment shows that what we reported in

Table 4.3 is solid enough and reliable.
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4.6.3 Wilcoxon Test Threshold

Now that we have data about the optimal degree of each benchmark, we can ask

whether adaptive concretization actually finds it. Recall that the algorithm is pa-

rameterized by a threshold T for the p-value of the Wilcoxon test. Thus, we actually

want to ask:

Research Question 3 How is adaptive concretization’s search affected by the thresh-

old T?

We could try to answer this by running adaptive concretization many times,

but since we already have a database of trials, there is a better way: We can perform

a simulation in which we run the algorithm, but instead of running Sketch itself,

we randomly (with replacement) pick an appropriate benchmark/degree trial result

from the database and return that from run trial.

More concretely, we replace run trial with a new function sample trial in

Figure 4.6. Here global variable t simulates the wall-clock time for the whole al-

gorithm. Each time we retrieve a trial from the database, we add its time to the

running wall-clock time and then return the estimated time to success.

We also simulate parallelized version of the algorithm using a single thread.

Specifically, if there are n workers in the pool and the manager dispatches m trials at

a time, the sample trial function will sample failed trials m times with replacement,

and get their running time ∆1 through ∆m. Then assuming that every worker is

fully utilized in the long rung and n ≤ m, sample trial can simply return the running
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t ← 0 /∗ ‘‘ wall-clock’’ time measurement ∗/
sample trial (degree)

sample a failed trial with specified degree, and

get the running time ∆ and concretization space size S.

(∆, S) ← sample from database()

t ← t + ∆

return (∆/S)

Figure 4.6: Sampling trials in the database in lieu of actual Sketch runs.

results from the m trials, and advance the global time by
(∑

i∈[1,m] ∆i

)
/n.

Using this approach, we simulated 32-core adaptive concretization runs with

T set at five thresholds: 0.001, 0.05, 0.1, 0.2 and 0.5. (Recall that a small num-

ber means we need more trials before reaching that significance level.) For each

benchmark b and for each threshold p, we run AC on b with p as the p-value, for

301 times. For each benchmark/threshold combination, we counted the most often

found degree and the median time taken by adaptive concretization to find a fixed

degree.

Note that the sampled trials might be insufficient for the Wilcoxon test to

produce a small enough p-value, and resampling more trials from the database won’t

help. In that case, we run extra trials with the current concretization degree, and

add them to the database and restart the simulation from scratch. This iteration

continues until the mode degree becomes obvious, i.e., the mode degree won’t change

no matter what the unsettled runs’ results would be. For each simulation that is still

stuck on comparing degrees d1 and d2 due to the insufficient number of samples for

d1 or d2 in the database, we assume every candidate degree (multiple of 16) within

[d1, d2] may be chosen with the same probability. For example, if a simulation stop
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Bench Optimal T = 0.001 T = 0.05
mark Degree Degree Tm Degree Tm

p button 608 128 2056 2064 99 2064 2056 99
p menu 30 16 2056 3076 251 44 40 231

l prepend 2048 4096 4096 104 4199 48 4096 2310
l min 64 32 2048 N/A 79K 2048 52 70K

a mom 1 3328 4096 3328 2560 69K 3072 3328 56K
a mom 2 4096 2048 3328 3320 289K 3328 3712 299K

hd 14 d5 64 32 64 N/A 224K 64 16 216K
hd 15 d5 64 32 64 N/A 110K 64 16 107K

s log2 128 64 512 16 135K 512 16 135K
s rev 512 256 512 48 81K 512 48 74K

Bench T = 0.1 T = 0.2 T = 0.5
mark Degree Tm Degree Tm Degree Tm

p button 2080 2064 95 16 2080 90 16 48 N/A
p menu 44 44 165 16 40 131 16 32 97

l prepend 48 4096 2175 48 4096 1697 48 16 981
l min 2048 16 64K 2048 16 52K 2048 16 41K

a mom 1 3072 3584 50K 3072 16 47K 4096 16 26K
a mom 2 3328 3712 301K 3328 3712 292K 32 16 270K

hd 14 d5 64 16 217K 64 16 208K 64 16 181K
hd 15 d5 64 16 107K 64 16 102K 64 16 94K

s log2 512 48 133K 512 48 125K 512 16 N/A
s rev 512 48 73K 512 48 69K 512 48 71K

Table 4.4: Simulating 32-core adaptive concretization as T varies: Mode degree
found and Median time taken. Most often found degrees in large text and second
most often found degrees in small text.

at [16, 48], we count each degree from {16, 32, 48} as being chosen 1/3 time.

Table 4.4 summarizes our simulation results and compares them with the op-

timal degree based on all the trials in the database. The mode degrees are shown in

large text and the second most often found degrees are shown in small text. Sim-

ilarly, we show the optimal degrees in large text and the second-to-optimal degree

in small text.

Experiments also show that the random nature of the adaptive concretization

algorithm makes it robust with moderate thresholds (T = 0.05, 0.1 or 0.2): the
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Bench Influence Weights B
mark 1/8 1/4 1/2 3/4 1 4/3 2

p button 42 4 35 8 46 10 41 6 38 10 42 6 50 8

p menu 71 22 87 37 72 28 62 13 55 15 60 18 91 37

l prepend 18 2 19 2 17 1 17 2 17 2 17 2 18 2

l min 29 7 26 4 34 10 27 10 35 17 29 7 43 20

a mom 1 211 32 204 24 198 12 188 18 185 37 199 30 214 26

a mom 2 1,004 153 699 122 848 98 811 80 889 126 905 137 822 98

hd 14 d5 313 125 175 48 237 70 286 110 231 92 197 63 211 68

hd 15 d5 300 157 188 141 178 56 227 28 284 40 257 40 149 105

s log2 222 161 444 461 136 227 159 271 137 310 390 212 84 70

s rev 52 51 69 20 44 18 70 32 64 22 116 59 52 34

Table 4.5: Comparing influence weights of boolean nodes.

found degrees are very similar, and lower thresholds usually take just slightly less

time to find a degree than higher thresholds take. However, extreme thresholds

(T = 0.001 or 0.5) are clearly not good choices: on the one hand, when the threshold

is extremely high, the Wilcoxon test usually cannot conclude which degree is better,

and then algorithm tends to climb to very high degrees for most benchmarks; on

the other hand, when the threshold is extremely low, the Wilcoxon test’s results can

be easily affected by random noises, and the algorithm will stop at very low degrees

too often. In summary, the simulation results suggest that any threshold between

0.05 and 0.2 is reasonable.

4.6.4 Influence Computation

To evaluate the choice of B, the ratio between choice nodes and other booleans,

we ran a subset of our benchmarks on seven ratios: 1/8, 1/4, 1/2 (our previous

choice), 3/4, 1, 4/3, and 2. Notice the last two ratios weigh arbitrary booleans

as more important than choice nodes. We used the same subset of benchmarks as
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Tables 4.3 and 4.4 in Section 4.6.2. We ran each benchmark/B combination thirteen

times on 32 cores. Table 4.5 shows the results. As in Table 4.2, the columns show

median running time, with the SIQR in a small font, and we highlight fastest and

second-fastest times in each row.

From these results, the fastest running times appear across all degrees except

for 1/8, though the second-smallest weight, 1/4, typically has many fastest running

times. This reinforces our intuition that choice nodes should be more influential than

boolean nodes. However, the performance differences are not that huge. In order

to see whether there exists a degree that outperforms everything else, we applied

Mann-Whitney U test again to all possible pairs of ratios. The confidentiality from

those tests ranges from 0.35 to 0.96, which simply implies that there is no best ratio

at all. This rather indicates that our influence computation is not sensitive to the

ratio between choice nodes and other booleans.

4.6.5 Performance Results

The right columns of Table 4.6 show our results. The columns that include running

time are greyed for easy comparison, with the semi-interquartile range (SIQR) in

a small font. (We only list the running times SIQR to save space.) The median

is ∞ if more than half the runs timed out, while the SIQR is ∞ if more than one

quarter of the runs timed out. The first grey column lists Sketch’s running time

on one core. The next group of columns reports on adaptive concretization, run on

32 cores. The first column in the group gives the median of the final degrees chosen
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Bench Sketch Adaptive Non-Adaptive
mark Time (s) d || Time (s) || Time (s)

p button 60 14 2,048 592 46 10 205 23 2

p color 12 4 640 336 21 2 61 12 4

p menu OOM 3,072 601 72 28 103 22 6

l prepend 19 4 256 151 17 1 53 12 2

l min 135 29 256 204 34 10 30 20 2

a mom 1 164 18 1,024 222 198 12 130 246 3

a mom 2 700 102 2,048 219 848 98 88 1,153 112

ar s 4 4 0 16 3 5 0 4 4 0

ar s 5 6 2 16 11 5 1 20 5 0

ar s 6 10 2 16 15 9 0 46 9 1

ar s 7 47 4 16 37 40 10 142 41 26

ar sum 277 129 32 8 55 32 8 61 24

hd 13 d5 47 11 32 15 8 1 30 8 2

hd 14 d1 111 54 52 107 22 6 164 16 3

hd 14 d5 1,296 323 32 10 237 70 3 194 35

hd 15 d5 447 206 32 12 178 56 6 213 39

s cg 12 2 32 73 11 2 259 16 2

s log2 424 360 128 109 136 227 4 62 14

s logcnt 447 889 32 37 25 46 71 18 8

s rev 209 101 128 118 44 18 13 57 24

deriv2 18 3 16 25 8 1 89 12 8

deriv3 22 4 32 20 8 2 14 7 1

deriv4 11 2 32 18 5 0 9 5 1

deriv5 12 2 32 9 5 2 23 6 1

q noti 13 4 64 125 7 2 38 6 1

q serv 82 32 16 5 22 4 19 23 2

Table 4.6: Comparing Sketch, adaptive, and non-adaptive concretization.

by adaptive concretization. The next column lists the median number of calls to

run trial. The last column lists the median running time. Lastly, the right group of

columns shows the performance of our algorithm on 32 cores, assuming we skip the

adaptation step and jump straight to running with the median degree shown in the

table. For example, for p button, these columns report results for running starting

with degree 2,048 and never changing it. We again report the number of trials and

the running time.
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Comparing Sketch and adaptive concretization, we find that adaptive con-

cretization typically performs better. In the figure, we boldface the fastest time

between those two columns. We see several significant speedups, ranging from 18×

for s logcnt, 6× for hd 14 d5, and 5× for hd 14 d1, ar sum, and s rev to 4× for

l min and q serve and 3× for s log2 and hd 15 d5. For p menu, Sketch reliably

exceeds our 32GB memory bound and then aborts, whereas our algorithm succeeds,

mostly around one minute. Overall, adaptive concretization performed better in 22

of 26 benchmarks, and about the same on one benchmark.

On the remaining benchmarks (p color, a mom 1, a mom 2, and ar s 4), adap-

tive concretization’s performance was within about a factor of two. Comparing other

similarly short-running benchmarks, such as ar s 5 and ar s 6, where the final de-

gree (16) was chosen very early, the degree search process needed to spend more

time to reach bigger degree, resulting in the slowdown.

Next we compare adaptive concretization to non-adaptive concretization at

the final degree. In ten cases, the adaptive algorithm is actually faster, due to

random chance. In the remaining cases, the adaptive algorithm is either about the

same as non-adaptive or is at worst within a factor of approximately three.

4.6.6 Parallel Scalability and Comparison to SyGuS Solvers

We next measured how adaptive concretization’s performance varies with the num-

ber of cores, and compare it to the winner of the SyGuS competition. Table 4.7

shows the results. The first two columns are the same as Table 4.6. The next three
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Bench Sketch # Cores (Time (s)) Enum
mark Time (s) 1 4 32 Time(s)

p button 60 14 201 ∞ 43 12 46 10

p color 12 4 53 8 22 3 21 2

p menu OOM ∞ 707 ∞ 72 28

l prepend 19 4 38 8 15 2 17 1

l min 135 29 369 185 48 38 34 10

a mom 1 164 18 812 200 279 36 198 12

a mom 2 700 102 1,860 150 1,071 270 848 98

ar s 4 4 0 5 0 2 0 5 0 1,804 44

ar s 5 6 2 7 2 3 0 5 1 ∞
ar s 6 10 2 10 2 6 0 9 0 ∞
ar s 7 47 4 93 38 32 9 40 10 ∞
ar sum 277 129 63 76 45 38 55 32 ∞
hd 13 d5 47 11 13 9 10 2 8 1 8 0

hd 14 d1 111 54 66 14 19 4 22 6 8 0

hd 14 d5 1,296 323 623 403 238 102 237 70 201 1

hd 15 d5 447 206 765 402 304 55 178 56 424 13

s cg 12 2 10 1 10 0 11 2

s log2 424 360 467 342 663 694 136 227

s logcnt 447 889 340 342 25 26 25 46

s rev 209 101 304 89 86 121 44 18

deriv2 18 3 26 6 10 2 8 1

deriv3 22 4 35 17 8 1 8 2

deriv4 11 2 18 4 5 1 5 0

deriv5 12 2 18 4 7 0 5 2

q noti 13 4 13 4 7 2 7 2

q serv 82 32 26 7 21 6 22 4

Table 4.7: Parallel scalability of adaptive concretization.

columns show the performance of adaptive concretization on 1, 4, and 32 cores. We

discuss the rightmost column shortly. We boldface the fastest running time among

Sketch, 1, 4, and 32 cores.

The results show that, in the one-core experiments, adaptive concretization

performs better than regular Sketch in 9 of 26 cases. Although adaptive con-

cretization is worse or times out in one case, its performance improves with the

number of cores. The 4-core runs are consistently close to or better than 1-core

runs; in one case, benchmarks that time out on 1 core succeed on 4 cores. At 32
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cores, we see the best performance in 15 of the 26 cases, with a speedup over 4-core

runs ranging up to 10×.

SyGuS Benchmarks and Solvers. Finally, the rightmost column of Table 4.7

shows the performance of the Enumerative CEGIS Solver, which won the SyGuS’14

Competition [4]. As the Enumerative Solver does not accept problems in Sketch

format, we only compare on benchmarks from the competition (which uses the

SyGuS-IF format, which is easily translated to a sketch). We should note that the

enumerative solver is not parallelized and may be difficult to parallelize.

Adaptive concretization is faster for 6 of 9 benchmarks from the competi-

tion. It is also worth mentioning the Enumerative Solver actually won on the four

benchmarks beginning with hd . Our results show that adaptive concretization out-

performs it on one benchmark and is competitive on the others.

4.7 Literature Review

There have been many recent successes in sampling-based synthesis techniques. For

example, Schkufza et al. use sampling-based synthesis for optimization [73, 74], and

Sharma et al. use similar techniques to discover complex invariants in programs [76].

These systems use Markov Chain Montecarlo (MCMC) techniques, which use fit-

ness functions to prioritize sampling over regions of the solution space that are more

promising. This is more sophisticated sampling technique than what is used by our

method. We leave it to future work to explore MCMC methods in our context. An-

other alternative to constraint-based synthesis is explicit enumeration of candidate
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solutions. Enumerative solvers often rely on factoring the search space, aggressive

pruning and lattice search. Factoring has been very successful for programming by

example [35, 38, 77], and lattice search has been used in synchronization of concur-

rent data structures [91] and autotuning [11]. However, both factoring and lattice

search require significant domain knowledge, so they are unsuitable for a general pur-

pose system like Sketch. Pruning techniques are more generally applicable, and

are used aggressively by the enumerative solver compared against in Section 4.6.

Recently, some researchers have explored ways to use symbolic reasoning to

improve sampling-based procedures. For example, Chaudhuri et al. have shown

how to use numerical search for synthesis by applying a symbolic smoothing trans-

formation [22, 21]. In a similar vein, Chaganty et al. use symbolic reasoning to limit

the sampling space for probabilistic programs to exclude points that will not satisfy

a specification [20]. We leave exploring the tradeoffs between these approaches as

future work.

Finally, there has been significant interest in parallelizing SAT/SMT solvers.

The most successful of these combine a portfolio approach—solvers are run in paral-

lel with different heuristics—with clause sharing [37, 93]. Interestingly, these solvers

are more efficient than solvers like PSATO [95] where every thread explores a subset

of the space. One advantage of our approach over solver parallelization approaches

is that the concretization happens at a very high-level of abstraction, so the solver

can apply aggressive algebraic simplification based on the concretization. This al-

lows our approach to even help a problem like p menu that ran out of memory on the

sequential solver. The tradeoff is that our solver loses the ability to tell if a problem
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is UNSAT because we cannot distinguish not finding a solution from having made

incorrect guesses during concretization.
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Chapter 5: Future Work

In this dissertation, we have shown that program synthesis can enhance the effective-

ness of symbolic execution by automatically creating a framework model. Although

the results are promising, there is still room for improvement, and this chapter will

discuss the future work.

5.1 Towards Synthesis-Aided Symbolic Execution

In particular, the process of generating drivers and properties of interest can be

automated via program synthesis, too. A synthesized driver (Section 5.1.1), together

with synthesized properties to check (Section 5.1.2), will make it easier to utilize

symbolic execution. We can also exploit program synthesis to derive search strategies

that can effectively drive symbolic execution towards interesting program points

(Section 5.1.3).

5.1.1 Synthesizing Drivers

In general, SymDroid drivers, as shown in Figure 2.16, can be divided into two

parts: 1) events, e.g., user interactions (line 72 in the figure), which drive SymDroid

towards desired program points, and 2) properties to check at such desired points
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(line 83). Since events typically induce implicit calls, we can automatically generate

the event sequence as long as we can identify potential implicit control-flows from

the call graph of the app. One solution is to learn callback relations from the API

documentation, e.g., method onClick of the registered OnClickListener instance will be

invoked to handle the user’s button click.

The latter, however, is harder to automate than the former because it depends

on problems users want to verify via symbolic execution. We propose to apply

program synthesis to generate drivers, especially inferring properties of interest. As

a starting point, we could manually write as many drivers as possible that explore

a set of apps and discover interesting behaviors, e.g., under what conditions those

apps access privacy-sensitive user data. Those hand-written drivers can be useful

not only to summarize app behavior from the viewpoint of privacy but also to learn

how to derive properties to check from examples.

5.1.2 Synthesizing Properties of Interest

Recall that path conditions are used to filter out infeasible paths. Likewise, dur-

ing symbolic execution, properties comprised of such symbolic expressions can be

checked by a SMT solver. The question is, what properties should we check and

where should we check them.

We propose to synthesize properties of interest from examples so that even end-

users can easily articulate properties. We will again use constraint-based, inductive

synthesis, using samples to learn properties to be synthesized. Similar to Pasket,
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samples will be logged behavior that users want to detect. The key idea behind

our proposal is that no explicit templates are required to synthesize properties of

interest, assuming an app’s bytecode is available. Using the input call traces as well

as the bytecode, we can extract candidate expressions that appear along the traces,

and those expressions will be used to compose properties of interest. A similar idea

was explored by PINS [86], where its goal is to synthesize an inverse program that

reuses the structure of the target program with small tweaks.

Recall the running example, where the app can read user contacts right after it

launches because of the default option settings. Suppose a user wants to prevent an

app from reading her contacts before she explicitly allows it, aside from the consent

at installation. In this context, she will provide the sample log in Figure 5.1a, which

reflects the aforementioned behavior: reading user’s contacts right after launching

(on line 3).

Figure 5.1b depicts how to extract candidate expressions from the bytecode.

Since the bytecode is much simpler than source code, we need to keep track of

values in the registers, along with invoked methods that could be used as arbitrary

predicates. For example, in the event handlers that appear along the sample trace,

we can extract p1.getItemId and p0.getId. In a similar way, many other candidate

expressions can be collected as well.

Figure 5.1c shows how to generate a sketch template that explores all possible

combinations of candidate expressions. We will regard all program structures as

integers by assigning unique class/method/field ids as in Section 3.5. Using Sketch

generator we can encode a generic function that tries a certain number of mathematic
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1 Splash.onCreate(Splash@1, null )

2 Settings .sync(Splash@1)

3 ContentResolver.query (...)

4 ...

5 Splash.onResume(Splash@1)

6 Splash.onPause(Splash@1)

7 ...

8 KeyEvent (..., KEYCODE MENU)

9 KeyEvent (..., ”Setting”, ...)

10 Home.onMenuItemClick(...)

11 ...

(a) Example log.

12 Home.onMenuItemClick:

13 invoke−virtual {p1}, ...;. getItemId()

14 move−result v2 // v2 → p1.getItemId

15 if−eqz v2, 0002d // (p1.getItemId == 0)

16 ...

17

18 Settings . onClick :

19 invoke−virtual {p0}, ...;. getId ()

20 move−result v0 // v0 → p0.getId

21 if−eqz v0, 00fd // (p0.getId == 0)

22 ...

(b) Candidate expressions from the bytecode.

23 generator int gen property( int v1, int v2) {
24 int t = ??;

25 if (t == 0) return v1;

26 else if (t == 1) return v2;

27 else if (t == 2) return v1 ∗ v2;

28 ... }
29 harness void main() {
30 ... x ... // encoding sample trace

31 int v1 = getItemId(m1.p1);

32 int v2 = getId(m2.p0);

33 assert gen property(v1, v2) == x; }

(c) Template using candidate expressions.

Figure 5.1: Sample and template for property synthesis.
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equations for inputs. Sample traces are encoded and in turn used to enforce the

shape of the property to be synthesized. Sketch will resolve all the constraints

and find a solution (the hole variable t) that will inform us what the property looks

like (only choosing the first expression in this example).

5.1.3 Synthesizing Search Strategy

Currently, SymDroid runs symbolic execution to completion, but this is impractical.

Most symbolic executors include search strategies that visit a subset of the program

paths that are heuristically likely to be “interesting.” Notice that search strategies

are different from drivers because search strategy determines where to proceed at

branching points during execution, whereas drivers imitate user interactions. We will

experiment with several different strategies for SymDroid, such as round-robin [17],

generational order [34], shortest-distance and call-chain-backward execution [55].

Besides, as a first step, we propose to represent a search strategy as a mapping

from testing predicates to search directions, which is very different from typical

search strategies. For example, it could look like: (mtd.name = onActivityResult ∧

type(rA) = Intent) → T, which means that if the current method is onActivityResult

and the type of the first operand is Intent, the true branch will be taken because

that that method is likely invoked with a result Intent and thus the corresponding

null check is likely bogus. Such predicates will be evaluated at analysis time, and

we can incrementally extend the expressiveness of those predicates.
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5.2 Towards Full Automation of Framework Synthesis

The whole process of framework synthesis in Pasket is not fully automated. It still

requires human efforts to find a right set of tutorials and design patterns that are

sufficient to generate a preferred framework model. Besides, running the selection of

tutorials and collecting logs are also performed by hand. In this section, we propose

to introduce a much higher degree of automation to aforementioned tasks: running

tutorials using coverage-based test automation, generating artificial tutorials using

internal knowledge about the target framework, and presenting design patterns or

programming idioms via pattern template.

5.2.1 Gray-Box Testing

Recall that, when we collected logs, we observed only calls that cross the edge

between tutorials and the framework. In this setting, we regard both tutorials

and the framework as black box, i.e., we do not use their internal structures and

workings, assuming their source code is not available. However, that assumption is

not always true. In particular, tutorials are publicly accessible for almost all cases,

to encourage correct and effective uses of the framework. Also, the source code of

frameworks is sometimes available, e.g., Android is open-sourced. We can certainly

improve the quality of gathered logs, the process of collecting logs, and the process

of selecting (or generating) appropriate tutorials.
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Increasing the Coverage in Tutorials. Tutorials used by Pasket evaluation

were quite small, and thus only one or two user interactions, such as button clicks,

were good enough to explore all possible paths in those tutorials. However, in

general, manual testing might miss unexpected cases. By adopting Automated

Gray-Box Testing [52], we can automatically explore multiple paths in a tutorial

while increasing the coverage of the tutorial. The key idea is similar to symbolic

execution in the sense that the test automation maintains path conditions to cover

both feasible branches at branching points.

Generating Artificial Tutorials. Once we recognize certain features of the

framework that are never captured by existing tutorials, we try to generate our own

test code that exercises those unexplored parts in the framework. If the source of

the framework is available, we can still utilize Gray-Box Testing, but in this case,

the goal is to increase the coverage of the corresponding part of the framework.

Then, we can regard the generated test code as an artificial tutorial, and repeat the

same process in Pasket.

5.2.2 Pattern Templates

Currently, there is a gap between design pattern representations (Figures 3.5 and 3.6)

and its corresponding encoding in Sketch (Figures 3.8 and 3.9). Also, we may want

to search for code patterns that are not well-known design patterns. We propose to

generalize design patterns as well as the translation step so that we can more easily

support additional patterns or general programming idioms.
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34 public class $Singleton {
35 private $static Singleton ins ;

36 private $Singleton () {
37 }
38 public static $Singleton $getIns () {
39 if ( ins == null) {
40 ins = new $Singleton();

41 }
42 return ins ;

43 }
44 }

Figure 5.2: Pattern template for the singleton pattern.

As a first step, we will extend an existing language so as to express nonde-

terministic roles in code patterns. For example, the singleton pattern shown in

Figure 3.6a can be represented as a pattern template in Figure 5.2. Here, iden-

tifiers that start with $ sign are nondeterministic role variables, which will be in

turn translated to unknowns in a synthesizer, e.g., ?? in Sketch. Similar to Pas-

ket’s encoding, finding correct answers for those unknowns corresponds to finding

an instantiation of that code pattern.

This pattern template has several benefits. First, since it is extended from an

existing language, it is easy and intuitive for end-users to represent code patterns.

Second, since the template is written using a programming language, we can reuse

features in that language as-is. For example, the template in Figure 5.2 uses access

control (e.g., a private constructor or a public method as a getter) and modifiers (e.g.,

static method to retrieve a singleton instance without regard to the calling context).

Third, users can represent not only structures, but also expected behaviors. In ad-

dition to the shape of the singleton pattern, method role $getIns’s body in Figure 5.2
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articulates how to create a singleton and retrieve it.

Lastly, we can mechanize the translation from pattern template to synthesis

problem. The code shape itself can be easily translated to structural constraints.

For instance, from the pattern template in Figure 5.2, we can learn that method role

$getIns belongs to class role $Singleton; that $getIns does not receive any arguments;

and that the return type of $getIns is $Singleton. These can be encoded as follows:

45 int Singleton = ??; int getIns = ??;

46

47 assert subcls [ Singleton ][ belongsTo[getIns ]];

48 assert argNum[getIns] == 0;

49 assert retType[ getIns ] == Singleton;

Method bodies in method roles, e.g., singleton creation and retrieval in $getIns, can

be directly translated to the synthesizer’s language (e.g., using JSketch, which is

described in Appendix A).

Note that initial values for role variables are set as general unknowns. Of

course, additional syntax-guided code search might reduce the search space by re-

placing general holes with regular expressions over candidate classes or methods,

e.g., Singleton = [| 1 | 2 | · · · |]. Another technical challenge is to find candidate

methods and insert guarded simulation of the pattern instantiation, such as Fig-

ure 3.9. The same syntax-guided code search would be helpful to filter out infeasible

instantiations.
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Chapter 6: Conclusion

In this dissertation, we claim that we can leverage program synthesis to introduce

a high-degree of automation into the process of generating a framework model for

symbolic execution. To support this thesis, we have presented three pieces of work.

SymDroid. First, we presented SymDroid, a symbolic executor for Dalvik byte-

code. SymDroid actually operates on µ-Dalvik, a language with far fewer instruc-

tions than Dalvik, and to which Dalvik can be easily translated. In addition to

modeling bytecode instructions, SymDroid includes limited support for system li-

braries. Since Android apps are event-driven, we use client-oriented specifications

to model the system and drive the app under test in the desired ways. Running

SymDroid against the Android Compatibility Test Suite, we found it passed all test

cases that did not require more system modeling, and was only about twice as slow

as the Dalvik VM running on the same machine. We also used SymDroid to discover

the conditions under which the PickContact activity in the API demonstration app

actually used contacts. These results suggest that, while still a prototype, SymDroid

is a promising first step in direct, precise analysis of Android apps.
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Pasket. Second, we presented Pasket, the first tool to automatically derive sym-

bolically executable Java framework models. Pasket consumes the framework API

and logs from tutorial program executions. Using these, it instantiates the observer,

accessor, singleton, and adapter patterns to construct a framework model that sat-

isfies log conformity. Internally, Pasket uses Sketch to perform synthesis, and it

merges together models from multiple tutorial programs to produce a unified model.

We used Pasket to synthesize a model of a subset of Swing used by ten tutorial

programs, and a subset of Android used by three tutorial programs. We found that

synthesis completed in a reasonable amount of time; the resulting models passed

log conformity checks for all tutorials; and the models were sufficient to execute

the tutorial programs and other code examples that use the same portion of the

frameworks. We believe Pasket makes an important step forward in automatically

constructing symbolically executable Java framework models.

Adaptive Concretization. Lastly, we introduced adaptive concretization, a pro-

gram synthesis technique that combines explicit and symbolic search. Our key in-

sight is that not all unknowns are equally important with respect to solving time. By

concretizing high influence unknowns, we can often speed up the overall synthesis

algorithm, especially when we add parallelism. Since the best degree of concretiza-

tion is hard to compute, we presented an online algorithm that uses exponential hill

climbing and binary search to find a suitable degree by running many trials. We im-

plemented our algorithm for Sketch and ran it on a suite of 26 benchmarks across

several different domains. We found that adaptive concretization often outperforms
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Sketch, sometimes very significantly. We also found that the parallel scalability

of our algorithm is reasonable.

In addition, we empirically evaluated several of the key design choices in adap-

tive concretization, which we previously introduced. First, we introduced a new

function to assign a concretization probability to an unknown based on its influence

and the degree. Our new function assigns probability in a smooth, continuous man-

ner, eliminating both heuristic constants and a discontinuity in the original function.

We showed that both functions behave similarly. We also showed that when graphed

against expected running times, the degree forms a “vee” around the optimal point,

justifying adaptive concretization’s degree search process.

We also explored a range of values for T , the threshold at which adaptive

concretization decides that the p-value returned by the Wilcoxon Signed-Rank Test

is significant enough to distinguish two degrees; and B, the ratio of the influence of

arbitrary boolean unknowns versus those in guards of if-then-else nodes. We showed

that many different choices for T and B work equally well, including the choices in

our original algorithm.

Overall, our empirical study makes adaptive concretization simpler by intro-

ducing a new, smooth concretization probability function, and we showed that our

algorithm is robust to a wide range of design decisions.
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Appendix A: JSketch: Sketching for Java

When we articulate the framework synthesis, we had two design choices: encoding it

directly to SAT formulae and solving them via a SAT solver versus encoding it using

an existing synthesizer and then decoding the synthesizer’s solution. Due to the log

conformity constraints (as discussed in Section 3.3), we chose the latter because we

eventually require program semantics. We opted to use Sketch, an out-of-the-box

synthesis tool based on a C-like imperative language. Since our target frameworks,

such as Swing and Android, are written in Java, we need non-trivial translations

from Java to C (and vice versa). Such translation was initially baked in Pasket,

and then separeted to be a standalone tool, along with a few more general-purpose

features.

This chapter presents JSketch, a tool that makes sketch-based synthesis di-

rectly available to Java programmers. JSketch is built as a frontend on top of

the Sketch synthesis system, a mature synthesis tool based on a simple impera-

tive language that can generate C code [83]. JSketch allows Java programmers

to use many of the Sketch’s synthesis features, such as the ability to write code

with unknown constants (holes written ??) and unknown expressions described

by a generator (written {| e∗ |}). In addition, JSketch provides a new synthe-
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Figure A.1: JSketch Overview.

sis feature—a class-level generator—that is specifically tailored for object oriented

programs. Section A.1 walks through JSketch’s input and output, along with a

running example.

As illustrated in Figure A.1, JSketch compiles a Java program with un-

knowns to a partial program in the Sketch language and then maps the result of

Sketch synthesis back to Java. The translation to Sketch is challenging because

Sketch is not object oriented, so the translator must model the complex object-

oriented features in Java—such as inheritance, method overloading and overriding,

anonymous/inner classes—in terms of the features available in Sketch.

A.1 Overview

We begin our presentation with two examples showing JSketch’s key features and

usage.
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A.1.1 Basics

The input to JSketch is an ordinary Java program that may also contain unknowns

to be synthesized. There are two kinds of unknowns: holes, written ??, represent

unknown integers and booleans, and generators, written {| e∗ |}, range over a list of

expressions. For example, consider the following Java sketch1, similar to an example

from the Sketch manual [81]:

1 class SimpleMath {
2 static int mult2(int x) { return (?? ∗ {| x , 0 |}); }
3 }

Here we have provided a template for the implementation of method mult2: The

method returns the product of a hole and either parameter x or 0. Notice that even

this very simple sketch has 233 possible instantiations (32 bits of the hole and one

bit for the choice of x or 0).

To specify the solution we would like to synthesize, we provide a harness

containing assertions about the mult2 method:

4 class Test {
5 harness static void test () { assert(SimpleMath.mult2(3) == 6); }
6 }

Now we can run JSketch on the sketch and harness.

$ ./jsk.sh SimpleMath.java Test.java

The result is a valid Java source file in which holes and generators have been replaced
with the appropriate code.

$ cat result/java/SimpleMath.java

class SimpleMath { ...

static public int mult2 (int x) {

return 2 * x;

}

}

1https://github.com/plum-umd/java-sketch/blob/master/test/benchmarks/

t109-mult2.java
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A.1.2 Finite Automata

Now consider a harder problem: suppose we want to synthesize a finite automaton

given sample accepting and rejecting inputs.2 There are many possible design choices

for finite automata in an object-oriented language, and we will opt for one of the

more efficient ones: the current automaton state will simply be an integer, and a

series of conditionals will encode the transition function.

Figure A.2a shows our automaton sketch. The input to the automaton will be

a sequence of Tokens, which have a getId method returning an integer (line 8). An

Automaton is a class—ignore the generator keyword for the moment—with fields for

the current state (line 9) and the number of states (line 10). Notice these fields are

initialized to holes, and thus the automaton can start from any arbitrary state and

have an arbitrary yet minimal number of states (restricted by Sketch’s minimize

function on line 11). The class includes a transition function that asserts that the

current state is in-bounds (line 13) and updates state according to the current state

and the input Token’s value (retrieved on line 14).

Here we face a challenge, however: we do not know the number of automaton

states or tokens, so we have no bound on the number of transitions. To solve this

problem, we use a feature that JSketch inherits from Sketch: the term minrepeat

{ e } expands to the minimum length sequence of e’s that satisfy the harness. In

this case, the body of minrepeat (line 16) is a conditional that encodes an arbitrary

2Of course, there are many better ways to construct finite automata—this example is only for

expository purposes.

152



transition—if the guard matches the current state and input token, then the state

is updated and the method returns. Thus, the transition method will be synthesized

to include however many transitions are necessary.

Finally, the Automaton class has methods transitions and accept; the first per-

forms multiple transitions based on a sequence of input tokens, and the second one

determines whether the automaton is in an accepting state. Notice that the inequal-

ity (line 21) means that states 0 up to some bound will be accepting; this is fully

general because the exact state numbering does not matter, so the synthesizer can

choose the accepting states to follow this pattern.

Class Generators. In addition to basic Sketch generators like we saw in the

mult2 example, JSketch also supports class generators, which allow the same class

to be instantiated differently in different superclass contexts. In Figure A.2a, the

generator annotation on line 8 indicates that Automaton is such a class. (Class gen-

erators are analogous to the the function generators introduced by Sketch [81].)

Figure A.2b shows two classes that inherit from Automaton. The first class,

DBConnection, has an inner class Monitor that inherits from Automaton. The Monitor

class defines two tokens, OPEN and CLOSE, whose ids are 1 and 2, respectively. The

outer class has a Monitor instance m that transitions when the database is opened

(line 34) and when the database is closed (line 35). The goal is to synthesize m

such that it acts as an inline reference monitor to check that the database is never

opened or closed twice in a row, and is only closed after it is opened. The harnesses

in TestDBConnection in Figure A.3 describe both good and bad behaviors.
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7 interface Token{ public int getId (); }
8 generator class Automaton {
9 private int state = ??;

10 static int num state = ??;

11 harness static void min num state() { minimize(num state); }
12 public void transition (Token t) {
13 assert 0 ≤ state && state < num state;

14 int id = t.getId ();

15 minrepeat {
16 if ( state == ?? && id == ??) { state = ??; return; }
17 } }
18 public void transitions ( Iterator <Token> it) {
19 while ( it .hasNext()) { transition ( it .next ()); }
20 }
21 public boolean accept() { return state ≤ ??; }
22 }

(a) Automaton sketch.

23 class DBConnection {
24 class Monitor extends Automaton {
25 final static Token OPEN =

26 new Token() { public int getId () { return 1; } };
27 final static Token CLOSE =

28 new Token() { public int getId () { return 2; } };
29 public Monitor() { }
30 }
31 Monitor m;

32 public DBConnection() { m = new Monitor(); }
33 public boolean isErroneous() { return ! m.accept(); }
34 public void open() { m. transition (Monitor.OPEN); }
35 public void close () { m. transition (Monitor.CLOSE); }
36 }
37 class CADsR extends Automaton { ...

38 public boolean accept(String str ) {
39 state = init state backup ;

40 transitions ( convertToIterator ( str ));

41 return accept ();

42 } }

(b) Code using Automaton sketch.

Figure A.2: Finite automata with JSketch.

154



43 class TestDBConnection {
44 harness static void scenario good() {
45 DBConnection conn = new DBConnection();

46 assert ! conn. isErrorneous ();

47 conn.open(); assert ! conn.isErroneous ();

48 conn.close (); assert ! conn.isErroneous (); }
49 // bad: opening more than once

50 harness static void scenario bad1 () {
51 DBConnection conn = new DBConnection();

52 conn.open(); conn.open(); assert conn.isErroneous (); }
53 // bad: closing more than once

54 harness static void scenario bad2 () {
55 DBConnection conn = new DBConnection();

56 conn.open();

57 conn.close (); conn.close (); assert conn.isErroneous ();

58 } }
59 class TestCADsR {
60 // Lisp−style identifier : c(a|d)+r

61 harness static void examples() {
62 CADsR a = new CADsR();

63 assert ! a.accept(”c”); assert ! a.accept(”cr”);

64 assert a.accept(”car”); assert a.accept(”cdr”);

65 assert a.accept(”caar”); assert a.accept(”cadr”);

66 assert a.accept(”cdar”); assert a.accept(”cddr”);

67 } }

Figure A.3: Automata use cases.

The second class in Figure A.2b, CADsR, adds a new (overloaded) accept(String)

method that converts the input String to a token iterator (details omitted for brevity),

transitions according to that iterator, and then returns whether the string is ac-

cepted. The goal is to synthesize an automaton that recognizes c(a|d)+r. The

corresponding harness TestCADsR.examples() in Figure A.3 constructs a CADsR in-

stance and makes various assertions about its behavior. Notice that this example

relies critically on class generators, since Monitor and CADsR must encode different

automata.
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Output. Figure A.4 shows the output produced by running JSketch on the code

in Figures A.2 and A.3. We see that the generator was instantiated as Automaton1,

inherited by DBConnection.Monitor, and Automaton2, inherited by CADsR. Both au-

tomata are equivalent to what we would expect for these languages. Two things

were critical for achieving this result: minimizing the number of states (line 11) and

having sufficient harnesses (Figure A.3).

We experimented further with CADsR to see how changing the sketch and

harness affects the output. First, we tried running with a smaller harness, i.e., with

fewer examples. In this case, the synthesized automaton covers all the examples but

not the full language. For example, if we omit the four-letter inputs in Figure A.3 the

resulting automaton only accepts three-letter inputs. Whereas going to four-letter

inputs constrains the problem enough for JSketch to find the full solution.

Second, if we omit state minimization (line 11), then the synthesizer chooses

large, widely separated indexes for states, and it also includes redundant states (that

could be merged with a textbook state minimization algorithm).

Third, if we manually bound the number of states to be too small (e.g., man-

ually set num state to 2), the synthesizer runs for more than half an hour and then

fails, since there is no possible solution.

Of these cases, the last two are relatively easy to deal with since the failure is

obvious, but the first one—knowing that a synthesis problem is underconstrained—

is an open research challenge. However, one good feature of synthesis is that, if we

do find cases that are not handled by the current implementation, we can simply

add those cases and resynthesize rather than having to manually fix the code (which
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68 class Automaton1 {
69 int state = 0; static int num state = 3;

70 public void transition (Token t) { ...

71 assert 0 ≤ state && state < 3;

72 if ( state == 0 && id == 1) { state = 1; return; } // open@

73 if ( state == 1 && id == 1) { state = 2; return; } // open 2x

74 if ( state == 1 && id == 2) { state = 0; return; } // (init)@

75 if ( state == 0 && id == 2) { state = 2; return; } // close 2x

76 }
77 public boolean accept() { return state ≤ 1; } ...

78 }
79 class DBConnection{ class Monitor extends Automaton1 { ... } ...}
80 class Automaton2 {
81 int state = 0; static int num state = 3;

82 public void transition (Token t) { ...

83 assert 0 ≤ state && state < 3;

84 if ( state == 0 && id == 99) { state = 1; return; } // c

85 if ( state == 1 && id == 97) { state = 2; return; } // ca

86 if ( state == 1 && id == 100) { state = 2; return; } // cd

87 if ( state == 2 && id == 114) { state = 0; return; } // c(a|d)+r@

88 }
89 public boolean accept() { return state ≤ 0; } ...

90 }
91 class CADsR extends Automaton2 { ... }

Figure A.4: JSketch Output (partial).

could be quite difficult and/or introduce its own bugs). Moreover, minimization—

trying to ensure the output program is small—seems to be a good heuristic to avoid

overfitting to the examples.
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