
ABSTRACT

Title of dissertation: Anomaly Detection in Noisy Images

Xavier Gibert Serra, Ph.D. Examination, Fall 2015

Dissertation directed by: Professor Rama Chellappa
Department of Electrical and Computer Engineering

Finding rare events in multidimensional data is an important detection problem that

has applications in many fields, such as risk estimation in insurance industry, finance,

flood prediction, medical diagnosis, quality assurance, security, or safety in transporta-

tion. The occurrence of such anomalies is so infrequent that there is usually not enough

training data to learn an accurate statistical model of the anomaly class. In some cases,

such events may have never been observed, so the only information that is available is a

set of normal samples and an assumed pairwise similarity function. Such metric may only

be known up to a certain number of unspecified parameters, which would either need to be

learned from training data, or fixed by a domain expert. Sometimes, the anomalous condi-

tion may be formulated algebraically, such as a measure exceeding a predefined threshold,

but nuisance variables may complicate the estimation of such a measure. Change detec-

tion methods used in time series analysis are not easily extendable to the multidimensional

case, where discontinuities are not localized to a single point. On the other hand, in higher

dimensions, data exhibits more complex interdependencies, and there is redundancy that

could be exploited to adaptively model the normal data.

In the first part of this dissertation, we review the theoretical framework for anomaly

detection in images and previous anomaly detection work done in the context of crack de-

tection and detection of anomalous components in railway tracks. In the second part, we

propose new anomaly detection algorithms. The fact that curvilinear discontinuities in

images are sparse with respect to the frame of shearlets, allows us to pose this anomaly

detection problem as basis pursuit optimization. Therefore, we pose the problem of de-

tecting curvilinear anomalies in noisy textured images as a blind source separation prob-

lem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it.

Taking advantage of the parallel nature of this algorithm, we describe how this method can

be accelerated using graphical processing units (GPU). Then, we propose a new method

for finding defective components on railway tracks using cameras mounted on a train. We

describe how to extract features and use a combination of classifiers to solve this problem.

Then, we scale anomaly detection to bigger datasets with complex interdependencies. We

show that the anomaly detection problem naturally fits in the multitask learning frame-

work. The first task consists of learning a compact representation of the good samples,

while the second task consists of learning the anomaly detector. Using deep convolutional

neural networks, we show that it is possible to train a deep model with a limited number

of anomalous examples. In sequential detection problems, the presence of time-variant

nuisance parameters affect the detection performance. In the last part of this dissertation,

we present a method for adaptively estimating the threshold of sequential detectors us-

ing Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results

obtained are provided, followed by a discussion of possible future work.

Anomaly Detection in Noisy Images

by

Xavier Gibert Serra

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Piya Pal
Professor Shuvra Bhattacharyya
Professor Vishal M. Patel
Professor Amitabh Varshney, Dean’s Representative

Dedication

To my daughter Mar for patiently waiting for this work to be completed.

ii

Acknowledgments

This dissertation would not have been possible without the help and contributions

from many people. Please forgive me if I inadvertently left somebody out.

First and foremost, I would like to thank my advisor, Professor Rama Chellappa

for his invaluable support and guidance. His patience and perseverance have been and

continue to be a source of inspiration to me. I appreciate the trust that he has put on me

while working with him as his teaching assistant as well as his research assistant. I am also

thankful to Professor Vishal Patel for introducing me to the field of sparse representations

and for helping me during my struggles. I am also thankful to Professor Demetrio Labate

at UT Houston for helping me write chapter 3. I am also thankful to Mark Smith and

Felipe Arrate for introducing me to the field of nuclear and medical imaging.

I would like to acknowledge the National Railroad Passenger Corporation (Amtrak)

for making the research presented in this dissertation possible. In particular, I would

like to thank Michael Trosino, Michael Craft, Joe Smack and Joe Mascara for granting

permission to use the railway images that made this work possible and for providing

guidance and assessing the practical feasibility of the research presented in this volume.

I would like to acknowledge the invaluable financial support from the Federal Rail-

road Administration, without which this work would have not been possible. I am spe-

cially grateful to Leith Al-Nazer, FRA’s Technical Representative, for his guidance and

valuable comments during this project, as well as Cam Stuart and Gary Carr for managing

the overall research program.

I would also like to acknowledge the financial support from the University of Mary-

iii

land seed grant program, which gave me the opportunity to do collaborative work with

the University of Maryland Baltimore.

I would like thank and acknowledge ENSCO, Inc. for all the opportunities that I had

while working for such a superb company, specially for providing a path to US citizenship

by sponsoring my H1B visa, and by allowing me to work on cutting-edge technologies.

I am specially specially thankful to ENSCO for making me part of a world-class team

and introducing me to the field of railway inspection. First and foremost, I would like

to acknowledge my supervisors, William Jordan, Antonio Aquino, Boris Nejikovsky, and

David Ford, who have provided guidance during my tenure at ENSCO. I am specially

thankful to Antonio Aquino for helping me improve my software design skills. I would

like to thank Gary Carr, Boris Nejikovsky, William Jordan, Christian Diaz, Andie Berry,

David McNew, Zhipeng Liu, Ashutosh Morde, Amaury Rolin, Harkirat Sahambi, Jeff

Henderson, and Cindy Scott for their contributions in making vision-based railway track

inspection a reality. I would like to specially thank Gary Carr for inviting me to participate

in the 2005 DARPA Grand Challenge as a member of Team ENSCO, where I learned a

lot about time-constrained detection in outdoor environments. I would also like to thank

Paul Broome and Greg Young for providing the financial assistance that made the ENSCO

participation in the Grand Challenge a reality. I would like to thank Eric Sherrock teaching

me how to write government proposals.

I would like to thank and acknowledge SET/Leidos for letting me to participate

in the UMD Team Internship Program during summer of 2014. I am specially thankful

to my mentor Yanlin Guo for her guidance and patience, as well as to Rafael Alonso,

Michael Zuniga, and S. Gulu Gambhir for making this research collaboration possible.

iv

I would like to thank all the students, faculty and staff at the Center for Automation

Research (CFAR) and the University of Maryland Institute for Advanced Computer Stud-

ies (UMIACS) for making this amazing research environment that has been producing

top quality research for more than fifty years. I have special gratitude to Daniel Bogachek

who helped me with some of the experiments in chapter 5. I am also specially thankful to

David Doermann and Huiping Li for being my mentors at CFAR between 2001 and 2003.

I still have fond memories of those early years at the Language and Media Processing

Lab.

I would like to thank my family for their sacrifices that made this dissertation pos-

sible. I specially thank my lovely wife Elena for her support and patience, our daughter

Mar, and my parents Dolors and Llorenç for their encouragement and support.

Finally, I thank god.

v

Table of Contents

List of Tables ix

List of Figures ix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Problem Description . 1
1.1.2 Challenges . 2

1.2 Proposed Algorithms and their Contributions 3
1.3 Organization . 6

2 Background 8
2.1 Anomaly Detection . 8
2.2 Railway Track Inspection . 9

3 Discrete Shearlet Transform on GPU with Applications in Anomaly Detection
and Denoising 15
3.1 Introduction . 15
3.2 Shearlets . 18

3.2.1 2D Shearlets . 18
3.2.2 3D Shearlets . 22

3.3 Discrete Implementation . 25
3.3.1 2D Discrete Shearlet Transform 25
3.3.2 2D GPU-based Implementation 28
3.3.3 3D discrete shearlet transform 31

3.4 Applications . 31
3.4.1 Image denoising . 33
3.4.2 Crack detection . 36
3.4.3 Video denoising . 44

3.5 Discussion and Conclusion . 45

vi

4 Image Dictionaries for Anomaly Detection 48
4.1 Introduction . 48
4.2 Prior Work . 49
4.3 Proposed Approach . 51

4.3.1 Overview . 52
4.3.2 Classification . 52
4.3.3 Score Calculation . 54
4.3.4 Training Procedure . 56
4.3.5 Alignment Procedure . 57

4.4 Experimental Results . 57
4.4.1 Fastener Categorization . 59
4.4.2 Defect Detection . 63

4.5 Summary . 64

5 Deep Learning Methods for Anomaly detection 66
5.1 Background . 66

5.1.1 Convolutional Neural Networks 66
5.1.2 Multi-task Learning . 67
5.1.3 One-shot Learning . 68

5.2 Learning with Weakly Labeled Data . 69
5.3 Overall Architecture . 71

5.3.1 Data Annotation . 73
5.3.2 Training Procedure . 74

5.4 Material Identification and Segmentation Task 76
5.4.1 Architecture . 76
5.4.2 Score Calculation . 76

5.5 Fasteners Assessment Task . 77
5.5.1 Overview . 77
5.5.2 Classification . 78
5.5.3 Score Calculation . 81
5.5.4 Training Procedure . 82
5.5.5 Alignment Procedure . 82

5.6 Experimental Results . 83
5.6.1 Material Identification . 84
5.6.2 Crumbling Tie Detection . 86
5.6.3 Fastener Categorization . 87
5.6.4 Defective Fastener Detection . 88

6 Sequential Anomaly Detection with Adaptive Thresholding via Extreme Value
Theory 96
6.1 Introduction . 97
6.2 Background . 99

6.2.1 Robust Anomaly Detection . 99
6.2.2 Extreme Value Theory for Adaptive Anomaly Detection 101

6.3 Proposed Approach . 103

vii

6.3.1 Bayesian Model . 104
6.3.2 Training . 106
6.3.3 Proposed Adaptive Thresholding Algorithm 106

6.4 Experimental Results . 107

7 Conclusions and Future Work 113
7.1 Summary . 113
7.2 Future Work . 114
7.3 Conclusion . 117

A Point-specific Matching of Cardiac Electrophysiological Voltage and SPECT Per-
fusion Measurements for Myocardial Tissue Characterization 118
A.1 Introduction . 118
A.2 Methods . 119

A.2.1 Input Datasets . 119
A.2.2 Software Development . 120

A.3 Results . 120
A.4 Discussion . 123
A.5 Conclusion . 123

Bibliography 124

viii

List of Tables

2.1 Evolution of automated visual railway component inspection methods. . . 14

3.1 Main steps of the shearlet transform . 30
3.2 Specifications and computing environments for each of the graphics pro-

cessors used on our benchmarks . 32
3.3 Comparison of processing times for image denoising 35
3.4 Comparison of detection performance for different crack detection algo-

rithms. 44

4.1 Results for detection of ties with at least one defective fastener. 64

5.1 Material classification results. 86
5.2 Tie condition detection results . 87
5.3 Results for detection of ties with at least one defective fastener. 89

6.1 Fastener detection results before and after score normalization. 111

List of Figures

2.1 Definition of basic track elements. 11

3.1 Frequency support of 2D shearlets . 20
3.2 Frequency support of 3D shearlets . 24

ix

3.3 The figure illustrating the succession of Laplacian pyramid and direc-
tional filtering. 27

3.4 Comparison of CPU vs GPU run times for image denoising 35
3.5 Image separation . 37
3.6 Crack detection results . 38
3.7 ROC curves for crack detection . 43
3.8 Video denoising . 45
3.9 Comparison of CPU vs GPU run times for video denoising 46

4.1 Example of defects that our algorithm can detect 49
4.2 Object categories used for detection and classification 51
4.3 Justification for using two classifiers for each object category 55
4.4 CTIV platform used to collect the images. 59
4.5 GUI tool . 60
4.6 Confusion matrix on 5-fold cross-validation of the training set 61
4.7 ROC curves for detective defective fasteners 62

5.1 Network architectures . 72
5.2 Material categories . 76
5.3 Confusion matrix of material classification (DCNN) 90
5.4 Confusion matrix of material classification (baseline) 91
5.5 ROC curves for condition detection . 92
5.6 Semantic segmentation results . 93
5.7 ROC curves for the task of detecting defective fasteners 94
5.8 The single defect missed by our detector 95

6.1 Examples of fastener scores (a) Good fasteners with high scores (b) Good
fasteners with low scores (c) Defective fasteners with high scores (d) De-
fective fasteners with low scores . 98

6.2 Example of section marked as switch. 110
6.3 Example of section marked as ballast. 110
6.4 Example of section marked as lubricator. 111
6.5 ROC curves fastener detection with EVT 112

A.1 Screenshot of the CardioViewer program 121
A.2 Sensitivity of AUC vs. rotation angle about the left ventricle axis for

prediction of abnormal EP tissue category from SPECT images 122

x

Chapter 1: Introduction

1.1 Motivation

1.1.1 Problem Description

Anomaly detection is the problem of detecting patterns on data that do not conform

to an established normal behavior [1]. What constitutes an anomaly is very subjective and

a mathematically rigorous definition can only be provided under specific contexts. In this

dissertation we address the problem of finding anomalies in noisy images.

The techniques described in this dissertation can be used to find flaws in a collec-

tion of images with similar content. In particular, we have a sequence of noisy images and

we want to determine whether they are normal or whether they contain flaws. Usually,

many of these images are normal (without flaws), but a small number of them may contain

anomalies. As these two classes are highly unbalanced, and we do not have prior knowl-

edge about their relative frequencies, standard discriminative learning machines will ex-

hibit poor performance. For example, a standard support vector machine would produce a

solution where almost all the anomalies correspond to support vectors, resulting in over-

fitting. A further twist would be when the class of anomalies is not homogeneous. In

this case, there are several subclasses of flaws and these subclasses are also unbalanced

1

relative to each other, and no prior knowledge about their relative frequencies is available.

The extreme cases are when there is a very small number of examples in the training set

(one-shot learning) [2], or no examples at all (zero-shot learning) [3]. Both scenarios are

common in anomaly detection problems (even in the context of big data), so the inference

techniques that will be described in this dissertation will need to handle them.

In some situations there may be additional privileged information only available

during training time, but not at testing time. One example in medical imaging, is the prob-

lem of estimating an electrophysiological cardiac map from magnetic resonance imaging

(MRI), positron emission tomography (PET), single photon emission computed tomogra-

phy (SPECT) images, or any combination of image modalities [4]. In this problem, there

may be a limited number of real electrophysiological measurements available for patients

on the training set with corresponding PET or SPECT images, but only PET/SPECT im-

ages at test time. In addition, there may be instances where a decision cannot be made

due to poor image quality or severe occlusion. These cases require that a “reject option”

be taken into consideration.

1.1.2 Challenges

Images collected in outdoor environments by an unattended camera are subject to

large variations due to illumination and weather. The presence of clutter creates a situation

where the signal-to-noise ratio can be negative. Also, high-speed imaging applications

demand that the images be collected with very short exposure times that result in weak

signals. In the nuclear medical imaging field, due to limits on safe radiation levels that the

2

human body can tolerate, measured signals are also weak despite using longer exposure

times. In these cases, it is necessary to enforce application-specific prior knowledge to

produce more accurate estimates. Priors used in image processing include smoothness

(enforced through total variation regularization) or sparsity with respect to a dictionary

that is known to produce compact representations of the image content.

1.2 Proposed Algorithms and their Contributions

In this section we introduce the algorithms and methods proposed in this disserta-

tion and their key contributions.

1. Discrete Shearlet Transform on GPU with Applications in Anomaly Detection

and Denoising:

Shearlets have emerged in recent years as one of the most successful methods for

the multiscale analysis of multidimensional signals. Unlike wavelets, shearlets

form a pyramid of well-localized functions defined not only over a range of scales

and locations, but also over a range of orientations and with highly anisotropic sup-

ports. As a result, shearlets are much more effective than traditional wavelets in

handling the geometry of multidimensional data and this was exploited in a wide

range of applications from image and signal processing. However, despite their

desirable properties, the wider applicability of shearlets is limited by the computa-

tional complexity of current software implementations.

Contributions: Our contributions have been an efficient CUDA implementation of

the shearlet transform and demonstrating its applicability for the problem of detect-

3

ing cracks on textured images.

2. Robust Fastener Detection for Autonomous Visual Railway Track Inspection:

Fasteners are critical railway components that maintain the rails in a fixed position.

Their failure can lead to train derailments due to gage widening or wheel climb, so

their condition needs to be periodically monitored. We propose a new method for

fastener detection by 1) carefully aligning the training data, 2) reducing intra-class

variation, and 3) bootstrapping difficult samples to improve the classification mar-

gin.

Contributions: Several computer vision methods have been proposed in the liter-

ature for track inspection applications. However, these methods are not robust to

clutter and background noise present in the railroad environment. Using the his-

togram of oriented gradients features and a combination of linear SVM classifiers,

this algorithm can inspect ties for missing or defective rail fastener problems with a

probability of detection of 98% and a false alarm rate of 1.23% on a new dataset of

85 miles of concrete tie images collected in the US Northeast Corridor (NEC) be-

tween 2012 and 2013. To the best of our knowledge, detection result on this dataset

of 203,287 crossties is the largest ever reported in the literature.

3. Material Classification and Semantic Segmentation of Railway Track Images

with Deep Convolutional Neural Networks:

The condition of railway tracks needs to be periodically monitored to ensure pas-

senger safety. Cameras mounted on a moving vehicle such as a hi-rail vehicle or

a geometry inspection car can generate large volumes of high resolution images.

4

Extracting accurate information from those images has been challenging due to the

presence of clutter in the railroad environment.

Contributions: We describe a novel approach to visual track inspection using ma-

terial classification and semantic segmentation with Deep Convolutional Neural

Networks (DCNN). We show that DCNNs trained end-to-end for material clas-

sification are more accurate than shallow learning machines with hand-engineered

features and are more robust to noise. Our approach results in a material classifica-

tion accuracy of 93.35% using 10 classes of materials. This allows for the detection

of crumbling and chipped tie conditions at detection rates of 86.06% and 92.11%,

respectively, at a false positive rate of 10 FP/mile on the 85-mile Northeast Corridor

(NEC) 2012-2013 concrete tie dataset.

4. Deep Multi-task Learning for Railway Track Inspection:

Automated track inspection using computer vision and pattern recognition meth-

ods have the potential to improve safety by allowing for more frequent inspections

while reducing human errors. Achieving full automation is still very challenging

due to the number of different possible failure modes as well as the broad range

of image variations than can potentially trigger false alarms. Also, the number of

defective components is very small, so not many training examples are available for

the machine to learn a robust anomaly detector.

Contributions: We show that detection performance can be improved by combin-

ing multiple detectors within a multi-task learning framework. We show that this

approach results in better accuracy in detecting defects on railway ties and fasten-

5

ers.

5. Sequential Anomaly Detection with Adaptive Thresholding via Extreme Value

Theory:

Anomaly detection is usually applied to sequences of images. There are nuisance

variables, such as changes in illumination as well as shifts in the noise and clutter

distributions. Methods that adapt each image independently from the others do not

exploit such local dependencies. Extreme value theory provides the foundation for

adaptive thresholding. In this chapter we use EVT within a Bayesian framework to

optimally adjust the sensitivity of anomaly detectors.

Contributions: We show that by approximating the lower tail of the PDF of the

scores with an Exponential distribution (a special case of the Generalized Pareto

distribution), and using the Gamma conjugate prior learned from the training data,

it is possible to reduce the variability in false alarm rate across different sequences

and improve the overall performance. This method has shown to increase the defect

detection rate of railway fasteners in the presence of clutter (at PFA 0.1%) from

95.40% to 99.26%.

1.3 Organization

This dissertation is organized as follows. In chapter 2, we review the literature in

anomaly detection in images and put them in the context of vision-based automated rail-

way inspection. In chapter 3, an algorithm for separating cracks from background texture

using mutually incoherent dictionaries of shearlets and isotropic wavelets is presented,

6

followed by a fast implementation using GPUs [5]. In chapter 4, we describe a detec-

tor for finding defective fasteners on railway tracks [6]. In chapter 5, we introduce deep

convolutional neural network and we describe a new approach for performing material

classification and semantic segmentation on track inspection images [7]. This problem is

formulated within the multi-task learning framework [8] and we show that by learning a

shared representation between this task and the task in chapter 4, both tasks achieve bet-

ter performance. In chapter 6 we introduce an adaptive thresholding method for anomaly

detection on sequences of images [9]. Chapter 7 concludes the dissertation and discusses

possible future research directions that could further extend this work. In appendix A

we introduce CardioViewer, a tool that we created to study the applicability of statistical

anomaly detection methods in the field of medical imaging.

7

Chapter 2: Background

2.1 Anomaly Detection

The theory of change detection in sequential data has been well established for

years. [10]. If samples in the normal class are independent and identically distributed

(iid), it can be shown that the CUSUM algorithm provides the optimal detection rate for

a given false alarm rate. For real-time applications, the theory of quickest detection [11],

provides a framework that can be used to detect changes in the distribution of a sig-

nal within the shortest possible delay. In this dissertation, we address the problem of

anomaly detection in images and videos. Due to the multidimensionality nature of the

data, anomaly detection in images and videos require formulating the problem differently

than classical formulations used for time series analysis. For example, causality is irrel-

evant in images. Moreover, invariance to affine transformations in the data may, indeed,

be desirable.

Assuming that the normal samples are iid, distance-based methods, such as the

one-class SVM or the k-nearest neighbor classifier, may suffice. However, in practice,

the data is neither independent nor stationary, so the distribution of image features may

shift over sample index. Therefore, methods that do not take context into account tend

to produce bursts of false detections when the probability distribution of the data shifts

8

away from the distribution that generated the samples used to train the statistical model.

This phenomenon may be mitigated through proper normalization of the images. How-

ever, blindly normalizing the images may eliminate evidence about the anomalous event.

Moreover, the anomalous data may not be linearly separable from the normal one, so in

these cases it would be necessary to use a non-Euclidean metric, which is usually induced

by a properly chosen kernel function. In some applications the data may be embedded

in a lower dimensional manifold, so the use of a geodesic distance may produce more

accurate results.

Also, anomaly detection is closely related to another detection problem, which is

saliency detection. For instance, anomalous data is defined with respect to normal data, in

the similar way salient regions in an image are defined wrt non-salient ones. For example,

Xu et al. used saliency for detecting cracks on pavement images [12]. However, while

in the saliency detection problem spatial locality is implied, anomaly detection can be

formulated with or without local (dis)similarity constraints.

2.2 Railway Track Inspection

Monitoring the condition of railway components is essential to ensure train safety,

especially on High Speed Rail (HSR) corridors. Amtrak’s recent experience with concrete

ties has shown that they have different kind of problems than wooden ties [13]. Although

concrete ties have life expectancies of up to 50 years, they may fail prematurely for a

variety of reasons:

• Alkali-silica reaction (ASR), which is a chemical reaction between cement alkalis

9

a non-crystalline (amorphous) silica that forms alkali-silica gel at the aggregate

surface [14]. These reaction rims have a very strong affinity with water and have a

tendency to swell. These compounds can produce internal pressures that are strong

enough to create cracks, allowing moisture to penetrate, and thus accelerating the

rate of deterioration.

• Delayed Ettringite Formation (DEF) is a type of internal sulfate attack that occurs

in concrete that has been cured at excessively high temperatures [15].

• In addition to ASR and DEF, ties can also develop fatigue cracks due to normal

traffic or by being impacted by flying debris or track maintenance machinery. Once

small cracks develop, repeated cycles of freezing and thawing will eventually lead

to bigger defects.

Fasteners maintain gage by keeping both rails firmly attached to the crossties. Ac-

cording to the Federal Railroad Administration (FRA) safety database1, in 2013, out of

651 derailments due to track problems, 27 of them were attributed to gage widening

caused by defective spikes or rail fasteners, and another 2 to defective or missing spikes

or rail fasteners.

Also, in the United States, regulations enforced by the FRA2 prescribe visual in-

spection of high-speed rail tracks with a frequency of once or twice per week, depending

on the class of track (which specifies maximum authorized speeds for both freight and

passenger trains). These manual inspections are currently performed by railroad person-

1http://safetydata.fra.dot.gov
249 CFR 213 – Track Safety Standards

10

Le#	 Rail	 Right	 Rail	

Ballast	

Fasteners	

Cross3e	

Field	 side	 Field	 side	 Gage	 side	

Track	 Gage	
(1,435	 mm)	

Figure 2.1: Definition of basic track elements.

nel, either by walking on the tracks or by riding a hi-rail vehicle at very low speeds. How-

ever, such conventional visual inspections of mainlines are subjective and do not produce

an auditable visual record. In addition, railroads usually perform automated track inspec-

tions with specialized track geometry measurement vehicles at intervals of 30 days or less

between inspections. These automated inspections can directly detect gage widening con-

ditions. However, it is preferable to find fastening problems before they develop into gage

widening conditions. The locations and names of the basic track elements mentioned in

this chapter are shown in Figure 2.1.

Since the pioneering work by Trosino et al. [16,17], machine vision technology has

been gradually adopted by the railway industry as a track inspection technology. Those

first generation systems were capable of collecting images of the railway right of way and

storing them for later review, but they did not facilitate any automated detection. As faster

processing hardware became available, several vendors began to introduce vision systems

11

with increasing automation capabilities.

In [18, 19], Marino et al. describe their VISyR system, which detects hexagonal-

headed bolts using two 3-layer neural networks (NN) running in parallel. Both networks

take the 2-level discrete wavelet transform (DWT) of a 24×100 pixel sliding window

(their images use non-square pixels) as an input to generate a binary output indicating the

presence of a fastener. The difference is that the first NN uses Daubechies wavelets, while

the second one uses Haar wavelets. This wavelet decomposition is equivalent to perform-

ing edge detection at different scales with two different filters. Both neural networks are

trained with the same examples. The final decision is made using the maximum output of

each neural network.

In [20,21], Gibert et al. describe their VisiRail system for joint bar inspection. The

system is capable of collecting images on each rail side, and finding cracks on joint bars

using edge detection and a Support Vector Machine (SVM) classifier that analyzes fea-

tures extracted from these edges. In [22], Babenko describes a fastener detection method

based on a convolutional filter bank that is applied directly to intensity images. Each type

of fastener has a single filter associated with it, whose coefficients are calculated using an

illumination-normalized version of the Optimal Trade-off Maximum Average Correlation

Height (OT-MACH) filter [23]. This approach allowed accurate fastener detection and lo-

calization and achieved over 90% fastener detection rate on a dataset of 2,436 images.

However, the detector was not tested on longer sections of track. In [24], Resendiz et al.

use texture classification via a bank of Gabor filters followed by an SVM to determine

the location of rail components such as crossties and turnouts. They also use the MUSIC

algorithm to find spectral signatures to determine expected component locations. In [25],

12

Li et al. describe a system for detecting tie plates and spikes. Their method, which is de-

scribed in more detail in [26], uses an AdaBoost-based object detector [27] with a model

selection mechanism that assigns the object class that produces the highest number of

detections within a window of 50 frames. Table 2.1 summarizes several systems reported

in the literature.

Recent advances in CMOS imaging technology, have resulted in commercial-grade

line-scan cameras that are capable of capturing images at resolutions of up to 4,096×2 and

line rates of up to 140 KHz. At the same time, high-intensity LED-based illuminators with

life expectancies in the range of 50,000 hours have become available. This technology

enables virtually maintenance-free operation over several months. Therefore, technology

that enables autonomous visual track inspection from an unattended vehicle (such as a

passenger train) may become a reality in the not-too-distant future.

13

Table 2.1: Evolution of automated visual railway component inspection methods.

Authors Year Components Defects Features Decision methods

Stella et al. [19, 28, 29] 2002–09 Fasteners Missing DWT 3-layer NN

Singh et al. [30] 2006 Fasteners Missing Edge density Threshold

Hsieh et al. [31] 2007 Fasteners Broken DWT Threshold

Gibert et al. [20, 21] 2007–08 Joint Bars Cracks Edges SVM

Babenko [22] 2008 Fasteners Missing/Defective Intensity OT-MACH corr.

Xia et al. [32] 2010 Fasteners Broken Haar Adaboost

Yang et al. [33] 2011 Fasteners Missing Direction Field Correlation

Resendiz et al. [24] 2013 Ties/Turnouts – Gabor SVM

Li et al. [25] 2014 Tie plates Missing spikes Lines/Haar Adaboost

Feng et al. [34] 2014 Fasteners Missing/Defective Haar PGM

Gibert et al. [5] 2014 Concrete ties Cracks DST Iterative shrinkage

Khan et al. [35] 2014 Fasteners Defective Harris-Stephen, Shi-Tomasi Matching errors

Gibert et al. [6] 2015 Fasteners Missing/Defective HOG SVM

Gibert et al. [7] 2015 Concrete ties Tie Condition Intensity Deep CNN

14

Chapter 3: Discrete Shearlet Transform on GPU with Applications in

Anomaly Detection and Denoising

3.1 Introduction

During the last decade, a new generation of multiscale systems has emerged which

combines the power of the classical multiresolution analysis with the ability to process

directional information with very high efficiency. Some of the most notable examples

of such systems include the curvelets [36], the contourlets [37] and the shearlets [38].

Unlike classical wavelets, the elements of such systems form a pyramid of well localized

waveforms ranging not only across various scales and locations, but also across various

orientations and with highly anisotropic shapes. Thanks to their richer structure, these

more sophisticated multiscale systems are able to overcome the poor directional sensitiv-

ity of traditional multiscale systems and have been used to derive several state-of-the-art

algorithms in image and signal processing (cf. [39, 40]).

Shearlets, in particular, offer a unique combination of very remarkable features:

they have a simple and well understood mathematical structure derived from the theory of

affine systems [38, 41], they provide optimally sparse representations, in a precise sense,

for a large class of images and other multidimensional data where wavelets are suboptimal

15

[42, 43] and the directionality is controlled by shear matrices rather than rotations. This

last property, in particular, enables a unified framework for continuum and discrete setting

since shear transformations preserve the rectangular lattice and is an advantage in deriving

faithful digital implementations [44, 45].

The shearlet decomposition has been successfully employed in many problems

from applied mathematics and signal processing, including decomposition of operators

[46], inverse problems [47, 48], edge detection [49–51], image separation [52] and im-

age restoration [53–55]. However, one major bottleneck to the wider applicability of

the shearlet transform is that current discrete implementations tend to be very time con-

suming making its use impractical for large data sets and for real-time applications. For

instance, the current (CPU-based) MATLAB implementation 1 of the 2D shearlet trans-

form, run on a typical desktop PC, takes about two minutes to denoise a noisy image of

size 512 × 512 [44, 56]. The running time of the current (CPU-based) MATLAB im-

plementation of the 3D shearlet transform for denoising a video sequence of size 1923

is about five minutes [55]. Running times for alternative shearlet implementations from

Shearlab [45] as well as for the current implementation of the curvelet transform [57] are

comparable.

In recent years, General Purpose Graphics Processing Units (GPGPUs) have be-

come ubiquitous not only on High Performance Computing (HPC) clusters, but also on

workstations. For example, Titan, which was until recently the world’s fastest supercom-

puter, contains 18,688 NVIDIA Tesla K20X GPUs. These GPUs provide about 90% of

1Note that this code also includes some C routines to speed-up the computation time. This is true both

for the 2D and 3D implementations.

16

Titan’s peak computing performance, which is greater than 20 PetaFLOPS (quadrillion

floating point operations per second). Due to their energy efficiency and capabilities,

GPGPUs are also becoming mainstream on mobile platforms, such as iOS and Android

devices. There are two main architectures for GPGPU computing: CUDA and OpenCL.

CUDA was designed by NVIDIA, and has been around since 2006. OpenCL was origi-

nally designed by Apple, Inc, and was introduced in 2008. OpenCL is an open standard

maintained by the Khronos Group, whose members include Intel, AMD, NVIDIA, and

many others, so it has broader industry acceptance than any other architecture. In 2009,

Microsoft introduced DirectCompute as an alternative architecture for GPGPU comput-

ing, which is only available in Windows Vista and later. OpenCL has been designed to

provide the developer with a common framework for doing computation on heteroge-

neous devices. One of the advantages of OpenCL is that it can potentially support any

computing device, such as CPUs, GPUs, and FPGAs, as long as there is an OpenCL com-

piler available for such processor. NVIDIA provides CUDA/OpenCL drivers, libraries

and development tools for the three major Operating Systems (Linux, Windows and Mac

OS X), while AMD/ATITMand Intel provide OpenCL drivers and tools for their respective

GPUs.

The objective of this chapter is to introduce and demonstrate a new implementation

of the 2D and 3D discrete shearlet transform which takes advantage of the computational

capabilities of the Graphics Processing Unit (GPU). To demonstrate the effectiveness of

the proposed implementations, we will illustrate its application on problems of image

and video denoising and on a problem of feature recognition aiming at crack detection

of railway components. In particular, we will show that our new implementation takes

17

about 40 milliseconds to denoise an image of size 512 × 512, which is a 233× speed-up

compared to single core CPU, and about 3 seconds to denoise a video of size 1923, which

is a 551× speed-up compared to single core CPU.

The organization of the chapter is as follows. In Section 3.2, we recall the construc-

tion of 2D and 3D shearlets. Next, in Section 3.3, we present our implementation of the

discrete shearlet transform and, in Section 3.4, we benchmark our implementation using

three specific applications. Finally, concluding remarks and future work are discussed in

Section 3.5.

3.2 Shearlets

In this section, we recall the construction of 2D and 3D shearlets (cf. [41, 42]).

3.2.1 2D Shearlets

To construct a smooth Parseval frames of shearlets for L2(R2), we start by defining

appropriate multiscale function systems supported in the following cone-shaped regions

of the Fourier domain R̂2:

P1 =

{
(ξ1, ξ2) ∈ R2 : |ξ2

ξ1
| ≤ 1

}
, P2 =

{
(ξ1, ξ2) ∈ R2 : |ξ2

ξ1
| > 1

}
.

Let φ ∈ C∞([0, 1]) be a ‘bump’ function with suppφ ⊂ [−1
8
, 1
8
] and φ = 1 on [− 1

16
, 1
16

].

For ξ = (ξ1, ξ2) ∈ R̂2, let Φ(ξ) = Φ(ξ1, ξ2) = φ(ξ1)φ(ξ2) and define the function

W (ξ) = W (ξ1, ξ2) =
√

Φ2(2−2ξ1, 2−2ξ2)− Φ2(ξ1, ξ2).

18

Note that the functions W 2
j = W 2(2−2j·), j ≥ 0, have support inside the Cartesian

coronae

Cj = [−22j−1, 22j−1]2 \ [−22j−4, 22j−4]2

and that they produce a smooth tiling of the frequency plane:

Φ2(ξ1, ξ2) +
∑
j≥0

W 2(2−2jξ1, 2
−2jξ2) = 1 for (ξ1, ξ2) ∈ R̂2.

Let V ∈ C∞(R) so that suppV ⊂ [−1, 1], V (0) = 1, V (n)(0) = 0, for all n ≥ 1 and

|V (u− 1)|2 + |V (u)|2 + |V (u+ 1)|2 = 1 for |u| ≤ 1.

For F(1)(ξ1, ξ2) = V (ξ2
ξ1

) and F(2)(ξ1, ξ2) = V (ξ1
ξ2

), the shearlet systems associated

with the cone-shaped regions Pν , ν = 1, 2 are defined as the countable collection of

functions

{ψ(ν)
j,`,k : j ≥ 0,−2j ≤ ` ≤ 2j, k ∈ Z2}, (3.1)

where

ψ̂
(ν)
j,`,k(ξ) = | detA(ν)|−j/2W (2−jξ)F(ν)(ξA

−j
(ν)B

−`
(ν)) e

2πiξA−j
(ν)
B−`

(ν)
k, (3.2)

and

A(1) =

4 0

0 2

 , B(1) =

1 1

0 1

 , A(2) =

2 0

0 4

 , B(2) =

1 0

1 1

 .

Note that the dilation matrices A(1), A(2) produce anisotropic dilations, namely, parabolic

scaling dilations; by contrast, the shear matrices B(1), B(2) are non-expanding and their

integer powers control the directional features of the shearlet system. Hence, the systems

(3.1) form collections of well-localized functions defined at various scales, orientations

19

and locations, controlled by the indices j, `, k respectively. In particular, the functions

ψ̂
(1)
j,`,k, given by (3.2) with ν = 1, can be written explicitly as

ψ̂
(1)
j,`,k(ξ) = 2−2jW (2−2jξ)V

(
2j
ξ2
ξ1
− `
)
e2πiξA

−j
(1)
B−`

(1)
k,

showing that their supports are contained inside the trapezoidal regions

Σj,` := {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2
ξ1
− `2−j| ≤ 2−j}

in the Fourier plane (see Fig. 3.1). Similar properties hold for the functions ψ̂(2)
j,`,k.

(a)

ξ1

ξ2

(b)

-�

∼ 22j

6

?

∼ 2j

Figure 3.1: (a) The tiling of the frequency plane R̂2 induced by the shearlets. (b) Fre-

quency support Σj,` of a shearlet ψ(1)
j,`,k, for ξ1 > 0. The other half of the support, for

ξ1 < 0, is symmetrical.

A smooth Parseval frame for the whole space L2(R2) is obtained by combining the

two shearlet systems associated with the cone-based regions P1 and P2 together with a

coarse scale system, associated with the low frequency region. To ensure that all elements

of this combined shearlet system are C∞c in the Fourier domain, the elements whose

supports overlap the boundaries of the cone regions in the frequency domain are slightly

20

modified. That is, we define a shearlet system for L2(R2) as

{
ψ̃−1,k : k ∈ Z2

}⋃{
ψ̃j,`,k,ν : j ≥ 0, |`| < 2j, k ∈ Z2, ν = 1, 2

}
⋃{

ψ̃j,`,k : j ≥ 0, ` = ±2j, k ∈ Z2
}
, (3.3)

consisting of:

• the coarse-scale shearlets {ψ̃−1,k = Φ(· − k) : k ∈ Z2};

• the interior shearlets {ψ̃j,`,k,ν = ψ
(ν)
j,`,k : j ≥ 0, |`| < 2j, k ∈ Z2, ν = 1, 2}, where

the functions ψ(ν)
j,`,k are given by (3.2);

• the boundary shearlets {ψ̃j,`,k : j ≥ 0, ` = ±2j, k ∈ Z2}, obtained by joining

together slightly modified versions of ψ(1)
j,`,k and ψ(2)

j,`,k, for ` = ±2j , after that they

have been restricted in the Fourier domain to the cones P1 and P2, respectively. We

refer to [41] for details.

For brevity, let us denote the system (3.3) using the compact notation

{ψ̃µ, µ ∈M},

whereM = MC∪MI∪MB are the indices associated with coarse scale shearlets, interior

shearlets, and boundary shearlets, respectively. We have the following result from [41]:

Theorem 3.2.1. The system of shearlets (3.3) is a Parseval frame for L2(R2). That is, for

any f ∈ L2(R2), ∑
µ∈M

|〈f, ψ̃µ〉|2 = ‖f‖2.

All elements {ψ̃µ, µ ∈M} are C∞ and compactly supported in the Fourier domain.

21

As mentioned above, it is proved in [42] that the 2D Parseval frame of shearlets

{ψ̃µ, µ ∈ M} provides essentially optimal approximations for functions of 2 variables

which are C2 regular away from discontinuities along C2 curves.

The mapping from f ∈ L2(R2) into the elements 〈f, ψ̃µ〉, µ ∈ M , is called the 2D

shearlet transform.

3.2.2 3D Shearlets

The construction outlined above extends to higher dimensions. In 3D, a shearlet

system is obtained by appropriately combining 3 systems of functions associated with the

pyramidal regions

P1 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ2

ξ1
| ≤ 1, |ξ3

ξ1
| ≤ 1

}
,

P2 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ1

ξ2
| < 1, |ξ3

ξ2
| ≤ 1

}
,

P3 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ1

ξ3
| < 1, |ξ2

ξ3
| < 1

}
,

in which the Fourier space R̂3 is partitioned. With φ defined as above, for ξ = (ξ1, ξ2, ξ3) ∈

R̂3, we now let

Φ(ξ) = Φ(ξ1, ξ2, ξ3) = φ(ξ1)φ(ξ2)φ(ξ3)

and W (ξ) =
√

Φ2(2−2ξ)− Φ2(ξ). As in the 2-dimensional case, we have the smooth

tiling condition

Φ2(ξ) +
∑
j≥0

W 2(2−2jξ) = 1 for ξ ∈ R̂3.

22

Hence, for d = 1, 2, 3, ` = (`1, `2) ∈ Z2, the 3D shearlet systems associated with the

pyramidal regions Pd are defined as the collections

{ψ(d)
j,`,k : j ≥ 0,−2j ≤ `1, `2 ≤ 2j, k ∈ Z3},

where

ψ̂
(d)
j,`,k(ξ) = | detA(d)|−j/2W (2−2jξ)F(d)(ξA

−j
(d)B

[−`]
(d)) e2πiξA

−j
(d)
B

[−`]
(d)

k,

F(1)(ξ1, ξ2, ξ3) = V (ξ2
ξ1

)V (ξ3
ξ1

), F(2)(ξ1, ξ2, ξ3) = V (ξ1
ξ2

)V (ξ3
ξ2

), F(3)(ξ1, ξ2, ξ3) = V (ξ1
ξ3

)V (ξ2
ξ3

),

the anisotropic dilation matrices A(d) are given by

A(1) =

4 0 0

0 2 0

0 0 2

 , A(2) =

2 0 0

0 4 0

0 0 2

 , A(3) =

2 0 0

0 2 0

0 0 4

 ,

and the shear matrices are defined by

B
[`]
(1) =

1 `1 `2

0 1 0

0 0 1

 , B
[`]
(2) =

1 0 0

`1 1 `2

0 0 1

 , B
[`]
(3) =

1 0 0

0 1 0

`1 `2 1

 .

Similar to the 2D case, the shearlets ψ̂(1)
j,`,k(ξ) can be written explicitly as

ψ̂
(1)
j,`1,`2,k

(ξ) = 2−2jW (2−2jξ)V
(

2j
ξ2
ξ1
− `1

)
V
(

2j
ξ3
ξ1
− `2

)
e2πiξA

−j
(1)
B

[−`1,−`2]
(1)

k, (3.4)

showing that their supports are contained inside the trapezoidal regions

{ξ : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], |ξ2
ξ1
− `12−j| ≤ 2−j, |ξ3

ξ1
− `22−j| ≤ 2−j}.

Note that these support regions become increasingly more elongated at fine scales, due to

the action of the anisotropic dilation matrices Aj(1), and the orientations of these regions

23

are controlled by the shear parameters `1, `2. A typical support region is illustrated in

Fig. 3.2. Similar properties hold for the elements associated with regions P2 and P3.

−40
−20

0
20

40

−40

−20

0

20

40

−40

−20

0

20

40

ξ1

ξ2

ξ3

Figure 3.2: Frequency support of a representative shearlet function ψj,`,k, inside the pyra-

midal region P1. The orientation of the support region is controlled by ` = (`1, `2); its

shape is becoming more elongated as j increases (j = 4 in this plot).

A Parseval frame of shearlets for L2(R3) is obtained by using an appropriate combi-

nation of the systems of shearlets associated with the 3 pyramidal regions Pd, d = 1, 2, 3,

together with a coarse scale system, which will take care of the low frequency region.

Similar to the 2D case, in order to build such system in a way that all its elements are

smooth in the Fourier domain, one has to appropriately define the elements of the shearlet

systems overlapping the boundaries of the pyramidal regions Pd in the Fourier domain.

We refer to [43, 50] for details. Hence, we define the 3D shearlet systems for L2(R3) as

24

the collections

{
ψ̃−1,k : k ∈ Z3

}⋃{
ψ̃j,`,k,d : j ≥ 0, |`1| < 2j, |`2| ≤ 2j, k ∈ Z3, d = 1, 2, 3

}
⋃{

ψ̃j,`,k : j ≥ 0, `1, `2 = ±2j, k ∈ Z3
}
,

which again can be identified as the coarse-scale, interior and boundary shearlets. It turns

out that the 3D system of shearlets is a Parseval frame of L2(R3) [41] and it provides

essentially optimal approximations for functions of 3 variables which areC2 regular away

from discontinuities along C2 surfaces [43].

3.3 Discrete Implementation

A faithful numerical implementation of the 2D shearlet transform was originally

presented in [44]. Let us briefly recall the main steps of this implementation.

3.3.1 2D Discrete Shearlet Transform

Recall that the shearlet coefficients associated with the interior shearlets can be

expressed as:

〈f, ψνj,`,k〉 = 23j/2

∫
R̂2

f̂(ξ)W (2−2jξ)F(ν)(ξA
−j
(ν)B

−`(ν)) e2πiξA
−j
(ν)
B

−`(ν)k dξ.

First, to compute f̂(ξ1, ξ2)W (2−2jξ) in the discrete domain, at the resolution level j, we

apply the Laplacian pyramid algorithm [58], which is implemented in space-domain. Let

f̂ [k1, k2] denote 2D Discrete Fourier Transform (DFT) of f ∈ `2(Z2
N), where we adopt the

convention that brackets [·, ·] denote arrays of indices, parentheses (·, ·) denote function

evaluations, and where we interpret the numbers f̂ [k1, k2] as samples f̂ [k1, k2] = f̂(k1, k2)

25

from the trigonometric polynomial

f̂(ξ1, ξ2) =
N−1∑

n1,n2=0

f [n1, n2] e
−2πi(n1

N
ξ1+

n1

N
ξ2).

The Laplacian pyramid algorithm will accomplish the multiscale partition illus-

trated in Figure 3.3, by decomposing f j−1a [n1, n2], 0 ≤ n1, n2 < Nj−1, into a low pass

filtered image f ja [n1, n2], a quarter of the size of f j−1a [n1, n2], and a high pass filtered im-

age f jd [n1, n2]. Observe that the matrix f ja [n1, n2] has size Nj ×Nj , where Nj = 2−2jN ,

and f 0
a [n1, n2] = f [n1, n2] has size N ×N . In particular, we have

f̂ jd(ξ1, ξ2) = f̂(ξ1, ξ2)W (2−2j(ξ1, ξ2))

and thus, f jd [n1, n2] are the discrete samples of a function f jd(x1, x2), whose Fourier trans-

form is f̂ jd(ξ1, ξ2). Since this operation is implemented as a convolution in space-domain,

this step of the algorithm is one of the most computationally expensive.

The next step produces the directional filtering and this is achieved by computing

the DFT on the pseudo-polar grid, and then applying a one-dimensional band-pass filter

to the components of the signal with respect to this grid. More precisely, let us define the

pseudo-polar coordinates (u, v) ∈ R2 as follows:

(u,w) = (ξ1,
ξ2
ξ1

) if (ξ1, ξ2) ∈ P1,

(u,w) = (ξ2,
ξ1
ξ2

) if (ξ1, ξ2) ∈ P2.

After performing this change of coordinates, we obtain

f̂(ξ1, ξ2)W (2−2jξ1, 2
−2jξ2)F(ν)(ξA

−j
(ν)B

−`(ν)) = gj(u,w)V (2jw − `), (3.5)

where gj(u,w) = f̂ jd(ξ1, ξ2). This shows that the directional components are obtained by

26

simply translating the window function V . The discrete samples gj[n1, n2] = gj(n1, n2)

are the values of the DFT of f jd [n1, n2] on a pseudo-polar grid.

Now let {vj,`[n] : n ∈ Z} be the sequence whose discrete Fourier transform gives

the samples of the window function V (2jk− `), i.e., v̂j,`[k] = V (2jk− `). Then, for fixed

n1 ∈ Z, we have

F1

(
F−11

(
gj[n1, n2]

)
∗ vj`[n2]

)
= gj[n1, n2]F1

(
vj`[n2]

)
, (3.6)

where ∗ denotes the one-dimensional convolution along the n2 axis and F1 is the one-

dimensional discrete Fourier transform Thus (3.6) gives the algorithmic implementation

for computing the discrete samples of gj(u,w) v(2jw − `). At this point, to compute the

shearlet coefficient in the discrete domain, it suffices to compute the inverse PDFT or

directly re-assemble the Cartesian sampled values and apply the inverse two-dimensional

FFT.

Figure 3.3: The figure illustrating the succession of Laplacian pyramid and directional

filtering.

Figure 3.3 illustrates the cascade of Laplacian pyramid and directional filtering.

27

Recall that, once the discrete shearlet coefficients are obtained, the inverse shear-

let transform is computed using the following steps: (i) convolution of discrete shearlet

coefficients and synthesis directional filters; (ii) sum of all directional components; (iii)

reconstruction by inverse Laplacian pyramidal transformation.

3.3.2 2D GPU-based Implementation

Before implementing the 2D Discrete Shearket Transform algorithm on the GPU,

we profiled the existing implementation available as a MATLAB toolbox at http://

www.math.uh.edu/˜dlabate/shearlet_toolbox.zip. Table 3.3 contains

the breakdown of the processing times showing that the FFT computations used to per-

form directional filtering and the convolution part of the à trous algorithm used for pyra-

midal image decomposition and reconstruction take around 75% of the computation time.

Hence they were the first candidates for porting into CUDA.

Since most of the computing time for performing a discrete shearlet transform is

spent in FFT function calls, it is crucial to have the best possible library to perform FFTs.

The main two GPU vendors provide optimized FFT libraries: NVIDIA provides cuFFT

as part of its CUDA Toolkit, and AMD provides clAmdFft as part of its Accelerated Par-

allel Processing Math Libraries (APPML). We decided to use CUDA as our development

architecture both because there is better documentation and because of the availability of

more mature development tools. We implemented the device code in CUDA C++, while

the host code is pure C++. Since both CUDA C/C++ and OpenCL are based on the C

programming language, porting the code from CUDA to OpenCL should not be diffi-

28

http://www.math.uh.edu/~dlabate/shearlet_toolbox.zip
http://www.math.uh.edu/~dlabate/shearlet_toolbox.zip

cult. However, for code compactness, we made extensive use of templates and operator

overloading, which are supported in CUDA C++, but not in OpenCL, which is based on

C99.

To facilitate the development, we used GPUmat from the GP-you Group, a free

(GPLv3) GPU engine for MATLAB R© (source code is available from http://sourceforge.

net/projects/gpumat/). This framework provides two new classes, GPUsingle

and GPUdouble, which encapsulate vectors of numerical data allocated on GPU memory,

and allow mathematical operations on objects of such classes via function and operator

overloading. Transfers between CPU and GPU memory are as simple as doing type-

casting, and memory allocation and deallocation is done automatically. The idea is that

existing MATLAB functions could be reused without any code changes. In practice, how-

ever, in order to get acceptable performance it is necessary to hand-tune the code or even

use lower level languages such as C/C++.

Fortunately, the GPUmat framework provides an interface for manipulating these

objects from MEX files, and a mechanism for loading custom kernels. Although there

are commercial alternatives to GPUmat such as Jacket from AccelerEyes, or the Parallel

Computing Toolbox from Mathworks, we found that GPUmat is pretty robust and adds

very little overhead to the execution time as long as we follow good programming prac-

tices such as in-place operations and reuse of preallocated buffers.

Our implementation supports both single precision (32-bit) and double precision

(64-bit) IEEE 754 floating point numbers. We generated the filter bank of directional

filters using the Fourier-domain approach from [44], where directional filters are designed

as Meyer-type window functions in the Fourier domain. Since this step only needs to be

29

http://sourceforge.net/projects/gpumat/
http://sourceforge.net/projects/gpumat/

run once and does not depend on the image dimensions, we precompute these directional

filters using the original MATLAB implementation.

For the Laplacian pyramidal decomposition, we ported the à trous algorithm using

symmetric extension [37] into CUDA. This algorithm requires performing non-separable

convolutions with decimated signals. For efficiency reasons, the kernel that performs à

trous convolutions preloads blocks of data into shared memory, so that the memory is

only accessed once from each GPU thread.

With the above GPU-based Laplacian pyramid and directional filter implementa-

tion, it is just a matter of applying convolutions in the GPU to find the forward and inverse

shearlet transform.

The main steps of our GPU-based shearlet transform are shown in table 3.1.

Table 3.1: Main steps of the shearlet transform

Forward transform Inverse transform

1. Laplacian decomposition 1. Forward FFT of directional compo-

nents

2. Forward FFT of Laplacian compo-

nents

2. Modulation with complex conjugate

directional filter bank

3. Modulation of Laplacian compo-

nents with directional filter bank

3. Inverse FFT of directional compo-

nents

4. Inverse FFT of directional compo-

nents

4. Laplacian reconstruction

30

3.3.3 3D discrete shearlet transform

The algorithm for the discretization of the 3D shearlet transform is very simi-

lar to the 2D shearlet transform and our implementation of the 3D discrete shearlet

transform adapts the code available from http://www.math.uh.edu/˜dlabate/

3Dshearlet_toolbox.zip and described in [55]. The main practical difference is

that storing the 3D shearlet coefficients is much more memory-intensive. Since the mem-

ory requirement can be easily exceed the available GPU memory, in our algorithm we

compute one convolution at a time in CUDA and add the result to the output.

3.4 Applications

In the following, we illustrate the advantages of our new implementation of the

discrete shearlet transform by considering three applications: denoising of natural images

corrupted with white Gaussian noise, detection of cracks in textured images and denoising

of videos. The source code, sample data as well as the MATLAB scripts used to generate

all the figures in this chapter are publicly available at http://www.umiacs.umd.

edu/˜gibert/ShearCuda.zip.

For benchmark, we have evaluated the performance of the new discrete shearlet

transform both on multicore CPUs and GPU. All CPU tests have been performed on a

Dell PowerEdge C6145 with four-socket AMD OpteronTM6274 processors at 2.2GHz (64

cores total) and 256GB RAM, running Red Hat Enterprise Linux (REHL) 6. This machine

is one of 16 identical nodes in the High Performance Computing (HPC) cluster Euclid at

the University of Maryland. During these benchmarks, we had exclusive access to this

31

http://www.math.uh.edu/~dlabate/3Dshearlet_toolbox.zip
http://www.math.uh.edu/~dlabate/3Dshearlet_toolbox.zip
http://www.umiacs.umd.edu/~gibert/ShearCuda.zip
http://www.umiacs.umd.edu/~gibert/ShearCuda.zip

node, and no other processes were running, except for regular system services. To better

understand the performance of this code when running on systems with different number

of cores, we limited the number of available cores on some of the experiments. We found

that neither MATLAB’s maxNumCompThreads nor –singleCompThread work reliably on

non-Intel processors, so we used the taskset Linux command to set the processor affinity

to the desired number of cores. GPU tests were performed on different machines running

RHEL 5 or 6, and CUDA 4.2 or 5.0. The tests include devices with CUDA Compute

Capabilities (CC) between 1.3 and 3.5. Table 3.2 summarizes the configurations used in

our experiments.

Table 3.2: Specifications and computing environments for each of the graphics processors

used on our benchmarks

GPU Model Memory #Cores CC OS CUDA

Tesla C1060 4GB 240 1.3 RHEL 5 5.0.35

GeForce GTX 480 1.5GB 448 2.0 RHEL 6 4.2.9

Tesla C2050 3GB 448 2.0 RHEL 6 4.2.9

GeForce GTX 6901 2GB 1536 3.0 RHEL 6 5.0.35

Tesla K20c 4.8GB 2496 3.5 RHEL 6 5.0.35

1Although the GeForce GTX 690 is a dual-GPU with a total of 4GB and 3072 cores, we have only used

one of the 2 devices in the GPU for our experiments.

32

3.4.1 Image denoising

As a first test, we evaluated the performance of our implementation of the discrete

shearlet transform on a problem of image denoising, using a standard denoising algorithm

based on hard threshold of the shearlet coefficients. The setup is similar to the one de-

scribed in [44]. That is, given an image f ∈ RN2 , we observe a noisy version of it given

by u = f + ε, where ε ∈ RN2 is an additive white Gaussian noise process which is inde-

pendent of f , i.e., ε ∼ N(0, σ2IN2×N2). Our goal is to compute an estimate f̃ of f from

the noisy data u by applying a classical hard thresholding scheme [59] on the shearlet

coefficients of u. The threshold levels are given by τi,j,n = σ2
εi,j
/σ2

i,j,n, as in [37, 44, 60],

where σ2
i,j,n denotes the variance of the n-th coefficient at the ith directional subband in

the jth scale, and σ2
εi,j

is the noise variance at scale j and directional band i. The variances

σ2
εi,j

are estimated by using a Monte-Carlo technique in which the variances are computed

for several normalized noise images and then the estimates are averaged.

For our experiments, we used 5 levels of the Laplacian pyramid decomposition, and

we applied a directional decomposition on 4 of the 5 scales. We used 8 shear filters of

sizes 32× 32 for the first two scales (coarser scales), and 16 shear filters of sizes 16× 16

for the third and fourth levels (fine scales). The shear filters are Meyer-type windows [44].

We used the 512×512 Barbara image to test our algorithm and, to assess its performance,

we used the peak signal-to-noise ratio (PSNR), measured in decibels (dB), defined by

PSNR = 20 log10

255N

‖f − f̃‖F
,

where ‖ · ‖F is the Frobenius norm, the given image f is of size N ×N and f̃ denotes the

33

estimated image.

In order to minimize latency as well as bandwidth usage on the PCIe bus, we first

transferred the input image to GPU memory, then we let all the computation happen on

the GPU and we finally transferred the results back to CPU memory. We have verified that

both CPU and GPU implementations provide an output PSNR of 29.9dB when the input

PSNR is 22.1dB. At these noise levels, there is no difference in PSNR between single and

double precision implementations.

To verify the numerical accuracy, we ran the shearlet decomposition and recon-

struction on a noise free image (without thresholding), and we obtained a reconstruction

MSE (Mean Squared Error) of 9.197×10−09 for single precision and 2.503×10−12 for

double precision on a GeForce GTX 690. On the CPU implementation, we get recon-

struction errors of 9.1711×10−09 and 1.6643×10−26, respectively. This verifies that our

implementation does provide the exact reconstruction.

The running times vary significantly depending on the number of CPU cores avail-

able and the GPU model. Figure 3.4 shows a comparison of running times (wall times) of

the image denoising algorithm on different hardware configurations. We can clearly see

that the CPU implementation does not scale well as we increase the number of CPU cores

due to parts of the algorithm running sequentially. For a fair comparison of multicore vs

GPU, we would have to compare the performance to a fully optimized CPU implementa-

tion. It should be noted that there is enough coarse level parallelism on this algorithm to

accomplish full CPU utilization without incurring any inter CPU communication issues.

However, the trend reveals that for this application, GPU is more efficient than CPU. In

summary, the denoising algorithm takes 8.89 seconds on 4 CPU cores vs. 0.038 seconds

34

on the GeForce GTX 690 (a 233× speed-up) when using single precision. For double

precision, it takes 10.7 seconds on 4 CPU cores vs. 0.127 seconds on the GeForce GTX

690 (an 84× speed-up).

1 2 4 8 16 32 64 C1060 C2050 GTX480GTX690 K20c

10
2

10
3

10
4

10
5

Number of CPU cores/GPU model

ti
m

e
 (

m
s
e

c
)

2D Shearlet compute times

single precision

double precision

Figure 3.4: Comparison of CPU vs GPU run times for denoising a 512×512 image using

shearlets.

Table 3.3 shows the breakdown of different parts of the image denoising algorithm

both on CPU and GPU.

Table 3.3: Comparison of processing times for denoising a single precision 512 × 512

image on a multicore CPU using 4 CPU cores vs. a GeForce GTX 690 GPU.

Step
4-core CPU GTX 690 GPU

time (s) % time time (ms) % time

Laplacian pyramid 2.787 31.6% 18.282 47.3%

Directional filters 4.386 49.7% 18.350 47.5%

Hard threshold 0.375 4.2% 1.967 5.1%

Other 1.281 14.5 % 0.063 0.2%

TOTAL TIME 8.829 seconds 38.662 msec

35

3.4.2 Crack detection

Detection of cracks on concrete structures is a difficult problem due to the changes

in width and direction of the cracks, as well as the variability in the surface texture. This

problem has received considerable attention recently. Redundant representations, such as

undecimated wavelets, have been extensively used for crack detection [61, 62]. However,

wavelets have poor directional sensitivity and have difficulties in detecting weak diagonal

cracks. To overcome this limitation, Ma et al. [63] proposed the use of the nonsubsampled

contourlet transform [37] for crack detection. However, all these methods rely on the

assumption that the background surface can be modeled as additive white Gaussian noise

and his assumption leads to matched filter solutions. As a matter of fact, on real images

textures are highly correlated and applying linear filters leads to poor performance.

To address this problem, we propose a completely new approach to crack detection

based on separating the image into morphologically distinct components using sparse

representations, adaptive thresholding and variational regularization. This technique was

pioneered by Stark et al. [64] and later extended and generalized by many authors (e.g.,

[52,53,65]). In particular, we will use the Iterative Shrinkage Algorithm with a combined

dictionary of shearlets and wavelets to separate cracks from background texture.

To demonstrate the performance of the GPU-accelerated Iterative Shrinkage Algo-

rithm, we processed three 512×512 images. The images correspond to cracks on concrete

railroad crossties collected by ENSCO Inc. during summer 2012 using four 2048 × 1

line-scan cameras, which were assembled into 8192 × 3072 frames. The cameras were

triggered using a calibrated encoder, producing images with square pixels with a constant

36

size of 0.43mm. We manually cropped these images so that we can decouple crack de-

tection from crosstie boundary tracking. As one can see from Figure 3.6, these cracks

propagate in different directions and the background texture has a lot of variation. How-

ever, due to the fact that the information in these images is highly redundant, it is possible

to separate the image into two components, that is, cracks and texture, by solving an `1

optimization problem [52].

(a) (b) (c) (d)

Figure 3.5: Image separation. (a) Original images separated into (b) Cracks and (c)

Textural background components (d) Crack ground truth

More precisely, we model an image x containing cracks on textural background as

a superposition of a crack component xc with a textural component xt:

x = xc + xt.

Let Φ1 and Φ2 be the dictionaries corresponding to wavelets and shearlets, respectively.

37

(a) (b) (c) (d)

Figure 3.6: Crack detection results. (e) using shearlet coefficients (Shearlet-C) (f) using

thresholding in the image reconstruction using shearlets (Shearlet-I) (g) using intensity

thresholding in the original image (h) using Canny edge detection. All results are gener-

ated at peak F2 score

We assume that xc is sparse in a shearlet dictionary Φ1 and similarly xt is sparse in a

wavelet dictionary Φ2. That is, we assume that there are sparse coefficients ac and at so

that xc = Φ1ac and xt = Φ2at. Then, one can separate these components from an x via

the coefficients ac and at by solving the following optimization problem:

(âc, ât) = arg min ac,atλ‖ac‖1 + λ‖at‖1 +
1

2
‖x− Φ1ac − Φ2at‖22, (3.7)

where for an n-dimensional vector b the `1 norm is defined as ‖b‖1 =
∑

i |bi|. This

image separation problem can be solved efficiently using an iterative shrinkage algorithm

proposed in [52].

38

In our numerical experiments, we used symlet wavelets with 4 decomposition levels

to generate Φ2 and a 4-level shearlet decomposition with Meyer filters of sizes 80 × 80

on all 4 scales, 8 directional filters on the first three scales, and 16 directional filters on

the forth scale, to generate Φ1. To assess the performance of the separation algorithm, we

calculated the ROC curves for each image using the following 2 detection methods.

a) Shearlet-C: This method takes advantage of the Parseval property of the shearlet

transform and performs crack detection directly in the transform domain. We first

decompose the image into cracks and texture components using Iterative Shrinkage

with a shearlet dictionary and a wavelet one. Instead of using the reconstructed im-

age, we analyze the values of the shearlet transform coefficients. For each scale in

the shearlet transform domain, we analyze the directional components correspond-

ing to each displacement and collect the maximum magnitude across all directions.

If the sign of the shearlet coefficient corresponding to the maximum magnitude is

positive, we classify the corresponding pixel as background, otherwise we assign

the norm of the vector containing the maximum responses at each scale to each

pixel and apply a threshold.

b) Shearlet-I: We first decompose the image into cracks and texture components as

described for the previous method. Then, we apply an intensity threshold on the

reconstructed cracks image.

We compare our results to the following 2 basic methods not based on shearlets:

c) Intensity: This is the most basic approach, which only uses image intensity. Af-

ter compensating for slow variations of intensity in the image, we apply a global

39

threshold.

d) Canny: We use the Canny [66] edge detector as implemented in MATLAB using

the default σ =
√

2 and the default high to low threshold ratio of 40%.

After using a low-level detector, it may be necessary to remove small isolated re-

gions corresponding to false detections due to random noise. This postprocessing step

may reduce the false detection rate on intensity-based methods. However, to provide

an objective comparison, we have generated the experimental results without running any

postprocessing. We leave the performance analysis of a complete crack detector for future

work.

To evaluate the performance of each crack detector, we manually annotated the

crack pixels in each image. To mitigate the effect of ambiguous segmentation boundaries,

we annotated the boundaries around the cracks as tightly as possible (making sure that

only pixels completely contained inside the crack boundaries are annotated as such) and

defined an envelope region around each crack whose labels are treated as “do not care”.

Formally, let Ω denote the set of pixels in the image, and F (foreground) denote the set of

pixels labeled as cracks. We define the set B (background) as

B = {x ∈ Ω : min
f∈F
‖x− f‖ > δ}.

where ‖x− f‖ denotes the Euclidean distance between sites x and f . In our experiments

we used δ = 3. To account for possible small inaccuracies in the ground truth, we per-

formed a bipartite graph matching between the detected crack pixels and the crack pixels

in the ground truth. For our experiments, we allow matching within a maximum distance

of 2 pixels. This choice of matching metric does not penalize crack overestimation errors

40

as long as these errors are contained in such envelope. This allows us to decouple errors in

estimating the position of the crack centerline from errors in estimating the crack width,

which is more sensitive to lighting variations. LetD be the set of pixels detected as cracks

by a given detector and

tp = |D ∩ F | fn = |D̄ ∩ F | p = tp+ fn = |F |

tn = |D̄ ∩B| fp = |D ∩B| n = tn+ fp = |B|

The probability of detection (PD) and false alarm (PF) are defined as

PD =
tp

p
PF =

fp

n

A sequence of admissible detectors D|PF≤ε, for a given false detection rate ε, 0 ≤ ε ≤

1 would produce monotonically increasing detection rates, PD|PF≤ε. The Receiving

Operating Characteristic function (ROC curve) is defined as PD as a function of PF

ROC(x) = max
ε≤x

PD|PF=ε

One commonly used metric is the Area Under the ROC Curve (AUC), defined by

AUC =

∫ 1

0

ROC(x) dx,

which corresponds to the probability that a sample randomly drawn from F will receive

a score higher than a sample randomly drawn from B. AUC provides a measure of the

average performance of the detection across all possible sensitivity settings. Although it is

an important measure, in practice we are interested in knowing how well the detector will

work when we choose a particular sensitivity setting. For this reason, we have selected

Constant False Alarm Rate (CFAR) detectors with PF = 10−3 and PF = 10−4 and we

41

report the corresponding PD. For completeness, we also report the F1 score (also know

as the Dice similarity index), which is defined as

F1 =
2 tp

2 tp+ fn+ fp

The F1 score is also known as the balanced F−score, since it is equivalent to the harmonic

mean of the precision and recall:

F1 = 2
precision · recall
precision+ recall

where

precision =
tp

p
recall =

tp

tp+ fn
.

In this chapter, we report the peak F1 score for all methods. The Canny edge detection

method estimates the location of the crack boundary, while the other three methods esti-

mate the location of the crack itself. To have a meaningful comparison, we have generated

a separate ground truth masks for the crack outline, so we can use the same matching met-

ric on the Canny method. For each method, we have used the same algorithm parameters

on all the images.

Table 3.4 summarizes our results. We observe that our shearlet-based detectors per-

form consistently well on all evaluation metrics. Note that, on Image 3, the Shearlet-I

method, which is based on intensity in the reconstructed image, produces better results

than all other methods. Due to its simplicity, the intensity-based methods is still being

used by the industry. For example, the system recently proposed in [67] uses pixel inten-

sities to detect the cracks on the road pavement. Based on the results from Table 3.4, we

can conclude that, with the proper image preprocessing, intensity can still be a powerful

42

feature for crack detection. However, the detection performance provided by shearlet-

based features is more consistent across images. In future work, we will further explore

the potential of combining both intensity and shearlet-based features.

(a)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Shearlet−C

Shearlet−I

Intensity

Canny

(b)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Shearlet−C

Shearlet−I

Intensity

Canny

(c)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Shearlet−C

Shearlet−I

Intensity

Canny

Figure 3.7: ROC curves for crack detection. (a) Image 1 (b) Image 2 (c) Image 3

43

Table 3.4: Comparison of detection performance for different crack detection algorithms.

Image Method AUC F1 score PD|PF=10−3 PD|PF=10−4

1

Shearlet-C 0.99915 0.79916 0.8398 0.6746

Shearlet-I 0.99908 0.65810 0.7140 0.4247

Intensity 0.99874 0.73188 0.7411 0.5722

Canny 0.94457 0.27752 0.2114 0.1099

2

Shearlet-C 0.99999 0.98841 0.9989 0.9895

Shearlet-I 0.99557 0.62705 0.4837 0.3964

Intensity 0.99037 0.55404 0.4371 0.3342

Canny 0.99043 0.81787 0.6425 0.4462

3

Shearlet-C 0.99934 0.76418 0.8368 0.5874

Shearlet-I 0.99977 0.82353 0.9101 0.7098

Intensity 0.99650 0.45992 0.0543 0.0000

Canny 0.96248 0.19436 0.0000 0.0000

3.4.3 Video denoising

Video denoising can be performed using the same type of algorithm described

above for image denoising and consisting, essentially, in computing the shearlet coef-

ficients of the noisy data, followed by hard thresholding and reconstruction from the

thresholded coefficients. Similar to the previous section, a noisy video is obtained by

adding white Gaussian noise to a video sequence.

44

We have tested our GPU-based implementation of the 3D shearlet video denoising

algorithm using the 192×192×192 waterfall video sequence. Figure 3.8 shows frame 96

before and after denoising. Figure 3.9 compares the running times of the video denoising

algorithm based on CPU vs. GPU. One can notice that, when we go from single core to

dual core, the run time drops from 27.5 minutes to 14.4 minutes on single precision (a

1.91× speed-up). However, when going from dual-core to quad core we only get 1.62×

speed-up, and the rate of improvement as we keep doubling the number of cores keeps

diminishing, to the point where the improvement from single core to 64 cores is just a

9.45× speed-up. On the other hand, a GeForce 480 produces the same result in just 3

seconds, a remarkable 551× speed-up compared to single core CPU, and 58× speed-up

over 64 CPU cores.

(a) (b) (c)

Figure 3.8: Video denoising. (a) Original video frame (b) Noise added (c) Denoised

frame

3.5 Discussion and Conclusion

The shearlet transform is an advanced multiscale method which has emerged in

recent years as a refinement of the traditional wavelet transform and was shown to perform

very competitively over a wide range of image and data processing problems. However,

45

1 2 4 8 16 32 64 C1060 C2050 GTX480GTX690 K20c
10

0

10
1

10
2

10
3

Number of CPU cores/GPU model

ti
m

e
 (

s
e

c
o

n
d

s
)

3D Shearlet compute times

single precision

double precision

Figure 3.9: Comparison of CPU vs GPU run times for denoising a 1923 video using 3D

shearlets. Time includes all transfers between CPU and GPU.

standard CPU-based numerical implementations are very time-consuming and make the

application of this method to large data sets and real-time problems very impractical.

In this chapter, we described how to speed-up the computation of the 2D/3D discrete

shearlet transform by using GPU-based implementations. The development of algorithms

on GPU used to be tedious and require a very specialized knowledge of the hardware.

Using CUDA this is no longer the case and scientists with C/C++ programming skills

can quickly develop efficient GPU implementations of data-intensive algorithms. In this

chapter, we have taken advantage of the GPU-based implementation of the Fast Fourier

Transform and used the capabilities of MATLAB for quick prototyping. The results pre-

sented in this chapter illustrate the practical benefits of this approach. For example, a

GeForce 480 GTX, a $200 graphics card, can perform video denoising 58 times faster

than an expensive 64-core machine while consuming much less power.

Our new implementation enables the efficient application of the shearlet decom-

position to a variety of image and data processing tasks for which the required CPU

resources would be prohibitive. There are further improvements and extensions that can

46

be achieved such as pre-calculating the filter coefficients and porting the code to OpenCL

so it can also run on AMD and Intel GPUs, but this would go beyond the scope of this

chapter.

47

Chapter 4: Image Dictionaries for Anomaly Detection

4.1 Introduction

Monitoring the condition of railway fasteners is essential to ensure train safety. As

we explained in section 2.2 in Ch 2, fasteners maintain gage by keeping both rails firmly

attached to the crossties. Fasteners need to be inspected periodically and this inspections

are currently performed manually by railroad personnel. However, such inspections are

subjective and do not produce an auditable visual record. In addition, railroads usually

perform automated track inspections with specialized track geometry measurement ve-

hicles at intervals of 30 days or less between inspections. These automated inspections

can directly detect gage widening conditions. However, it is preferable to find fastening

problems before they develop into gage widening conditions. This chapter shows that,

by applying computer vision techniques, it is possible to inspect tracks for missing and

broken components using only grayscale images with no additional sensors. Figure 4.1

shows the types of defects that our algorithm can detect. The detectors have been tested

on concrete ties, but the framework can easily accommodate other types of fasteners and

ties.

This chapter is organized as follows. In Section 4.2, we review some related works

on this topic. Details of our approach are given in Section 4.3. Experimental results on

48

Figure 4.1: Example of defects that our algorithm can detect. Blue boxes indicate

good fastener, orange boxes indicate broken fasteners, and purple boxes indicate missing

fasteners. White numbers indicate tie index from last mile post. Other numbers indicate

type of fastener (for example, 0 is for e-clip fastener).

85 miles of concrete tie images are presented in Section 4.4. Section 4.7 concludes the

chapter with a brief summary and discussion.

4.2 Prior Work

Since the pioneering work by Cunningham et al. [16,17] in the mid 1990’s, machine

vision has been gradually adopted by the railway industry as a track inspection technol-

ogy. Those first generation systems were capable of collecting images of the railway right

of way and storing them for later review, but they did not facilitate any automated detec-

tion. As faster processing hardware became available, several vendors began to introduce

vision systems with increasing automation capabilities.

In [19, 29], Marino et al., describe their VISyR system, which detects hexagonal-

headed bolts using two 3-layer neural networks (NN) running in parallel. Both networks

take the 2-level discrete wavelet transform (DWT) of a 24×100 pixel sliding window

49

(their images use non-square pixels) as an input to generate a binary output indicating the

presence of a fastener. The difference is that the first NN uses Daubechies wavelets, while

the second one uses Haar wavelets. This wavelet decomposition is equivalent to perform-

ing edge detection at different scales with two different filters. Both neural networks are

trained with the same examples. The final decision is made using the maximum output

of each neural network. In [20, 21], Gibert et al., describe their VisiRail system for joint

bar inspection. The system is capable of collecting images on each rail side, and finding

cracks on joint bars using edge detection and a Support Vector Machine (SVM) classifier

that analyzes features extracted from these edges. In [22], Babenko describes a fastener

detection method based on a convolutional filter bank that is applied directly to intensity

images. Each type of fastener has a single filter associated with it, whose coefficients

are calculated using an illumination-normalized version of the Optimal Tradeoff Maxi-

mum Average Correlation Height (OT-MACH) filter [23]. This approach allows accurate

fastener detection and localization and it achieved over 90% fastener detection rate on a

dataset of 2,436 images. However, the detector was not tested on longer sections of track.

In [24], Resendiz et al.use texture classification via a bank of Gabor filters followed by an

SVM to determine the location of rail components such as crossties and turnouts. They

also use the MUSIC algorithm to find spectral signatures to determine expected compo-

nent locations. In [25], Li et al.describe a system for detecting tie plates and spikes. Their

method, which is described in more detail in [26], uses an AdaBoost-based object detec-

tor [27] with a model selection mechanism that assigns the object class that produces the

highest number of detections within a window of 50 frames.

Table 2.1 in chapter 2 summarizes several methods for inspecting track components

50

missing	
(background)	

broken	

PR	 clip	 e	 clip	 fastclip	 c	 clip	 j	 clip	

Level	 1	

Level	 2	

Level	 3	

Defec,ve	 Non-‐defec,ve	

Level	 4	

good	

fastener	

ROI	

Figure 4.2: Object categories used for detection and classification (from coarsest to finest

levels).

described in the literature. In addition to the works described in this section, there are

other commercial vendors that offer automated visual track inspection systems, but they

have not disclosed the techniques that they use nor their detection performance. More

details about these and other methods can be found in the surveys by Molina and Edwards

[68], and Podder [69].

4.3 Proposed Approach

In this section, we describe the details of our proposed approach to automatic fas-

tener detection.

51

4.3.1 Overview

Due to surface variations that result from grease, rust and other elements in the out-

door environment, segmentation of railway components is a very difficult task. Therefore,

we avoid it by using a detector based on a sliding window that we run over the inspectable

area of the tie. The detector uses the well-know descriptor based on the Histograms of

Oriented Gradients [70] (HOG), which was originally designed for pedestrian detection,

but it has been proven effective for a variety of object detection tasks in unconstrained

environments. Although, most of the time, fasteners are located very close to the rail,

we need to search over a much broader area because on turnouts (switches and frogs)

fasteners are positioned farther away from the rail, with more varied configurations.

4.3.2 Classification

Our goal is to simultaneously detect, within each predefined Region of Interest

(ROI), the most likely fastener location and then classify such detections into one of three

basic conditions: background (or missing fastener), broken fastener, and good fastener.

Then, for good and broken fastener conditions, we want to assign class labels for each

fastener type (PR clip, e-clip, fastclip, c-clip, and j-clip). Figure 4.2 shows the complete

categorization that we use, from coarsest to finest. At the coarsest level, we want to clas-

sify fastener vs. unstructured background clutter. The background class also includes

images of ties where fasteners are completely missing. We have done this for these rea-

sons: 1) it is very difficult to train a detector to find the small hole left on the tie after

the whole fastener has been ripped off, 2) we do not have enough training examples of

52

missing fasteners, and 3) most missing fasteners are on crumbled ties for which the hole

is no longer visible. Once we detect the most likely fastener location, we want to classify

the detected fastener between broken vs. good, and then classify it into the most likely

fastener type. Although this top-down reasoning works for a human inspector, it does

not work accurately in a computer vision system because both the background class and

the fastener class have too much intra-class variations. As a result, we have resorted to a

bottom-up approach.

Since we use inner products, our detector may resemble the correlation-based ap-

proach used in [22], but there are three key differences that sets us apart: 1) our input is

a HOG feature vector rather than raw pixel intensities, 2) we use a linear SVM to learn

the coefficients of the detection filter, 3) we use a second classifier to reject misclassified

fastener types.

To achieve the best possible generalization at test time, we have based our detector

on the maximum margin principle of the SVM. Although SVM is a binary classifier, it

is straightforward to build a multi-class SVM, for example, by combining several one-

vs-rest or one-vs-one SVM classifiers, either by a voting scheme or by using the DAG-

SVM framework. Our approach uses the one-vs-rest strategy, but instead of treating the

background class as just another object class, we treat it as a special case and use a pair of

SVMs per object class. For instance, if we had used a single learning machine, we would

be forcing the classifier to perform two different unrelated tasks: a) reject the hypothesis

that the image patch that does not contain random texture and b) reject the hypothesis that

the object does not belong to the given category. Therefore, given a set of object classes C,

we train two detectors for each object category. The first one, with weights bc, classifies

53

each object class c ∈ C vs. the background/missing classm 6∈ C, and the second one, with

weights fc classifies object class c vs. other object classes C\c. As illustrated in Figure

4.3, asking our linear classifier to perform both tasks at the same time would result in a

narrower margin than training separate classifiers for each individual task. Moreover, to

avoid rejecting cases where all fc classifiers produce negative responses, but one or more

bc classifiers produce strong positive responses that would otherwise indicate the presence

of a fastener, we use the negative output of fc as a soft penalty. Then the likelihood that

sample x belongs to class c becomes

Lc(x) = bc · x+ min(0, fc · x), (4.1)

where x = HOG(I) is the feature vector extracted from a given image patch I . The

likelihood that our search region contains at least one object of class c is the score of the

union, so

Lc = max
x∈X

Lc(x), (4.2)

where X is the set of all feature vectors extracted within the search region, and our clas-

sification rule becomes

ĉ =

arg max

c∈C
Lc max

c∈C
Lc > 0

m otherwise.

(4.3)

4.3.3 Score Calculation

For the practical applicability of our detector, it needs to output a scalar value that

can be compared to a user-selectable threshold τ . Since there are several ways for a

54

(a) (b)

Figure 4.3: Justification for using two classifiers for each object category. (a) Clas-

sification region of fastener vs. rest (b) Classification region of intersection of fastener

vs. background and fastener vs. rest-minus-background. The margin is much wider than

using single classifier.

fastener to be defective (either missing or broken), we need to generate a single score

that informs the user how confident the system is that the image contains a fastener in

good condition. For the score calculation, we divide the set of object classes C into two

mutually-exclusive subsets, one for good fasteners G and the other for broken fasteners

B, so C = G ∪ B and G ∩ B = ∅. We define the score for the missing fastener hypothesis

as

Sm = max
c∈G

Lc (4.4)

and the score for the broken fastener hypothesis

Sb = −max
c∈B

fc · x, (4.5)

where we invert the sign of the score Sb to reflect the convention that a fastener in good

condition should have a large positive score. The final score becomes the intersection of

55

these two scores

S = min(Sm, Sb). (4.6)

The final decision is done by reporting the fastener as good if S > τ , and defective

otherwise.

4.3.4 Training Procedure

The advantage of using a maximum-margin classifier is that once we have enough

support vectors for a particular class, it is not necessary to add more inliers to improve

classification performance. Therefore, we can potentially achieve relatively good perfor-

mance with only having to annotate a very small fraction of the data. To generate our

training set, we initially selected ∼30 good quality (with no occlusion and clean edges)

samples from each object category at random from the whole repository and annotated the

bounding box location and object class for each of them. Our training software also auto-

matically picks, using a randomly generated offset, a background patch adjacent to each

of the selected samples. Once we had enough samples from each class, we trained binary

classifiers for each of the classes against the background and tested on the whole dataset.

Then, we randomly selected misclassified samples and added those that had good or ac-

ceptable quality (no occlusion) to the training set. To maintain the balance of the training

set, we also added, for each difficult sample, 2 or 3 neighboring samples. Since there are

special types of fasteners that do not occur very frequently (such as the c-clips or j-clips

used around joint bars), in order to keep the number of samples of each type in the train-

ing set as balanced as possible, we added as many of these infrequent types as we could

56

find.

4.3.5 Alignment Procedure

For learning the most effective object detection models, the importance of properly

aligning the training samples cannot be emphasized enough. Misalignment between dif-

ferent training samples would cause unnecessary intra-class variation that would degrade

detection performance. Therefore, all the training bounding boxes were manually anno-

tated, as tightly as possible to the object contour by the same person to avoid inducing any

annotation bias. For training the fastener vs. background detectors, our software cropped

the training samples using a detection window centered around these boxes. For training

the fastener vs. rest detectors, our software centered the positive samples using the user

annotation, but the negative samples were re-centered to the position where the fastener

vs. background detector generated the highest response. This was done to force the learn-

ing machine to learn to differentiate object categories by taking into account parts that are

not common across object categories.

4.4 Experimental Results

To evaluate the accuracy of our fastener detector, we have tested it on 85 miles of

continuous trackbed images. These images were collected on the US Northeast Corri-

dor (NEC) by ENSCO Rail’s Comprehensive Track Inspection Vehicle (CTIV) (see Fig-

ure 4.4). The CTIV is a hi-rail vehicle (a road vehicle that can also travel on railway

tracks) equipped with several track inspection technologies, including a Track Compo-

57

nent Imaging System (TCIS). The TCIS collects images of the trackbed using 4 Basler

sprint (spL2048-70km) linescan cameras and a custom line scan lighting solution [71].

The sprint cameras are based on CMOS technology and use a CameraLink interface

to stream the data to a rack-mounted computer. Each camera contains a sensor with 2 rows

of 2,048 pixels that can sample at line rates of up to 70KHz. The cameras can be set to

run in dual-line mode (high-resolution) or in “binned” mode, where the values of each

pair of pixels are averaged inside the sensor. During this survey, the cameras were set up

in binned mode so, each camera generated a combined row of 2,048 pixels at a line rate

of 1 line/0.43mm. The sampling rate was controlled by the signal generated from a BEI

distance encoder mounted on one of the wheels. The camera positions and optics were

selected to cover the whole track with minimal perspective distortion and their fields of

view had some overlap to facilitate stitching.

The collected images were automatically stitched together and saved into several

files, each containing a 1-mile image. These files were preprocessed by ENSCO Rail

using their proprietary tie detection software to extract the boundary of all the ties in each

image. We verified that the tie boundaries were accurate after visually correcting invalid

tie detections. We downsampled the images by a factor of 2, for a pixel size of 0.86 mm.

To assess the detection performance under different operating conditions, we flagged the

special track sections where the fastener visible area was less than 50% due to a variety of

occluding conditions, such as protecting covers for track-mounted equipment or ballast

accumulated on the top of the tie. We also flagged turnouts so we could report separate

ROC curves for both including and excluding them. All the ties in this dataset are made

of reinforced concrete, were manufactured by either San-Vel or Rocla, and were installed

58

Figure 4.4: CTIV platform used to collect the images.

between 1978 and 2010.

Due to the large size of this dataset, we have implemented a customized software

tool that allows the user to efficiently visualize and annotate the data (see Figure 4.5

for a screenshot). This tool has been implemented in C++ using the Qt framework and

communicates with the data repository through the secure HTTPS protocol, so it can be

used from any computer with an Internet connection without having to set up tunnel or

VPN connections. The tool allows the user to change the threshold of the defect detector

and select a subset of the data for display and review. It also has the capability of exporting

lists of detected defects as well as summaries of fastener inventories by mile.

4.4.1 Fastener Categorization

On our dataset, we have a total of 8 object categories (2 for broken clips, 1 for

PR clips, 1 for e-clips, 2 for fast clips, 1 for c-clips, and 1 for j-clips) plus a special

59

Figure 4.5: The GUI tool used to generate the training set and to review the detection

results.

category for background (which includes missing fasteners). We also have 4 synthetically

generated categories by mirroring non-symmetric object classes, so we use a total of 12

object object categories at test time. The HOG features are extracted using a 160×160

pixel sliding window with a strap of 8×8. We use the HOG implementation in the object

detection module of OpenCV using default parameters. For classification, we use the

linear SVM implementation in the machine learning module of OpenCV (which is derived

60

from LIBSVM [72]) with a soft margin (C = 0.01).

Detected Class

Tr
ue

C
la

ss
Missing/Background 1863 152 6 1

Broken clip 40 646

Broken fast-clip 1 27

PR clip 1 383

E-clip 272

Fastclip 1 82 10

Fastclip 2 2 164

C-clip 2 115

J-clip 3 1 34

(a)

Detected Class

Tr
ue

C
la

ss

Missing/Background 1730 250 1 13 2 1 24 1

Broken clip 685 1

Broken fast-clip 28

PR clip 384

E-clip 1 269 2

Fastclip 1 2 89 1

Fastclip 2 2 164

C-clip 7 110

J-clip 32 1 5

(b)

Figure 4.6: Confusion matrix on 5-fold cross-validation of the training set using (a)

the proposed method (b) the method described in [22] with HOG features.

For training our detectors, we used a total of 3,805 image patches, including 1,069

61

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

PFA

proposed method

Int. norm. OT−MACH

HOG OT−MACH

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

P
D

PFA

proposed (clear ties)

proposed (clear ties + sw)

proposed (all ties)

(a) (b)

Figure 4.7: ROC curves for the task of detecting defective (missing or broken) fas-

teners (a) using 5-fold cross-validation on the training set (b) on the 85-mile testing set.

good fasteners, 714 broken fasteners, 33 missing fasteners, and 1,989 patches of back-

ground texture. During training, we also included the mirrored versions of the miss-

ing/background patches and all symmetric object classes. To evaluate the feasibility of

the algorithm, we performed 5-fold cross-validation on the training set, where we clas-

sified each patch into one of the 9 basic object categories (we excluded the 4 artificially

generated mirrored categories). Figure 4.6 (a) shows the resulting confusion matrix. We

only had 14 misclassified samples (0.37% error rate). If we consider the binary decision

problem of finding defective fasteners (either missing or broken), we have a detection

rate of 99.74% with a false alarm rate of 0.65%. This is an encouraging result, since as

explained in section 4.3.4, our training set has been bootstrapped to contain many difficult

samples.

To compare our method with previous work, we implemented the correlation-based

approach described in [22]. However, since the OT-MACH approach on normalized im-

age intensity did not produce very good results (see Figure 4.7 (a)), we modified the

algorithm to work on HOG features. Figure 4.6 (b) shows the resulting confusion matrix.

62

This method had an error rate of 2.23% (6 times greater than our proposed method). The

detection rate was 98.86% with a false alarm rate of 4.02%. We can see that j-clips and

c-clips are the most difficult types of fasteners. These 2 types of fasteners contain more

intra-class variation than other types because they are placed next to joint bars, so some

of them are slightly rotated to accommodate the presence of joint bar bolts.

4.4.2 Defect Detection

To evaluate the performance of our defect detector, we divided each tie into 4 re-

gions of interest (left field, left gage, right gage, right field) and calculated the score

defined by ((4.6)) for each of them. Figure 4.7 shows the ROC curve for crossvalidation

on the training set as well as for the testing set of 813,148 ROIs (203,287 ties). The test-

ing set contains 1,051 ties images with at least one defective fastener per tie. The total

number of defective fasteners in the testing set was 1,086 (0.13% of all the fasteners),

including 22 completely missing fasteners and 1,064 broken fasteners. The number of

ties that we flagged as “uninspectable” is 2,524 (1,093 on switches, 350 on lubricators,

795 covered in ballast, and 286 with other issues).

We used the ROC on clear ties (blue curve) in Figure 4.7 (b) to determine the op-

timal threshold to achieve a design false alarm rate of 0.1% (τ = 0.1614). Using this

sensitivity level, we ran our defective fastener detector at the tie level (by taking the min-

imum score across all 4 regions). Results are shown in table 4.1.

Our protocol has been to mark the whole tie as uninspectable if at least one of the

fasteners is not visible in the image. This is not ideal as there are situations where parts

63

Table 4.1: Results for detection of ties with at least one defective fastener.

Subset Total ties Defective PD PFA

clear ties 200,763 1,037 98.36% 0.38%

clear + switch 201,856 1,045 97.99% 0.71%

all ties 203,287 1,051 98.00% 1.23%

of the tie are still inspectable, for example when the field side of the rail is covered with

ballast, but the gage side is inspectable (this explains the 6 additional defective ties when

including uninspectable ties).

4.5 Summary

In order to advance the state-of-the-art in automated railway fastener inspection,

our design has been driven by the fundamental principle of projecting the samples into

a representation that minimizes intra-class variation while maximizing inter-class sepa-

ration. To achieve minimum intra-class variation, we use the HOG features, which have

built-in intensity normalization, while preserving the distinctive distribution of edges. We

have also implemented a sophisticated graphical user interface that facilitates accurate

alignment of the fastener locations to avoid intraclass variations due to misalignment. To

achieve maximum inter-class separation while maintaining the principle of parsimony, we

resort to the maximum margin formulation and simplicity offered by linear SVMs. We

further enforce intra-class separation during the sampling of the training data. For the

fastener-vs-background classifiers we bootstrapped difficult samples when we built the

64

training set. For the fastener-vs-rest classifiers, we aligned the negative samples to the

most confusing position, so the learning machine could focus on the best way to separate

classes on the most distinctive parts of the object.

In summary, we believe that the system described here is a good step towards au-

tomated visual track inspection and will help railroads maintain their tracks in optimal

conditions. Possible extensions to this work will be discussed in chapter 7.

65

Chapter 5: Deep Learning Methods for Anomaly detection

5.1 Background

5.1.1 Convolutional Neural Networks

The idea of enforcing translation invariance in neural networks via weight sharing

goes back to Fukoshima’s Neocognitron [73]. Based on this idea, LeCun et al. devel-

oped the concept into Deep Convolutional Neural Networks (DCNN) and used it for digit

recognition [74], and later for more general optical character recognition (OCR) [75].

During the last few years, DCNNs have become ubiquitous in achieving state-of-the-

art results in image classification [76, 77] and object detection [78]. This resurgence of

DCNNs has been facilitated by the availability of efficient GPU implementations and

open source libraries such as Caffe [79] and Torch7 [80]. More recently, DCNNs have

been used for semantic image segmentation. For example, the work of [81] shows how

a DCNN can be converted to a Fully Convolutional Network (FCN) by replacing fully-

connected layers with convolutional ones.

66

5.1.2 Multi-task Learning

Multi-task learning (MTL) is an inductive transfer learning technique in which two

or more learning machines are trained cooperatively [82]. It is a generalization of multi-

label learning in which each training sample has only been labeled for one of the tasks.

In MTL settings, there is a mechanism in which knowledge learned for one task is trans-

ferred to the other tasks [83]. The idea is that each task can benefit by reusing knowledge

that has been learned while training for the other tasks. Backpropagation has been recog-

nized as an effective method for learning distributed representations [84]. For instance, in

multitask neural networks, we jointly minimize one global loss function

Φ =
T∑
t=1

λt

Nt∑
i=1

Et (f(xti), yti) (5.1)

where T is the number of tasks, Nt is the number of training samples for task t, yti is the

ground truth label for training sample xti, f is the the multi-output function computed by

the network, and Et is the loss function for task t. This contrasts with the Single Task

Learning (STL) setting, in which we minimize T independent loss functions

Φt =
Nt∑
i=1

Et (ft(xti), yti) , t ∈ {1 . . . T} (5.2)

In MTL, the weighting factor λt is necessary to compensate for imbalances in the

complexity of the different tasks and the amount of training data available. When using

back-propagation, it is necessary to adjust λt’s to ensure that all tasks are learning at

optimal rates.

67

5.1.3 One-shot Learning

To achieve good generalization performance, traditional machine learning methods

require a minimum number of training examples from each class. This is necessary for

the machine to learn a model that can handle variations in image appearance that result

from changes in illumination, scale, rotation, background clutter, and so on. However, the

occurrence of each type of anomaly is very infrequent, so in anomaly detection settings it

is only possible to find one or a few number of examples from which to learn from. If we

try to learn a complete model for a new class using such a limited number of examples,

this model would overfit and would not be able to generalize to new data. However, if we

reuse knowledge that has been learned while learning other related classes, we can learn

better models. This is known as one-shot learning [2]. We pose this one-shot learning

problem as a special case of multi-task learning, in which one task consists of learning

the abundant classes, while the other task learns the uncommon classes.

In coarse to fine-grained object categorization problems, such as anomaly detection

on objects with multiple configurations, both the task of detecting and classifying the

objects as well as determining whether each object is in good or bad condition, share a

common low-level representation because all object classes are made of common parts.

In the railway fastener inspection application described in this chapter, we will train an

auxiliary network on a 5-class fastener classification using more than 300K fasteners for

the sole purpose of learning a good representation that regularizes the broken fastener

detector.

68

5.2 Learning with Weakly Labeled Data

Learning with ambiguously labeled data refers to the learning problem where each

training sample has multiple labels and only one of them is the correct one [85]. A

related problem is Multiple Instance Learning (MIL) [86]. MIL refers to the learning

problem in which the training data is not annotated at the instance level, but instead there

are bags of instances and there is only one label per bag. These labels indicate that

either the bag contains only instances from one class (the normal class), or whether it

contains at least one instance from another class (the anomaly class). A popular approach

for addressing MIL is the Diverse Density (DD) framework by Maron and Pérez [87],

which finds similar instances of the ambiguous samples across different bags to determine

which instances are likely to be from the alternative class. More recently, Shrivastava et

al. [88] proposed a general DD-based algorithm using dictionaries that is more robust

than previous approaches.

For example, in our experiments in chapter 4, due to the requirements of fully-

annotated data, we could only use 1,816 samples for training, while we used ∼200K

samples for testing. There are many other applications where the availability of fully-

annotated data is very limited, but there are vast amounts of unlabeled as well as weakly

labeled data. For weakly labeled data we refer to cases where the exact data label is

unknown or the instance the label corresponds to is unknown. For instance, the ground

truth label categories are broad, such as good vs. anomalous, and the location and type

of each image element is unknown. For those images that are deemed to be anomalous,

the specific image elements that constitute the anomaly, as well as the type of anomaly

69

are also unknown. In contrast to the direct algorithms for learning from fully-annotated

data presented in previous chapters, learning from incomplete training data, such as when

there is a dependency on hidden or latent parameters is much harder. The main issue

is that simultaneously learning the model and the latent parameters is usually a highly

non-convex optimization problem. Therefore, the parameters learned using descend al-

gorithms are only guaranteed to be locally optimal and the quality of the estimate depends

on the initialization of such latent parameters.

The MTL framework described in this chapter allows us to handle weakly labeled

data. The primary task is the estimation of the full label and is trained with the subset

of the data that contains exact labels. The secondary task is trained on the subset of the

data that only contains weak labels. The training objective of the secondary task will be

different from exact label prediction. For example, in the ambiguously labeled setting,

we could use one of the following training objectives for the secondary task:

• Reduction to multi-label learning using super-classes: If classes can be clustered

into groups that often appear together, the problem of learning with ambiguously

labeled data could be converted into a multi-label learning problem. In this setting,

the set of multiple ambiguous class labels will be converted to a set multiple super-

class labels. Each super-class label will set to 1 if all the ambiguous labels belong to

such super-class or 0 if none of the labels belong to the super-class. Otherwise, the

label for such superclass would be left undefined and the value of the loss function

would be set to constant zero for predicting such class.

• Reduction to several one-vs-rest binary problems: Train a number of binary classi-

70

fiers where each classifier learns whether a sample belongs to a group of classes or

not.

In the multiple instance learning setting, we could add a max-pooling layer that takes

predictions for each sample in the bag as input and generates a single prediction indicating

whether the bag contains at least one sample of the class being tested.

The extreme case is when some of the data is unlabeled (the semi-supervised learn-

ing case). The motivation of using unlabeled data is that, while collecting weakly labeled

data may be one or two orders of magnitude cheaper than collecting fully annotated data,

collecting unlabeled data is virtually free, as it requires very little human intervention. In

this scenario, the unlabeled data can still be used to learn a representation. In this case,

the secondary learning task would be selected to enforce some desirable property in this

representation, such as invariance to some transformation or sparsity of such representa-

tion.

5.3 Overall Architecture

Our design is a Fully Convolutional Network [81] based on the architecture intro-

duced in [7]. That network was trained with 10 classes of materials and produces feature

maps with 10 different channels. In this chapter, we extend that architecture by adding

two additional branches to the network. The first one is a coarse-level fastener classifier

trained on a large number of examples. The second branch produces 32 binary outputs.

These outputs correspond to the same binary SVMs that we used in our previous version

of the detector introduced in chapter 4.

71

9	

9	

1	

48	

64	

256	

10	

stride	 2	 pooling	

5	

5	
5	

5	

1	
1	

relu	
pooling	

relu	
pooling	

input	
conv1	 conv2	

conv3	
conv4	

(a)

9	

9	

1	

48	
64	

256	

10	

stride	 2	 pooling	

5	

5	
5	

5	

1	
1	

relu	
pooling	

relu	
drop	
pooling	

input	
conv1	 conv2	

conv3	

conv4_t	

512	

conv4_f	

5	

5	

5	

1	
1	

conv5_f	

Shared	 network	

Material	 net	

Fasteners	
Shared	 features	

relu	
drop	
pooling	

Training	
Batch	 size	

128	

Training	
Batch	 size	

16	

Fastener	
Mul8class	

32	

conv5_fastVsBg	
Fastener	
Binary	
SVMs	

conv5_fastVsFast	
Training	
Batch	 size	
32	 x	 1	

(b)

Figure 5.1: Network architectures evaluated in this chapter. (a) Single-task learning

(material classification only) (b) Multi-task learning (material and fasteners)

The implementation is based on the BVLC Caffe framework [79]. For the material

classification task, we have a total of 4 convolutional layers between the input and the

output layer, while for fastener detection tasks we have 5 convolutional layers. The first

three layers are shared among all the tasks. The fasteners task is, in turn, divided in two

subtasks: coarse-level and fine-grained classification (see section 5.5 for more details).

The network uses rectified linear units (ReLU) as non-linear activation functions, and

overlapping max pooling units of size 3 × 3. All max pooling units have a stride of 2,

except the one on top of that has a stride of 1. We use dropout [89] regularization on layer

72

3 (with a ratio of 0.1) and layer 4 on the fasteners branch (with a ratio of 0.2). The network

also uses weight decay regularization. On the fasteners branch, we increase the weight

decay factors on layers 4 and 5 by 10× and 100× respectively to reduce overfitting.

We first apply global gain normalization on the raw image to reduce the intensity

variation across the image. This gain is calculated by smoothing the signal envelope

estimated using a median filter. We estimate the signal envelope by low-pass filtering

the image with a Gaussian kernel. Although DCNNs are robust to illumination changes,

normalizing the image to make the signal dynamic range more uniform improves accuracy

and convergence speed. We also subtract the mean intensity value, which is calculated on

the whole training set. The network architecture is illustrated in figure 5.1.

5.3.1 Data Annotation

In section 4.4 we introduced the customized software tool that we implemented to

efficiently visualize and annotate the data. The tool allows assigning a material category

to each tie as well as its bounding box. It also allows defining polygons enclosing re-

gions containing crumbling, chips or ballast. We used the output of our fastener detection

algorithm [6] to extract fastener examples. The tool also allows the user to change the

threshold of the defect detector and select a subset of the data for display and review.

It also has the capability of exporting lists of detected defects as well as summaries of

fastener inventories by mile.

73

5.3.2 Training Procedure

The training set used for material classification is exactly the same that used in [7].

The training set for fastener classification is the one used in chapter 4. As we described in

the preceding chapter, to generate our training set, we initially selected ∼30 good quality

(with no occlusion and clean edges) samples from each object category at random from

the whole repository and annotated the bounding box location and object class for each

of them. Our training software also automatically picks, using a randomly generated

offset, a background patch adjacent to each of the selected samples. Once we had enough

samples from each class, we trained binary classifiers for each of the classes against the

background and tested on the whole dataset. Then, we randomly selected misclassified

samples and added those that had good or acceptable quality (no occlusion) to the training

set. To maintain the balance of the training set, we also added, for each difficult sample,

2 or 3 neighboring samples. Since there are special types of fasteners that do not occur

very frequently (such as the c-clips or j-clips used around joint bars), in order to keep the

number of samples of each type in the training set as balanced as possible, we added as

many of these infrequent types as we could find.

After spending several days carefully annotating the fasteners, our training set only

contains 2819 fully-annotated fasteners. Moreover, some of the classes had very few ex-

amples. For instance, there are only 28 broken fast-clips, and just 38 j-clips in all the data

we have. Had we added more examples from the abundant classes, we would have made

the imbalance problem even worse. On the other hand, if we just had used this limited

data, we would not have been able to learn a good representation. Fortunately, both of

74

these two uncommon classes of fasteners share parts with the other ones. Therefore, if

we can make layer conv4 f learn a good model for fastener parts, layer conv5 f would be

able to learn how to distinguish between fasteners by combining such parts, even if the

number of training examples is limited.

Therefore, we created an auxiliary fastener data set. Since the only purpose of this

dataset is to help learn parts, we just used the bounding boxes and labels automatically

generated by our previous detector [6], whose error rate is just 0.37%. We sampled 62,500

fasteners from each of 5 coarse classes. The first class contains missing and broken fas-

teners, the next 3 classes contain fasteners corresponding to each of the classes containing

the most samples (PR-clips, e-clips, and fast-clips), and the last class contains everything

else.

We train the network using stochastic gradient descent on mini-batches of 128 im-

age patches of size 75× 75 plus 48 fastener images of 182× 182. The fastener images in-

clude 16 from the auxiliary fastener dataset and 1 from each of the binary SVM tasks. We

do data augmentation on material classification by randomly mirroring vertically and/or

horizontally the training samples. The patches are cropped randomly among all regions

that contain the texture of interest. To increase robustness against adverse environment

conditions, such as rain, grease or mud, we identified images containing such difficult

cases and automatically resampled the data so that at least 50% of the data is sampled

from such difficult images. We do data augmentation on fasteners by randomly mirror-

ing vertically the symmetric classes and randomly cropping the fastener offset uniformly

distributed within a +/-9 pixel range in both directions.

75

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.2: Material categories. (a) ballast (b) wood (c) rough concrete (d) medium

concrete (e) smooth concrete (f) crumbling concrete (g) chipped concrete (h) lubricator

(i) rail (j) fastener

5.4 Material Identification and Segmentation Task

5.4.1 Architecture

The material classification task at layer conv4 t generates ten score maps at 1/16th.

Each value Φi(x, y) in the score map corresponds to the likelihood that pixel location

(x, y) contains material of class i. The ten classes of materials are defined in Figure 5.2.

5.4.2 Score Calculation

To detect whether an image contains a broken tie, we first calculate the scores at

each site as

Sb(x, y) = max
i/∈B

Φi(x, y)− Φb(x, y) (5.3)

76

where b ∈ B is a defect class (crumbling or chip). Then we calculate the score for the

whole image as

Sb =
1

β − α

∫ β

α

F̂−1(t)dt (5.4)

where F̂−1 refers to the t sample quantile calculated from all scores Sb(x, y) in the image.

The detector reports an alarm if S > τ , where τ is the detection threshold. We used

α = 0.9 and β = 1.

5.5 Fasteners Assessment Task

In this section, we describe the details of the fastener assessment task.

5.5.1 Overview

Due to surface variations that result from grease, rust and other elements in the out-

door environment, segmentation of railway components is a very difficult task. Therefore,

we avoid it by using a detector based on a sliding window that we run over the inspectable

area of the tie. The features learned at layer conv4 f are computed from the shared fea-

tures at conv3. The reason for sharing the features with the material classification task

is that there is overlap between both tasks. For instance, the material classification task

needs to learn to distinguish between fasteners and the other materials, regardless of the

type of fastener. Also, the fastener detection class needs to discriminate between fas-

teners and background, regardless of the type of background. In our previous work, we

used the Histogram of Oriented Gradients (HOG) [70] descriptor for detecting fasteners.

Although the results that we obtained using HOG features were better than previously

77

proposed methods, this approach still has its limitations. For instance, the dimensionality

of the feature vector is very large (12,996), consuming a lot of memory and computational

resources, and the linear classifier cannot handle occlusions very well. Therefore, in this

chapter we attempt to learn the features by training the network end to end.

5.5.2 Classification

Our goal is to simultaneously detect, within each predefined Region of Interest

(ROI), the most likely fastener location and then classify such detections into one of three

basic conditions: background (or missing fastener), broken fastener, and good fastener.

Then, for good and broken fastener conditions, we want to assign class labels for each

fastener type (PR clip, e-clip, fastclip, c-clip, and j-clip). Figure 5.2 shows the complete

categorization that we use, from coarsest to finest. At the coarsest level, we want to clas-

sify fastener vs. unstructured background clutter. The background class also includes

images of ties where fasteners are completely missing. We have done this for these rea-

sons: 1) it is very difficult to train a detector to find the small hole left on the tie after

the whole fastener has been ripped off, 2) we do not have enough training examples of

missing fasteners, and 3) most missing fasteners are on crumbled ties for which the hole

is no longer visible. Once we detect the most likely fastener location, we want to classify

the detected fastener between broken vs. good, and then classify it into the most likely

fastener type. Although this top-down reasoning works for a human inspector, it does

not work accurately in a computer vision system because both the background class and

the fastener class have too much intra-class variations. As a result, we have resorted to a

78

bottom-up approach.

To achieve the best possible generalization at test time, we have based our detec-

tor on the maximum margin principle of the SVM. The SVM separating hyperplane is

obtained by minimizing the regularized hinge loss function,

E =
∑
i

max (0, 1− yi(w · xi + b)) +
λ

2
‖w‖ (5.5)

where xi ∈ R512 are the outputs of layer conv4 f and yi ∈ {−1,+1} their corresponding

ground truth labels (whose meaning will be explain later). The gradients with respect to

the parameters w and b are

∂E

∂w
= −

∑
i

yixiδ[yi(w · xi + b) < 1] + λw (5.6)

∂E

∂b
= −

∑
i

yiδ[yi(w · xi + b) < 1] (5.7)

where δ{condition} is 1 if condition is true and -1 otherwise. The gradient of the hinge

loss function with respect to the data (which is back-propagated down to the lower layers)

is

∂E

∂xi
= −yiwδ[yi(w · xi + b) < 1] (5.8)

Once the parameters converge, these gradients become highly sparse and only the difficult

training samples contribute to to updating the parameters on layer conv4 f and all the

layers below.

Instead of training a multi-class SVM, we use the one-vs-rest strategy, but instead

of treating the background class as just another object class, we treat it as a special case

and use a pair of SVMs per object class. For instance, if we had used a single learning

79

machine, we would be forcing the classifier to perform two different unrelated tasks: a)

reject that the image patch that does not contain random texture and b) reject that the

object does not belong to the given category. Therefore, given a set of object classes C,

we train two detectors for each object category. The first one, with weights bc, classifies

each object class c ∈ C vs. the background/missing classm 6∈ C, and the second one, with

weights fc classifies object class c vs. other object classes C\c. As illustrated in Figure

4.3, asking our linear classifier to perform both tasks at the same time would result in a

narrower margin than training separate classifiers for each individual task. Moreover, to

avoid rejecting cases where all fc classifiers produce negative responses, but one or more

bc classifiers produce strong positive responses that would otherwise indicate the presence

of a fastener, we use the negative output of fc as a soft penalty. Then the likelihood that

sample x belongs to class c becomes

Lc(x) = bc · x+ min(0, fc · x), (5.9)

where x = HOG(I) is the feature vector extracted from a given image patch I . The

likelihood that our search region contains at least one object of class c is the score of the

union, so

Lc = max
x∈X

Lc(x), (5.10)

where X is the set of all feature vectors extracted within the search region, and our clas-

sification rule becomes

ĉ =

arg max

c∈C
Lc max

c∈C
Lc > 0

m otherwise.

(5.11)

80

5.5.3 Score Calculation

For the practical applicability of our detector, it needs to output a scalar value that

can be compared to a user-selectable threshold τ . Since there are several ways for a

fastener to be defective (either missing or broken), we need to generate a single score

that informs the user how confident the system is that the image contains a fastener in

good condition. This score is generated by combining the output of the binary classifiers

introduced in the previous section.

We denote the subset of classes corresponding to good fasteners as G and that of

broken fasteners as B. These two subsets are mutually exclusive, so C = G ∪ B and

G ∩ B = ∅. To build the score function, we first compute the score for rejecting the

missing fastener hypothesis (i.e, the likelihood that there is at least one sample x ∈ X

such that x /∈ m) as

Sm = max
c∈G

Lc (5.12)

where Lc is the likelihood of class c defined in Eq. 5.10. Similarly, we compute the

score for rejecting the broken fastener hypothesis (i.e, the likelihood that for each sample

x ∈ X , x /∈ B) as

Sb = −max
c∈B

max
x∈X

fc · x, (5.13)

The reason why the Sb does not depend on a c-vs-background classifier bc is because mis-

takes between missing and broken fastener classes do not need to be penalized. Therefore,

Sb need only produce low scores when x matches at least one of the models in B. The

negative sign in Sb results from the convention that a fastener in good condition should

81

have a large positive score. The final score becomes the intersection of these two scores

S = min(Sm, Sb). (5.14)

The final decision is done by reporting the fastener as good if S > τ , and defective

otherwise.

5.5.4 Training Procedure

The advantage of using a maximum-margin classifier is that once we have enough

support vectors for a particular class, it is not necessary to add more inliers to improve

classification performance. Therefore, we can potentially achieve relatively good perfor-

mance with only having to annotate a very small fraction of the data.

5.5.5 Alignment Procedure

For learning the most effective object detection models, the importance of properly

aligning the training samples cannot be emphasized enough. Misalignment between dif-

ferent training samples would cause unnecessary intra-class variation that would degrade

detection performance. Therefore, all the training bounding boxes were manually anno-

tated, as tightly as possible to the object contour by the same person to avoid inducing any

annotation bias. For training the fastener vs. background detectors, our software cropped

the training samples using a detection window centered around these boxes. For training

the fastener vs. rest detectors, our software centered the positive samples using the user

annotation, but the negative samples were re-centered to the position where the fastener

vs. background detector generated the highest response. This was done to force the learn-

82

ing machine to learn to differentiate object categories by taking into account parts that are

not common across object categories.

5.6 Experimental Results

To evaluate the accuracy of our fastener detector, we have tested it on 85 miles of

continuous trackbed images. These images were collected on the US Northeast Corri-

dor (NEC) by ENSCO Rail’s Comprehensive Track Inspection Vehicle (CTIV) (see Fig-

ure 4.4). The CTIV is a hi-rail vehicle (a road vehicle that can also travel on railway

tracks) equipped with several track inspection technologies, including a Track Compo-

nent Imaging System (TCIS). The TCIS collects images of the trackbed using 4 Basler

sprint (spL2048-70km) linescan cameras and a custom line scan lighting solution [71].

The sprint cameras are based on CMOS technology and use a CameraLink interface

to stream the data to a rack-mounted computer. Each camera contains a sensor with 2 rows

of 2,048 pixels that can sample at line rates of up to 70KHz. The cameras can be set to

run in dual-line mode (high-resolution) or in “binned” mode, where the values of each

pair of pixels are averaged inside the sensor. During this survey, the cameras were set up

in binned mode so, each camera generated a combined row of 2,048 pixels at a line rate

of 1 line/0.43mm. The sampling rate was controlled by the signal generated from a BEI

distance encoder mounted on one of the wheels. The camera positions and optics were

selected to cover the whole track with minimal perspective distortion and their fields of

view had some overlap to facilitate stitching.

The collected images were automatically stitched together and saved into several

83

files, each containing a 1-mile image. These files were preprocessed by ENSCO Rail

using their proprietary tie detection software to extract the boundary of all the ties in

each image. We verified that the tie boundaries were accurate after visually correcting

invalid tie detections. We downsampled the images by a factor of 2, for a pixel size of

0.86 mm. To assess the detection performance under different operating conditions, we

flagged special track sections where the fastener visible area was less than 50% due to a

variety of occluding conditions, such as protecting covers for track-mounted equipment

or ballast accumulated on the top of the tie. We also flagged turnouts so we could report

separate ROC curves for both including and excluding them. All the ties in this dataset

are made of reinforced concrete, were manufactured by either San-Vel or Rocla, and were

installed between 1978 and 2010.

5.6.1 Material Identification

We divided the dataset into 5 splits and used 80% of the images for training and

20% for testing and we generated a model for each of the 5 possible training sets. For

each split of the data, we randomly sampled 50,000 patches of each class. Therefore, for

each model was trained with 2 million patches. We trained the network using a batch size

of 64 for a total of 300,000 iterations with a momentum of 0.9 and a weight decay of

5 × 10−5. The learning rate is initially set to 0.01 and it decays by a factor of 0.5 every

30,000 iterations.

In addition to the method described in Section 5.4, we evaluated the classification

performance using the following methods:

84

• LBP-HF with approximate Nearest Neighbor: The Local Binary Pattern His-

togram Fourier descriptor introduced in [90] is invariant to global image rotations

while preserving local information. We used the implementation provided by the

authors. To perform approximate nearest neighbor we used FLANN [91] with the

’autotune’ parameter set to a target precision of 70%.

• Uniform LBP with approximate Nearest Neighbor The LBP u2
8,1 descriptor [92]

with FLANN.

• Gabor features with approximate Nearest Neighbor: We filtered each image

with a filter bank of 40 filters (4 scales and 8 orientations) designed using the code

from [93]. As proposed in [94], we compute the mean and standard deviation of the

output of each filter and build a feature descriptor as f = [µ00 σ00 y01 . . . µ47 σ47].

Then, we perform approximate nearest neighbor using FLANN with the same pa-

rameters.

The material classification results are summarized in Table 5.1 and the confusion

matrices in Figures 5.3 and 5.4.

Since we are using a fully convolutional DCNN, we directly transfer the parameters

learned using small patches to a network that takes one 4096 × 320 image as an input,

and generates 10 score maps of dimension 252× 16 each. The segmentation map is gen-

erated by taking the label corresponding to the maximum score. Figure 5.6 shows several

examples of concrete and wood ties, with and without defects and their corresponding

segmentation maps.

85

Table 5.1: Material classification results.

Method Accuracy

Deep CNN MTL 3 95.02%

Deep CNN MTL 2 93.60%

Deep CNN STL [7] 93.35%

LBP-HF with FLANN 82.05%

LBPu28,1 with FLANN 82.70%

Gabor with FLANN 75.63%

5.6.2 Crumbling Tie Detection

The first 3 rows in Figure 5.6 show examples of a crumbling ties and their corre-

sponding segmentation map. Similarly, rows 4 through 6 show examples of chipped ties.

To evaluate the accuracy of the crumbling and chipped tie detector described in Section

5.4.2 we divide each tie in 4 images and we evaluate the score (5.4) on each image inde-

pendently. Due to the large variation in the area affected by crumbling/chip we assigned

a severity level to each ground truth defect, and for each severity level we plot the ROC

curve of finding a defect when ignoring lower level defects. The severity levels are de-

fined as the ratio of the inspectable area that is labeled as a defect. Figure 5.5 shows the

ROC curves for each type of anomaly. Because of the choice of the fixed α = 0.9 in

equation (5.4) the performance is not reliable for defects under 10% severity. For defects

that are bigger than the 10% threshold, at a false positive rate (FPR) of 10 FP/mile the

true positive rates (TPR) are 89.42% for crumbling and 93.42% for chips. This is an im-

86

provement of 3.36% and 1.31% compared to the STL results reported in [7]. Table 5.2

summarizes the results.

Table 5.2: Tie condition detection. For chipped and crumbling, only ties with at least 10%

affected area are included.

Condition FPR MTL STL

Crumbling Tie (≥ 10% area)
10 FP/mile 89.42% 86.54%

2 FP/mile 82.21% 74.52%

Chipped Tie (≥ 10% area)
10 FP/mile 92.76% 94.08%

2 FP/mile 90.13% 88.52%

Fastener (only clear ties)
10 FP/mile 99.91% 98.41%

2 FP/mile 96.74% 93.19%

Fastener (clear + switch)
10 FP/mile 98.43% 94.54%

2 FP/mile 89.35% 88.70%

Fastener (all ties)
10 FP/mile 95.40% 87.38%

2 FP/mile 87.76% –

5.6.3 Fastener Categorization

To evaluate the fastener categorization talk of the multi-task network, we followed

the same procedure as we described in Section 4.4.1.

We can observe in Figure 5.7 (a) that the proposed method is the most accurate,

followed by the method described in chapter 4 and the HOG with OT-MACH method.

The other methods are clearly inferior. In the third row of Table 5.2 we compare the

fastener detection performance of MTL with the STL baseline.

87

5.6.4 Defective Fastener Detection

To evaluate the performance of our defect detector, we divided each tie into 4 re-

gions of interest (left field, left gage, right gage, right field) and calculated the score

defined by (5.14) for each of them. Figure 3.7 shows the ROC curve for crossvalidation

on the training set as well as for the testing set of 813,148 ROIs (203,287 ties). The test-

ing set contains 1,052 ties images with at least one defective fastener per tie. The total

number of defective fasteners in the testing set was 1,087 (0.13% of all the fasteners),

including 22 completely missing fasteners and 1,065 broken fasteners. The number of

ties that we flagged as “uninspectable” is 2,524 (1,093 on switches, 350 on lubricators,

795 covered in ballast, and 286 with other issues).

We used the ROC on clear ties (blue curve) in Figure 3.7 (b) to determine the op-

timal threshold to achieve a design false alarm rate of 0.07% (τ = 0.1070). This target

is a bit lower than the 0.1% that we used in the for the baseline experiments. The reason

for lowering the sensitivity is that the detection rate plateaus at PFA > 0.06%. Using

this sensitivity level, we ran our defective fastener detector at the tie level (by taking the

minimum score across all 4 regions). Results are shown in Table 5.3.

At this sensitivity level, our MTL detector only misses one defect (compared to 17

type II errors with the baseline detector). The false alarm rate on clear ties goes down

to 0.25%, which is 34% lower than the baseline. Figure 5.8 shows the single defective

fastener that was missed. It could be argued that the clip is still holding the rail in place,

so it is a very close call.

88

Table 5.3: Results for detection of ties with at least one defective fastener.

Subset Total # Bad
PD PFA

MTL STL MTL STL

clear ties 200,763 1,037 99.90% 98.36% 0.25% 0.38%

clear + sw. 201,856 1,045 99.90% 97.99% 0.61% 0.71%

all ties 203,287 1,052 99.90% 98.00% 1.01% 1.23%

89

0.47

0.15

0.31

0.10

1.05

0.56

0.17

0.07

0.31

0.34

0.19

0.31

0.11

0.15

0.64

0.19

0.45

0.21

0.14

0.25

4.86

0.17

1.79

0.81

0.25

0.05

0.02

0.21

0.36

4.73

3.64

0.21

0.80

0.12

0.13

0.12

0.07

0.39

0.57

6.13

0.02

0.33

0.00

0.03

0.02

1.50

0.28

1.08

0.26

0.04

5.03

0.00

0.03

0.06

0.20

0.06

0.46

0.73

0.38

2.18

0.00

0.00

0.01

0.22

0.18

0.49

0.13

0.00

0.00

0.00

0.98

0.15

0.07

0.21

0.03

0.13

0.01

0.01

0.03

1.48

0.07

0.20

0.25

0.01

0.47

0.01

0.08

0.04

0.08

0.15

97.06

97.56

92.28

86.67

95.53

94.51

91.75

97.71

98.11

99.02

Material identification

Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener

T
ru

e
 c

la
s
s

ballast

wood

rough concrete

medium concrete

smooth concrete

crumbled

chip

lubricator

rail

fastener

0

10

20

30

40

50

60

70

80

90

100

(a)

0.49

0.19

0.29

0.08

2.08

0.87

0.22

0.04

0.32

0.28

0.22

0.43

0.12

0.29

0.78

0.20

0.38

0.19

0.13

0.25

5.21

0.13

2.52

1.49

0.20

0.03

0.03

0.22

0.44

5.09

4.28

0.25

1.82

0.11

0.12

0.21

0.01

0.38

0.52

5.94

0.17

0.78

0.00

0.02

0.03

1.82

0.32

1.49

0.28

0.02

10.55

0.02

0.02

0.04

0.20

0.11

0.74

0.98

0.46

4.75

0.01

0.00

0.00

0.22

0.21

0.67

0.17

0.00

0.05

0.00

1.06

0.16

0.04

0.34

0.01

0.14

0.03

0.00

0.00

1.55

0.10

0.20

0.45

0.02

0.76

0.01

0.06

0.04

0.05

0.17

96.86

97.01

91.05

85.81

94.87

89.84

83.67

97.65

98.17

98.91

Material identification

Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener

T
ru

e
 c

la
s
s

ballast

wood

rough concrete

medium concrete

smooth concrete

crumbled

chip

lubricator

rail

fastener

0

10

20

30

40

50

60

70

80

90

100

(b)

Figure 5.3: Confusion matrix of material classification on 2.5 million 80×80 image

patches with Deep Convolutional Neural Networks using (a) multi-task learning (b) single

task learning [7].

90

1.46

0.88

1.01

0.80

5.03

1.42

4.57

0.34

0.11

0.68

0.16

0.49

0.68

0.30

0.94

0.63

2.80

1.49

0.83

0.34

11.60

1.34

3.34

0.15

8.91

0.97

0.10

0.82

0.81

10.71

9.00

0.91

0.60

6.37

2.50

0.31

0.72

2.40

1.30

9.68

0.74

0.67

4.64

0.37

1.04

4.13

0.54

2.51

0.66

0.42

0.32

16.47

0.02

0.01

1.49

2.07

0.12

1.00

0.73

0.53

0.85

0.22

0.42

2.34

0.58

5.43

3.93

2.16

11.84

0.29

0.02

0.02

0.26

4.46

1.03

1.80

0.26

0.03

0.20

0.00

2.86

0.11

1.08

0.06

0.21

0.43

0.01

0.21

0.03

2.37

88.62

86.26

77.80

69.62

84.18

77.27

95.20

57.52

90.39

93.64

Material identification

Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener

T
ru

e
 c

la
s
s

ballast

wood

rough concrete

medium concrete

smooth concrete

crumbled

chip

lubricator

rail

fastener

0

10

20

30

40

50

60

70

80

90

100

(a)

1.52

1.02

0.93

0.87

5.29

1.25

3.97

0.49

0.12

0.54

0.13

0.35

0.09

0.18

0.46

0.26

0.66

1.11

1.40

0.26

12.15

1.04

4.03

0.05

8.85

1.07

0.07

1.10

0.74

10.12

0.59

0.82

0.33

5.48

2.40

0.22

1.13

0.78

1.13

9.80

0.57

0.53

4.19

0.40

0.53

5.63

0.86

2.11

0.58

0.42

0.38

17.99

0.03

0.02

1.18

1.64

0.05

0.78

0.41

0.57

0.66

0.20

0.39

3.50

0.55

4.06

3.50

2.57

14.74

0.28

0.02

0.02

0.38

1.60

1.12

1.50

0.29

0.12

0.20

0.00

3.02

0.12

0.99

0.06

0.20

0.18

0.01

0.28

0.00

2.35

85.02

91.06

80.20

70.21

93.55

73.67

96.24

58.60

92.38

94.50

Material identification

Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener

T
ru

e
 c

la
s
s

ballast

wood

rough concrete

medium concrete

smooth concrete

crumbled

chip

lubricator

rail

fastener

0

10

20

30

40

50

60

70

80

90

100

(b)

2.12

2.28

1.01

0.19

4.59

2.32

7.14

2.07

0.86

0.85

0.20

0.49

0.48

0.38

1.52

0.65

0.40

2.09

3.75

0.66

17.34

1.53

13.00

0.19

16.14

1.34

0.26

1.75

1.18

14.51

13.42

3.35

0.59

8.95

0.69

0.53

0.29

1.41

1.20

11.31

0.43

0.39

1.46

0.07

0.31

4.59

1.14

6.02

2.04

0.39

0.39

16.82

0.15

0.04

2.28

3.37

0.16

1.08

0.37

0.31

1.17

1.09

0.98

7.07

1.18

6.02

3.26

0.64

15.62

0.68

47.35

0.12

0.11

1.45

0.75

0.93

0.38

0.02

0.10

0.58

0.06

3.40

0.79

5.78

0.41

0.67

0.20

0.02

0.97

0.25

4.17

77.18

82.41

68.27

62.42

82.76

62.20

92.37

89.90

91.42

Material identification

Detected class
ballast wood rough medium smooth crumbled chip lubricator rail fastener

T
ru

e
 c

la
s
s

ballast

wood

rough concrete

medium concrete

smooth concrete

crumbled

chip

lubricator

rail

fastener

0

10

20

30

40

50

60

70

80

90

100

(c)

Figure 5.4: Confusion matrix of material classification on 2.5 million 80×80 image

patches with (a) LBP-HF with FLANN (b) LBPu28,1 with FLANN (c) Gabor with FLANN.
91

False Positives per Mile
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4

D
e

te
c
ti
o

n
 R

a
te

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Crumbling tie detection

overall (STL)

≥ 10% (STL)
≥ 20% (STL)

≥ 30% (STL)
≥ 40% (STL)

≥ 50% (STL)
≥ 60% (STL)

≥ 70% (STL)
overall (MTL)
≥ 10% (MTL)
≥ 20% (MTL)

≥ 30% (MTL)
≥ 40% (MTL)

≥ 50% (MTL)
≥ 60% (MTL)

≥ 70% (MTL)

(a)

False Positives per Mile
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4

D
e

te
c
ti
o

n
 R

a
te

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Chipped tie detection

overall (STL)

≥ 10% (STL)
≥ 20% (STL)

≥ 30% (STL)
≥ 40% (STL)

≥ 50% (STL)
≥ 60% (STL)

≥ 70% (STL)
overall (MTL)
≥ 10% (MTL)
≥ 20% (MTL)

≥ 30% (MTL)
≥ 40% (MTL)

≥ 50% (MTL)
≥ 60% (MTL)

≥ 70% (MTL)

(b)

Figure 5.5: (a) ROC curve for detecting crumbling tie conditions. (b) ROC curve for

detecting chip tie conditions. Each curve is generated considering conditions at or above

a certain severity level. Note: False positive rates are estimated assuming an average of

104 images per mile. Confusion between chipped and crumbling defects are not counted

as false positives.

92

Figure 5.6: Semantic segmentation results (images displayed at 1/16 of original resolu-

tion). See Figure 5.2 for color legend.

93

PFA
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

proposed method
WACV 2015
HOG OT-MACH
HOG DAG SVM
HOG 1-vs-1 vote SVM
Int. norm. OT-MACH

(a)

PFA
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

P
D

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

proposed method
WACV 2015
HOG OT-MACH
HOG DAG SVM
HOG 1-vs-1 vote SVM
Int. norm. OT-MACH

(a) detail

PFA
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

P
D

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

proposed method (clear ties)
proposed method (clear ties + sw)
proposed method (all ties)
WACV 2015 (clear ties)
WACV 2015 (clear ties + sw)
WACV 2015 (all ties)

(b)

Figure 5.7: ROC curves for the task of detecting defective (missing or broken) fasteners

(a) using 5-fold cross-validation on the training set (b) on the 85-mile testing set.

94

Figure 5.8: The single defect missed by our detector. Solid bounding boxes correspond

to ground truth annotations. Dashed bounding boxes correspond to the output of the

detector. The number 0 corresponds to the PR-clip class, which is correctly classified.

The clip has not completely popped out.

95

Chapter 6: Sequential Anomaly Detection with Adaptive Thresholding

via Extreme Value Theory

In previous chapters, we introduced several techniques that enable anomaly detec-

tion in noisy images. These techniques include an iterative shrinkage algorithm for sep-

arating normal image components from anomalous ones, as well as a pattern recognition

approach for simultaneous detection and categorization of normal and anomalous com-

ponents. Our approach used so far involved using dictionaries of normal and abnormal

patterns for the purpose of scoring the elements of an image according to their likelihood

of being anomalous. Dictionaries can be derived from the application of a transformation

of the data (as was done in chapter 3), or directly learned from the data (as in chapter

4). In the first case, we used the training data to select the best parameters associated

with the transformation, while in the second case, we directly learned the representation.

Then in chapter 5 we have gone a step further and we have trained a deeper model using

multiple tasks that share the same representation. Both training and testing samples have

been assumed to be independent and identically distributed (i.i.d.). In this chapter, we

extend these techniques by exploiting the time dependency to make false alarm rate as

independent from time as possible.

96

6.1 Introduction

In sequential inspection problems, such as visual railway track inspection, a video

feed is streamed from one or more cameras to a detection system, and we are interested

in designing a detector that can find abnormal patterns in such data. There is a limit to the

number of false alarms that the operator can handle, so it is necessary to select the optimal

operating point at which the false alarm rate does not exceed such limit. Indeed, most of

the data that an autonomous inspection vehicle will collect will be discarded without any-

one ever looking at it. Therefore, an excessively high false alarm rate will result in a waste

of storage space and bandwidth. The only relevant images are the ones that correspond to

unexpected patterns, so we are actually interested in finding such anomalous patterns.

Anomaly detection is a hypotheses testing problem in which the null hypothesis is

that an image is normal and the alternative hypothesis is that it is anomalous. Due to the

complexity of the scene and image formation process, both hypotheses are composite,

with nuisance parameters arising from changes in illumination, occlusion, background

clutter, and many other uncontrollable factors. Rather than trying to model each of these

variables individually, we adapt the detection scores with the objective of reducing the

variability in type I error rate. This is known as constant false alarm rate (CFAR) detec-

tion. We adopt the Bayesian view that such parameters are random variables with one

realization per image. The images have a natural order based on the time they were cap-

tured at, so the sequence of these random parameters forms a random process. A key

observation is that this random process has strong long-term dependencies. The effect

of such slowly varying nuisance parameters is that false alarms are concentrated in small

97

2.8171 2.2172 2.1372 2.2761 2.7332

(a)

-1.5259 -0.8281 -0.7909 -0.7995 -0.5839

(b)

-0.2813 -0.8813 -0.8373 -0.5157 1.4479

(c)

-2.0874 -2.1373 -2.3936 -2.8944 -2.5422

(d)

Figure 6.1: Examples of fastener scores (a) Good fasteners with high scores (b) Good

fasteners with low scores (c) Defective fasteners with high scores (d) Defective fasteners

with low scores

98

segments of the image sequence.

Figure 6.1 shows examples of good and defective fasteners and their detection

scores generated by the multi-task learning method in the previous chapter. Although

most fasteners have high scores and most defective ones have low scores, when good fas-

teners have low scores, there is an underlying phenomenon that causes scores of nearby

images to also be low.

6.2 Background

6.2.1 Robust Anomaly Detection

The presence of outliers is a challenge that many computer vision systems have to

deal with. The RANdom SAmple Consensus (RANSAC) algorithm [95] has been used

in many applications for removing outliers when fitting a model to data. This method

is especially useful when most of the samples follow a linear model plus additive i.i.d.

Gaussian noise, but a few samples are gross errors that do not follow this model. How-

ever, in many applications, it not clear which samples should be treated as inliers and

which of them are outliers. For instance, in big data applications, the data just appears to

have a distribution with long tails that decay at slower rate than the corresponding Gaus-

sian distribution that best fits the data in the least squares sense. Indeed, what appears to

be an outlier in feature space may just be a normal sample that has been subject to some

kind of degradation for which the feature extractor was not designed for. These degrada-

tion modes may include impulse noise, partial occlusion, and in some cases, changes in

appearance due to blur, shadows, or pose. In anomaly detection problems, the samples

99

of interest are those in the tail of such data distribution. Therefore, any method that dis-

cards outliers have the potential of discarding anomalies, so in order to successfully find

anomalies in such images it is necessary to use other methods.

The field of robust statistics [96, 97] provides the tools for estimation of unknown

quantities when the underlying probability distribution is non-Gaussian and it is not

known exactly. In practice, the data can be modeled as the mixture of a Gaussian dis-

tribution and a heavy-tailed distribution (the contaminated Gaussian model). In this case,

it is be desirable to design an estimator whose performance is minimax over a family of

distributions that includes the Gaussian as a special case. There are basically three types

of robust estimates: M-estimates [98] (Maximum likelihood type), L-estimates (Linear

combination of order statistics), and R-estimates (Estimates derived from rank tests).

In supervised learning problems, there is a distinction on how to handle outliers at

training time vs. testing time. Supervision at training time usually mitigates the problem

of outliers as it is possible to manually select the inliers. Moreover, in chapters 3, 4, and

5 we described methods where we optimized a cost function based on the `1 instead of `2

norm. In both cases, the use of the `1 minimization was motivated as a convex relaxation

of the `0 to promote a sparse representation of the data. The solution of the `1 minimiza-

tion is the Maximum Likelihood Estimate of the location parameter when the data follows

a Laplacian distribution, and a straightforward way of robustifying a regression procedure

is by replacing the `2 norm in the cost function by the `1 norm. A related L-estimator that

results from such `1 optimization is the Least Median of Squares (LMS), which was intro-

duced in the computer vision field by Kim et al. [99]. The drawback of the LMS is that the

median estimator’s efficiency is only 2
π

= 0.637 when the true distribution is Gaussian.

100

The M-estimator based on the Huber loss function [98]

ρ(t) =

1

2
t2 for |t| < k

k|t| − 1

2
k2 for |t| ≥ k

(6.1)

is more flexible because it has the sample mean (k = ∞) and sample median (k = 0)

as special cases and it can be tuned to handle different degrees of contamination in the

contaminated Gaussian model. However, since this estimator depends on a scale parame-

ter k (unlike L-estimators, which are scale-invariant), it is necessary to first estimate this

parameter it using a robust scale estimator.

6.2.2 Extreme Value Theory for Adaptive Anomaly Detection

Due to illumination and viewpoint changes, clutter distribution, and other image

degradation, the distribution of features extracted from images at test time, does not match

what was observed during training. Moreover, such a distribution may not be stationary,

but slowly changes over time, so a fixed threshold would result in large variability in the

false alarm rate. Broadwater and Chellappa [100] proposed a technique to find adaptive

thresholds for Constant False Alarm Rate (CFAR) detectors based on Extreme Value The-

ory (EVT) [101] that can be used even when limited training data is available. EVT is

applicable to problems where the probability of a rare event must be estimated even if

such a rare event has never occurred. Scheirer et al. [102, 103] also used EVT for score

normalization and showed its applicability to sensor fusion problems.

For completeness, we recall the EVT basic results below. Let X1, . . . , Xn be i.i.d.

samples from an unknown distribution F and Mn = max(X1, . . . , Xn), the maximum of

n i.i.d. variables. The fundamental EVT theorem, the Fisher-Tippett-Gnedenko theorem

101

[101], states that if there exist a sequence of pairs of real numbers (an, bn) such that

an > 0 for all n and a distribution function Λ(x) such that

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= Λ(x), (6.2)

for all x at which Λ(x) is continuous, then the limit distribution Λ(x) belongs to either

the Gumbel, the Fréchet or the Weibull family. These three families can be grouped into

the Generalized Extreme Value Distribution (GEVD)

Λ(x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ}
, (6.3)

where µ ∈ R is the location parameter, σ > 0 the scale parameter and ξ ∈ R the shape

parameter. The Gumbel distribution is a special case of the GEVD when ξ = 0, the

Fréchet when ξ > 0, and the Weibull when ξ < 0. When the limiting distribution exists,

we say that F (x) lies in the “domain of attraction” of Λ(x).

In many practical applications, we are interested in the tail distribution of the dis-

tribution F . Given an upper threshold u, we select the Nn samples that exceed such

threshold and define the excesses Y1, . . . , YNn as Yi = Xj−u, where i is the excess index

and j is the index of the original sample. The probability of exceeding the threshold is

λ = 1 − F (u). For sufficiently large u, the upper tail distribution function Fu(y) (the

conditional distribution function of the excesses),

Fu(y) =
F (u+ y)− F (u)

1− F (u)
(6.4)

can be approximated by a Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 +
ξy

σ

)−1/ξ
+

, y > 0. (6.5)

102

where σ > 0, ξ ∈ R, and x+ = max(x, 0). This approximation is justified by the

Pickands theorem [104], which states that

inf
ξ

lim
u↑ωF

inf
σ

sup
y>0
|Fu(y)−G(y;σ, ξ)| = 0 (6.6)

if and only if F is in the domain of attraction of the GEVD. Note that the exponential

distribution is a special case of the GPD for ξ = 0, i.e. G(y;σ, 0) = 1− e−y/σ.

These results can be extended to the multivariate case, for example to model the tail

distribution of the maximum of a cluster of observations. Under stationarity of observa-

tions, this can be achieved by incorporating both the tail of the marginal distribution and

the so-called extremal index. Let {Xn : n ≥ 1} be a (strictly) stationary sequence of r.v.’s

with marginal distribution F . Then, for sufficiently large n

P{Mn ≤ un} ≈ F nθ(un), (6.7)

where un is any high threshold such that n(1 − F (un)) converges to a positive number

as n → ∞ and θ is a fixed number in [0, 1]. θ is the extremal index that measures the

strength of dependence of {Xn}. If {Xn} are independent, then θ = 1. On the other

hand, if {Xn} are highly dependent, then θ ≈ 0. A method for estimating the extremal

index for a real-valued Markov chain was proposed by Yun [105].

6.3 Proposed Approach

In this section we describe our approach for normalizing the scores of an anomaly

detector deployed in an application in which the distribution of the normal samples grad-

ually changes over time. This may be caused by changes in illumination, change in view-

point, addition or removal of clutter, or other uncontrollable factors. The approach is

103

similar to the method proposed by Broadwater and Chellappa [100] in which an adaptive

threshold is estimated from the GPD fit to the upper tail of the distribution after remov-

ing the outliers or targets using a Kolmogorov-Smirnov statistical test. The difference is

that our method is Bayesian and we work with sequential data and estimate the adaptive

threshold for each sample.

6.3.1 Bayesian Model

We want to adapt the scores of an anomaly detector applied to a sequence of images

so that, when we apply a given threshold, we get an approximately constant false alarm

rate (a CFAR detector). The images have been collected from a moving vehicle, so the

environmental conditions and clutter distribution are not stationary, but slowly change

over time. In EVT-based threshold estimation, it is necessary to estimate the parameters

σ and ξ of the GPD from the upper- or lower-tail of the empirical distribution. For the

rest of this chapter we will refer to the upper tail of the distribution of the random variable

X , but the same applies to the lower tail since the lower tail of X is the upper tail of

Z = −X . The threshold u needs to be set high enough so that the tail of F (x) converges

in distribution to the GPD. However, since we are dealing with a non-stationary random

process, we need to work on a small window centered at the sample of interest. This

window needs to be long enough so that we can fit the parameters of the GPD to its tail

(for example the largest 5% of the samples), but short enough that the distribution has

not changed much. In applications in which the dynamics of the process change quickly,

our options are rather limited. If we fit a GPD to the extreme samples of a short window,

104

the estimated threshold has so much variance that the resulting performance is worse

than using a fixed threshold. On the other hand, if the window is too long, the threshold

does not adapt at all. For example, if we use a window of 100 samples and select the

upper threshold to the 95th percentile, we would only have 5 samples to estimate the 2

parameters of the GPD, resulting in severe overfitting.

To overcome this limitation, we will make one simplification by fixing ξ = 0, so

we only need to estimate one parameter instead of two. Under ξ = 0, the GPD reduces to

the Exponential distribution

g(y;σ, ξ = 0) = e−y/σ (6.8)

For convenience, we apply the parameterization λ = 1/σ and write the Exponential in its

canonical form

g(y;λ) = e−λy (6.9)

As opposed to the general case of the GPD, the Exponential distribution is a member of

the exponential family, so it has a non-trivial sufficient statistic from which we can easily

compute the MLE of its parameter. Its conjugate prior is the Gamma distribution,

π(λ;α, β) =
βα

Γ(α)
λα−1e−βλ, (6.10)

the non-informative (improper) prior is given by α = 1, β = 0, and the parameters of the

Gamma posterior under a Gamma(λ;α0, β0) prior can be computed as

α1 = α0 + n (6.11)

β1 = β0 +
n∑
i=1

yi (6.12)

105

This simplified model allows us to derive a very fast adaptation algorithm that we

describe in the following section. We believe that this approximation is good enough in

practice, specially when the scores are trained with a sparsity promoting loss function

such as the hinge loss described in chapter 5.

6.3.2 Training

Our training set T contains a number of sequences of scores x with their corre-

sponding sequences of labels y. During training, we compute the sufficient statistics for

all the samples that are not labeled as anomalies and re-scale them based on our belief

that at test time the tail distribution will be close to that in the average training sequence.

The steps of the training procedure are described in Algorithm 1. The parameter pu is the

probability of the tail, and w0 is the weight in sample counts given to the training set. In

our experiments we used pu = 0.05 and w0 = 400.

6.3.3 Proposed Adaptive Thresholding Algorithm

During testing, we first perform a series of Kolmogorov-Smirnov tests to find and

remove anomalies. Then, using the prior estimated during training, we compute the pos-

terior for the whole sequence. This posterior is used as the prior for estimating the tail

distribution on each shift of a window centered on each of the samples. The details of the

adaptation procedure are described in Algorithm 2. The input to the adaptation procedure

is a sequence of scores x, the parameters of the prior Gamma distribution α0 and β0, the

size of the upper tail pu, the target false alarm rate pf , the weight w1 given to the the prior

106

Algorithm 1 EVT training algorithm
1: procedure TRAIN(T , pu, w0)

2: n← 0, s← 0 . Initialize sufficient statistics

3: for all (x,y) ∈ T do . Training set T contains x scores, y labels

4: g← {xi | yi = 0} . Select negative samples

5: u← u | #{gi > u} = #g pu . Find upper threshold

6: t← {gi | gi > u} - u . Extract upper tail

7: n← n+ #t . Update counts

8: s← s+
∑

t . Update sum

9: end for

10: α0 ← 1 + s

11: β0 ← w0 s
n

12: return α0, β0 . Parameters of the Gamma prior

13: end procedure

contribution of the whole sequence, the window length L, and the maximum number of

anomalies na in the sequence. The output sequence y has been adapted so that when it is

thresholded at 0, the false alarm rate is pf . For our experiments we have used pu = 0.05,

pf = 0.001, w1 = 100, L = 101, and na = 12.

6.4 Experimental Results

To validate the effectiveness of the proposed approach, we have used the 340 se-

quences of fastener detections corresponding to each of the 4 cameras in each of the 85

miles of the Amtrak NEC concrete tie dataset introduced in chapter 4. This dataset con-

tains a total of 203,287 ties and each tie is divided into 4 regions (left field, left gage, right

gage, and right field), so the total number of images is 813,148. The detection problem

107

Algorithm 2 EVT adaptive thresholding algorithm
1: procedure ADAPTSCORES(x, α0, β0, pu, pf , w1, L, na)

2: â0 ← β0
α0−1 . MLE in training set

3: y← sort desc(x) . Sort scores in descending order

4: k ← #y pu

5: for i← 1, na do . Training set T contains x scores, y labels

6: u← yi+k . Find upper threshold

7: t← {yi, . . . , yi+k} − u . Extract upper tail

8: Dn,i = supx

∣∣∣Ĝn(x)−G(x)
∣∣∣ . Compute KS statistic

9: end for

10: î← mini{Dn,i} . Estimate number of outliers

11: u′ ← yî . Set outlier rejection threshold

12: t← {yî, . . . , yî+k} − u . Extract upper tail

13: α1 ← α0 +
∑

t

14: β1 ← β0 + w1
∑

t
#t

15: for i← 1, n do

16: w← xi−(L−1)/2:i+(L−1)/2 . Window centered at sample xi

17: u← u | #{wi > u} = #w pu . Find upper threshold

18: t← {wi | wi > u} - u . Extract upper tail

19: α← α1 + #t . Posterior

20: β ← β1 +
∑

t . Posterior

21: â← β
α−1 . MAP estimate

22: yi ← xi + u− â log(pf/pu) . Adapt score

23: end for

24: return y . Adapted scores

25: end procedure

108

consists of determining whether an image contains a fastener attached to one of the rails.

The dataset contains bounding boxes for all the images that are known to contain a defect.

The total number of defects is 1,087 (0.13% of all the fasteners). The defective fastener

class contains two subclasses: broken fastener and missing fastener.

We have used the scores generated by the multi-task learning (MTL) detector de-

scribed in chapter 5. This detector uses deep learning with multiple tasks that are trained

in parallel. The reason for using multiple tasks is to prevent overfitting. By sharing a com-

mon low-level representation between the fastener inspection task and a separate material

classification task, there is a data augmentation effect that results in better generaliza-

tion for both classifiers. We also compare the performance with the baseline single-task

learning (STL) method in chapter 4. This detector produces a scalar-valued score for each

image by spatially pooling all the detections in the image. Scores are high when the image

contains a good fastener, and low when the fastener is either missing or broken. Figure

6.1 shows several detection examples of the MTL detector.

To facilitate the evaluation of fastener detection performance under difficult sce-

narios, whenever the fastener is not directly attached to the rail or tie, or when for some

reason a fastener is not visible at all, those ties are marked as uninspectable with a special

label. Depending on the value of such label, the dataset is divided into 3 subsets:

• Clear ties: 200,763 ties (1,037 ties with at least one defect).

• Clear ties plus switches: 201,856 ties (1,045 ties with at least one defect). See

Figure 6.2 for an example of a switch section.

• All ties: 203,287 ties (1,052 ties with at least one defect). This includes switches,

109

and ties for which some fasteners are not visible because they are covered by ballast

or a lubricator. See Figures 6.3 and 6.4 for examples of high ballast and lubricator

sections.

Figure 6.2: Example of section marked as switch.

Figure 6.3: Example of section marked as ballast.

For training, we use all the available data after setting aside the sequence being

tested. Table 6.1 and Figure 6.5 show the detection results on the normalized scores. The

overall improvement is significant. The detection rate on the whole dataset at PFA =

110

Figure 6.4: Example of section marked as lubricator.

0.1% increases from 95.40% to 99.26%. This is a 6× reduction in the missed rate. More-

over, the performance on the clear tie subset does not degrade at all. The running time of

our EVT adaptation algorithm implemented in MATLAB for adapting all 813,148 scores

is only of 17 seconds on a Mid-2012 MacBook Pro with a 2.5 GHz Intel Core i5 proces-

sor, so this dramatic improvement comes at negligible computational cost (running the

detector process takes several hours).

Condition PFA MTL + EVT MTL [106] STL [6]

Fastener (only clear ties)
0.1% 99.91% 99.91% 98.41%

0.02% 97.20% 96.74% 93.19%

Fastener (clear + switch)
0.1% 99.54% 98.43% 94.54%

0.02% 93.80% 89.35% 88.70%

Fastener (all ties)
0.1% 99.26% 95.40% 87.38%

0.02% 93.47% 87.76% –

Table 6.1: Fastener detection results before and after score normalization.

111

False positive rate
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

MTL + EVT (clear ties)
MTL (clear ties)
WACV 2015 (clear ties)

(a)

False positive rate
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

MTL + EVT (clear + sw)
MTL (clear + sw)
WACV 2015 (clear + sw)

(b)

False positive rate
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

MTL + EVT (all ties)
MTL (all ties)
WACV 2015 (all ties)

(c)

Figure 6.5: ROC curves comparing defective fastener detection performance on the 85-

mile testing set using normalized vs. unnormalized scores (a) on the clear ties subset (b)

on the clear with with switches subset (c) on all ties. Detections are per image (each tie

has 4 images).

112

Chapter 7: Conclusions and Future Work

7.1 Summary

In previous chapters, we introduced several techniques that enable anomaly de-

tection in noisy images. These techniques include an iterative shrinkage algorithm for

separating normal image components from anomalous ones, as well as a pattern recog-

nition approach for simultaneous detection and categorization of normal and anomalous

components. The approaches that we described involved using dictionaries of normal

and abnormal patterns for the purpose of scoring the elements of an image according to

their likelihood of being anomalous. Dictionaries can be derived from the application of

a transformation of the data (as was done in chapter 3), or directly learned from the data

(as in chapter 4). In the first case, we used the training data to select the best parame-

ters associated with the transformation, while in the second case, we directly learned the

representation. Then, in chapter 5 we have explored the use of deep learning for simulta-

neous analysis of textures and anomaly detection. We have shown that it is possible to use

partially labeled data by using a shared representation and adjusting the objective function

to the available data. A possible limitation of this technique is that training and testing

samples have been assumed to be independent and identically distributed (i.i.d.) with the

same distribution. This caused bursts of false alarms due to the intermittent presence of

113

clutter in the images. To mitigate this problem, in chapter 6 we have proposed an adaptive

thresholding algorithm for sequential anomaly detection using results from extreme value

theory. This has resulted in more robust anomaly detection results.

7.2 Future Work

In this section we discuss possible extensions, generalizations and improvements to

each of the algorithm presented in previous chapters.

1. Discrete Shearlet Transform on GPU with Applications in Anomaly Detection

and Denoising:

From the computational point of view, the following could be useful extensions to

our GPU implementation:

• Port to OpenCL, so it can run on other devices.

• Support non-square (rectangular) images.

• Compute filter coefficients in the GPU.

From the algorithmic point of view, it is well known that with large amounts of

training data, dictionaries learned from data tend to perform better than predefined

filter banks. Although the shearlet transform described in chapter 3 has shown good

performance on crack detection and denoising applications, this is not the only tool

available for such tasks. The algorithm that we used for denoising consists of a

linear transformation (the direct DST) followed by a non-linearity (shrinkage) fol-

lowed by another linear transformation (the inverse DST). The algorithm for de-

114

composing images into morphologically distinct components, such as anisotropic

textured and directional edges, follows a similar (but deeper) structure. Moreover,

these linear transformations are convolutional filters. Indeed, this algorithms have

a DAG structure of convolutional layers and non linearities, and could be mapped

into a DCNN like those used in Chapter 5. In future work, it would be interesting

to train DCNN for performing crack detection and denoising and study whether the

filters learned for these tasks share any of the properties of the shearlet transform.

Also, it would be interesting to introduce regularization terms in the loss function

of DCNNs to promote shearlet-like properties to the learned filters, namely local-

ization in space and frequency domains and maximally flat frequency response.

2. Robust Fastener Detection for Autonomous Visual Railway Track Inspection:

The algorithm introduced in chapter 4 is an example of how to leverage large

amounts of training data for mining representative training data for anomaly detec-

tion. A possible extension of this method would be to introduce better invariance

to rotation and deformation. A brute-force approach would be to synthetically gen-

erate training samples using data augmentation techniques. However, using data

augmentation introduces bias in the training set. A better alternative would be to

use deformable parts models [107]. However, as shown in chapter 5, by using DC-

NNs and multi-task learning (i.e, sharing the part detectors with other tasks), we

already get a significant performance improvement.

3. Deep Multi-task Learning for Railway Track Inspection:

In chapter 5 we solved two problems with a single pass on the data: material clas-

115

sification and object detection. The parameters of the network have been carefully

tuned to balance the relative performance of both problems. Future performance

improvement will come as the result of having even large datasets. Having more

data will introduce other challenges that will need to be addressed, such as in find-

ing representative training samples and training from weakly labeled data [85]. Fur-

thermore, once the inspection system is fielded and used under conditions not seen

during training, it will be necessary to adapt existing model to new domains.

4. Sequential Anomaly Detection with Adaptive Thresholding via Extreme Value

Theory:

In chapter 6, we presented a new algorithm that normalizes scores from a sequential

anomaly detector with the objective of harmonizing its false alarm rate. Extreme

value theory provides a solid foundation from which adaptive thresholding algo-

rithms can be derived. When working with sequences of images, we need to take

advantage of the statistical dependencies of nuisance parameters of nearby images.

If we discard such dependencies and treat each image in the sequence indepen-

dently, the performance suffers.

The CFAR detection approach proposed has applicability beyond railway track in-

spection from a moving vehicle. It could be used, for example, in surveillance

video to remove bursts of false alarms caused by sun glare, insects, rain or fog. Its

computational cost is negligible compared to that of the underlying detector, so this

approach can be easily retrofitted to existing detectors already in operation.

116

7.3 Conclusion

Anomaly detection can be formulated in many different ways. There are many

different ways of posing such problems, ranging from direct binary classification

between good and anomalous, to full-scale image segmentation. In this disserta-

tion, we have explored the problem of finding anomalies on noisy images in visual

railway track inspection applications. The techniques that we have described are

not limited to such domains, and can be extended to many other applications. For

example, in Appendix A we will introduce the problem of finding anomalous tis-

sue on cardiac functional nuclear medical images. This research is still in an ex-

ploratory phase, and we still have not collected enough data to generate conclusive

results. However, the techniques described in this dissertation could be applied to

such problem. The biggest challenge in solving any detection problem is coming

up with an objective description of what we are trying to accomplish. Once the

objective function is defined, the solution can be reached by breaking the problem

into smaller pieces that are easier to solve.

117

Appendix A: Point-specific Matching of Cardiac Electrophysiological Volt-

age and SPECT Perfusion Measurements for Myocardial

Tissue Characterization

A.1 Introduction

Patients with implantable cardioverter defibrillators (ICDs) can experience shocks

in response to ventricular tachycardia (VT). VT is usually caused by electrical conduc-

tion pathways within scar tissue that can maintain arrhythmias. Up to 90% of patients

experiencing hemodynamically unstable VT require radiofrequency (RF) ablation to iso-

late regions of slow conducting channels [108–110]. About 80% of these procedures rely

on electrophysiological (EP) voltage mapping of the endocardial (or epicardial) surface

with a catheter-based system to identify scar areas prior to ablation. Voltage sampling is

non-uniform with ∼200-400 points per patient. About 17,000 patients in the U.S. have

ablation procedures annually, lasting ∼4-6 hours with mortality of 3% [111]. At 6-month

follow-up, 42% of patients have recurrent incessant or intermittent VT [111], indicating

the need and potential to improve the VT ablation procedure.

One key to improved VT ablation is a better pre-procedural predictive map of the

scar (bipolar voltage > 0.5 mV) and border zone (0.5-1.5 mV) regions. The previous

118

work of Dickfeld et al. [112, 113] investigated the qualitative use of PET and SPECT to

localize myocardial scar, including integrating a derived scar map into a commercial map-

ping system. They recently showed that Tl-201 SPECT uptake can differentiate between

normal and abnormal EP tissue categories using a 68 segment heart model and homoge-

neous regions [114]. Others have also investigated the relation of EP voltages and PET

data [115, 116].

These previous efforts have used averages over cardiac regions. For the develop-

ment of locally accurate prediction models, it is important to use point-by-point compar-

ison of EP voltage values and PET/SPECT amplitudes, and accurate data registration is

essential. In this work, we develop a novel software tool, CardioViewer, that integrates

cardiac EP values and PET/SPECT cardiac data, allows interactive adjustment of image

registration, and outputs spatially matched EP and SPECT/PET data for further analysis.

A.2 Methods

A.2.1 Input Datasets

Cardiac datasets are from clinical electrophysiology mapping systems and nuclear

medicine (PET/SPECT) imaging devices. The EP voltage measurements are from the

CartoMerge 3D mapping system (Biosense Webster). EP data are exported to a file and

each data point contains the point index, bipolar voltage and 3-D coordinates in the EP

mapping system reference frame. The PET/SPECT datasets are from short axis cardiac

images in DICOM or other format. Polar maps are derived from the PET/SPECT images

using PMOD (Adliswil, Switzerland). Peak transmural intensities are determined at 10

119

degree angular increments in 20 slices from apex to base. These polar plot values are

exported to a file.

Control points for initial registration are chosen by a trained electrophysiologist

identifying EP points at the apex and at 90 increments in short axis view within the Car-

toMerge viewing system. That is, EP points at the 0, 90, 180 and 270 degree locations

(lateral, inferior, septal, anterior walls) are identified.

A.2.2 Software Development

The software development environment is C++ using the Qt framework, Qt Cre-

ator IDE, Open GL, ITK, freeglut and dicomlib. Orthogonal slices through PET/SPECT

datasets and projections of EP points are shown in the upper part of the main screen,

and EP and PET/SPECT polar plots are at the bottom. EP points can be overlaid on the

SPECT/PET data.

A.3 Results

CardioViewer allows GUI menu-driven input and display of EP and PET/SPECT

data as well as their fusion in orthogonal slice, perspective and polar map views. An

example of the main GUI interface is shown in Figure A.1 for a rest Tl-201 SPECT study

and EP voltage points.

The program permits interactive parameter adjustment, including scrolling through

short axis cardiac slices and toggling on and off EP point overlay on cardiac orthog-

onal views and polar plots. The six-degree of freedom registration parameters can be

120

Figure A.1: Main GUI of the CardioViewer program showing SPECT and EP datasets

and their integration. For EP points, scar is red (<0.5 mV), border zone is green (0.5-1.5

mV), normal is purple (>1.5 mV).

121

interactively adjusted or input through dialog boxes from pull-down menus. The pro-

gram outputs EP voltage and PET/SPECT values at the same points on polar maps, a

key to studying multimodal cardiac tissue attributes that avoids averages over regions.

CardioViewer is multiplatform and runs on Linux, Windows and Apple OS.

As an example of the program’s capabilities, it can compute goodness of fit met-

rics between the EP and PET/SPECT data as registration parameters are varied. For the

dataset of Figure 1, the best visual registration was with a 60◦ rotation about the left ven-

tricle axis. This yielded an area under the ROC curve (AUC) of 0.93 for prediction of

EP tissue as abnormal (<1.5 mV) from normalized SPECT values. An automated search

yielded a peak AUC of 0.95 at an 88◦ rotation and provides insight into AUC dependence

on angle (Figure A.2).

Figure A.2: Sensitivity of AUC vs. rotation angle about the left ventricle axis for predic-

tion of abnormal EP tissue category from SPECT images (dataset of Fig. A.1)

122

A.4 Discussion

The CardioViewer program provides an easy to use tool for integration of EP and

PET/SPECT data. Due to the limited spatial resolution of PET/SPECT images and partial

volume effects, it is important to use registered datasets in the polar plot reference frame

for generation of paired EP and PET/SPECT values. CardioViewer can be enhanced to in-

tegrate EP data with other imaging modalities (e.g. CT, MRI) for multimodal exploration

of cardiac tissue properties.

A.5 Conclusion

A novel multiplatform software tool, CardioViewer, has been developed that en-

ables integration of EP voltage data with PET/SPECT perfusion and viability data. It is

being used to generate registered datasets to explore multimodal cardiac tissue properties,

with the goal of developing pre-procedural predictive maps of cardiac scar and border

zone to aid ablation procedures for ventricular tachycardia.

123

Bibliography

[1] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys, 41(3), 2009.

[2] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE
Trans. Pattern Analysis and Machine Intelligence, 28:594–611, 2006.

[3] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new
tasks. In AAAI, volume 1(2), 2008.

[4] K. Chodnicki, X. Gibert-Serra, J. Tian, F. Arrate, R. Chellappa, T. Dickfeld, V. Dil-
sizian, and M. Smith. Point-specific matching of cardiac electrophysiological volt-
age and spect perfusion measurements for myocardial tissue characterization. J
Nucl Med, 55 (suppl 1):602, 2014.

[5] X. Gibert, V. M. Patel, D. Labate, and R. Chellappa. Discrete shearlet transform
on GPU with applications in anomaly detection and denoising. EURASIP Journal
on Advances in Signal Processing, 2014(64):1–14, May 2014.

[6] X. Gibert, V. M. Patel, and R. Chellappa. Robust fastener detection for autonomous
visual railway track inspection. In IEEE Winter Conference on Applications of
Computer Vision (WACV), 2015.

[7] X. Gibert, V. M. Patel, and R. Chellappa. Material classification and semantic
segmentation of railway track images with deep convolutional neural networks. In
IEEE International Conference on Image Processing (ICIP), 2015.

[8] X. Gibert, V. M. Patel, and R. Chellappa. Deep multi-task learning for railway track
inspection. IEEE Transactions on Intelligent Transportation Systems, submitted
10/2015.

[9] X. Gibert, V. M. Patel, and R. Chellappa. Sequential score adaptation with extreme
value theory for robust railway track inspection. In IEEE-ICCV Workshop on Com-
puter Vision for Road Scene Understanding and Autonomous Driving (CVRSUAD),
2015.

124

[10] Michèle Basseville and Igor V. Nikiforov. Detection of Abrupt Changes: Theory
and Application. Prentice-Hall, Englewood Cliffs, New Jersey, April 1993.

[11] H. Vincent Poor and Olympia Hadjiliadis. Quickest Detection. Cambridge Univer-
sity Press, New York, 2009.

[12] Wei Xu, Zhenmin Tang, Jun Zhou, and Jundi Ding. Pavement crack detection
based on saliency and statistical features. In Image Processing (ICIP), 2013 20th
IEEE International Conference on, pages 4093–4097, Sept 2013.

[13] Joseph A. Smak. Evolution of amtrak’s concrete crosstie and fastening system
program. In International Concrete Crosstie and Fastening System Symposium,
June 2012.

[14] M. H. Shehata and M. D. Thomas. The effect of fly ash composition on the ex-
pansion of concrete due to alkali-silica reaction. Cement and Concrete Research,
30:1063–1072, 2000.

[15] S. Sahu and N. Thaulow. Delayed ettringite formation in swedish concrete railroad
ties. Cement and Concrete Research, 34:1675–1681, 2004.

[16] J.J. Cunningham, A.E. Shaw, and M. Trosino. Automated track inspection vehicle
and method, May 2000. US Patent 6,064,428.

[17] M. Trosino, J.J. Cunningham, and A.E. Shaw. Automated track inspection vehicle
and method, Mar 2002. US Patent 6,356,299.

[18] F. Marino, A. Distante, P.L. Mazzeo, and E. Stella. A real-time visual inspec-
tion system for railway maintenance: Automatic hexagonal-headed bolts detection.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 37(3):418–428, 2007.

[19] Pasquale De Ruvo, Arcangelo Distante, Ettore Stella, and Francescomaria Marino.
A GPU-based vision system for real time detection of fastening elements in railway
inspection. In Image Processing (ICIP), 2009 16th IEEE International Conference
on, pages 2333–2336. IEEE, 2009.

[20] X. Gibert, A. Berry, C. Diaz, W. Jordan, B. Nejikovsky, and A. Tajaddini. A ma-
chine vision system for automated joint bar inspection from a moving rail vehicle.
In ASME/IEEE Joint Rail Conference & Internal Combustion Engine Spring Tech-
nical Conference, 2007.

[21] A. Berry, B. Nejikovsky, X. Gibert, and A. Tajaddini. High speed video inspection
of joint bars using advanced image collection and processing techniques. In Proc.
of World Congress on Railway Research, 2008.

[22] P. Babenko. Visual inspection of railroad tracks. PhD thesis, University of Central
Florida, 2009.

125

[23] Abhijit Mahalanobis, B. V. K. Vijaya Kumar, Sewoong Song, S. R. F. Sims, and
J. F. Epperson. Unconstrained correlation filters. Appl. Opt., 33(17):3751–3759,
Jun 1994.

[24] E. Resendiz, J.M. Hart, and N. Ahuja. Automated visual inspection of railroad
tracks. Intelligent Transportation Systems, IEEE Transactions on, 14(2):751–760,
Jun 2013.

[25] Y. Li, H. Trinh, N. Haas, C. Otto, and S. Pankanti. Rail component detection,
optimization, and assessment for automatic rail track inspection. Intelligent Trans-
portation Systems, IEEE Transactions on, 15(2):760–770, April 2014.

[26] Hoang Trinh, Norman Haas, Ying Li, Charles Otto, and Sharath Pankanti. En-
hanced rail component detection and consolidation for rail track inspection. In
IEEE Workshop on Applications of Computer Vision (WACV), pages 289–295,
2012.

[27] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition (CVPR), 2001 IEEE Com-
puter Society Conference on, volume 1, pages I–511–I–518 vol.1, 2001.

[28] E. Stella, P. Mazzeo, M. Nitti, C. Cicirelli, A. Distante, and T. D’Orazio. Visual
recognition of missing fastening elements for railroad maintenance. In Intelligent
Transportation Systems, 2002. Proceedings. The IEEE 5th International Confer-
ence on, pages 94–99, 2002.

[29] Francescomaria Marino, Arcangelo Distante, Pier Luigi Mazzeo, and Ettore
Stella. A real-time visual inspection system for railway maintenance: automatic
hexagonal-headed bolts detection. Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on, 37(3):418–428, 2007.

[30] M. Singh, S. Singh, J. Jaiswal, and J. Hempshall. Autonomous rail track inspection
using vision based system. In Computational Intelligence for Homeland Security
and Personal Safety, Proceedings of the 2006 IEEE International Conference on,
pages 56–59, Oct 2006.

[31] Hsiang-Yu Hsieh, Nanming Chen, and Ching-Lung Liao. Visual recognition sys-
tem of elastic rail clips for mass rapid transit systems. In ASME/IEEE Joint Rail
Conference & Internal Combustion Engine Spring Technical Conference, pages
319–325, 2007.

[32] Y. Xia, F. Xie, and Z. Jiang. Broken railway fastener detection based on adaboost
algorithm. In IEEE International Conference on Optoelectronics and Image Pro-
cessing (ICOIP), volume 1, pages 313–316. IEEE, 2010.

[33] J. Yang, W. Tao, M. Liu, Y. Zhang, H. Zhang, and H. Zhao. An efficient direction
field-based method for the detection of fasteners on high-speed railways. Sensors,
11(8):7364–7381, 2011.

126

[34] Hao Feng, Zhiguo Jiang, Fengying Xie, Ping Yang, Jun Shi, and Long Chen. Auto-
matic fastener classification and defect detection in vision-based railway inspection
systems. Instrumentation and Measurement, IEEE Transactions on, 63(4):877–
888, April 2014.

[35] R.A. Khan, S. Islam, and R. Biswas. Automatic detection of defective rail an-
chors. In Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International
Conference on, pages 1583–1588, Oct 2014.

[36] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal repre-
sentations of objects with c2 singularities. Comm. Pure Appl. Math., 57:219–266,
2004.

[37] A.L. Cunha, J. Zhou, and M.N. Do. The nonsubsampled contourlet transform:
Theory, design, and applications. IEEE Transactions on Image Processing,
15(10):3089–3101, 2006.

[38] D. Labate, W. Lim, G. Kutyniok, and G. Weiss. Sparse multidimensional represen-
tation using shearlets. In Wavelets XI (San Diego, CA, 2005), volume SPIE Proc.
5914, pages 254–262. SPIE, Bellingham, WA, 2005.

[39] G. Kutyniok and D. Labate. Shearlets: Multiscale Analysis for Multivariate Data.
Birkhäuser, Boston, 2012.

[40] J.-L. Starck, F. Murtagh, and J. M. Fadili. Sparse Image and Signal Processing:
Wavelets, Curvelets, Morphological Diversity. Cambridge books online. Cam-
bridge University Press, 2010.

[41] K. Guo and D. Labate. The construction of smooth parseval frames of shearlets.
Math. Model. Nat. Phenom., 8(1):82–105, 2013.

[42] K. Guo and D. Labate. Optimally sparse multidimensional representation using
shearlets. Siam J. Math. Anal., 9:298–318, 2007.

[43] K. Guo and D. Labate. Optimally sparse representations of 3d data with c2 surface
singularities using parseval frames of shearlets. Siam J. Math. Anal., 44:851–886,
2012.

[44] G. R. Easley, D. Labate, and W. Lim. Sparse directional image representations
using the discrete shearlet transform. Appl. Comput. Harmon. Anal., 25(1):25–46,
2008.

[45] G. Kutyniok, M. Shahram, and X. Zhuang. Shearlab: A rational design of a digital
parabolic scaling algorithm. SIAM J. on Imaging Sciences, 5(4):1291–1332, 2012.

[46] K. Guo and D. Labate. Representation of fourier integral operators using shearlets.
J. Fourier Anal. Appl., 14:327–371, 2008.

127

[47] F. Colonna, G. R. Easley, K. Guo, and D. Labate. Radon transform inversion using
the shearlet representation. Appl. Comput. Harmon. Anal., 29(2):232–250, 2010.

[48] B. Vandeghinste, B. Goossens, R. Van Holen, C. Vanhove, A. Pizurica, S. Vanden-
berghe, and S. Staelens. Iterative ct reconstruction using shearlet-based regulariza-
tion. IEEE Transactions on Nuclear Science, 60(5):3305–3317, 2013.

[49] K. Guo and D. Labate. Characterization and analysis of edges using the continuous
shearlet transform. SIAM on Imaging Sciences, 2:959–986, 2009.

[50] K. Guo and D. Labate. Analysis and detection of surface discontinuities using
the 3d continuous shearlet transform. Appl. Comput. Harmon. Anal., 30:231–242,
2011.

[51] S. Yi, D. Labate, G. R. Easley, and H. Krim. A shearlet approach to edge analysis
and detection. IEEE Transactions on Image Processing, 18(5):929–941, 2009.

[52] Gitta Kutyniok and Wang-Q Lim. Image separation using wavelets and shearlets.
In Curves and surfaces, pages 416–430. Springer, 2012.

[53] G. Easley, D. Labate, and P. S. Negi. 3d data denoising using combined sparse
dictionaries. Math. Model. Nat. Phenom., 8(1):60–74, 2013.

[54] V. M. Patel, G. Easley, and D.M. Healy. Shearlet-based deconvolution. IEEE
Transactions on Image Processing, 18:2673–2685, 2009.

[55] P.S. Negi and D. Labate. 3-d discrete shearlet transform and video processing.
IEEE Transactions on Image Processing, 21:2944–2954, 2012.

[56] G. Easley, D. Labate, and V. M. Patel. Directional multiscale processing of images
using wavelets with composite dilations. Journal of Mathematical Imaging and
Vision, 2012.

[57] E. J. Candès, L. Demanet, D. Donoho, and L. Ying. Fast discrete curvelet trans-
forms. SIAM Multiscale Model. Simul., (5)(3):861–899, 2006.

[58] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code.
IEEE Transactions on Communications, 31(4):532–540, 1983.

[59] D. Donoho and I. Johnstone. Adapting to unknown smoothness via wavelet shrink-
age. J. Amer. Statist. Assoc., 90:1200–1224, 1995.

[60] S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding for image
denoising and compression. IEEE Transactions on Image Processing, 9(9):1532–
1546, 2000.

[61] P. Subirats, J. Dumoulin, V. Legeay, and D. Barba. Automation of pavement surface
crack detection using the continuous wavelet transform. In IEEE International
Conference on Image Processing, pages 3037–3040, 2006.

128

[62] S. Chambon and J. Moliard. Automatic road pavement assessment with
image processing: Review and comparison. Int. Journal of Geophysics,
2011(doi:10.1155/2011/989354), 2011.

[63] C. Ma, C. Zhao, and Y. Hou. Pavement distress detection based on nonsubsampled
contourlet transform. Int. Conf. on Computer Science and Software Engineering,
1:28–31, 2008.

[64] J.-L. Starck, M. Elad, and D.L. Donoho. Image decomposition via the combination
of sparse representation and a variational approach. IEEE Transactions on Image
Processing, 14(10):1570–1582, 2005.

[65] J. Bobin, J.-L. Starck, M.J. Fadili, Y. Moudden, and D.L. Donoho. Morphologi-
cal component analysis: an adaptive thresholding strategy. IEEE Transactions on
Image Processing, 16(11):2675–2681, 2007.

[66] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, 8(6):679–698, 1986.

[67] H. Oliveira and P.L. Correia. Automatic road crack detection and characterization.
IEEE Transactions on Intelligent Transportation Systems, 14(1):155–168, 2013.

[68] L.F. Molina Camargo and J. Riley Edwards. Emerging condition monitor-
ing technologies for railway track components and special trackwork. In
ASME/ASCE/IEEE Joint Rail Conference & Internal Combustion Engine Spring
Technical Conference, 2011.

[69] Tanmay Podder. Analysis & study of AI techniques for automatic condition mon-
itoring of railway track infrastructure. Master’s thesis, Dalarna University, Com-
puter Engineering, 2010.

[70] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition (CVPR), 2005 IEEE Computer Society
Conference on, volume 1, pages 886–893, Jun 2005.

[71] Basler AG. Success story: ENSCO deploys Basler sprint and ace GigE cameras
for comprehensive railway track inspection. http://www.baslerweb.com/
linklist/9/8/3/6/BAS1110_Ensco_Railway_Inspection.pdf,
Oct 2011.

[72] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm.

[73] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernet-
ics, 36(4):93–202, 1980.

129

http://www.baslerweb.com/linklist/9/8/3/6/BAS1110_Ensco_Railway_Inspection.pdf
http://www.baslerweb.com/linklist/9/8/3/6/BAS1110_Ensco_Railway_Inspection.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[74] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

[75] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, November 1998.

[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Systems (NIPS),
2013.

[77] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. arXiv:1409.4842,
2014.

[78] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Computer Society Conference on, 2014.

[79] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding.
arXiv:1408.5093, 2014.

[80] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch7: A matlab-
like environment for machine learning. In Advances in Neural Information Systems
(NIPS), 2011.

[81] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. arXiv:1411.4038, 2014.

[82] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997.

[83] L. Y. Pratt, J. Mostow, and C. A. Kamm. Direct transfer of learned information
among neural networks. In Proc. Of AAAI, 1991.

[84] Geoffrey Hinton. Learning distributed representation of concepts. In Proc. of the
8th Int. Conf. of the Cognitive Science Society, pages 1–12, 1986.

[85] Y.-C. Chen, V. M. Patel, J. K. Pillai, R. Chellappa, and P. J. Phillips. Dictionary
learning from ambiguously labeled data. In Computer Vision and Pattern Recog-
nition (CVPR), 2013 IEEE Conference on, pages 353–360, June 2013.

[86] Jaume Amores. Multiple instance classification: Review, taxonomy and compara-
tive study. Artificial Intelligence, 201:81–105, August 2013.

[87] Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learn-
ing. In Advances in Neural Information Processing Systems (NIPS), 1997 Confer-
ence on, volume 10, pages 570–576, 1997.

130

[88] Ashish Shrivastava, Vishal M Patel, Jaishanker K Pillai, and Rama Chellappa. Gen-
eralized dictionaries for multiple instance learning. International Journal of Com-
puter Vision: Special Issue on Sparse Coding, 2015.

[89] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[90] T. Ahonen, J. Matas, C. He, and M. Pietikäinen. Rotation invariant image descrip-
tion with local binary pattern histogram fourier features. In Image Analysis, pages
61–70. Springer, 2009.

[91] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic algo-
rithm configuration. In International Conference on Computer Vision Theory and
Application VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[92] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 24(7):971–987, 2002.

[93] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb. Identification using en-
crypted biometrics. In Computer Analysis of Images and Patterns, pages 440–448.
Springer, 2013.

[94] B.S. Manjunath and W.Y. Ma. Texture features for browsing and retrieval of
image data. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
18(8):837–842, 1996.

[95] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM, 24(6):381–395, 1981.

[96] Peter J. Huber and Elvezio M. Ronchetti. Robust Statistics. Wiley series in prob-
ability and statistics. John Wiley & Sons, Hoboken, New Jersey, second edition,
2009.

[97] Ricardo A. Maronna, Douglas R. Martin, and Victor J. Yohai. Robust Statistics:
Theory and Methods. Wiley series in probability and statistics. John Wiley & Sons,
Chichester, England, 2006.

[98] P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, 35(1):73–101, 1964.

[99] D. Y. Kim, J. J. Kim, P. Meer, D. Mintz, and A. Rosenfeld. Robust computer vision:
A least median of squares based approach. In in Proc. of Image Understanding
Workshop, pages 1117–1134, 1989.

[100] J.B. Broadwater and R. Chellappa. Adaptive threshold estimation via extreme
value theory. IEEE Transactions on Signal Processing, 58(2):490–500, 2010.

131

[101] E.J. Gumbel. Statistics of Extremes. Columbia University Press, New York, 1958.

[102] Walter Scheirer, Anderson Rocha, Ross Micheals, and Terrance Boult. Robust
fusion: Extreme value theory for recognition score normalization. In European
Conference on Computer Vision (ECCV), pages 481–495. Springer, 2010.

[103] Walter J Scheirer, Anderson Rocha, Ross J Micheals, and Terrance E Boult. Meta-
recognition: The theory and practice of recognition score analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 33(8):1689–1695, 2011.

[104] J. Pickands. Statistical inference using extreme order statistics. The Annals of
Statistics, 3(1):119–131, jan 1975.

[105] S. Yun. The extremal index of a higher-order stationary markov chain. The Annals
of Applied Probability, 8(2):408–437, may 1998.

[106] X. Gibert, V. M. Patel, and R. Chellappa. Deep multi-task learning for railway
track inspection. arXiv:1509.05267, 2015.

[107] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detec-
tion with discriminatively trained part based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[108] F. E. Marchlinski, D. J. Callans, C. D. Gottlieb, and E. Zado. Linear ablation
lesions for control of unmappable ventricular tachycardia in patients with ischemic
and nonischemic cardiomyopathy. Circulation, 101(11):1288–1296, 2000.

[109] J. M. de Bakker, F. J. van Capelle, M. J. Janse, A. A. Wilde, R. Coronel, A. E.
Becker, K. P. Dingemans, N. M. van Hemel, and R. N. Hauer. Reentry as a cause
of ventricular tachycardia in patients with chronic ischemic heart disease: electro-
physiologic and anatomic correlation. Circulation, 77(3):589–606, 1988.

[110] J. M. de Bakker, F. J. van Capelle, M. J. Janse, S. Tasseron, J. T. Vermeulen,
N. de Jonge, and J. R. Lahpor. Slow conduction in the infarcted human heart.
’zigzag’ course of activation. Circulation, 88(3):915–926, 1993.

[111] W. G. Stevenson, D. J. Wilber, A. Natale, W. M. Jackman, F. E. Marchlinski, T. Tal-
bert, M. D. Gonzalez, S. J. Worley, E. G. Daoud, C. Hwang, C. Schuger, T. E.
Bump, M. Jazayeri, G. F. Tomassoni, H. A. Kopelman, K. Soejima, and H. Naka-
gawa. Irrigated radiofrequency catheter ablation guided by electroanatomic map-
ping for recurrent ventricular tachycardia after myocardial infarction: the multicen-
ter thermocool ventricular tachycardia ablation trial. Circulation, 118(25):2773–
2782, 2008.

[112] T. Dickfeld, P. Lei, V. Dilsizian, J. Jeudy, J. Dong, A. Voudouris, R. Peters,
M. Saba, R. Shekhar, and S. Shorofsky. Integration of three-dimensional scar maps
for ventricular tachycardia ablation with positron emission. JACC: Cardiovascular
Imaging, 1(1):73–82, 2008.

132

[113] J. Tian, M. F. Smith, P. Chinnadurai, V. Dilsizian, A. Turgeman, A. Abbo,
K. Gajera, C. Xu, D. Plotnick, R. Peters, M. Saba, S. Shorofsky, and T. Dickfeld.
Clinical application of pet/ct fusion imaging for three-dimensional myocardial scar
and left ventricular anatomy during ventricular tachycardia ablation. J Cardiovasc
Electrophysiol., 20:597–604, 2008.

[114] J. Tian, M. F. Smith, H. Ahmad, V. Dilsizian, A. Jimenez, and T. Dickfeld. Inte-
gration of 3-dimensional scar models from spect to guide ventricular tachycardia
ablation. J Nucl Med, 53(6):894–901, 2012.

[115] T. S. Fahmy, O. M. Wazni, W. A. Jaber, V. Walimbe, L. Di Biase, C. S. Elayi,
F. P. DiFilippo, R. B. Young, D. Patel, L. Riedlbauchova, A. Corrado, J. D.
Burkhardt, R. A. Schweikert, M. Arruda, and A. Natale. Integration of positron
emission tomography/computed tomography with electroanatomical mapping: a
novel approach for ablation of scar-related ventricular tachycardia. Heart Rhythm,
5(11):1538–1545, 2008.

[116] K. Kettering, H. J. Weig, W. Reimold, A. C. Schwegler, M. Busch, R. Laszlo,
M. Gawaz, and J. Schreieck. Catheter ablation of ventricular tachycardias in pa-
tients with ischemic cardiomyopathy: validation of voltage mapping criteria for
substrate modification by myocardial viability assessment using fdg pet. Clin Res
Cardiol, 99(11):753–760, 2010.

133

	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Description
	Challenges

	Proposed Algorithms and their Contributions
	Organization

	Background
	Anomaly Detection
	Railway Track Inspection

	Discrete Shearlet Transform on GPU with Applications in Anomaly Detection and Denoising
	Introduction
	Shearlets
	2D Shearlets
	3D Shearlets

	Discrete Implementation
	2D Discrete Shearlet Transform
	2D GPU-based Implementation
	3D discrete shearlet transform

	Applications
	Image denoising
	Crack detection
	Video denoising

	Discussion and Conclusion

	Image Dictionaries for Anomaly Detection
	Introduction
	Prior Work
	Proposed Approach
	Overview
	Classification
	Score Calculation
	Training Procedure
	Alignment Procedure

	Experimental Results
	Fastener Categorization
	Defect Detection

	Summary

	Deep Learning Methods for Anomaly detection
	Background
	Convolutional Neural Networks
	Multi-task Learning
	One-shot Learning

	Learning with Weakly Labeled Data
	Overall Architecture
	Data Annotation
	Training Procedure

	Material Identification and Segmentation Task
	Architecture
	Score Calculation

	Fasteners Assessment Task
	Overview
	Classification
	Score Calculation
	Training Procedure
	Alignment Procedure

	Experimental Results
	Material Identification
	Crumbling Tie Detection
	Fastener Categorization
	Defective Fastener Detection

	Sequential Anomaly Detection with Adaptive Thresholding via Extreme Value Theory
	Introduction
	Background
	Robust Anomaly Detection
	Extreme Value Theory for Adaptive Anomaly Detection

	Proposed Approach
	Bayesian Model
	Training
	Proposed Adaptive Thresholding Algorithm

	Experimental Results

	Conclusions and Future Work
	Summary
	Future Work
	Conclusion

	Point-specific Matching of Cardiac Electrophysiological Voltage and SPECT Perfusion Measurements for Myocardial Tissue Characterization
	Introduction
	Methods
	Input Datasets
	Software Development

	Results
	Discussion
	Conclusion

	Bibliography

