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The distribution of colors across a surface depends on the interaction between its surface properties, its shape, and
the lighting environment. Shading, chroma, and lightness are positively correlated: points on the object that have
high luminance also have high chroma. Saturation, typically defined as the ratio of chroma to lightness, is therefore
relatively constant across an object. Here we explored to what extent this relationship affects perceived saturation
of an object. Using images of hyperspectral fruit and rendered matte objects, we manipulated the lightness—chroma
correlation (positive or negative) and asked observers which of two objects appeared more saturated. Despite the
negative-correlation stimulus having greater mean and maximum chroma, lightness, and saturation than the
positive, observers overwhelmingly chose the positive as more saturated. This suggests that simple colorimetric
statistics do not accurately represent perceived saturation of objects—observers likely base their judgments on

interpretations about the cause of the color distribution.
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1. INTRODUCTION

The trichromaticity of human color vision is one of the most
[1-6]. From this

follows that color spaces can be broken down into three dimen-

well-established results in vision science

sions. These dimensions are relatively arbitrary, but the basic
tenet is that each visual stimulus maps to a single point in color
space. This is indeed the case for flat, matte surfaces or patches
that uniformly emit light. However, the world around us con-
sists mainly of three-dimensional objects, and the light reflected
into the eye from these objects is affected by numerous factors
such as shading or variations in pigmentation and material. The
result is that the light entering the eye from an object forms a
whole distribution of points in color space [7—10]. It is a major
question how observers arrive at single estimates of hue, light-
ness, and saturation when being faced with these distributions.
Do they simply take the mean of the corresponding values across
all pixels?

Many objects actually have very little variation in hue
[7,11,12] (but see [13]). However, lightness and chroma, as
defined by CIELAB L* and C*, vary systematically. For many
classes of surfaces, reflected light is derived from two mecha-
nisms: a “specular” component which arises at the interface
of the object surface and reflects the illuminant, and a “body”
component which arises from the interaction of the illuminant
and the diffuse object material and thus is informative about
the spectral reflectance of the object [14—19]. Due to shading,
the light from the body component forms a line in color space,
passing through the darkest point in the color space and through
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the color coordinate of a surface point that is oriented perpen-
dicular to the light source. This follows from Lambert’s cosine
law and results in a positive correlation between chroma and
lightness. The law states that the intensity of the reflected light
at a certain point on an object of a diffuse material is a func-
tion of the angle between the surface normal and the direction
of the illuminant at that point. The overall incident light is
multiplied by a factor of the cosine of that angle. If we apply this
factor o, which decreases from 1 to 0 as the angle increases, to a
reflectance spectrum and convert to color matching functions,
e.g., CIE XYZ, the color coordinates are also simply multiplied
by that factor. When converting XYZ to CIELAB L* and C*, the
non-linear transformation changes the constant factor to /o
and the relationship between L* and C* is linear (for non-small
XYZ values). Additional factors influencing the relationship
between C* and L* can be, for example, interreflections between
different parts of a scene, as could arise from a concavity within
a colored object or from two colored objects near each other
[20]. In this case, the lightness will decrease while the chroma
increases.

Here, we investigate how human observers arrive at estimates
of saturation for objects that are characterized by different
distributions in color space. Are observers capable of disen-
tangling different causes that lead to these distributions? Or
do they simply take the average value of the color appearance
metric “saturation” (C*/L*) across a distribution? Previously,
we showed that the regions closest to the surface normal, least
affected by shading, are mainly used as the basis for lightness
judgments of objects [21,22]. Very little research, however, has
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Fig. 1.  Comparing variability in saturation measurements across

objects. Both panels plot the distribution of pixels across an object
in the L*-C* plane of CIELAB. The left panel plots the distribution
of one rendered matte object, the right panel of a banana measured
with a hyperspectral camera [7]. Depictions of the objects are inset on
the right of each plot. The L*-C* distribution projected onto the first
principal component (which explains 85% and 93% of the variance
for the left and right plot, respectively) is plotted in black. Both plots
show the positive correlation between lightness (L*) and chroma (C¥)
and demonstrate that variation due to shading minimally affects the
chroma-to-lightness ratio.
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Fig. 2. Demonstration of the effect of L*-C* slope on the color
appearance of an object. The pixels from a hyperspectral image of
a banana were plotted in the L*-C* plane of CIELAB. The origi-
nal banana (top) has a positive L*-C* slope at an angle of 68° (first
principal component). For demonstration purposes, we rotated the
distribution to 45° to amplify the appearance difference (bottom left
image). The bottom right image shows the 45° banana with its distri-
bution horizontally flipped to create a negative L*-C* slope. One can
perceive a difference in object color between the positive-slope banana
and the negative-slope banana. For the experiment, we performed
additional manipulations to control for various colorimetric statistics.

positive L*-C*
correlation

o

been concerned with saturation judgments (but see [23-25]).
Saturation is defined in most color appearance models as the
ratio of chroma to lightness [24,26,27] and, given the above
systematic relationship between lightness and chroma, this is
logical. Figure 1 depicts the lightness—chroma relationship for
a rendered matte object and a real object. The first principal
component of each distribution (black line) explains over 85%
of the variance and illustrates how shading has little to no effect
on the chroma-to-lightness ratio.

We wanted to explore whether manipulations of this positive
correlation between lightness and chroma affect saturation
perception, holding all other variables constant. Figure 2 shows
a demonstration of a banana whose L*-C* slope is inverted;
one can see that the impression of the banana’s color is differ-
ent between the positive-slope and negative-slope version.
While the banana with the positive C* /L* slope seems quite sat-
urated, the banana with the negative slope appears much more
pale and desaturated. This demonstration seems to indicate that
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the bananas with different C*/L* slopes are interpreted in dif-
ferent ways, even though their average C*/L* is approximately
the same.

For our experiment, we created a more controlled set of
stimuli with equivalent basic colorimetric statistics (C*, L*)
but different lightness—chroma relationships. This was done by
artificially manipulating natural and natural-looking stimuli
which initially all have positive lightness—chroma correlations.
We flipped the distribution of pixels of each stimulus on the
L*-C* plane in CIELAB so that mean, median, and max C* and
L* are the same, but the relationship between L* and C* is now
negative: points with high lightness have low chroma and vice
versa. Using both natural stimuli (fruits) and rendered “blobs,”
we show that observers almost always chose the stimulus with
the positive L*-C* slope as having higher saturation than the
stimulus with the negative L*-C* slope. Importantly, any simple
calculation based on the standard definition (C*/L*) would
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Fig. 3. Comparisons of saturation statistics between positive and
negative object pairs. We compared max (top 1%), mean, and median
saturation between fruit pairs and between blob pairs (matched- and
unmatched-rotation). Each datapoint represents a pair, color-coded
by the mean color of the object. For the blob plots (right), matched
and unmatched blobs are plotted as upward- and downward-pointing
triangles, respectively. Values for the negative object are plotted on the
abscissa and for the positive object on the ordinate. Datapoints below
the diagonal line indicate that the saturation statistic for the negative
object was higher than for the positive object, and vice versa. For all
pairs, datapoints lie below (or along) the diagonal line (tolerance of
0.005). C* and L* statistics (mean, median, max 1%) were equivalent
between fruit pairs and matched blob pairs; for unmatched blob pairs,
the negative-slope blob had higher values than the positive-slope.
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Fig. 4. Example of the pear stimulus pair used in the experiments, shown alongside its distributions in the L*-C* plane. The following are

depicted: the distribution of the positive and negative pear [(a), (b), top] after symmetrizing and fixing out-of-gamut pixels, along with their
corresponding images [(a), (b), bottom], and the distribution of pixels from the positive and negative swatches and the swatches themselves

(c) and (d).

either yield equivalent predictions of saturation for each stimu-
lus pair or would predict the negative-slope stimulus as more
saturated.

Our results emphasize that simple colorimetric statistics
calculated across object pixel distributions poorly predict
saturation judgments. Rather, the human visual system seems
to estimate the underlying causes of particular distributions of
lightness and chroma. In the case of positive correlations, these
are due to shading. In the case of negative correlations, the object
is more likely to be achromatic, with the negative correlation
stemming from lighting and interreflections.

2. METHODS

In the demonstrations above (Fig. 2), a few pixels fall out of
the gamut of the monitor when the slope of the L*-C* line was
adjusted. Therefore, we devised stringent methods to make
sure that our experimental results were not caused by these
underflows or overflows.

A. Stimuli
1. Fruit

Hyperspectral images of 19 fruit taken from a large database [7]
were converted to CIELAB; cyy color space. All 19 fruit distri-
butions had positive L*-C* slopes (based on the first principal
component). The hues of pixels whose C* value was less than 10
were set to the mean hue of the distribution; at such low chroma
values, those pixels are almost achromatic and their given hue
angles are likely to be due to noise. The body component which
the positive L*-C* correlation is derived from is most inform-
ative about the spectral reflectance of an object; therefore, we
avoided the rare fruits with high specularity or a negative native
L*-C* correlation. In the natural world, most objects are matte;
highly specular objects are unusual. In general, Tominaga and
Wandell [19] found that the standard reflectance model consist-
ing of a body component and a specular component can be used
to describe the colors of fruits and plastics [14,17].

For each fruit stimulus, we “symmetrized” the C* values such
that they were symmetrically distributed around the mean,

Fig. 5. Two of the fruit stimulus pairs (artichoke, papaya) used in
the experiment. For each pair, the positive-slope stimulus is on the left
and the negative-slope stimulus is on the right. Other fruit used in the
experiment (not shown): nectarine, peach, dragonfruit, grapefruit,
green apple, kiwi, lemon, lime, banana, carrot, mango, cherimoya,
potato, pear, pomegranate, cucumber, zucchini (see [7,28]).

resulting in identical values for the C* mean and C* median.
This was done by taking all C* values below (or above, depend-
ing on which side had the higher range of values) the median
C*, computing their distances to the median, and applying
those distances to the C* values of the points above (or below)
the median; thus, for every point x C* units below the median
C*, there was a point x C* units above the median C*. To cre-
ate the negative-sloped L*-C* distributions, we horizontally
flipped the C* values around the mean, keeping all else the
same. In conjunction with the symmetrizing and flipping, we
also identified pixels with values outside of the RGB gamut
and shifted their values closer to the mean in L*-C* space until
they were no longer out of range. Altogether, this resulted in
negative and positive stimuli having exactly the same L* and C*
statistics (max, mean, median, etc.) per fruit. We also calculated
key statistics for saturation (C*/L*) and found that, across all
fruit, the negative stimulus always resulted in higher or equal
saturation values compared to the positive stimulus (tolerance
= 0.005) (see Fig. 3). Figures 4(a) and 4(b) show a stimulus pair
used in the experiment as well as its distributions plotted in the
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L*-C* plane. Figure 5 depicts two of the 19 fruit pairs used in the
experiment; the relative size of the stimuli is maintained.

2. Rendered Blobs

The advantage of using rendered objects is that we have greater
control over the properties of the stimuli which can be varied
accordingly. This also results in much less noise in the stimuli.
Therefore, we rendered 3D lumpy matte “blobs” (Mitsuba 0.6)
with different spatial rotations at 12 different hues in a diffuse
lighting environment. We chose to render matte, non-specular
stimuli to explicitly isolate the diffuse “body” component of
the reflected light, which has a positive L*-C* correlation. The
lighting environment was composed from high dynamic range
images taken of the courtyard of the Doge’s palace in Venice,
Italy [29]. The scene is outdoors on a cloudy day. The matte and
specular components of the blob material were defined using
the Ward BRDF model [30,31] implemented in Mitsuba. The
specular reflectance components were set to 0. The RGBs of the
diffuse components were defined in CIELAB; cyy with an L* of
70 and a C* of 50, with the white point defined as the white of
the monitor (CIE1931 xyY: 0.3328, 0.3343, 142.35). The hue
radians used ranged from 0.5 (28.6°) to 6.0 (343.8°) at steps of
0.5. We translated the distribution of pixels in L*-C* space as
needed in order to minimize out-of-range values when flipping.
In the same manner as with the fruit, we symmetrized the pixel
values along the C* dimension; to create the negative-sloped
stimulus, we horizontally flipped the C* values about the mean.
This again resulted in equal C* and L* statistics; calculations of
saturation (C*/L*) indicated that the negative-sloped stimulus
across all variations had higher or equal saturation (tolerance
= 0.005) (see Fig. 3). Figures 6(a) and 6(b) show the stimulus
pair derived from a reddish blob along with its L*-C* distribu-
tions. For the experiment, we used two positive—negative pairs
per hue. We called these “matched-rotation pairs” because the
positive and negative stimulus within a pair had the same spatial
rotation.

We also wanted to compare stimuli with slightly different
spatial arrangements, in order to reduce the likelihood that
observers focus on the same diagnostic region of the negative-
and positive-sloped stimuli to make their judgments. Thus,
we compared the statistics of the negative and positive stimuli
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across rotation sets (i.c., blobs with different spatial rotations)
and gathered all pairs for which the negative stimulus of one
rotation had higher L* and C* statistics than the positive stimu-
lus of another rotation—"“unmatched-rotation pairs.” Because
there was a limited number of unmatched-rotation pairs for
which a negative blob had higher L* and C* statistics than a
positive blob, the number used for each hue was not balanced
(ranging from 0 to 4). We used a total of 24 matched-rotation
stimulus pairs and 24 unmatched-rotation pairs. Figure 7
depicts a sample of matched- and unmatched-rotation blob
pairs used in the experiment.

3. Swatches

The swatch stimuli served as a control in which the L*-C* slopes
of the distributions were the same as those of the realistic stimuli
but lacked their physical structure. For each stimulus (fruit and
blob), we randomly sampled 64 pixels from the distribution and
arranged them in an 8 x 8 matrix. The pixels chosen from the
fruit and the matched-rotation blobs were matched with their
corresponding pair [i.e., swatches from negative- and positive-
slope stimulus pairs had the same C* and L* statistics, and
C* /L* statistics were always higher (or equivalent) for the nega-
tive stimulus]. Figures 4(c) and 4(d) depict a swatch pair and its
distributions derived from the pear and Figs. 6(c) and 6(d) from
one matched-rotation blob. We created the unmatched swatch
pairs in the same manner by which we created the unmatched-
rotation blob pairs: comparing statistics of negative and positive
swatches across blob rotation sets and gathering pairs for which
a negative swatch had higher statistics than a positive swatch.
The number of unmatched swatch pairs also was not balanced
across hues and ranged from one to three pairs per hue. Nineteen
swatch pairs were derived from the fruit (one from each fruit);
24 matched-rotation swatch pairs and 24 unmatched-rotation
swatch pairs were derived from the blob sets.

B. Participants

Ten naive observers (ages ranging from 20 to 29; median =
22.5) completed the paired comparisons task for the fruit and
10 different naive observers (ages ranging from 19 to 35; median

=23.5) completed the task for the rendered blobs. All observers

positive stimulus negative stimulus

a) Distribution of pixels: (b) Distribution of pixels: (c) Distribution of pixels: (d) Distribution of pixels:
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Fig. 6.

arrangement is the same as in Fig. 4.

Example of a matched-rotation blob stimulus pair used in the experiments, shown alongside its distributions in the L*-C* plane. The
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Fig. 7.  Selection of blob pairs used in the experiment. Matched-
rotation blob pair examples are shown on the lefthand side of the
figure, unmatched-rotation pairs on the right. For each pair, the
positive-slope stimulus is on the left and the negative-slope stimulus is
on the right. Three of 12 possible hues are shown (rows).

gave informed consent and had normal color vision as assessed

by the Ishihara Color Vision Test.

C. Procedure

Observers were asked to choose which of two objects presented
side by side on the screen appeared more saturated. To orient
their definition of saturation, we presented a green pepper at
four levels of increasing saturation (generated by keeping L*
constantand increasing C*) on the instructions screen.

Positive and negative slope pairs were displayed for one
second on a mid-gray background (CIE1931 xyY: 0.3328,
0.3343, 71.1762) using an Eizo ColorEdge CG245W monitor
with a resolution of 1920 x 1200 (50° x 32°). Observers sat
56 cm from the screen in a dark room. Fruit stimuli ranged in
visual angle from about 7.76° to 30° in width and 6.41° to 18.7°
in height. Blob stimuli spanned on average 14.3° x 14.3°.
Swatches were all 13.9° x 13.9°. The stimuli were centered on
the left and right halves of the screen (distance between centers
of stimuli = 26°). After a pair of images was presented, observers
indicated using the keyboard which image appeared more sat-
urated. Observers responded at their own pace. Each fruit pair
was shown 10 times and each blob pair was shown five times.
For both experiments, presentation of all pairs was randomized,
left—right positions of each stimulus pair were randomized, and
object and swatch pairs were interleaved. The position of the
64 pixels of each swatch was randomized for every trial. Each
experiment was separated into two blocks, which allowed for a
short break in between.

3. RESULTS

For each negative—positive pair, we calculated the proportion
of trials in which observers chose the stimulus with the positive
L*-C* slope as more saturated than the negative L*-C* slope.
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Fig. 8. Paired comparison task results separated by fruit. Each dat-
apoint shows the proportion of responses in which the positive slope
was chosen over the negative slope, averaged across observers. Swatch
stimuli (purple squares) and object stimuli (green circles) are plotted
for each fruit. The means across all fruit are plotted on the far right. A
horizontal line at 0.5 indicates chance-level performance. Error bars
indicate 1 standard error of the mean (SEM).

A. Fruit

Figure 8 plots the results averaged across participants for the
fruit. For all conditions except two (lime swatch and kiwi
swatch), observers chose the positive stimulus more often than
the negative stimulus as more saturated. This was reflected in
a one-tailed sign test for both fruit and swatches (Bonferroni-
corrected p < 0.001 for fruit and for swatches). We tested
whether results for fruit and swatches were significantly dif-
ferent using a non-parametric Mann—Whitney U test with
stimulus type as a factor. The mean proportion of positive-slope
stimuli chosen for the fruits was significantly higher than for the
swatches (0.83 versus 0.67; Z = 3.40, p < 0.001).

B. Rendered Blobs

Figure 9(a) plots the results for the rendered blobs and their
swatches across hues. A one-tailed sign test showed that
“proportion positive” results for blobs and their swatches
were significantly greater than chance (Bonferroni-corrected
p = 0.002 for blobs and for swatches). A Mann—Whitney U test
with matched—unmatched as a factor indicated no significant
difference in the proportion of positive-slope stimuli chosen
between matched and unmatched pairs (0.86 versus 0.82,
respectively; Z=0.98, p=10.33). We did find a significant
difference when using stimulus type as a factor: the proportion
of positive-slope stimuli chosen for object pairs was higher than
that for swatch pairs (0.93 versus 0.75; Z =2.99, p = 0.003).
We also explored possible differences between hues. Figure 9(b)
plots the proportion of positive-slope stimuli chosen, aver-
aged across all pairs of each stimulus type and separated by
hue. A Kruskal-Wallis test for each stimulus type indicated
that there was no significant difference between hues (objects:
H(11) =9.31; p=0.59, swatches: H(11) = 18.8, p = 0.06).
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Paired comparison task results for blob stimuli. The y axis plots the proportion of responses in which the positive slope was chosen over the

negative slope. A horizontal line at 0.5 indicates chance-level performance. (a) Mean values separated for matched and unmatched blobs (green cir-
cles) and swatches (purple squares). Results are averaged across participants and hues. (b) Mean values separated by hue (averaged across participants

and pair type). Error bars indicate 1 SEM.

“Proportion positive” for the swatches shows more variability
across hues than for the blob objects, with some swatch means
being very close to object means (pinkish hue) while others
much more different (yellowish hue). It is unclear what might
drive this difference, but observers may be using very different
strategies to make saturation judgements about the swatches.

4. DISCUSSION

We explored whether colorimetric measures of saturation are
indicative of perceived saturation in stimuli which are defined
by color distributions, such as realistic objects. Our findings
suggest that judgments of saturation depend on the relationship
between pixels in the L*-C* plane rather than a single estimate
of saturation, chroma, or lightness computed across all pixels
of the object. We demonstrate this with calibrated images of
natural object stimuli and artificial computer graphics object
stimuli (fruit and rendered “blobs,” respectively). Notably, this
effect arises even for object pairs of differing spatial structure,
indicating that participants do not base their choice on the
same physical point on both objects. Lastly, we find a weaker,
but still significant, instance of the effect with colored mosaics
(swatches), which have little ecological relevance.

A number of previous studies have looked at ensemble color
perception of such multicolored mosaics. Kuriki [32] and
Kimura [33] both presented observers with equiluminant
mosaics that varied in hue and chroma. Observers’ judgments
were biased toward the most saturated patch when making
global color judgments of the mosaic. Similarly, Sunaga and
Yamashita [34] showed observers multicolored mosaics of equal
hue and equal brightness but differing saturation and found
that observers often gave more weight to the most saturated
elements. Choi and colleagues [35] also found that observers’
“single color impressions” of monochromatic stripes of low
and high luminance were biased toward higher luminance and
higher chroma values. Altogether these studies indicate that
observers do not simply average across all present colors to form

a global color impression of a patch. Their judgments are often
biased toward the most saturated elements of the mosaics.

Our study supplements this work by showing that observers
do not base their judgments solely on the most saturated pix-
els of an object or mosaic. We test this by pitting two stimuli
against each other: both stimuli have equal lightness and equal
chroma variation but inverse lightness and chroma relation-
ships (one negatively correlated, one positively correlated). We
chose stimulus pairs such that one in the pair presented with
higher mean and max saturation, chroma, and lightness than
the other. If observers based their judgments on the values of
a single dimension (i.e., mean chroma, max saturation, etc.),
they would have chosen the negative-slope stimulus as more
saturated than the positive-slope stimulus, since the negative-
slope stimulus had higher or equal mean/median/max values
than the positive-slope stimulus. We instead find the reverse:
observers consistently chose the positive-slope stimulus as more
saturated. Importantly, we show that this effect is significantly
greater for objects than for colored mosaics, suggesting that
observers develop some interpretation of the scene and consider
its influence on the pixel distribution.

Giesel and Gegenfurtner [11] explored representative color
judgments of objects by having observers make color matches
of real-world objects to uniform patches presented on a screen.
The objects were of various colors and materials, such as wool,
paper, and candlewax. They found that observers tended to
overshoot chroma and lightness judgments in comparison to the
means of the objects. Similarly, our observers do not use mean
chroma, lightness, or saturation to make judgments of our stim-
uli. Interestingly in Giesel and Gegenfurtner’s study, observers
overshot their chroma judgments to a greater extent for objects
with lower mean lightness than lighter objects, suggesting at
least that the observers take lightness into account when making
chroma judgments. However, from their study and ours, it is
still unclear what diagnostic observers use to make judgments of
chroma or saturation.
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Fig. 10.  Plots comparing the mean C* and C*/L* values of the 25% brightest pixels between positive—negative fruit pairs. The abscissa plots the

difference between positive and negative pairs such thata positive value indicates that the positive pair had a larger statistic than the negative. The ordi-
nate plots the proportion of trials (averaged across observers) for which the positive-slope stimulus was chosen. Pairs are color-coded by their mean
stimulus color. We computed Spearman’s rho for each plot. Correlations were relatively high for both statistics (0.74 for mean C*¥, 0.84 for mean
C*/L*; p < 0.001). For swatches (not shown), correlations were weaker butsstill positive (0.51 and 0.48, respectively; p < 0.05).

While hue tends to have little variation within matte objects
of a single reflectance, chroma and lightness, and therefore sat-
uration, can have much variation depending on the interaction
between the direction of illumination and the surface normal
across the object (see Fig. 1). Observers may use a diagnostic
region of the object (or of the L*-C* curve) to judge saturation,
as they do with lightness. We know that estimates of lightness of
objects are based on “brighter, diffusely shaded regions,” which
are particularly diagnostic for their achromatic reflectance,
and that observers tend to fixate on these regions when asked
to make lightness judgments [21,22,36]. The region of an
object diagnostic for its saturation may depend on interpre-
tations of illumination and interreflections within the scene.
We explored whether observers might be using two dimen-
sions simultaneously from which to derive their saturation
judgments. Figure 10 plots the C* and C*/L* of the brightest
pixels for the fruit. Blob comparisons (not shown) are similar
but have less variation, overlaying the fruit points in the region
of high “proportion positive” results (correlation coefficients
were insignificant). On the abscissa is the difference between
the positive and negative stimulus pair for that statistic; positive
values indicate that the positive stimulus has a higher value. On
the ordinate are plotted the average “proportion positive” values
across observers. Note that for these statistics, the positive pair
always has higher mean C* and C*/L* values for the brightest
25% pixels. Spearman’s correlation coefficients indicate high
correlations (o = 0.74 and 0.84 for C* and C*/L* of brightest
25%, respectively): the greater the difference between a pair, the
more likely the observers choose the positive pair. If observers
are heavily biased toward the brighter pixels of the object, our
data suggest that their saturation judgments are driven by the
differences in saturation or chroma of these brighter regions.
These regions may be more informative and less noise-prone
than the rest of the object or mosaic. However, a more carefully
controlled experiment is needed to make this conclusion.

In our study, we use realistic objects whose native L*-C*
slope is positive. We artificially invert this relationship to create
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Fig. 11.  Rendered scenarios in which the distribution of pixels
reflected from an object has a negative slope when plotted on the L*-C*
plane of CIELAB space. (a) A scenario in which a matte object has a
white reflectance and the illuminant emits white light (RGB = [1,1,1]
for both), but the matte walls have a yellowish reflectance. (b) A scene
of a yellow translucent object rendered on an achromatic checkered
background under a diffuse lighting environment.

objects whose L*-C* slope is negative. Are there real-world
scenarios in which a negative L*-C* correlation would arise?
Do observers perceive the negative-slope stimuli as if in these
scenarios? Figure 11 displays simulations of two such scenarios.
In the first [Fig. 11(a)], the matte object and the illumination are
white, but the (matte) walls are chromatic. The second example
[Fig. 11(b)] depicts a translucent stimulus on an achromatic
background sitting in a diffuse lighting environment. The
distribution of pixels emitted from both sets of stimuli have
negative L*-C* correlations. Observers may have interpreted
our negative-slope stimuli under one of these two scenarios,
for which the reflectance characteristics of the stimuli are quite
desaturated (a matte white material and a translucent col-
ored material). If this is their interpretation of the scene, then
their perception of the negative-slope stimuli as less saturated
would fit. The observer may attribute different regions of the
L*-C* correlation line to different effects of lighting and/or
interreflections—for example, in the scenario on the left, the
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brightest and least chromatic pixels mostly come from the upper
surface of the blob, which reflects the greatest proportion of
direct light from the (white) illuminant, while the darkest and
most chromatic pixels result largely from the interreflections
between the lower surface of the blob and the (yellow) floor.
But merely exploiting the polarity of the L*-C* correlation to
judge saturation is likely an oversimplification. Additionally, we
know that observers are sensitive to the “naturalness” of stimuli,
which can impact perception of saturation and colorfulness
[37], and we cannot be sure that our observers perceived our
artificial and manipulated stimuli as realistic. Objects with more
complex material properties may also elicit a negative L*-C*
correlation, and potential heuristics used for matte objects likely
do not transfer as well to glossy [38] or translucent objects, or to
specialized subcategories of objects such as faces [39,40].

Opverall, we showed here that the standard definition of satu-
ration (C*/L*) does not accurately reflect saturation judgments
of realistic objects and colored mosaics. While it is still unclear
what computations observers use to make judgments about
saturation, we suggest that they make some interpretation of
the scene and the sources for the reflected light, considering
the relationship between dimensions of color space, and then
give more weight to pixels which are more diagnostic of the
object’s color, such as the brighter pixels. Our results imply that
color perception of real-world stimuli in complex scenes leads
to judgements of object color that are not best represented by
simple colorimetric calculations. Rather, the visual system likely
makes interpretations about the environment and uses this to
determine to what extent the color variation can be attributed to
invariant properties of the object.
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