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PART I
AN ITERATION FORMULA FOR FREDHOLM INTEGRAL
EQUATIONS OF THE FIRET KIKD

INTRODUCTION

Neumann's method of solving Fredholm integral equations of
the second kind by iteration 1ls of great practical and theo-
retical value, For Fredholm lntegrel equations of the first
kind, on the other hand, Hellinger and Toeplitz3 remark that
a method of solution by iteration is not available.

Physical problems often lead to an integral equation of the
first kind to which a good first approximation may be derived
by physical reasoning. An example of this is the problem of
determining an axial source-sink or doublet distribution which
would yileld the axlally-symmetric potential flow about a body
of revolution in a uniform stream. Thls problem leads to an
integral equatior of the first kind

]*3/2

1
[~ mt) [(x-t2 25002 Fat w &
(¢]

where the axis of the body coincides with the x-axis from
X=0 toxel, y(x) is a known function, representing the
ordinates of the intersection of the given surface with a
meridian plane and m(x) 1s an unknown function, representing
the distribution of the doublet strength per unit length a-
long the axis, A well-known, excellent, first approximation
to the source distribution for elongated bodles of revolution

"
e my (x) = %[y(x)] 2



In cases such as this it would be highly desirable to have a
method of successive approximestions for lmproving upon this
approximation.

The theories of Schmidt and Picerd furnish expressions for
solutions to integr:zl equations of the first kind. However,
these expressions are of little practical value since they
involve the characteristlc numbers and functions of an arble
trary kernel, and the methods for obtaining these are both
tedious and approximate.

It is proposed to present an iterstion formula for obtaine
ing successive approximations to the solution of Fredholm ine
tegral equations of the first kind, ana to prove the convergence

of the successive approximations under various conditions.

REVIEW OF THEORY
We are concerned with solutions and approximetions to

solﬁtions»qf the integral ecuation of the first kind

b :
£ix) = ja ki{x,v)g(ylay (1)

where f£(x) and f{x{'f Ig.kix’y?g(yz§:nnaus real functions in

2 & X,y 3 by, and g(y) 1s an unknown function. As is well
known, (1) may be transformed into the integral equation with

& symmetric kernel, b
Fx) o K(xyy)e(y)ay, (2)
a

vhere K(x,y) afb k(t,x)k(t,y)at, (3
a

and hence  F(x) ,Jﬁ X(y,x)f(y)dy, ()



3

Schmidt Theory. A theory due to E. Schmidt® shows that
there exists a set {Ri) of positive characteristic numbers,
vhich may be supposed arranged 1n increasing order of magnitude,
and corresponding adjoint sets ¢4(x) end Y;(x) of real,
continuous, orthonormalized characteristic functions,

(1 w 1,2.,.4), such that b
9 1(x) = Ay fa k(x,y0yy (¥)dy, (5)

b
Y 1(x) "aijg k(y,x)py (y)dy. (6)

It will be convenient, hereafter, to employ the customary

operator notation for integral trensforms, viz
b b
kg ef k(x,y)g(y)dy, X Ef K(x,y)e(y)dy;
a . a

furthermore, since the range of variation and the integration
limits will always be from a to b, specific reference to
these 1imits will be omitted and we will freguently write
integrals in an abbreviated form, viz

.f: £(x)py (x)dx & [ £y

If the kernel k(x,y) is degenerate, the number of charac-
teristic functions is finite and they can be found by a well
known procedurel. If f(x) is expressible in the form

n
£f(x) = Y. a (x)
R 191

the solution of (1) is
n
e(x) & 7 Asoppa(x), ay = [ty (7)

If £(x) is not of the above form, then (7) gives the best



"

approximate solution of (1) in the least square sense, &s can
easily be shown. If the kernel k(x,y) is non-degenerate, the
sets {}i j}, (goi(x)) and (\ki(x)) are infinite. &ince the degenerate
cagse 1is readily disposed of, only the non-degenerate cese will
be considered hereafter.

These characteristic numbers and adjoint functions have
several properties which will be required in the following:

a) ,212 andyvi(x) are characteristic numbers and functions
of K(x,y)gg i.es

W1 =A% (8)
b) A positive lower bound for the set {Rj) is given by

the inequalityé

5’3?'5 <[[ ¥2(x,y)axdy (9)

e¢) Expansion theorems: Every function f(x) of the form
(1), where g(y) is any piecewise-continuous function, can be

expanded 1ln the absolutely and uniformly convergent series?
oo
£(x) = gﬂlaf?i(x); aj -yff¢5 = §~3f371 (10)
" i

Every function F(x) of the form (&), where f£(x) is any
plecewise~continuous function, can be expanded in the abso-

lutely and uniformly convergent series
o
) = L ejpy(x)y e = Fy = 51{ [e9y Q)

If £ 1s the same function in (10) and (11), the relstions be-

tween the "Fourier" coefficients may be written

cigfm/’i-tff?i-.;‘.i.ifm (12)
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Picard Theory. In general a solutlion of (1) does not exist.
A theorem due to E. Picard? stztes that, if the orthogonal

set 3 1s complete, a solution of the integral equation (1)

151 APa1%y 8y . ff@i (13)

is convergent.
In the Schmidt-Picard theory, the solution of (1) is in-

timately related to the sequence
n
En 2 izlxiaiwi(x), N e 1425000 (1)

as is expressed in the following theorems:

THEOREM 1: The sequence {an} converges in the mean to f(x)

if and only if the set {&i] is complete relative to f£(x). The

sequence converges uniformly to f(x), if a piecewise-continuous

solution of the integral equation (1) exists.

THEOREM 2: If a plecewise-continuous solution g(x) of (1)

exlsts, the sequence {ﬁh) converges in the mean to g(x) if

and only if the set (Wi) is complete relative to g(x). If

g(x) is of the form k(y,x)h(y)dy, where h(y) is any piece-

wise-continuous function, then the sejuence Eﬁrconverges

uniformly to g(x).

The completeness conditions on the secuences é?i} andiﬁyi}
in Theorems 1 and 2 refer to the so-ceclled completeness re-

lations

[£2 & Z ai , 8y =) fp; (15)



(2]
and g2 = 2 b2, by = [g (16)
f 1-15" i fﬂ

The phrase "complete relative to f{x)" in Theorem 1 signifies
that (19) need be satisfied only by the particular function
f(x), a condition which is concidersbly weaker than the as~-
sumption that the set ﬁ?i} is complete relative to a class of
functions. <cimilarly (16) is assumed to apply only to the
particular functlion g(x) in Theoren 2,

The first part of Theorem 1 is of especial interest since
it indicates that with lncreasing n, the error due to the as-
sumption of g,(x) as an approximate solution of (1) diminishes
in a least square sense, even if a solution of (1) does not
exist, However the disagreeable possibility exlists that, be-
yond some value of n, the error may accumulate and increase
at some values of x. Nevertheless, even in this case, such
a sequence may glve useful successive approximations in a
particular problem, if the errors are observed at each step,
and the approximztions stopped when the error excee&s an
acceptable value at any point.

The second part of Theorem 1 asserts that, for sufficiently
large n, §, satisfies the integral equation (1) as closely as
desired. It is noteworthy that no ascumptions are made with
regard to the convergence of the sequence {Eh}. Indeed,
Theorem 2 shows that an additionsal condition is necessary to
assure even convergence in the mean.

The expression (14) for Epns however, is of little practical
value since it 1s expressed in terms of the characteristic

numbers and functions of the kernel k(x,y). Principally for
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these reasons the Fredholm integral equation of the first kind
has been considered to be of little value’., On the other hand
another readily calculable secuence of functions {gn(xf}will
be defined, which, it wlll be shown, has properties relative
to a solution of the integral equation (1) identical to those

of ‘gn(X) .

THE ITEFATION FORMULA
Let us now extend the operator notation, denoting
Kl'g = f...jK(x,yr)K(yr,yr_l)...K(yz,yl)g(yl)dyrdyr_l...dyl.
This notation is appropriate since the relation KF(KSg) g Kr+5g
is satisfied, as 1s easily verified.
Let go(x) be an assumed, epproximate, piecewise-continuous
solution of the integral equation (1). Then a set of continuous

functions gy(x), go(x),sss is defined by the iteration formula

8n = 8p.1 + F - Kgpog (17)
vhere K and F are the function: defined in equations (3) and
(k). The convergence of this sequence of functions and the
applicability of 1ts members as successive approximations to
a solution of the integral equation (1) is the subject of the
subsequent discussion.

The recurrence formula (17) can be readily solved for g,

in terms of g,+ First put

Yn ® gn - En-1 (18)

Then n
En = 80 * %:l ri (19)



and also (17) msy be written as

Yp & F = Kgpnog (20)
Thus the 7,'s sre not only the differences between successive
gn'es but also serve as neasures of the errors corresponding to
the gn's as approxinete solutions of the iterazted integral
equation (2). Now from (20), we have

Yn = Ynel ® = Kipoy
or, in operetion notstlon,
Tn® (1eK)7p 4
Hence, since the operator K satisfles the assoclative laws of
maltiplication, we obtain
T = Q-K)P1y (21)

where (1-K)P=1l 18 to be formally expended by the binomial
theorem before operating on7y. Substituting for the 7 in
ecuation (19) from equation (21), and performing the indicated
sunmation, we obtain

en = 8o + 2=l=8 (r g ) (22)

where, in the fractional operator, (1.X)? is to be expanded
by the binomial theorem and a faetor K in the numerator cen-
celled vith the denominator before operating on (FeKgg) e

If the sequence {gn(x)g converges uniformly, it 1s clear
from (17), that g;?o € 15 & solution of the iterated integral

equation (2), Ilowever, since an integral equation of the
first kind has & solution only under special circumstances,
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{&n(xigmay not converge uniformly, and indeed mey not con-

verge at all. Nevertheless the gn‘s may serve as useful ap~
proximations to a solution of (1) and (2) as will be evident
on the basis of the convergence theorems in the next sectlon.
CONVERGENRCE THEOREMS
It will be assumed hereafter that

b b
f g k2(x,y)dxdy & 2 (23)
a8 Ja

This is no restriction since the kernel k(x,y) can always be
modified, so as to satisfy the condition (23), by multiplying
the integral equation (1) by a sultable factor and, in the
right member of the equation, incorporating the factor into
the kernel.

The convergence theorems

will be stated and discussed before thelr proofs are presented.

THEOREM 3t The sequence {Kgy}converges uniformly to F(x).

Theorem 3 is very strong. Without any restrictive assumpti&ns
about completeness, the existence of a solution, or the con-
vergence of the sequence [gnz, it asserts that, for sufficient-
ly large n, En satisfies the iterated integral equation (2)
as closely as desired. Basically, however, our interest is
in the integral equation (1), rather than with (2). Concerning
the sultability of the g,'s as approximate solutions of (1)
we have the weaker theorems:

THEOREM 4: The sequence {kxn3 converges in the meanto f(x)

if and only if the set 8913 is complete relative to f(x). The




t of the te guatio .

It will now be supposed that the zero-th approximation ggo(x)
is chosen of the form

go(x) = [ K(y,mn(y)ay (2k)

vhere h(y) 1s any plecewise-continuous function. The special
case h(y) O is a2l:o allowed. Concerning the convergence of
the sequence {én} we then have

THEOREM 53 If a piecewise-continuous solution g(x) of (1) ex-

ists, the sequence (én} converges in the mean to g(x) if and

only if the set {y,} is complete relative to g(x). If g(x) is

of the formjhk(y,x)h(y)dy, where h(y) 1s any piecewise continuous

function, then the secuence {gg} converges uniformly to g(x).

It should be noted that Theorems 4 and 5 are identical, word
for word, with Theorems 1 and 2 except for the substitution of
gn for B,e+ Hence the remarks concerning the suitability of
the En's as approximations to a solution of the integral equa-

tion (1) are appliceble to the g, 's as well,

Proof of lLemmass In order to prove the foregoing theorems
it is first convenient to establish several lemmas. Put
Fp(x) & Kgy, (25)
£,(x) & kg, (26)

The "Fourier" coefficients of F,, f,, and g, then satisfy the

relations

Cin =,IFﬁV1 s f;vfan& = ;ﬁg fgﬁwi (27)
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We then have

LEMMA 13 Fp(x) and f5(x) can be expanded in the absolutely

and uniformly convergent series

(-4

Fn(X) = izlciﬁ-//j_(X), nl e 0,1,2.00 (28)
fn(X) = 1flAicin¢i(X), N e O’lggowo (29)

If go(x) is chosen of the form (24), then also gn(x) may be

expanded in the absolutely and uniformly convergent series

gn(x) s izlxizcin‘(f‘i(X); n = 0,1,20‘»0 (BO)

Proof: It is clear, from their definitions in (25) and (26),
that the expansion theorems apply to Fn(x) and fj(x) and
consequently the series (28) and (29) converge as stected in
the lemma. In the case of the g,'s, 1t can readily be shown,
successively, from the iteration formula (17), that gq(x)

go(x),.s. are of the same form as go(x). Thus, we have
g1 = 8 + F - Kg, (31)
But g, =/ k(y,x)h(y)dy; from (4), F = [k(y,x)f(y)dy; and
from (3)(26), Kgo = [ k(y,x)£,(y)dy. Hence (31) becomes
g1 = [ k(y,x)[h(y) + £(y)-£,(y)] ay.
Hence the expansion theorem is applicable to g,(x) and the

series (3C) also converge, as stated.

LEMMA 23
ein-ci s~q"(eyq-c4) (32)

where ¢4 a_fFWi, ané¢ the sequence «y 1s such that

,:/‘i <}_’/u.i+l ‘%/u.i and.iz-gf‘i - 1, i= 1’2’l00 (33)
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Prooft We obtain, from (17) and (8),

Jen¥s = (1~ 55 ) [en-a¥y +[Fvy
Put (4 = 1-»1//\12. Then, by successive reduction, we obtain

Jenyy = 1iPfeols + Ag2Q-KP) [Fyy
which, by (12) and (27), 1s seen to be equivalent to (32).
Furthermore, from (9) and (23), we obtain

0< -X%é-djk‘?(x,y)dxdy g2

or -1< {3 <1. Thus, since the sequence {),] increases
monotonically to infinity, it is seen that (33) is also
satisfied. This completes the proof of Lemma 2.
LEIMA 31
in > 2 _Um 552 2
oo~ (eyp=cy) 2 Ay2(eq-ey) o (3w
R e Lt T L T 3

If a solution g(x) of (1) or (2) exists, then also

1i L -, )2
ﬂ»f ;éiA (O Gi = O (35)

Proof: We first note that the scries Ejl(cio-ci)z converges
since we h&ve, from Bessel's ineguality,

Z’ L(e1omey)? £ [ (F-P)2

Hence, by (32) and the comparison test,

{éi(cin-ci)z {ilﬂign(ci *01)2

is uniformly convergent in n, and consequently

lim 3 : lim
nse 151("1:&""1)& Zl no Hizn(cio"ci)?' = 0
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Similarly, applying bBessel's inequality to f,-f, and then to
Eo~8, when g(x) is assumed to exist, we obtein (34) and (325),
as desired.

o0
LEMMA 4: If the series ] .(x) = 2 _w,(x), where the wy (x) are
o] jm] 1

continuous functions, 1s absolutely and uniformly convergent,

and 1f " p(x) = fgi*in“i(x)’ n =z 0y1,2,..., wvhere u, satisfies

condition (23), then the sequence | ,(x) converges uniformly to

2810,

Proof: From the hypotheses on H4 ve have, for some sufficiently
large T'y Mp £ [ug| s * 7 1. Also, considering the series for
qu(x), given an E>O, r can be chosen so large, and inde-

pendent of x, that lwil< €2, Let r be chosen so that

r o
both conditions are satisfied. Further, we have E%ljwi,éizi’wiriﬁ’

i-r-v-

vhere M is an upper bound independent of x. Choose N sufficient~

ly large so that )Jrn< €/(2M4) for n> N. Then

T 82 'ui i} ,“1 < My g e

i=l
when n > N(€), as we wished to prove.

LEMIA 5: If G,(x) can be expanded in a uniformly convergent serles

n(X) aizleinei(x.), 0,1,2,«0' (36)

in terms of the real, continuous, orthonormalized functions

B4(x)y 1 = 1,2y4.. and if G(x) is plecewise-continuous, with

ey = fGei, then necessary and sufficient conditions for

the sequence Gp(x) to converge in the mean to G(x) are that

pd ? 2 1i ? P
Gedx = e and n (esp~€3)° =
I g=1 Dowyzy 10 1



1k
Proof: Since the series (36) is uniformly convergent, we have
] -]
GG, =2 €4, ]G0, =2 es e,
f n ey inf i (=1 in®i
and similarly [G,2 aigleina. Hence
-

(6,-0)2 w [62 ¢ 2 (e, ~6,)2= > 2  (37)
(G J67 ¢ 2y femme™- g ’

Now suppose the condltions of the lemma to be satisfied.
Then I(Gn-G)2 = £§l(ein’ei)2' and consequently by
hypothesis, %ﬁ&,J(Gn—G)Q « O.» This proves the first part
of the lemma,

Now suprose that %fﬁ f(Gn~G)2 = Os From (37), we have,

G2ax € 35 12 #[(6q-C)2
f 1=1 i f n

for &l1 n. Hence IGE -,E eiz. But, by Bessel's inecuality,

) i=1 “
IGE g 2 eiz. Hence IGQ = 2 312. Then, from (37),
is] i=]1

1§1(ein-ei)2 = I(Gn-G)‘?

[,
, e : v
whence we obtain %%g {éb(einfai) =z Oy also. This completes
the proof.

We can now proceed to the
proof of the convergence theorems.

Proof of Theorem 3t By the expansion theorem and 42) and (27),
the series F~F ‘f%i(cin“ci) Y4y n = 041,2,s¢. are absolutely
and uniformly convergent in x. Hence, by Lemma 2, the series
g%lﬂin(cio—ei)wi are also absolutely and uniformly convergent
in x. Hence the conditions of Lemma 4 are satisfied and

the sequence {Fn~F} converges uniformly to zero; or by (25),

{Kgn} converges uniformly to F, as we wiched to prove.
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Proof of Theorem 4: By Lemmas 1 and 3 all the conditions of
Lemme 5 are satisfied by the functions fp(x) and f(x). Hence

by (26) the first part of the theorem, concerning the con- )
vergence in the mean of {kgn] to £(x), is proved,

In the second part of the theorem, since g(x) exists by
hypothesis, the expansion theorem may be applied to f(x) as
well as to f(x). Hence, by (12) and Lemmas 1 and 2, the
series o ;
S o giél}lin)i(cio-ci)?i(x), n = 0,1,2,...
are absolutely and uniformly convergent in x, and the condi-
tions of Lemma 4 are satisfied. Hence the secuence {fn~f}
converges uniformly to zero, or, by (26), {kgn} econverges
uniformly to f(x). This completes the proof.

Proof of Theorem %: Eince g,(x) is of the form (24), Lemmas
1 and 3 indicate that the conditions of Lemme& 5 are satisfied
by the functions g,(x) and g(x). Hence the first part of

the theorem, concerning convergence in the mean of {gn} to
g(x), is proved.

In the second part of the theorem, the expansion theorem
is appliecable to g(x), by hypothesis. IHence, by (12) and

Lemmas 1 and 2, the seriles

00
En~€ 3£Zl}‘in Aiz(cia"ci)wg'(x), ne 0,1,25000
-

are absolutely and uniformly convergent in x, and the condi-
tions of Lemra 4 are s:tisfled. Hence the sequence {gp}

converges uniformly to g(x), as we wished to prove.
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SUMMARY
A method of solving the Fredholm integrzl ecuation of the
first kind
f(x) = jzk(x,y)g(y)dy
by meens of the iteration formula
gn(x) = gp1(x) ¢ F(x) -jzii(x,y)gn_l(y)dy
where

b

F(x) = f k(y,x)f(y)ay
a

K(x,y) = jbk(t,x)k(t,y)dt
a

is discussed. Several theorems concerning the convergence of
the sequence of functions g,(x) to g(x) under various conditia;¥
are stated and proved., It is sown that this sequence bears
the identical relations to & solution of the integral equation
as & sequence consicsting of finite sums of orthogonal functions
associated with the kernel k(x,y), given by the classical
tehmidt-Picard theory of integral eguations. The latiter
secuence is of little practical velue, however because of the
difficulty of obtaining the characteristic numbers and
funetions of the kernel. In contrast with this, the successive
members of the sequence given by the present iteration formula

are obtained by simple quadratures.
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PART II |
THE AXIALLY SYMMETRIC POTENTIAL FLOW ABOUT
ELONG.TED BODIEE OF REVOLUTION

INTRODUCTION

Historys, 7The determinstion of the flow about elongated
bodies of revolution is of pgreat practicsl end theoretical
importence in sero- and hydrodynimies. Such knowledge is re-
quired in connectlion with bodies such as sirshipe, torpedoes,
projectiles, sirplane fuselages, pitot tubes, etes Cince it
ie well-inown thet for a streamlined body, moving in the die-
rection of the axis of syrmetry, the actual flow 1s very closew
ly approximsted by the potential (inviseid) flow sbout the
b@é?gy numerous attempts haeve been made to find a convenient'
theoretical method for obtaining numerical solutiong of the
potentiel flow problenm,

At first the problem was attacked by indirect mesns, In
1871 Rankinel® showed how one eould obt:in families of bodies
of revolutlion of lnown potentisl flow, generated b§ plecing
several point sources and sinks of various strengths on the
exise Thisg method was extended and used by D ¥%e Taylargﬁ in
189% end by Ce Fuhrmenn! in 1911, The latter slso constructed
nodels of the computed forme and showed that the measured
distrivutions of the pressures over them sgreed very well
with the computed values except for & smell Tegion at the
downstream ends, liore recently, in 194k, the Hankine method
vas employed by Munger snd Relchardtld to obtain bodies
with flat pressure distribution curves, and a further
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refinement of the technicue was published by Riegels and
Srandtl?, Most recently the indirect method has been employed
to obtaln bodles genersied by axisymmetrie source~sink dis-
tributions on eircumferences, rings, discs and eylinders.
This development, which enabled bodles with much blunter noses
to be genercted, was initlated by veinstein®d 4n 1948 and cone
tinued by Ven Tuyl22 and by Sedowsky and Eternbergl® in 1950,

i metrod of polving the direct problemy ls.es to determine
the flow over a given body of revelution, appeers %o have
been first publizhed by wvon Zarmen® in 1927+ Harman reduced
the problem to that of solving a Fredholm integrel equation
of the first kind for the axial source-sink distribution
whioch would geneéata the gﬂvtn paﬁygvanﬁ gc&vsdAtha integral
equatian-gpproximataly by %eplaéing it by é ﬁat'of simul tenecus
linear equationse Although this method is of limlted accuracy
end becomes very laborious when, for greater refinement; a
lurge number of linear ecustions is employed, nevertheless it
ig the best uown and meagt frecuently u( 4 ¢f the direct
methodse 4 modificution of the von Karmen method wes publishe
ed hy Vijngaarden®® in 1948,

4n interesting attempt to solve the direct problem was
made by Weinig?™ in 1928, e elso formulated the problem in
terns of an integral ecuetion for an axial doublet distribue-
tion which would generate the given body end employed an
iterstion formulz to obtain successive approximstions, Cince
the successive approxim:tions diverged, the recommended proe
cedure was to extrapolate one step backwards to cbhtain a

solution,
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In 162% an entirely different spproach, in which a solution
for the veloclity potential wes ascumed in the form of sn ine-
finite linear sum of orthogonal functions, was made by K&glan3
and independently by ﬁm;thl9a The coeffielents of this series
are given as the solution of & set of linear equations, infinite
in numbers in practice 2 finite number of these equations is
solved for a finite number of ecvefficients, and Xsplen hus
shown that the approximate solution thus cbtained 1s that due
to an axiel source-sink digtribution whiech is slso determined.
& simplifiestion of Xeplen's method by means of sdditional
approxinations was proposed by Young and Owen27 in 1943,

It eppears to be generally sgreed, by those who have tried
them, that the aforementioned methods ere both laborious and
approximetes Thus, according to Young and Owen?71

in every case, however, the methods proposed are

laborious to apply, snd the labour and heaviness

of the computationg increase rapidly with the rigour
& end seeuracy of the process. Inevitably, & conproe

mise 1z nececsery betweon the acoursey a{mad at and

the difficulties of computation. 4ll the methods

reduce, ultinately, to finding in one wey or another

the equivalent sink-cource distribution, and it is

thie part of the process which in penerszl involves

the heaviest computings '
Furthermore u fundsmentsl objestion is that only s speclael
eless of Lodies of revolutlion can be represented by & dlstri-
bution of sources and sinks on the axls of synazetirye. hAccord-
ing to won XermanJ:

This (representability by an axial sgource-sink dls-

trivution) is posrsible only in the exceptional case

when the amnalyticsl eontinustion of the potential

functiony free from singularities in the space oute

glde the body, can be extended to the axis of
syrmetry without encountering singular spots.
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The dissatisfaction with these methode 1: reflected by the
cortinuing attempts to devise other procedures.

& new method putlished by Kaplaﬂ“ in 1943 ig free of the
sgsumption of axiel singularities and appecrs to be exzaet in
the sense thet the sclution can be made a:s acecurate ag desired;
but the labor required for the same acouracy appears to Le
much greater than by other methodss The applicstion of the
method requires thet first the conformal transformation which
transforme the given meridian profile inte a circle be de-
termined, The veloelity potentisl is then expressed as an
infinite series whose terms are universal functions involving
the coefficients of the conformel traﬁsfarmﬁtian. ’ﬁhplan“
has derived only the first three of these universal functions.

Cumming of the David Taylor Model Besin is developing &
method based on & distribution of sources and sinks on the
surface of the given body. 7This method is alzo exact, tut
the labor involved in its applicetion has not yet been
evainated,

Another exaset method, bared on & distribution of vorticity
over the surfece of the body, is Lelng developed by Dr. Vandry
of the /dmiralty Hesesrch Laboratory, Teddington, England.

The methods of Cumnins and Vandry both lead to Fredholm
integral equations of the sccond kind, which can be solved
by iteration.

The present writer has developed two new methods, an
approxinmate one in which an axiel doublet distribution is
asrumed, and an exact one bused on a genersl application of
Creen's theorem of potential theorys. Doth methods lead to
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Fredholm integral equatlons of the first kind for which a solu=
tion by lteration hes been discussed in Pert lIs Indeed the
consideration of this lteration formuls wasg initiated in an
attempt to find more satisfactory solutions of the integrel
equations of von Karman’ and Yeinig2*, These new methods will
be presented, and, Ly application to & particuler body, come
pared with other methods from the point of view of accuracy

and convenience uf application.

We will conslider the steady,
irrotational, axlally symmetrie flow of & perfect incompressible
fluid stout & body of revolution, Teke the x-axls es the axils
of symmetyry and %ft X4y be the coordinates in & merldian plene.

g Denote the equation of the body
T e . profile by
‘a t b X
¥ « £(x) (1)

FIGURE 1 = The Meridien Plane

Eince the flow is irrotationel there existe 2 velocity
potential whieh, for axisymmetiriec flows, depends only omn
the eylindriesl cocrdinates x,y and satisfies Laplace's equa-
tion in e¢ylindricsl coordinates

2D ez o0 (2)

Algo, since the flow 1s axisymmetric, there'exists & Gtokes
streem function (x,y) which is related to the veloeity
potentisl by the equations

%. -y-zt %n y% (3)

It is seen thet equation (2) may be interpreted as the
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necessery and sufficlent eondition insuring the existence of
the funetionV, 4s 1z well known,? is constant alomg a
streanline and, considering the surface of revolution generated
by rotation of .8 streamline sbout the axiw of symmetry, 2TTY
say be eonsidered as the flux bounded by this surfaces On the
surifage of the given body and slong the axls of symmetyy oute
side the bLeody we have ¥V g Ce ¥ satisfies the eguastilon

2 2
RN
which is obtained by eliminsting ¢ between equations (3).
The veloeity will be taken as the regitive gradlent of the
velocity potentiale let uyv be the velocity components in

()

the X,y directlionses Then, by (3), we have

L k'Y

uz~iX* ¥y (5
« D 1 0

9’!”‘5?:%5‘5 (6)

For & urdform flow of velocity U parallel to the x-sxls ve

Lave

Pz - Uzy s - Uy (?)

The boundary condition for the Lody to be a stresn surface
pay be written in wvarious ways. If the body is stationary
the boundery condition is

Wixy VI(x)) 2 © (8a)
or, equivalently,

@b s (8b)
vhere the derivetive in (8b) is eveluzted on the surface of
the body in the direction of the outward normal to the bodys
If the body is moving with velooity V psrsilel to the xe-axis
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the boundary condition becomes
<§;{-§£>$ =~ Vecosp (9)

vhere 3 1s the angle beiween the ocutward normel to the body
end the x-axis.

It 1s desired to obtain a solution of (2) or (4) which
satisfies the boundery conditions (7) at infinity snd (8) or
(9) on the body,

HETHOD OF AXIAL DICTRIBUTIONE
, The potential and stream functions for
a point source of strength i situatec on the x-8xis 8t x = ¢

are : _
pully yeu(24xH (10)

where
r? a (x-t)2 & y? (11)
1f the sources sre distributed along the x-axis between
the points a and b (see Figure 1) with a stremgth (x) per
unit length, the potentlsl and stream functions are

)
Q= j: Ei(:")’ dt (12)
¥ gj:mt) (-1 + Eb)at | (12

48 1s well-inown, Lanlitine bodies are abtai#aé by superw
position of these flows with & uniform stra&mﬁ§e &8s to obtain
& dividing streanline beginning at a stagnatioéapeint. Withe
out loss of generelity we mey suppose this unifb:m sireanm to
be of unit magnitude, Thie dividing stra&m&innxia the profile

of the Iankine body for which, by (7), the stfeam function is



3
W

s
Yo - 2v% ¢ | et 4 a=tay (14
Vg T

Y

Uhe Loundery cordition (Hej then sives er the lup:iielt equee
ticr for the Lody
%

&w ME (-1 ¢ =biay = Iy* (15)

7

vrere rov y< s T3] arc ré = (x=t)¢ 4+ f{x)e In order to obe

tein & eloged Logdy he nleld o sirergt of sovreer and siv'sg

j Mt)dt = O
&

in thie czse (15) tecones

A

S fy (t}g;—t at = 1¥° (152)

in gorersl {(1%a) e:rrol e solved erniicitly for £(u) when
M{ﬁ} is piven. . pracilesd prececure for oltainine £z, for

given x® 1c o eveluste the initesral pun

assunes veiues of (@) wnd to deernine tue veliug wrieh getis-
fieg (l%e) by grephiced uctilise

cher =) g wrecerdiied {(Ilve) rey Le conslderes &r & Precholm
interrel gecetlion of the fivetl wind for delterninirg the une-
kmowr finctlonU{t)e Thls e uatlon will not be trocied, hove
ever, Eiﬁc@,'&ﬁ will be siown 1t i5 & zpecliel crge of the nore

renerel o uetlon for dounlet dlstriivtiorns which will now be

vonblet lletriiitlone, let w(yl Le the strerpgth per wunit

Hoof o digtritution of doullets alors the x-sxls between

f O )
!
Lat s

the polnts ¢ ard by (gee Sirur-e 1). "he potentlel arnd stresn
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functions may be teken as

@ a‘f: m(%) -5; a (16)

V= y2jb i) as (17)
a 13
The stream function for a& Rankine flow now becores
xvxe-&y?‘rygjbwdt (18)
a T3

Hence the boundary conditior (8a) gives

b
o e a s s

Here srain ecuation (19) may be considered as an implicit
ecustion for the ilankine body when m(t) is given, or as a
Fredholm integrsl ecuction of the first kind when the body
profile y° = £(x) is prescribed.

In order to show the relation between the source and doublet
dig ritutions in ecuations (15a) znd (19), integrate by parts
in (19)+ ¥e have

b _ b
L‘m(t)gdt.u(t) S?L-tj:g%l? dt

Hence (19) moy be written as
b b
m(t) &g‘\a +L ﬁ kr& dt = $y° (z0)

The interpretztion of equation (20) is that e doublet distrie-
bution of strength m 1s equivalent to & source-sink distribution
of $trangth.%% together with point sources of strength m(a)

and -n(b) at the end points, Hence source-gink dlistributions
sre completely equivalent only to those doublet distributions
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which vanish at the end points, Thiz justifies the remark in
the previous section that the integral ecuation for the doublet
distributions is more genersl then that for the scurce-sink
digtributions.
ks foproximete Distributlon. Yunkd? has given en approXe
imate solution of (19) for elongated bodies. His formula may
be derived as followss For a very elongated body ot a great
distance from the ends, the integrsnd of (19), m(t)/e3, will
peak sharply in the n«ighb&rhﬁ@ﬁ of ¢+ ¢ X« In the renge of
the peak, in which the welue of the integrel 1s prinecipally
determined, m(t) will vary 1little from m(x)., A4lsgo only a
small error will be introfuced by replecing the limits of
integretion by «o0 and »c0s Hence, as & first s proximetion
to a solution of (19), try

my (x) / “g% =t (21)

ﬂl(X) = i?z (z2)
2 distribution proportionsl to the section-ares curve of the

We obtain

bodys This epproximation was independently derived by Weinig?t
who employed 1t ag the first step in & dlvergent iteration
procedure, It has slso been rediscovered by Young and Owen?7
and Laitana$ who heve shown the accurascy of the spproximation
for elongated bodies by severazl examples.

It 45 epparent from ite derivition that (22) also gives
the asymptotic raedius of the helf-body generated by & constant
axisl dipole distribution extending from a point on the axls
to infinitys It is readily szeen that this distribution is
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equivalent to & point source at the initisl point,

Ag & refinement to Munk's formula, Weinblum®3 hes used the
spproximation

m (x) = Cy? (23)

where C 1s a factor obtained by comparison of the distributions
and section area curves of several bodles. Weinblum's factor
bears an interesting reletion to the virtual mass of the body.
This 1s seen by conzidering the expresgsion for the virtusl
nass k1A in terms of the mass of the displaced fluld A and
the totality of the mum.ats, fbm,m,:m,m

A e MTPI mdx - A (2k)

where ky 1s designetec the longitudinal virtusl nass coefe
fiaient, and o is the density of the fluld. iut, from (23),

e j:miax = 4oC f:wyzdx & 4CA
since, for elongated bodlesy & and b very neerly coineide with
the body ends, Hence
C » 4(1+iy) (25)

In practice an spproximete velue of ky may be teken as tha
of the prolate spheroid having the same lengthe~diameter ratio
£ the given bodys The vélues of k; for & prolate spheroid
may be computed from the formula?

where A iz the length-dismeter ratio., Hence
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c 2_413/2
Y j A2ed=Aln(Ae 7 AC=1)

The values of kg vergus A\ have slso been tabulated by Lamb®
snd grephed by Munki3,

4 difficulty in determining
the doublet distribution from ecustion (19) is that the limits
of integration, & and b, are also unknowne. In the method of
von Xarmen? the end points are arbitrarily ecloseng Kﬁplanh
takes the end poilnt of the distribution midway between the
end of the body snd the center of curvature at that end.
Raplan based his cholge on & considersilion of the prolate
spheroids 7Thus the ecustion of the spheroid of unit length
and lenythe-diemeter ratio A, extending frouw x s O to x = 1,
is

2 - e (sz) (28)
Y3
The radius of curvature st x ¢ 0 48 then ;%Em The exset

doublet distribution, hovever, extends between the foecl of
the spheroid which are situsted at distances (A=\e=1)/(27)

from the end pointss Hence the error in Xaplan's es:suuptio

w "%g ;:73;(14»45*“-)

dimirdishes rapidly with increasing Ae

For the hzlf-body generated by a constent doublet
tion (a point source) Keplen's sasumption gives & pr
mation. lLet 2% be the strength of the distributic
cen easily be shown from (19) thut the :source is
a from the end of the body (stegnation point),
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the origin is chosen at the latter point, the equation of the
helf-body 1s

ORI F - I D ¢ RO (29)

Hence the radius of curvature st the end is % a, so that
Kaplan's assumption for the start of the distribution gives

%a. This is in error by %a.

in approximate method for determining the end points of a
distribution and its trends at the ends will now be described.
Let y2 = £(x) be the equation of the given profile extending
from x = O to x z 1; let m(x) be the corresponding doublet
distribution, extending from x = &@ to x =« b. It will be
assumed that 0< a<< b<1l and that a is near 0, b is near 1,

Various conditions on m(x) may now be obtained by differ-

entiating (19) repeatedly with respect to x. We get

J:m%l [ax -2t 4 r'(x}]‘dt =0

j:mm [- 527 (2x - 2t 4+ £9)%4 A (2 4 f..,] dt =0 (30

r5

When x = O, r = t and, writing f(x) as a Taylor expansion !

jm(t) [-35— (2x-2t+£1) 3= -15- (2+f')(2x-2t+f')-+m]dt =0

£(x) = 8% + 8p%® 4 83%3 4ees (31)

then also £'(0) = a3, £'(0) = 22, £m(0) = 6a3. Now, setting

X = 0 in ecuations (19) and (50}, we obtain
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b

o)
j; £3 dt = 4 (32a)
b
gf—&?l(arzt)dt =0 (32b)
b
me}l[5a12~20a1t+u(!+-a2)t2] dt = 0 (32¢)
b
L;n%%l{35al3~210a12t+6031(6-&2)t2+h0(3a2~#)t3+2ha3tg]dt | Y

=0 ‘(326)

Also assume that m(x) may .e expressed as a power series
m(x) = €g + €1X + CoX° + a0 (33)
Then the first of equations (32) gives

%? (ﬁg - %§)+ el(t - %) + € lcgtﬁ +eso = B3
or, neglecting 1/b2 in comperison with 1/a2 and setting
b =1 in comparison with 1/a,

¢o + 2cqa(l-a) + 2cpa® log % $ess = 82 (3ka)
Similarly the other ecuations (32) give, approximutely,
eo(3ey-82) + kejalaz-3a) + 6c2a2(al—43+%a2) = O (34b)
200[5&12-2ha1a+6(h-a2932]+ Hcla[éala-l5ala+h(k»a2)ag]

+c2a2[15&12-80a1a+2h(h-a2)ag} =0 (3ke)

Bco[35&13-2h0a12a+8031(6—&2)a2+6h(3a2-h)a3+%8a3a5]
+24c1[Sal3a~35a12a2+12a1(6~aa)a3+10(3a2~h)a“+8a3aﬂ
+hc2[35al3a2~252a12a3~+9Oal(6~a2)a“+80(3a2-k)a5+72a3a§]go (34d)
Equations {(34) are sufficient in number to determine the

unknowns &, Cgy Cyy Cpe £ince the latter 3 equations are
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linear and homogeneous in epy ©1 &nd ¢py & can be determined
from the eondition that the determinsnt of their coefficients
must vanishe In this way the following equation of the 7th
degree in X w 81/2 was obtained:
o((xmlt) 2 ( 508313428802 36804128) = 96852 (Ixelt)

+ Wagx(=l) (532~148x4128) + 11528 8,7 (2%=3)

+ 728 () 2(5x3.25024100016) 4 4Bay ey (3ue8)

- 288858, (X=k) (502160, 4-16)-—11'5&&1%3(0(«-3) 20 (35)
Corresponding to & solution X of (25), Gge € and e, can be
obtained from ecuations (34a, by ¢)e The szolution of the
latter eguations gives

ogD = ~ha? [ 3x3e37x2+1200=06+2hag+2ka  30Pe15us16-kay )]

030 = a{15x3~168q?¢512«»38&+96a2*k83(szwahﬂ¢?%-6a2ﬂ

62D x =l |(xel)2 (e ) sbap]

where
Da 2(9x3~9hd2¢2?2«n192)+ 8[%X~k}zéiul)+ha2Jlog a+96a,
o 28(1503~ 26424 GbiomT768) - 3888 p=9682 ( 5o Cmliks2l)
+ 5768%a0, (36)
The initisl doublet strength at x ¢ & 1s
n(a) s ¢ + eq2 + eaaa +esny
or, from ecuations (36),
m(a) u - 82[(-H) (B-12026) hBaeb) (X-2) +168,-06827  (37)
Bguations (35), (26), and (37) deternine the end points
of the distribution and ite initiel trends. In genersl ecua-

tlon (35) wiil have more than one resl rcote In this case

the inltiel trendes corresponding to each of the roots should
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be examined, and that root chosen which appears to give the
"gimplest" trend,

The equations can be solved explicitly in the case of a
very elongated body for which &3, 8y 83yees in (31) are all
very small, First let us suppose that they are so small that
all the terms in (35) containing them are negligible, so that
the first product term alone may be equated to zero, i.e,

o (a1t) 2(5 o =833+ 28802~ 368%4128) & O (38)

whose real roots are = 0O, 0.547, 4.0, 4,0, and 12,429,

Let us consider the solution X« 4; 1.e. & = 8y/4%. Since
the radius of curvature at x « O is a3/2, thls solution is
seen to be in accord with Kaplan's assumption for the end
points of the distribution. Furthermore, substituting oz 4
into equations (36) and (27), we obtain, to the same order of
approximation,

D2z 6‘-&, Co = =~ 8.12/16, C = 8.1/}4', Co = 0

m(x)--—?%z-+-a;e'x

0

whence

(39)

m(a)

In order to obtain a second approximation it will be
assumed that not only ayy ap, a3e.. but also (x-4) are

small to the first order, equation (35) becomes

-3072(-14) 2+ 61kkap (X=b) -30728,2+ 768a)8, = O (40)
whence
Xz 4 + a5 + \/ATE3
Provided a3 & 0 (41)

Corresponding to this value of X we obtain from eguations



(36), to the same order of approxination,

2
n(x) = Cﬁ(«-&@;-a- 81x + apxZhies)

vhere Cu %‘Clb‘-gl-l- %2103%) (&2)
and n(a) = + $Ca? reywy
The expression for m(x) in (42) may also bve written as
m(x) & C(- 3&-‘-?2* 74) (42a)

This form immedistely suggests & modification and refinement

of the Hunk«Weinblum approximation (23) which will be coneide

ered in the next sectlion.

When 8,<0 the solution for « in (41) indicates that there

would be no resl roots near « = %, In this case a greph of

the complete polynomial in (35) should be erxamined either for

the ;e&aibiliéy tﬁat more complete mulauiatiaas,wgu;é show

thet there sre real roots nesr A g 4 navérthaleas, or that

the maxirmum value of the complete polynomial in the neighbore

hood of A & 4 18 =0 nearly zerag'that the value of A correspond-

ing to this maximum may be taken as an epproximate solution.

On this assumption, the second order analysis would give
duhﬁ-ag
a3<0 }

(41a)

£ince a3 does not oceur explicitly in ecustions (k2), 1t is
seen thet they would also be obtalned, to the same order of
spproximetion, 1f the vslue of & in (kla) were substituted
into ecuation (236),

If it 1s determined that not even an approximste solution
cen be assumed near X g 4 it would Le necessery to consider

solutiong in the neighborhood of the other roots of ecuation (38).
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In order to facilit:te the computations for graphing the

polynomial in (35), the functions A(x), B(a),...H{«), where
Alo) & o (o ~4) 2(Satt-8303+ 28812~ 368004128)
B(4) = 72(x-4)2(5x3-2502440+16)
C(a) = Wo(ot=li) (53x2-14804128)
D(*) z ~288(a-k) (5x2=16a4+16)
E(d) = -96u(3g-k) (43)
F(a) = 1152(2d-3)
G(d) = 4Ba(30-8)
H(®) & -1152(=3)

have been tabulated in Table 1. In terms of these functions,

n

equation (35) becomes
ﬁ+alB+aQC+a1agD+a22E+a1a22F+ala3G+aiaa3ﬁ =0 (L)
It is of interest to compare the epproximate value for
from ecuation (41) with the exact value for the prolate spheroid,
equation (28), 1In this case we have
8] = -8y = 1/A2, ay = 0

and the exact value of o is

a=2+2/1--§§-h--§~2——;+#-...

But when the length-diameter ratio A is large, equation (1)
gives the approximate value =z 4-1/12, which is seen to con-
sist of the first two terms of the series expansion of the
exact value of X, The following table shows that the approxi-
mate formula gives excellent agreement with the exact values

even for very thick sections, Both the exact and the
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TABIE 1
FUNCTIONS FOR DETERMINING LIMITS OF DOUBLET DISTR1BUTIONS
A | A(A) B(&k) C(X) D(x) E(AN) F(X) G(&) HX
0 0 -18432,0 0 18432.0 0 -3456,0 0 3456,0
o1 | 143,0 =13409.7 =177.4 16230.2 35.5 =322546 =37.0 3340,8
.2 | 188.,5 -9315.,5 =305,6 14227.2 6543 =2995.,2 =71,0 3225,6
o3 | 169.7 -6027,4 =392,4 12414,2 89,3 =2764,8 =102,2 3110.4
o4 | 112.5 =-3433.9 =445.1 10782,7 107.5 =2534.4 =130.6 2995,2
o5 36,4 -1433,3 =470.8 9324,0 120,0 =-2304,0 -156.0 2880.0
.6 | -44,4 b =475.6 8029.4 126,7 =2073.6 -178.6 2764.8
.7 | =120,1 1148.,7 =465.,4 6890.4 127,7 -1843,2 -198,2 2649,.6
38 ”18405 188704 "4‘45.6 589802 122.9 "1612¢8 -21500 2534.4
.9 | -234.8 2349,1 =421,1 5044.,3 112.3 -1382.4 -229,0 2419,2
1.0 | =270.0 2592,0 =396,0 4320.0 96,0 -1152,0 =240,0 2304.0
1.1 |-291.2 2667,3 =374.3 3716, 6 73.9 =921.6 -248,2 2188,8
1.2 |-300,5 2619,2 =359,1 3225,6 46,1 =691.2 -253.4 2073.6
1.3 [=300,9 2485.3 =353.4 2838.2 12,5 =-460,8 -255,8 1958,.4
1.4 |=295,9 2297,3 =359,3 2545,9 =26,9 =230.4 -255.,4 1843,2
1,5 [-288.9 2081.3 -378,8 2340.0 =72.0 0 -252,0 1728.0
1.6 |-283,1 1857.,9 =-412,9 2211,8 =122,9 230.,4 -245.8 1612,8
1.7 |=281,5 1643.,5 =462,5 2152,8 =179,5 460.8 -236.6 1497.6
1.8 |-286,2 1449,7 =527,8 2154,2 =241,9 691,2 -224,6 1382.4
1.9 |-298,8 1284.4 -608.6 2207.5 =310,1 921.6 =-209,8 1267,2
2,0 |-320,0 1152.0 =-704,0 2304,0 =-384,0 1152,0 -192.0 1152,0
2.1 “34998 105400 ""81298 24‘3500 -4‘6307 138204 -171.4‘ 1036.8
2.2 |=-387.3 989,1 =933.,3 2592.0 =549,1 1612,8 -147.8 921.6
2.3 | -430.9 954,0 =1063.1 2766.,2 =640,3 1843.2 -121.4 806,.4
2.4 | =478,2 943,7 -1199,3 2949.1 =737.3 2073.6 =92.,2 691.2
2.5 |-526.3 951.8 =1338.8 3132,0 =-840,0 2304.0 =60,0 576,0
2.6 |=572,0 970,9 -1477.5 3306.2 =948.5 2534.4 =25.0 460,8
2.7 |-611,7 993.5 -1611.4 3463,2 -1062,7 2764,8 13,0 345.6
2.8 |-641,8 1011.9 -1735.4 3594,2 -1182.7 2995.2 53.8 230.4
209 "'658.9 101809 -184402 3690 7 -130805 3225.6 9704’ 115.2
3,0 |[=660,0 1008,0 -1932,0 3744,0 -1440,0 3456,0 144,0 0
3.1 |-642.8 974,2 =1992,4 3745,4 =1577.3 3686.4 193.6 -115.2
3.2 [=606,1 914,2 -2018.5 3686.4 =1720.3 3916.8 245.8 -230.4
3.3 [-549,6 826.8 -2003.0 3558.2 -1869.,1 4147.2 301.0 -345,6
3.4 [=474,9  713.3 -1937.8 3352.3 -2023.7 4377.6 359.0 -460.8
.5 |-385.3  578.3 -1814.8 3060,0 -2184,0 4608,0 420.0 -576.0
§,6 -286,2 429.% -1624.8 2672,6 -2350.1 4838.4 483,8 -691.2
3.7 |~185.8  278.7 -1358.5 2181.6 -2521,9 5068.8 550.6 -806.4
3.8 | =-94,8 142.2 -1006.0 1578.2 =2699.5 5299.2 620.2 =921.6
3.9 | =27,0 40.6 =556.8 853,9 -2882.9 5529,6 692.6 <1036.8
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@ A(X) B(&X)  C(d) D(&X) E(X) F(&A) G(A H(oo_
4,0 o 0 0 0 =3072,0 5760,0 768,0 =1152,0
4,1 -34,7 52,1 675.,9 =992.2 -3266,9 5990.4 846,2 -1267,2
4,2 | =156,4 234,5 1482,8 -2131.2 =-3467.5 6220,8 927,4 -1382.4
4,3 =-394,3 591.5 2433.3 =~3425,8 =3673,9 6451,2 1011,4 -1497.6
4,4| =-782.7 1174.1 3540.3 -4884.5 -3886.1 6681.6 1098,2 -1612,8
4,5 -1360.,2 2040,8 4817,3 =~6516,0 -4104,0 6912,0 1188,0 -1728.0
4)6| -2170,8 3257.6 6278.2 -8329.0 -4327.7 7142.4 1280.6 -1843.2
4,7] -3263,7 4899,2 7937.,7 -10332.0 -4557,1 7372.8 1376.2 -1958.4
4,8 -4693.,4 7048.,4 9810.,7 =12533.8 -4792.3 7603.2 1474.6 -2073.6
4_.9 -6‘52072 9‘797.5 11912,8 -14942.9 -5033,.3 7833.6 1575,8 -2188.8
5,0| -8810,0 13248,0 14260.,0 =17568,0 =5280,0 8064 .0 1680.0 -2304.0
0 0 -18432 0 18432 0 -3456 0 3456

1 -270 2592 -396 4320 96 -1152 =240 2304

2 =320 1152 -704 2304 =384 -1152 =192 1152

3 -660 1008 -1932 3744 <1440 3456 144 0

4 0 0 | 0 =3072 5760 768 =1152

5 -8810 13248 14260 -17568 -5280 8064 1680 -2304
6 ~-75840 116352 55104 =57600 -8064 10368 2880 -3456

7 | -302400 488592 141876 -128736 -11424 12672 4368 -4608

8 | -819200 1456128 299008 -239616 -15360 14976 6144 =-5760

9 |=1700550 3535200 556020 -398880 -19872 17280 8208 -6912
10 |-2790720 7475328 947520 -615168 -24960 19584 10560 -8064
11 [{-3417260 14306040 1513204 ~-897120 -30624 21888 13200 -9216
12 |=1966080 25362432 2297856 -1253376 -36864 24192 16128 -10368
13 | 4706910 42363648 3351348 -1692576 -43680 26496 19344 -11520
14 |22052800 67420800 4728640 -2223360 -51072 28800 22848 -12672
15 [58820520 103097808 6489780 2854368 -=59040 31104 26640 -13824

A+a1B+a20+a1a2D+a22E+a1a22F+a1a3G+a12a3H =0

A = A(pi-4)2(504-8303+28802-3680k+128)
B = +72(x-4)2(503-25x2+400~16)
C = 4K(04)(5302-1480(+128)

D =-288(0-4) (502-160(416)

E & -960( 30(-4)

G = 48(30=8)x

Fm

1152(20-3)
H = =1152(0(=3)
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TABLE 2
COMPARISON OF EXACT AND COMPUTED VALUES

OF & = aj/a FOR A PROLATE SPHEROID

A | 2 3 4 5 6
Exact o |3.732 3.886 3,936 3,960 3,972
Approx. A 3.750 3.889 30937 3.960 3,972

approximate formulas give m(a) = O, Thus the present
approximate methods work very well for the prolate spheroid.

Afd Improved First Approximation., According to its derivation
the Munk approximation could be expected to be useful only at
a distance from the end points of a distribution. It was
seen, however, (42a), that under certain c{rcumstances a dis-
tribution which was a suitable approximation for the nose and
tall of a body also appeared as a generalization of the Munk-
Weinblum approximation (23)., This suggests a procedure for
obtalning an improved approximate distribution.

It is desired to obtain a distribution m(x) which satisfies
the following conditionss

a, m(x) assumes known values m, and mp at the distribution
limits a and b, i.e.

m(a) = mg, m(b) = my (45)

be m(x) is nearly equivalent to the Munk-Welnblum approxi-
mation (23) at a distance from the distribution limits, i.e.

| m(a) & Cy2 for a&x<&b ‘

c. m(x) satisfies the virtual mass’relation (24) which

may be written in the convenient form

b | 1
Jg'm(x)dx = %(1¢k1)/; y2dx (46)
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It is readily verified that eondition (a) is satisfied by
the digiribution

m(x) = Cy2+ep+eyx (47)
where eg = E&;{bmawamb¢0(afb~bfaﬂ (48)
ey = fgb%;["‘h*“n“‘c’(fa"fb)] (49)

If the linear term egreyx in (47) is small in comparison with
m(x) at & distance from the ends then econdition (b) 1s also
satisfied. Finally condition (e) can be satisfied by a proper
ehoice of C in (47)s This is accomplished by writing m(x) in
the form m(x) = C(y X £y~ &8 fh)*'bua g+ 328 m,

substituting it into equation (46), and solving for C. We

obtain %(1+g;)Xiyﬂﬁx~t{b~33(ﬁnxahl

(50)

ﬁyﬁax-m-u (£o+£p)

‘ on by Jterstion, low that we
have derived & good first epproximation to the doublet distri-
bution funetion in the integral equaetion (19), it would be
very desirable to spply it to obtzin a second, closer approxi-
nation. This can be accomplished by means of the iteration
formule which we will - ow derive.

Let my(x) be a known first approxination end ¥ ,(x) the
corresponding velues of the stream function Y on the given
profile y2 s f£(x). Then, from Ecuation (18),

V1(x) == (0 4 £(x) j: ’f‘ir-g-*-‘-’-at (51)

Thus Y~ 4(x) 15 2 neasure of the error when mj(t) 1s tried as
a solution of the integral ecuation (19), If m(t) is a solu-
tion of (19), (51) may be written in the form

¥i(x) = £(x) j wa (52)
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Buty, on the seme ascumptions as were used to derive Munk's
approxinste distribution (22), we obtain as an approximate
golution of the integral equation (52)

By (x) « n(x) » $y1(x) (53)
or, denoting the new approximation to m(x) by my(x),
np(x) = my(x) - $y4(x) (54)
Hence, from (51)
m,(x) = m, (3 P m()
2(x) = B+ 3100 4= [ Hstat (55)

£inece the foreroing procedure can be repeated successively,
we obtain the iteration formuls

B3 (2) = mg(x) + 32(x) [ﬁ»- f: %.'.‘lm] (56)
and By, (%) « my(x) & ~Fyy(x) (57)

It 1s seen that V4 1s the value of the stresn function
on the given profile corresponding to the 1 th approximation
my(x) and hence serves as & nmeesure of the error when mi(t}
is tried as 2 solution of the integral equation (19).

Although suecessive approximations to m(x) may be computed
direetly from (56), an alternstive form, which 1s both more
convenient and more eignificant, will nov be derived. From
(56) we may write |

my (x) 2 my 3 (x)+ $£(x) [é*-ji &;éiadt] (56a)
Henee, deducting (56a) from (56) and meking use of (57), we
get Vi(x) 2Ygay (%)= #£(x) J:I%ﬁat (58)

Also, from (57), we obtain
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i
my,1(x) & my(x) - % ;;;vb(x) (59)

Thus, in order to obtain my ;(x), we first assume en m,(x)

then determine ¥3(x) from (51). ¥ ,(x), ¥4(x),.ss cen then

be successively obteined from (58), and finally my, 4(x) from (59).
It has been stated that the magnitude of Y, (x) 1s a measure

of the approximateness of my(x). This property of ¥;(x) cen

he given a geometrical interpretation. Corresponding to the

distribution my(x) there is an exact stream surface on which

the stream functiony,(x,y) = O. LetAn; be the distance

from & point (x,y) on the given body to this exact stream surface,

measured along the normel to the given body, positive outwards.

Let ug be the tengential component of the flow along the body.

Then we have

ug = - 224 _Avy (x,3)
v on " YAny

But Aye -p(x), since yy(x,y) = O on the exact stream surface.

Hence

An zm (60)
1 ° “ya,

Eince, for an elongsted body ug = 1, except in the neighbor-
hood of the stagnation points, it is seen thaty;y(x) enables
a rapid estimcte to be made of the variation from the desired
profile of the exact streem surface corresponding to mi(x).
This is an important property because it can be used to
monitor the successive approximations. Thus, the sequence
V41(x) can be terminated whenA ny becomes uniformly less

than some specified tolerance; or, since there is no assurance
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thet the infinite sequence ¥;(x) converges, the sequence can
conceivably give useful resulte even without convergence if
it is continued as long as 4ny decreases on the average, and
is terminated when the error begins to increase and grows
to an unaccepteble megnitude at some point along the body.
The strong similarity'between these remarks and the discussion
following Theorem 2 of Part 1 should be noted.

There is also a strong similarity between the iteration
formulas, equation (17) of Part I, whose convergence was
thoroughly discussed, and the present equation (56), Ain
essential difference between the iteration formulas is that
the former employs the iterated kernel of the integral equae-
tion, thgwiétter does not, so that the convergence theorems
of Part I are not epplicable. Nevertheless it is proposed to
use the form in (56) (or the equivalent iteration formula (58)

for the following reasons:
8¢ The labor of numerical cslculations would be

greatly increased by iterating the kernel, and
even then only convergence in the mean would be
gusranteed (Theorem 4% of Part I).

b, The physical derivation of equation (56) indicates
that at least the first few approximations should
be successively lmproving.

¢. The successive approximations are monitored so
that the sequence can be stopped when the error
is as small as decsired or, in the case of initial
convergence and then divergence, when the errors

begin to grow.



an approximate doublet distribution my(x) has been obtained,
the velocity components u,v can be computed from the corre-

sponding stresm function (18)

Vil5y) = 72 {jﬁ -LS-E)-dt %J (61)
from which, in accordance with equations (5) and (6),
. Y. 2 g
uszls ja(%u 5 my (t)at (62)
and
Vo= 3yi 35 my (t)ae (63)
On the given surface we have, from (61),
b mg (t) (x)
| i3t Q‘*Y%G‘ (614)
where now
2 & (x-1)24 £(x) (65)

Differentiating (64) with respect to x gives

b 1
? fegovy! R (x) 2yy (x)y* (x)

Hence, from (62) and (64) we obtain

) (x)
3y j -A-g—- dt - .....%;5.“. (67)
and, from (63), (66) and (67),
v = uy'(x) +‘k15§2 (68)
y(x)

where the primes denote differentiation with respect to x.
Equations (67) and (68) are the desired expressions for u
and v. If the approximation my(t) is very good, the con-
tributions of the error funetionV4(x) should be very small.
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It 1s interesting to note that the form of equation (68)
shows the deviatlion of the resultant velocity from the tangent
to the given body.
Bernoulli's equation for steady, incompressible, irrotas-

tional flow now gives the pressure distribution p,
§ .1~ (u2sv?) (69)

where g is the stagnation pressure.,

Numerical Kvalustion of Integrals In order to perform

the iterations in equations (56) and (58) and to compute the
velocity distribution it will be frecuently necessary to

evaluate integrazls of the form

b
j: &ﬁgl dt and f; mﬁ%l dt

where

r2 o (x-t)° ¢ £(x)
Because, in this form, these integrals peak sharply in the
nelghborhood of t « X, especially when the body is elongated,
they are consequently unsulited for numerical evaluation.

A more suitable form can be obtained by means of the
following transformation., Let (x,y) be the coordinates of
a point on the body, t the abscissa of a point on the axis,
© the sngle between line jolning these two points and the
7~axis; see Figure 1. Then

X -tz y(x) cot® (70)
We may now transform the integrals so that © becomes the

variable of integration. Then

jb 2 m(t) "
2 55 B2t & l; ) 8inode (71)
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b s

and [ T a(t) o [n(t) stndoso (72)
ar

vhere oz arctan -}-{ilg @= ercten E%E (73)

An alternate procedure, which eliminates the peak without

a transformation of variesbles, is the following. We have

Sb

b
¥-§ m(t)dt = ja 3[m(t)-m(x)] dt+ m(x)ja %é-dt
b ), b L
and Ja ig m(t)dt = Sa i?[m(t)-m(x)] dt+ m(x) L %gdt
Hen b
e ja X§ n(t)dt = j: %[m(t)-m(x)] dt+ m(x) (cosa-cosg) (7la)
b
a l% m(t)dt = %[m(t)-m(x)] at
+ m(x) |coso~co83~ g(cos"‘o(-—cas%)] (72a)

Gauss' cuadrature formula 1s a convenient and accurate
method of evaluating these integrals. The formula may be

expressed in the form

jl FE)at = 5 R, F(E ) (74)
1 81'1% ni

-

where the £ are the zeros of Legendre's polynomial of degree

n and the Rp4 are weighting factors. These have been tabulatedll

for values of n from 1 to 16, These numbers have the properties
Fni = Bpyn-g41 and §py = 'Vénqn-i+1 (7%)

The value of the integral given by the formula (74) is the

seme as could be obtained by fitting a polynomial of degree

2n-1 to F(x). The values of R,y and £,y ere tabulated below

forn = 7, 11, and 16.

When the limits of integration are X and 3, as in equa-~

tions (71) and (72), Gauss' formula becomes
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,‘[ﬂ F(6)ddm éé-‘i‘ jLg‘;j;aniF(ei) (76)
where
TABLE 3
ABSCISSAE AND WEIGHTING FACTORS FOR
GAUSS' QUADRATURE FORMULA
ne?7 n=11 ns= 16
i €3 Ry Ri €41 Rj
1| =.949108 0129485 .9g8229 .055669 -0,989401 0027152
2| =.741531 0 279705 - 7063 0125580 «s 944575 0062254
3| =.,405845 ,381830 | -.730152 .186290 | ~-,865631 ,095159
e i | IR R S e
° - - =0 . b 7 0149 9
6 élg n=1s1 R1=Rn-iﬂ 272925 _o4g 217 139%57
. -,281604  ,182603
g 1= -fn-tn Bi=Rn 1. -.095013  .189451
£1m~n-1s Ri=Rp-i+

Illustrative Example.

The foregoing considerations will

now be applied to a body of revolution whose meridian profile

is given, for =1

¥2 = f(x)

=x=1, by

= 0004 (1mx4)

(78)

The body is symmetric fore and aft, has a length-diameter

ratio A= 5, and a prismatic coefficient
1

;jf (1-x*)dx = 0,80 (79)
o
By applying to (78) the transformation
=2£-1,y=27 (80)

We obtain the equation for the geometrically similar body

of unit length, for 0 £ ¢ § 1,
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m2 = 0,88(£-3¢2¢453-2E%) = 0,08 (1-§)(22-2441) (81)
We will also need the slope of the profile which, from (78)
is

' 3
y' = imiﬁl - '
2y (1-x") (682)

The profile and f(x) are graphed in Figure 2.

First let us find the end points of the distribution. We
have, from (81), &3 = 0.08, ap = =0.2%, &3 =z 0,32, The
approximate formula (41) then gives o(= 3.68 or 3.8%, whence
a = a3/% = 0,0217 or 0.0208, 4An examination of the complete
polynomial (35) with the aid of Table 1 shows that its zeros
occur at o = 365, 3,85, 12,1, In the application of Table
1 to determine these roots the regions of possible zeros
ghould be determined by inspection, the values of the polynomial
in these regions calculated from equation (4%) and Table 1,
and then graphed to obtain the zeros. It is seen that in the
present case the approximaste formula (41) would have been
sufficiently accurate for the determination of the roots near
o = 4+ The solution of the complete polynomial equation will
always yleld an additional large root, corresponding to the
large root of equation (38); in general, however, this root
should be rejected since as wlll be shown, the initial
doublet distribution corresponding to it is less simple than
for the roots near X = %,

The initial behavior of the distributions corresponding
to each of the three roots, as determined from equations
(36) and (37), is shown in the following table. It is seen
from the table that the distribution for Xas 12.1 begins wlth
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practically a zero value for m(a), with a small negative slope

and with up curvature, Since the distribution curve cannot

TABLE 4
CHARACTERISTICS OF INITIAL DISTRIBUTION
& a m(a) Cq i%
3.65 | 0219 »0000216 .0375 ~0,103
3.85 | ,0208 -,0000191 »0376 -0,109
12,1 .0066 -0000008 -, 0064 0,35

continue very far with up curvature, there must be an in-
flection point nearby. In contrast, the distribution corre-
sponding to the other two roots begin with positive slopes
and down curvatures and hence must be considered simpler,
Furthermore the distribution for the first root is considered
simpler than for the second since the distribution curves
are practically identical except that, for the second root,
the curve is extended a distance 4a = ,001l, in the course
of which m(a) changes from a positive to almost a numerically
equal negative value, If we take the point of view that the
positive and negative values of this extension counterbalance
each other, the curve without the extension, corresponding
to the first root, must be considered the simplest,

Hence, for the purpose of obtaining a first approximation,
we will assume Az 3,65 and, correspondingly, a = 0,022,
m(a) = 0,000022, Often, as in this case, the labor of obtain-
ing a and m(a) can be considerably reduced by using the less
exact equations (41) and (42) instead of (35), (36) and (37).

Since, as will be seen, the iteration formulas rapidly
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improve upon the first approximstion, great effort should not
be expended to determine sn initlal velue for m(a).

The values & » C.072 end m(a) & C.000022 have been derived
for the profile in the f ,M -plene. The corresponding velues
in the x,y-plane are 2 ¢ ~0.956 and my = 0,000088, &y
symznet}ry we 8180 hsve D w ~By ML w Mge

A first epproximetion can now be ohtuined from (47), (48),
(49) and (5C)e &ince A = 540, we have ky = G059 4lso, from
(78)1 £, » 0400659, ﬁ 72dx & 040640, j: y2dx & 0,0637. Hence
from (50), C = 0,328, Then, from (48), 6y = My ~ Cfy v ~0,00207;
from (49), ey = Oy Finally we obtain from (47)

my (x) & 0,328y2 ~ 0,00207 (83)

We can now apply ecuation (51) and the iterstion formula
(52) to obtain the sequence of functionsy4(x). Llet us
suppose that it is desired to obtein o distrivution my(x)
vhose exact stream surface deviates from the given surface by,
less than one percent of the meximum radius, 1.6. An < 0,002, |
Then, by (60), the sequencely,(x) should be continued until
Yy (=)< 0.002,/£(x) for a & x § b, unless the error, as
represented by V(x). begins to grov before the desired
degree of approximation is attaineds In the lsatter case the
best epproximation sttainable would fall short of the
specified accuracys

The integrations in (50) and (51) may be carried out in
the form (71) in terms of 6 defined in (70), For a fixed
(xyy) on the given profile, X and g are first computed
from (73)s Then, to apply Causs' quadrature formula (76),
the intervel 1s subdivided st the points 64 given by (77)
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énd the integrends evalusted at these points. The aorwspmém
ing velues of t at which my(t) in (51) ory, ,(%) in (56) 4s
to be reed are, from (70),

tjzx-yeoto, (708)
£ince the values tj and sin ej ere used repeatedly in the
successive iterations st a given (x,y), these should be
stored in & form convenient for gppliecation.

The calculationg for obteining the integration limits X
and g for several values of x are glven in Table 5. The
valuee of @4 from (77), and the corresponding velues of
stmej for spplication of the Geuss 1l ordinate formula,
and the velues of t; from (708) for each x are entered as the
first three colume in Tablee 78 through 7h, in which are
given the celculations fory,(x).

In order to computeyy(x), my(t) is computed from (£3),
then myi sinf is obtained., These are tebuleted in Table 7.
Gauss' formule then givee my sinede, Y ;(x) is then ob-
tained from (51); its greph 1s given in Figure 2. It is
important to note thst my(t) 1s obteined by caleuwlation,
rather than grephically, in this operation., This procedure
is recormended since it givee greater accuracy in & critlcal
steps In the subsecuent operztions on the Vs conslderably
less percentage accuracy 1s required, since the V's are of
the noture of first differences between the m's, so that
grephical egaf&t&mg are sufficlently sccurate.
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is B check on the accuracy of the integretion,¥;(0) ves
aleo evaluanted by two other mesns, with the following results:
from Gauss 7 ordinate formula ¥ 41(0) = 04001258
from Gauss 11 ordinate formula  Y3(0) g Ce0CI243
from exact integrstion ¥ 4(0) 2 04001243
It is seen that the 7 ordinaste formule introduces an error
in the fifth decimal place.
The {irst step in the deterninstion of Yo(x) is to read
the values of ¥9(t) from the greph, Figure 3, ¥4R sino
end [V 8in0de are then obtained. ¥ z(x) is then given by
(5€) and graphed in Figure 3« FHepeated aspplicetion of thie
procedure gives Vf3(x) end ¥, (x) which are a1s0 graphed in
Figure ls The secuence 1s stopped atV),(x) since ) has
increased sppreciably aku/3 8t X gz =095,
Hence, from (59), we heve the spproximete distridution
m(x) & my(x) = Hig ()= Yplxd- yy(x) (84)
to vhich ¥ (x) is the corresponding error function. The
distsnce An between the stream surface for my(x) and the
given profile i¢ seen to be very smally the largest error,
Vi = =0,00007 at x & ~4956, gives aAn of about one per
cent of the nmaximum ordinste, 4 gr&ph of m,(x) is given
in Fipure ks For the scke of ecomparison the curvesg for
my (x) and the origimal Munk spproximstion $f£(x) ere also
showne
Teble & shows the caleulations for obteining the veloelty
components u,v from (67) and (68), in vhich the integrals
have been eveluated in terms of the polar angle 6 , according
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to ecuations (71), (72) and (73)s Here also Causs' eleven
ordinate formula is used, The velues of © and t &re agaln
token from Table 7§ the values of my(t) are giver by (84},
in which the ¥''s are read from Figure 3 and ml(t) is given
in Table 7.

The pressure distrilbution ean nov be obtuined from (69),
Graphs of p/q s&r¢ shownh in Figure 5.
/ae Let Alp/a)y puy AV and

o m denote errors in p/qy uy Vv, and ms Then, from (69), we
have ; -
Ap/a) = = 2(uouevay)
from (68),
AV = Y'ru
and from (67) end (72), except near the stagnation points,

AR Qﬂﬁ g:giﬁede uhg

Dlp/g) u - %ﬂ (14y!2)
If now ve assume U & 1, ¥y' % O, ¥° & Um (Munk's approxization),
we obtain
AMp/q) & - 22n/m.

Thus an error of one percent in the determination of m would
introduce an error of C.02 in p/q.

In the foregoirg exsmple the minirmum value of p/q was
pbout ~0,2C, Hence an error of one pereent in m would have
produced an ervor of ten percent in the minimum veiue of
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p/qs 1%t was found, in feet, that the epplication of Gauss'

seven ordinete rule introduced deviatlons in the valuer of p/g

given by the 11 point rule of less then C.002 for the entire

bodys For this reason Gauss' eleven point rule was used in

ﬁﬁ@ exemple, altﬁaugh ihajuevan point rule would ﬁava suf'ficed

if sn aeccuracy of only +003 in p/q were recuired; see Figure 5.
If grester accursey 12 desived the integrals cun be evalue'

ated in the forms (71s) and (72&). If the latter forms are

used in conjunction with the Gauss quadrature formula the

velues of x should be chosen identical with the t's recuired

by the Gaugs formulas This enables the entire csieulutions,

including the iterstion: and the velocity determinations, to

be made arithmetieslly, without resort to graphical operatiocns,

go thet the method becores suitable for processing on an suto-

matic-sequence computing machines In order to obtain sufficient

accursey in the integrations and to obtain the velocitlies

end pressures st a sufficlent mummber of points elong the body

g Causs formuls of high order ghould be used, say n = 16, W1

For this reason the procedure th:t has been illustrated in

detzil may be less tedious for manusl application,

HOTROGR « In Qﬁ‘&ﬂ? w

ecompare the accuragy of the Zarman method with the present
one, the error functlom Yy (x) was computed for a distribution
derived by the Kerman method, employing 14 intervals extend-
ing from -0.98 & x & 0«84 VYi(x) 1s graphed in Figure 3.

It is seen thet the errore are much greater then for the
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pregent method, especlally nesr the ends of the body. The
oseillstory character of v, {x) is impesed by the condition
thet the stream function should vanish at the center of esch
intervels It iz concelvable that.the amplitude of the oseilla-
tions inyy(x) moy remein large cven when the mumber of intere
vale ie grestly increesed; 1.3.{ the Korrman method may give a
poorer approximation when the mumber of source-sink gegments
is greatly incressed, The pressure distribution obtained by
the Xerman method is graphed in Figure 5.

Xaplan's firet method3 was alve applied to ottsin the
prezsure distribution, Keplan expresses the potentlial funetion
pin the form @ @ JanQp(A)Pp(K) vhere A snd M sre confocal
elliptic coordinates, P,(«) and (p{A) the nth Legendre and
assoclated Legendre polynomiels, axd the A 's are coefficlents
to be determined from & set of linear equations which express
the condition that the given profile is & stresm function,

In the present cese it wes assumed thet ¢ was expressed in
terms of the first 9 Legendrs function: and the A, 's delermined
from the conditions that the strsem function chould vanish

at 9 preseribed rarintu (mamding the. atmmem pointe)

on ﬁw body e ﬁw Nsnlting ‘pressure diatrﬁ.mtzm 1s else

shown in Figure 5,



TABLE §

CALCULATIONS FOR INTEGRATION LIMITS &, 8

x x-a x-b y tan & tan A o« B 3(B-) I A+R)
0 0.956 =0,956 0,20000 0,20921 -0,20921]| 0,2062 2.9354 |1.3646 1.5708
-0,20 | 0,756 =1.156 -0,19984 0.26434 -0.,17287} 0.2584 2,9704 |1.,3560 1.6144
-0,40 | 0.556 <=1,356 0,19742 0.35507 =0.14559| 0.3412 2.9970 |1.3279 1.6691
-0.60 | 0,356 <=1.596 0.,18659 0.52413 -0,11992{| 0.4828 3,0222 [1.2697 1.7525
-0,70 | 0,256 =-1.656 0,17435 0.,68105 -0.10528| 0.5979 33,0367 |1.2194 1.8173
-0.80 | 0,156 =1.796 0,15368 0.98513 -0.08752| 0.7779 3.0543 |1.1382 1.9161
-0,90 | 0,056 =1.896 0.11729 2.,09446 -0,06320| 1.1254 13,0785 |0.9766 2.1020
-0.956| 0 -1,912 0,08117 L) -0,04245| 1,5708 3.0992 | 0.7642 2,3350
TABLE 6
CALCULATIONS FOR PRESSURE DISTRIBUTION p/q
x ' AR VA u uy'  W',/y v uw+v?  p/g
o} ,040000 ,20000 .,0000 ..000000 1.02640 .00000  .00000 |.00000 11,0535 =,0535
-0.20 {,039936 .19984 ,0032 -,000082 1,03441 .00331 =,00041 |.00290 1.0700 =.0700
-0.40 {,038976 .19742 .0259 .000060 1.05618 .02739 00030 {.02769 1.1163 =,1163
="(:) 960 0034816 018659 00926 0000306 1007907 00999 900164 0101 5’7 101747 = 01747
-0,70 1.030396 .17435 ,1574  ,000317 1.07866 .1697 ,00182 |.,17160 1.1930 -.1930
-0,80 1,023616 .15368 2665 -.000129 1.04917 ,27960 =,00084 |.27876 1.1785 -.178%
~0,90 !.013756 .,11729 .4972 .,92425  ,A5954 .4489% 1,057 -=,0557
==C’09'56 0006 588 008117 08611 068161 ° 58693 ] 5768* 07973 02027

*yv obtained from

equation v = %jffm(t)sin2 Ecos B46.
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TABLE 7
CALCULATIONS FOR Y4 (x)

AND u(x)

(a) x = 0: 3(B-0) = 1.3646, y2 = 0.0400

0 t Rsinf |m(t)  m(t)Rsind| W1(t) Y 1(t)Rsinf| Va(t) VYo(t)Rsinf| Y3(t) V3(t)Rsinf| ma(t) msRsind
.2359 | -.8320 01301 [ .004763 .0000620 | -.001307 ~-.0C00170 |-.000428 =,0000056 | -.000151 ~-,0000020 | .005706 ,0000041
.3603 | -.5309 .04428 | .010008 .0004432 | -.000370 -,0000164 |=-,000107 =-,0000047 | -,000019 -.0000008 |.010256 .0000565
.5744 | -,3090 .10121 | .010930 .0011062 | .000652  .0000660 | .000188  .0000190 | .000063  .0000064 |.010478 ,0003130
.8624 | -.1713 .17708 | .011039 .0019548 | .001058  .0001874 | .000281  ,0000498 | ,000075  .0000133 |.010332 .0010552
1.2030 | -.0771 .24522 | ,011050 .0027097 | .001198  .0002938 | .000307  ,0000753 | .000075  .0000184 | .010260 .0021907
1.5708 | .0000 .27293 | .011050 .0030159 | .001244  ,0003395 | ,000311  ,0000849 | ,000071  .00C0194 |.010237 .0027940
1.9386 | .0771 .24522| .011050 .0027097 | .001198  .0002938 | .000307  .0000753 | .000075  .0000184 |,010260 .0021907
2.2792 | .1713 .17708 | .011039 .0019548 | .001058  .0001874 | .000281  ,0000498 | ,000075 0000133 |.010332 .0010552
2.5672 | .3090 .10121 | ,01093C .0011062 | .000652  .0000660 | .000188  ,0000190 | .000063  .0000064 | .010478 .0003130
2,7813 | .5309 .04428 | ,010008 .0004432 | -,000370 =-,0000164 |=-,000107 -.0000047 |-,000019 -.0000008 |.010256 .CO00565
2.9057 | .8320 .01301 | .004763 .0000620 |-.001307 -.0000170 |-.000428 -,0000056 |-.000151 -.0000020 |.005706 .0000041
SmRsinb =.0155677 PV Rsinf = 0013671 (% Rsinb = .0003525 (ZynRsinf =.0000900 Fhm sin’6) =0100330

(mysinf -.0212437 [{y3sinf = .001866 |fy,>sinfaf= .0004810 |{}351nHdD .0001228 |fm s1n?Ba.013691

Y, =.001242 V5 = .000311 V3 = -000071 Y4 =.000010 u =z 1.0264
(b) x = -0.20: #(B-a) = 1.3560, y° = .039936

8 t  Rsinf [m(t)  m(t)Rsinf] ¥1(t) ¥ 1(t)Rsinf Ya(t) Yo(t)Rsinb| Y3(t) Y 3(t)Rsinb| ma(t) mgRsindd
.2879 [ -.#728 0150 | ,003366 .0000532 |-.001189 -,0000188 |-.000361 -.0000057 |=-.000112 -.0000018 [.004197 ,0000053
.4115 | -,6579 ,05023 | .0N8592 ,0004316 |-,000997 =-,0000501 [-.000329 -.0000165 [-,000109 -.0000055 |.009310 .0000748
.6243 | -.,4774 ,10889 | .010369 ,0011291 [-.000098 -,0000107 |-.000018 -.0000020 | .000013  ,0000014 |.010421 .0003877
.9105 | -.3552 ,18417 | ,010841 ,0019966 | .000469  ,00CO864 | ,000141  ,0000260 | ,000055  ,0000101 |.010508 .0012072
1.2489 | -, 2666 .24929 | ,010984 0027382 | .000799  .0001992 [ ,000221  ,0000551 | .000070  .0000175 |.010439 .0023418
1.6144 | -,1913 .27266 | .011032 .0030080 | .001017  .0002773 | .000271  .0000739 | .000074  ,0000202 |.010351 .0028166
1.9799 | -.1133 .24112| ,011048 .0026639 | ,001152  ,0002778 | .000300  .0000723 | ,000076  ,0000183 |.010284 .0020874
2.3183 | -.0148 .17102 | ,011050 .0018898 | ,001240  .,0002121 | ,000310  ,0000530 | .000072  ,0000123 |.010239 .0009419
2.6045 | .1356 .09531| .011046 .0010528 | .001121  .0001068 | .000296  .0000282 | .000076  .0000072 (.010299 .0002569
2.8173 | .3945 ,04001 | .010732 .,0004294 | ,000300  .0000120 | ,000101  ,0000040 | ,000048  ,0000019 |.010507 .0000427
2.9409 | .7823 .01110| .006136 .0000681 |-,001336 -.0000148 |-.000445 -,0000049 |=-,000159 -.0000018 [.007106 .0000031
SmiRsin@= 0154607 [2¥qRsinh = .0010772 |TYoRsinf = .0002834 |2 Y3Rsinf = .0000798 |2Rmgsin®6 20101654

jmisipe = .0209647 #%sinede..001460 ngsinede..ooo3843 jﬂ%sin@d@..0001082 fmasin3f=013784

1 = »000997 V5= 000267 Y3 =.000075 Y4 =.000021 U= 1.0344
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(¢) x = -0.40: #(B-& = 1.3279, y2 = 0.038976

6 t  Rsinf| m(t)  m(t)Rsing VYi(t) Wi(tRsinf| Yo(t) Yo(t)Rsinf| Y3(t)  Y3(t)Rsind| my(t) myRsidd
.3701 [-.9089 .02014} .002096 .0000422 f-.000982 -,0000198 [-.000272 ~-.0000055 [-.000060 -.0000012 [.002753 .0000072
2912 [-.7691 .05924] .006460 .0003€27 [-.001328 -.0000787 |-.000440 -.0000261 |-.000158 -.0000094 [.007423 .0000978
6995 |-.6346 .11993| 008922 .0010700 |-.600895 -.0001073 |-.000292 =-.0000350 |-.000092 -.0000110 |.009562 .0004754
.9798 [-.5325 .19364| .009995 .0019354 [-.000376 -.0000728 |-.000109 -.0000211 [-.000020 -.0000039 [.010248 .0013684
1.3112 |-.4524 ,25200| .010500 .0026670 | .000023  .0000058 | .000021  .0000053 | .000027  .0000069 |.010464 0024827
1.6691 |-.3805 .27162| .010775 .0029267 | .000360 .000097& | .000115  .0000312 | .000050  .0000136 |.010512 ,0028278
2.0270 |-.3031 .23592| .010939 .0025807 | .000673  .0001588 | ,000191  ,0000451 | ,000065  .0000153 |.010474 0019912
2.3584 |-.2017 .16454| ,011028 .0018145 | .000991  .0001631 | .000265  .0000436 | .000075  .0000123 |.010362 .0008488
2.6387 |-.0411 ,08979 .011050 .0009922 | .001228  ,0001103 | .000310  .0000278 | .000073  ,0000066 |.010244 .0002137
2.8470 | .2506 .03647| .010998 .0004011 | .000851  ,0000310 | .000233 0000085 | ,000071  .0000026 |.010420 .0000320
2.9681 | .7264 ,00961| .007397 .0000711 |-.001259 =-,0000121 |-.000412 =-,0000040 |-.000147 =-.0000014 {.008306 .0000024
TmiRsinb =.0142836 PYARsinB = .0002761 BEYorsinf =.0000698 PNaRsind =.0000304 |3 Rmast?8 = 0103474
fm1sinf =.0197639 [{V4sinf = .0003666 ([Y2sinf =.0000926 {[Y3sinf =.0000404 | [masin®8=013740

Y1 =.000276 Y2 = .000093 3 = 000047 P4 = .000027 u = 1.0562

(d) x = -0.60: #(B-0 = 1.2697, y2 = 0.034816

9 t  Rsinf | m(t) my(t)Rsinf] Yy(t) Yp(t)Rsind| Polt)  Yo(t)Rsind Y3(t)  Y3(t)Rsinf| my(t)  msRsind
5104 |-.9333 .02719) 001097 0000298 |-.000798 -.0000217 |-.000189 -.0000081 | -.000011 -.0000003 |.001594 .0000104
.6262 |-.8580 .07360| .003940 .0002900 [-.001248 -.0000919 |-.000392 =-.0000289 [-.000132 -.000C097 |.004826 .0001221
8254 |-,7722 ,13689 .006385 .0008740 [-.001330 =-.0001821 [-.000441 -.0000604 |-.000159 ~-.0000218 |.007350 .0005432
1.0934 |-.6965 .20712| .007962 .0016491 |-.001151 -,0002384 |-.000381 -.0000789 |-.000131 -.C000271 |.008794 .0014369
1.4103 |-.6302 .25941| ,008981 ,0023298 |-.000873 =-.0002265 |-.000287 =-.0000745 |-.000090 -.0000233 |.009606 .0024280
1.7525 |-.5657 .26843| ,009706 .0026054 |-.000551 -.0001479 |-.000168 -.0000451 |-.000042 -.0000113 |.010087 .0026190
2.0947 |-.1922 ,22796] ,010260 .,0023393 |-.000170 -.0000387 |-.000041 -.0000093 | .000005  .0000011 |.010383 ,0017715
2.4116 |-.3915 .15551] ,010742 0016705 | .000311  .CCO04E4 | .000102  .0000159 | .000049  .0000076 |.010511 .0007271
2.6796 |-.2253 ,0€303 .011016 ,0009147 | .000928  .0000771 | .000251  .O0CO208 | .000072  .0O0000EO |.010390 ,0001714
2.8788 | .0936 .03263] .011049 0003605 | .001179  .0000385 | .000302  .0000099 | .000075  .0000024 |.010271 .0000226
2.9946 | .6602 .00818 .008558 .0000698 |-.001005 =-,0000082 |-.000332 -.0000027 |-.000110 -.0000009 |.009282 .0000016
YmRsinb < .0131329 2YqRsinf =-.0007914 [SYoRsinb =-.0002583 PW3Rsinf =-0000773 [SRmgsin®d 20098538
mysinf - .0166748 [[Vysinf =-.0010048 |fY,sinf =-.0003280 H/3s1n8 =-.0000981 |{m,s1n36 =.012511

Y1 = .000733 Y, =-.000231 Y3 ==000067 V4 =-.000018 u =1.0791
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() x = -0.70: #(F-0) = 1.2194, y2 = 0.030396

6 t  Rsind |my(t) myit)Rsinf| Y1(t) V¥1(t)Rsinf Yo(t) VYo(t)Rsinf  V3(t) V3(t)Rsinf ma(t) meRsin®
.6244 | -.9420 ,03254 | .000719 .0000234 [-.000711 =-.0000231 {-.000154 ~-.0000050 | .00000&  .0000003 |.001148 .0000127
.7356 | -.8926 .0B426 | ,002722 .0002294 |[-.001093 =-.00C0921 |-.000318 ~-.0000268 |-.000086 =-.0000072 |.003471 .0001317
.9270 [-.8308 .14899 | ,004799 .0007150 [-.001309 =-.0001950 |-.000428 -.0000638 [-.000152 -.0000226 | .005744 .0005475
1.1843 |-.7710 .21598 | .006414 ,0013853 |-.001329 =-.0002870 [-.000441 =-.0000952 |-.000159 =-.0000343 |.007379 .0013672
1.4886 |-.7144 ,26191 | .007633 .0019992 |-.001219 =-.0003193 [-.000400 =-.0001048 [-.000140 -.0000367 |.008513 .0022144
1.8173 |-.6561 .26469 | ,008619 ,0022814 [-.000989 -.0002618 [-.000327 -.0000866 |-.000108 =-,0000286 | .009331 .0023229
2.1460 |-.5870 .22052 | .009492 .0020932 |[-.000663 =-.0001462 |-,000206 =-.,0000454 |-,000058 =-.0000128 | .009956 .0015458
2.4503 |-.4893 ,14866 | ,010298 .0015309 |-.000155 =-.0000230 |-.000035 -.000C052 | .000008  .0000012 | .010389 .0006277
2.7076 |-.3238 .07833 | .010906 .0008543 | .000559  .000043R8 | ,000172  .0000135 | .000062  .0000049 | .010509 0001455
2.8990 [ .0045 ,03016 | .011050 .0003333 | .001242  ,0C00375 | .00C310  .0000093 [ .,000073 .,0000022 |.010237 .0000178
3.0102 | .6192 ,00729 | .009121 .0000665 |-.000821 =-.0000060 |-.000266 =-.0000019 |-.000080 -.0000006 | .009705 0000012
PmiRsinf =.0115119 PUqRsinB=-.0012722 [2YpRsin B=-.0004119 P U3Rsinf=-.0001342 [2Rmysin’0=.0089344

fmysinf = .0120376 |[¥41sinf = -.0015513 [[W2sind = -.0005023 j\pésin@ = -,0001636 |fmgsin®@ =.010895

Yq = -.001160 Yo = -.000384 Y3 = -.000133 Y, = -.000051 u = 1.,0787
(£) x = -0.80: #(fF-a) = 1.1382, y2 = 0.023616

9 t  Rsind |my(t) my(t)Rsinb] Y1(t) Yy(t)RsinG Yolt) Vo(t)Rsin€ Y3(t)  Y3(t)Rsinf| my(t)  myRsin?®
.027 {-.9485 .04004 | .000431 .0000173 |-.000655 -.0000262 |-.000127 -.0000051 | ,000021  .0OOOCOO8 |.000812 - 0000168
.9064 |-,9204 ,09887 | ,0C1634 .0001616 [-.000896 -.,0000886 |-.000233 =-.0000230 |-.000037 =-.0000037 |.002217 .0001359
1.0850 |-.€811 .16474 | .003143 .0005178 |-.001158 -.0001908 |-.000347 =-.0000572 |-.000102 -.0000168 |.003947 .0005084
1.3253 |-.€385 .22619 | .004565 .0010326 [-.001297 -.0002934 |-.000421 -.0000952 |-.000149 =-.0000337 |.005499 .0011704
1.6093 |-.7941 .26262 | .005833 .0015319 [-.001339 -.0003516 |-.000446 -.0001171 |-.0C0158 -.0000415 |.006805 .0017847
1.9161 |-.7447 .25683 ] .C07015 .0018017 [-.001299 -.,0003336 |-.000427 =-.0001097 |-.000151 -.00C0388 |.007954 .0018090
2,2229 [-.6827 .20887 | .008200 .0017127 [-.C01099 -.0002295 |-.000363 =-.0000760 |-.000123 =-.0000257 |.008993 .0011865
2.5069 |-.5913 .13€26 | .009446 .0013060 {-.000690 -.0000954 {-,000215 -.0000297 |-.000061 -.0000084 |.009929 .0004825
2.7472 |-,4308 .07159 | .C10598 .00075€7 | .000128  ,0000092 | 000051  .0000037 | .00C037  .0000026 |.010490 .CO01108
2.9258 |-.0989 .02689 | .011049 .0002971 | .001172  .0000315 | .000302  .OCO00E1l | 000076  .00C0020 |.010274 0000127
3.0295 | .5652 ,00623 | .009711 .0000605 |-.000548 -,0000034 |-.,000169 -.0000011 |-.000041 =-.0000003 |.010090 .0000008
PmiRsin 6=.,0091979 PUqRsin#= -.0015718 PYpRsiné~ -.0005023 P yaRsinf= -.0001635 [FRmysirtd--.C072185

fmisiné = .0104690 |[Yysiné -.0017890 |fypsin & = -.0005717 |fy3sin B = -.0001861 |Jmssin® -.00€216

¥/1= ~«001339 Y, -.000444 Y3 = -.000158 Y4 = -.000065 u = 1,0492
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(g) X = -0.90: $(F-0a) = 0.9766, y° = 0.,013756

[ t Rsin 6 | m(t) my(t)Rsinf, ¥q(t) VYA(t)Rsind] VYu(t) Yo(t)zsind VYa(t)  VY3(t)Rsinb| ma(t) myRsin’O
1.1467 [-,9530 .05074 | .000228 ,0000116 [-.000600 -.OOOO?OZL -,000104 ~-.C000053 .000035  ,0000018 | .000563  »0000237
1.2357 [-.9408 .11860 | .000772 .0000916 |=-.000720 -.0CCCES54 [-,000154 -,0000183 .00C006 .0000C07 | .001206  .0001276
1.3289 [-.%216 .i8322 | .001585 .0002904 |-.000888 -.0001627 |-.000230 -.0000421| -.000034 -,0000062 |.0C2161  .0003€30
1.5950 |-.8972 .23312 | .002549 ,0005942 |-,001060 -,0002471 |-.000305 -.0000711] -.000080 -,C000186 |.,003272 .0007623
1.8388 {-.8678 25342 | ,003609 .0009146 |-.001215 =.0003079 |-.000375 -,0000950| -.000121 =,0000307 | ,0024465  .0010522
2.1020 |-.8311 .23532 | .004790 ,0011272 |-.001307 -.0003076 |-.00C428 =-,0001007 | -.000151 =-.0000355 |.005733 .0010030
2.3652 |-.7806 .18414 | .006179 .0011378 |-.001335 -.0002458 |-.000444 -,0000€1€ | -.000159 -.,0000293 | .C07148 .0006462
2.6090 |-.7010 .11841 | .007882 .0C09333 |-.001168 -.0001383 |-.000388 -.0000459| -.000134 -,0000159 | .008727  .0002665
2.8151 |-.5536 .05974 | .009818 .0005865 |-.000486 -,0000290 |-.000145 -.00C00E7| -.000034 -,0000020 |.010151 .C00C0624
2.9683 -.2300 .02165 | 011013 .0002384 | .000915  .0000198 | .000248 .0000054 .000072 .0000016 | .010395  .C000067
3.0573 | .4E80 .00469 | .010306 ,0C004€3 |-.0C0149 -.0000007 |-.000033 -.0000002| .OCOO0&  ,0000000 | .010393 0000003
PmyRsin 6 =.0059739 [ ¥4Rsin B=-,0015351 [ZYsRsinf =-.0004637 I Y3Rsind= -,0001341 | 5 Rmysin’6=. 0043339

Jmisin 6 = .0058341 |[¥3sin 6 = -.001499 |[¥Yesinf = -.000452€ | [y3sin b = -,0001309 | [ mgsin®”.004233

V1= -.001044 Yo o -.000299 Yy = -.000073 Y4 = -.000008 u = .9243
(h) x = -0.956: $(F-%) = 0.7642, y2 = 0,006588

6 t  Rsin® | my(t) my(t)Rsind] V4(t) VYA(t)Rsind] ¥o(t) Wo(t)Rsind VY3(t) ¥3(t)Rsind| ma(t)  mgRsin?6
1.5872 |-,0547 ,05566 | .000151 .0000084 |-,000581 -,0C00323 |-,000099 -,0000055 | .000039 0000022 |.CC0472 ,0000263
1.6572 |-,9490 ,12512 | .000409 .0000512 |-.000652 -,CC00816 [-.000126 ~-.CCO0158 | .cOCO22  ,0000028 | ,000787  ,0000977
1.7773 |-.9390 .18234 | ,000850 .00Cl550 |-.CC0745 -,0001358 |-.000167 -.00003C5| .0OQCOO — ,0000000 | .001306 .CO02282
1.9387 (-,9247 ,21761 | .001457 .COC3171 |-.000P66 -,0001885 [-.c00221 -.0C00481 | -.000029 -,.0000063 |.002015 .O0C3E20
2.1297 |-,9053 ,22291 | ,002237 .0004986 |-,001005 -.0C02240 [-,000281 -,0000626 | -.CC0064 -,C000143 |.002912 .0004670
2.3359 |-,6782 ,19703 | .003246 .0006396 |-.0C1173 -,0002311 |-.000353 ~-.0000696 | -,CC0107 -,0000211 |.004063 ,0004173
2.5421 |-,€375 ,14851 | ,004595 ,0006£24 |-,C01300 -.0C01931 [-.000421 -,0000625 | -.000150 ~-.0000223 |.C05931 ,0002623
2,7331 |-.7692 .09293 | .006457 ,0006000 |-.001328 -,0C01234 |-.0C0440 -,0000409 | -,000159 =,000014€ | .C07421 .0C01096
2.£945 1-.6362 04583 | ,008901 .0004079 [-.000£€9 -,0000407 [-.000297 -.C000136 | -.CCCCO4  -,0000043 |,009541 ,0000265
3.C146 |-,32688 ,01611 | .01CE97 .0001756 [ .0CC6CY  .O0OCC98 | .00017Y  ,000CO2E | .00CCO61  ,000C010 |.0104%74 0000028
3.0843 | .4182 ,00328 | .010649 .C0C0349 | .000191  .0000006 | .000O70  .0000C02 | .CCCOA0  ,0000001 |,010498 0000001
;m18s1n9= .0035707 [LV¥jRsind =-,0012401 [LVoRsin b= -,0003461 (£ Y4Rsiné = -,0000770 2. Rmgsintd=,0020198

fmysin € = ,0027287 |Jyqsin € = -.0009477 |f¥psin £ = -,0002645 | [yasin € = -.00005€8 | J mgsin’=,001544

¥ T -.000565 Yo = -,000091 V3 =.000041 Yz =.000070 u= L6816

09
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E0LUTION BY APPLICATION OF GREEN'S THEOREM

¢ end @ be any two functions harmonic in the region exterior
to a given body and vanishing at infinity. Then, a consequence
of Green's second identity® is

[J942 a5 = [[«42 a5 (85)
where the double-integrals are tziten over the boundary of the
body and dn denotes an element of the outwardly-directed
normal to the Qurface S+« Also derivable from Green's formulas
in thqbwell~knawn expression for a poteg%ial function in terms

boundary
of its values and the values of its normal derivatives on the

Q) o gy ff[- 242 4 od Las (86)

where r 1s the distance from an arbitrary point on the body

boun&ary7

to a2 point ¢ exterior to the body.
%@ad%@ﬁ%ﬁnwqwrgwwrmewﬂwewﬁMbMy1
is given then (895) may be considered as n integral equation
of the first kind for finding &% or ¢ on the surface, If the
integral equatior. can be solved, (86) would then give the value
of ¢ at any point ¢ of the reglon exterlior to the body.
Equation (1)

will now be applied to obtzin an integral ecuation for axi-
symmetric flow about a body of revolution., Let y the ordinate
of a meridian section of the body and ds an element of are
length along the boundary in a meridian plane. Then we may
put dS « 2myds (87)

It will be supposed that the body is moving with unit velocity
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in the negative x-direction, which iz taken to coincide with
the axis of symmetry. The condition that the body should be
& solid boundary for the flow is that the component of the
fluid velocity at the body normal to body i: the same ss the
component of the velocity of the body normal to itself, This
gives the boundary condition

& - - sty (88)

vhere ) is the angle of the tangent to the body with the x=
axis, fubstitution of equations (87) and (88) into (8%5) now

gives P jP
CV
L ycpﬂ- as =) ywsinyds (89)

vhere 2P 1s the perimeter of & meridian section and the arec
length 8 is measured from the foremost point of the body.

Now let us choose for w the potential of a doublet of
unit strength situsted at an arbitrary point of the axis of
symmetry within the body,

ws Ik (90)

vhere re 2 (x-t)8+ y2,

\ 3

Then %‘Q: ‘5% 'gﬁ . - ‘S‘E[‘Eg Sinf-l-‘xg cos YJ
2

2
also -gg(fg) T -%3 -3-;;-[—3? amr«:-'xs cos 1|

Hen fe <
ence y an s da%) (91)
The laft member of (89) cen now be written

W . 2
jqu’ g;; ds ajocp-g; (ﬁ)ds = $I- JP ¥2 ﬂseas

T

l&
J

+ |P
But ¢y2/r3 l o = O since y vanishes at both limits, Hence (89)

becones
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P o
—zmm - g,
Ja T ds ji 3ﬁ§~§l sin Y ds (92)

Equation (92) can be further simplified if we express dg/ds
in terms of the total veloecity U along the body when the flow
is made steady by superposing & stream of unit veloelty in
the positive x~-direction

Us- % + cosY (93)
Also, we have dx = ds cog7, dy = ds sinY. Then (92) mey be

written
jﬂ(x)lgdsgj[;dx Hr=td 4 ]
aid(‘xg&)a2
or IP EIZlXELEl ds = 1 (94)
o or3

It is seen that (94) is en integral ecuation of the first kind
in which the unknown function is U(x) and the kernel is y2/(2r3).
In contrast with the integral ecustions for source-sink
or doublet distributions which can be used to obtaln the
potentlal flow about bodies of revolution, the integral equa-
tion (ok) has two important sdvantsges. The first is that a
solution exists, a desirable condition which is not in general
the case vhen & solution 1s attempted in terms of axial source-
gink or doublet distributionsg. The second advantage 1s that
(o4) 1s expressed directly in terms of the velocity along the
body so that, vhen U is determined, the velocity distribution
along the body is immediately givanvbv,ﬂernanlli‘s equation
(69). In the case of the aforementioned distributions, on

the other hand, it wvould first be necessary to evaluate
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additional integrals, to obtain the velocity aleng the body,
before the pressures could be computed.

A simple,

physical derivation of the integral ecuation (94) has been
given by Dr. E. He Kennard. This will now be presented.

Imegine the body replaced by fluid at rest. Let U be
the velocity on the body. Then the field of flow consists of
the superposition of the uniform (unit) flow and the flow due
to a vortex sheet éf density U,

Now subtract the uniform flow., There remains the flow due
to the vortex sheet alane, uniform inside the space originally
occupled by the body, of unit magnitude.

4 vortex ring of strength Uds produces st an axial point
distance z from 1its plane the velocity

2y
Ve 2(#‘+22')§- 2

vhere y 1s the radius of the ring. let s be the distance of
a point on the body messured along the generator from one end,
in a meridian plane. The axlial and radial coordinates will
then be functions x(s), y(s). The veloecity due to the sheet
at a point t on the axisg will then be

fz mxggjlgrg ds » 1

vhere 12 g [x(s)-—t]g-r y2(s) and P 15 the total length of &
generator. The equivalence of this equation with (9%) 1s evident.

ztion. If we asgain meke use of the polar

transformation x-t & y(x) coto, (%%) becomes
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(Mgl sinfede . (95)
 esinfe-Yix
When x = ¥y gm /2, For an elorgated body the integrand in
(94) pesks sharply in the neighborhood of x s t, so thet a
good approxim:ction is obtzined when U(x) is replaced by U(t)
for the entire range of integration. Also Y(x) will be small
except near the ends of the body so that the approximstion
8info - Y(x)] & sindeos¥(x) & sinoecosy(t)
will also be introduced. We then obtain from (95) the

epproximation
U(t) & cosy(t) (96)

Just B8 was done in the cage of Munk's approximate doublet
distribution we can improve upon this zpproximation in terms
of an egtimeted longitudinsl virtual mass coeffiecient for the
body. For this purpose we will first derive a relation be=-
tween this coefficient and the velocity distribution.

let T be the kinetic energy of the fluid when the body is
moving with unit velocity in the negative x-direction. Then

27 u -0 & 45 mpjz ypsinyds

by (88). Integrating by parts and substituting for 49/ds
from (93) now gives

2T aw= Tf‘pjz y< gf ds aﬁpjz U(x)yg(x)ds -A
where A is the displacement of the body. DBut slso, by
definition, 2T « kjAs Hence

INCPY .ﬁpjiﬁ(x)ya(x)ds (97)
This is the desired relation between kj and U(x).
Now suppose, as & generalization of (96), that an spproxi-

mate solution of the intepral equation (94) is U(x) = C cos?Y,



€9
If this value is substituted into (97), we obtain C = l+kj.
Hence an improved first epproximetion to U(x) is
Up(x) = (1+4k3) cosy(x). (98)
(08) gives an exact solution for the prolete spheroid,
olution of Intesg In order to
solve (94) by means of the iterztion formula trested in Part I

it would be necessary to work with the itersted kernel of this
integfal equation. Eince this would entall considerable come
putational lasbor 1t ig proposed to try a similay iterstion
formula, but employing the original kernel:

Uns1(t) = Up(t) + cosv(t) [1~jz xgigl Un(x)és] (99)
where r€ = (x-t)2+ y2(x) end x = x(s).

Here slso 1t 1s convenient to express the lterations in
terms of error functions E,(t) defined by

B (t) = 1~fi gﬁ‘;;gz(x’ da (100)
or, from (99),
E () cos 7 (t) = Upeq(t)« UL(E) (101)
Hence
Upne1(t) = U3 (8) ¢ cosf(t)giiﬁi(t) (102)
Also, from (99), |
Eﬂf;(t) . an(t)-~§f:: & (:3 (x'. (103)

where X, xy are the nose and tall sbscissae.

Thus, to obtain Up,3{t), we first obtain Ej(t) from Uj(t)
in (100), then Epy E3peesBy from (103), end finally Up,s(t)
from (102).
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In applying equations

(10C) and (103) it will frequently be necessary to evaluate
integrals of the form

X1
fxg 5131%2531 dx where r2 = (t-x)2+ y2(x).
r-ﬂ

This form, however, is unsuited for numerical quadrature for
elongated bodies, since y2(x) pesks sharply in the neighborhood
of x = t. Here, as in the case of the Integrals for the doublet
distribution, two procedures are avallable for avoiding this
difficulty. The first employs the polar transformation (70),
involves several graphlcal operstions, but in general transforums
the integrand into a slowly varying function so that the integral
can be evaluated by a quadrature formula using relatively few
ordinates. The second retalns the original variables and
eliminates the peak by subtraeting from the integrand an in-
tegrable function which behaves very much like the original in-
tegrand in the neighborhood of the peak. The numerical evalua-
tion of the resulting integral on the second method requires a
quadrature forrula vith more ordinates than the first in order
to obtain the same accuracy, but, since all graphicsl opera-
tions are ellminated, the second method is sultable for process-
ing on an automatic-sequence caleuwlating machine.

The result of the polar transformation has effectively been

given in (95). Ue have

x1 2 (= 2
E g 8 Y
j%--mx-—(ﬁrB dax fo W—%ﬂsm[@, R0 4o (104)

where x-t 2 y(x) coto . (70)
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It is desired to evaluate this integral for a series of values
of te« In general this can be done with sufficient accuracy
by means of the Gauss 7 (or 11) ordinaﬁe qua&rature formulas.
This gives 7 (or 11) values of © at which the integrand needs
to be determined for a given t. The value of x oceurring in
the integrand is determihed implicitly, for given values of ¢
and O, by the polar transformation (70)s In practice the 7
(or 11) x's can be obtzined graphically from the intersections
with a graph of the given profile of the 7 (or 11) rays from
the point X = t on the axls at the angles recuired by the Gauss
gquadrature formula. If greater accuracy is desired, these

graphically determined values of x can be corrected by means

of the formula
x = xg + t-xg+y(xg)coto
1-y'(xg)cote
in which Xg is the graphically determined velue and y' denotes

(10%)

the derivative of y with respect to x.
The alternate procedure for evaluating the integral consists
of expressing it in the fornm
x
S 1

2
‘o I-r-éxl E(x)dx = E(t)(cosx-cosg) +

X1
‘fx [ﬁ(x,t)E(x)~k(t,x)E(ti’dx (106)

0
where k(x,t) = _.u__zigé51—~§7§ - ﬁiﬂ%§§§;§l
’ (x-t) 2+y=(x)] yix (107)

and ‘
X = arctan %&%, (3 =10 - arctan %{-5-% (108)

Then, from (98), (100) and (106) we obtain for E,(t)
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By (8) »1- 28(cosx~ cose) - 2L fzz[k(x,t)-k(t,x)]dx (109)

and from (103), (106) and (109),
Eps1(t) = kB (t) (t)--&fxl k(x t)[ﬁ (x)- (tj]dx (110)
+ 1'\'.'!{1 En Xo ’ n En

Illustrative Exsmples, The present method will now be applied
to the same profile (78) as before. By way of contrast with the

semli-graphical procedures previously ﬁaed, a completely arithme-
tical procedure will be employeé.

The velocity U(t) will be determined at the 16 points along
the body whose abscissae are ty = {4, the Gaussian values for y
the 16 point guadrature rule, Table 3. E&ince the body i1s |
symmetrical fore and aft, it is necessary to determine the
velocity at only half of these points. Velues of y(x), cosv(x)
and (cosa~cosB) for these points are given in Table 8.

In order to spply the Gauss 16 ordinate rule it is necessary
to evaluate the integrands in (106) and (107) at the 16
Gaussian abscissae Xy = gj for each of the 8 values of ty.

Thus there are 16 x 8 = 128 values of © to be determined from
(109), which give the same number of values of the kernel

- y2(x4)

This matrix of values is given in Teble 9 and applied to

k(x; ,ti) -

evaluate E1(t) from (109). Ep, E3 and Ey are then obtained
from (110). U5(t) is then given by (102) and then p/q by (69),
in the form p/q = 1 - USE. The arrangement of the calculations
and the results are given in Table 10. The graph of p/q is
included in Figure 5.



TABLE 8
VALUES OF y, cosY AND (cosd-cosf) FOR APPLICATION OF GAUSS 16 POINT QUADRATURE FORMULA

X y(x) y'(x) ¥ (x) codY (x) cosd-cos 8
-+9894009 +0408548 1.8965483 1.0856 0.4664 1.25085
=09445750 .0903198 0.7464764 0.6412 0.8014 1.521
-.8656312 .1324422 0.3917981 0.3734 0.9311 1.70
-.7554044 1642411 0,2099651 0.2070 0.9787 1.82586
-.6178762 .184852%7 0.1020867 0,1017 0.9948 1.89375
-.4580168 «1955501 0.0393076 0.03932 0.9992 1.93175%
-.2816036 «1993706 0.0089607 0,008961 1.0000 1.95169
-.0950125 21999919 0.0003431 0.0003431 1.0000 1.96015

TABLE 9 2x1)
MATRIX OF VALUES* OF k., = y_Xj
7 [xg-t9)2452(x3 P72
P 1 2 3 4 5 6_ 7 8

1 24,4769 7.4814 0,75381 0.12453 0.,03197 0.01103 0.00468 -0.0023

2 7.9571 11,0718 4.7258 0,88553 0.20948 0,06731 0.02723 0.01308

3 2,9448 4,7853 7.5505 3.4286 0,79113 0.22280 0.08167 0,03669

4 1.1545 1.,7156 3.4856 6.0886 2.7441 0.68796 0.21392 0.08560

5 0.47€18 0,64606 1.1568 2.7937 5.4097 2.3411 0,60474 0.20034

6 0.21065 0.26520 0.41384 0.84811 2.3732 5.1138 2.0933 0.54549

7 0.09997 0.11979 0.16913 0.29264 0.66530 2.10681 5.01577 1.95219

8 0°05186 0.06016 0.07926 0.12175 0,22799 0.56183 1.95461 5,00020

9 0.02923 0,03371 0.04234 0.05999 0.09854 0.19666 0.51583 1.90499

10 0.01867 0.62073 0.02518 0.03375 0.05083 0.08843 0.18638 0.51368

11 0.01227 0.01346 0.01596 0.02060 0.02924 0.04653 0.08540 0.18

12 0.00807 0.00877 0,01023 0.01284 0.01752 0.02627 0.04413 0.08554

13 0.00501 0.00541 0.00624 0.00769 0.01020 0.01469 0.,02331 0.04152

14 0.00273 o.g§293 0.00335 0.00408 0,00531 0,00745 0.01139 0.01924

15 0.00112 0.006121 0.00137 0.00165 0.00213 0.00294 0.00439 0.00718

16 0.00022 0.00023 0,00026 0.00031 0.00040 0.00055 0,00081 0.00131

€4



Assums Kl = 0.06: Put kji = Rjkji’ K'ji = Rjkij

TABIE 10

CALCULATIONS FOR E,(t) AND U(t)
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En(Xj) = En(tj) = Epj

(a) x7 = - ,989401; cosy = .4664
J Kjl | K'jl Kjl'K'jl Kjl(Elj"’Ell) Kjl(EZj"EZI) Kjl(E3j"E31)
1|.66460 . 0 .0 .0
2|.49536 -.00337 -,00104 - 00024
3|.,28022 -.00504 -,00141 - 00064
41,14389 -+ 00479 =000160 -.00053
5|.07154 -,00372 -.00118 -,00038
6.03563 -+ 00256 -,00078 -.00024
71.01825 -,00164 -, 00048 -.00014
8.00984 - 00099 -,00028 -.00008
91.00565 -+00057 -,00016 -.0000%
10|,00341 -.00031 -,00009 -,00003
11|.00208 -,00015 -, 00005 -,00001
12|,00121 - 00006 -, 00002 -.00001

13 |.00062 -.00002 -.00001 ~-. 0

14 | ,00027 .0 .0 0

15 |.00007 . 0 . 0 0

16 |, 00001 .0 . 0 .0
E1#E1] " 13000 | ELL = |J = -.02342 |Jm= -.00710 [j= -,00235
T+k] 07780 [E51=.02182  |E31=.00639  [B43=.00201

US(xl) = 0,5448, p/q = 0,7032

(b) X2 = - q944575; cos)fs 08014
J| Kijo | K'yo |Kio-KYo Kio(Eg4-E10) [Kio(Epi-Eoo) Kio(E35-E3p)
11.20313 ~00014 - 00042 .00010
2(.68926 ) . 0 . 0
3.45536 -=400510 -.00198 -.00081
41,21382 -+ 00566 -,00193 - 00068
51,09665 -.00436 -,00139 -, 00046
6 |.04486 ~,00292 -, 00088 -,00028
7 .02187 "000181 -.00053 -QOOOlé
8,01140 -.00107 -.00030 -+ 00009
9 |,00639 - 00060 -,00017 -, 00005
10 500379 -009031 "900009 “’000003
11{.00228 -,00015 -, 00004 ~.00001
12|.00131 -, 00006 -, 00002 -, 00001

113 |.00067 -.00002 -,00001 .0

14 |,00028 ) .0 . .0

15 |,00008 , 0 .0 .0

16 | ,00001 .0 . 0 .0
[T_— E1D = || = =.02192 |j= =.00692 |[fz -.00248
ToEp = = +12358 | .0710% |Bpp=101973 |B32e000590 |E4p= 00197

Us(xp) = 0.9285, p/q = 0.1379
* Present procedure inaccurate., Ejj and Ejo obtained from (104).



(e) x3 = -.865631, cosy = 0.9311
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— - —— _
J| Kj3 | K'y3 | Ej3-Ky3| Ky3(Ey5-B13) [K53(Bp3-Ep3) [Ky3(E35-E33)
1|.02047 .0003 . 00013 . 00005
2|.29420 .0033 .00127 .00053
3|.71850 0 . 0 o
41.43441 -,00663 -.,00203 -.00061
51417306 -.00587 -,00174 -,00052
6|,07001 -.00377 -,00108 -.00030
7 y03088 "'000221 -‘900061 -000016
8].,01502 -.00124 -.00033 - 00009
9!.00802 -, 00066 -.00018 -,00005

10{.00460 -.00033 -.00009 -.00002

11(.00270 -.00015 -, 00004 -.00001

12|,00153 -.00005 -.00001 . 0

13| .00078 -.00001 .0 .0

14| ,00032 . 0 0 . 0

15| .00009 0 . 0 . 0

16| .,00001 .0 .0 . 0
k1 +E13 E13 = = -.01725 |[= -.00471 |J/= -.00123

Tvky = 11302 | 05980+ £23=.01538 £33=.oo410 E43=.00108

US(X3) = 1.0598, p/q = -0.1123

(@) x4 = -.755404, cosy = .9787, 1-0.53(cosd-cosg) =.,03229

I K4 ['K'ja | KjauKys [Kja(Epy=Eqq) [K34(Epy-Epg) Kj4(E3j*§§4)
1|.00338[.03135 | -.02797 ,00011 " . 00004 .00001
2|.05513|.10680 | -.05167 .00146 . 00050 .00018
3 032626 933169 -000543 0004'98 000153 000046
4 075882 075882 . 03 o 0 0 ) o
5|.41794( ,41052 .00742 -+ 00780 -.00226 -.00067
6|.14347|.11638 002709 -.,00554 -.00153 -.00042
7| ,05344| ,03906 .014%8 -,00301 -.00080 -.00021
8|.02307|.01622 ,00685 | =,00155 -, 00041 -.00010
9|.01137|.00787 ,00351 -,00076 -.00020 - 00005

10|.00616| ,00426 ,00190 -,00035 -.00009 -, 00002

11|.,00348| .00249 .00099 -.,00013 -, 00004 -.00001

12|.00192|.00153 .00039 -.00004 -.00001 0

13|.00096| .00096 -0 -0 ) 0

14| ,00039|,00059 | -.00020 .00001 0 0

15|.00010{ 00034 | =-,00024 . 0 0 0

16|.00001{.00014 | =~-,00013 . 0 0 0

k1+E14 ~ [[m-~e02311|/ = =.01262 [[= -.00327 |I'= -.00083
T C .09862 [Eiam.04454 [Eoame01070 [E34=,00270- |Eg4=.00069

Us(x4): 1.0948, p/q = - 0.1986

* Present procedure inaccurate. E;3 obtained from (104).
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(e) x5 = -.;617876, cosy = .9948, 1-.53(cosd-coss) = =-.,00369

> 1 K=kl - . .- . wh oL
it ,Kjg EIACTRSTH 358137E15) Kj5(E5-Eop5) K;i5(E33-E35)
1{,00087|.01298| -.01211 00005 00001 . 00006
2(.01304|.04022| -.02718 .00059 .00019 00006
31.07528|.,11008 | -.03480 .00255 .00076 .00023
4 1,34200|,34818| -,00618 +00639 .00185 .00055
51.809291.80931| . © .00000 00000 00000
6 |.40145(,39602| ,00543 -.00800 ~.00212 ~.00054
7 (,12148 |,11043| ,01105 - 00458 -,00117 -.00028
8 1.04319|,03795| .00524 -.00210 -.00053 -.00012
9 |.01867|.01621| .00246 -, 00091 -.00023 ~-.00005
10 [,00928 |.00806| ,00122 -.00035 -, 00009 -.,00002
11 |.00495|.00444| ,00051 -+00010 -.00003 -.00001
12 (00262 (.00262| - © -.00000 00000 00000
13 00127 |.00160| -,00033 00002 .00001 . 00000
14 {,00051 [.00097| -,00045 .00002 .00001 00000
15 [.00013 |.00055| -,00042 .00001 00000 00000
16 |,00001 {,00022| -,00021 00000 00000 00000
k1+E1 = 405578 |[= =.00641 [/m =,00134 || = =,00018
‘%ZEIE = +08101 |81 5wy 02587 [Eo5m.00530  [E352.00110 |E4em.00018
US(Xg) — 100868, p/q = - 001811
(f) xg = -.458017, cosy = 9992, 1-.53(cosd=cos) = =-.02383
J| Kj6| Fje |Kj6-Kle  [Kj6(E13-E16) [Kj6(Ep;-Ex¢) |Kj6(E3;5-E36)
1 },00030 |,00572| -,00542 .00002 .00001 00000
2 [,00419 |,01651| -,01232 .00027 00008 .00003
3 /,02120 |.03938| -.01818 .00114 .00033 *, 00009
4 |,08574 |.10570| -.01996 .00331 .00092 .00025
5 1.35023 |.35503| ~-.00480 .00698 .00185 00047
6 [.86505 |[.86505| =-.00000 + 00000 » 00000 - 00000
7 .38470 |.38224| .00246 -.00683 -.00168 -.00037
8 [.10644 |,10334| .00310 -.00304 -,00073 -.00016
9 ,03726 |.03589| ,00137 -.00107 -.00026 - .00005
10 (01615 |.01560( 00055 -+ 00029 -.00007 -, 00002
11 |,00787 |.00787| .00000 00000 00000 - Q0000
12 .00393 {,00437| -.00044 00008 .00002 00001
13 [,00183 |,00257| =-.00074 00007 00002 00001
14 [,00071 |.00152| -.00081 .00004 . 00001 00000
15 |,00018 |,00083| -.00066 .00001 00000 . 00070
16 aOOOOl 000033 -900032 QOOOOO QOOOOO 000000
k1+E16 [ e=.05617 |/ 2.00070 | [ =.00050 | =.00026
T =-06221 B (700594 | Epg=.00002 |E36=+00025 [E4g=-.00015

Us(xg) = 1.0647, p/q = =0.1336




77

(g) X7 = =.281604, cos ¥ = 1.000, 1=,53(cos A =cosg) = =,03440
. f, - . - . -

J| Kg7 | Kiyp [Kjp-Kyp |Kj7(813-E19) [K37(Epy-Bop) [Kyp(E35-E3y
1{,00013 | ,00271|-,00258 .00001 0 0

2 1,00170 | ,00749|-,00576 .00014 . 00004 .00001

3 |s00777 | ,01609]|-,00832 .00056 .00015 . 00004

4 ,02666 | ,03647|-,00981 .00150 .00040 - 00010

5 [+09047 | 409953|=,'00906 .00341 .00087 .00021

6 035410 | .35639|-,00220 .00629 .00155 .00034

7 1.91588 |,91589| o S0 0 .0

8 |.37030 | .36984| ,00046 -,00401 -,00093 - .00020

9 09772 |,09732| .00040 -0 00106 -,00025 -, 00005
10 {,03403 | ,03403 0 . 0 0 0
11 |,01445 | ,01496|-.00051 000026 . 00006 .00001
12 ,00660 |,00760|-.00100 + 00025 .00006 .00002
13 |.00291 |.00421|-.00130 .00016 . 00004 .00001
14 (,00108 |,00240(-,00132 .00008 .00002 00001
15 (,00027 |,00129|-,00102 .00002 00001
16 |,00002 |,00051 |~,00049 0 0 o

kq+E [=-04260 |] =.00761 =, 00202 [ =.00050

l+ki = ,04545 EWO]J.82 Eg7u~.00435 {}7:9(00121 IE47,,?°00030

Us(xy) = 1.0423, p/q = -0,0864

(h) xg = =-.095013, cosy = 1,0000, 1l-,53(cosd~cos@) = -.03888

j K38 K'JS K,]8-K'j8 KJB(EIJ—EIS) Kj8(E23-E28) K38(E3J-E38)
1 {,00006 |.00141 |-,00135 »00001 0 0

2 [,00081 |.00375 |-.00294 « 00008 « 00002 .00001

3 |,00349 |.00754 |-.00405 « 00029 . 00008 . 00002

4 1,01067 |.01517 [=.00450 .00072 . 00019 .00005

5 [s02997 |.03411 |-.00414 +00145 «00036 +00009

6 |,09228 |,09504 |-,00276 .00264 «00063 .00014

| 7 1635647 |+35691 |-,00044 .00386 » 00097 .00019

8 1.94729 [.94729| . © ) 0 0

9 1636090 |.36090| . © 0 0 0
10 {.09380 |.09419 |-,00039 »00102 .00025 « 00005
11 [,03205 |.03327 |~,00122 » 00092 . 00022 .00005
12 1,01280 |.01474 |-.00194 »00062 .00016 » 00004
13 },00518 |.00748 |-,00230 +00035 + 00009 »00002
14 1,00183 |.00403 |[-.00220 .00015 «00004 .00001
15 |.00045 |.00210 |-,00165 + 00004 . 00001 0

16 |, 00004 |.00081 |=,00077 0 0 0 |
k4B s J==o03065 | | meOl213 [ =.00302 J/ =,00067
'%?E%é = 103525 |Eigr=.02264 [Epg=-,00686 |E3g=-.00171 [E4g=-.00034

Ug(xg) = 1.0284, p/q = =.0576
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SUMMARY

Two new methods for computing the steady, irrctational,
axisymmetric flow of a perfect, incompressible fluid about a
body of revolution are presented.

In the first method a continuous, axial distribution of
doublets which generates the prescribed body in a uniform

stream is sought as & solution of the integral eguation

A

where r is the distence from & point (t,0) on the axis to a
point (x,y) on the body, r2 g (x-t)2+ y2(x).

A method of determining the end points of the distribution
and the values of the distribution at the end points is given.
If the equation of the body profile, with the origin of co-
ordinates at one end, 1is

72(x) » 83xrapxZ+ azxdeees
&'very good.appfoximation for the éietriiution limit a at that

end, when the coefficients ay, ap... &are small, is given by\

%a4+ag+%\[@

ir a3 g 0. 1If ay is negative, the term containing it is
neglected. The corresponding value of the doublet strength
at this point 1s

n(a) -% (1%4—%2 log %l) az\/%
Formulas and tables for determining a and m(a), which may be
used when the above procedure is insufficiently accurate, are
also given, The values a, b, mg = m(a), mp = m(b), £; = y2(a)

and fp = yz(b) are then used to obtain the approximate



solution of the integral ecuation

my (x) & O(y2- Redity - Scbey) . Bodn, o Zsi,

nere &‘frkl s 25 (b gy

j y2axm (bet) (L4 Lp)
and Iy 1z the longitudinal virtusl nass coefficient for the bodye
This epproximation 1& used to obtailn & sequence of sucescsive
approximations by means of the iterction formuls

mi*g_(x) - Ei(x}*w(X) [i’a J:%ﬂﬁq

When & doublet distribution has been assumed, the velocity

L2

conpenents at a point (x,¥) in a meri’ien plane are

Ue 1+f (-325 -2-,: m(t)dt

vasly ja -t;g m(t)dt

and the pressure is glven by
p/a = 1 - (u2ev?)
where q is the stegnation praas&ra*

The 1taratiant are most ae@muniantly performed in terms of
the differences between successive approximations to m(x),
which also furnishy at sach iteration, & geometric measure of
the aseccuracy éf an apyfcxﬁnmtiﬁm¢ ’ﬁimplew forms for the
velocity conponents at the surface of the body are given in
terns of this difference or error function,

Gauss' cuadrsture formulas ere reconmended for the mumericeal
evaluation of the integrals. Two methods of cuarrying out the
iterations are givens The first employs a poler transforna-

tion and & graphical operation between successive itermtionsy
162858
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the second is completely srithueticzl and is suitable for proe-
cessing on an sutometie~gequence computing machine, 411 of
these pracedures src illustrated in detail by an example, in
which %hé'ﬁamiugraﬁhieal e thod i&f«ngiayiﬁ. ?hklﬁaauraay of
the method 1s anglyszedy the resulls sre compired with those
obteined by ithe sethods of Kermen and Xaplane
In the second method the velocity U(x) on the surfuce of
the given body iz given direotly as the solution of the integral
ecuation
Ji n‘%%ﬂ ds » 1
vhere & 1s sre length slong the profile, x » x(8), end 2P is
the perimeter of & meridian gectiocn. 4n spproximste golution
to thisz integral equation ls
U1(x) = (14ky)cos7(x)
where ky 1s the Jongitudinal virtual nass coefficient and
s aretan.ﬁgg U;(x) is used to obtein & sequence of
guccessive spproxinations by mesns af the 1teration formula
Upaa(t) = Tp(t) 4 cos7(t) [1.. jiﬁgl Ua(aids]

Here also the lterstions sre nost convendently carried cut in
terms of the differences Letween puceersive approximations to
U(x) which slso furnish s measure of the errvor in the integral
ecuvation, Two methods of cerrying out the iterstions sresgain
available, of which one is senl-grephicel, the other completely
arithnetical, The latter teshnique is ermployed on the same
exsmple 82 was used to 1llustrite the first method,
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