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PART X
AM ITERATION FORMULA FOE FREDHOLM INTEGRAL 

EQUATIONS OF THE FIRST KIND

INTRODUCTION
Heunsnn1s method of solving Fredholm integral equations of 

the second kind by iteration is of great practical and theo
retical value* For Fredholm integral equations of the first 
kind, on the other hand, Hellinger and Ioeplitz3 remark that 
a method of solution by iteration is not available#

Physical problems often lead to an Integral equation of the 
first kind to which a good first approximation may be derived 
by physical reasoning* An example of this is the problem of 
determining an axial source-sink or doublet distribution which 
would yield the axially-symmetric potential flow about a body 
of revolution in a uniform stream* This problem leads to an 
integral equation of the first kind

where the axis of the body coincides with the x-axis from 
x * 0 to x « 1, y(x) is a known function, representing the 
ordinates of the intersection of the given surface with a 
meridian plane and m(x) is an unknown function, representing 
the distribution of the doublet strength per unit length a- 
long the axis* A well-known, excellent, first approximation 
to the source distribution for elongated bodies of revolution

m^(x) m i [y(x)j 2
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In eases such as this it would be highly desirable to have a 
method of successive approximations for improving upon this 
approximation*

The theories of Schmidt and Picard furnish expressions for 
solutions to integral equations of the first kind# However, 
these expressions are of little practical value since they 
Involve the characteristic numbers and functions of an arbi
trary kernel, and the methods for obtaining these are both 
tedious and approximate*

It is proposed to present an iteration formula for obtain
ing successive approximations to the solution of Fredholm in
tegral equations of the first kind, ana to prove the convergence 
of the successive approximations under various conditions*

We are -concerned with solutions and approximations to 
solutions - of the integral equation of the first kind

m

where fCx) and k(x,y) are given continuous real functions in 
a & x,y £ b, and g(y) Is an unknown function. As is well 
known, (1) may be transformed into the integral equation with
a symmetric kernel,

F(x) mf K(x,y)g(y)dy, (2)
Ja

REVIEW OF THEORI

f(x) « f k(x,y)g(y)dy 
b

(1)

where K(x,y) m fh k(t,x)k(t,y)dt, (3)

and hence F(x) * k(y,x)f (y)dy, <k)



Schmidt Theory. A theory due to E. Schmidt^ shows that 
there exists a set ̂ Axj of positive characteristic numbers, 
which may be supposed arranged in increasing order of magnitude, 
and corresponding adjoint sets q>±(x) and^(x) of real, 
continuous, orthonormalized characteristic functions,
(1 m 1,2****), such that

<p i(x) m AxJ k(x,yb//i(y)dy, (5)
rb

xLx(x) a Ai[ k(y,xW(y)dy. (6)T Ja
It will be convenient, hereafter, to employ the customary

operator notation for integral transforms, viz
b b

fcg *[ &(x,y)g(y)dy, Kg gJ &(x,y)g(y)dy; a * a
furthermore, since the range of variation and the integration
limits will always be from a to b, specific reference to
these limits will be omitted and we will frequently write
integrals in an abbreviated form, viz

to
/ a *(x)fi(x)dx C /ffi

If the kernel k(x,y) is degenerate, the number of charac
teristic functions is finite and they can be found by a well 
known procedure^. If f(x) is expressible in the form

f(x) « £ h 9i<x)1*1
the solution of (1) is

g(x) m A  *1 * ftft (7)i»l
If f(x) is not of the above form, then (7) gives the best



b

approximate solution of (1) in the least square sense, as can 
easily be shown. If the kernel k(x,y) is non-degenerate, the 
sets ĴR jj, (x)j and are infinite. Since the degenerate
case is readily disposed of, only the non-degenerate case will 
be considered hereafter.

These characteristic numbers and adjoint functions have 
several properties which will be required in the followings

a) R ^  andy^(x) are characteristic numbers and functions 
of K(x,y)2, i.e.

m R ±2Ky± (8)

b) A positive lower bound for the set fy *) is given by
a 1 ;the inequality0

r^o<Jf k2(x,y)dxdy (9)

c) Expansion theorems: Every function f(x) of the form
(1), where g(y) is any pieeewise-continuous function, can be 
expanded in the absolutely and uniformly convergent series^

f(x) . L aj.fi(x)j at mft<Px ■ JL/gfi (10)
i*l A±

Every function F(x) of the form (**), where f(x) is any 
pieeewi se-contlnuous function, can be expanded in the abso
lutely and uniformly convergent series

Oo
F(x) s H  CjjV'̂ (x) | C1 s - JL. J f̂>jj (11)i«l ^i

If f is the same function in (10) and (11), the relations be
tween the ftFourier” coefficients may be written

®i 5 / m ~̂**2 J* (12)
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Picard Theory* In general a solution of (1) does not exist# 
A theorem due to E* Picard? states that, if the orthogonal 
set is complete, a solution of the integral equation (1)

aaflLaJaJLt.  JJLJ fajuxlu
oo

^  h ZH '» H  • If<pi U3)
Is convergent.

In the ichmidt-Picerd theory, the solution of (1) Is in-
timately related to the sequence

nIn! E AiaiViW* n . 1,2,,., (I1*-)1*1
as is expressed in the following theorems:
THEOREM 1: The sequence /kgn) converges in the mean to f(x)
if and only if the set /<pjj is complete relative to f(x)» The
sequence converges uniformly to f(x), if a pieeewise~continuous
solution of the integral equation (1) exists*
THEOREM 2: If a pieeewise-continuous solution g(x) of (1)
exists, the sequence /|fn converges in the mean to g(x) if

and only if the set Is complete relative to g(x). If

g(x) is of the form k(ytx)h(y)dy, where h(y) is any piece-
wise -continuous function, then the sequence gn converges
uniformly to g(x)*

The completeness conditions on the sequences and ̂  ̂
in Theorems 1 and 2 refer to the so-called completeness re
lations ~

J f 2 «  £ a i 2, «i - J ff i (15)
i«l
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p 00and J g2 a Z *>i2> bi « Jg-yi (16)1®1

The phrase "complete relative to f(x)" in Theorem 1 signifies 
that (15) need be satisfied only by the particular function 
f (x), a condition which is considerably weaker than the as
sumption that the set is complete relative to a class of
functions* Similarly (16) is assumed to apply only to the 
particular function g(x) in Theorem 2*

The first part of Theorem 1 is of especial interest since 
it indicates that with increasing n, the error due to the as
sumption of gn(x) as an approximate solution of (1) diminishes 
in a least square sense, even if a solution of (1) does not 
exist* However the disagreeable possibility exists that, be
yond some value of n, the error may accumulate and increase 
at some values of x* nevertheless, even in this ease, such 
a sequence may give useful successive approximations in a 
particular problem, if the errors are observed at each step, 
and the approximations stopped when the error exceeds an 
acceptable value at any point*

The second part of Theorem 1 asserts that, for sufficiently 
large n, gn satisfies the integral equation (1) as closely as 
desired* It is noteworthy that no assumptions are made with 
regard to the convergence of the sequence /gnJ • Indeed, 
Theorem 2 shows that an additional condition is necessary to 
assure even convergence in the mean*

The expression (1*0 for gn , however, is of little practical 
value since it is expressed in terms of the characteristic 
numbers and functions of the kernel k(x,y)• Principally for
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these reasons the Fredholm integral equation of the first kind
has been considered to be of little value?* On the other hand
another readily calculable sequence of functions /gn (x)) will 
be defined, which, it will be shown, has properties relative 
to a solution of the integral equation (1) identical to those 
of fn (x) .

THE ITERATION FORMULA 
Let us now extend the operator notation, denoting 

Krg t J...}K(x,yr)K(yr,yr_1)...K(y2,y1)g(y1)dyrdyr_1...dy1.
This notation is appropriate since the relation Kr(Ksg) 5 K**+Sg
is satisfied, as is easily verified.

Let g0(x) be an assumed, approximate, pieeewise-continuous 
solution of the integral equation (1). Then a set of continuous 
functions g^Cx), g2(x), is defined by the iteration formula

%  s % - i  * ^ ~ ^n-1 (37)
where K and F are the functions defined in equations (3) and 
(k)* The convergence of this sequence of functions and the 
applicability of its members as successive approximations to 
a solution of the integral equation (1) is the subject of the 
subsequent discussion.

The recurrence formula (17) can be readily solved for gn 
in terms of g0. First put

Yn m gn - 6n-l (18)
Then n

6n * ^ C  Y± (19)i«l



a
and also (17) nay be written as

Y n • f • <20)
Thus the T jj1s af$ not only the differences between successive 
gn’s but also serve as measures of the errors corresponding to 
the gjj’s as approximate solutions of the Iterated integral 
equation (2)* low frm (20), we have

Yn - Yn-1 * • KW  
or | in operation notation,

T n  •
Hence, since the operator K satisfies the associative laws of 
multiplication, we obtain

rB - (i-K)nmlYi (2i)
where (l-K)1̂  is to be formally expanded by the binomial 
theorem before operating anYg* Substituting for the Yg in 
equation (If) fro® equation (21), and performing the indicated 
summation, we obtain

g» * Go * (F-Kg0) (22)

where, in the fractional operator, (l~K)n is to be expanded 
by the binomial theorem and a factor K in the numerator .can** 
celled with the denominator before operating on (F~5g0) *

If the sequence [gn<*)| converge uniformly, it is clear 
from (17), that Jl» ̂  is a solution of the iterated integral 
equation (2). However, since an Integral equation of the 
first kind has a solution only under special circumstances,
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ĵ gn (x)j say not converge uniformly, and indeed may not con- 
verge at all* Nevertheless the gn fs may serve as useful ap
proximations to a solution of (1) and (2) as will be evident 
on the basis of the convergence theorems in the next section*

This is no restriction since the kernel k(x,y) can always be 
modified, so as to satisfy the condition (23), by multiplying 
the integral equation (1) by a suitable factor and, in the 
right member of the equation, Incorporating the factor into 
the kernel*

Statement of Convergence Theorems, The convergence theorems 
will be stated and discussed before their proofs are presented* 
THEOREM 3: The sequence {Kg^ converges uniformly to F(x) *

Theorem 3 is very strong. Without any restrictive assumptions 
about completeness, the existence of a solution, or the con
vergence of the sequence [gnJ , it asserts that, for sufficient
ly large n, gn satisfies the iterated integral equation (2) 
as closely as desired* Basically, however, our interest is 
in the integral equation (1), rather than with (2)* Concerning 
the suitability of the gn fs as approximate solutions of (1) 
w® have the weaker theorems*
THEOREM hi The sequence [kgn  ̂ converges in the mean to f(x) 
if and only if the set {jPjj is complete relative to f(x). The

CONVERGENCE THEOREMS
It will be assumed hereafter that

„b
k2(x,y)dxdy & 2 (23}



10

sequence converses uniformly to f (x) if a olecewlse-contlnuous 
solution of the Integral equation (1) exists.

It will now be supposed that the zero-th approximation g0(x)
Is chosen of the form

g0(x) »Jk<y,x)h(y)dy (2k)

where h(y) Is any piecewise-continuous function. The special 
case h(y) 5 0 is also allowed. Concerning the convergence of 
the sequence fgn J we then have
THEOREM 5* If & piecewise-continuous solution g(x) of (1) ex
ists, the sequence ĝn] converges in the mean to g(x) if and 
only if the set is complete relative to g(x)• If g(x) is
of the form f k(y,x)h(y)dy, where h(y) is any piecewise continuous 
function, then the sequence converges uniformly to g(x).

It should be noted that Theorems k and 5 are identical, word 
for word, with Theorems 1 and 2 except for the substitution of 
gn for gn « Hence the remarks concerning the suitability of 
the In fs as approximations to a solution of the integral equa
tion (1) are applicable to the gn fs as well.

Proof _of lemmas.* In order to prove the foregoing theorems 
it is first convenient to establish several lemmas. Put

Fn(x) I Kgn (25)
fn(x) s kgn (26)

The MFourier” coefficients of Fn , fn and gn then satisfy the 
relations

cln a | FriVl • ^  J fn'Pl * ĵjg fenVl (2?)
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We then have
LEMMA It Fn (x) and fn (x) can be expanded in the absolutely
and uniformly convergent series

oo
Fn(x) * L c±̂ i(x), n S 0,1,2* *. (28)

i*l
OO

f|jCx) at Z ̂i^in^i^) t ^ • 0,1,2.** (29)isl
If g0(x) is chosen of the form (2*0 y then also gn (x) may be 
expanded in the absolutely and uniformly convergent series

00
gji(x) 9 | n as 0,1,2*.. (30)1*1

Proofs It is clear, from their definitions in (25) and (26), 
that the expansion theorems apply to Fn (x) and fn (x) and 
consequently the series (28) and (29) converge as stated in 
the lemma. In the case of the gn ’s, it can readily be shorn, 
successively, from the iteration formula (17), that g-L(x) 
g2(x),••• are of the same fora as g0(x) • Thus, we have

SI s g0 * f - ^ o  <33-)
But g0 # /k(y,x)h(y)dy| from (h), F m f k(y ,x)f (y)dy? and 
from (3)(26), Kg0 mf k(y,x)f0(y)dy. Hence (31) becomes

gj mfk(yfx)[h(y) ♦ f(y)-f0(y)J dy.
Hence the expansion theorem is applicable to gn (x) and the 
series (30) also converge, as stated.
LEMMA 2s

Cfn-Ci a^i^Ccio-ci) (32)

where c^ * J fVi , and the sequence^ is such that
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Proofi We obtain, fro© (1?) and (8),
Jgn1'i s (1- j y  )/gn_llKi

Put fi-t m 1-1/Ai* Then, by successive reduction, we obtain

/ M 4 -
which, by (12) and (27), is seen to be equivalent to (32)* 
Furthermore, from (9) and (23), we obtain

A^2 <jjfc2(x,y)dxdy & 2

or -1< fa < 1* Thus, since the sequence |A^ increases 
monotonically to Infinity, it Is seen that (33) is also 
satisfied. This completes the proof of Lemma 2*
LEMMA 31

ti+*° J ^ cln~ci^2 * n *̂> ̂ 1^i2 ĉln*'cl^2 * 0 *3*0

If a solution g(x) of (1) or (2) exists, then also

J / i ^ i n - 0^ 2 ■ 0 (35>
00

Proof $ We first note that the scries 2^(c^0-ci)^ converges 
since we have, from Bessel’s Inequality,

^(Cio-Ci)2 * J ( V * > 2
Hence, by (32) and the comparison test,

ĉln~cl^2 s .̂ ‘1^i2ĵ cio~ci^2 i«l 1»1
is uniformly convergent in n, and consequently

n-«> 1̂ cin_ci ^  = ^i2n(ci0-cj_)̂  ■ 0



Similarly* applying Bessel!s inequality to f0~f, and then to 
gQ~g, when g(x) is assumed to exist, we obtain (3*0 and (355 , 
as desired*

CO

LEMMA hi If the series F 0(x5 s E^w^(x), where the w^(x) are

continuous functions, is absolutely and uniformly convergent,i s  a u s o iu t t s i y  a n a  u n i .,._M— —— -    *    —■—  « ........... ...........—        .... . -    -sr.  ——-      m..%o
and if F n (x) r n s 0,1,2,*.*, where ^  satisfies

condition (33)9 then the sequence F  n(x) converges uniformly to 
zero.
Proof? From the hypotheses on ^  we have, for some sufficiently 
large r, /ur £ |ju , r > 1* Also, considering the series for 
r 0(x), given an 6>0, r can be chosen so large, and Inde-

oO
pendent of x, that Xi»r-l < e/2. Let r be chosen so that

r
both conditions are satisfied. Further, we have S i  N - J i < M.

where M is an upper bound independent of x. Choose N sufficient*
ly large so that kyn < e/(2M) for n? N. Then

r
i r n l ^ + 2i»r~l MiBwl < wrnK + f < e ’

when n > H(€), as we wished to prove.
LEMMA 5? If Oga/x) can be expanded in a uniformly convergent series

Gn (x) » X  ein0i(x) » 11 * 0,1,2, i*l (36)

in terms of the real, continuous, orthonormalized functions 
0^(x), i s 1,2,... and if G(x) is pieeewise~continuous, with

s Jo%, then necessary and sufficient conditions for
the sequence Gn (x) to converge in the mean to G(x) are that
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Proof: Since the series (36) is uniformly convergent, w© have

JGGn 2,5 ®in /Gei * |  ®in*i»1*1 1*1
and similarly /Gn2 . 1  ein2. Hence1*1

J* (G^-G)2 ■ JG2 + 2* (e^-e^)2 - e^2 (37)
1*1 i~l

Now suppose the conditions of the lemma to be satisfied*
00

Then J(Gn~G)* s 2  (ein»©i)2, and consequently by
i*l

hypothesis, J(Gn-G)2 - 0* This proves the first part 
of the lemma*

Now suppose that J(Gn~G)2 - 0* From <37  ̂we have,
Jo2dx < 1  ©j2 f f(Gto-G)2 1*1 x J

for all n. Hence /g2 * 2. e^2« But, by Bessel's inequality,
^ (b *

JG2 & Z «i • Henc* fo2 ■ 2 *i2. Then, from (37),
1*1 1*1

^  (ein-0i)2 » J(Gn-G)2i-1
0&

whence we obtain Ji® 2 (*,n-e,)2 m 0, also. This completes
1*0

the proof.
Proofs of Convergence Theorems. We can now proceed to the

proof of the convergence theorems.
Proof of Theorem 3; By the expansion theorem and 42) and (27), 
the series Fn-F - J ^ - c * )  n - 0,1,2,... are absolutely
and uniformly convergent in x. Hence, by Lemma 2, the series

^ e  also absolutely and uniformly convergent 
in x* Hence the conditions of Lemma k are satisfied and
the sequence [Fn-Fj converges uniformly to zero5 or by (25),
[Kgnj converges uniformly to F, as we wished to prove.
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Proof of Theorem hi By Lemmas 1 and 3 all the conditions of 
Lemma 5 are satisfied by the functions fn(x) and f (x)• Hence 
by (26) the first part of the theorem, concerning the con
vergence In the mean of {kgn } to f(x), is proved*

In the second part of the theorem, since g(x) exists by 
hypothesis, the expansion theorem may be applied to f(x) as 
well as to fn(x). Hence, by (12) and Leamas 1 and 2, the
series »

tn-t s ^ f ‘1llA1(clo-c1)i'1(3t), n * 0,1,2,...

are absolutely and uniformly convergent in x, and the condi
tions of Lemma h are satisfied* Hence the sequence n-q 
converges uniformly to zero, or, by (26), converges
uniformly to f(x)* This completes the proof*
Proof of. Theorem Since g0(x) is of the form (2*+), Lemmas
1 and 3 indicate that the conditions of Lemma 5 are satisfied 
by the functions gn(x) and g(x)* Hence the first part of 
the theorem, concerning convergence in the mean of to
g(x), is proved*

In the second part of the theorem, the expansion theorem 
is applicable to g(x), by hypothesis* Hence, by (12) and 
Lemmas 1 and 2, the series

En-g « Z  hx11 h 2(clo"cl)v,l(x)» n *i®l
are absolutely and uniformly convergent in x, and the condi
tions of Lemma ^ are satisfied. Hence the sequence [gn] 
converges uniformly to g(x), as we wished to prove.
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SUMMARY
A method of solving the Fredholm integral equation of the 

first kind
rb

f(x) « k(x,y)g(y)dy 
a

by means of the iteration formula
gn(x) = g ^ f x )  + F(x) -^K(x,y)gn-1(y)dy

where
J>F(x) s J k(y,x)f(y)dy a

K(xfy) - f k(t,x)k(t,y)dt 
‘'a

Is discussed* Several theorems concerning the convergence of 
the sequence of functions gn(x) to g(x) under various condition 
are stated and proved* It is shown that this sequence bears 
the identical relations to a solution of the integral equation 
as a sequence consisting of finite sums of orthogonal functions 
associated with the kernel k(x,y), given by the classical 
Lchmidt-Picard theory of integral equations* The latter 
sequence is of little practical value, however because of the 
difficulty of obtaining the characteristic numbers and 
functions of the kernel* In contrast with this, the successive 
members of the sequence given by the present iteration formula 
are obtained by simple quadratures.
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. -TEE- . EIKMETEIC POTEMXAl FlGW ABOW:
ELONGATED BODIES- OF BCTOimOI

IH B O D D C f lO l

U s M B *  ^b® determination of the flow about elongated 
bodies of revolution it of groat practical and thaoratleal 
importance in ssre- and hydrodynamics* Such knowledge is re
quired in connection with bodies such m  airships, torpedoes, 
projectiles, airplane fuselages* pi tot tubes* etc# fitno© it 
Is well-known that for a streamlined body, mowing in the di
rection of the axis of symmetry* the actual flow is very close
ly approximated by the potential (inviacid) flow about the 
body^t numerous attempts have been made to find a convenient’ 
theoretical method for obtaining numerical solutions of the 
potential Hour problem#

At first the problem was attacked by indirect means# In 
1871 Kamkime*^ showed how one could obtain families of bodies 
of revolution of known potential flow* generated by placing 
several point sources and sinks of various strengths on the- 
axis# this nethod was extended and used by B* w* Taylor^® in 
189^ and by 0# Fuhrmann1 in 1911* The latter also constructed 
models of the computed forms and showed that the measured 
distributions of the pressures over them agreed very well 
with the computed values except for a small region at the 
downstream ends# More recently* in 19^* the Hankins method 
was employed by Hunger and Helchardt^5 to obtain bodies 
with flat pressure distribution curves* and a further



If

refinement of the technique was published fey Biegels and 
Brandt^?# Most recently the indirect method has been employed 
to obtain bodies generated by axi symmetric source-sink dis
tributions on circumferences, rings, discs and flinders#
This development, which enabled bodies with much blunter noses 
to be generated, was initiated by Weinsteln^S in XfbS and com** 
tinned fey f m  Tuyl^S and- by Sadowsky and Sternberg*® in IfJPO*

A method of solving the direct problem, i#e# to determine 
the flow over a given body of revolution, appear a to have 
been first published by von K&mm* in If27# Kerman reduced 
the problem to -that -of solving a -Fredholm integral equation 
of the first kind for the axial souree-simk distribution 
which would generate the given body) m i  solved the integral 
equation approximately by replacing it by a set of simultaneous 
linear equations# Although this method is of limited accuracy 
and becomes very laborious when, for greater refinement, a 
large number of linear equations Is employed, nevertheless It 
is the best knom and most frequently me id of the direct 
methods# A modification of the von Xarmm method was publish
ed by Wijngsarden^ in 19W)#

An interesting attempt to solve the direct problem was 
made by Weinig2*1 in 1928# He also formulated the problem in 
terns of m  integral equation for an axial doublet distribu
tion which would generate the given body and employed an 
iteration formula to obtain successive approximations# lines 
the successive approximations diverged, the reconnended pro
cedure .was to extrapolate one step backwards to obtain a 
solution#



20
In 1935 entirely different approaeh, in which a solution 

for the velocity potential was as turned in the fora of m  in
finite linear m m  of orthogonal functions, was m&m by Kaple&3 
and independently by Faith1?# The coefficients of this series 
are given as the solution of a set of linear equations, infinite 
in number# In practice a finite umber of these-equations is 
solved for a finite number of coefficients, and Kaplan has 
shown that the approximate solution thus obtained is that due 
to an axial source-sink distribution which is also determined#
A simplification of Kaplan's method by means of additional 
approximations was proposed by Young and Owen2? In 19^3*

It appears t© be generally agreed , by those who have tried 
them| that the aforementioned methods are both laborious and 
approximate# Thus* according to Young and Owen2?i

In every case, however, the methods proposed are 
laborious to apply, and the labour and heaviness of the computations Increase rapidly with the rigour 

© and accuracy of the process# Inevitably# a compro
mise is necessary between the accuracy aimed at and 
the difficulties of computation# All the methods 
reduce, ultimately, t© finding In one way or another 
the equivalent eink-seurce distribution, and it is 
this part of the process which in general involves 
the heaviest computing«

Furthermore a fundamental objection is that only a special 
class of bodies of revolution can be represented by a distri
bution of sources and sink# on. the axis of symmetry# Accord
ing to von Kerman?t

This (representability by an axial sowrce-sinJc dis
tribution) is possible only in the exceptional case 
when the analytical continuation of the potential 
function, free from, singularities in the space out
side the body, can be extended to the axis of 
symmetry without encountering singular spots#
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The dissatisfaction with these methods is reflected by the 
continuing attempts to devise other procedures*

A new method published by Kaplan** in 19**3 is free of the
assumption of axial singularities and appears to be exact In 
the sense that the solution can be made as accurate as desired; 
but the labor required for the same accuracy appears to be 
much greater than by other methods# the application of the 
method requires that first the eonformal transformation which 
transforms the given meridian profile into a circle be de
termined* the velocity potential Is then expressed as m  
infinite series, whose terms are universal functions involving 
the coefficients of the conforms! transformation# Kaplan** 
has derived only the first three of these universal functions#

Cummins of the David Taylor Model Basin is developing a 
method based m  a distribution of sources and sinks on the 
surface of the given body* This method is also exact# but 
the labor involved in its application has not yet been 
evaluated*

toother exact methodf bated on a distribution of vortleity
over the surface of the bodyt is being developed by Dr* fandry 
of tot Admiralty Besoareh laboratory§ Teddington* England*
The methods of Cummins and Vandry both, lead to Frtdholm 
integral equations ©f the second kind, which can be solved 
by iteration*

The present writer has developed two new methods9 an 
approximate m m  in which m  axial doublet distribution is 
attuned f and m  exact one based on a general application of 
Green1 s theorem of potential theory# Both methods lead to
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Fredhola Integral equations of the first kind for which a selm*» 
tion by iteration hat boon discussod in Part 1* Indeed the 
consideration of this iteration formula m s  initiated in an 
attempt to find more satisfactory solutions of the integral 
equations of von Karaan? and Weinlg2**. these n m  methods will 
be presented| and* by application to a particular body* com* 
pared with other methods from the point of view of accuracy 
mud convenience wf application*

Formulation of the Probl«na. We will consider the steady, 
irrotational* axially symmetric flow of a perfect incompressible 
fluid about a body of revolution# fake the xmads as the axis 
of symmetry and let x*y be the coordinates in a meridian plane*

Denote the equation of the body 
profile by

y 2 *  f ( x )  ( 1)

Since the flow is irrotatiomal there exists a velocity 
potential which* for axi symmetric flows* depends only on 
the cylindrical coordinates x*y and satisfies Laplace*a eqw&~
tion in cylindrical coordinates

«  {j'fx) + 77 (jfy} « 0 (2)
Also* since the- flow is axlsymmetric* there exists a Stokes 
stress function (x*y) which, is related to the velocity 
potential by the equations

M  . .,!£» l £ .  ,12. (■>)
dx * df dj * ax w

It is seen that equation (2) may be Interpreted as the

FIGURE 1 - The Meridian Plane
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necessary anil sufficient condition insuring the existence of 
tte function!^# As is wall t o o i s  eohgta&t along a 
streamline and | considering the surface of revolution generated 
by rotation; of .a itrHsUss ■ about the sacls of *yHMtvy» ZfTY 
may Ijo considered m  the fltm bounded by this surface* On the 
surface of the given body and along the axis of synsetry oat* 
side the body wo have Y  m  Q* Y  satisfies the equation 

32yr 3 * y  , ^
•M M M * ^  M M  gg ' • *  «MM* | | | J

<9 sc 9 y ^  y  2 y
which is obtained %  eliminating <£> between aquations (3)* 

fte velocity will bo talosn as the nogs tiro gradient of tbs 
velocity potential* let ufv be the velocity components in, 
the **y directions* 2bemt by (3)* wo have

u * * §* * m y W  ^5>
v ** *&2 * &  2if (g)• ay y w

for a uniform flow of velocity H parallel to the sshueIs we 
have «

p *  • ox, it-* - 4o r .  (?)
The boundary condition for the body to fee a stream surface 

nay fee written in various ways* If the body is stationary 
the feosnftary condition is

Y ( x t /TST) * © (8a)
or, equivalently,

(§f>g « 0 (8W
where the derivative in (8b) is evaluated on the surface of 
the body in. the direction, of the outward normal to the body*
If the body is mowing with velocity ¥ parallel to the M o d s



2k

the boundary condition becomes
(|£) • * V cos (3 (9)g

uti#!1# (3 it the angle between the outward Bonsai to the body 
and the x~axis*

It is desired to obtain a solution of (2) or (*►) which
satisfies the boundary conditions (7) at infinity and (8) or
(9) on the body*

METHOD OF AXIAL MbTBlBtJTlOBS
Sources, and Sfmkp* The potential and stream functions for

a point source of strength II situated cm the x~axia at x m %
are.

<P • ft . y *  h -<-4  + & £ )  do)
whore

r2 « (*-t)8 ♦ y2 (11)

If the sources are distributed along the x~axis between 
the points a .and b (see Figure 1) with a strength (x) per 
unit length| the potential and stream functions are

m » f  at (12)
■» r

s f  H (t) (-1 ♦ fck)dt (13)
8 i

As is vell*hnovn, Kanklma bodies a w  obtained by super*\
position of these flows with a uniform stream §o m  to obtain 
a dividing streamline beginning at a stagnation point* With* 
out loss of generality we may suppose this uniform stream to 
be of unit magnitude* This dividing streamline is the profile 
of the Behfelee body for which, by (7), the stfe«,\ function Is



The bo«nderv corditior. (Be.) then fives: as the implicit equa
tion for the body

f  M(t)UJ t &t)dt * i r  (15): r
where cow y*1 m f(x) are. r* * (x-t)*' + fix}* In order to ob
tain a dosed body the to id strengt of scarcec and airbus
must re zero, i*c*

f
U{t,}d‘t m 0*

In this case (Ip) bocotr.es
b
jK <t)fei dt « iy2 (15s)

a r
In general (15a) cannot be solved explicitly for f(x) vh*m 

Jt(t) is given* n practical procedure for obtaining f(x) for 
a given x is to evaluate the integral numerically for various 
assuneu values of fir.) and to det-ermlne the vatue which satis
fies Ci 5a) by graphical means#

then f(x) is prescribed (15a) nay be considered or a Fredbolra 
integral ecration of the first hind for determining the un
known function J4 Ct)• This nation will not be treated, how
ever, since, as will be shown it is a special case of the more
general e; nation for dounlet distributions which will, now be
derived*

HouMtLt. IJLdH^iiSlonsj, let e (x ) be the strength per vaslt
length of a distribution of doublets along the x-axis between 
the points a and b§ (see 11ru^e 1)* I he potential and stream
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functions may be taken as

, , £  .<«) ^  dt (16)

and
■y- y2 f Bill dt (17)

a r3
The stream function for a Karikine flow now becomes

Y «  - iy2 + y2 f  a g i  dt (18)

Hence the boundary condition (8a) gives

£  dt . * (19)
Here mgain equation (19) nay b© considered as an implicit 
equation for the Hankins body when m(t) is given* or as a 
Fredhols Integral equation of the first kind when the body 
profile y2 » f(x) la prescribed#

In order to show the relation between the source and doublet 
distribution* in equations (15a) and (19)y integrate by parts 
in (19)# We have

Jb m(t) x| dt « m(t) ites i| atei dt

Heme© (19) be written as
b 0b

m(t) Jk-S | d§l & £  dt * (20)

The inteipretation ©f equation (20) is that a doublet distri
bution of strength m is equivalent to a source-sink distribution
©f strength SA together with point sources of strength m(a) dt
and -m(b) at the end point®# Hence souree-tink distributions 
are completely equivalent only to those doublet distribution®
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which varnish at the end points# fhis justifies the remark in 
the previous section that the integral equation for the doublet 
distributions la more general than that for the sonree»aink 
distribution**

Hiyk»e Appfmrtiaatfe ;.i «trlbutlon. Mwic12 hae given an approx- 
imat# solution of (19)"for elongated bodies* Hi* fernule may
be derived m  follows* For a very elongated body at a great 
distance fro* the end** the integrand of (19) § m(t)/r3f will 
peak sharply in the neighborhood of t  * x« In th e  ra n g e  of 
the pemkf in which the value of the integral is principally 
determined! n ( t )  will vary little from m(x}* Also o n ly  a 
small error will be introduced by replacing the limit* of 
integration by and +oo * Hence| a* a first approximation 
to a solution of (19), try

*!<*> « * (21)
We obtain °°

m^(x) a; iy2 (22)
a distribution proportional to the *eetion»area curve of the 
body* this approxl&atlea was independently derived by Weinig^ 
who employed it a* the first step in a divergent iteration 
procedure* It ha* also been rediscovered by loung and Oven2? 
and L a i  tone® who have shown the* accuracy of the a p p r o x im a tio n  

for elongated bodies by several examples*
It is apparent fro* Its derivation that (22) also gives 

the asymptotic radius of the half-body generated by a  constant 
axial dipole distribution extending from & point on the axis 
to infinity*. It is readily seen that this distribution is



equivalent to & point source at the initial point*
As a reflneaent to Muck's formula, '«.«lnblua23 has usad th* 

approxluiatioiaL
miix) m Cy2 (23)

where C is a factor obtained by comparison of the distributions
and section area curves of several bodies# Weisxblisa'a factor
bears an interesting relation to the virtual mass of the body#
This is seen by considering the expression for the virtual
©ass k^A in terms of the mass of the displaced fluid a  and
the totality of Hie doublets,

b a
% a  s krrpj mdar * a (2*0

where ky is designated the longitudinal virtual mass coef* 
fleient, and p is the density of the fluid# But, fro© (23),

VTrpJ i^ 4 ,  . V c j V * .  4 W A

since, for elongated bodies, a and b very nearly coincide with 
the body ends# 'Hence

c . Hw*x) (25)
In practice an approxin»ts veins of k^ nay be taken as tb&

of the prolate spheroid having the same le&gth-dla&eter ratio 
as the given body# The values of k^ for a prolate spheroid '
may be computed from the formula?

v tfUagt A 2,̂ j
kl * Az v'Az-l-?On(A+ v/A*-!)

where A is the length-dlaneier ratio# Bene©
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the veluea of kj_ versus A have also been tabulated by Lamb^ 
and graphed by HunkU*

Kna Pnin».« of ft Distribution. A difficulty is determining 
the doublet distribution from equation (19) is that the limits
of integration, a end b, are also untaown# la the method of 
von K & mm$  the end points are arbitrarily chosen| Kaplan** 
takes the m i  point of the distribution midway between the 
end of the body m i  the center of curvature at that end*

Kaplan based his choice on a consideration of the prolate 
spheroid# thus the equation of the spheroid of unit length 
and length~dlaMter ratio A, extending from x * 0 to % « 1, 
is

doublet distribution, however, extends between the foci of 
the spheroid which are situated at distances (A~\Ia2-1 )/(2A) 
fro® th# end points# Hence the error in Kaplan9# assumptier

y£ • (x~x2) (28)
the radius of curvature at % « 0 is then -As** the exact

2A2

diminishes rapidly with increasing A#
For the half-body generated by a constant doublet 

tio® (a point source) Kaplan9# assumption gives a w
nation# let a2 be the strength of the distrlbutie 
c r easily be shown fro® (19)' that th# source is 
a from the end of the body (stagnation point),



the origin Is chosen at the latter point, the equation of the 
half-body is

< ? 2 - ! s - f  <s>2 * &  <?)3 *••• <*»

Hence the radius of curvature at the end is ^ a, so that3 *
Kaplan*s assumption for the start of the distribution gives 
^a# This is in error by -la.3 3

Jkn approximate method for determining the end points of a 
distribution and its trends at the ends will now be described. 
Let y2 = f(x) be the equation of the given profile extending 
from x s 0 to x - 1; let m(x) be the corresponding doublet 
distribution, extending from x s a to x * b. It will be 
assumed that 0< a<< b< 1 and that a is near 0, b is near 1# 

Yarious conditions on m(x) may now be obtained by differ
entiating (19) repeatedly with respect to x. We get

J |̂2x - 2t ♦ f*(x) J dt - 0

Jam(t) [' 3*7 <2x - 2t + (2 + f")Jdt - 0 (30)

f m(t) [^5. (2x-2t+f')3_ 1Z. (2+f')(2x-2t+f') +niialldt 3 0 Ja |>r9 2r7 r5 J
When x s 0, r = t and, writing f(x) as a Taylor expansion I

f(x) * a^x + a2x2 + ajx3 (31)
then also f1 (0) » a^, f*<C) s 2&£» f lf*(0) » 6ay  Now, setting 
x « 0 in equations (19) and (30), we obtain
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W ? 4t • *
J a^p-<a1-2t)dt . 0

t L
)
I * # ” [35aX3“210al2t+60al(6_a2) t2+lK) (3a2_1+) t3+2‘rtL3tlt

= 0
dt

Also assume that m(x) may l.e expressed as a power series

(32a)

(32b)

(32c)

(32d)

(33)m(x) s cq + cjx + c2x2 + ...
Then the first of equations (32) gives

Tp (^5 - cl(a " b5 + c2 loe a + *** “
or, neglecting 1/b2 In comparison with 1/a2 and setting 
b * 1 in comparison with 1/a,

co * Sc^ad-a) + 2c2&2 log ^ + ••• * a2 <3^a)
}

Similarly the other equations (32) give, approximately, 

co(3®i~8a) + ^c^a(ax-Ba) + 6c2a2 (a^-^a+^a2) = 0 (3**b)

2cq [5ajL2-2ifa«̂ a+6 (^-ag) a 2j + ^ i a [3a^2-15a^a+li-(If-&2)a2
.̂Cga2 [l5ai2-800^ + 2^(^-ag)a2 » 0 (3**e)

3Cq 3 5*1^-2if0ai2atSOa^ (6^ 2) a2+6*f(3a2-^) a3+^8a^a^
■h2*+ê  |^5a^3a-35a^2a2-fl2â  (6-a2) a3+10 (3a2- W  a^+8a^a5j 
+^C2 ĵ 35a13a2-.252a12a3 4.90a1(6«a2)a^8C(3a2-li*)a5-i-72a2a6 *0 (3̂ -d) 

Equations (3*0 are sufficient in number to determine the 
unknowns a, Cq, c^, c2* Since the latter 3 equations are



H u m * and homogeneous in Cq , and eg, a ©an be determined 
from the condition that th© determinant of their coefficients 
must vanish# In this way the following equation of the 7th 
degree in <X • a^/a was obtained i 
°c(ĉ -»h5 2 (5°^~83A^42S£b<2^ 3^^^41285 ** (3x*^0
+ (53°(2-3L^tl2i) * 1152a1a22( ^ 3 )

4 72ai(^^)^(5oc3^5x24M)^-*ld) 4 t^aja^ (3<*»6)
* 2 8 8 * ^ 2 <?0(M6<* ♦l6> * n 52aifi*3<*<*3) r 0 <353

Corresponding to a solution ô ot <353 # 0o# and ©g can be 
obtained from equation® O^a* b9 e)» The solution of the
latter equations give®
®@$ 3 **Hn2 20o(^9^42^a242^a (Boc^lJ^l&^ag )J

3 a |i 5k.3**l68^24- 512°W3^^4^ >®'2,f^8a C 5^2«*2^42H*»4a2 )J
©gD 3 «*» [(<*•**)2(pWl >+***2]

where
D 3 2(9^3*9^2ta72cK-192)4 8[t*^)2fr~l)4**a2Jlog a*98aa
- 2a(l5^-26^2t9y^7e8)*38^2*96a2($ofi-$kA+2b)
4 576a2*2# (36)

the initial, doublet strength at x 3 a is 
m(a) * ©0 4 ©<g© 4 ®g*2 **»*t 

or| from equation® <3^31 
mta) m <* (°̂2**l2^4l6)4H8aIk*!*) (<x»2)4l6©£*96aa2| (37)
Equations (35), (36)f ®nd (37) determine the end points 

of the distribution and its initial trends# In general ecu** 
tlon (35) will have more than one real root# In this case 
the initial trends corresponding to each of the roots should
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be examined, and that root chosen which appears to give the 
nsimplest” trend# 1

The equations can be solved explicitly in the case of a 
very elongated body for which a^f a2, a ^ •*« in (31) are all 
very small. First let us suppose that they are so small that 
all the terms in (35) containing them are negligible, so that 
the first product term alone may be equated to zero, i*e,

«(«_if)2(50Jt-.83oc3+288<x,2-368x+X28) . 0 (38)
whose real roots are oc* 0, 0#5**7, ^*0, *h0, and 12A 29.

Let us consider the solution oc« i,e« a » a-^A, Since 
the radius of curvature a t i . O i s  ai/2, this solution is 
seen to be in accord with Kaplan*s assumption for the end 
points of the distribution, furthermore, substituting o<s 
into equations (36) and (37), we obtain, to the same order of 
approximation,

D s 61*, c0 2 - ai2/l6, <*1 s a<^A, c2 m 0
whence

m(x) a - ■24- + X
# N <39)m(a) s 0

In order to obtain a second approximation it will be 
assumed that not only a^, a2, • but also (K-h) are
small to the first order, equation (35) becomes

-3072 (c<-̂ ) 2+ 6l¥fa2(0(-W) -3072a22+ 768a.ja3 - 0 0*0)
whence

oca **• f a2 i i\/6la3 
Provided & 0 Al)

Corresponding to this value of we obtain from equations



(36)| to th© same order of approximation;

C n

and a dt
expression for a(x) in (b2) may also be Witten as

2
9 C(«* J£jjL*«» y^)

this form immediately suggests a modification and refinement 
of the Mustf&»Welnblm approximation (23) which will be consid
ered In the next section*

when a* < 0 the solution for * in (^1) indicates that therew
would be no real roots near M  * In this case a graph of
the complete polynomial in (35) should be examined either for

that more complete calculations would show 
*eal roots near *( « h nevertheless,- or that 

the maximum value of the complete polynomial in the neighbor
hood of o( m ** is so nearly zero, that the value of # correspond
ing to this maximum may be taken as an approximate solution*
On this assumption, the second order analysis would give

<0 (*+la)

Since an does not occur explicitly in equations (^2), it Is
seen that would also be obtained, to the s of

of <x in (**la) were substitutedapproximation, If the v&l 
into equation (36)*

If it Is determined that not even an approximate solution 
can be assumed near o( m ** it would be necessary to consider 
solutions in the neighborhood of th© other roots of equation (38)*
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In order to facilitate the computations for graphing the 

polynomial in (35), the functions A(«) , B(o<) , where
A(«) « * (o<-̂ )2(5«1+-83a3+288ot2-368«+128)
B(«0 , 72(«-1f)2(5‘X3-25a2+lK>-l6)
C(«) « »<-«(!*-W<53*2-:iA8tff 128)
D(<x) - -288<«-V) (5«2-l6«4-l6)
E(«) s -96of(3<jr_l|-> (1*3)
F(«) ■ U52(2«(-3)
G(oO * b84(%oi-8)
H(oc) * -1152(of*3)

have been tabulated in Table 1* In terms of these functions, 
equation (35) becomes
A+a^B+a2Cfa^a2lH*a22B+a^a2%faxa3G+ai2ajH 8 0 (M*)

It is of Interest to compare the approximate value for 
from equation (hi) with the exact value for the prolate spheroid, 
equation (28)* In this case we have

s -a2 ■ 1/A^j s 0 
and the exaet value of ft is

But when the length-diameter ratio A is large, equation (*fl) 
gives the approximate value ft- ^-l/A2, which is seen to con
sist of the first two terms of the series expansion of the 
exact value of ft * The following table shows that the approxi
mate formula gives excellent agreement with the exact values 
even for very thick sections* Both the exaet and the



TAB IE 1
FUNCTIONS FOR DETERMINING LIMITS OF DOUBLET DISTRIBUTIONS
d k(d) B(<X) c(oO D(ot) E(c*.) F(cQ G(oO H(<*)

0
.1
.2
.3.4

0
143.0
188.J
169.7112.5

-I8432.O
-13409.7
-9315.5-6027.4
-3433.9

0 18432.0
-177.4 16230.2 
-305.6 14227.2 
-392.4 12414.2 
-445.1 10782.7

0
35.5
65.3
89.3 
107.5

-3456.0
-3225.6
-2995.2
-2764.8-2534.4

0
-37.0
-71.0

-102.2
-130.6

34 56.0 
3340.8 
3225.6 
3110.4 
2995.2

.5.6

.7.8

.9

36.4
-44.4
-120.1
-184.5
-234.8

-1433.3 66.6 
1148.7 I887.4 
2349.1

-470.8
-475.6
-465.4
-445.6
-421.1

9324.0
8029.4
6890.4
5898.2
5044.3

120,0
126.7
127.7 
122.9 
112.3

-2304.0
-2073.6
-1843.2
-1612.8
-1382.4

-156.0
-178.6
-198.2
-215.0
-229.0

2880.0
2764.82649.6
2534.4
2419.2

1.0
1.1
1.2
1.31.4

-270.0
-291.2
-300.5
-300.9
-295.9

2592.0
2667.3 2619.2
2485.3
2297.3

-396.0
-374.3
-359.1
-353.4
-359.3

4320.03716.6
3225.6 2838.2
2545.9

96.0
73.946.1
12.5
-26.9

-1152.0
-921.6
-691.2
-460.8
-230.4

-240.0
-248.2
-253.4-255.8
-255.4

2304.0
2188.8
2073.6
1958.4
1843.2

1.51.6
1.71.8 
1.9

-288.9 
-283.1 -281.5 
-286.2 
-298.8

2081.3 
1857.9 
1643.5 
1449.71284.4

-378.8 
-412.9 
-462.5 -527.8 -608.6

2340.0
2211.82152.82154.2
2207.5

-72.0
-122.9
-179.5
-241.9-310.1

0
230.4
460.8
691.2
921.6

-252.0
-245.8
-236.6
-224.6
-209.8

1728.01612.8
1497.6
1382.4
1267.2

2.0
2.12.2
2.32.4

-320.0
-349.8
-387.3
-430.9-478.2

1152.0
1054.0
989.1954.0
943.7

-704.0
-812.8
-933.3
-1063.1
-1199.3

2304.0
2435.02592.0 2766.2
2949.1

-384.0
-463.7
-549.1
-640.3
-737.3

1152.0
1382.4
1612.8
1843.2
2073.6

-192.0
-171.4
-147.8
-121.4
-92.2

1152.01036.8
921.6806.4
691.2

2.52.6
2.72.8 
2.9

-526.3
-572.0
-611.7-641.8
-658.9

951.8
970.9 
993.51011.9
1018.9

-1338.8
-1477.5-1611.4
-1735.4
-1844.2

3132.03306.23463.23594.2 
3690.7

-840.0
-948.5

-1062.7
-1182.7
-1308.5

2304.02534.4
2764.8
2995.23225.6

-60.0
-25.0
13.0
53.8
97.4

576.0
460.8
345.6
230.4
115.2

3.0
3.13.2
3.33.4

-660.0
-642.8
-606.1
-549.6
-474.9

1008.0
974.2
914.2 
826.8
713.3

-1932.0
-1992.4
-2018.5-2003.0
-1937.8

3744.0
3745.43686.4
3 558.2 
3352.3

-1440.0
-1577.3
-1720.3
-1869.1
-2023.7

3456.0
3686.4
3916.8
4147.2
4377.6

144.0 
193.6 
245.8301.0 
359.0

0
-115.2-230.4
-345.6
-460.8

3.6
3.73.8 
3-9

-385.3-286.2
-185.8
-94.8
-27.0

578.3
429.5278.7142.2
40.6

-1814.8
-1624.8
-1358.5-1006.0
-556.8

3060.02672.6
2181.6 
1578.2
853.9

-2184.0 
-2350.1 
-2521.9 
-2699.5 
-2882.9

4608.0
4838.4
5068.8
5299.2
5529.6

420.0483.8
550.6 620.2
692.6

-576.0
-691.2-806.4
-921.6
-1036.8



A(<X) B (of) C(c<) D(<*) E(<*) F(c*) G(c?0 Hfo()
4.0 0 0 0 0 -3072.0 5760.0 768.0 -1152.04.1 -34 .'7 52.1 675.9 -992.2 -3266.9 5990.4 846.2 -1267.24.2 -156.4 234.5 1482.8 -2131.2 -3467.5 6220.8 927.4 -1382.4
4.3 -394.3 591.5 2433.3 -3425.8 -3673.9 6451.2 1011.4 -1497.64.4 -782.7 1174.1 3540.3 -4884.5 -3886.1 6681.6 1098.2 -1612.8
4*5 -1360.2 2040.8 4817.3 -6516.0 -4104.0 6912.0 1188.0 -1728.04j6 -2170.8 3257.6 6278.2 -8329.0 -4327.7 7142.4 1280.6 -1843.2
4.7 -3263.7 4899.2 7937.7 -10332.0 -4557.1 7372.8 1376.2 -1958.44.8 -4693.4 70418.4 9810.7 -12533.8 -4792.3 7603.2 1474.6 -2073.6
4.9 -6'520.2 9797.5 11912.8 -14942.9 -5033.3 7833.6 1575.8 -2188.8
5.0 -8810.0 13248.0 14260.0 -17568.0 -5280.0 8064.0 1680.0 -2304.0

0 0 -18432 0 18432 0-3456 0 34561 -270 2592 -396 4320 96 -1152 -240 2304
2 -320 1152 -704 2304 -384 -1152 -192 1152
3 -660 1008 -1932 3744 -1440 3456 144 04 0 0 |0 0 -3072 5760 768 -1152
5 -8810 13248 14260 -17568 -5280 8064 1680 -230416 -75840 116352 55104 -576OO -8064 10368 2880 -3456
7 -302400 488592 141876 -128736 -11424 12672 4368 -46088 -819200 1456128 299008 -239616 -15360 14976 6144 -5760
9 -1700550 3535200 556020 -398880 -19872 17280 8208 -6912

10 -2790720 7475328 947520 -615168 -24960 19584 10560 -8064
11 -3417260 14306040 1513204 -897120 -30624 21888 13200 -9216
12 -1966080 25362432 2297856 -1253376 -36864 24192 16128 -10368
13 4706910 4236364.8 3351348 -1692576 -43680 26496 19344 -1152014 22052800 67420800 4728640 -2223360 -51072 28800 22848 -12672
15 58820520 103097808 6489780 *2854368 -59040 31104 26640 -13824

A+ajB+agC+ai^D+^^E+ajs^F+a^^G+ai'^H - 0

A = (tf(o< -4)2 (5<A4-83o(3f288o(2-368o(+128 )
B S +72(<X-4)2(5b(3-25b<2f40<*-l6)

C B 4<X(<X-4)(53o£-148o(+128)
D s-288(0<-4)(5b<2-l6^4l6)

E a -96o((3^-4) f - 1152(ax-3)
G a 48(3o<-8)0< H a -ll52(0(-3)
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TABLE 2

COMPARISON OF EXACT AND COMPUTED VALUES 
OF <* a ax/a FOE A PROLATE SPHEROID

A 2 3 4 5 6
Exact ci 3«732 3.88)51 3.936 3.960 3.972
Approx. o'- 3.750 3.889 3.937 3.960 3.972
approximate formulas give m(a) s 0o Thus the present 
approximate methods work very well for the prolate spheroid.

the Munk approximation could be expected to be useful only at 
a distance from the end points of a distribution. It was 
seen, however, (42a), that under certain circumstances a dis
tribution which was a suitable approximation for the nose and 
tail of a body also appeared as a generalization of the Munk- 
Weinblum approximation (23)« This suggests a procedure for 
obtaining an improved approximate distribution.

It is desifed to obtain a distribution m(x) which satisfies 
the following conditionss

a0 m(x) assumes known values ma and m^ at the distribution 
limits a and b, i«@,

m(a) » ma, m(b) s m^ (45)
b. m(x) is nearly equivalent to the Munk-Wefnblum approxi

mation (23) at a distance from the distribution limits, i.e. 
m(a) m Cy2 for a«x<<b 

©* m(x) satisfies the virtual mass relation (24) which 
may be written in the convenient form

m(x)dx s ±(l*ki)^ y2^x (46)
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It Is readily verified that condition (a) is satisfied by 

the distribution
b(x) * Cyz+e0 +e1x <^7)

where #0 • ̂  [tar *ab*C (af b-bf a)] <V8)
e^ « -1_ [mjj-aij+C (f 8-f b)] (^9)

If the linear term c In (*f?) Is small in comparison with
m(ac) at a distance from the ends then condition (b) is also 
satisfied* finally condition (c) can be satisfied by a proper 
choice of C in (N?)* M s  Is accomplished by writing m(x) in 
the form &(%) * C(y^- f&~ &s& ffc) 4 3fei,

substituting it into equation (k&) , and solving for C* We 
obtain tforta) £y ^ ^ ( b . a ?  (aatBl

y2dx~i(b*a) (*&♦%) * ̂
^  that we

have derived a good first approximation to the doublet distri
bution function In the integral equation (19)t it would be 
very desirable to- apply it to obtain a second, closer approxi- 
nation* This can be accomplished by means of the iteration 
formula which we will ’ ow derive*

let m^(x) be a known first approximation and Y^(x) the 
corresponding values of th© stream function the given 
profile y^ « f(x)* Then, from Equation (18),

» - if(x)+ t(x) £  (51)
1’hus ̂ ( x )  is a measure of the error when m^t) i* tried as
a solution of the Integral equation (19)* If ®(t) is a solu
tion of (19), (51) may be written in the form

-^l(x) ■ f (x) [b aa.C.q r a (,U dt (52)
Ja r«3



ko

But* on the smm assumptions us were used to derive Mwnkfs 
approxl&ste distribution (22) 9 we obtain as an approximate 
solution of the Integral equation (52)

a^(x) * m(x) * iV'l**) (53)
or* denoting the new approximation to m(x) by Bgfe)#

mg(x) * »y(x) • f^^(x) (5%)
Hence| from (51)

»2(3C) • B^C*)* if(x) i- f £UL|iat (55)Ja
Bine© the foregoing procedure can be repeated successively*
we obtain the iteration formula

®i*l(*) * »1<X)+ W<*) *- ^  dt (56)'a r3
and ® 1 + 1 ^  “ »l(*) • *4V'j.(x) (57)

It is aeon that Y 1 !• the value of th# stress function 
on the given profile corresponding to the 1 th approximation 
ttg(x) and hence serves as a measure of the error when m^(t) 
is tried as a solution of the integral equation (19)*

Although successive approximations to m(x) may be computed 
directly from (56)* an alternative form* which is both more 
convenient and sore significant*, will now be derived* From 
(56) we may write

ai(x) « “i„i(x)+ W(ac) [i«j£ S4allUdt (56a)r3
Hone®* deducting (56a) from CJ6) and. making use of (57)# w

^ Y l (3**) a Vi«*i^*) ** irf (a) f ^ 3â L«wwwdt (58)Ja. r3
Also* from (57)* w© obtain



mi+i(x) » a^Cx) - i XV*Cx)
1 J

(59)

Thus, in order to obtain m^^Cx), we first assume an ®^(x) 
then determine V^ix) from (51)* can then
be successively obtained from (5$)* and finally m^^(x) from (59) 

It has been stated that the magnitude ot^(x) is a measure 
of the approximateness of m^(x)* This property of^(x) can 
he given a geometrical interpretation* Corresponding to the 
distribution m^(x) there is an exact stream surface on which 
th© stream function"^ (x,y) r 0* letAn^ be the distance 
from a point (x,y) on the given body to this exact stream surface 
measured along the normal to the given body, positive outwards* 
let us be the tangential component of the flow along the body* 
Then we have

But Ay* ~ y r(x), since *y^(x,y) s 0 on the exact stream surface* 
Hence

Since, for an elongated body us * 1, except in the neighbor
hood of the stagnation points, it is seen thaty^tx) enables 
a rapid estimate to be made of the variation from the desired 
profile of the exact stream surface corresponding to m^(x)• 
This is an important property because it can be used to 
monitor th© successive approximations* Thus, th© sequence 
^i(X) can be terminated whenA becomes uniformly less 
than some specified tolerance; or, since there is no assurance

(60)
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that the infinite sequence ̂ (x) converges, the sequence can 
conceivably give useful results even without convergence if 
it is continued as long as dn^ decreases on the average, and 
is terminated when the error begins to increase and grows 
to an unacceptable magnitude at some point along the body*
The strong similarity between these remarks and the discussion 
following Theorem 2 of Part I should be noted*

There is also a strong similarity between the iteration 
formulas, equation (17) of Part 2, whose convergence was 
thoroughly discussed, and the present equation (56)* An 
essential difference between th© iteration formulas is that 
the former employs the iterated kernel of th© integral equa
tion, the latter does not, so that the convergence theorems 
of Part I are not applicable* nevertheless it is proposed to 
use the form in (56) (or the equivalent iteration formula (58) 
for the following reasons:

a* Th® labor of numerical calculations would be 
greatly Increased by iterating th© kernel, and 
even then only convergence in the mean would be 
guaranteed (Theorem b of Part I), 

b* The physical derivation of equation (56) indicates 
that at least the first few approximations should 
be successively improving• 

c* The successive approximations are monitored so 
that the sequence can b© stopped when the error 
is as small as desired or, in the case of initial 
convergence and then divergence, when the errors 
begin to grow*
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Velocltv-and .JPx_e&BHgciPlatrJJmtion mJihfi__Snr£fig&* Men

an approximate doublet distribution m^(x) has been obtained, 
the velocity components u,v can be computed from the corre
sponding stream function (18)

t i<*»y) * y2 Jb ssiiiat - i (61)a y.
from which, in accordance with equations (5) and (6),

U , u  (62>

and h
v * By n^ftjdt (6 3)

On the given surface we have, from (61),

£ " £ * « ■  * * # 3
where now

r2 s (x-t)2+ f(x) (65)
Differentiating (6**) with respect to x gives

3 f  iaSsJOL al(t)dt (66)L 1 y2(x) y3(x)a
Hence, from (62) and (6h) w© obtain

« .  3y2/’! ! 4 i i a t - 2 t e i  <67>a r5 f(x)
and, from (63), (66) and (67),

v s ny'(x) (gg)
y(x)

where the primes denote differentiation with respect to x# 
Equations (67) and (68) are the desired expressions for u 
and v# If the approximation m^(t) is very good, the con
tributions of the error function^(x) should be very small*
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It is interesting to note that the form of equation (68) 
shows the deviation of the resultant velocity from the tangent 
to the given body*

Bernoulli’s equation for steady, incompressible, irrota- 
tional flow now gives the pressure distribution p,

where q is the stagnation pressure*
* In order to perform 

the iterations in equations (50 and (58) and to compute the 
velocity distribution it will be frequently necessary to 
evaluate integrals of the form

Because, in this form, these integrals peak sharply in the 
neighborhood of t * x, ©specially when the body is elongated, 
they are consequently unsuited for numerical ©valuation*

A more suitable form can be obtained by means of the 
following transformation* Let (x,y) be the coordinates of 
a point on the body, t the abscissa of a point on the axis,
0 the angle between line Joining these two points and the 
x-axis5 see Figure 1. Then

We may now transform the integrals so that 9 becomes the 
variable of integration. Then

J • 1 - <U2+T2) (69)

where
r2 » (x-t)^ t f(x)

x - t s y(x) cot© (70

sin0d0 (71)
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find J ^ m(t) m | m(t) sln3ede (72)
where o(* arc tan -X-, c>9 arc tan ~X~ (7;̂x-a ' x-b

alternate procedure, which eliminates the peak without 
a transformation of variables, is the following. We have

L  rf |̂[®(t)-m(x)J dt + m(x)J |̂dt
and j  ^ m(t)dt s j Ĵm(t)~m(x)j dt* m(x) j d̂t
Hence J m(t)dt • J *s£|m(t)-m(x)J dt + m(x) (eoso(-eos(3) (71a) 

a r*> a r—

+ ffl(x) [cOSo(~COS(3~ A(cOS3c<~CQS30 )J (?2a)
Gauss* quadrature formula is a convenient and accurate 

method of evaluating these integrals. The formula may be 
expressed in the form

/J m m  . £ ^ F d ^ )  (7%)
1*1

where the |^ are the zeros of Legendre*s polynomial of degree 
n and the are weighting factors. These have been tabulated^ 
for values of n from 1 to 16. These numbers have the properties

Eni * ^n,n-i+l 811(1 ^ni * ~ £ n,n-i+l ^5)
The value of the integral given by the formula (7*+) is the
same as could be obtained by fitting a polynomial of degree 
2n-l to F(x) • The values of and are tabulated below 
for n * 7, 11# and 16*

When the limits of integration are and (3 , as in equa
tions (71) and (72), Gauss* formula becomes
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Yirtiere

rfiL F S R niF(^)2 isl

TABLE 3
ABSCISSAE AND WEIGHTING FACTORS FOR 

GAUSS® QUADRATURE FORMULA 
n m 7 n r 11

(76)

(77)

n s 16I T Ri R-
-.949108 .129485
-.741531 .279705-.405845 .381830
0 .417959

-.978229 .055669-.887063 .125580
-.730152 .186290
-.519096 .233194
-.269543 .2628050 .272925

£l

989401
944575865631
755404 617876 
458017281604
095013

n̂-i*i

.027152.062254

.095159

.124629.149596

.169157.182603

.189451
Ri^n-l*-/

Illustrative Example. The foregoing considerations will 
now he applied to a body of revolution whose meridian profile 
is given, for -1 ■ x ■ 1, by

y2 s f(x) = 0.04 (1-x4) (78)
The body is symmetric fore and aft, has a length-diameter 
ratio ^ s 5, and a prismatic coefficient

1
<p - j (l-x4)dx s 0.80 

■'o

By applying to (78) the transformation
x = -1, y s 2 r/

(79)

(80)
We obtain the equation for the geometrically similar body 
of unit length, for 0 i £ m 1,
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2

0 . 0 4

- -  0.02

F i g u r e  2 - G r a p h s  of y ( x ) a n d  y 2 (x)  for y 2 (x) = 0 . 0 4 ( 1  -  x4 )
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S 0,88(f-3|2+»fj3-2f^) a 0.08 <l-f) (2|2-2^ 1) (8l)
We will also need the slope of the profile which, from (78) 
is

The profile and fix) are graphed in Figure 2*
First let us find the end points of the distribution* We 

have, from (81), aj s O.OS, ag * ~0*2*f, r 0*32* The 
approximate formula (**!) then gives o( * 3*68 or 3*8**, whence 
a m â /oc m 0*0217 or 0*0208* M  examination of the complete 
polynomial (35) with the aid of Table 1 shows that its zeros 
occur at a * 3*85, 3*85, 12*1* In the application of Table 
1 to determine these roots the regions of possible zeros 
should be determined by Inspection, the values of the polynomial 
in these regions calculated from equation (Mf) and Table 1, 
and then graphed to obtain the zeros* It is seen that In the 
present case the approximate formula (*+1) would have been 
sufficiently accurate for the determination of the roots near 
of* ^* The solution of the complete polynomial equation will 
always yield an additional large root, corresponding to the 
large root of equation (38)5 in general, however, this root 
should be rejected since as will be shown, the initial 
doublet distribution corresponding to it is less simple than 
for the roots near oc ~ k.

The initial behavior of the distributions corresponding 
to each of the three roots, as determined from equations 
(36) and (37), is shown in the following table* It is seen 
from the table that the distribution for 12*1 begins with

(82)
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practically a zero value for m(a), with a small negative slope 
and with up curvature0 Since the distribution curve cannot

TABLE 4
CHARACTERISTICS OF INITIAL DISTRIBUTION 
a m(a) C2

3 065 o0219 o 0 0 0 0 2 1 6  o0375 -0 *1 0 3

3 o85 o0208 ->o 0000191 <>0376 -0 o l0 9

12 a l  <>0066 0OOOOOO8 - 0OO64  0o35

continue very far with up curvature, there must be an in
flection point nearby® In contrast, the distribution corre
sponding to the other two roots begin with positive slopes 
and down curvatures and hence must be considered simpler® 
Furthermore the distribution for the first root is considered 
simpler than for the second since the distribution curves 
are practically identical except that, for the second root, 
the curve is extended a distance 4a s o0011, in the course 
of which m(a) changes from a positive to almost a numerically 
equal negative value® If we take the point of view that the 
positive and negative values of this extension counterbalance 
each other, the curve without the extension, corresponding 
to the first root, must be considered the simplest®

Hence, for the purpose of obtaining a first approximation, 
we will assume o(- 3o6J and, correspondingly, a => 0o022, 
m(a) & 0 o000022o Often, as in this case, the labor of obtain
ing a and m(a) can be considerably reduced by using the less 
exact equations (4 1 ) and (4 2 ) instead of ( 3 5 )* (3 8 ) and ( 3 7 )• 
Since, as will be seen, the iteration formulas rapidly
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improve upon the first approximation, groat effort ghoul6 not
be e x p e n d e d  t o  determine a n  i n i t i a l  v a lu e  f o r  ®(&)*

She values a  * 0 * 0 2 2  and m(a) « 0*000022 h a v e  b oon  derived
f o r  the p r o f i l e  i n  the. t ^  -plane# The c o rre s p o n d in g  v a lu e s

in the x,y-plane are & « *0*9$6 and na * 0*000088# By
symmetry we also h a v e  b * •a, « ma*

A first approximation can now be obtained from 0*7) t 0*8} f
(k$) and (50)# Since A « 5*0, we have %  - 0*059* Also, from
(78)« f. • 0.00659, /* j^dx « 0.06M3, fb y^dx . O.O637. H®nc*-1
from (50)| C « 0*328* Then, from (M5), e0 « %  - 0fa * -0*OG2O7$ 
from <%?), e 0# finally we obtain from C1*?)

mi(m) * 0*32872 - 0*00207 (83)
We can now apply equation (51) and the iteration formula 

(58) to obtain the sequence of functioned(x>* let us 
suppose that it is desired to obtain a distribution m^(x) 
whose exact stream surface deviates from the given surface by, 
less than one percent of the maa&mim radius, i*e* An < 0*002#
Then, by'(60) | the sequenceY ^ * )  •hould be continued until 
^g(x)< 0*002.y/'t(x) for 1 i x 9  b, unless the error, as 
r e p r e s e n te d  by^Cx)* begins to grow before the. desired 
degree o f  a p p r o x im a tio n  is attained* I n  the l a t t e r  case the 
best approximation attainable would fall s h o r t  of the 
s p e c i f ie d  a c c u r a c y *

The integrations in (50) and (51) may be carried out in 
the form (71) in terms of <9 defined In (70)* For a fixed 
(x,y) on the given profile, <x and (3 are first computed 
frm (73)* Then, to apply Gauss * quadrature formula (?6 ) 9 

the interval is subdivided at the points 0^ given by (77)
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end the integrands evelusted at these points* The correspond- 
lug values of t at which %(t) in (51) o r f ^ ( t )  in (58) ii 
to fee road are* from (70),

t j - g * y oot a j (70a)
Since the values tj and sin 0 j are used repeatedly in the 
successive iterations at a given (x»y)f these should be 
stored in a form ecmventent for application*

The calculations for obtaining the integration limits <x 
and (3 for several values ©f a are given in Table 5* The 
values of 0j from (77), and the corresponding values of 
RjSlnej for application of the Gauss 11 ordinate formula, 
and the values of tj f r m  (70s) for each x are titered, as the 
first three columns in Tables 7a through 7h, in which are 
given the calculations for^(x)*

la order to senate yjCx), m^(t) is computed from (83), 
then njB Bin 9 is obtained* These are tabulated in Table 7* 
Gauss* formula then gives slneie* ty^Cx) is then ob
tained. from (51)| Its graph is given in figure 3* It is 
important to note that m^(t) is obtained by calculation, 
rather than graphically, in this operation* This procedure 
is reeomended since it gives greater accuracy in a critical 
step* In the subsequent operations on the y*g considerably 
less percentage accuracy is required, since t h e ^ s  are of 
the nature of first differences between the m*s, so that 
graphical operations are sufficiently accurate*
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As a cheek on the accuracy of the integration* V'x(O) was 
also evaluated by two other means* with the following results*

from Gauss 7 ordinate formula V'' y(0) • Q«OQ1258
f r m  Games 11 ordinate formula V̂ i(0) % 0*G022*§3
fro® exact integration Y^(0) $ 0»0012%3

It la seen that the 7 ordinate formula introduces an error 
in the fifth decimal place*

the first step in the determination of y$(x) is to read 
the values of^(t) f r m  the graph* Figure 3* ^jB sin# 
and sinOdd are then obtained* 'f g(x) is then given by 
(58) and graphed in Figure 3* Repeated application of this 
procedure gives V'j(x) and^i*(x) which are also graphed in 
Figure 3* The sequence is stopped afV%(x) since t/^ has 
increased appreciably overTfŝ at x * -0#956*

lienee* fro® (59)* we have the approximate distribution 
s%{r) « %<x) * %<x)~ t/^x)] (8*>)

to which Vi*(x) i« the corresponding error function* The 
distance An between the stream surface for !%<x) and the 
given profile is seen to be very snail; the largest error*

* •0*00007 at x e •#956* gives a An of about me  per 
cent of the maximum ordinate* A graph of i%(x) is given 
in Figure For the sake of comparison the curves for 
mi(x) and the original- Hunk' approximation if (x) are also 
shown*

Table 6 shows the calculations for obtaining the velocity 
component* u*v f r m  (67) and (68) * in which the integrals 
have been evaluated in terms of the polar angle © * according
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to equations (71) * (72) m &  (73)• Here also Gauss* eleven 
ordinate formula is used* The values of 0 m &  % are again 
taken from Sabi# 71 tho values of s%(t) are given by (8*0* 
in which theirs art read fro© figure 3 and s^Ct) it given 
in Table ?•

The pressure distribution cam now fee obtained from (69)* 
Graphs of p/% mm shown in figure 5*

Error in Itetermination of p/o. t»t A (p /q ), A u f at end 
a a denote errors In p/qt a, v, end a* ffaen, f r m  (69), we
have,

A(p/q) *i • 2{UAU*VAV) §
fro® (68)f

AW • f'AU.
and from (67) and (72) # except near the stagnation points*

Hence
A(p/q) « • ISpjl

If n w  we asense u g 1* y 1 g 0# y2 g %  (Mnnk*s approximation)* 
we obtain

Mp/%) m -
Thus an error of one percent in tho determination of m woold 
introduce an error of 0*02 in p/q*

In the foregoing example the minimum value of p/q was 
about **0*20# Bamce an error of on# percent in fit would have 
prodneed an error of ten percent in. the minimum value of

sir *
J s in 3 © d 0  *  w g
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P/q* It was found* in fact* that the application of Gauss1 
seven ordinate rult introduced' deviations in the valueis of p/q 
given by the 11 point rule of less thm  0*003 fo* the entire 
body#? For this reason Gauss1 eleven point rule was used in 
th® example, although the seven point rule would have sufficed 
if an accuracy of only *003 in p/q were required§ see Figure 5* 

If greater accuracy is desired the integrals can be evaln»T‘ 
atod in tho forms (71a) and (72a)• If tho latter forms are 
used in conjunction with tho Gauss Quadrature formula tho 
values of x should be chosen identical with the tfs required 
by th® Gauss formula# I M s  enables the entire calculations* 
including the iterations and the velocity determinations* to 
be made arithmetically* without resort to graphical operations* 
so that the method becomes suitable for processing on an onto- 
a&tic-sequence computing machine# In order to obtain sufficient 
accuracy In the Integrations and to obtain the velocities 
and pressures at a sufficient number of points along the body 
a Gauss formula of high order should be use#* say n m 16#
For this reason the procedure that has been Illustrated in 
detail may be less tedious for manual application#

la «rde* to
co m p are  the accuracy of the K erm an method with th e  present 
one* the error function y^lx) was computed f o r  a distribution 
derived by th e  Reman m e th o d * employing Ik intervals extend
ing from -0*98 £ x £ 0#98* is graphed in Figure 3#
It is seen that the errors are much greater than for the
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present Mthodt| especially near the tMi of tho body# The 
oscillatory chare©tor o f y k(x) is imposed bar tho condition 
that the stream function should vanish at tho center of each 
interval# It is conceivable that* tho amplitude of tho osellla» 
tions may remain lari© even whan the number of inter**
vale is greatly increased) i*s* the Karmar method may give © 
poorer approximation when the number of murm*s±®k segsente 
is greatly increased# The pressure distribution obtained by • 
1*0 Karat® method it graphed in Figure %

Kaplan1© first nethod^ was also applied to obtain the 
pressure dietributlM* Kaplan espresso® the potential function 
p in. the fora <p • vher© ^ and A< are eonfoeal
elliptic coordinates* fn(H) end Qn (A) the nth legendrt and 
associated hegendr© polynoadalst md the A^*® are coefficients 
■to be determined from a set of linear equations which express 
the condition that the given profile is a stream function#
In the present ease it was assumed that 9 was expressed in 
terns of the first "9 Legendre feastiens end the a ^ s  it drained 
from toe conditions that the stream function should vanish 
at f prescribed points (tnelisding thr, stfMPwriie® points) 
on' the foody* The resulting -pressure distribution Is also 
shown in figure 5#



TABLE 5
CALCULATIONS FOR INTEGRATION LIMITS <*, ft

X x-a X-b y tan o( tan cX 0 £(sXf£)
0 0.956 -0.956 0.20000 0.20921 -0.20921 0.2062 2.9354 1.3646 1.5708

-0.20 0.756 -1.156 0.19984 0.26434 -0.17287 0.2584 2.9704 1.3560 1.6144
-0.40 0 . 556 -1.356 0.19742 0.35507 -0.14559 0.3412 2.9970 1.3279 1.6691
-0.60 0.356 -1.55£ 0.18659 0.52413 -0.11992 0.4828 3.0222 1.2697 1.7525-0.70 0.256 -1 .656 0.17435 0.68105 -0.10528 0.5979 3.0367 1.2194 1.8173
-0.80 0.156 -1.756 0.15368 0.98513 -0.08752 0.7779 3.0543 1.1382 1.9161
-0.90 0.056 -1.856 0.11729 2.09446 -0.06320 1.1254 3.0785 0.9766 2.1020
-0.956 0 -1.912 0.08117 60 -0.04245 1.5708 3.0992 0.7642 2.3350

0■0.20
•0.40
•0.60
■0.70
■0.80

040000
• 039936• 038976 
,034816
030396,023616

•0.90 1.013756 
•0.956 .006588

y
,20000.19984
,19742
,18659
•17435,15368
,11729,08117

TABLE 6
CALCULATIONS FOR PRESSURE DISTRIBUTION p/q
y '  Y *4 u

,0000 ,.000000 1.02640,0032 -.000082 1.03441
,0259 . 000060 1.05618
,0926 .000306 1.07907
,1574 .000317 1.07866
,2665 -.000129 1.04917
,4972 .92425,8611 .68161

uy
,00000 
,00331 
,02739 
,09993 ,16978 
,27960 
,45954 
,58693

y V y
,00000,00041
,00030
,00164,00182
,00084

*v obtained from equation v s -3 j m(t)sin2£cos ©d£?.y J<k

v
.00000
.00290
.02769
.10157
.17160
.27876
.4489*.5768*

u^+v^
1.05351.07001.1163
1.17471.1930
1.1785
1.0557
.7973

p/q
.0535
.0700
.1163
.1747.1930
.1785
.0557.2027

os



TABLE 7
CALCULATIONS F O R ^ C x ) AND u (x )

0 t  R s in $ m i( t )  m j(t)Rsin0

(a ) x .  Os *(£-«■) .

^ i_ ( t )R s in #

1 .3 6 4 6 , y2 & 0 .0400  

i^ 2 ( t )  \ | /2 ( t)R s in # 3 C t ) if/ ^ (t)R s in $ m4.(t) m4Rsin3$
.2359" 
.3603  
.574 4 
.8624  

1 .2 0 3 0  
1.5708  
1 .9386  
2 .2792  
2.5672  
2.7813  
2.9057

- . 8 3 2 0  .01301  
- .5 3 0 9  .04428  
- . 3 0 9 0  .10121  
- .1 7 1 3  .17708  
- .0 7 7 1  .24522

.0000  .27293

.0771 .24522  

.1713 .17708  

.3090 .10121  

.5309 .04428  

.8320 .01301

'.00 47 63  .0000620  
.010008 .00044 32 
.010930 .0011062  
.011039 .0019548  
.011050 .0027097
.011080  .0030159
.011050 .0027097  
.011039 .0019548  
.010930 .0011062  
.010008 .0004432  
.004763 .0000620

-.0 0 1 3 0 7  -.0000170  
-.0 0 0 3 7 0  -.0000164

.000652  .0000660

.001058 .0001874  

.001198 .0002938  

.001244 .0003395  

.001198 .0002938

.001058  .0001874  

.000652 .0000660  
-.0 0 0 3 7 0  -.0000164  
-.0 0 1 3 0 7  -.0000170

-.00 04 2 8  -.00 00 0 56  
-.00 01 0 7  -.00 00 0 47  

.000188 .0000190  

.000281 .0000498  

.000307 .0000753  

.000311 .0000849  

.000307 .0000753  

.000281 .0000498  

.000188 .0000190  
-.00 01 0 7  -.00 00 0 47  
-.00 04 2 8  -.00 00 0 56

-.00 01 5 1  - .0 0 0 6 0 2 0  
- .0 0 0 0 1 9  -.0000008  

.000063 .0000064  

.000075 .0000133  

.000075 .0000184  

.000071 .0000194  

.000075 .0000184  

.000075 .0000133  

.000063 .0000064  
-.0 0 0 0 1 9  -.0000008  
-.00 01 5 1  -.0000020

.005706 .0000041  

.010256 .0000565  

.010478 .0003130  

.010332 .0010552  

.010260 .0021907  

.010237 .0027940  

.010260  .0021907  

.010332  .0010552  

.010478 .0003130  

.010256 .0000565  

.005706 .0000041

£nnR s in  # = .0 1  55677
fmTsin# -.0212437  

=.001244

R s in $  = .0013671  
J li/is  in #  z .001866  

^ 2  -  >000311

L |/  oRsin# = .0003525  
.0004810  

r  ^ 3  , .0 0 0 0 7 1

£ -^ R s in 0  =-. 0000900 
p iH s in £ d 0  -.0001228

f t  s.ooooio

iRm sin* 0  =.0100330 
fm s in 3# - . 013691 

11 = 1 .0264

8 t  R s in # m^Ct) m j(t)Rsin$

(b ) x = -0 .2 0 :  £ (£ -  

V 'lC t)  y i ( t ) R s i n #

ol) -  1 .3 5 6 0 , y2 = .03 

if/' 2 ( t )  )R sin#

9936

3 ( t ) l / / 3 ( t )R s in # m4.(t) n^Rsin^#

.2879

.4115

.6243

.9105
1 .2489
1.6144
1 .9799
2.3183
2 .6045
2.8173
2 .9409

- .8 7 4 8  .01580  
- .6 5 7 9  .05023  
- .4 7 7 4  .10889  
- .3 ^ 5 2  .18417  
- .2 6 6 6  .24929
- .1 9 1 3  .27266
- .1 1 3 3  .24112  
- .0 1 4 8  .17102

.1356 .09531  

.3945 .04001  

.7823  .01110

.003366 .0000532  

.008592 .0004316  

.010369 .0011291  

.010841 .0019966  

.010984 .0027382  

.011032  .0030080  

.011048 .0026639  

.011050 .0018898  

.011046 .0010528  

.010732 .0004294  

.006136 .0000681

-.0 0 1 1 8 9  -.00001&8  
-.0 0 0 9 9 7  -.0000501  
-.0 0 0 0 9 8  -.0000107  

.000469 .0000864  

.000799 .0001992  

.001017 .0002773  

.001152 .0002778  

.001240 .0002121  

.001121 .0001068  

.000300  .0000120  
-.0 0 1 3 3 6  -.0000148

-.00 03 6 1  -.00 00 0 57
- .0 0 0 3 2 9  - .0 0 0 0 1 6 5  
- .0 0 0 0 1 8  - .0 0 0 0 0 2 0

.000141 .0000260  

.000221 .0000551  

.000271 .0000739  

.000300 .0000723  

.000310 .0000530  

.000296 .0000282  

.000101 .0000040  
-.0 0 0 4 4 5  -.00 00 0 49

-.0 0 0 1 1 2  -.0000018  
-.0 0 0 1 0 9  -.00 00 0 55  

.000013 .0000014  

.000055 .0000101  

.000070 .0000175  

.000074 .0000202  

.000076 .0000183  

.000072 .0000123  

.000076 .0000072  

.000048 .0000019  
-.0 0 0 1 5 9  -.00 00 0 18

.004197 .0000053  

.009310 .0000748  

.010421 .0003877  

.010508 .0012072  

.010439 .0023418  

.010351 .0028166  

.010284 .0020874  

.010239 .0009419  

.010299 .0002569  

.010507 .0000427  

.007106 .0000031

S in R s in # - .0154607  
fm is in #  s .0209647  

Y 1 = .000997

X f iR s in #  « .0010772  
J3fosinfld0. .001460  

^ 2 = . 000267

Dlr2B s in d  -  .0002834  
f ll /2s in 0 d 0 - .0003843  

ty 3 = .000075

£ lta R s in 0  -  .0000798  
f3 |^sin0d0» .0001082  

<j/A = .000021

£Rm4sin30 ^0101654  
Jm4sin3 0=1013784 

u .  1 .0344



(c )  x -  -0 .4 0 :  $(/3-0t) = 1 .3 2 7 9 , y2 = 0 .038976

e t R s in # m^Ct) m (t)R s in 0 + i ( t ) ■^(•tO Rsin# ■^2^) \^ 2 ( t )^ s in 0 ) ■ ^ ( t  )R s in 9 m4 ( t ) m4Rsir39

.3701 - .9 0 8 9 .02014 ' .002096 .0000422 - .0 0 0 9 8 2 -.0000198 -.00 02 7 2 -.0 0 0 0 0 5 5 -.00 00 6 0 -.0000012 .002753 .0000072

.4912 - .7 6 9 1 .05924 .006460 .0003827 -.00 13 2 8 -.0000787 -.00 04 4 0 -.0000261 - .0 0 0 1 5 8 -.0000094 .007423 .0000978

.6995 - .6 3 4 6 .11993 .008922 .0010700 -.0 0 0 8 9 5 -.0001073 -.000292 -.0000350 - .0 0 0 0 9 2 -.0000110 .009562 .0004754

.9798 - .5 3 2 5 .19364 .009995 .0019354 -.0 0 0 3 7 6 -.0000728 -.00 01 0 9 -.0000211 -.00 00 2 0 -.00 00 0 39 .010248 .0013684
1 .3 1 1 2 - .4 5 2 4 .25400 .010500 .0026670 .000023 .0000058 .000021 .0000053 .000027 .0000069 .010464 .0024827
1 .6 6 9 1 - .3 8 0 5 .27162 .010775 .0029267 .000360 .0000978 .000115 .0000312 .000050 .0000136 .010512 .0028278
2 .0270 - .3 0 3 1 .23592 .010939 .002 5807 .000673 .0001588 .000191 .0000451 .000065 .0000153 .010474 .0019912
2 .3584 -.2 0 1 7 .16454 .011028 .0018145 .000991 .0001631 .000265 .0000436 .000075 .0000123 .010362 .0008488
2 .6387 -.0 4 1 1 .08979 .011050 .0009922 .001228 .0001103 .000310 .0000278 .000073 .0000066 .010244 .0002137
2 .8470 .2506 .03647 .010998 .0004011 .000851 .0000310 .000233 .0000085 .000071 .0000026 .010420 .0000320
2.9681 .7264 .00961 .007397 .0000711 -.0 0 1 2 5 9 -.0000121 -.000412 -.0000040 -.00 01 4 7 -.0000014 .008306 .0000024

£ m iR s in $ =.0148836 S^PiRsln B * .0002761 'l ^ R s l n  9 = .0000698 S ^ R s in ^ * .0000304 ZRn^sjfi^ =.0103474
f m is in $ -.0197639 S e is in 0 - .0003666 1^ 2s in9 * .0000926 p j^ s in # =.0000404 f 1114s in 3# 3.013740

•.00 02 76 ^2 - .0 0 0 0 9 3 % » .00 00 4 7 -̂ 4 -.000027 u * 1.0562

(d ) x = -0 .6 0 :  £ (£ -o 0  = 1 .2 6 9 7 , y 2 » 0.034816

B t Rsin# m]_ ( t ) m }(t)R s in # fl(t) ■ ^ ( t  )Rsin# \|/2 (t)R s in $ ^ ( t ) ^ 3 ( t  )R s in$ m4 ( t ) m4Rsir^9

.5104 -.9 3 3 3 .02719 .001095 .0000298 -.00 07 9 8 -.0000217 -.00 01 8 9 -.0000051 -.00 00 1 1 -.0000003 .001594 .0000104

.6262 - .8 5 8 0 .07360 .003940 .0002900 -.00 12 4 8 -.0000919 -.000392 -.0000289 - .0 0 0 1 3 2 -.0000097 .004826 .0001221

.8254 - .7 7 2 2 .13689 .006385 .0008740 -.0 0 1 3 3 0 -.0001821 -.000441 -.0000604 - .0 0 0 1 5 9 -.0000218 .007350 .0005432
1 .0 9 3 4 - .6 9 6 5 .20712 .007962 .0016491 -.00 11 5 1 -.0002384 -.000381 -.0000789 - .0 0 0 1 3 1 -.00 00 2 71 .008794 .0014369
1.4103 - .6 3 0 2 .25941 .008981 .0023298 -.00 08 7 3 -.00 02 2 65 -.000287 -.00 00 7 45 -.00 00 9 0 -.0000233 .009606 .0024280
1 .7 5 2 5 - .5 6 5 7 .26843 .009706 .0026074 -.00 05 5 1 -.00 01 4 79 -.000168 - .0 0 0 0 4 5 1 -.00 00 4 2 -.0000113 .010087 .0026190
2 .0 9 4 7 - .4 9 2 2 .22756 .010280 .0023393 -.00 01 7 0 -.0000387 -.000041 -.0000093 .000005 .0000011 .010383 .0017715
2 .4116 -.3 9 1 5 .17551 .010742 .0016705 .000311 .0000484 .000102 .0000159 .000049 .0000076 .010511 .0007271
2 .6796 -.2 2 5 3 .08303 .011016 .0009147 .000928 .0000771 .000251 .0000208 .000072 .0000060 .010390 .0001714
2.8788 .0936 .03263 .011049 .0003605 .001179 .0000385 .000302 .0000099 .000075 .0000024 .010271 .0000226
2.9946 .6602 .00816 .008558 .0000698 -.0 0 1 0 0 5 -.0000082 -.000332 -.0000027 -.0 0 0 1 1 0 -.00 00 0 09 .009282 .0000016

Zm ]RsinB - .0 1 3 1 3 2 9 £ lj/]R s in $ =-.0007914 £\feR sin  B =-.0002 583 £ ^ 3R s in 0 = -.0000773 ZRn^sin3̂ -.0098538
j  m]_sin 9 -  .0166748 f u s i n g =-.0010048 W 2sin6 =-.0003280 J ^ 3s in  B = -.0000981 /m4s in 3^ =.012511

t l = .000733 f 2 =-.000231 ^ 3 *-.0 00 06 7 *-.0 0 0 0 1 8 u = 1 .0791

vnGO



(e )  x = -0 .7 0 :  £ (/? -a) = 1 .2 1 9 4 , y2 = 0.030396

e t  R s in # m]_(t) m i(t)R s in # ^ l ( t )  ^ 1 ( t )R s in ^ ^ 2 < t) ^ 2 ( t )R s in # ^ 3 ( t )  + 3 U)Rs:Ln£ m4 ( t )  m4.Rsir$9

.6244  

.7356  

.9270  
1.1843  
1.4886  
1.8173  
2.1460  
2 .4503  
2 .7 0 7 6  
2 .8990  
3 .0102

- .9 4 2 0  .03254  
- .8 9 2 6  .08426  
- .8 3 0 8  .14899  
- .7 7 1 0  .21598  
- .7 1 4 4  .26191  
- .6 5 6 1  .26469  
- .5 8 7 0  .22052  
- .4 8 9 3  .14866  
- .3 2 3 8  .07833  

.004 5 .03016  

.6192 .00729

.000719 .0000234  

.002722 .0002294 

.004799 .0007150 

.006414 .0013853 

.007633 .0019992 

.008619 .0022814 

.009492 .0020932 

.010298 .0015309 

.010906 .0008543 

.011050 .0003333 

.009121  .0000665

-.0 0 0 7 1 1  -.0000231  
-.0 0 1 0 9 3  -.0000921  
-.0 0 1 3 0 9  -.0001950  
- .0 0 1 3 2 9  -.0002870  
- .0 0 1 2 1 9  -.0003193  
- .0 0 0 9 8 9  - .0 0 0 2 6 1 8  
-.0 0 0 6 6 3  -.0001462
- .0 0 0 1 5 5  - .0 0 0 0 2 3 0  

.000559 .0000438  

.001242 .0000375  
-.0 0 0 8 2 1  -.0000060

-.000154  -.00 00 0 50  
-.000318  -.0000268  
-.000428  -.0000638  
-.000441  -.0000952  
- .00 04 0 0  -.0001048  
-.000327  -.0000866  
-.00 02 0 6  -.00 00 4  54 
- .0 0 0 0 3 5  -.0000052

.000172 .0000135

.000310  .0000093  
-.000266  -.00 00 0 19

.000008 .0000003  
- .0 0 0 0 8 6  -.0000072  
-.00 01 5 2  -.0000226  
-.0 0 0 1 5 9  -.0000343  
- .0 0 0 1 4 0  -.0000367  
-.00 01 0 8  - .0 0 0 0 2 8 6  
- .0 0 0 0 5 8  - .0 0 0 0 1 2 8  

.000008 .0000012  

.000062 .0000049  

.000073 -.0000022  
-.0 0 0 0 8 0  -.0000006

.001148 .0000127  

.003471 .0001317  

.005744 .0005475  

.007379  .0013672  

.008513 .0022144  

.009331 .0023229  

.009956 .0015458  

.010389 .0006277  

.010509 .0001455  

.010237 .0000178  

.009705 .0000012

Sr^Rsin# =.0115119  
Jm isin# = .0140376 

-.00 11 6 0

D i^ R s in  (9 - -  .0012722  
JY^slnO = -.0015513if/2 = -.00 03 8 4

I ^ R s i n  0  = 0004119 jy/2sin& = -.0005023  
1̂ /3 = -.00 01 3 3

£ ^ R  s in  $ = -.0 0 0 1 3 4 2  
J y 3s in 0  = -.0001636  i£4 -  -.000051

XRn^sin3̂ * .  008 9344
J JT!4Sin3Q ̂ .010895  

11 = 1 .0787

e t  R s in0 m ^(t) m i(t)R s in 0

( f )  x -  -0 .8 0 :  £(/?- 

^ l ( t )  ^ ( D R s i n d

-a) » 1 . 1 3 8 2 , y2 « 0 .  

" ^ ( t )  ^ 2 ( t )R s in 6

023616

^ 3 ( 0  ^ 3  ( t  )R s in 0 m4 ( t )  n^Rsin^O

.8027

.9064
1 .0 8 5 0
1 .3 2 5 3
1 .6093
1 .9 1 6 1
2 .2 2 2 9
2 .5 0 6 9
2 .7 4 7 2
2 .9 2 5 8
3 .0 2 9 5

- .9 4 8 5  .04004  
- .9 2 0 4  .09887  
- .8 8 1 1  .16474  
- . 8385 .22619  
- .7 9 4 1  .26262  
- .7 4 4 7  .25683  
- .6 8 2 7  .20887  
- .5 9 1 3  .13826  
- .4 3 0 8  .07159  
- .0 9 8 9  .02689  

.5652 .00623

.000431 .0000173 

.001634 .0001616 

.003143 .0005178 

.004565 .0010326 

.005833 .0015319  

.007015 .0018017  

.008200 .0017127  

.009446 .0013060  

.010598 .0007587 

.011049 .0002971  

.009711 .0000605

-.0 0 0 6 5 5  -.0000262  
-.0 0 0 8 9 6  -.0000886  
- .0 0 1 1 5 8  - .0 0 0 1 9 0 8  
-.0 0 1 2 9 7  -.0002934  
-.0 0 1 3 3 9  -.0003516  
-.0 0 1 2 9 9  -.0003336  
-.0 0 1 0 9 9  -.00 02 2 95  
- .0 0 0 6 9 0  -.0000954  

.000128 .0000092  

.001172 .0000315  
- .0 0 0 5 4 8  -.0000034

-.000127  -.0000051  
- .0 0 0 2 3 3  - .0 0 0 0 2 3 0  
-.000347  -.00 00 5 72  
-.000421  -.0000952  
-.000446  -.0001171  
-.000427  -.00 01 0 97  
-.000363  -.00 00 7 60  
-.00 02 1 5  -.0000297  

.000051 .0000037  

.000302  .0000081  
-.00 01 6 9  -.0000011

.000021 .0000008  
-.0 0 0 0 3 7  -.0000037  
-.0 0 0 1 0 2  - .0 0 0 0 1 6 8  
- .0 0 0 1 4 9  -.0000337  
- .0 0 0 1 5 8  - .0 0 0 0 4 1 5  
- .0 0 0 1 5 1  - .0 0 0 0 3 8 8  
- .0 0 0 1 2 3  - .0 0 0 0 2 5 7  
- .0 0 0 0 6 1  - .0 0 0 0 0 8 4  

.000037  .0000026  

.000076  .0000020
-.0 0 0 0 4 1  -.0000003

.000812 ' .0000168  

.002217 .0001359  

.003947 .0005084  

.005499 .0011704  

.006805 .0017847  

.007954 .0018090  

.008993 .0011865  

.009929 .0004825  

.010490 .0001108  

.010274 .0000127  

.010090 .0000008

Sn^Rsin 0 =.0091979  
Jm jsin 6 = .0104690  

= -.001339

£aJ/1Rs In  9 - -  .0015718  
J ^ s i n  6  -.0017890  

Y 2 - .0 0 0 4 4 4

£\j/2R s in £ -  -  .0005023  
S ^ s i n  B -.00 05 7 17

1J/3  = -.00 01 5 8

£ V 3 R s in $ “ -  .0001635  
J i/^s in  6  * -.0001861

Y a ~ - .0 0 0 0 6 5

£Rm 4jrir#*-.C072l85  
J m^sin3d -  .008216  

u = 1 .0492

vnvt>



(g) X .  -0.90: i(P-a) = 0.9766, y2 -  0.013756

e t  R sln  6 m]_(t)Rsin0 Y ' i ( t )  l/ /i ( t )R s in 9 y ^ U )  y >2 ( t  )R sir$ V ^ ( t )  y ^ (t )R s in $ m 4(t) rri4RsinJ#

1 .1467
1.2357
1.3689
1.5950
1 .8 3 8 8
2 .1 0 2 0
2.3652
2 .6 0 9 0
2.8151
2 .9683
3.0573

- .9 5 3 0  .05074  
- .9 4 0 8  .11860  
- .9 2 1 6  .18322  
- .8 9 7 2  .23312  
- .8 6 7 8  .25342  
-.8 3 1 1  .23532  
- . 7 &06 .18414  
- .7 0 1 0  .11841  
- .5 5 3 6  .05974  
- .2 3 0 0  .02165  

.4880 .00469

.000228 .0000116  

.000772 .0000916 

.001585 .0002904  

.002549 .0005942 

.003609 .0009146  

.004790 .0011272  

.006179 .0011378  

.007882 .0009333  

.009818 .0005865  

.011013 .0002384  

.010306  .0000483

-.0 0 0 6 0 0  -.0000304  
-.0 0 0 7 2 0  -.00 00 8  54 
-.00 08 8 8  -.0001627  
- .0 0 1 0 6 0  -.0002471  
- .0 0 1 2 1 5  -.0003079  
- .0 0 1 3 0 7  -.0003076  
- .0 0 1 3 3 5  -.0002458  
- .0 0 1 1 6 8  -.0001383  
- .0 0 0 4 8 6  -.0000290  

.000915 .0000198 
-.0 0 0 1 4 9  -.0000007

-.000104  -.0000053  
-.000154  -.0000183  
-.00 02 3 0  -.00 00 4 21  
-.00 03 0 5  -.0000711  
-.00 03 7 5  -.0000950  
-.000428  -.0001007  
-.00 04 4 4  -.0000818  
-.000388  -.00 00 4 59  
- .0 0 0 1 4 5  - .0000087  

.000248 .0000054  
- .0 0 0 0 3 3  -.0000002

.000035  .0000018  

.000006 .0000007  
-.00 00 3 4  -.0000062  
-.00 00 8 0  - .0 0 0 0 1 8 6  
-.00 01 2 1  -.0000307  
-.00 01 5 1  -.0000355  
-.00 01 5 9  -.0000293  
-.00 01 3 4  -.0000159  
-.00 00 3 4  -.0000020  

.000072 .0000016  

.000008 .0000000

.000563 .0000237  

.001206 .0001276  

.002161 .0003830  

.003272 .0007623  

.004465 .0010522  

.005733 .0010030  

.007148 .0006462

.008727  .0002665

.010151 .0000624  

.010395  .0000067  

.010393 .0000003

-m jRsln 6 - .0059739  
Jmxsln 6  = .0058341  

= -.00 10 4 4

IC ^ R s in  B -  -  .0015351
J ^ ls ln  6  - - .0 0 1 4 9 9

'ife. - .00 02 9 9

S V ^ R s in # --.0 0 0 4 6 3 7  
|3 ^ s ln  6 = -.0 0 0 4  528

V 3 = -.00 00 7 3

E V ^ R sin  6 9 -  .0001341  
J -l^ s in  B 5 -.0001309

Y 4  *  - .0 0 0 0 0 8

ZT Rir^sin3̂ *. 004 3339
J m4 s ir r^ '. 004233

u -  .9243

(h ) x = -0 .9 5 6 :  » 0 .7 6 4 2 , y2 = 0.006588

6 t Rsin<9 m i( t ) m i(t )Rsin# V l ( t ) R s in 0 V ^ ( t ) ' l/'2 ( t )R s in 8 V ^ (t  )R sin6 n)4 ( t ) m4R sin 3£)

1 .5 8 7 2 - .0 9 4 7 .05566 .000151 .0000084 -.00 09 8 1 -.0000323 - .0 0 0 0 9 9 -.00 00 0 55 .000039 .0000022 .000472 .0000263
1.6572 -.9 4 9 0 .12 512 .000409 .0000512 -.00 06 9 2 -.0000816 - .0 0 0 1 2 6 -.0000158 .000022 .0000028 .000787 .0000977
1.7773 -.9 3 9 0 .18234 .000850 .0001550 -.00 07 4  5 -.0001358 - .0 0 0 1 6 7 -.00 00 3 05 .000000 .0000000 .001306 .0002282
1 .9 3 8 7 -.Q 247 .21761 .001457 .COC3171 -.00 08 6 6 -.0001885 - .0 0 0 2 2 1 -.0000481 -.00 00 2 9 -.0000063 .002015 .0003820
2.1297 -.9 0 5 3 .22291 .002237 .0004986 -.0 0 1 0 0 5 -.0002240 - .0 0 0 2 8 1 -.0000626 -.00 00 6 4 -.000014  3 .002912 .0004 670
2.3359 -.8 7 8 2 .19703 .003246 .0006396 -.00 11 7 3 -.0002311 -.000353 -.0000696 -  .000107 -.0000211 .004063 .0004173
2.9421 - .8 3 7 5 .14851 .004595 .0006824 -.0 0 1 3 0 0 -.0001931 -.00 04  21 -.0 0 0 0 6 2 5 - .0 0 0 1 5 0 - .0 0 0 0 2 2 3 .005531 .0002623
2.7331 -.^ 6 9 2 .09293 .006457 .0006000 -.00 13 2 8 -.0001234 -.00 04 4 0 -.00 00 4 09 - .0 0 0 1 5 9 -.0000148 .007421 .LOOIO96
2 .8945 -.6 3 6 2 .04 583 .008901 .0004079 -.0 0 0 8 8 9 -.0000407 -.000297 - .0 0 0 0 1 3 6 -.00 00 9 4 -.0000043 .0095*1 .0000265
3.0146 -.3 2 8 8 .01611 .010897 .0001756 .000609 .0000098 .000175 .0000028 .000061 .0000010 .010474 .0000028
3.0843 .4182 .00328 .010649 .0000349 .000191 .0000006 .000070 .0000002 .000040 .0000001 .010498 .0000001

£m]_Rsin 9 -.0 0 3 5 7 0 7 rV ^ R s in # =-.0012401 I ^ R s i n  B- -.0003461 X'v/ORsir.^ = - .0 0 0 0 7 7 0 T. Rm4sin3<9= .0020198
Jm^sln 6 = .0027287 J i/^s in  6  = -.0009477 J^2s ln  9 = -.000264  5 J 'lfts in  6 * - .0 0 0 0 5 8 8 S ".001544

V'l = - .0 0 0 5 6 5 ■y2 ~ -.00 00 9 1 > 3 = .000041 ^ 4 = .0 0 0 0 7 0 u = .6816
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SOLUTION HI APPLICATION OF CREEK’S THEOREM
Oeaeral Application to Problems In Potential Theory. Let

cp and co be any two functions harmonic in the region exterior 
to a given body and vanishing at infinity* Then, a consequence 
of Green*s second identity^ is

where the double-integrals are taken over the boundary of the 
body and dn denotes an element of the outwardly-directed 
normal to the surface £* Also derivable from Green’s formulas 
is the well-known expression for a potential function in terms 
of its value© and the values of its normal derivatives on the

where r is the distance from an arbitrary point on the body 
to a point Q exterior to the body*

When a distribution of <p or over the surface of the body 
is given then (8*0 may be considered a© in integral equation 
of the first kind for finding or cp on the surface* If the
integral equation can be solved, (86) would then give the value 
of <p at any point Q of the region exterior to the body.

tor. AxiMmmMlSLMm* E q u a t i o n  ( 1 )
will now be applied to obtain an integral equation for axl- 
©ysmetrie flow about a body of revolution* Let y the ordinate 
of a meridian section of the body and ds an element of arc 
length along the boundary in a meridian plane* Then we may 
put dS « 2rryds (87)
It will be supposed that the body is moving with unit velocity

(85)

boiaadary? 
(86)
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In the negative x~direetion, which la taken to coincide with 
the axis of symmetry* The condition that the body- should be 
a solid boundary for the flow is that the component of the 
fluid velocity at the body normal to body is the same as the 
component of the velocity ©f the body normal to itself# This 
gives the boundary condition

(88)
where Y is the angle of the tangent to the body with the x- 
axis# Substitution of equations (8?) and (88) into (85) now 
gives rP

‘'o
where 2P is the perimeter of a meridian section and the arc 
length s is measured from the foremost point of the body*

Bow let us choose for to the potential of a doublet of 
unit strength situated at an arbitrary point of the axis of 
symmetry within the bodyf

“’S g *  (90)
where r2 m (x~t)2* y2#
Shea = ^  | • - s i n r + J  cob r]

al‘° to(̂ f  > * Ti Is M ~ r ?  ***r+fs COB r]
lienee y S  (91)

The left member of (89) can now be written 
1P jP
y(f af d* *( 'PdS (Xi>d* * * 4  |P- f  *| 4$dsO to J0 ds r3 r3 |0 J0 r3 ds

But <py2/p3 L * 0 since y vanishes at both limits. Hence (89)

*pg?d s « yajsinyds (89)

becomes



Equation (92) can bo further simplified if we express dP/ds 
In terms of the total Telocity U along the body when the flow 
is made steady by superposing a stream ©f unit Telocity in 
the positive x-directlon

Alsoi we have dx * ds eosY* dy * ds slnY* Then (92) may be

It is seen that (9**) is an integral equation of the first kind 
in which the unknown function is U(x) and the kernel Is y^/(2r3)# 

In contrast with the Integral equations for source-sink 
or doublet distributions which can be used to obtain the 
potential flow about bodies of revolution, the Integral equa
tion (9*0 has two important advantages* The first is that a 
solution exists| a desirable condition which is not in general 
the case when a solution Is attempted In terms of axial source- 
sink or doublet distributions* The second advantage is that 
(9*0 is expressed directly in terms of the velocity along the 
body so that| when II is determined, the velocity distribution 
along the body Is immediately-given by Bernoulli1 s equation 
(69). In the case of the'aforementioned"distributions! on 
the other hand, it would first be necessary to evaluate

(93)

0 (9k)



additional integrals, to obtain the velocity along the body,
before the pressures could be computed#

ICennard1 a Derivation of the Integral Sanation. A simple,
physical derivation of the integral equation (9*+) has been
given by Dr# I# H* ICennard • This will now bo pro sen tod*

Imagine the body replaced by fluid at rest, let XT be
the velocity on the body* Then the field of flow consists of
the superposition of the uniform (unit) flow and the flow due
to a vortex sheet of density U*

How subtract the uniform flow# There remains the flow due
to the vortex sheet alone, uniform inside the space originally
occupied by the body, of unit magnitude*

A vortex ring of strength Uds produces at an axial point
distance z from Its plane the velocity

where y is the radius of the ring# let s be the distance of
a point on the body measured along the generator from one end,
in a meridian plane. The axial and radial coordinates will
then be functions x(s), y($). The velocity due to the sheet
at a point t on the axis will then be

where r2 s [x(s)-t]2t y2(s) and P Is the total length of a
generator. The equivalence of this equation with (91*) is evident*

A_.JpirEt....A.ni)roximg,.tlon* If we again make use of the polar
transformation x~t * y(x) cote, (9*0 becomes



Jo2sint0-Y(xr
When x * t) Qm 17/2* For ©n elongated body the integrand in
(9*0 peak® sharply in the neighborhood of x * t, so that a
good approximation is obtained when H(x) Is replaced by U(t)
for the entire range of Integration* Also Y (x) will be small
except near the ends of the body so that the approximation

•in[0~Y(x}] h, sin0c©sT(x) k sinOcosr(t)
will also be introduced. We then obtain from (95) the
approximation t r < t )  k  cosr(t) tm

Just as was done in the case of Hunk's approximate doublet
distribution we can improve upon this approximation in term®
of an estimated longitudinal virtual mas® coefficient for the
body* For this purpose we will first derive a relation be*
tween this coefficient and the velocity distribution*

Let T be the kinetic energy of the fluid when the body is
moving with unit velocity in the negative x-direction* fhm

21 « d6 • 2 ^pjP ypsinYds
by (88)* Integrating by parts and substituting for d?/ds
from (93) now give®

2 1 ft — 1T pi! ^  a f d* mirpf b(x)y2(x)ds * A
where a  is the displacement of the body* But also, by
definition, 21 * kjA* Hence

A ( W X) » 'rfyjPU(x)y2(x)ds (97)
This is the desired relation between k^ and U(x)«

How suppose, as a generalization Of (98), that an approxi
mate solution of the Integral equation (9*0 is TJ(x) * C cosY*
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If this value is substituted into (97) , we obtain C m l4%* 
Hence an improved first approximation to tJ(x) is

t?l(x) » (1+kx) cosr(x). (9$)
(98) gives m  exact solution for the prolate spheroid*

 In order to
solve (9^) by means of the iteration formula treated in Fart I 
it would be necessary to work with the iterated kernel of this 
integral equation* Since this would entail considerable com
putational labor It is proposed to try a similar iteration 
formulat but employing the original kernel*

% +i<t) . 0B(t) + co*T(t) r i-j* un (x)a«l (99)
where r2 » (x-t)2+ y2(x) and x » ac(s)«

Here also it is convenient to express the iterations in 
terms of error functions K^Ct) defined by

• 1-j* da (100)

or, from (99),
\(t) cosr(t) - un (t) (101)

Hence
cn+l(t) • %<t)+ co#T(t) V  %(t) (102)

Also, from (99),

w t ) . v » >  - * r  % ( s i,2w <103)f3
where % ,  acy are the nose and tail‘abscissae*
Thus, to obtain % +i(t), we first obtain %(t) from %(t) 
in (100), then Eg, 'H'j,**•%-from (103), and finally 
from (102).
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Jp.£ » In applying equations

(IOC) arid (103) it will frequently be necessary to evaluate
integrals of the form

This form, however, is unsuitecl for numerical quadrature for

of 1 8 t* Here, as in the case of the integrals for the doublet
distribution, two procedures are available for avoiding this
difficulty. The first employs the polar transformation (70),
involves several graphical operations, but in general transforms
the integrand Into a slowly varying function so that the integral
can be evaluated by a quadrature formula using relatively few
ordinates. The second retains the original variables and
eliminates the peak by subtracting from the integrand an in- 
tegrable function which behaves very much like the original in
tegrand in the neighborhood of the peak. The numerical evalua
tion of the resulting integral on the second method requires a
quadrature formula with more ordinates than the first in order
to obtain the same accuracy, but, since all graphical opera
tions are eliminated, the second method is suitable for process
ing on an automatic-sequence calculating machine*

The result of the polar transformation has effectively been
given in (95) • r̂® have

dx where r2 « (t-x)2 + y2(x) •Xq r3

elongated bodies, since y2(x) peaks sharply in the neighborhood

f*1 E(x)yg(x) flx _ f E(x) sln^ffcosTfx) d0
x r»3 J o sin [a -y(x)|

where x-t c y(x) cot9  • (70)
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It is desired to evaluate this integral for a series of values 
of t* In general this can he done with sufficient accuracy 
by means of the Gauss 7 (or 11) ordinate quadrature formulas* 
This gives 7 (or 11) values of B at which the Integrand needs 
to be determined for a given t* fhe value of x occurring in 
the integrand is determined implicitly, for given values of t 
and 9 , by the polar transformation (70 % In practice the 7 
(or 11) x*s can be obtained graphically from the intersections 
with a graph of the given profile of the 7 (or 11) rays from 
the point x * t on the axis at the angles required by the Gauss 
quadrature formula* If greater accuracy is desired, these 
graphically determined values of x can be corrected by means 
of the formula

in which Xg Is the graphically determined value and y f denotes 
the derivative of y with respect to x*

The alternate procedure for evaluating the integral consists 
of expressing it in the form

t-Xg +y (x« ) co 19— ** ^ ....
l-y*(xg)cote

j“  E(x)dx as B(t)(eos^-cos(3) +
rX 1  rJ [fc(x,t)E(x)-k(t,x)E(t)l dx 
xo

—  .y 2- is ). . . .  . .  .
[(x-t) ̂ ty2(x)] 3/2 y(x)

where k(x,t)

oc * arc tan = fT- arc tan (108)
Then, from (98), (IOC) and (106) we obtain for E^(t)
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B^(t) *1* 3i£l(eQs<<~ cos/3) - [k(x,t)-k(t,x) dx (109)

Xg - J
and from <103), (106) and (109),
% +1(t) . E^t) -if*1 k(x,t) [En(x)-En(t)l dx (110)

X+Kl Jx0
Illustrative Example* The present method will now be applied

to the same profile (?&) as before* By way of contrast with the
semi-graphical procedures previously used, a completely arithme
tical procedure will be employed*

The velocity tl(t) will be determined at the 16 points along
the body whose abscissae are t^ * j i> the Gaussian values for f 
the 16 point quadrature rule, Table 3* Since the body is
symmetrical fore and aft, It is necessary to determine the
velocity at only half of these points# Values of y(x), c o s y ( x )

and (cosc<,-cos/3) for these points are given In Table 8.
In order to apply the Gauss 16 ordinate rule it is necessary

to evaluate the integrands in (106) and (107) at the 16
Gaussian abscissae Xj » for each of the 8 values of t^*
Thus there are 16 x 8 * 128 values of 9 to be determined from
(109), which give the same number of values of the kernel

k(x4*t*) - — ££.M,2i2— — — ■»,j 1 px j-t^ )^4y^(xj)]3/2
This matrix of values is given in Table 9 and applied to
evaluate l^(t) from (109)* Eg, Ej and Blj, are then obtained
from (110)* U^(t) is then given by (102) and then p/q by (69),
in the form p/q * 1 - Ug2. The arrangement of the calculations
and the results are given in Table 10* The graph of p/q is
included In Figure 5*



TABLE 8
VALUES OF y, ccfsY AND (cosd-cosfi) FOR APPLICATION OF GAUSS 16 POINT QUADRATURE FORMULA

cosa-com<6

1.25085 
1.52195 1.70968 1.82586 
1.89375 
1.93175 
1.95169 
1.96015

X y(x) y' (x) X (x ) co^V (x
-.9894009 .0408548 1.8965483 1.0856 0.4664
-.9445750 .0903198 0.7464764 0.6412 0.8014
-.8656312 .1324422 0.3917981 0.3734 0.9311-.7554044 .1642411 0.2099651 0.2070 0.9787
-.6178762 .1848527 0.1020867 0.1017 0.9948
-.4580168 .1955501 0.0393076 0.03932 0.9992
-.2816036 .1993706 O.OO89607 0.008961 1.0000
-.0950125 .1999919 0.0003*31 O.OOO3431 1.0000

TABLE 9 
MATRIX OF VALUES* OF k ^  = [(xr t1)2+y2(x3jp72 

5 6 8
1
2
34
I
78 
910

II 12
1314
1516

24.4769 
7.9571 2.9448 
1.154 5 0.47818 
0.21065 
0.09997 
0.05106  
0.02983 
0.01867 0.01227 
0.00807 
0.60501  
0.00273 
0.00112  
0.00022

7.481411.0718
4.78531.7156
0.64606 0.26520 
0.11979 0.06016 
0.03371 
0.62073 O.OI346 
0.00877 0.00541 
0.00293 
0.66121 
0.00023

0.753814.7258
7.55053.48561.1568
0.41384
0.169130.07926
0.042340.025180.01596
0.010230.00624
0.003350.00137
0.00026

0.124530.88558
3.42866.0886
2.79370.84811
0.29264
0.12175
0.05999
0.033750.02060
0.01284
0.007690.00408
0.001650.000.31

0.031970.20948
0.791132.7441
5.40972.3732
0.66530
0.227990.09854
0.050830.02924
0.017520.01020
0.005310.00213
0.00040

0.01103
0.067310.222800.687962.3411
5.11382.10681
0.561830.19666
0.08843
0.046530.02627
0.01469
0.007450.00294
0.00055

0.00468 
0.02723 

08167 
21392 60474 
0933 
01577 95461

0.51583O .18638
0.08540
0.04413
0.02331
0.01139
0.004390.00081

-0.00233 0.qi308 
0.03669 0.08560 0.20034 
0.545*9 
1.95219 5.00020 
1.90*99 0.51368 0.189*6 
0.0855* 0.04152 0.0192* 0.00718 0.00131

* For i>8 use k31 = k1?_i 1?_±
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(c) X3 s “0865631, COS y s 0,9311

75

i Kd3 k 'J3 k^ 3 KB (Ei r Ei3) K03^E2 r E23) k 33^e35-e 33)
1 .02047 .00037 .00013 .000052 .29420 .00330 .00127 .000533 .71850 0 . 0 04 .43441 -.00663 -.00203 -.00061
5 U7306 -.00587 -.00174 -.000526 .07001 -.00377 -.00106 -.00030
7 .03088 -.00221 -.00061 -.000168 .01502 -.00124 -.00033 -.00009
9 .00802 -.00066 -.00018 -.0000510 .00460 -.00033 -.00009 -.0000211 .00270 -.00015 -.00004 -.0000112 .00153 -.0Q005 -.00001 , 0
13 .00078 -.0QQ01 , 0 014 .OOO32 . 0 0 , 0
15 .00009 0 , 0 . 0
16 .00001 . 0 , 0 . 0
' fcl+B13 e13 « fB -.01725 /■ -,00471 fm -.00123^

l+k]_ “ .05980* b 23=.01538 B 33-*00410 00108
U^(X3) = 1,0598, p/q S -0.1123

(d) x4 = -.755404, cos s .9 7 8 7 ,  1-0.53(coso(“Cos^)\N.03^29

3 K34 iK’j4 Kj4«K'j4 % < Ei r Ei4> K34^E2j’E24^
1 .00338 .03135 -.02797 .00011 .00004 . 00001\
2 .05513 .10680 -.05167 .00146 .00050 .00018 x
3 .32626 .33169 -.00543 .00498 .00153 .00046
4 .75882 .75882 , 0 , 0 0 0
5 .41794 .41052 .00742 -.00780 -.00226 -.00067
6 .14347 . U 638 .02709 -.00554 -.00153 -.00042
7 .05344 .03906 .01438 -.00301 -.00080 -.00021
8 .02307 .01622 .00685 -•00155 -.00041 -.00010
9 .01137 .00787 .00351 -.00076 -.00020 -.00005
10 .00616 .00426 .00190 -.00035 -.00009 -.00002
11 .00348 .00249 .00099 -.00013 -.00004 -.00001
12 .00192 .00153 .00039 -.00004 -.00001 0
13 .00096 .00096 . 0 0 0 0
14 .00039 .00059 -.00020 .00001 0 0
15 .00010 .00034 -.00024 . 0 0 0
16 .00001 .00014 -.00013 , 0 0 0
kl+Ei4 

1 4.V-, “ ,09862
f. -.023U 
E]j_4s • 044 54

fm -.01262
E24»*01070 -.00327 

E ̂4s. 00270-
fm -.00083
E44S.00069

U^(x4) 1,0948, p/q s - 0.1986
* Present procedure inaccurate. E23 obtained from (104).
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SUMMARY

Two new methods for computing the steady, irrotational,
axisymuetric flow of a perfect, incompressible fluid about a 
body of revolution are presented.

In the first method a continuous, axial distribution of 
doublets which generates the- prescribed body in a uniform 
stream is sought as a solution of the integral equation

f dt m ir3
where r Is the distance from a point (t,o) on the axis to a 
point (x,y) on the body, r2 s (x-t)2+ y^(x)#

A method of determining the end points of the distribution 
and the values of the distribution at the end points is given* 
If the equation of the body profile, with the origin of co
ordinate® at one end, is

y2(x) « a^xS*..*
a very good approximation for the distribution limit a at that 
end, when the coefficients a^, are small, is given by\

n  ■ b + *2 + ijai&3
if £ 0. If is negative, the term containing it is 
neglected. The corresponding value of the doublet strength 
at this point is

mCa) m ^ (1+SL+ Sp log ^1) V aXa3
Formulas and tables for determining a and m(a), which may be 
used when the above procedure is Insufficiently accurate, are 
also given* The value® a, b, ma * m(a), « m(b), fa g y^(a)
and fb . y2(t>) are then used to obtain the approximate



solution of the integral equation
rn̂ Oc) m C(y^» v f̂̂ ®b

Whore J^^ta-Kiwfc/C • .\ .~...J» ..     .7-----   :L3 m

▼

J ^ d x n K W )  <%►£&)
and %  It tti# longitudinal virtual mass coefficient for the body* 

This approximation ii used to obtain a m q m m m  Of successive 
approximation* by meant of the iteration formula

Whom a doublet distribution has boon assumed*. the velocity 
components at a point (x*y) in a meridian plana are

where q is the stagnation pressure*
the iterations are- most conveniently performed in toms of 

the differences between successive approximations to m(x)9 
which also furnish * at each iteration* a geometric measure of 
the accuracy of an approximation* Simpler forms for the 
velocity components at the surface of the body are given in 
terms of this difference or error function*

Gauss* quadrature females are reoonaemded for the numerical 
evaluation of the integrals* Tm  methods of carrying out the 
iterations are given* the first employs a polar transforms- 
tlon end a graphical operation between successive iterations!

(J3£p ** JL) ^(t)dt 
a r? r3

▼ * 3y |b *sS s(t)dtJa r?
and the pressure is given by

p/q * 1 *  C n % ^ )

JLGUB58



the second is completely. arithmetical a n d  i s  s u lto b to  tor pro
c e s s in g  cm a n  wtoeetoe-eeqiuimee c o m p u tin g ' m a c h in e * A l l  of 
th e s e  procedures mro illus tooted, to detail I f  a n  example§ to 
which tbs ssmi-irapMeal method is employed* The accuracy of 
th e  method i s  analysed|  the results are oce^afed w it h  those 
obtained fey toe methods o f  Karmen a n d  Kaplan*

I n  the second m e th o d  to e  velocity B ( x >  o n  th e  s u r fa c e  o f  

th e  g iv e n  b o d y  i s  g iv e n  d i r e c t l y  a s  th e  s o lu t io n  o f  th e  i n t e g r a l  

e q u a t io n

w h e re  s  i s  a r c  length along to e  profilef  x * x ( $ ) f  .and 2!> is
the perlneter o f  a  m e r id ia n  s e c t io n *  A n  a p p ro x im a te  s o lu t io n  

t o  t h is  I n t e g r a l  equation i s

w h e re  %  i s  to e  lo n g i t u d in a l  v i r t u a l  m m  c o e f f i c i e n t  an d  

Y» arete* « •  % t o )  is used t o  o b t a in  a s e q u e n c e  o f  

s u c c e s s iv e  a p p ro x im a tio n s  by m eans o f  the i t e r a t i o n  fo r m u la

here m ls o  to e  Iterations a r e  m o s t conveniently c a r r ie d  o u t  i n  

t o m s  o f  th e  differences b e tw e e n  s u c c e s s iv e  a p p r o x im a tio n s  t o  

U ( x )  w h ic h  a ls o  furnish a  m e a s u re  o f  th e  e r r o r  to the integral 
equation* two m e th o d s  o f  c a r r y  to g  o u t th e  Iterations a r e ig a t o  

a v a i l a b l e i of w h ic h  o n e  i s  seml-graphle&Xf to e  o t h e r  c o m p le te ly  

a r i t h m e t ic a l *  The l a t t e r  te c h n iq u e  is employed o n  to e  m m  
e x a m p le  a s  w as  u s e d  to illustrate th e  f i r s t  m e th o d *

f &farig£fa),
o 2r3

4 coe/(t) 1- Un(x)da
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