L. Landweber, Doctor of Philosophy, 1951

An Iteration Formula for Fredholm Integral Equations of the First Kind with Application to the Axially Symetric Potential Flow Avout Elongated Bodies of Revolution

Thesis and Abstract Approved:

May 1951

AN ITERAIION FORMULA FOR FREDHOLM INTEGRAL EQUATIONS OF THE FIRST KIND WITH APPLICATION

TO THE AXIALLY EYMMETRIC POTENTIAL FLOW ABOUT ELONGATEI BODIES OF REVOLUTION

Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy

1951

UMI Number: DP70450

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI DP70450
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKNOWLEDGEMENTS

The author is indebted to Prefessor D. C. Lewis for his valuable suggestions and continuing encouragement in the development of the integral equation theory of Part I, and to Dr. E. H. Kennard for his stimulating criticism of the entire work. The author gratefully acknowledges the capable assistance of Mr. J. L. Powers and Mr. J. S. Maybee in the performance of the calculations and of Mrs. J. D. Truex in the preparation of the manuscript.

PART I

an ITERATION FORMULA FOR FREDHOLM INTEGRAL

 EqUATIONS OF THE FIRST KIND> Page
INTRODUCTION 1
REVIEW OF THEORY 2
Schmidt Theory 3
Picard Theory 5
THE ITERATION FORMULA. 7
CONVERGENCE THEOREMS 9
Statement of Convergence Theorems 9
Proofs of Lemmas 10
Proofs of Convergence Theorems. 14
SUMMARY. 16
REFERENCES 17
PART II
the axially symetric potential flow aboutELONGATED BODIES OF REVOLUTION
INTRODUCTION. 18
History 18
Formulation of the Problem. 22
METHOD OF AXIAL DIETRILUIIONS 24
Sources and Sinks. 24
Doublet Distributions. 25
Munk's Approximate Distribution 27
End Points of a Distribution. 29
An Improved First Approximation. 38
Solution of Integral Equation by Iteration. 39
Velocity and Pressure Distribution on the Surface 43
Numerical Evaluation of Integrals 44
Illustrative Example 46
Error in Determination of p/q 53
Comparison with Karman and Kaplan Methods. 54
SOLUTION EY APPLICATION OF GREEN'S THEOREM. 64
General Application to Problems in Potential Theory. 64
An Integral Equation for Axisymetric Flow. 64
Kennard's Derivation of the Integral Equation 67
A First Approximation. 67
Solution of Integral Equation by Iteration. 69
Numerical Evaluation of Integrals 70
Illustrative Example 72
SUMMARY 78
REFERENCES 81

PART I

AN ITERATION FORMULA FOR FREDHOLM INTEGRAL

 EQUATIONS OF THE FIRST KIND
INTRODUCTION

Neumann's method of solving Fredholm integral equations of the second kind by iteration is of great practical and theoretical value. For Fredholm integral equations of the first kind, on the other hand, Hellinger and Toeplitz ${ }^{3}$ remark that a method of solution by iteration is not available.

Physical problems often lead to an integral equation of the first kind to which a good first approximation may be derived by physical reasoning. An example of this is the problem of determining an axial source-sink or doublet distribution which would yield the axially-symmetric potential flow about a body of revolution in a uniform stream. This problem leads to an integral equation of the first kind

$$
\int_{0}^{1} m(t)\left[(x-t)^{2}+y(x)^{2}\right]^{-3 / 2} d t=\frac{1}{2}
$$

where the axis of the body coincides with the x-axis from $x=0$ to $x=1, y(x)$ is a known function, representing the ordinates of the intersection of the given surface with a meridian plane and $m(x)$ is an unknown function, representing the distribution of the doublet strength per unit length along the axis. A well-known, excellent, first approximation to the source distribution for elongated bodies of revolution is ${ }^{4}$

$$
m_{1}(x)=\frac{1}{4}[y(x)]^{2}
$$

In cases such as this it would be highly desirable to have a method of successive approximations for improving upon this approximation.

The theories of Schmidt and Picard furnish expressions for solutions to integrel equations of the first kind. However, these expressions are of littie practical value since they involve the characteristic numbers and functions of an arbitrary kernel, and the methods for obtaining these are both tedious and approximate.

It is proposed to present an iteration formula for obtaining successive approximations to the solution of Fredholm integral equations of the first kind, ana to prove the convergence of the successive approximations under various conditions.

REVIEW OF THEORY

We are concerned with solutions and approximations to solutions of the integral ecuation of the first kind

$$
\begin{equation*}
f(x)=\int_{a}^{b} k(x, y) g(y) d y \tag{1}
\end{equation*}
$$

where $f(x)$ and $f(x)=\int_{0}^{r} k(x, y) g(y) d y{ }_{n u o u s ~ r e a l ~ f u n c t i o n s ~ i n ~}$ a $\leq x, y \leqq b$, and $g(y)$ is an unknown function. As is well known, (1) may be transformed into the integral equation with a symmetric kernel,

$$
\begin{equation*}
F(x)=\int_{a}^{b} K(x, y) g(y) d y, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
K(x, y)=\int_{a}^{b} k(t, x) k(t, y) d t, \tag{3}
\end{equation*}
$$

and hence $F(x)=\int_{a}^{b} k(y, x) f(y) d y$,

Schmidt Theory. A theory due to E. Schmidt ${ }^{6}$ shows that there exists a set $\left\{\lambda_{1}\right\}$ of positive characteristic numbers, which may be supposed arranged in increasing order of magnitude, and corresponding adjoint sets $\varphi_{i}(x)$ and $\psi_{i}(x)$ of real, continuous, orthonormalized characteristic functions, (1 m 1,2....), such that

$$
\begin{align*}
& \varphi_{1}(x)=\lambda_{1} \int_{a}^{b} k(x, y) \psi_{1}(y) d y \tag{5}\\
& \psi_{i}(x)=\lambda_{1} \int_{a}^{b} k(y, x) \varphi_{1}(y) d y \tag{6}
\end{align*}
$$

It will be convenient, hereafter, to employ the customary operator notation for integral trensforms, viz

$$
k g \equiv \int_{a}^{b} k(x, y) g(y) d y, \quad K_{g} \equiv \int_{a}^{b} K(x, y) g(y) d y ;
$$

furthermore, since the range of variation and the integration limits will always be from a to b, specific reference to these limits will be omitted and we will frequently write integrals in an abbreviated form, viz

$$
\int_{a}^{b} f(x) \varphi_{i}(x) d x \equiv \int f \varphi_{i}
$$

If the kernel $k(x, y)$ is degenerate, the number of characteristic functions is finite and they can be found by a well known procedurel. If $f(x)$ is expressible in the form

$$
f(x)=\sum_{1=1}^{n} a_{1} \varphi_{1}(x)
$$

the solution of (1) is

$$
\begin{equation*}
g(x)=\sum_{i=1}^{n} \lambda_{i} a_{1} \psi_{1}(x), a_{1}=\int 1 \varphi_{1} \tag{7}
\end{equation*}
$$

If $f(x)$ is not of the above form, then (7) gives the best
approximate solution of (1) in the least scuare sense, as can easily be shown. If the kernel $k(x, y)$ is non-degenerate, the sets $\left\{\lambda_{1}\right\},\left\{\varphi_{1}(x)\right\}$ and $\left\{\psi_{1}(x)\right\}$ are infinite. Since the degenerate case is readily disposed of, only the non-degenerate case will be considered hereafter.

These characteristic numbers and adjoint functions have several properties which will be required in the following:
a) $\lambda_{i}{ }^{2}$ and $\psi_{i}(x)$ are characteristic numbers and functions of $K(x, y)^{2}$, i.e.

$$
\begin{equation*}
\psi_{1}=\lambda_{1}{ }^{2} K \psi_{1} \tag{8}
\end{equation*}
$$

b) A positive lower bound for the set $\left(\lambda_{i}\right)$ is given by the inequality ${ }^{6}$

$$
\begin{equation*}
\frac{1}{\lambda_{1}{ }^{2}}<\iint x^{2}(x, y) d x d y \tag{9}
\end{equation*}
$$

c) Expansion theorems: Every function $f(x)$ of the form (1), where $g(y)$ is any piecewise-continuous function, can be expanded in the absolutely and uniformly convergent series ${ }^{2}$

$$
\begin{equation*}
f(x)=\sum_{i=1}^{\infty} a_{i} \varphi_{i}(x) ; a_{i}=\int \rho \varphi_{i}=\frac{1}{\lambda_{i}} \int g \psi_{i} \tag{10}
\end{equation*}
$$

Every function $F(x)$ of the form (4), where $f(x)$ is any piecewise-continuous function, can be expanded in the absolutely and uniformly convergent series

$$
\begin{equation*}
F(x)=\sum_{i=1}^{\infty} c_{i} \psi_{1}(x) ; c_{i}=F \psi_{i}=\frac{1}{\lambda_{1}} \int \rho \varphi_{1} \tag{11}
\end{equation*}
$$

If f is the same function in (10) and (11), the relations between the "Fourier" coefficients may be written

$$
\begin{equation*}
c_{i}=\int F \psi_{i}=\frac{1}{\lambda_{i}} \int I \varphi_{i}=\frac{1}{\lambda_{1}^{2}} \int E \psi_{i} \tag{12}
\end{equation*}
$$

Picard Theory. In general a solution of (1) does not exist. A theorem due to E. Picard 5 stetes that, if the orthogonal set φ_{1} is complete, a solution of the integral equation (1) exists if and only if the series

$$
\begin{equation*}
\sum_{i=1}^{\infty} \lambda_{i}{ }^{2} a_{i}{ }^{2}, \quad a_{i}=\int f \varphi_{i} \tag{13}
\end{equation*}
$$

is convergent.

In the Schmidt-Picard theory, the solution of (1) is intimately related to the sequence

$$
\begin{equation*}
\bar{g}_{n} \equiv \sum_{i=1}^{n} \lambda_{i} a_{i} \psi_{i}(x), n=1,2, \ldots \tag{14}
\end{equation*}
$$

as is expressed in the following theorems:
THEOREM 1: The sequence $\left\{k \bar{g}_{n}\right\}$ converges in the mean to $f(x)$ if and only if the set $\left\{\varphi_{i}\right\}$ is complete relative to $f(x)$. The sequence converges uniformiy to $f(x)$, if a piecewise-continuous solution of the integral equation (1) exists.

THEOREM 2: If a piecewise-continuous solution $g(x)$ of (1) exists, the sequence $\left\{\bar{E}_{n}\right\}$ converges in the mean to $g(x)$ if and only if the set $\left\{\psi_{i}\right\}$ is complete relative to $g(x)$. If $g(x)$ is of the form $k(y, x) h(y) d y$, where $h(y)$ is any piece-wise-continuous function, then the sequence $\overline{\mathrm{g}}_{n}$ converges uniformly to $g(x)$.

The completeness conditions on the secuences $\left\{\varphi_{1}\right\}$ and $\left\{\psi_{1}\right\}$ in Theorems 1 and 2 refer to the so-celled completeness relations

$$
\begin{equation*}
\int f^{2}=\sum_{i=1}^{\infty} a_{i}^{2}, \quad a_{i}=\int f \varphi_{i} \tag{15}
\end{equation*}
$$

and $\quad \int g^{2}=\sum_{i=1}^{\infty} b_{i}{ }^{2}, \quad b_{i}=\int g \psi_{1}$
The phrase "complete relative to $f(x)$ " in Theorem 1 signifies that (15) need be satisfied only by the particular function $f(x)$, a condition which is considerably weaker than the assumption that the set $\left\{\varphi_{1}\right\}$ is complete relative to a class of functions. Similarly (16) is assumed to apply only to the particular function $g(x)$ in Theorem 2.

The first part of Theorem 1 is of especial interest since it indicates that with increasing n, the error due to the assumption of $\bar{g}_{n}(x)$ as an approximate solution of (1) diminishes in a least square sense, even if a solution of (1) does not exist. However the disagreeable possibility exists that, beyond some value of n, the error may accumulate and increase at some values of x. Nevertheless, even in this case, such a sequence may give useful successive approximations in a particular problem, if the errors are observed at each step, and the approximations stopped when the error exceeds an acceptable value at any point.

The second part of Theorem 1 asserts that, for sufficiently large n, $\overline{\mathrm{g}}_{\mathrm{n}}$ satisfies the integral equation (1) as closely as desired. It is noteworthy that no ascumptions are mede with regard to the convergence of the sequence $\left\{\overline{\bar{s}}_{n}\right\}$. Indeed, Theorem 2 shows that an additional condition is necessary to assure even convergence in the mean.

The expression (14) for \bar{E}_{n}, however, is of little practical value since it is expressed in terms of the characteristic numbers and functions of the kernel $k(x, y)$. Principally for
these reasons the Fredholm integral equation of the first kind has been considered to be of little value 7 . On the other hand another readily calculable secuence of functions $\left\{g_{n}(x)\right\}$ will be defined, which, it will be shown, has properties relative to a solution of the integral equation (1) identical to those of $\overline{\mathrm{g}}_{n}(\mathrm{x})$.

the iteration formula

Let us now extend the operator notation, denoting $K^{r} g \equiv \int \ldots \int K\left(x, y_{r}\right) K\left(y_{r}, y_{r-1}\right) \ldots K\left(y_{2}, y_{1}\right) g\left(y_{1}\right) d y_{r} d_{y_{r-1}} \ldots d y_{1}$. This notation is appropriate since the relation $K^{r}\left(K^{s} g\right) \equiv K r+s g$ is satisfied, as is easily verified.

Let $g_{o}(x)$ be an assumed, approximate, piecewise-continuous solution of the integral equation (1). Then a set of continuous functions $g_{1}(x), g_{2}(x), \ldots$ is defined by the iteration formula

$$
\begin{equation*}
g_{n}=g_{n-1}+F-K g_{n-1} \tag{17}
\end{equation*}
$$

where K and F are the functions defined in equations (3) and (4). The convergence of this sequence of functions and the applicability of its members as successive approximations to a solution of the integral equation (1) is the subject of the subsequent discussion.

The recurrence formula (17) can be readily solved for g_{n} in terms of g_{0}. First put

$$
\begin{equation*}
\gamma_{n}=g_{n}-g_{n-1} \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
g_{n}=g_{0}+\sum_{i=1}^{n} \gamma_{i} \tag{19}
\end{equation*}
$$

and also (17) may be written as

$$
\begin{equation*}
\gamma_{n}=F-K g_{n-1} \tag{20}
\end{equation*}
$$

Thus the $\gamma_{n}{ }^{\prime s}$ are not only the differences between successive 8_{n} 's but also serve as measures of the errors corresponding to the g_{n} 's as approximate solutions of the iterated integral equation (2). Now from (20), wo have

$$
\gamma_{n}-\gamma_{n-1}=-K \gamma_{n-1}
$$

or, in operation notetion,

$$
\gamma_{n}=(1-K) \gamma_{n-1}
$$

Hence, since the operator K satisfles the associative laws of multiplication, we obtain

$$
\begin{equation*}
\gamma_{n}=(1-K)^{n-1} \gamma_{1} \tag{21}
\end{equation*}
$$

where $(1-K)^{n-1}$ is to be formally expanded by the binomial theorem before operating on γ_{1}. substituting for the γ_{1} in equation (19) from equation (21), and performing the indicated summation, we obtain

$$
\begin{equation*}
g_{n}=g_{0}+\frac{2-\left(\underline{K} X^{n}\right)^{n}}{K}\left(F-K_{\varepsilon_{0}}\right) \tag{22}
\end{equation*}
$$

where, in the fractional operator, $(1-K)^{n}$ is to be expanded by the binomial theorem and a factor K in the numerator cencelled with the denominator before operating on ($F-\mathrm{Kg}_{0}$).

If the sequence $\left\{g_{n}(x)\right\}$ converges uniformily, it is clear from (17), that $\lim _{n \rightarrow \infty} g_{n}$ is a solution of the iterated integral equation (2). However, since an integral equation of the first kind has a solution oniy under speciel circumstonces,
$\left\{g_{n}(x)\right\}$ may not converge uniformly, and indeed may not converge at all. Nevertheless the g_{n} 's may serve as useful approximations to a solution of (1) and (2) as will be evident on the basis of the convergence theorems in the next section. CONVERGENCE THEOREMS

It will be assumed hereafter that

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{b} k^{2}(x, y) d x d y \leqq 2 \tag{23}
\end{equation*}
$$

This is no restriction since the kernel $k(x, y)$ can always be modified, so as to satisfy the condition (23), by multiplying the integral equation (1) by a suitable factor and, in the right member of the equation, incorporating the factor into the kernel.

Statement of Convergence Theorems. The convergence theorems will be stated and discussed before their proofs are presented. THEOREM 3: The sequence $\left\{\mathrm{Kg}_{\mathrm{n}}\right\}$ converges uniformly to $\mathrm{F}(\mathrm{x})$.

Theorem 3 is very strong. Without any restrictive assumptidns about completeness, the existence of a solution, or the convergence of the sequence $\left\{g_{n}\right\}$, it asserts that, for sufficientIy large n, g_{n} satisfies the iterated integral equation (2) as closely as desired. Basically, however, our interest is in the integral equation (1), rather than with (2). Concerning the suitability of the g_{n} 's as approximate solutions of (1) we have the weaker theorems:
THEOREM 4: The sequence $\left\{k g_{n}\right\}$ converges in the mean to $f(x)$ if and only if the set $\left\{\varphi_{i}\right\}$ is complete relative to $f(x)$. The
secuence converges uniformy to $f(x)$ if a piecewise-continuous solution of the integral equation (1) exists.

It will now be supposed that the zero-th approximation $g_{0}(x)$ is chosen of the form

$$
\begin{equation*}
g_{0}(x)=\int k(y, x) h(y) d y \tag{24}
\end{equation*}
$$

where $h(y)$ is any piecewise-continuous function. The special case $h(y) \equiv 0$ is also allowed. Concerning the convergence of the sequence $\left\{g_{n}\right\}$ we then have THEOREM 5: If a piecewise-continuous solution $g(x)$ of (1) exists, the sequence $\left\{g_{n}\right\}$ converges in the mean to $g(x)$ if and only if the set $\left\{\psi_{1}\right\}$ is complete relative to $g(x)$. If $g(x)$ is of the form $\int k(y, x) h(y) d y$, where $h(y)$ is any piecewise continuous function, then the sequence $\left(g_{n}\right)$ converges uniformly to $g(x)$.

It should be noted that Theorems 4 and 5 are Identical, word for word, with Theorems 1 and 2 except for the substitution of g_{n} for \bar{g}_{n}. Hence the remarks concerning the suitability of the \bar{g}_{n} 's as approximations to a solution of the integral equation (1) are applicable to the g_{n} 's as well.

Proof of Lemmas. In order to prove the foregoing theorems it is first convenient to establish several lemmas. Put

$$
\begin{align*}
& F_{n}(x) \equiv K g_{n} \tag{25}\\
& f_{n}(x) \equiv k g_{n} \tag{26}
\end{align*}
$$

The "Fourier" coefficients of F_{n}, f_{n} and g_{n} then satisfy the relations

$$
\begin{equation*}
c_{i n}=\int F_{n} \psi_{i}=\frac{1}{\lambda_{1}} \int f_{n} \psi_{1}=\frac{1}{\lambda_{1}^{2}} \int g_{n} \psi_{1} \tag{27}
\end{equation*}
$$

We then have
LEMM 1: $F_{n}(x)$ and $f_{n}(x)$ can be expanded in the absolutely and uniformly convergent series

$$
\begin{align*}
& F_{n}(x)=\sum_{i=1}^{\infty} c_{i n} \psi_{1}(x), n=0,1,2 \ldots \tag{28}\\
& f_{n}(x)=\sum_{i=1}^{\infty} \lambda_{i} c_{i n} \varphi_{i}(x), n=0,1,2 \ldots \tag{29}
\end{align*}
$$

If $g_{o}(x)$ is chosen of the form (24), then also $g_{n}(x)$ may be expanded in the absolutely and uniformly convergent series

$$
\begin{equation*}
g_{n}(x)=\sum_{i=1}^{\infty} \lambda_{1}{ }^{2} c_{i n} \psi_{1}(x), n=0,1,2 \ldots \tag{30}
\end{equation*}
$$

Proof: It is clear, from their definitions in (25) and (26), that the expansion theorems apply to $F_{n}(x)$ and $f_{n}(x)$ and consequently the series (28) and (29) converge as stated in the lemma. In the case of the $g_{n}{ }^{\prime} s$, it can readily be shown, successively, from the iteration formula (17), that $g_{1}(x)$ $g_{2}(x), \ldots$ are of the same form as $g_{0}(x)$. Ihus, we have

$$
\begin{equation*}
g_{1}=g_{0}+F-K_{0} \tag{31}
\end{equation*}
$$

But $g_{0}=\int k(y, x) h(y) d y ;$ from (4), $F=\int k(y, x) f(y) d y ;$ and from (3) (26), $\mathrm{K}_{0}=\int k(y, x) f_{0}(y) d y$. Hence (31) becomes

$$
g_{1}=\int k(y, x)\left[h(y)+f(y)-f_{0}(y)\right] d y
$$

Hence the expansion theorem is applicable to $g_{n}(x)$ and the series (30) also converge, as stated.

LENMA 2:

$$
\begin{equation*}
c_{i n}-c_{1}=\mu_{1} n\left(c_{10}-c_{1}\right) \tag{32}
\end{equation*}
$$

where $c_{1}=\int F \psi_{1}$, and the sequence μ_{1} is such that

$$
\begin{equation*}
\left|\mu_{1}\right|<1, \mu_{i+1} \geqq \mu_{1} \text { and. } \lim _{i \rightarrow \infty}=1,1=1,2, \ldots \tag{33}
\end{equation*}
$$

Proof: We obtain, from (17) and (8),

$$
\int g_{n} \psi_{i}=\left(1-\frac{1}{\lambda_{i}^{2}}\right) \int g_{n-1} \psi_{i}+\int F \psi_{i}
$$

Put $\mu_{i}=1-1 / \lambda_{1}^{2}$. Then, by successive reduction, we obtain

$$
\int g_{n} \psi_{1}=\mu_{1} n \int g_{0} \psi_{1}+\lambda_{1}^{2\left(1-\mu_{1} n\right) \int F \psi_{1}}
$$

which, by (12) and (27), is seen to be equivalent to (32). Furthermore, from (9) and (23), we obtain

$$
0<\frac{1}{\lambda_{1}{ }^{2}}<\iint k^{2}(x, y) d x d y \leqq 2
$$

or $-1<\mu_{1}<1$. Thus, since the sequence $\left\{\lambda_{1}\right\}$ increases monotonically to infinity, it is seen that (33) is also satisfied. This completes the proof of Lemma 2. LEMA 3:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty}\left(c_{i n}-c_{i}\right)^{2}=\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \lambda_{i} 2\left(c_{i n}-c_{i}\right)^{2}=0 \tag{34}
\end{equation*}
$$

If a solution $g(x)$ of (1) or (2) exists, then also

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \lambda_{i}^{4}\left(c_{i n}-c_{i}\right)^{2}=0 \tag{35}
\end{equation*}
$$

Proof: We first note that the scries $\sum_{i=1}^{\infty}\left(c_{i o}-c_{i}\right)^{2}$ converges since we have, from Bessei's inequality,

$$
\sum_{i=1}^{\infty}\left(c_{10}-c_{i}\right)^{2} \leqq \int\left(F_{0}-F\right)^{2}
$$

Hence, by (32) and the comparison test,

$$
\sum_{i=1}^{\infty}\left(c_{1 n}-c_{i}\right)^{2}=\sum_{i=1}^{\infty} \mu_{1} 2 n\left(c_{i o}-c_{1}\right)^{2}
$$

is uniformly convergent in n, and consequently

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty}\left(c_{i n}-c_{1}\right)^{2}=\sum_{i=1}^{\infty} \lim _{n \rightarrow \infty} \mu_{i} 2 n\left(c_{i 0}-c_{i}\right)^{2}=0
$$

Similarly, applying Bessel's inequality to $f_{0}-f$, and then to $g_{0}-g$, when $g(x)$ is assumed to exist, we obtain (34) and (35), as desired.
LEMMA 4: If the series $\Gamma_{0}(x)=\sum_{i=1}^{\infty} w_{1}(x)$, where the $w_{i}(x)$ are
continuous functions, is absolutely and uniformly convergent, and if $\Gamma_{n}(x)=\sum_{i=1}^{\infty} \mu_{1} n_{w_{1}}(x), n=0,1,2, \ldots$, where μ_{1} satisfies condition (3), then the sequence $\Gamma_{n}(x)$ converges uniformly to

zero.

Proof: From the hypotheses on μ_{1} we have, for some sufficiently large $r, \mu_{r} \geqq\left|\mu_{i}\right|, r>i$. Also, considering the series for $\Gamma_{o}(x)$, given an $\epsilon>0, r$ can be chosen so large, and indpendent of x, that $\sum_{i=1-1}^{\infty}\left|w_{i}\right|<\epsilon / 2$. Let r be chosen so that both conditions are satisfied. Further, we have $\sum_{1=1}^{r}\left|w_{i}\right| \leq \sum_{i=1}^{\infty}\left|w_{i}\right|<M$,
where M is an upper bound independent of x. Choose N sufficientIf large so that $\mu_{r}{ }^{n}<\epsilon /(2 M)$ for $n>N$. Then

$$
\left|\Gamma_{n}\right| \leqq \sum_{i=1}^{r}\left|\mu_{i}^{n} w_{i}\right|+\sum_{i=r-1}^{\infty}\left|\mu_{i}^{n_{w_{i}}}\right|<\mu_{r}^{n_{M}}+\frac{\epsilon}{2}<\epsilon,
$$

when $\mathrm{n}>\mathrm{N}(\epsilon)$, as we wished to prove.
LEMA 5: If $G_{n}(x)$ can be expanded in a uniformly convergent series

$$
\begin{equation*}
G_{n}(x)=\sum_{i=1}^{\infty} e_{i n} \theta_{i}(x), n=0,1,2, \ldots \tag{36}
\end{equation*}
$$

in terms of the real, continuous, orthonormalized functions

$$
\theta_{1}(x), i=1,2, \ldots \text { and if } G(x) \text { is piecewise-continuous, with }
$$

$e_{1}=\int G \theta_{1}$, then necessary and sufficient conditions for
the sequence $G_{n}(x)$ to converge in the mean to $G(x)$ are that

$$
\int G^{2} d x=\sum_{i=1}^{\infty} e_{i}^{2} \text { and } \lim _{n \rightarrow \infty} \sum_{i=1}^{\infty}\left(e_{i n}-e_{i}\right)^{2}=0
$$

Proof: Since the series (36) is uniformly convergent, we have

$$
\int G G_{n}=\sum_{i=1}^{\infty} e_{i n} \int G \theta_{i}=\sum_{i=1}^{\infty} e_{i n} e_{i}
$$

and similarly $\int G_{n}{ }^{2}=\sum_{i=1}^{\infty} e_{i n}{ }^{2}$. Hence

$$
\begin{equation*}
\int\left(G_{n}-G\right)^{2}=\int G^{2}+\sum_{i=1}^{\infty}\left(e_{i n}-e_{1}\right)^{2}-\sum_{i=1}^{\infty} e_{i}^{2} \tag{37}
\end{equation*}
$$

Now suppose the conditions of the lemma to be satisfied. Then $\int\left(G_{n}-G\right)^{2}=\sum_{i=1}^{\infty}\left(e_{i n}-e_{i}\right)^{2}$, and consequently by hypothesis, $\lim _{n \rightarrow \infty} \int\left(G_{n}-G\right)^{2}=0$. This proves the first part of the lemma.

Now supnose that $\lim _{n \rightarrow \infty} \int\left(G_{n}-G\right)^{2}=0$. From (37) we have,

$$
\int G^{2} d x \leqq \sum_{i=1}^{\infty} e_{i}^{2}+\int\left(G_{n}-G\right)^{2}
$$

for all n. Hence $\int G^{2}=\sum_{i=1}^{\infty} e_{i}{ }^{2}$. But, by Bessel's ineçuality, $\int G^{2} \sum \sum_{i=1}^{\infty} e_{i}{ }^{2}$. Hence $\int G^{2}=\sum_{i=1}^{\infty} e_{i}{ }^{2}$. Then, from (37),

$$
\sum_{i=1}^{\infty}\left(e_{i n}-e_{i}\right)^{2}=\int\left(G_{n}-G\right)^{2}
$$

whence we obtain $\lim _{n \rightarrow \infty} \sum_{1=0}^{\infty}\left(e_{i n}-e_{1}\right)^{2}=0$, also. This completes the proof.

Proofs of Convergence Theorems. We can now proceed to the proof of the convergence theorems.

Proof of Theorem 3: By the expansion theorem and 02) and (27), the series $F_{n}-F=\sum_{i=1}^{\infty}\left(c_{i n}-c_{1}\right) \psi_{i}, n=0,1,2, \ldots$ are absolutely and uniformly convergent in x. Hence, by Lemma 2, the series $\sum_{i=1}^{\infty} \mu_{1} n\left(c_{10}-c_{1}\right) \psi_{1}$ are also absolutely and uniformly convergent in x. Hence the conditions of Lemma 4 are satisfied and the sequence $\left\{F_{n}-F\right\}$ converges uniformly to zero; or by (25), \{K $\left.\mathrm{g}_{\mathrm{n}}\right\}$ converges uniformily to F, as we wished to prove.

Proof of Theorem 4: By Lemmas 1 and 3 all the conditions of Lemma 5 are satisfied by the functions $f_{n}(x)$ and $f(x)$. Hence by (26) the first part of the theorem, concerning the convergence in the mean of $\left\{\mathrm{kg}_{\mathrm{n}}\right\}$ to $\mathrm{f}(\mathrm{x})$, is proved.

In the second part of the theorem, since $g(x)$ exists by hypothesis, the expansion theorem may be applied to $f(x)$ as well as to $f_{n}(x)$. Hence, by (12) and Lemmas 1 and 2, the series

$$
f_{n}-f=\sum_{i=1}^{\infty} \mu_{1} n \lambda_{1}\left(c_{10}-c_{i}\right) \varphi_{i}(x), n=0,1,2, \ldots
$$

are absolutely and uniformly convergent in x, and the conditions of Lemma 4 are satisfied. Hence the secuence $\left\{f_{n}-f\right\}$ converges uniformly to zero, or, by (26), $\left\{\mathrm{kg}_{\mathrm{n}}\right\}$ converges uniformly to $f(x)$. This completes the proof.
Proof of Theorem 5: Since $g_{0}(x)$ is of the form (24), Lemmas 1 and 3 indicate that the conditions of Lemma 5 are satisfied by the functions $g_{n}(x)$ and $g(x)$. Hence the first part of the theorem, concerning convergence in the mean of $\left\{\mathrm{g}_{\mathrm{n}}\right\}$ to $g(x)$, is proved.

In the second part of the theorem, the expansion theorem is applicable to $g(x)$, by hypothesis. Hence, by (12) and Lemmas 1 and 2, the series

$$
g_{n}-g=\sum_{i=1}^{\infty} \mu_{i}{ }^{n} \lambda_{1}{ }^{2}\left(c_{i 0}-c_{i}\right) \psi_{i}(x), n=0,1,2, \ldots
$$

are absolutely and uniformly convergent in x, and the conditions of Lemma 4 are 3 tisfied. Hence the sequence $\left\{g_{n}\right\}$ converges uniformly to $g(x)$, as we wished to prove.

SUNMARY

A method of solving the Fredholm integral equation of the first kind

$$
f(x)=\int_{a}^{b} k(x, y) g(y) d y
$$

by means of the iteration formula

$$
g_{n}(x)=g_{n-1}(x)+F(x)-\int_{a}^{b} K(x, y) g_{n-1}(y) d y
$$

where

$$
\begin{aligned}
F(x) & =\int_{a}^{b} k(y, x) f(y) d y \\
K(x, y) & =\int_{a}^{b} k(t, x) k(t, y) d t
\end{aligned}
$$

is discussed. Several theorems concerning the convergence of the secuence of functions $g_{n}(x)$ to $g(x)$ under various conditions are stated and proved. It is sawn that this sequence bears the identical relations to a solution of the integral equation as a sequence consisting of finite sums of orthogonal functions associated with the kernel $k(x, y)$, given by the classical Chmidt-picard theory of integral equations. The latter secuence is of little practical value, however because of the difficulty of obtaining the characteristic numbers and functions of the kernel. In contrast with this, the successive members of the sequence given by the present iteration formula are obtained by simple quadratures.

REFERENCES

1. Courant, R. and D. Hilbert. Methoden der Mathematischen Physik. Berlin: Julius Springer, 1931, Vol. 1, Chap. III, $\oint 2$.
2. Ibid, $\oint 10$.
3. Hellinger, E. and 0. Toeplitz. Integralgleichungen und Gleichuncen mit unendiichvielen Unbekannten. Encyklopädie der Mathematischen Wissensciaften II C 13. Eerlin: B. G. Teubner, 1928, p. 1349.
4. Munk, M. M. Fluid Mechenics. Vol. 1, Part II of Aerom dynamic Theory, Edited by W. F. Durand, Berlin: Julius Springer, 1935, Division C, p. 269.
5. Picard, E. Gur un théorème général relatif aux équations integrales de oremiere espèce et sur auelanes problèmes de physique mathematioue. Rend. Circ. Mat. Palermo, 1910, Vol. 29, pp. 79-97.
6. Schmidt, E. Zur Theorie der Iinearen und nichtinearen Integralgleichungen. Math. Annalen, Vol. 63, 1907, pp. 43 - 476 .
7. Weinstein, A. On Axially Symmetric Flows. Guarterly of Applied Mathematics, Vol. 5, No. 4, 1948, p. 432.

PART II

THE AXIALL SMMETIIC POTBNIAL FLOW ABOUT ELONGATED BODIES OF REVOLUTION

INXRODUCIION

Hhetory. The determinetion of the flow about elongeted bodies of revolution is of ereat practical and theoretical importance in aerom and hydrodyntiles. Such knowledge is required in connection with bodies such as airshipe, torpedoes, projectiles, airplane fuselages, pitot tubes, etc. Eince it is well-known thet for a streamlined body, moving in the airection of the axis of symetry, the actual flow is very closeiy approximeted by the potential (inviscid) flow about the body ${ }^{2}$, mumerous atterapts have been made to find a convenient theoretical method for obtaining numerical solutions of the potential flow problem.

At first the problem was attacked by indirect means. In 1871 Rancine ${ }^{16}$ showed how one could obtan familles of bodies of revolution of known potential ilow, senerated by placing several point sources and sinks of various strengths on the exis. This method was extended and used by D. W. Taylor ${ }^{20}$ in 1894 and by C. Fuhrmann in 1911. The latter also construeted models of the computed forms and showed the the measured distributions of the pressures over them agreed very well with the computec values except for a small region at the downstream ends. More recentiy, in 1944, the fankine method was employed by Nunzer and kelchardit 25 to obtain bodies with fiat pressure distribution curves, and a further
refinement of the techniçue was published by Riegels and Brandit. Host recentiy the indirect method has been employed to obtain bodies generated by axisymetric source-sink distributions on circumperences, rings, discs and cylinders. This development, which enabled bodies with much blunter noses to be generated, was initiated by veinstein 25 in 2948 and continued by Ven Tuyi ${ }^{22}$ and by sedowsky and Eternberg ${ }^{18}$ in 1950.

A metrod of solving the direct problem, i.e. to cetermine the flow over agiven body of revolution, appears to have been first published by von Karwan 5 in 1927. Karman reduced the problen to thet of solving a fredholm integral equation of the first kind for the axial source-sinic distribution whioh would generat the given body, and solved the intogral equetion mpproximately by replacing it by a set of simultaneous innear equations. Although this method is of $11 m 1$ ted accuracy and becomes very laborious when, for greater refinement, a large number of inear ecuations is employed, nevertheless it is the best lown and most frecuentiy un od of the direct methods. A modificution of the von Karmen method was published by Wijngaarden ${ }^{26}$ in 1948.
in interesting attempt to solve the direct probiem was made by Veinig24 in 1928. He also formulated the problem in terms of an integral ecuation for an axial doublet distribution which would generate the given body ond employed an iterstion formic to obtain successive approximations. Since the successive approzimetions diverged, the recomended prom cedure was to extrapolate one step backwards to obtain a solution.

In 1935 an entirely different approach, in which a solution for the velocity potential wes ascumed in the form of an inInite linear suw of orthogonal functions, was made by Kaplan 3 and independently by smith ${ }^{19}$. The coefficients of this series are given as the solution of a set of ilnear equations, infinite in number. In practice antite number of these equetions is solved for a finite number of coofficients, and Teplan has shown thet the approximate alution thus obtained is that due to an axiel source-sink aistribution which is also determined. 4. simplificetion of Kaplan's method by meang of additional approximations wes proposed by Young and Owen27 in 1943.

It appears to bo generally agreed, by those who have tried them, that the aforementioned methods are both iaborious and approximite. Thus, according to Young and owen27:
in every case, however, the methods proposed are laborious to apply, and the labour and heaviness of the computations increase rapidly with the rigour a and cccuracy of the process. Inevitably, compromise is nececcery between the acoursey aimed at and the dificulties of computation. 41 the methods reduce, ultimately, to finding in one way or another the equivalent sink-cource distribution, and it is this part of he process which in generel involves the heaviest cotaputing.

Furthermore a fundamenti, objection is that ondy a special eless of bocies of revolution can bo reprecented by a distribution of gources and sincs on the axis of symutry. hccordm ine to von Kerman5:

This (representability by sn axial source-sink distribution) is posicible only in the exceptional case when the analytical continuation of the potextial function, free from cingularities in the space outside the body, can be extended to the axis of symmetry vi thout encountering singular spots.

The dissatisfaction the these methods is reflected by the continuing attempts to devise other procedures.

Anew method puklished by caplan in 1943 is free of the sscumption of axial singuiarities and appecrs to be exact in the sense thet the solution can be made as accurate as desired; but the levor recuired for the ame accuracy appears to be much ereater than by other methods. The application of the method requires thet first the conformal transformation which transforme the given meridian profile into a circle be determined. The velocity potential is then expressed as an infinite series whose terus are universal functions involving the coefficients of the conformel transfomation. Kaplan ${ }^{4}$ has derived oniy the first three of these universal functions.

Cumans of the Devid Taylor hodel Basin is developing a method based on aistribution of sources and sinks on the surface of the given body. This method is also exact, but the labor involved in its applicetion has not yet been evaiuated.

Another exact method, based on a distribution of vorticity over the surface of the body, is being developed by Dr. Vendry of the idmiralty Research Laboratory, Teddington, England. The methods of Cummins and Vandry both lead to Fredholm interral equations of the sccond kind, which can be solved by iteration.

The present writer has developed two new methods, an approximate one in which an axial doublet distribution is ascumed, and an exact one based on a gencral application of Green's theorem of potential theory. Both methods lead to

Fredholm integral equations of the first kind for which a solution by iteration hes been discussed in Part I. Indeed the consideration of this iteration formule was initiated in an attempt to find more satisfactory solutions of the integral equations of von Karmen 5 and Voinig ${ }^{24}$. These new methods will be presented, and, by application to a particuler body, compared with other methods from the point of view of accuracy and convenience of application.

Formaiation of the Problem. We will consider the steady, irrotational, axially symetric flow of e perfect incompressible fluid about a body of revolution. Take the x-axis as the axis of symotry and let x, y be the coordinates in meridian plane,
 Denote the equation of the body profile by

$$
\begin{equation*}
y^{2}=f(x) \tag{1}
\end{equation*}
$$

FICUNE 1 - The Meridien Plane
Since the flow is irrotational there exists a velocity potential which, for exisymetric flows, depends onily on the cylindrical coordinates x, y and satisfies Laplace's equation in cylindricel coordinates

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{X}}\left(\frac{\partial \varphi}{\partial \mathbf{x}}\right)+\frac{\partial}{\partial \mathbf{y}}\left(\frac{\partial \varphi}{\partial \mathbf{y}}\right)=0 \tag{2}
\end{equation*}
$$

Also, since the flow is axisymetric, there exists a Stokes stream function (x, y) which is related to the velocity potential by the equations

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=-\boldsymbol{y} \frac{\partial \Phi}{\partial y}, \quad \frac{\partial \psi}{\partial y}=\mathbf{y} \frac{\partial \Phi}{\partial \mathbf{x}} \tag{3}
\end{equation*}
$$

It is seen thet equation (2) may be interpreted as the
necessery and eurficient condition insuring the existence of the function ψ. As is well known, ψ is constant elong a streenine and, considering the surface of rovolution generated by rotation of streamline ebout the axi of symetry, $2 \pi \psi$ may be considered as the flux bounded by this surface. On the surface of the given body and along the exis of symetry outside the body we have $\psi=0$. ψ satisfies the ocuation

$$
\begin{equation*}
\frac{\partial 2 \psi}{\partial x^{2}}+\frac{\partial 2 \psi}{\partial y^{2}}=\frac{2}{y} \frac{\partial \psi}{\partial y} \tag{4}
\end{equation*}
$$

which is obtained by eifminating φ between equations (3).
The velocity will be taken as the negative eradient of the velocity potential. Let u, y be the velocity components in the x, y directions. shen, by (3), we have

$$
\begin{align*}
& u=-\frac{\partial \varphi}{\partial z}=-\frac{1}{y} \frac{\partial \psi}{\partial y} \tag{5}\\
& v=-\frac{\partial \varphi}{\partial y}=\frac{1}{y} \frac{\partial \psi}{\partial z} \tag{6}
\end{align*}
$$

For a uniform flow of velocity 0 parallel to the x-axis we have

$$
\begin{equation*}
\varphi=-U x, \quad \psi=-\frac{\psi}{\psi} U y^{2} . \tag{7}
\end{equation*}
$$

The boundary condition for the body to be a strean surface may be written in various ways. If the body is stationary the boundery condition is

$$
\begin{equation*}
\psi(x, \sqrt{f(x)})=0 \tag{8a}
\end{equation*}
$$

or, equivelently,

$$
\begin{equation*}
\left(\frac{\partial \varphi}{\partial n}\right)_{s}=0 \tag{8b}
\end{equation*}
$$

where the derivetive in (8b) is evalueted on the surface of the body in the direction of the outward nommal to the body. If the body is moving with velocity V parailel to the x-axis
the boundary condition becones

$$
\begin{equation*}
\left(\frac{\partial \varphi}{\partial \mathbf{n}}\right)_{\mathrm{g}}=-\mathrm{V} \cos \beta \tag{9}
\end{equation*}
$$

where β is the angle between the outward nowal to the body and the x-axis.

It is desired to obtain a solution of (2) or (4) which satisfies the boundary conditions (7) at infinity and (8) or (9) on the body.

METHOD OF AXIAL DIETRIEUTIONE

Gources and sinks. The potential and stream functions for a point source of strength M situated on the x-axis at $x=t$ are

$$
\begin{equation*}
\varphi=\frac{u}{r}, \quad \psi=M\left(-1+\frac{x-t}{r}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
r^{2}=(x-t)^{2}+y^{2} \tag{11}
\end{equation*}
$$

If the sources are distributed along the z -axis between the pointe and b (see Figure 1) with a strength (x) per unit length, the potential and stream functions are

$$
\begin{align*}
& \varphi=\int_{a}^{b} \frac{\mu(t)}{F} d t \tag{12}\\
& \psi=\int_{a}^{b} \mu(t)\left(-1+\frac{x-t}{F}\right) d t \tag{13}
\end{align*}
$$

As is well-known, lankine bodies are obtained by superposition of these flows with aniform stream so as to obtain a dividing streamine beginning at a stagnation point. Without lose of generality we may suppose this uniform strean to be of unit magnitude. This dividing streamilne is the profile of the Ranicine body for which, by (7), the stream function is

$$
\begin{equation*}
\psi=-\frac{b}{b a}+\int_{a}^{b} \mu(t)\left(-1+\frac{r-t}{r} d t\right. \tag{14}
\end{equation*}
$$

We bandory corditio: (b) then pives as the lupheit equetion for tre body

$$
\begin{equation*}
\int_{e}^{b} \mu(t)\left(-1+\frac{x-t}{x}\right) a t=\frac{1}{x} y^{2} \tag{25}
\end{equation*}
$$

Were row $y^{2}=f(x)$ are $f^{2}=(x-t)^{2}+f(x)$. In orcer to obtain a ciosed lad the thto strocet of sources and sinke must te zero, 1.e.

$$
\int_{a}^{b} \mu(t) d t=0
$$

In thite cuse (15) vecomes

$$
\begin{equation*}
\int_{a}^{\frac{2}{2}} \mu(t) \frac{x-t}{r} d t=d y^{2} \tag{150}
\end{equation*}
$$

In ecrery (15a) ermot se solver eraicitly for $f(x)$ when $\mu(t)$ is riven. apocticu procenure for taintre f(y) for
 assume verues of $1(0)$ do to decmine the ratue wheh extisfies (50) by erphica meane
her $f(x)$ is preseritco (2 ge) wey we considered as a fredhom Interted eation of the firet and for ceteminire the whknown function $\mu(t)$. She e wation will rot be treated, however, circe, ta will be comn it 10 a apeciol cose of the rore penevel enetan for dovlet detributions wich will now be cerived.

Dovict istrintions. let $m(x)$ be the strongth per urit 2ength of a aistribution of dowlets alone the x-exis between the pointe a and b (see thave 1). "he potenticl ard strean
functions may be teken as

$$
\begin{equation*}
\varphi=\int_{a}^{b} m(t) \frac{t-x}{r^{3}} d t \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi=y^{2} \int_{a}^{b} \frac{m(t)}{r^{3}} d t \tag{17}
\end{equation*}
$$

The stream function for a Rankine flow now becomes

$$
\begin{equation*}
\psi=-\frac{1}{k} y^{2}+y^{2} \int_{a}^{b} \frac{m(t)}{r^{3}} d t \tag{18}
\end{equation*}
$$

Hence the boundary condition (8) gives

$$
\begin{equation*}
\int_{a}^{b} \frac{m(t)}{r^{3}} d t=\frac{1}{1} \tag{19}
\end{equation*}
$$

Here afain equation (19) may be considered as an inplicit ecuetion for the Rankine body when $m(t)$ is given, or as a Fredholm integral ecuation of the first kind when the body profile $\mathrm{y}^{2} . f(\mathrm{x})$ is preseribed.

In order to show the relation between the source and doublet dis ributions in ecuations (15a) and (19), integrete by parts in (19). We have

$$
\int_{a}^{b} m(t) \frac{y^{2}}{r^{3}} d t=\left.m(t) \frac{t-x}{r}\right|_{a} ^{b}+\int_{a}^{b} \frac{d m}{d t} \frac{x-t}{r} d t
$$

Hence (19) may be written as

$$
\begin{equation*}
\left.m(t) \frac{t-x}{r}\right|_{a} ^{b}+\int_{a}^{b} \frac{d m}{d t} \frac{x-t}{r} d t=\frac{1}{s} y^{2} \tag{20}
\end{equation*}
$$

The interpretation of equation (20) is that a doublet distribution of strength in is ecuivalert to source-sink distribution of strength $\frac{d m}{d t}$ together with point sources of streng th $m(a)$ and $-m(b)$ at the end points. Hence source-sink distributions are completely equivalent only to those doublet distributiong
which vanish at the end points. This justifies the remark in the provious section that the integral eçuation for the doublet distributions is more general than that for the source-sink distributions.

Munk's Anoroximote Listribution. Munk ${ }^{12}$ has given on approximate colution of (19) for elongated bodies. His formula may be derived as follows. For a very elongated body at a great distance from the ends, the integrand of (19), $m(t) / x^{3}$, will peak sharply in the neighborhood of $t=x$. In the range of the peak, in which the velue or the integrel is principally determined, $m(t)$ will vary iittle from $m(x)$. Also onily a small error will be introduced by repiacing the limits of interretion by $-\infty$ and $+\infty$. Hence, as a first proximation to a solution of (19), try

$$
\begin{equation*}
m_{1}(x) \int_{-\infty}^{\infty} \frac{d t}{x^{3}}=\frac{1}{k} \tag{21}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
m_{1}(x)=t y^{2} \tag{c2}
\end{equation*}
$$

2 distribution proportional to the section-area curve of the body. This epproximation was independently derived by Weinig ${ }^{24}$ who exployed it as the first step in a divergent iteration procecture. It has also been rediscovered by Young and owen 27 and Laltone ${ }^{8}$ who have shown the accuracy of the approximation for elongated bodies by several examples.

It is epparent from its derivation that (22) also gives the asymptotic radius of the haif-body generated by a constant exial aipole distribution extending from a point on the axis to infinity. It is readily seen thet this distribution is
equivalent to point source at the initial point.
As a refinement to funk's formula, Weinblum ${ }^{23}$ has used the approximation

$$
\begin{equation*}
m_{1}(x)=C y^{2} \tag{23}
\end{equation*}
$$

where C is a factor obtained by comparison of the distributions and section area curves of several bodies. Weinblum's factor beers an interesting relation to the virtual mass of the body. This is seen by considering the expression for the virtual mass $k_{1} \Delta$ in terms of the mass of the displaced fluid Δ and the totality of the coublets, $\int_{a}^{b} m, 10,24,21$

$$
\begin{equation*}
k_{1} \Delta=4 \pi \rho \int_{a}^{b} \operatorname{mdx}-\Delta \tag{24}
\end{equation*}
$$

where k_{1} is designeted the longitudinal virtual mass coefficient, and ρ is the density of the fluid. Eat, from (23),

$$
4 \pi \rho \int_{a}^{b} m_{1} d x=4 \rho c \int_{a}^{b} \pi y^{2} d x=4 c \Delta
$$

since, for elongated bodies, a and b very nearly coincide with the body ends, Hence

$$
\begin{equation*}
\left.C=\frac{1}{\left(1+k_{1}\right.}\right) \tag{25}
\end{equation*}
$$

In practice an approximete value of k_{1} may be taken as that of the prolate spheroid having the same length-diameter ratio es the given body. The values of k_{2} for prolate spherold may be computed from the comala9

$$
k_{1}=\frac{\lambda \ln \left(\lambda+\sqrt{\left.\lambda^{2}-1\right)}-\sqrt{\lambda^{2}-1}\right.}{\lambda^{2} \sqrt{\lambda^{2}-1-\lambda \ln \left(\lambda+\sqrt{\lambda^{2}-1}\right)}}
$$

where λ is the leneth-diameter ratio. Hence

$$
c=\frac{\left(\lambda^{2}-1\right) 3 / 2}{\lambda^{2} \sqrt{\lambda^{2}-1-\lambda \ln \left(\lambda+\sqrt{\lambda^{2}-1}\right)}}
$$

The values of k_{1} versus λ have also been tabulated by lamb 9 and graphed by kunk ${ }^{13}$.

End Points of a Distribution. A difficulty in determining the doublet distribution from ecuation (19) is that the limits of integration, and b, are also uninown. In the method of von Karman5 the end points are arbitrarily cosen; Kaplan ${ }^{4}$ takes the end point of the distribution midway between the end of the body and the center of curvature at that end.

Raplan based his choice on a consideration of the prolate spheroid. Thus the equation of the spheroid of unit length and lencth-diemeter ratio λ, extending from $x=0$ to $x=1$, is

$$
\begin{equation*}
y^{2}=\frac{1}{\lambda^{2}}\left(x-x^{2}\right) \tag{28}
\end{equation*}
$$

The radius of curvature at $x=0$ is then $\frac{1}{2 \lambda^{2}}$. The exact doublet distribution, however, extends between the foci of the spheroid which are situated at distances $\left(\lambda-\sqrt{\lambda^{2}-1}\right) /(2 \lambda)$ from the end points. Hence the error in Kaplan's asemptior

$$
\frac{\lambda-\sqrt{\lambda^{2}-1}}{4 \lambda}-\frac{1}{4 \lambda^{2}}=\frac{1}{16 \lambda^{4}}\left(1+\frac{1}{2 \lambda^{2}}+\cdots\right)
$$

diminishes rapidiy with increasing λ.
For the helf-body genersted by a constent doublet tion (a point source) Kaplen's ossumptiongives pr wation. Let a^{2} be the strength of the distributic can easily be shown from (29) that the source is
a from the end of the body (atagnation point),
the origin is chosen at the latter point, the equation of the half-body is

$$
\begin{equation*}
\left(\frac{y}{a}\right)^{2}=\frac{8}{3} \frac{x}{a}-\frac{20}{27}\left(\frac{x}{a}\right)^{2}+\frac{16}{243}\left(\frac{x}{a}\right)^{3}+\cdots \tag{29}
\end{equation*}
$$

Hence the radius of curvature at the end is $\frac{4}{3} a$, so that Kaplan's assumption for the start of the distribution gives $\frac{2}{3} a$. This is in error by $\frac{1}{3} a$.

An approximate method for determining the end points of a distribution and its trends at the ends will now be described. Let $y^{2}=f(x)$ be the equation of the given profile extending from $x=0$ to $x=1$; let $m(x)$ be the corresponding doublet distribution, extending from $x=a$ to $x=b$. It will be assumed that $0<a \ll b<1$ and that a is near $0, b$ is near 1 .

Various conditions on $m(x)$ may now be obtained by differentiating (19) repeatedly with respect to x. We get

$$
\begin{align*}
& \int_{a}^{b} \frac{m(t)}{r^{5}}\left[2 x-2 t+f^{\prime}(x)\right] d t=0 \\
& \int_{a}^{b} m(t)\left[-\frac{5}{2 r^{7}}\left(2 x-2 t+f^{\prime}\right)^{2}+\frac{1}{r^{5}}\left(2+f^{\prime \prime}\right)\right] d t=0 \tag{30}
\end{align*}
$$

$\int_{a}^{b} m(t)\left[\frac{35}{4 r^{9}}\left(2 x-2 t+f^{\prime}\right)^{3}-\frac{15}{2 r^{7}}\left(2+f^{\prime \prime}\right)\left(2 x-2 t+f^{\prime}\right)+\frac{f^{\prime \prime \prime}(x)}{r^{5}}\right] d t=0$
When $x=0, r=t$ and, writing $f(x)$ as a Taylor expansion

$$
\begin{equation*}
f(x)=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \tag{31}
\end{equation*}
$$

then also $f^{\prime}(0)=a_{1}, f^{\prime}(0)=2 a_{2}, f^{\prime \prime \prime}(0)=6 a_{3}$. Now, setting $x=0$ in equations (19) and (30), we obtain

$$
\begin{gather*}
\int_{a}^{b} \frac{m(t)}{t^{3}} d t=\frac{1}{ह} \tag{32a}\\
\int_{a}^{b} \frac{m(t)}{t^{5}}\left(a_{1}-2 t\right) d t=0 \tag{32b}\\
\int_{a}^{b} \frac{m(t)}{t^{7}}\left[5 a_{1}^{2}-20 a_{1} t+4\left(4-a_{2}\right) t^{2}\right] d t=0 \tag{32c}\\
\int_{a}^{b} \frac{m(t)}{t^{9}}\left[35 a_{1} 3-210 a_{1}{ }^{2} t+60 a_{1}\left(6-a_{2}\right) t^{2}+40\left(3 a_{2}-4\right) t^{3}+24 a_{3} t^{4}\right] d t \\
=0 \tag{32d}
\end{gather*}
$$

Also assume that $m(x)$ may ie expressed as a power series

$$
\begin{equation*}
m(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots \tag{33}
\end{equation*}
$$

Then the first of equations (32) gives

$$
\frac{c_{0}}{2}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)+c_{1}\left(\frac{1}{a}-\frac{1}{b}\right)+c_{2} \log \frac{b}{a}+\cdots=\frac{1}{2} ;
$$

or, neglecting $1 / b^{2}$ in comparison with $1 / a^{2}$ and setting $b=1$ in comparison with $1 / a$,

$$
\begin{equation*}
c_{0}+2 c_{1} a(1-a)+2 c_{2} a^{2} \log \frac{1}{a}+\ldots=a^{2} \tag{34a}
\end{equation*}
$$

Similarly the other equations (32) give, approximately,

$$
\begin{align*}
& c_{0}\left(3 a_{1}-8 a\right)+4 c_{1} a\left(a_{1}-3 a\right)+6 c_{2} a^{2}\left(a_{1}-4 a+4 a^{2}\right)=0 \tag{34b}\\
& 2 c_{0}\left[5 a_{1}^{2}-24 a_{1} a+6\left(4-a_{2}\right) a^{2}\right]+4 c_{1} a\left[3 a_{1}{ }^{2}-15 a_{1} a+4\left(4-a_{2}\right) a^{2}\right] \\
& \quad \quad+c_{2} a^{2}\left[15 a_{1}{ }^{2}-80 a_{1} a+24\left(4-a_{2}\right) a^{2}\right]=0 \tag{34c}\\
& 3 c_{0}\left[35 a_{1} 3-240 a_{1}{ }^{2} a+80 a_{1}\left(6-a_{2}\right) a^{2}+64\left(3 a_{2}-4\right) a^{3}+48 a_{3} a^{4}\right] \\
& +24 c_{1}\left[5 a_{1} 3 a-35 a_{1}{ }^{2} a^{2}+12 a_{1}\left(6-a_{2}\right) a^{3}+10\left(3 a_{2}-4\right) a^{4}+8 a_{3} a^{5}\right] \\
& +4 c_{2}\left[35 a_{1} 3 a^{2}-252 a_{1} a^{2}+90 a_{1}\left(6-a_{2}\right) a^{4}+80\left(3 a_{2}-4\right) a^{5}+72 a_{3} a^{6}\right]=0
\end{align*}
$$

Equations (34) are sufficient in number to determine the unknowns a, c_{0}, c_{1}, c_{2}. Since the latter 3 equations are
innear and homogeneous in c_{0}, c_{1} and c_{2}, can be deternined from the condition that the determinent of their coefficients must vanish. In this way the following equation of the 7th degree in $\alpha=a_{1} / a$ was obtained:

$$
\alpha(\alpha-4)^{2}\left(5 \alpha^{4}-83 \alpha^{3}+288 \alpha^{2}-368 \alpha+128\right)-96 a_{2}^{2} \alpha(3 \alpha-4)
$$

$$
+4 a_{2} \alpha(\alpha-4)\left(53 \alpha^{2}-148 \alpha+128\right)+1152 a_{1} a_{2}^{2}(2 \alpha-3)
$$

$$
+72 a_{1}(\alpha-4)^{2}\left(5 \alpha 3-25 \alpha^{2}+40 \alpha-16\right)+40 a_{1} a_{3}(3 \alpha-8)
$$

$$
\begin{equation*}
-288 a_{1} a_{2}(\alpha-4)\left(5 \alpha^{2}-16 \alpha+16\right)-1152 a_{1} a_{3}(\alpha-3)=0 \tag{35}
\end{equation*}
$$

Corresponding to a solution α of $(35), c_{0}, c_{1}$ and c_{2} can be obtained from equations ($34 a, b, c$). The colution of the latter equations gives

$$
\begin{aligned}
& C_{0}^{D}=-4 a^{2}\left[3 \alpha^{3}-37 \alpha^{2}+120 \alpha-96+24 a_{2}+24 a\left(3 \alpha^{2}-15 \alpha+16 a^{4}+a_{2}\right)\right] \\
& C_{1} D=a\left[15 \alpha^{3}-168 \alpha^{2}+512 \alpha-384+96 a_{2}+48 a\left(5 \alpha^{2}-24 \alpha+24-6 a_{2}\right)\right] \\
& c_{2} D=-4\left[(\alpha-4)^{2}(\alpha-1)+4 a_{2}\right]
\end{aligned}
$$

where

$$
\begin{align*}
D & =2\left(9 \alpha^{3}-94 \alpha^{2}+272 \alpha-192\right)+8\left[(\alpha-4)^{2}(\alpha-1)+4 a_{2}\right] \log a+96 a_{2} \\
& =2 a\left(15 \alpha^{3}-264 \alpha^{2}+944+-768\right)-384 a a_{2}-96 a^{2}\left(5 \alpha^{2}-24 \alpha+24\right) \\
& +576 a^{2} a_{2} . \tag{36}
\end{align*}
$$

The inftial coublet strength at $x=$ is

$$
m(a)=c_{0}+c_{1} a+c_{2} a^{2}+\cdots \cdot
$$

or, from ocuations (36),

$$
\begin{equation*}
m(a)=-\frac{a^{2}}{D}\left[(\alpha-4)\left(\alpha^{2}-12 \alpha+16\right)+48 a(\alpha-4)(\alpha-2)+16 a_{2}-96 a \varepsilon_{2}\right] \tag{37}
\end{equation*}
$$

Equations (35), (36), and (37) determine the end points of the distribution and its initisi trends. In general ecuation (35) will have more than one real root. In thie case the initiel trends corresponding to each of the roots should
be examined, and that root chosen which appears to give the "simplest" trend.

The equations can be solved explicitly in the case of a very elongated body for which $a_{1}, a_{2}, a_{3}, \ldots$ in (31) are all very small. First let us suppose that they are so small that all the terms in (35) containing them are negligible, so that the first product term alone may be equated to zero, i.e.

$$
\begin{equation*}
\alpha(\alpha-4)^{2}\left(5 \alpha^{4}-83 \alpha^{3}+288 \alpha^{2}-368 \alpha+128\right)=0 \tag{38}
\end{equation*}
$$

whose real roots are $\alpha=0,0.547,4.0,4.0$, and 12.429.
Let us consider the solution $\alpha=4 ; 1 . e, a=a_{1} / 4$. Since the radius of curvature at $x=0$ is $a_{1} / 2$, this solution is seen to be in accord with Kaplan's assumption for the end points of the distribution. Furthermore, substituting $\alpha=4$ into equations (36) and (37), we obtain, to the same order of approximation,

$$
D=64, c_{0}=-a_{1} 2 / 16, c_{1}=a_{1} / 4, c_{2}=0
$$

whence

$$
\begin{align*}
& m(x)=-\frac{a_{1}{ }^{2}}{16}+\frac{a_{1}}{4} x \tag{39}\\
& m(a)=0
\end{align*}
$$

In order to obtain a second approximation it will be assumed that not only $a_{1}, a_{2}, a_{3} \ldots$ but also ($\alpha-4$) are small to the first order, equation (35) becomes

$$
\begin{equation*}
-3072(\alpha-4)^{2}+6144 a_{2}(\alpha-4)-3072 a_{2}{ }^{2}+768 a_{1} a_{3}=0 \tag{40}
\end{equation*}
$$

whence

$$
\alpha=4+a_{2} \pm \frac{1}{2} \sqrt{a_{1} a_{3}}
$$

Provided

$$
\begin{equation*}
a_{3} \geqq 0 \tag{41}
\end{equation*}
$$

Corresponding to this value of α we obtain from equations
(36), to the same order of approximation,

$$
m(x)=c\left(-\frac{a_{1}}{4}+a_{1} x+a_{2} x^{2}+\ldots\right)
$$

where

$$
\begin{equation*}
c=\frac{1}{4}\left(1+\frac{a_{2}}{2}+\frac{a_{2}}{2} \log \frac{a 1}{4}\right) \tag{42}
\end{equation*}
$$

and

$$
m(a)= \pm \frac{1}{2} \operatorname{ca}^{2} \sqrt{x_{1} a_{3}}
$$

The expression for $m(x)$ in (42) may also be written as

$$
\begin{equation*}
m(x)=c\left(-\frac{a y^{2}}{4}-y^{2}\right) \tag{4+2a}
\end{equation*}
$$

This form immediately sugests a modification and refinement of the Hunk-Weinblum approximation (23) which will be considered in the next section.

When $a_{3}<0$ the solution for α in (41) indicates that there would be no real roots near $\alpha=4$. In this case a graph of the complete polynomial in (35) should be examined either for the possibility that more complete calculations would show thet there are real roots neer $\alpha=4$ nevertheless, or that the maximum value of the complete polynomial in the neighborhood of $\alpha=4$ is so nearly zero, that the value of α corresponding to this maximum may be taken as on approximate solution. On this assumption, the second order analysis would give

$$
\left.\begin{array}{l}
\alpha=4+a_{2} \tag{41a}\\
a_{3}<0
\end{array}\right\}
$$

Since a does not occur explicitly in equetions (42), it is seen that they would also be obtained, to the same order of approximetion, if the value of α in (4la) were substituted into equation (36).

If it is determined that not even an approximete solution can be assumed near $\alpha=4$ it would be necessary to consider solutions in the neighborhood of the other roots of ecuation (38).

In order to facilitate the computations for graphing the polynomial in (35), the functions $A(\alpha), B(\alpha), \ldots H(\alpha)$, where

$$
\begin{align*}
& A(\alpha)=\alpha(\alpha-4)^{2}\left(5 \alpha^{4}-83 \alpha^{3}+288 \alpha^{2}-368 \alpha+128\right) \\
& B(\alpha)=72(\alpha-4)^{2}\left(5 \alpha^{3}-25 \alpha^{2}+40 \alpha-16\right) \\
& C(\alpha)=4 \alpha(\alpha-4)\left(53 \alpha^{2}-148 \alpha+128\right) \\
& D(\alpha)=-288(\alpha-4)\left(5 \alpha^{2}-16 \alpha+16\right) \\
& E(\alpha)=-96 \alpha(3 \alpha-4) \tag{43}\\
& F(\alpha)=1152(2 \alpha-3) \\
& G(\alpha)=48 \alpha(3 \alpha-8) \\
& H(\alpha)=-1152(\alpha-3)
\end{align*}
$$

have been tabulated in Table 1. In terms of these functions, equation (35) becomes

$$
\begin{equation*}
A+a_{1} B+a_{2} C+a_{1} a_{2} D+a_{2}{ }^{2} E+a_{1} a_{2}^{2} F+a_{1} a_{3} G+a_{1}^{2} a_{3} H=0 \tag{44}
\end{equation*}
$$

It is of interest to compare the approximate value for from equation (41) with the exact value for the prolate spheroid, equation (28). In this case we have

$$
a_{1}=-a_{2}=1 / \lambda^{2}, a_{3}=0
$$

and the exact value of α is

$$
\alpha=2+2 \sqrt{1-\frac{1}{\lambda^{2}}}=4-\frac{1}{\lambda^{2}}-\frac{1}{4 \lambda^{4}} \cdots
$$

But when the length-diameter ratio λ is large, equation (41) gives the approximate value $\alpha=4-1 / \lambda^{2}$, which is seen to consist of the first two terms of the series expansion of the exact value of α. The following table shows that the approximate formula gives excellent agreement with the exact values even for very thick sections. Both the exact and the

TABLE 1
FUNCTIONS FOR DETERMINING LIMITS OF DOUBLET DISTRIBUTIONS

α	$A(\alpha)$	$B(\alpha)$	$C(\alpha)$	$D(\alpha)$	$E(\chi)$	$F(\alpha)$	$G(\alpha)$	$H(\alpha)$
0	0	-18432.0	0	18432.0	0	-3456.0	0	3456.0
. 1	143.0	-13409.7	-177.4	16230.2	35.5	-3225.6	-37.0	3340.8
.2	188.5	-9315.5	-305.6	14227.2	65.3	-2995.2	-71.0	3225.6
. 3	169.7	-6027.4	-392.4	12414.2	89.3	-2764.8	-102.2	3110.4
. 4	112.5	-3433.9	-445.1	10782.7	107.5	-2534.4	-130.6	2995.2
-	36.4	-1433.3	-470.8	9324.0	120.0	-2304.	-156.	2880.0
- 6	-44.4	66.6	-475.6	8029.4	126.7	-2073.6	-178.	2764.8
.7	-120.1	1148.7	-465.4	6890.4	127.7	-1843.2	-198.2	2649.6
. 8	-184.5	1887.4	-445.6	5898.2	122.9	-1612.8	-215.	2534.4
.9	-234.8	2349.1	-421.1	5044.3	112.3	-1382.4	-229.0	2419.2
1.0	-270.0	2592.0	-396.0	4320.0	96.0	-1152.0	-240.	2304.0
1.1	-291.2	2667.3	-374.3	3716.6	73.9	-921.6	-248. 2	2188.8
1.2	-300. 5	2619.2	-359.1	3225.6	46.1	-691.2	-253.4	2073.6
1.3	-300.9	2485.3	-353.4	2838.2	12.5	-460.8	-255.	1958.4
1.4	-295.9	2297.3	-359.3	2545.9	-26.9	-230.4	-255.4	1843.2
1.5	-288.9	2081.3	-378.8	2340.0	-72.0	0	-252.	1728.0
1.6	-283.1	1857.9	-412.9	2211.8	-122.9	230.4	-245.8	1612.8
1.7	-281.5	1643.5	-462.5	2152.8	-179.5	460.8	-236.6	1497.6
1.8	-286.2	1449.7	-527.8	2154.2	-241.9	691.2	-224.6	1382.4
1.9	-298.8	1284.4	-608.6	2207.5	-310.1	921.6	-209.8	1267.2
2.0	-320.0	1152.0	-704.0	2304.0	-384.0	1152.0	-192.0	1152.0
2.1	-349.8	1054.0	-812.8	2435.0	-463.7	1382.4	-171.4	1036.8
2.2	-387.3	989.1	-933.3	2592.0	-549.1	1612.8	-147.8	921.6
2.3	-430.9	954.0	-1063.1	2766.2	-640.3	1843.2	-121.4	806.4
2.4	-478.2	943.7	-1199.3	2949.1	-737.3	2073.6	-92.2	691.2
2.5	-526.3	951.8	-1338.8	3132.0	-840.0	2304.0	-60.0	576.0
2.6	-572.0	970.9	-1477.5	3306.2	-948.5	2534.4	-25.0	460.8
2.7	-611.7	993.5	-1611.4	3463.2	-1062.7	2764.8	13.0	345.6
2.8	-641.8	1011.9	-1735.4	3594.2	-1182.7	2995.2	53.8	230.4
2.9	-658.9	1018.9	-1844.2	3690.7	-1308.5	3225.6	97.4	115.2
3.0	-660.0	1008.0	-1932.0	3744.0	1440.0	3456.0	144.0	0
3.1	-642.8	974.2	-1992.4	3745.4	-1577.3	3686.4	193.6	-115.2
3.2	-606.1	914.2	-2018.5	3686.4	-1720.3	3916.8	245.8	-230.4
3.3	-549.6	826.8	-2003.0	3558.2	-1869.1	4147.2	301.0	-345.6
3.4	-474.9	713.3	-1937.8	3352.3	-2023.7	4377.6	359.0	-460.8
	-385.3	578	-1814.8	3060.0	-2184.0	4608.0	420.0	-576.0
3.6	-286.2	429.5	-1624.8	2672.6	-2350.1	4838.4	483.	-691.2
3.7	-185.8	278.7	-1358.5	2181.6	-2521.9	5068.8	550.6	-806.4
3.8	-94.8	142.2	-1006.0	1578.2	-2699.5	5299.2	620.2	-921.6
3.9	-27.0	40.6	-556.8	853.9	-2882.9	5529.6	692.6	-1036.8

α	$A(\alpha)$	$B(\alpha)$	$c(\alpha)$	$D(\alpha)$	$E(\chi)$	$F(\alpha)$	$G(\infty)$	$H(\alpha)$
4.0	0	0	0	$0-$	-3072.0	5760.0	768.0	-1152.0
4.1	-34.17	52.1	675.9	-992.2-	-3266.9	5990.4	846.2	-1267.2
4.2	-156.4	234.5	1482.8	-2131.2-	-3467.5	6220.8	927.4	-1382.4
4.3	-394.3	591.5	2433.3	-3425.8 -	-3673.9	6451.2	1011.4	-1497.6
4.4	-782.7	1174.1	3540.3	-4884.5-	-3886.1	6681.6	1098.2	-1612.8
4.5	-1360.2	2040.8	4817.3	-6516.0-	-4104.0	6912.0	1188.0	-1728.0
416	-2170.8	3257.6	6278.2	-8329.0-	-4327.7	7142.4	1280.6	-1843.2
4.7	-3263.7	4899.2	7937.7-1	10332.0 -	-4557.1	7372.8	1376.2	-1958.4
4.8	-4693.4	70418.4	9810.7-1	12533.8 -	-4792.3	7603.2	1474.6	-2073.6
4.9	-6520.2	9797.5 1	11912.8 -	14942.9 -	-5033.3	7833.6	1575.8	-2188.8
5.0	-8810.0	13248.0 1	14260.0 -	17568.0 -	-5280.0	8064.0	1680.	-2304.0
0	0	-18432	20	18432		- -3456	0	3456
1	-270	2592	-396	4320	06	-1152	-240	2304
2	-320	1152	-704	2304	$4-384$	- -1152	-192	1152
3	-660	1008	$8-1932$	3744	$4-1440$	- 3456	144	0
4	0	0	$0 \quad 0$		- -3072	2760	768	-1152
5	-8810	13248	814260	-17568	$8-5280$	- 8064	1680	-2304
16	-75840	116352	-55104	-57600	-8064	10368	2880	-3456
7	-302400	488592	141876	-128736	-11424	12672	4368	-4608
8	-819200	1456128	299008	-239616	$6-15360$	14976	6144	-5760
9	-1700550	3535200	556020	-398880	- -19872	17280	8208	-6912
10	-2790720	7475328	947520	-615168	-24960	19584	10560	-8064
11	-3417260	14306040	1513204	-897120	--30624	21888	13200	-9216
12	-1966080	25362432	2297856	-1253376	-36864	24192	16128	-10368
13	4706910	42363648	3351348	-1692576	$6-43680$	26496	19344	-11520
14	22052800	67420800	4728640	-2223360	$0-51072$	28800	22848	-12672
15	58820520	103097808	6489780	-2854368	8-59040	31104	26640	-13824

$A+a_{1} B+a_{2} C+a_{1} a_{2} D+a_{2}{ }^{2} B+a_{1} a_{2}{ }^{2} F+a_{1} a_{3} G+a_{1}{ }^{2} a_{3} H=0$

$$
\begin{gathered}
A=\alpha(\alpha-4)^{2}\left(5 \alpha^{4}-83 \alpha^{3}+288 \alpha^{2}-368 \alpha+128\right) \\
B=+72(\alpha-4)^{2}\left(5 \alpha^{3}-25 \alpha^{2}+40 \alpha-16\right) \\
C=4 \alpha(\alpha-4)\left(53 \alpha^{2}-148 \alpha+128\right) \\
D=-288(\alpha-4)\left(5 \alpha^{2}-16 \alpha+16\right)
\end{gathered}
$$

$E=-96 \alpha(3 \alpha-4) \quad F=1152(2 \alpha-3)$

$$
G=48(3 \alpha-8) \alpha \quad H=-1152(\alpha-3)
$$

TABLE 2
COMPARISON OF EXACT AND COMPUTED VALUES OF $\alpha=a_{1} / a$ FOR A PROLATE SPHEROID

λ	2	3	4	5	6
Exact α	3.732	3.886	3.936	3.960	3.972
Approx. α	3.750	3.889	3.937	3.960	3.972

approximate formulas give $m(a)=0$ 。 Thus the present approximate methods work very well for the prolate spheroid.

An Improved First Approximation According to its derivation the Munk approximation could be expected to be useful only at a distance from the end points of a distribution. It was seen, however, (42a), that under certain circumstances a distribution which was a suitable approximation for the nose and tall of a body also appeared as a generalization of the MunkWeinblum approximation (23)。 This suggests a procedure for obtaining an improved approximate distribution.

It is desired to obtain a distribution $m(x)$ which satisfies the following conditions:
a. $m(x)$ assumes known values m_{a} and m_{b} at the distribution limits a and $b, i o d$.

$$
\begin{equation*}
m(a)=m_{a}, \quad m(b)=m_{b} \tag{45}
\end{equation*}
$$

be $m(x)$ is nearly equivalent to the Munkweinblum approximation (23) at a distance from the distribution limits, i.e. $m(a) \approx C y^{2}$ for $a \ll x \ll b$
c. $m(x)$ satisfies the virtual mass 'relation (24) which may be written in the convenient form

$$
\begin{equation*}
\int_{a}^{b} m(x) d x=\frac{t}{i}\left(1 \& k_{1}\right) \int_{0}^{1} y^{2} d x \tag{46}
\end{equation*}
$$

It is readily verifled that condition (a) is satisfied by the distribution
where

$$
\begin{gather*}
m(x)=c y^{2}+e_{0}+e_{2} x \tag{47}\\
e_{0}=\frac{1}{b-a}\left[b m_{a}-a m_{b}+C\left(a f_{b}-b f_{a}\right)\right] \tag{48}\\
e_{1}=\frac{1}{b-a}\left[m_{b}-m_{a}+c\left(f_{a}-f_{b}\right)\right] \tag{49}
\end{gather*}
$$

If the linear term eote x in (47) is smali in comparison with $m(x)$ at a distance from the ends then condition (b) is also satisfied. Finaliy condition (c) can be satisfied by a proper choice of C in (47). This is accomplished by writing $m(x)$ in the form $m(x)=C\left(y^{2}-\frac{b-x}{b-a} f_{a}-\frac{x-a}{b-a} f_{b}\right)+\frac{b-x}{b-a} m_{a}+\frac{x-a}{b-a} m_{b}$ substituting it into equation (46), and solving for C. We obtain

$$
\begin{equation*}
C=\frac{\frac{t}{4}(1+k y) \int_{0}^{1} y^{2} d x-\frac{1}{2}(b-a)\left(m_{a}+m_{b}\right)}{\int_{a}^{b} y^{2} d x-\frac{1}{2}(b-a)\left(f_{a}+f_{b}\right)} \tag{50}
\end{equation*}
$$

Solution of Intecral Enuetion by Iteration. Now that we have derived a good first approximation to the doublet distribution function in the integral equation (19), it would be very desirable to apply it to obtein a second, closer approximation. This can be accomplished by means of the iteration formule which we will ow derive.

Let $m_{1}(x)$ be a known first approsination and $\psi_{1}(x)$ the corresponding values of the stream function ψ on the given profile $y^{2}=f(x)$. Then, from Equation (18),

$$
\begin{equation*}
\psi_{1}(x)=-\frac{1}{d} f(x)+f(x) \int_{a}^{b} \frac{m_{1}(t)}{r^{3}} d t \tag{51}
\end{equation*}
$$

Thus $\psi_{1}(x)$ is a neasure of the orror when $m_{1}(t)$ is tried as a solution of the integral ecuation (29). If $m(t)$ is a solution of (19), (51) may be written in the form

$$
\begin{equation*}
\psi_{1}(x)=f(x) \int_{a}^{b} \frac{m_{1}(t)-m(t)}{x^{3}} d t \tag{52}
\end{equation*}
$$

But, on the same ascumptions as were used to derive Kunk's approximate distribution (22), we obtain as approximete colution of the integral equation (52)

$$
\begin{equation*}
m_{1}(x)-m(x)=\psi_{1}(x) \tag{53}
\end{equation*}
$$

or, denoting the new approximation to $m(x)$ by $m_{2}(x)$,

$$
\begin{equation*}
m_{2}(x)=m_{1}(x)-\frac{1}{2} \psi_{1}(x) \tag{54}
\end{equation*}
$$

Hence, from (51)

$$
\begin{equation*}
m_{2}(x)=m_{1}(x)+\frac{t f}{}(x)\left[t-\int_{n^{3}}^{b} \frac{m_{2}(t)}{r^{3}} d t\right] \tag{55}
\end{equation*}
$$

since the foreroing procedure can be repeated successively, we obtain the iteration formula

$$
\begin{equation*}
m_{1+1}(x)=m_{1}(x)+\frac{1}{2}(x)\left[\frac{1}{2}-\int_{a}^{b} \frac{m_{1}(t)}{r^{3}} d t\right] \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1+1}(x)-m_{1}(x)=-\frac{1}{1} \psi_{1}(x) \tag{57}
\end{equation*}
$$

It is seen that ψ_{i} is the value of the stream function on the given profile corresponding to the 1 th approxifation $m_{1}(x)$ and hence serves a messure of the error when $m_{1}(t)$ is tried as solution of the integral equation (19).

Althouch successive approximations to $m(x)$ may be computed directly from (56), an altemative form, which is both more convenient and more cignificant, will now be aerived. From (56) we may write

$$
\begin{equation*}
m_{1}(x)=m_{1-1}(x)+\frac{1}{1} r(x)\left[\frac{t}{2}-\int_{a}^{b} \frac{m_{1-1}(t)}{r^{3}} d t\right] \tag{56a}
\end{equation*}
$$

Hence, deducting (56a) from (56) and making use of (57), we get

$$
\begin{equation*}
\psi_{1}(x)=\psi_{1-1}(x)-\frac{1}{8} t(x) \int_{2}^{b_{1}} \frac{\psi_{1-1}(t)}{r^{3}} d t \tag{58}
\end{equation*}
$$

Also, from (57), we obtain

$$
\begin{equation*}
m_{1+1}(x)=m_{1}(x)-\frac{1}{2} \sum_{j=1}^{1} \psi_{j}(x) \tag{59}
\end{equation*}
$$

Thus, in order to obtain $m_{1+1}(x)$, we first assume an $m_{1}(x)$ then determine $\psi_{1}(x)$ from (51). $\psi_{2}(x), \psi_{3}(x), \ldots$ can then be successively obtained from (58), and finally $m_{i+1}(x)$ from (59).

It has been stated that the magnitude of $\psi_{1}(x)$ is a measure of the approximateness of $m_{1}(x)$. This property of $\psi_{i}(x)$ can be given a geometrical interpretation. Corresponding to the distribution $m_{1}(x)$ there is an exact stream surface on which the stream function $\psi_{i}(x, y)=0$. Let Δn_{i} be the distance from a point (x, y) on the given body to this exact stream surface, measured along the normal to the given body, positive outwards. Let u_{s} be the tengential component of the flow along the body. Then we have

$$
u_{s}=-\frac{1}{y} \frac{\partial \psi_{i}(x, y)}{\partial n} \div-\frac{\Delta \psi_{1}(x, y)}{y \Delta n_{i}}
$$

But $\Delta \psi=-\psi_{r}(x)$, since $\psi_{i}(x, y)=0$ on the exact stream surface. Hence

$$
\begin{equation*}
\Delta n_{1}=\frac{\psi_{1}(x)}{y u_{s}} \tag{60}
\end{equation*}
$$

Since, for an elongated body $u_{s} \equiv 1$, except in the neighborhood of the stagnation points, it is seen that $\psi_{i}(x)$ enables a rapid estimate to be made of the variation from the desired profile of the exact streem surface corresponding to $m_{1}(x)$. This is an important property because it can be used to monitor the successive approximations. Thus, the sequence $\psi_{1}(x)$ can be terminated when Δn_{i} becomes uniformly less than some specified tolerance; or, since there is no assurance
that the infinite sequence $\psi_{i}(x)$ converges, the sequence can conceivably give useful results even without convergence if it is continued as long as Δn_{i} decreases on the average, and is terminated when the error begins to increase and grows to an unacceptable magnitude at some point along the body. The strong similarity between these remarks and the discuscion following Theorem 2 of Part I should be noted.

There is also a strong similarity between the iteration formulas, equation (17) of Part I, whose convergence was thoroughly discussed, and the present equation (56). An essential difference between the iteration formulas is that the former employs the iterated kernel of the integral equation, the latter does not, so that the convergence theorems of Part I are not applicable. Nevertheless it is proposed to use the form in (56) (or the equivalent iteration formula (58) for the following reasons:
a. The labor of numerical calculations would be greatly increased by iterating the kernel, and even then only convergence in the mean would be gueranteed (Theorem 4 of Part I).
b. The physical derivation of equation (56) indicates that at least the first few approximations should be successively improving.
c. The successive approximations are monitored so that the sequence can be stopped when the error is as small as desired or, in the case of initial convergence and then divergence, when the errors begin to grow.

Velocity and Pressure Distribution on the Surface. When an approximate doublet distribution $m_{1}(x)$ has been obtained, the velocity components u, v can be computed from the corresponding stream function (18)

$$
\begin{equation*}
\psi_{i}(x, y)=y^{2}\left[\int_{a}^{b} \frac{m_{1}(t)}{r^{3}} d t-\frac{1}{2}\right] \tag{61}
\end{equation*}
$$

from which, in accordance with equetions (5) and (6),

$$
\begin{equation*}
u=1+\int_{a}^{b}\left(\frac{3 y^{2}}{r^{5}}-\frac{2}{r^{3}}\right) m_{1}(t) d t \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
v=3 y \int_{a}^{b} \frac{t-x}{r} m_{i}(t) d t \tag{63}
\end{equation*}
$$

On the given surface we have, from (61),

$$
\begin{equation*}
\int_{a}^{b} \frac{m_{1}(t)}{r^{3}} d t=\frac{\frac{1}{2}}{2}+\frac{\psi_{1}(x)}{y^{2}(x)} \tag{64}
\end{equation*}
$$

where now

$$
\begin{equation*}
r^{2}=(x-t)^{2}+f(x) \tag{65}
\end{equation*}
$$

Differentiating (64) with respect to x gives

$$
\begin{equation*}
3 \int_{a}^{b} \frac{t-x-r y^{\prime}}{r^{5}} m_{1}(t) d t=\frac{\psi_{1}^{\prime}(x)}{y^{2}(x)}-\frac{2 \psi_{g}(x) y^{\prime}(x)}{y^{3}(x)} \tag{66}
\end{equation*}
$$

Hence, from (62) and (64) we obtain

$$
\begin{equation*}
u=3 y^{2} \int_{a}^{b} \frac{m_{1}(t)}{r^{5}} d t-\frac{2 \psi_{j}(x)}{f(x)} \tag{67}
\end{equation*}
$$

and, from (63), (66) and (67),

$$
\begin{equation*}
v=u y^{\prime}(x)+\frac{\psi_{i}^{\prime}(x)}{y(x)} \tag{68}
\end{equation*}
$$

where the primes denote differentiation with respect to x. Equations (67) and (68) are the desired expressions for u and v. If the approximation $m_{i}(t)$ is very good, the contributions of the error function $\psi_{i}(x)$ should be very small.

It is interesting to note that the form of equation (68) shows the deviation of the resultant velocity from the tangent to the given body.

Bernoulli's equation for steady, incompressible, irrotational flow now gives the pressure distribution p,

$$
\begin{equation*}
\frac{p}{q}=1-\left(u^{2}+v^{2}\right) \tag{69}
\end{equation*}
$$

where q is the stagnation pressure.
Numerical Evaluation of Integrals. In order to perform the iterations in equations (56) and (58) and to compute the velocity distribution it will be frequently necessary to evaluate integrals of the form

$$
\int_{a}^{b} \frac{m(t)}{r^{3}} d t \text { and } \int_{a}^{b} \frac{m(t)}{r^{5}} d t
$$

where

$$
r^{2}=(x-t)^{2}+f(x)
$$

Because, in this form, these integrals peak sharply in the neighborhood of $t=x$, especially when the body is elongated, they are consequently unsuited for numerical evaluation.

A more suitable form can be obtained by means of the following transformation. Let (x, y) be the coordinates of a point on the body, t the abscissa of a point on the axis, θ the angle between line joining these two points and the X-axis; see Figure 1. Then

$$
\begin{equation*}
x-t=y(x) \cot \theta \tag{70}
\end{equation*}
$$

We may now transform the integrals so that θ becomes the variable of integration. Then

$$
\begin{equation*}
\int_{a}^{b} \frac{y^{2}}{r^{3}} m(t) d t=\int_{\alpha}^{\beta} m(t) \sin \theta d \theta \tag{71}
\end{equation*}
$$

and $\int_{a}^{b} \frac{y^{4}}{r^{5}} m(t)=\int_{a}^{\beta} m(t) \sin 3 \theta d \theta$
where $\alpha=\arctan \frac{y}{x-a}, \quad \beta=\arctan \frac{y}{x-b}$
An alternate procedure, which eliminates the peak without a transformation of variables, is the following. We have

$$
\begin{aligned}
& \int_{a}^{b} \frac{y^{2}}{r^{3}} m(t) d t \equiv \int_{a}^{b} \frac{y^{2}}{r^{3}}[m(t)-m(x)] d t+m(x) \int_{a}^{b} \frac{y^{2}}{r^{3}} d t \\
& \int_{a}^{b} \frac{y^{4}}{r^{5}} m(t) d t \equiv \int_{a}^{b} \frac{y^{4}}{r^{5}}[m(t)-m(x)] d t+m(x) \int_{a}^{b} \frac{y^{4}}{r^{5}} d t
\end{aligned}
$$

and
Hence

$$
\begin{align*}
& \int_{a}^{b} \frac{y^{2}}{r^{3}} m(t) d t=\int_{a}^{b} \frac{x^{2}}{r^{3}}[m(t)-m(x)] d t+m(x)(\cos \alpha-\cos \beta) \tag{71a}\\
& \int_{a}^{b} \frac{y^{4}}{r^{5}} m(t) d t=\int_{a}^{b} \frac{y^{4}}{r^{5}}[m(t)-m(x)] d t \\
&+m(x)\left[\cos \alpha-\cos \beta-\frac{1}{3}\left(\cos ^{3} \alpha-\cos ^{3} \beta\right)\right] \tag{72a}
\end{align*}
$$

Gauss' cuadrature formula is a convenient and accurate method of evaluating these integrals. The formula may be expressed in the form

$$
\begin{equation*}
\int_{-1}^{1} F(\xi) d \xi=\sum_{i=1}^{n} R_{n 1} F\left(\xi_{n i}\right) \tag{74}
\end{equation*}
$$

where the ξ_{i} are the zeros of Legendre's polynomial of degree n and the $F_{n i}$ are weighting factors. These have been tabulated ${ }^{1 l}$ for values of n from 1 to 16 . These numbers have the properties

$$
\begin{equation*}
R_{n i}=R_{n, n-i+1} \text { and } \xi_{n 1}=-\xi_{n, n-i+1} \tag{75}
\end{equation*}
$$

The value of the integral given by the formula (74) is the same as could be obtained by fitting a polynomial of degree $2 n-1$ to $F(x)$. The values of $R_{n i}$ and $\xi_{n i}$ are tabulated below for $n=7,11$, and 16 .

When the limits of integration are α and β, as in equations (71) and (72), Gauss' formula becomes

$$
\begin{equation*}
\int_{\alpha}^{\beta} F(\theta) d \theta=\frac{\beta-\alpha}{2} \sum_{i=1}^{n} R_{n i} F\left(\theta_{i}\right) \tag{76}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{i}=\frac{\beta-\alpha}{2} \varepsilon_{n i}+\frac{\alpha+\beta}{2} \tag{77}
\end{equation*}
$$

TABLE 3
ABSCISSAE AND WEIGHTING FACTORS FOR
GAUSS ${ }^{\text {® }}$ QUADRATURE FORMULA

	n - 7	$\mathrm{n}=11$	$n=16$
i	$\xi_{i} \quad \mathrm{R}_{\mathrm{i}}$	$\xi_{i} \quad \mathrm{R}_{\mathrm{i}}$	$\xi_{i} \quad \mathrm{R}_{\mathrm{i}}$
1	-.949108 . 129485	-.978229 .055669	-. 989401.027152
2	..741531 .279705	-.887063 .125580	-.944575 .062254
3	-.405845 .381830	-.730152 .186290	-.865631 .095159
4	0 . 017959	-. 519096.233194	-. 755404 . 124629
5	$\xi_{i=-1} \xi_{n-i+1} R_{i}=R^{\prime}$	-. 269543.262805	-. 617876 . 149596
6	$S_{i m-5 n-i+1} R_{i=} n_{n-i+1}$	0 . 272925	-. 458017 .169157
7			-. 281604.182603
8		1 - ${ }_{1}$	-.095013 .189451
			$\xi_{i=}-\xi_{n-1+1} R_{i}=R_{n-i+1}$

Illustrative Example. The foregoing considerations will now be applied to a body of revolution whose meridian profile is given, for $-1 \leqq x$ § 1 , by

$$
\begin{equation*}
y^{2}=f(x)=0.04\left(1-x^{4}\right) \tag{78}
\end{equation*}
$$

The body is symmetric fore and aft, has a length-diameter ratio $\lambda=5$, and a prismatic coefficient

$$
\begin{equation*}
\varphi=\int_{0}^{1}\left(1-x^{4}\right) d x=0.80 \tag{79}
\end{equation*}
$$

By applying to (78) the transformation

$$
\begin{equation*}
x=2 \xi-1, y=2 \eta \tag{80}
\end{equation*}
$$

We obtain the equation for the geometrically similar body of unit length, for $0 \leqq \xi \leqq 1$,

Figure 2 - Graphs of $y(x)$ and $y^{2}(x)$ for $y^{2}(x)=0.04\left(1-x^{4}\right)$

$$
\begin{equation*}
\eta^{2}=0.88\left(\xi-3 \xi^{2}+4 \xi 3-2 \xi^{4}\right)=0.08(1-\xi)\left(2 \xi^{2}-2 \xi+1\right) \tag{81}
\end{equation*}
$$

We will also need the slope of the profile which, from (78) is

$$
\begin{equation*}
y^{\prime}=\frac{f^{\prime}(x)}{2 y}=-\frac{0.4 x^{3}}{\left(1-x^{4}\right)^{\frac{1}{8}}} \tag{82}
\end{equation*}
$$

The profile and $f(x)$ are graphed in Figure 2.
First let us find the end points of the distribution. We have, from (81), $a_{1}=0.08, a_{2}=-0.24, a_{3}=0.32$. The approximate formula (41) then gives $\alpha=3.68$ or 3.84 , whence $a=a_{1} / \alpha=0.0217$ or 0.0208 . An examination of the complete polynomial (35) with the aid of Table 1 shows that its zeros occur at $\alpha=3.65,3.85,12.1$. In the application of Table 1 to determine these roots the regions of possible zeros should be determined by inspection, the values of the polynomial in these regions calculated from equation (44) and Table l, and then graphed to obtain the zeros. It is seen that in the present case the approximate formula (41) would have been sufficiently accurate for the determination of the roots near $\alpha=4$. The solution of the complete polynomial equation will always yield an additional large root, corresponding to the large root of equation (38); in general, however, this root should be rejected since as will be shown, the initial doublet distribution corresponding to it is less simple then for the roots near $\alpha=4$.

The initial behavior of the distributions corresponding to each of the three roots, as determined from equations (36) and (37), is shown in the following table. It is seen from the table that the distribution for $\alpha=12.1$ begins with
practically a zero value for $m(a)$, with a small negative slope and with up curvature。 Since the distribution curve cannot

TABLE 4

CHARACTERISTICS OF INITIAL DISTRIBUTION				
α	a	$\mathrm{m}(\mathrm{a})$	C_{1}	C_{2}
3.65	.0219	.0000216	.0375	-0.103
3.85	.0208	-.0000191	.0376	-0.109
12.1	.0066	.0000008	-.0064	0.35

continue very far with up curvature, there must be an in flection point nearby. In contrast, the distribution corresponding to the other two roots begin with positive slopes and down curvatures and hence must be considered simpler. Furthermore the distribution for the first root is considered simpler than for the second since the distribution curves are practically identical except that, for the second root, the curve is extended a distance $\Delta \mathrm{a}=00011$, in the course of which $m(a)$ changes from a positive to almost a numerically equal negative value. If we take the point of view that the positive and negative values of this extension counterbalance each other, the curve without the extension, corresponding to the first root, must be considered the simplest.

Hence, for the purpose of obtaining a first approximation, we will assume $\alpha=3.65$ and, correspondingly, $a=0.022$, $m(a)=0.000022$. Often, as in this case, the labor of obtaining a and $m(a)$ can be considerably reduced by using the less exact equations (41) and (42) instead of (35), (36) and (37). Since, as will be seen, the iteration formulas rapidly
improve upon the first approximation, great effort should not be expended to determine on initial velue for $\mathrm{m}(\mathrm{a})$.

The values $a=0.022$ and $m(a)=0.000022$ have been derived for the profile in the,η-plane. The corresponing values in the $x, y-p l a n e$ are $a=-0.956$ and $m_{a}=0,000088$. Dy symmetry we also have $b=-a, m_{b}=m_{a}$.

A first approximetion can now be obtained from (47), (48), (49) and (50). Eince $\lambda=5.0$, we have $k_{1}=0.059$. Also, from (78): $f_{8}=0.00659, \int_{-1}^{1} y^{2} d x=0.0640, \int_{a}^{b} y^{2} d x=0.0637$. Hence from (50), $C=0.328$. Then, from (48), $0_{0}=m_{a}-\mathrm{Cf}_{\mathrm{a}}=-0.00207$; from (49), $e_{1}=0$. Finally we obttin from (47)

$$
\begin{equation*}
m_{1}(x)=0.328 y^{2}-0.00207 \tag{83}
\end{equation*}
$$

We can now apply equation (51) and the iteration formula (58) to obtain the sequence of functions $\psi_{1}(x)$. Let us suppose that it is desired to obtein a distribution $m_{1}(x)$ whose exact stream surface deviates from the given surfece by, less than one percent of the maximum radius, 1.e. $\Delta \mathrm{n}<0.002$. Then, by (60), the sequence $\psi_{i}(x)$ should be continued until $\psi_{i}(x)<0.002 \sqrt{f(x)}$ for $a \leqq x \leqq b$, unless the error, as represented by $\psi(x)$. begins to grow before the desired degree of approximation is attained. In the latter case the best approximation attainable would fall short of the specified accuracy.

The integrations in (50) and (51) may be carried out in the form (71) in terms of θ defined in (70). For a fixed (x, y) on the given profile, α and β are first computed from (73). Then, to apply Gauss' quadrature formula (76), the interval is subdivided at the points θ_{g} given by (77)
and the integrands evaluated at these points. The corresponding values of t at wich $n_{1}(t)$ in (51) or $\psi_{1-1}(t)$ in (58) is to be reed are, from (70),

$$
\begin{equation*}
t_{j}=x-y \cot \theta_{j} \tag{70a}
\end{equation*}
$$

Since the values t_{j} and $\sin \theta_{j}$ are used repeatediy in the successive iterations at a eiver (x, y), these should be stored in a form convenient for application.

The calculations for obtaining the integration limits α and β for several values of x are given in Table 5. The velues of θ_{j} from (77), and the corresponding velues of Rgsing for appiscation of the Gauss 11 ordinate formula, and the values of t_{j} from (70e) for each x are entered as the first three colume in Tablee 7 a through 7 h , in which are given the celculations for $\psi_{i}(x)$.

In order to compute $\psi_{1}(x), m_{1}(t)$ is computed from (83), then $m_{1} \sin \theta$ is obtained. These are tabulated in Table 7. Gauss' formula then gives $\int m_{1}$ sinede. $\psi_{1}(x)$ is then obtained from (51); its graph is given in Figure 3. It is important to note that $m_{1}(t)$ is obtained by cexiculation, rather than grephiceliy, in this operation. This procecure is recomenced since it gives greater accuracy in a critical step. In the subsecuent operstions on the ψ^{\prime} 's considerably less percentage accuracy is required, since the ψ 's are of the nature of first aifferences between the m ' s, so that graphical operations are sufficiently sccurate.

As a check on the accuracy of the integretion, $\psi_{2}(0)$ was also evaluated by two other means, with the following results:
from Gauss 7 ordinate formula $\quad \psi_{1}(0)=0.001258$
from Gause 11 ordinate formula $\quad \psi_{1}(0)=0.001243$
from exnct integration
$\psi_{1}(0)=0.001243$
It is seen that the 7 ordinate fomaic introduces an error in the firth decimal place.

The first step in the determinction of $\psi_{2}(x)$ is to read the values of $\psi_{1}(t)$ from the eraph, Fieure 3 . $\psi_{2} R \sin \theta$ and $\int \psi_{1}$ sin $\theta d \theta$ are then obtained. $\psi_{2}(x)$ is then given by (58) and graphed in Figure 3. Fepeated application of this procedure gives $\psi_{3}(x)$ and $\psi_{4}(x)$ which are also graphed in Figure 3. The sequence is stopped at $\psi_{4}(x)$ since ψ_{4} has Increased appreciably over ψ_{3} at $x=-0.956$.

Hence, from (59), we have the approximete distribution

$$
\begin{equation*}
w_{4}(x)=m_{1}(x)-\frac{1}{2}\left[\psi_{1}(x)-\psi_{2}(x)-\psi_{3}(x)\right] \tag{84}
\end{equation*}
$$

to which $\psi_{4}(x)$ is the corresponding error function. The distence Δn between the stream surface for $m_{4}(x)$ and the given profile is seen to be very mall; the lareest error; $\psi_{4}=-0.00 c 07$ at $x=-956$, gives a Δn of about one per cent of the maximum ordinate. A graph of m $\mathrm{m}_{4}(x)$ is given In Firure 4 . For the seke of comparison the curves for $m_{1}(x)$ and the ordginal hunk approximetion $f f(x)$ are also shown.

Table 6 ehows the celculations for olteining the velocity components u, V from (67) and (68), in which the integrais have been evalutted in terms of the polar ancle θ, according
to equations (71), (72) and (73). Here also Causs' eleven ordinete formula is used. The vaiues of θ and t are again taken from Table 7 ; the values of $m_{4}(t)$ are given by (84 ; in which the ψ 's are read from Figure 3 and $m_{y}(t)$ is given in Table 7.

The prescure distribution can now be obtained from (69). Graphs of p/q are shown in Figure 5.

Ercor in Detarmination of v / Q. Let $\Delta(\mathrm{p} / \mathrm{q}), \Delta u, \Delta v$ and Δm denote errors in $p / q, u, v$, and m. Then, from (69), we heve

$$
\Delta(p / q)=-2(u \Delta u+v \Delta v) ;
$$

from (68),

$$
\Delta v=y^{\prime} \Delta u
$$

and fron (67) and (72), except near the stagnetion pointe,

$$
\Delta u=\frac{3 \Delta m}{y^{2}} \int_{0}^{\pi} \sin 3 \theta d \theta=\frac{4 \Delta m}{y^{2}}
$$

Hence

$$
\Delta(p / q)=-\frac{\ln \Delta m}{y^{2}}(2+y+2)
$$

If now we assume $u \cong 1, y^{\prime} \cong 0, y^{2} \cong 4$ (Munk's approxicetion), we obtain

$$
\Delta(p / q)=-2 \Delta n / m_{0}
$$

Thus an error of one percent in the determination of m would introduce an error of $0.02 \mathrm{in} \mathrm{p} / \mathrm{q}$.

In the foregolrg example the minimum vaiue of p / q vas about -0.20 . Hence an error of one percent in m would have produced an error of ten percent in the minimum value of
p / q. It was found, in fect, that the application of Gauss' seven ordinate rule introduced deviations in the values of p / q given by the 11 point mule of less then 0.003 for the entire body. For this resson Gauss' eleven point rule was used in the example; although the even point rule would heve sufficed if an accuracy of only .003 in $p /$ wore required see Figure 5.

If greater accuracy is desired the integrals can be evalu-' ated in the forms (71a) and (72a). If the latter foras are used in congunction vith the Ganss guadrature formula the values of x should be chosen identicel with the t's recuired by the Causs formala. This ondbles the entire caleulationc, including the iterations and the velocity determinetions, to be made arithmetiealiy, without reaort to graphical operations, so that the method becosec suitable for processing on an auto-matic-seguence computing machine. In order to obtain sufficient accuracy in the integrations and to obtain the velocities and pressures at a gufficient mumer of points along the body a Causs fommia of high order should be used, say $n=16 . \quad$, For this reason the procedure thet has been illustrated in dotell may be less tedious for manual application.

Comparison with Gumpanknd Gaplan Methods. In orcer to compare the accuracy of the Karman method with the present one, the orror function $\psi_{k}(x)$ was computed for a distribution derived by the cerman method, omploying 14 intervals extending from $-0.98 \leq x \leq 0.98$. $\psi_{\mathrm{k}}(\mathrm{x})$ is graphed in Figure 3. It is seen thet the errors are much greater than for the
present thod, eppecially near the onde of the body. The oselilatory character of $\psi_{\mathrm{k}}(\mathrm{x})$ is imposed by the condition that the strean function should vanssh at the aenter of each interval. It at concelveble that. the amplitude of the oselilations in $\psi_{1}(x)$ may remain large cven when the number of intervala 4 s greetly increased; 1.0 。 the Krman method may give a poorer approximetion when the muber of source-sink segments 1t greatiy increased. The pressure distribution obtained by tho Karran mothod is graphec in Figuse 5 .

Raplan's Pirst method was also applied to ottein the pressure distribution. Kaplan expresses the potential function φ in the form φ e $\sum \delta_{n} \theta_{n}(\lambda) P_{n}(\mu)$ where λ and μ are confocal elinptic coordinater, $P_{n}(\mu)$ and $f_{n}(\lambda)$ the nth Legendre and associated Legenare polynomials, and the A_{n} 's are coefficients to be detemmed from a set of innear equations which express the condition that the given profile is a streav function. In the preaent case it ves asamod thst ρ was expressed in terne of the firet 9 Legencire funetions and the An's determined from the conditions that the strean function should vanish at 9 preseribea points (inciuding the stagnation points) on the body. The resulting presture distrubition is elso shown in Figure 5 .

TABLE 5
CALCULATIONS FOR INTEGRATION LIMITS α, β

\mathbf{x}	$\mathbf{x - a}$	$\mathbf{x}-\mathrm{b}$	y	$\tan \alpha$	$\tan \beta$	α	β	$\frac{1}{2}(\beta-\alpha)$	$\frac{1}{2}(\alpha+\beta)$
0	0.956	-0.956	0.20000	0.20921	-0.20921	0.2062	2.9354	1.3646	1.5708
-0.20	0.756	-1.156	0.19984	0.26434	-0.17287	0.2584	2.9704	1.3560	1.6144
-0.40	0.556	-1.356	0.19742	0.35507	-0.14559	0.3412	2.9970	1.3279	1.6691
-0.60	0.356	-1.556	0.18659	0.52413	-0.11992	0.4828	3.0222	1.2697	1.7525
-0.70	0.256	-1.656	0.17435	0.68105	-0.10528	0.5979	3.0367	1.2194	1.8173
-0.80	0.156	-1.756	0.15368	0.98513	-0.08752	0.7779	3.0543	1.1382	1.9161
-0.90	0.056	-1.856	0.11729	2.09446	-0.06320	1.1254	3.0785	0.9766	2.1020
-0.956	0	-1.912	0.08117	∞	-0.04245	1.5708	3.0992	0.7642	2.3350

TABLE 6
CALCULATIONS FOR PRESSURE DISTRIBUTION p/q

X	y^{2}	y	y^{8}	ψ_{4}	u	uy ${ }^{8}$	$\psi^{8}{ }_{4} / \mathrm{y}$	V	$u^{2}+v^{2}$	p/q
0	. 040000	. 20000	. 0000	:000000	1.02640	. 00000	. 00000	. 00000	1.0535	-. 0535
-0.20	. 039936	. 19984	. 0032	-.000082	1.03441	.00331	-.00041	. 00290	1.0700	-. 0700
-0.40	. 038976	. 19742	. 0259	. 000060	1.05618	. 02739	. 00030	. 02769	1.1163	-. 1163
-0.60	. 034816	. 18659	.0926	. 000306	1.07907	. 09993	.00164	. 10157	1.1747	-. 1747
-0.70	. 030396	. 17435	. 1574	.000317	1.07866	. 16978	.00182	. 17160	1.1930	-. 1930
-0.80	. 023616	. 15368	. 2665	-.000129	1.04917	. 27960	-.00084	. 27876	1.1785	-. 1785
-0.90	. 013756	. 11729	. 4972		. 92425	. 45954		-4489*	1.0557	-. 0557
-0.956	.006588	.08117	. 8611		.68161	. 58693		-5768*	. 7973	. 2027

*v obtained from equation $v=\frac{3}{y} \int_{\alpha}^{\beta} m(t) \sin ^{2} \theta \cos \theta d \theta$.

TABLE 7
CALCULATIONS FOR $\psi_{i}(x)$ AND $u(x)$
(a) $x=0: \frac{1}{2}(\beta-\alpha)=1.3646, y^{2}=0.0400$

θ	t	$\mathrm{R} \sin \theta$	$m_{1}(t)$	$\mathrm{m}_{1}(\mathrm{t}) \mathrm{Rsin} \theta$	$\psi_{1}(t)$	$\psi_{1}(t) R \sin \theta$	$\psi_{2}(t)$	$\psi_{2}(t) R \sin \theta$	$\psi_{3}(t)$	$\psi_{3}(t) R \sin \theta$	$\mathrm{m}_{4}(\mathrm{t})$	$\mathrm{m}_{4} \mathrm{Rsin} 3 \theta$
. 2359	-. 8320	.01301	. 004763	. 0000620	-. 001307	-.0000170	-. 000428	-. 0000056	-. 000151	-.0000020	. 005706	. 0000041
.3603	-. 5309	. 04428	. 010008	.0004432	-. .000370	-. 0000164	-. 000107	-. 0000047	-. 000019	-. 0000008	. 010256	.0000565
. 5744	-. 3090	.10121	. 010930	.0011062	. 000652	. 0000660	. 000188	.0000190	.000063	. 0000064	. 010478	.0003130
. 8624	-. 1713	. 17708	. 011039	. 0019548	. 001058	. 0001874	.000281	.0000498	.000075	. 0000133	. 010332	.0010552
1.2030	-. 0771	. 24522	. 011050	. 0027097	. 001198	. 0002938	.000307	.0000753	.000075	.0000184	. 010260	. 0021907
1.5708	. 0000	.27293	.011050	.0030159	. 001244	.0003395	.000311	.0000849	.000071	. 00C0194	. 010237	. 0027940
1.9386	.0771	. 24522	. 011050	. 0027097	. 001198	. 0002938	. 000307	.0000753	.000075	.0000184	. 010260	.0021907
2.2792	. 1713	.17708	. 011039	. 0019548	.001058	. 0001874	. 000281	. 0000498	. 000075	.0000133	. 010332	. 0010552
2.5672	. 3090	.10121	. 010930	. 0011062	. 000652	. 0000660	. 000188	.0000190	. 000063	. 0000064	. 010478	. 0003130
2.7813	. 5309	. 04428	. 010008	.0004432	-. 000370	-. 0000164	-. 000107	-. 0000047	-. 000019	-. 0000008	. 010256	. 0000565
2.9057	. 8320	.01301	.004763	. 0000620	-. 001307	-. 0000170	-. 000428	-. 0000056	-. 000151	-. 0000020	. 005706	.0000041
			$\begin{gathered} \sum m_{1} R \sin \\ \int m_{1} \sin \theta \\ \psi 1 \end{gathered}$	$\begin{aligned} & .0155677 \\ & .0212437 \\ & .001244 \end{aligned}$	$\begin{gathered} \sum \psi_{1} R \sin \theta \\ \int \psi_{1} \sin \theta \\ \psi_{2} \end{gathered}$	$\begin{aligned} & =.0013671 \\ & =.001866 \\ & =.000311 \end{aligned}$	$\begin{gathered} \sum \psi{ }_{2} \mathrm{R} \sin \theta \\ \int \psi \operatorname{cin}^{\sin \theta \mathrm{d} \theta} \\ \psi 3 \end{gathered}$	$\begin{aligned} & =.0003525 \\ & =.0004810 \\ & =.000071 \end{aligned}$	$\begin{gathered} \sum \psi \psi_{3}^{R \sin \theta} \\ S \psi 3 \sin \theta \mathrm{~d} \theta \\ \psi_{4} \end{gathered}$	$\begin{aligned} & =.0000900 \\ & =.0001228 \\ & =.000010 \end{aligned}$	$\left\{\begin{array}{c} 2 \mathrm{Rm} \sin ^{3}(\\ \int \mathrm{m} \sin ^{3} \\ u= \end{array}\right.$	$\begin{aligned} & =0100330 \\ & .01 .3691 \\ & 1.0264 \end{aligned}$

(b) $x=-0.20: \frac{1}{2}(\beta-\alpha)=1.3560, y^{2}=.039936$

θ	t	$\mathrm{R} \sin \theta$	$m_{1}(t)$	$\mathrm{m}_{1}(\mathrm{t}) \mathrm{Rsin} \theta$	$\psi_{1}(t)$	$\psi_{1}(t) R \sin \theta$	$\psi_{2}(t)$	$\psi_{2}(t) R \sin \theta$	$\psi_{3}(t)$	$\psi_{3}(t) R \sin \theta$	m_{4} (t)	$\mathrm{m}_{4} \mathrm{R} \sin 3 \theta$
. 2879	-. 8.748	. 01580	. 003366	. 0000532	-.001189	-. 0000188	-. 000361	-.0000057	-. 000112	-. 0000018	. 004197	. 0000053
. 4115	-. 6579	. 05023	. 008592	. 0004316	-. .000997	-. 0000501	-. 000329	-. 00000165	-. 000109	-. 00000055	. 009310	. 0000748
.6243	-. 4774	. 10889	. 010369	. 0011291	-. 000098	-. 0000107	-. 000018	-. 0000020	.000013	. 0000014	. 010421	. 0003877
.9105	-. 3552	. 18417	. 010841	. 0019966	.000469	.0000864	.000141	.0000260	.000055	. 0000101	. 010508	. 0012072
1.2489	-. 2666	. 24929	. 010984	. 0027382	.000799	. 0001992	.000221	.0000551	. 000070	.0000175	. 010439	. 0023418
1.6144	-. 1913	. 27266	. 011032	. 0030080	. 001017	. 0002773	. 000271	.0000739	. 000074	. 0000202	.010351	. 0028166
1.9799	-. 1133	. 24112	. 011048	. 0026639	.001152	. 0002778	.000300	. 0000723	.000076	. 0000183	. 010284	.0020874
2.3183	-. 0148	. 17102	. 011050	. 0018898	.001240	. 0002121	.000310	.0000530	.000072	.0000123	. 010239	. 0009419
2.6045	. 1356	. 09531	. 011046	. 0010528	. 001121	. 0001068	. 000296	.0000282	.000076	.0000072	. 010299	. 0002569
2.8173	. 3945	. 04001	. 010732	.0004294	. 000300	. 0000120	. 000101	.0000040	.000048	.0000019	. 010507	.0000427
2. 9409	. 7823	.01110	. 006136	. 0000681	-. 001336	-. 0000148	-. 000445	-. 0000049	-. 000159	-. 0000018	. 007106	.0000031
			$\begin{array}{r} \sum_{m_{1} R \sin \theta}= \\ \int m_{1} \sin \theta= \\ \psi_{1}= \end{array}$	$\begin{aligned} & 0154607 \\ & 0209647 \\ & 000997 \end{aligned}$	$\begin{array}{r} \sum \psi_{1} R \sin \theta \\ \int \psi_{1} \sin \theta a \theta \\ \psi_{2} \end{array}$	$\begin{aligned} & \theta=.0010772 \\ & \theta=.001460 \\ & 2=.000267 \\ & \hline \end{aligned}$	$\begin{gathered} \sum \psi_{2} \mathrm{R} \sin \theta \\ S \psi_{2} \sin \theta \mathrm{~d} \theta \\ \psi_{3} \end{gathered}$	$\begin{aligned} & =.0002834 \\ & =.0003843 \\ & =.000075 \end{aligned}$	$\begin{gathered} \sum \psi_{3} R \sin \theta \\ \int \psi_{3} \sin \theta \mathrm{~d} \theta \\ \psi_{4} \end{gathered}$	$\begin{aligned} & =.0000798 \\ & =.0001082 \\ & =.000021 \end{aligned}$	$\begin{array}{r} \sum_{R_{m}} \sin ^{3} \\ \int \mathrm{~m}_{4} \sin ^{3} \\ u= \end{array}$	$\begin{aligned} & \mathbf{\#} 0101654 \\ & =013784 \\ & \mathbf{2} .0344 \\ & \hline \end{aligned}$

(c) $x=-0.40: \frac{1}{2}(\beta-\alpha)=1.3279, \mathrm{y}^{2}=0.038976$

(d) $x=-0.60: \frac{1}{2}(\beta-\infty)=1.2697, y^{2}=0.034816$

θ	t	$R \sin \theta$	$m_{l}(t)$	$m_{1}(t) R \sin \theta$	$\psi_{1}(t)$	$\psi_{1}(t) R \sin \theta$	$\psi_{2}(t)$	$\psi_{2}(t) R \sin \theta$	$\psi_{3}{ }^{(t)}$	$\psi_{3}(t) R \sin \theta$	$\mathrm{m}_{4}(\mathrm{t})$	$\mathrm{m}_{4} \mathrm{Rsin}^{3} \boldsymbol{\theta}$
. 5104	-. 9333	.02719	. 001095	. 0000298	-. 000798	-. 0000217	-. 000189	-. 0000051	-. 000011	-. 0000003	. 001594	. 0000104
. 6262	-. 8580	.07360	. 003940	. 0002900	-. 001248	-. 0000919	-. 000392	-. 0000289	-. 000132	-. 0000097	. 004826	. 0001221
. 8254	-. 7722	. 13689	. 006385	. 0008740	-. 001330	-. 0001821	-. 000441	-. 0000604	-. 000159	-. 0000218	. 007350	. 0005432
1.0934	-. 6965	. 20712	. 007962	. 0016491	-. 001151	-. 0002384	-. 000381	-. 0000789	-. 000131	-. 0000271	. 008794	. 0014369
1.4103	-. 6302	.25941	.008981	. 0023298	-. 000873	-. 0002265	-. 000287	-. 0000745	-. 000000	-. 0000233	. 009606	. 0024280
1.7525	-. 5657	.26843	. 009706	. 0026054	-. 0000551	-. 0001479	-. 000168	-. 0000451	-. 000042	-.0000113	.010087	. 0026190
2.0947	-. 4.422	. 22756	. 010280	. 0023393	-. .000170	-. 0000387	-. 000041	-. 0000093	. 000005	. 0000011	. 010383	. 0017715
2.4116	-. 3915	. 15551	. 010742	.0016705	. 000311	. 0000484	. 000102	. 0000159	.000049	.0000076	. 010511	.0007271
2.6796	-. 22253	. 08303	. 011016	.0009147	. 000928	. 0000771	.000251	. 0000208	. 000072	. 0000060	. 010390	.0001714
2.8788	. 0936	. 03263	.011049	.0003605	. 001179	. 0000385	. 000302	.0000099	. 000075	. 0000024	. 010271	. 0000226
2.9946	. 6602	.00816	. 008558	.0000698	-. 001005	-. 0000082	-. 000332	-. 0000027	-. 000110	-. 0000009	. 009282	.0000016
			$\sum m_{1} R \sin \theta$. 0131329	$2 \psi_{1} R \sin \theta$	$=-.0007914$	$\sum \psi_{2} R \sin \theta$	$=-.0002583$	$2 \psi_{3 R \sin \theta}$	$=-.0000773$		0098538
			$\int m_{1} \sin \theta$. 0166748	$\int \psi_{1} \sin \theta$	$=-.0010048$	$\int \psi_{2} \sin \theta$	-. 0003280	$\int \psi_{3} \sin \theta$	$-.0000981$	$\int \mathrm{m}_{4} \mathrm{sin}$	012511
			ψ_{1}	.000733	ψ_{2}	$=-.000231$	\%	$=-.000067$	ψ_{4}	$=-.000018$. 0791

(e) $x=-0.70: \frac{1}{2}(\beta-\alpha)=1.2194, y^{2}=0.030396$

(f) $x=-0.80:(\beta-\alpha)=1.1382, y^{2}=0.023616$

θ	t	$\mathrm{Rsin} \theta$	$m_{1}(t)$	$\mathrm{m}_{1}(\mathrm{t}) \mathrm{R} \sin \theta$	$\psi_{1}(t)$	$\psi_{1}(t) R \sin \theta$	$\psi_{2}(\mathrm{t})$	$\psi_{2}(t) \mathrm{Rsin} \theta$	$\psi_{3}(t)$	$\psi_{3}(t) R \sin \theta$	$m_{4}(t)$	$\mathrm{m}_{4} \mathrm{Rsin}{ }^{3} \theta$
. 8027	-. 9485	. 04004	. 000431		-. 000655	-. 0000262	-. 000127	-. 0000051	. 000021	. 0000008	. 000812	8
. 9064	-. 9204	. 09887	. 0001634	. 0001616	-.000896	-. 00000886	-. 000233	-. 0000230	-. 000037	-. 0000037	. 002217	. 0001359
1.0850	-. 8811	. 16474	. 003143	. 0005178	-. 0001158	-. 0001908	-. 000347	-. 0000572	-. 000102	-. 0000168	. 003947	. 0005084
1.3253	-. 8385	. 22619	. 004565	. 0010326	-. 001297	-. 0002934	-. 000421	-. 0000952	-. 000149	-. 0000337	. 005499	. 0011704
1.6093	-. 7941	. 26262	. 005833	. 0015319	-. 001339	-. 0003516	-. 000446	-. 0001171	-. 000158	-. 0000415	. 006805	. 0017847
1.9161	-. 7447	. 25683	. 007015	. 0018017	-. 001299	-. 0003336	-. 000427	-. 0001097	-. 000151	-. 0000388	. 007954	. 0018090
2.2229	-. 6827	. 20887	. 008200	. 0017127	-. 001099	-. 0002295	-. 000363	-. 0000760	-. 000123	-. 0000257	. 008993	. 0011865
2.5069	-. 5913	. 13826	. 009446	. 0013060	-. 000690	-. 0000954	-. 000215	-. 0000297	-. 000061	-. 0000084	. 009929	. 0004825
2.7472	-. 4308	. 07159	. 010598	. 0007587	. 000128	. 0000092	. 000051	. 0000037	. 0000037	. 0000026	. 010490	. 0001108
2.9258	-. 0989	. 02689	. 011049	. 0002971	. 001172	. 0000315	. 000302	. 0000081	. 000076	. 0000020	. 010274	. 0000127
3.0295	. 5652	. 00623	. 009711	. 0000605	. 000548	-. 0000034	. 00016	.	. 000041	.	. 010090	. 0000008
			$\begin{array}{r} \sum_{m_{1}} R \sin \theta=.0091979 \\ \mathrm{~m}_{1} \sin \theta=.0104690 \\ \psi_{1}=-.001339 \end{array}$		$\begin{array}{cc} \sum \psi_{1} R \sin \theta & -.0015718 \\ \psi_{1} \sin \theta & -.0017890 \\ \psi_{2} & -.000444 \end{array}$		$\sum \psi_{2} R \sin \theta=-.0005023$ $\int \psi_{2} \sin \theta=-.0005717$ $\psi_{3}=-.000158$		$\begin{aligned} \sum \psi_{3} R \sin \theta & =-.0001635 \\ \psi_{3} \sin \theta & =-.0001861 \\ \psi_{4} & =-.000065 \end{aligned}$		$\begin{gathered} \sum R_{4} \sin ^{3} \theta=-.0072185 \\ \int m_{4} \sin ^{3} \theta=.008216 \\ u=1.0492 \end{gathered}$	

(g) $x=-0.90: \frac{1}{2}(\beta-\alpha)=0.9766, y^{2}=0.013756$

θ	t	$\mathrm{Rsin} \theta$	$m_{1}(t)$	$\mathrm{m}_{1}(\mathrm{t}) \mathrm{R} \sin \theta_{1}$	$\psi_{1}(t)$	$\psi_{1}(\mathrm{t}) \mathrm{R} \sin \theta$	$\psi_{2}(t)$	$\psi_{2}(\mathrm{t}) \mathrm{Rsin}$ ($\psi_{3}(t)$	$\psi_{3}(t) R \sin \theta$	$\mathrm{m}_{4}(\mathrm{t})$	$\mathrm{m}_{4} \mathrm{R} \sin ^{3} \theta$
1.1467	-. 9530	. 05074	. 000228	. 0000116	-. 000600	-. 0000304	-. 000104	-. 0000053	.000035	. 0000018	. 000563	. 0000237
1.2357	-. 9408	. 11860	. 000772	. 0000916	-. 000720	-..00cor 54	-. 000154	-.0000183	. 000006	. 0000007	. .001206	. 0001276
1.3889	-. 9216	. 18322	. 001585	. 0002904	-. 000888	-. 0001627	-. 000230	-.0000421	-. 000034	-. 0000062	. 002161	0003830
1.5950	-. 8972	. 23312	. 002549	. 0005942	-. 001060	-. 0002471	-. 000305	-. 0000711	-. 000080	-. 0000186	. 003272	.0007623
1.2388	-. 8678	. 25342	. 003609	. 0009146	-. 001215	-. 0003079	-. 000375	-. 0000950	-. 000121	-. 0000307	. 004465	. 0010522
2.1020	-. 8311.	. 23532	. 004790	. 0011272	-. 001307	-. 00003076	-. 0000428	-. 0001007	-. 0000151	-. 0000355	. 005733	. 0010030
2.3652	-. 7806	. 18414	. 006179	. 0011378	-. 0001335	-. 00002458	-. 000444	-. 0000818	-. 000159	-. 00000293	$.007148$. 0006462 0002665
2.6090	-. 7010	. 11841	. 007882	. 0009333	-. 001168	-. 0001383	-. 000388	-. 00000459	-.000134	$-.0000159$	$.008727$. 0002665 0000624
2.8151	-. 5536	. 05974	. 009818	. 0005865	-. 000486	-. 0000290	-. 000145	-. 0000087	$-.000034$	$-.0000020$	$.010151$.0000624 . 0000067
2.9683 3.0573	-.2300 .4880	. 02165	. 011013	.0002384 .0000483	.000915 -.000149	$\begin{array}{r} .0000198 \\ -.0000007 \end{array}$.000248 -.000033	$\begin{array}{r} .0000054 \\ -.0000002 \end{array}$.000072 .000008	.0000016 .0000000	$\begin{aligned} & .010395 \\ & .010393 \end{aligned}$	$\begin{array}{r} .0000067 \\ .0000003 \end{array}$
			$\begin{array}{r} 2 m_{1} R \sin \theta \\ \mathrm{Sm} \sin \theta \\ \psi_{1}= \end{array}$	$\begin{aligned} & =.0059739 \\ & =.0058341 \\ & -.001044 \end{aligned}$	$\begin{gathered} \sum \psi_{1} R \sin \theta \\ \int \psi_{1} \sin \theta \\ \psi_{2} \end{gathered}$	$\begin{aligned} = & -.0015351 \\ = & -.001499 \\ & -.000299 \end{aligned}$	$\begin{gathered} \sum \psi_{2} R \sin \theta \\ \int \psi \sin \theta \\ \psi 3 \end{gathered}$	$\begin{aligned} & -.0004637 \\ & -.0004528 \\ & -.000073 \end{aligned}$	$\begin{array}{r} \sum \psi_{3} R \sin \theta= \\ \int \psi_{3} \sin \theta= \\ \psi_{4}= \end{array}$	$\begin{aligned} & -.0001341 \\ & -.0001309 \\ & -.000008 \end{aligned}$	$\sum \mathrm{Rm}_{4} \mathrm{si}$ $\int \mathrm{m}_{4} \mathrm{si}$	$\begin{aligned} & .0043339 \\ & .004233 \\ & .9243 \end{aligned}$

(h) $\mathrm{x}=-0.956: \frac{1}{2}(\beta-\alpha)=0.7642, \mathrm{y}^{2}=0.006588$

θ	t	$R \sin \theta$	$m_{1}(t)$	$m_{1}(t) R \sin \theta$	$\psi_{1}(\mathrm{t})$	$\psi_{1}(t) R \sin \theta$	$\psi_{2}(t)$	$\psi_{2}(t) \operatorname{Rsin} \theta$	$\psi_{3}(t)$	$\psi_{3}(\mathrm{t}) \mathrm{R} \sin \theta$	$\mathrm{m}_{4}(\mathrm{t})$	$\mathrm{m}_{4} \mathrm{R} \sin ^{3} \theta$
1.5872	-. 0.0547	. 05566	. 010151	. 0000084	-.000581	-	-. 000099	-. 0000055	. 000039	. 0000022	. 000472	. 0000263
1.6572	-. 9490	. 12512	. 000409	. 0000512	-.000652	-.ccoor16	-.000126	-.c000158	- CoO 022	. 0000028	. 0.00787	. 0000977
1.7773	-. 9390	. 18234	. 000850	. 0001550	-.ccol4 5	-. 0001358	-. - 00167	-.0000305	- 000000	- 0000000	. 001306	. 0002282
1.9387	-. 9247	. 21761	. 001457	. 0003171	-.000866	-. .0001885	-.cocoz21	-. 0000481	-. 000029	-. 0.000063	. 002015	. 00003820
2.1297	-. 9053	. 22291	. 002237	. 0004986	-. 001005	-. .0c02240	-.000281	-. 0000626	-. 000064	-. C0col43	. 002912	. 0004670
2.3359	-. 2782	. 19703	. 003246	. 0006396	-. 001173	-. 0002311	-. 000353	-.0000606	-.000107	-. 0000211	. 004063	. 0004173
2.5421	-. 8375	. 14851	. 004595	. 0006824	-. 001300	-. 0001031	-. 0000421	-. 0000625	-. 000150	-. 0 cooz23	. 005531	. 0002623
2.7331	-. 7692	. 09293	. 006457	. 0006000	-. 001328	-. 0001234	-. 0.00440	-.0000409	-.000159	-.0crol48	. 007421	- CCO1096
2.8945	-. 6352	. 04583	. 008901	. 0004079	-. 0000889	-. 0000407	-. 0 coza7	-. 0000136	-. 000004	-. 0000043	. 009541	.0000265
3.0146	-. 3288	. 01611	. 010897	. 0001756	. 000609	. 00000098	. 000175	. 0000028	- coco6l	. 0000010	. 0101074	. 0000028
3.0843	. 4182	. 00328	. 010649	. 0000349	.000191	. 0000006	. 000070	-000002	-000040	.0000001	. 010498	. 0000001
			$\begin{aligned} \sum m_{1} R \sin \theta & =.0035707 \\ \mathrm{~m}_{1} \sin \theta & =.0027287 \\ \psi_{1} & =-.000565 \end{aligned}$		$\begin{aligned} \delta \psi_{1} R \sin \theta & =-.0012401 \\ \int \psi_{1} \sin \theta & =-.0009477 \\ \psi_{2} & =-.000091 \end{aligned}$		$\sum \psi_{2} R \sin \theta$ $=-.0003461$ $\int \psi_{2} \sin \theta$ $=-.0002645$ ψ_{3} $=.000041$		$\begin{aligned} \Sigma \psi_{3} \sin \theta & =-.0000770 \\ \int \psi_{3} \sin \theta & =-.0000588 \\ \psi_{4} & =.000070 \end{aligned}$		$\begin{gathered} \sum \mathrm{Rm}_{4} \sin ^{3} \theta=.0020198 \\ \int \mathrm{~m}_{4} \sin ^{3} \theta=.001544 \\ u=. .6816 \end{gathered}$	

Figure 3 - Comparison of Error Functions $\psi(x)$ from Iteration Formula and Von Karman Method

Figure 4-Comparison of Doublet Distributions $m_{1}(x), m_{4}(x)$, and Munk's Approximation $y^{2} / 4$

Figure 5-Comparison of Values of p/q Obtained by Various Methods

SOLUTION BY APPLICATION OF GREEN'S THEOREM

Generel Application to Problems in Potentiel Theory. Let φ and ω be any two functions harmonic in the region exterior to a given body and vonishing at infinity. Then, a consequence of Green's second 1dentity ${ }^{6}$ is

$$
\begin{equation*}
\iint \varphi \frac{d \omega}{d n} d S=\iint \omega \frac{d \varphi}{d n} d S \tag{85}
\end{equation*}
$$

where the double-integrals are talen over the boundary of the body and dn denotes an element of the outwardly-directed normal to the surface S. Also derivable from Green's formulas 4* tha well-known expression for a potential function in terms boundary 7 of its values and the values of its normal derivatives on the boundary 7

$$
\begin{equation*}
\varphi(Q)=\frac{1}{4 \pi} \iint\left[-\frac{1}{r} \frac{d \varphi}{d n}+\varphi \frac{d}{d n} \frac{1}{r}\right] d S \tag{86}
\end{equation*}
$$

where r is the distance from an arbitrary point on the body to a point Q exterior to the body.

When a distribution of φ or $\frac{d \varphi}{d n}$ over the surface of the body is given then (85) may be considered as in integral equation of the first kind for finding $\frac{d \varphi}{d n}$ or φ on the surface. If the integral equation can be solved, (86) would then give the value of φ at any point Q of the region exterior to the body.

An Integral Equation for Axisymetric Eloy. Equation (1) will now be applied to obtain on integral equation for axisymmetric flow about a body of revolution. Let y the ordinate of a meridian section of the body and ds an element of arc length along the boundary in a meriaian plane. Then we may put $d S=2 \pi y d s$

It will be supposed that the body is moving with unit velocity
in the negative x-direction, which is taken to coincide with the axis of symmetry. The condition that the body should be a solld boundary for the flow is that the component of the fluid velocity at the body normal to body is the same as the component of the velocity of the body normal to itself. This gives the boundary condition

$$
\begin{equation*}
\frac{d \varphi}{d n}=-\sin \gamma \tag{88}
\end{equation*}
$$

where γ is the angle of the tangent to the body with the x axis. aubstitution of equations (87) and (88) into (85) now gives

$$
\begin{equation*}
\int_{0}^{P} y \varphi \frac{d \omega}{d n} d s=-\int_{0}^{P} y \omega \sin y d s \tag{89}
\end{equation*}
$$

where $2 P$ is the perimeter of meridian section and the arc length s is measured from the foremost point of the body.

Now let us choose for ω the potential of a doublet of unit strength situated at an arbitrary point of the axis of symmetry within the body,

$$
\begin{equation*}
\omega=\frac{x-t}{r^{3}} \tag{9}
\end{equation*}
$$

where

$$
r^{2}=(x-t)^{2}+y^{2}
$$

Then $\frac{\partial \omega}{d n}=\frac{\partial}{\partial t} \frac{d}{\partial n} \frac{1}{r}=-\frac{\partial}{\partial t}\left[\frac{t-x}{r^{3}} \sin \gamma+\frac{y}{r^{3}} \cos \gamma\right]$
also $\frac{d}{d s}\left(\frac{y^{2}}{r^{3}}\right)=\frac{\partial}{\partial t} \frac{d}{d s} \frac{t-x}{r}-y \frac{\partial}{\partial t}\left[\frac{t-x}{r^{3}} \sin \gamma+\frac{y}{r^{3}} \cos \gamma\right]$
Hence

$$
\begin{equation*}
y \frac{d \omega}{d n}=\frac{d}{d s}\left(\frac{y^{2}}{r^{3}}\right) \tag{91}
\end{equation*}
$$

The left member of (89) cen now be written

$$
\int_{0}^{p} y \varphi \frac{d \omega}{d n} d s=\int_{0}^{P} \varphi \frac{d}{d s}\left(\frac{y^{2}}{r^{3}}\right) d s=\left.\frac{\phi y^{2}}{r^{3}}\right|_{0} ^{P}-\int_{0}^{p} \frac{y^{2}}{r^{3}} \frac{d \varphi}{d s} d s
$$

But $\varphi y^{2} /\left.r^{3}\right|_{0} ^{P}=0$ since y vanishes at both limits. Hence (89)

$$
\begin{equation*}
-\int_{0}^{P} \frac{r^{2}}{r^{3}} \frac{d \varphi}{d s} d s-\int_{0}^{P} \frac{y(x-t)}{r^{3}} \sin \gamma d s \tag{92}
\end{equation*}
$$

Equation (92) can be further simplified if we express d ρ / ds in terms of the total velocity U along the body when the flow is made steady by superposing a stream of unit velocity in the positive x -direction

$$
\begin{equation*}
\mathrm{U}=-\frac{d \varphi}{d \mathrm{~s}}+\cos \gamma \tag{93}
\end{equation*}
$$

Also, we heve $d x=d s \cos \gamma, d y=d s \sin \gamma$. Then (92) may be written

$$
\begin{aligned}
\int_{0}^{P} U(x) \frac{y^{2}}{r^{3} d s} & =\int_{0}^{P}\left[\frac{y^{2}}{r^{3}} d x-\frac{y(x-t)}{r^{3}} d y\right] \\
& =\int_{0}^{P} d\left(\frac{x-t)}{r}=2\right.
\end{aligned}
$$

or

$$
\begin{equation*}
\int_{0}^{p} \frac{\square(x) y^{2}(x)}{2 r^{3}} d s=1 \tag{94}
\end{equation*}
$$

It is seen that (94) is an integral ecuation of the first kind In which the unknown function is $U(x)$ and the kernel is $y^{2} /(2 r 3)$.

In contrast with the integral ecuations for source-sink or doublet distributions which can be used to obtain the potential flow about bodies of revolution, the integral equation (O4) has two important advantages. The first is that a solution exists, a desirable condition which is not in general the case when a solution is attempted in terms of axial sourcesink or doublet distributions. The second advantage is that (94) is expressed airectly in terms of the velocity along the body so that, when U is determined, the velocity distribution along the body is immediately given by Bernoulli's equation (69). In the case of the aforementioned distributions, on the other hand, it would first be necessary to evaluate
additional integrals, to obtain the velocity along the body, before the pressures could be computed.

Kennerd's Derivation of the Integral Equation. A simple, physical derivation of the integral equation (94) has been given by Dr. E. H. Kennard. This will now be presented.

Imagine the body replaced by fluid at rest. Let U be the velocity on the body. Then the field of flow consists of the superposition of the uniform (unit) flow and the flow due to a vortex sheet of density U .

Now subtract the uniform flow. There remains the flow due to the vortex sheet alone, uniform inside the space originally occupied by the body, of unit magnitude.

A vortex ring of strength Uds produces at an axial point distance z from its plane the velocity

$$
V=\frac{y^{2} U d s}{2\left(y^{2}+z^{2}\right)^{3 / 2}}
$$

where y is the radius of the ring. Let s be the distance of a point on the body measured along the generator from one end, in a meridian plane. The axial and radial coordinates will then be functions $x(s), y(s)$. The velocity due to the sheet at a point t on the axis will then be

$$
\int_{0}^{P} \frac{U(s) y^{2}(s)}{2 r^{3}} d s=1
$$

where $r^{2}=[x(s)-t]^{2}+y^{2}(s)$ and P is the total length of a generator. The equivalence of this equation with (94) is evident.

AFirst foproxigetion. If we again make use of the polar transformation $x-t=y(x) \cot \theta$, (94) becomes

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{U}(x) \sin ^{2} \theta d \theta} \frac{2 \sin [\theta-r(x)]}{}=1 \tag{95}
\end{equation*}
$$

When $x=t, \theta=\pi / 2$. For an elongated body the integrand in (94) peaks sharply in the neighborhood of $x=t$, so thet a good approxinction is obtained when $U(x)$ is replaced by $J(t)$ for the entire range of integration. Also $\gamma(x)$ will be small except near the ends of the body so that the approximation

$$
\sin [\theta-\gamma(x)] \equiv \sin \theta \cos \gamma(x) \fallingdotseq \sin \theta \cos \gamma(t)
$$

will also be introduced. We then obtain from (95) the approximation

$$
\begin{equation*}
U(t) \fallingdotseq \cos \gamma(t) \tag{96}
\end{equation*}
$$

Just as was done in the case of Munk's approximate doublet distribution we can improve upon this approximation in terms of an estimated longitudinal virtual mass coefficient for the body, For this purpose we will first derive a relation between this coefficient and the velocity distribution.
let T be the kinetic energy of the fluid when the body is moving with unit velocity in the negative x-direction. Then

$$
2 T=-\rho \iint \rho \frac{d \varphi}{d n} d S=2 \pi \rho \int_{0}^{P} y \rho \sin \gamma d s
$$

by (88). Integrating by parts and substituting for $\mathrm{d} \varphi / \mathrm{ds}$ from (93) now gives

$$
2 T=-\pi \rho \int_{0}^{P} y^{c} \frac{d \varphi}{d s} d s=\pi \rho \int_{0}^{p} U(x) y^{2}(x) d s-\Delta
$$

where Δ is the displacement of the body. Eut also, by definition, $2 T=k_{1} \triangle$ Hence

$$
\begin{equation*}
\Delta\left(1+k_{1}\right)=\pi \rho \int_{0}^{P_{U}}(x) y^{2}(x) d s \tag{97}
\end{equation*}
$$

This is the desired relation between k_{1} and $U(x)$.
Now suppose, as a generalization of (96), that an approximate solution of the integral equation (94) is $U(x)=0 \cos \gamma$.

If this value is substituted into (97), we obtain $C=1+k_{1}$. Hence an improved first approximation to $U(x)$ is

$$
\begin{equation*}
U_{1}(x)=\left(1+k_{1}\right) \cos \gamma(x) . \tag{98}
\end{equation*}
$$

(98) gives an exact solution for the prolate spheroid.

Solution of Integral Equation by Iteration. In order to solve (94) by means of the iteration formula treated in Part I it would be necessary to work with the iterated kernel of this integral equation. Since this would entail considerable computational labor it is proposed to try a similar iteration formula, but employing the original kernel:

$$
\begin{equation*}
v_{n+1}(t)=v_{n}(t)+\cos \gamma(t)\left[1-\int_{0}^{P} \frac{y^{2}(x)}{2 r^{3}} v_{n}(x) d s\right] \tag{99}
\end{equation*}
$$

where $r^{2}=(x-t)^{2}+y^{2}(x)$ and $x=x(s)$.
Here also it is convenient to express the iterations in terms of error functions $E_{n}(t)$ defined by

$$
\begin{equation*}
E_{n}(t)=1-\int_{0}^{P} \frac{U_{n}(x) y^{2}(x)}{2 x^{3}} d s \tag{100}
\end{equation*}
$$

or, from (99),

$$
\begin{equation*}
F_{n}(t) \cos \gamma(t)=U_{n+1}(t)-U_{n}(t) \tag{101}
\end{equation*}
$$

Hence

$$
\begin{equation*}
U_{n+1}(t)=U_{1}(t)+\cos \gamma(t) \sum_{i=1}^{n} E_{1}(t) \tag{102}
\end{equation*}
$$

Also, from (99),

$$
\begin{equation*}
E_{n+1}(t)=E_{n}(t)-\frac{1}{2} \int_{x_{0}}^{x_{1}} \frac{E_{n}(x) y^{2}(x)}{x^{3}} \tag{103}
\end{equation*}
$$

where x_{0}, x_{1} are the nose and tall abscissae. Thus, to obtain $U_{n+1}(t)$, we first obtain $E_{1}(t)$ from $U_{1}(t)$ in (100), then $E_{2}, E_{3}, \ldots F_{n}$ from (103), and finally $U_{n+1}(t)$ from (102).

Numerical Evaluation of Integrals. In applying equations (100) and (103) it will frequently be necessary to evaluate integrals of the form

$$
\int_{x_{0}}^{x_{1}} \frac{E(x) y^{2}(x)}{r^{3}} d x \text { where } r^{2}=(t-x)^{2}+y^{2}(x)
$$

This form, however, is unsuite for numerical quadrature for elongated bodies, since $\mathrm{y}^{2}(\mathrm{x})$ peaks sharply in the neighborhood of $x=t$. Here, as in the case of the integrals for the doublet distribution, two procedures are available for avoiding this difficulty. The first employs the polar transformation (70), involves several graphical operations, but in general transforms the integrand into a slowly varying function so that the integral can be evaluated by a çuadrature formula using relatively few ordinates. The second retains the original variables and eliminates the peak by subtracting from the integrand an integrable function which behaves very much like the original integrand in the neighborhood of the peak. The numerical evaluation of the resulting integral on the second method requires a quadrature formula vith more ordinates than the first in order to obtain the same accuracy, but, since all graphical operations are eliminated, the second method is suitable for processing on an automatic-sequence calculating machine.

The result of the polar transformation has effectively been given in (95). We have

$$
\int_{x_{0}}^{x_{1}} \frac{E(x) y^{2}(x)}{r^{3}} d x-\int_{0}^{\frac{\pi}{E}(x) \sin ^{2} \theta \cos \gamma(x)} \sin [\theta-\gamma(x)] \quad d \theta \quad \text { (104) }
$$

where

$$
x-t=y(x) \cot \theta .
$$

It is desired to evaluate this integral for a series of values of t. In general this can be done with sufficient accuracy by means of the Gauss 7 (or 11) ordinate quadrature formulas. This gives 7 (or 11) values of θ at which the integrand needs to be determined for a given t. The value of x occurring in the integrand is determined implicitly, for ε iven values of t and θ, by the polar transformation (70), In practice the 7 (or 11) x's can be obtained graphically from the intersections with a graph of the given profile of the 7 (or 11) rays from the point $x=t$ on the axis at the angles required by the Gauss quadrature formula. If greater accuracy is desired, these graphically determined values of x can be corrected by means of the formula

$$
\begin{equation*}
x=x_{g}+\frac{t-x_{g}+y\left(x_{g}\right) \cot \theta}{1-y^{\prime}\left(x_{g}\right) \cot \theta} \tag{105}
\end{equation*}
$$

in which x_{g} is the graphically determined value and y^{\prime} denotes the derivative of y with respect to x.

The alternate procedure for evaluating the integral consists of expressing it in the form

$$
\begin{array}{r}
\int_{x_{0}}^{x_{1}} \frac{y^{2}(x)}{r^{3}} E(x) d x=E(t)(\cos \alpha-\cos \beta)+ \\
\int_{x_{0}}^{x_{1}}[k(x, t) E(x)-k(t, x) E(t)] d x \tag{106}
\end{array}
$$

where $k(x, t)=\frac{y^{2}(x)}{\left[(x-t)^{2}+y^{2}(x)\right] 3 / 2}=\frac{\sin 3 \theta(x, t)}{y(x)}$
and

$$
\begin{equation*}
\alpha=\arctan \frac{y(t)}{1+t}, \beta=\pi-\arctan \frac{y(t)}{1-t} \tag{108}
\end{equation*}
$$

Then, from (98), (100) and (106) we obtain for $E_{1}(t)$
$E_{1}(t)=1-\frac{1+k_{1}}{2}(\cos \alpha-\cos \beta)-\frac{1+k j}{2} \int_{x_{0}}^{x_{1}}[k(x, t)-k(t, x)] d x$
and from (103), (106) and (109),
$E_{n+1}(t)=\frac{K_{1}+E_{1}(t)}{1+K_{1}} E_{n}(t)-\frac{1}{2} \int_{X_{0}}^{X_{1}} k(x, t)\left[E_{n}(x)-E_{n}(t)\right] d x$
Illustrative Example. The present method will now be applied to the same profile (78) as before. By way of contrast with the semi-graphical procedures previously used, a completely arithmetical procedure will be employed.

The velocity $U(t)$ will be determined at the 16 points along the body whose abscissae are $t_{i}=\xi 1$, the Gaussian values for the 16 point quadrature rule, Table 3 . Since the body is symmetrical fore and aft, it is necessary to determine the velocity at only half of these points. Values of $y(x), \cos \gamma(x)$ and $(\cos \alpha-\cos \beta)$ for these points are given in Table 8.

In order to apply the Causs 16 ordinate rule it is necessary to evaluate the integrands in (106) and (107) at the 16 Gaussian abscissae $x_{j}=\xi_{j}$ for each of the 8 values of t_{i}. Thus there are $16 \times 8=128$ values of θ to be determined from (109), which give the same number of values of the kernel

$$
k\left(x_{j}, t_{i}\right)=\frac{y^{2}\left(x_{j}\right)}{\left[\left(x_{j}-t_{i}\right)^{2}+y^{2}\left(x_{j}\right)\right]^{3 / 2}}
$$

This matrix of values is given in Table 9 and applied to evaluate $E_{1}(t)$ from (109). E_{2}, E_{3} and E_{4} are then obtained from (110). $U_{5}(t)$ is then given by (102) and then p / q by (69), in the form $p / q=1-U_{5}$. The arrangement of the calculations and the results are given in Table 10. The graph of p / a is included in Figure 5.

TABLE 8
VALUES OF $y, \cos \gamma$ AND $(\cos \alpha-\cos \beta)$ FOR APPLICATION OF GAUSS 16 POINT QUADRATURE FORMULA

x	$y(x)$	$y^{\prime}(x)$	$\gamma(x)$	$\cos \gamma(x)$	$\cos \alpha-\cos \beta$
-.9894009	.0408548	1.8965483	1.0856	0.4664	1.25085
-.9445750	.0903198	0.7464764	0.6412	0.8014	1.52195
-.8656312	.1324422	0.3917981	0.3734	0.9311	1.70968
-.7554044	.1642411	0.2099651	0.2070	0.9787	1.82586
-.6178762	.1848527	0.1020867	0.1017	0.9948	1.89375
-.4580168	.1955501	0.0393076	0.03932	0.9992	1.93175
-.2816036	.1993706	0.0089607	0.008961	1.0000	1.95169
-.0950125	.1999919	0.0003431	0.0003431	1.0000	1.96015

TABLE 9

${ }^{1}$	$\text { MATRIX OF VALUES* OF } k_{j 1}=\frac{y^{2}\left(x_{j}\right)}{\left[\left(x_{j}-t_{i}\right)^{2}+y^{2}\left(x_{j}\right)\right] 3 / 2}$							
	1	2	3	4	5	6	7	8
1	24.4769	7.4814	0.75381	0.12453	0.03197	0.01103	0.00468	-0.00233
2	7.9571	11.0718	4.7258	0.88558	0.20948	0.06731	0.02723	0.01308
3	2.9448	4.7853	7.5505	3.4286	0.79113	0.22280	0.08167	0.03669
4	1.1545	1.7156	3.4856	6.0886	2.7441	0.68796	0.21392	0.08560
5	0.47818	0.64606	1.1568	2.7937	5.4097	2.3411	0.60474	0.20034
6	0.21065	0.26520	0.41384	0.84811	2.3732	5.1138	2.0933	0.54549
7	0.09997	0.11979	0.16913	0.29264	0.66530	2.10681	5.01577	1.95219
8	0.05196	0.06016	0.07926	0.12175	0.22799	0.56183	1.95461	5.00020
9	0.02983	0.03371	0.04234	0.05999	0.09854	0.19666	0.51583	1.90499
10	0.01867	0.02073	0.02518	0.03375	0.05083	0.08843	0.18638	0.51368
11	0.01227	0.01346	0.01596	0.02060	0.02924	0.04653	0.08540	0.18946
12	0.00807	0.00877	0.01023	0.01284	0.01752	0.02627	0.04413	0.08554
13	0.00501	0.00541	0.00624	0.00769	0.01020	0.01469	0.02331	0.04152
14	0.00273	0.00293	0.00335	0.00408	0.00531	0.00745	0.01139	0.01924
15	0.00112	0.00121	0.00137	0.00165	0.00213	0.00294	0.00439	0.00718
16	0.00022	0.00023	0.00026	0.00031	0.00040	0.00055	0.00081	0.00131

* For $i>8$ use $k_{j 1}=k_{17-j, 17-1}$

TABLE 10
CALCULATIONS FOR $E_{n}(t)$ AND $U(t)$
Assume $K_{1}=0.06:$ Put $k_{j i}=R_{j} k_{j i}, K_{j i}=R_{j} k_{j j}$

$$
E_{n}\left(x_{j}\right)=E_{n}\left(t_{j}\right)=E_{n j}
$$

(a) $x_{1}=-.989401 ; \cos \gamma=.4664$

j	K_{jl}	$K^{\prime} \mathrm{j} 1$	$\mathrm{K}_{j 1}-K_{j l}$	$\mathrm{K}_{\mathrm{jI}}\left(\mathrm{E}_{1 \mathrm{j}}{ }^{\mathrm{E}_{11}}\right)$	$\mathrm{K}_{j 1}\left(\mathrm{E}_{2 j}-\mathrm{E}_{21}\right)$	$\mathrm{K}_{j 1}\left(\mathrm{E}_{3} \mathrm{j}^{\left.-\mathrm{E}_{31}\right)}\right.$
1	. 66460			0	0	0
2	. 49536			-. 00337	-. 00104	-. 00024
3	. 28022			-. 00504	-.00141	-. 00064
4	. 14389			-. 00479	-. 00160	-. 00053
5	. 07154			-. 00372	-.00118	-. 00038
6	. 03563			-. 00256	-. 00078	.. 00024
7	. 01825			-.00164	-. 00048	-. 00014
8	. 00984			-. 00099	-. 00028	-. 00008
9	. 00565			-. 00057	-. 00016	-. 00005
10	. 00341			-.00031	-. 00009	-. 00003
11	. 00208			-. 00015	-. 00005	-.00001
12	. 00121			-. 00006	-. 00002	-. 00001
13	. 00062			-. 00002	-.00001	. 0
14	. 00027			- 0	- 0	0
15	. 00007			- 0	- 0	0
16	. 00001			- 0	0	O
$\frac{k_{1}+E_{11}}{1+k_{1}}=.13000$			E11 $=$	$\int=-.02342$	$\int=-.00710$	$f=-.00235$
			.07780*	$\mathrm{E}_{21}=.02182$	$E_{31}=.00639$	$E_{41}=.00201$

$$
U_{5}\left(x_{1}\right)=0.5448, p / q=0.7032
$$

(b) $x_{2}=-.944575 ; \cos \gamma=.8014$

j	$\mathrm{K}_{\mathrm{i} 2}$	$K^{\prime}{ }^{\prime} 2$	$\mathrm{K}_{\mathrm{i} 2}-\mathrm{K}^{\prime}{ }^{\prime} 2$	$\mathrm{K}_{12}\left(\mathrm{E}_{1,2}-\mathrm{E}_{12}\right)$	$K_{i 2}\left(E_{2, j}-E_{22}\right)$	$\mathrm{K}_{\mathrm{i} 2}\left(\mathrm{E}_{3} \mathrm{j}-\mathrm{E}_{32}\right)$
1	. 20313			.00014	. 00042	. 00010
2	. 68926			- 0	- 0	- 0
3	. 45536			-. 00510	-. 00198	-. 00081
4	. 21382			-. 00566	-. 00193	-. 00068
5	. 09665			-. 00436	-. 00139	-. 00046
6	. 04486			-.00292	-. 00088	-. 00028
7	. 02187			-. 00181	-. 00053	-. 00016
8	. 01140			-. 00107	-. 00030	-. 00009
9	. 00639			-. 00060	-. 00017	-. 00005
10	. 00379			-. 00031	-. 00009	-. 00003
11	. 00228			-. 00015	-. 00004	-.00001
12	. 00131			-. 00006	-. 00002	-. 00001
13	. 00067			-. 00002	-. 00001	- 0
14	. 00028			0	0	- 0
15	. 00008			0	- 0	0
16	.00001			0	0	0
$\frac{k_{1}+E_{12}}{1+k_{1}}$		12358	$\begin{array}{r} \mathrm{E}_{12}{ }^{=} \\ .0710^{*} \\ \hline \end{array}$	J=-.02192	$\delta^{\prime}=-.00692$	$S^{\prime}=-.00248$
		$\mathrm{E}_{22}=.01973$		E32=.00590	$\mathrm{E}_{42}=.00197$	

$\mathrm{U}_{5}\left(\mathrm{x}_{2}\right)=0.9285, \mathrm{p} / \mathrm{q}=0.1379$

* Present procedure inaccurate. Ell and El2 obtained from (104).
(c) $x_{3}=-.865631, \cos \gamma=0.9311$

j	$\mathrm{K}_{\mathrm{j} 3}$	K^{\prime} j3		$\mathrm{K}_{\mathrm{j} 3}\left(\mathrm{E}_{1 \mathrm{j}}-\mathrm{E}_{13}\right)$	$\mathrm{K}_{\mathrm{j}}\left(\mathrm{E}_{2 j}{ }^{\left.-\mathrm{E}_{23}\right)}\right.$	$\mathrm{K}_{\mathrm{j}}\left(\mathrm{E}_{3} \mathrm{j}^{\left.-\mathrm{E}_{33}\right)}\right.$
1	. 02047			. 00037	. 00013	. 00005
2	. 29420			. 00336	. 00127	. 00053
3	- 71850			0	0	0
4	-43441			-. 00663	-. 00203	-. 00061
5	.17306			-. 00587	-. 00174	-. 00052
7	.07001			-. 000377	-. 00108	-. 00030
8	\bigcirc			-.00124	-.00031	-.00016 -.00009
9	. 00802			-. 00066	-. 00018	-.00005
10	. 00460			-. 00033	-. 00009	-. 00002
11	. 00270			-. 00015	-. 00004	-. 00001
12	. 00153			-. 00005	-. 00001	0
13	. 00078			-. 00001	0	- 0
14	. 00032			0	\bigcirc	- 0
15	. 00009			0	-	- 0
16	. 00001				0	0
	$\underline{+E 13}$	1302	E13 $05980 *$	E-.01725	$J_{\text {E }}=-.00471$	$\underline{f=-00123}$

(d) $x_{4}=-.755404, \cos \gamma=.9787,1-0.53(\cos \alpha-\cos \beta)=.03229$

j	$\mathrm{K}_{\mathrm{j} 4}$	${ }^{\prime} \mathrm{K}^{\prime}{ }^{\text {j4 }}$	$\mathrm{K}_{\mathrm{j} 4 \mathrm{~m}} \mathrm{~K}_{\mathrm{j} 4}$	$\mathrm{K}_{j 4}\left(\mathrm{E}_{1 j}{ }^{\left.-\mathrm{E}_{14}\right)}\right.$	$\mathrm{K}_{j 4}\left(\mathrm{E}_{2 j}-\mathrm{E}_{24}\right)$	$\mathrm{K}_{j 4}{ }^{\left(E_{3 j}-\mathrm{E}_{34}\right)}$
1	. 00338	. 03135	-. 02797	. 00011	. 00004	. 00001
2	. 05513	. 10680	-. 05167	. 00146	. 00050	. 00018
3	- 32626	- 33169	-. 00543	. 00498	. 00153	. 00046
	- 758882	. 75882	. 000742	-. 00780	- 0	-. 00067
6	-14347	. 11638	. 02709	-. 000554	-. 000153	-. 00042
7	.05344	. 03906	. 01438	-. 00301	-. 000080	-. 00021
8	. 02307	. 01622	. 00685	-. 00155	-.00041	-. 00010
10	. 01137	. 00787	. 00351	-. 00076	-. 00020	-. 00005
10	. 00616	. 00426	. 00190	-. 00035	-. 00009	-. 00002
11	. 00348	. 00249	. 00099	-. 00013	-. 00004	-. 00001
12	. 00192	. 00153	. 00039	-. 00004	-. 00001	-
13	. 00096	. 00096	-	0	0	O
14	. 00039	. 00059	-. 00020	. 00001	0	0
15	. 00010	. 00034	-. 00024	0	0	0
16	. 00001	. 00014	-. 00013	.	0	0
$\underline{k_{1}+E_{14}}$. 09862	$\begin{aligned} & f_{1}-.02311 \\ & E_{14}=.04454 \end{aligned}$	$l_{E_{24}=-01262}$	$S^{\prime}=-.00327$	$5=-.00083$
		$E_{34}=.00270$			$\mathrm{E}_{44}=.00069$	

* Present procedure inaccurate. E_{13} obtained from (104).
(e) $x_{5}=-.617876, \cos \gamma=.9948,1-.53(\cos \alpha-\cos \beta)=-.00369$

j	$\mathrm{K}_{j 5}$	${ }^{1} 15$	${ }^{\mathrm{K}_{j}-\mathrm{K}^{1}{ }^{1} 5}$	$\left.\bar{K}_{\mathrm{j} 5} \mathrm{E}_{1 \mathrm{j}}-\mathrm{E}_{15}\right)$	$\mathrm{K}_{j 5}\left(\mathrm{E}_{2 j}{ }^{\left.-\mathrm{E}_{25}\right)}\right.$	$\mathrm{K}_{j 5}{ }^{\left(\mathrm{E}_{3} \mathrm{j}^{-\mathrm{E}_{3} 5}\right)}$
1	. 00087	. 01298	-. 01211	. 00005	. 00001	. 00006
2	. 01304	. 04022	-. 02718	. 00059	. 00019	. 00006
3	. 07528	. 11008	-. 03480	. 00255	. 00076	. 00023
4	. 34200	. 34818	-. 00618	. 00639	. 00185	. 00055
5	. 80929	. 80931	0	. 00000	. 00000	. 00000
6	. 40145	- 39602	. 00543	-. 00800	-. 00212	-. 00054
7	. 12148	. 11043	. 01105	-. 00458	-. 00117	-. 00028
8	. 04319	. 03795	. 00524	-. 00210	-. 00053	-. 00012
9	- 01867	. 01621	. 00246	-. 00091	-. 00023	-. 00005
10	. 00928	. 00806	. 00122	-. 00035	-. 00009	-. 00002
11	. 00495	. 00444	. 00051	-. 00010	-. 00003	-. 00001
12	. 00262	. 00262	0	-. 00000	. 00000	. 00000
13	- 00127	. 00160	-. 00033	. 00002	. 00001	. 00000
14	. 00051	. 00097	-. 00046	. 00002	. 00001	. 00000
15	. 00013	. 00055	-. 00042	. 00001	. 00000	. 00000
16	. 00001	. 00022	-. 00021	. 00000	. 00000	. 00000
$\mathrm{k}_{1}+\mathrm{E}_{15}$			$\begin{aligned} & f=-.05578 \\ & E 15=.02587 \\ & \hline \end{aligned}$	$\begin{aligned} & f_{=}=-.00641 \\ & E_{25}=.00530 \end{aligned}$	$\begin{aligned} & \rho_{p}=-.00134 \\ & E_{35}=.00110 \end{aligned}$	$\begin{aligned} & J^{\prime}=-.00018 \\ & E_{45}=.00018 \end{aligned}$
	$\underline{1+k_{1}}$					

$$
U_{5}\left(x_{5}\right)=1.0868, p / q=-0.1811
$$

(f) $x_{6}=-.458017, \cos \gamma=.9992,1-.53(\cos \alpha-\cos \beta)=-.02383$

j	$\mathrm{K}_{\mathrm{j} 6}$	$\mathrm{K}_{\mathrm{j} 6}$	$\mathrm{K}_{j 6}-\mathrm{K}_{j 6}^{\prime}$	$\mathrm{K}_{\mathrm{j} 6}\left(\mathrm{E}_{1 \mathrm{j}}-\mathrm{E}_{16}\right)$	$\mathrm{K}_{j 6}\left(\mathrm{E}_{2 j}-\mathrm{E}_{26}\right)$	$\mathrm{K}_{j 6}\left(\mathrm{E}_{3 j}-\mathrm{E}_{36}\right)$
1	. 00030	. 00572	-. 00542	. 00002	. 00001	. 00000
2	. 00419	. 01651	-. 01232	. 00027	. 00008	. 00003
3	- 02120	. 03938	-. 01818	. 00114	. 00033	. 00009
4	- 08574	. 10570	-. 01996	. 00331	. 00092	. 00025
5	- 35023	- 35503	-. 00480	. 00698	. 00185	- 00047
	- 86505	. 86505	-. 00000	-00000	. 00000	. 00000
7	- 38470	. 38224	. 00246	-. 00683	-. 00168	-. 00037
8	. 10644	. 10334	. 00310	-. 00304	-. 00073	-. 00016
9	- 03726	. 03589	. 00137	-. 00107	-. 00026	-. 00005
10	. 01615	. 01560	. 00055	-. 00029	-. 00007	-. 00002
11	. 00787	. 00787	. 00000	. 00000	. 00000	-. 00000
12	. 00393	. 00437	-. 00044	. 00008	. 00002	. 00001
13	. 00183	. 00257	-. 00074	- 00007	. 00002	. 00001
14	-00071	. 00152	-. 00081	. 00004	. 00001	. 00000
15	. 00018	. 00083	-. 00066	. 00001	. 00000	. 0000
16	. 00001	. 00033	-. 00032	. 00000	. 00000	. 00000
$\frac{k_{1}+E_{16}}{1+k_{1}}=.06221$			--.05617	T $=.00070$	=. 00050	$=.000$
			E16=.00594	$\mathrm{E}_{26}=.00002$	$\mathrm{E}_{36}=.00025$	$E 46=-.00015$

$U_{5}\left(x_{6}\right)=1.0647, p / q=-0.1336$
(g) $x_{7}=-.281604, \cos \gamma=1.000,1-.53(\cos \alpha-\cos \beta)=-.03440$

j	$\overline{K_{j 7}}$	K ${ }^{1}{ }^{\prime} 7$	$\mathrm{K}_{\mathrm{j} 7}{ }^{-\mathrm{K}^{1}}{ }^{1} 7$	$\mathrm{K}_{\mathrm{j} 7}\left(\mathrm{E}_{1 \mathrm{j}} \mathrm{E}_{17}\right)$	$\mathrm{K}_{j 7}\left(\mathrm{E}_{2 j}-\mathrm{E}_{27}\right)$	$\mathrm{K}_{\mathrm{j} 7}\left(\mathrm{E}_{3 j}{ }^{-E_{37}}\right.$
1	. 00013	. 00271	-. 00258	. 00001	0	0
2	. 00170	. 00749	-. 00576	. 00014	. 00004	. 00001
3	-00777	. 01609	-. 00832	. 00056	. 00015	. 00004
4	. 02666	. 03647	-. 00981	. 00150	. 00040	. 00010
5	. 09047	. 09953	-. 00906	. 00341	. 00087	. 00021
6	. 35410	. 35639	-.00220	. 00629	. 00155	. 00034
	- 91588	- 91589	0	0	-	0
8	. 37030	. 36984	. 00046	-. 00401	-. 00093	-. 00020
9	-09772	. 09732	. 00040	-.00106	-. 00025	-. 00005
	. 03403	. 03403	0	- 0	0	
11	. 01445	. 01496	-.00051	. 00026	. 00006	. 00001
12	. 00660	. 00760	-. 00100	.00025	. 00006	. 00002
13	. 00291	. 00421	-. 00130	. 00016	. 00004	. 00001
14	. 00108	. 00240	-. 00132	. 00008	. 00002	. 00001
15	. 00027	. 00129	-. 00102	. 00002	. 00001	0
16	. 00002	. 00051	-.00049	,	0	0
	$\frac{1+E_{17}}{2}=$	545	$\begin{aligned} & 5=-04260 \\ & E_{17}=.01182 \end{aligned}$	$\begin{aligned} & t=00761 \\ & E_{27}^{\prime}=.00435 \end{aligned}$	$\int_{37}=0.00202$	$\begin{aligned} & \int_{47}=.00050 \\ & E_{47}=000030 \end{aligned}$

(h) $x_{8}=-.095013, \cos \gamma=1.0000,1-.53(\cos \alpha-\cos \beta)=-.03888$

j	$\mathrm{K}_{\mathrm{j} 8}$	$\mathrm{K}^{\prime}{ }^{\prime} 8$	$\mathrm{K}_{\mathrm{j}} \mathrm{B}^{-\mathrm{K}^{\prime}{ }^{\prime} 8}$	$\mathrm{K}_{j 8}\left(\mathrm{E}_{1 j}{ }^{\left.-\mathrm{E}_{18}\right)}\right.$	$\mathrm{K}_{j 8}\left(\mathrm{E}_{2 j}{ }^{\left.-\mathrm{E}_{28}\right)}\right.$	$\mathrm{K}_{j 8}\left(\mathrm{E}_{3 j}{ }^{-E_{38}}\right)$
1	. 00006	. 00141	-. 00135	. 00001	0	0
2	.00081	. 00375	-.00294	. 00008	. 00002	. 00001
3	.00349	. 00754	-. 00405	. 00029	. 00008	. 00002
4	.01067	. 01517	-. 00450	. 00072	. 00019	. 00005
5	-02997	. 03411	-. 00414	. 00145	. 00036	. 00009
6	-09228	. 09504	-.00276	. 00264	. 00063	. 00014
7	. 35647	- 35691	-. 00044	. 00386	. 00097	-00019
8	- 94729	- 94729	0	0	0	0
9	- 36090	- 36090	0	0	0	,
10	. 09380	. 09419	-. 00039	. 00102	. 00025	. 00005
11	. 03205	. 03327	-.00122	. 00092	. 00022	. 00005
12	-01280	. 01474	-.00194	. 00062	. 00016	. 00004
13	. 00518	. 00748	-. 00230	. 00035	. 00009	. 00002
14	. 00183	. 00403	-. 00220	. 00015	. 00004	. 00001
15	. 00045	. 00210	-. 00165	. 00004	. 00001	0
16	. 00004	. 00081	-. 00077	0	0	0
$\mathrm{k}_{1}+\mathrm{E}_{18}$. 03525	$\begin{aligned} & j=-.03066 \\ & E_{1} 8=-.02664 \end{aligned}$	$f_{28}=-.01213$	$\begin{aligned} & \int_{38}=.00302 \\ &=-.00171 \end{aligned}$	$\begin{gathered} \int=00067 \\ E_{48}=-.00034 \end{gathered}$

$U_{5}\left(\mathrm{x}_{8}\right)=1.0284, \mathrm{p} / \mathrm{q}=-.0576$

SUMMARY

Two new methods for computing the steady, irrotational, axisymmetric flow of a perfect, incompressible fluid about a body of revolution are presented.

In the first method a continuous, axial distribution of doublets which generates the prescribed body in a unfform stream is sought as a solution of the integral equation

$$
\int_{a}^{b} \frac{m(t)}{r^{3}} d t=\frac{1}{8}
$$

where r is the distance from a point $(t, 0)$ on the axis to a point (x, y) on the body, $r^{2}=(x-t)^{2}+y^{2}(x)$.

A method of determining the end points of the distribution and the values of the distribution at the end points is given. If the equation of the body profile, with the origin of cooräinates at one end, is

$$
y^{2}(x)=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

a very good approximation for the distribution limit a at that end, when the coefficients $a_{1}, a_{2} \ldots$ are small, is given by

$$
\frac{a_{1}}{a}=4+a_{2}+\frac{1}{2} \sqrt{a_{1} a_{3}}
$$

if $a_{3} \geqq 0$. If a_{3} is negative, the term containing it is neglected. The corresponding value of the doublet strength at this point is

$$
m(a)=\frac{1}{8}\left(1+\frac{a 1}{2}+\frac{a 2}{2} \log \frac{a 1}{4}\right) a^{2} \sqrt{a_{1} a^{2}}
$$

Formulas and tables for determining a and $m(a)$, which may be used when the above procedure is insufficiently accurate, are also given. The values $a, b, m_{a}=m(a), m_{b}=m(b), f_{a}=y^{2}(a)$ and $f_{b}=y^{2}(b)$ are then used to obtain the approximate
solution of the integral ecuttion

$$
m_{1}(x)=C\left(y^{2}-\frac{b-x^{2}}{b-a^{2}}-\frac{x-8}{b-a}(b)+\frac{b-x}{b-a} d a+\frac{x-\beta}{b-a} m b\right.
$$

Where

$$
c=\frac{\frac{2+k_{1}}{4} \int_{x_{0}}^{x_{1}} y^{2} d x-\frac{1}{1}\left(b-k_{1}\right)\left(m_{a}+m_{b}\right)}{\int_{a}^{b} y^{2} d x-\frac{1}{2}(b-a)\left(x_{a}+i_{b}\right)}
$$

and k_{1} is the longitudinal virtual mass coefficient for the body.
This approximation is used to obtain a sequence of sucesssive approximations by means of the iterction formula

$$
m_{1+1}(x)=m_{1}(x)+\frac{1}{1} y^{2}(x)\left[\frac{1}{p}-\int_{a}^{b} \frac{m_{1}(t)}{x^{3}} d t\right]
$$

When a doublet distribution has been assused, the velocity components at a point (x, y) in a meribion plane are

$$
\begin{aligned}
& u=1+\int_{\frac{1}{b}}^{b}\left(\frac{3 y^{2}}{r^{5}}-\frac{2}{x^{3}}\right) m(t) d t \\
& v=3 y \int_{a}^{b} t-x \\
& r^{5}
\end{aligned}
$$

and the pressure is given by

$$
p / q=1-\left(u^{2}+v^{2}\right)
$$

where q is the stagnation pressure.
The iterations are nost convenientiy performed in terms of the differences between successive approximations to $m(x)$, which also fumishy at oxch iteration, a geometric measure of the accuracy of an approximetion. simplex forms for the velocity components at the surface of the body are given in terme of thie aifference or error sunction.

Gauss' cuatrature fomulas ere recomenad for the numericel ovaluation of the integrals. Two methods of carrying out the iterations are given. The first employs a polar transformation and a graphical operation between successive iterations;
the second is comgletely erithaetical ond is suituble for processing on an automatic-scruence computing machine. hll of these procedures aro 111 is arated in cetail by an example, in which the eem-graphicel method is employed. The accuracy of the method is ankiyzed; the resuits are compered with those obtained by the methods of Karnan and Kaplan.

In the second wethod the velocity $U(x)$ on the surface of the given body is given directiy as the solution of the integral equation

$$
\int_{0}^{p} \frac{y(x) y^{2}(x)}{2 x^{3}} d x=1
$$

mere is are length along the profile, $x=x(s)$, and $2 P$ is the perimeter of a neridian section. An approximete solution to this integral equation is

$$
v_{1}(x)=\left(1+k_{1}\right) \cos \gamma(x)
$$

where k_{1} is the longitudinal virtual mase coefficient and γ arctan $\frac{d x}{d x} \delta_{1}(x)$ is used to obtain a sequence of successive approxinations by means of the iteration formula

$$
U_{n+1}(t)=U_{n}(t)+\cos (t)\left[1-\int_{0}^{P} \frac{y^{2}(x)}{r^{3}} U_{n}(x) d s\right]
$$

Here also the iteretions are nost convoniontly carried out in terms of the differences between successive approxinations to $U(x)$ which also furnish measure of the error in the integral equation. Two methode of cerrying out the iteretions aresgain available, of thich one is seri-graphical, the other completely arithretical. The latter technique is employed on the same example as was used to illustrite the first method.

REFERENCES

> 1. Fuhrmann, G. Theoretical and Experimental Investigations on Balloon Models. Dissertation, Gottingen, 1912 Published in Zeitschrift fur Flugtechnik und Motorluftschiffahrt, Vol. 11, 1911.
> 2. Goldstein, S. Modern Developments in Fluid Dynamics. Vo1. II, Oxford: Clarendon Press, 1938, p. 523.
> 3. Kaplan, C. Potential Flow about Elongated Bodies of Revolution. NACA Report No. $516,1935$.
> 4. On a New Method for Calculating the Potential Flow Past a Body of Revolution. NACA Report No. 752, 1943. '
> 5. Karman, T. v. Calculation of Pressure Distribution on Airship Fulls. NACA Tech. Mem. No. 574, 1930; From Abhandlungen aus dem Aerodynamischen Institut an der Technischen Hochschule Aachen, No. 6, 1927.
> 6. Kellogg, O. D. Foundations of Potential Theory. New York: The Murray Printing Company, Frederick Unger Publishing Company, 1929, p. 215.
> 7. Ibid, p. 219.
> 8. Laitone, E. V. The Subsonic Flow about a Body of Revolution. Quarterly of Applied Mathematics, Vol. 5, No. 2, July 1947.
> 9. Lamb, H. Hydrodynamics. Cambridge: University Press, Sixth Edition, 1932, pp. 154-155.
> 10. On Wave Resistance. Proceedings of the Foyal Society, A, Vol. 111, 1926.
11. Lowan, A. N., N. Davids and A. Levenson Table of the Zeros of the Legendre Polynomiels of Order 1-16 and the Weight Coefficients for Gauss' Mechenical Quadrature Formula. Bulletin of the American Mathematical Society, Vol. 48 , No. 10 , 0ct. 1942.
12. Munk, M. M. Eluid Mechanics. Vol. 1, Part II of Aerodynamic Theory, Edited by W. F. Durand. Berlin: Julius Springer, 1935, Division C, p. 269.
13. Ibid, Vol. 6, p. 36.
14. Notes on Aerodynamic Forces - Ie Rectilinear Motion. NACA T. N. 104, July 1922.
15. Munzer, H. and H. Reichardt Rotationally Symmetrical Source-Sink Bodies with Predominately Constant Pressure Distribution. British Ministry of Supply, Armament Research Establishment Translation No. 1/50, 1950. (Translation of German Report U.M. 6616, 1944).
16. Rankine, W. J. M. On the Mathematical Theory of Stream Lines. especially those with Four Foci and Upwards: Philosophical Translations, 1871.
17. Riegels, F, and M. Brandt Stromfunctionen und Geschwindigkeitsfelder räumlicher Quelistrecken und inr handilcher Gebrauch zur Eestimnung yon Umriss und Druckvertelinng rotationsymmetrischer Korper mit Beispielen. Deutsche Luftfahrtforschung, U. M. Bericht No. 3106.
18. Sadowsky, M. A. and E. Sternberg ElIIotic Integral Representation of Axially symmetric Flows. Quarterly of Applied Mathematics, Vol. 8, No. 2, 1950.
19. Smith, R. H. Longitudinal Potential Flow about Arbitrary Body of Revolution with Applicetion to Airship "Akron". Jour. of the Aeronautical Sciences, Vol. 3, No. 1, Sept. 1935.
20. Taylor, D. W. On Ship-Shaped Stream Forms. Transactions of the Institution of Naval Architects, Vol. 35, 1894.
21. Taylor, G. I. The Energy of a Body Moying in an Infinite Fluid. With an Application to Alrships. Proceedings of the noyal Society, A, Vol. $120,1928$.
22. Tuyl, A. Van On the Axially Symmetric Glow Around a New Family of Half Bodies Guarterly of Applied liathematics, Vo1. 7, No. 4, 1950.
23. Weinblum, G. Rotationskörper geringsten Wellenwiderstandes. Ingenieur-Archiv, Vol. 7, 1936.
24. Weinig, F. Über schnell yonvergierende graphische Lösungen Yon Stromungsoroblemen durch Integraleleichungen. Zeitschrift fur technische Physik, Vol. 9, No. I, 1928. ;
25. Weinstein, A. On Arlally symmetric Flows Quarterly of Applied Mathematics, Vol. 5, No. 4, 1948.
26. W1 jngaarden, A. v. Écoulement potentiel autour d'vn corps de révolution. Colloques Internationaux du Centre National de la Recherche Scientifique. XIV, Méthodes de Calcul dans des Problemes de Mecenique. Paris, 1948.
27. Young, A. D. and P. R. Owen A Simplified theory for Streamline Bodies of Revolution, and its Application to the Development of High Speed Shapes. British Aeronauticel Research Committee R \& M 2071, 1943.

