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ABSTRACT
Technology-supported citizen science has created huge vol-
umes of data with increasing potential to facilitate scien-
tific progress, however, verifying data quality is still a sub-
stantial hurdle due to the limitations of existing data qual-
ity mechanisms. In this study, we adopted a mixed meth-
ods approach to investigate community-based data validation
practices and the characteristics of records of wildlife species
observations that affected the outcomes of collaborative data
quality management in an online community where people
record what they see in the nature. The findings describe
the processes that both relied upon and added to informa-
tion provenance through information stewardship behaviors,
which led to improved reliability and informativity. The like-
lihood of community-based validation interactions were pre-
dicted by several factors, including the types of organisms
observed and whether the data were submitted from a mobile
device. We conclude with implications for technology design,
citizen science practices, and research.
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ACM Classification Keywords
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INTRODUCTION
CSCW has studied collaborations between scientists and vol-
unteers who contribute scientific data [10, 31, 38, 46], which
is a common form of citizen science. In citizen science, the
usual tasks for which volunteers are enrolled include collect-
ing, categorizing, transcribing, or analyzing scientific data
[2]. Supported by the rapid development of social computing,
recent successes in citizen science have created growing data
sets with increasing impact on scientific progress in several
domains [6, 36] and new applications are regularly emerging.
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However, much of the scientific community remains skeptical
of data quality [2].

Validation is critical to ensuring the usefulness of citizen sci-
ence data by establishing its quality. For example, in biol-
ogy and ecology, without validation of species identifications,
volunteers’ observations are usually argued to have limited
value [40]. Given the challenges of scaling and successes of
crowdsourcing, it is reasonable to ask if a community can ef-
fectively validate the data they create.

We therefore investigated how data quality in a citizen science
project can be improved through open collaboration. This
study focused on understanding the nature of the interactions
around data quality within an existing online community that
can be adopted by citizen science projects as a data collection
platform and identifying the characteristics of the contributed
data that influenced how community members assessed data
quality. We applied and extended the concept of informa-
tion assessability, defined as “the extent to which an inter-
face helps people make appropriate assessments of informa-
tion quality in a particular context of use” [11] for statistical
analyses, with interpretation grounded in participant observa-
tion, to address the research questions:

RQ1: How can online community members collaboratively
improve the quality of data generated by volunteers?
RQ2: What factors influence the likelihood of data quality
improvement through online community interactions?

The study site was an existing online community, iNaturalist,
a social network site that supports natural history data sharing
for scientific, education, and personal use 1. As of May 2015,
the iNaturalist community included over 70,000 users who
contributed over 1,300,000 species occurrence records, each
documenting the presence of an organism at a particular time
and place. This type of data is used extensively in ecology
research and land management decision making.

We adopted a mixed methods approach to study this site,
starting with participant observation in a place-based project
that utilized iNaturalist for data management. This experi-
ence grounded quantitative analyses of the data and interac-
tions on the iNaturalist platform, which were downloaded di-
rectly from the site.

1http://www.inaturalist.org/pages/about
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We answered the first research question by identifying and
describing the types of interactions that led to improvements
in data quality. The results of statistical analyses to answer
the second research question showed that multiple character-
istics of the records influenced the level of data quality im-
provement. In addition to expanding on the concepts of infor-
mation assessability and contributing a description of collab-
orative data quality management practices in citizen science,
we identified implications for design, practice, and research
related to community-based data validation.

RELATED WORK
This section provides a brief overview of related research on
citizen science data quality, much of which is found in the
domain literature. We then further develop the concept of
information assessability [11] by adding the concepts of in-
formativity and reliability, which we used in our analyses.

Citizen Science Data Quality
The dominant form of citizen science is monitoring wildlife
or other environmental phenomena [47]. Relatively anony-
mous observers with varied abilities, experiences, and train-
ings contribute spatiotemporally unique data: by nature, ob-
servational data are ephemeral. These data may contain an
unknown number of errors, occasionally including intention-
ally falsified data [8, 12]. Anecdotally, project leaders for
several of the largest citizen science projects currently in
operation—those most likely to attract the attention of trolls
or anti-science saboteurs—reported blacklisting a tiny frac-
tion of users for these reasons, on the order of one in every
10,000 users. Prior findings show that rates of deception vary
substantially across contexts [33], and the low apparent rate
of malfeasance in citizen science may be an unexpected ben-
efit of the design of data entry forms, built-in participant pri-
vacy protections and lack of resources for more sophisticated
social features (c.f. [46]), which create limited means for a
troll to be “rewarded” with attention [7].

Since citizen science projects are typically purpose-driven
with diverse goals [47], a pragmatic definition of data qual-
ity used widely in this context is “fitness for intended use”
[23]. This definition acknowledges the importance of con-
textual expectations for quality in scientific data. However,
although the standards of data quality may vary on a project-
by-project basis, we note that domain consensus on a gen-
eral level is reflected in the accepted minimum information
standards for documenting and sharing certain types of data.
For example, in biodiversity, the minimum requirements for
a species occurrence record (the type of data in this study)
include taxonomic identification, data collection time and lo-
cation [15], among which the identity of the organism is often
the primary focus in data quality review.

Furthermore, data quality in citizen science is not solely an
attribute of data (e.g., “fitness for intended use” [23]), but
also a process of maintaining data quality [39]. In light of the
variability of criteria for data quality in citizen science and
the dual nature of the concept, which describes both attributes
and processes, we consider data quality to be “the processes
and outcomes of evaluating and improving the utility of data.”

Data Quality Validation
So far the most effective methods for evaluating citizen sci-
ence data combine machine and human filters. Advanced sta-
tistical and computing techniques can help reduce human at-
tention needed for data quality management [19] and flag po-
tentially erroneous or fake data [3, 43]. But not all issues can
be resolved by machine. Even with a photo or recording as a
voucher, the “truth” of an observation can be elusive. Many
projects therefore rely most heavily on expert review. Experts
may be project scientists, trained project staff, or experienced
volunteers [3, 24].

Quality control via expert review focuses on validation, a pro-
cess through which a third party evaluates the data and deter-
mines whether it is acceptable [43]. This is essentially a con-
sensus process: the ephemerality of event-based data means
that evaluating data points is a judgment of the probability
that the record is reliable, e.g., the location and time have
been reported with appropriate precision, and the species is
accurately identified. The main difference between this pro-
cess and traditional science is that traditional science relies
more on physical vouchers (e.g., DNA) for precise identifica-
tion and verification. However, this mode of validation is not
logistically feasible for citizen science; instead, similar pro-
cesses use digital artifacts as vouchers (e.g., photo, audio or
video recording) [3, 43].

When reviewing data quality, experts are asked to judge the
probability that a given record is reliable; this is how the
truth of observational data is established [45]. In citizen sci-
ence projects, review process outcomes are not usually pub-
licly visible. One constraint of an expert-driven approach is
that for most species occurrence data, the number of experts
with local knowledge is necessarily limited and unevenly
distributed, and citizen science projects sometimes generate
more data than experts can review.

Another matter of concern is social influence bias: when mul-
tiple parties collectively evaluate data, the visibility of the
outcomes of prior parties’ decisions can have variable im-
pacts on data quality rating [30]. Compared with crowdsourc-
ing tasks that are highly simplified and require little domain
expertise (e.g., classifying a single feature of an image into
one of five categories), evaluating species occurrence records
requires sorting an entity into one of thousands of categories
based on the intersection of multiple physical features, be-
haviors, and spatial and temporal variables. For such a task,
it is less clear whether “blind” reviewing would yield bet-
ter results; more transparent collaborative processes in which
a series of contributors’ actions build on prior efforts, as in
Wikipedia or open source software, may be more effective.

The complex task of validating a species occurrence record
is amenable to layered contributions, e.g., one person may
identify an organism’s proper phylum, and given that cue,
the next person can determine the correct family, and so on
[20]. The fact that such a layered process is both practical
and functional suggests that involving the full community in
data validation is an underexplored avenue for enriching both
the data and the participants’ experience. Making the review
process transparent and inviting review from the entire com-
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munity can also serve a number of learning and socialization
functions [1, 22, 31]. As such, community-based data valida-
tion can resemble heavyweight peer production, with mem-
bers that not only contribute content, but also “share a com-
mitment to maintaining and sustaining the direction and via-
bility of the community” [17]. This would also move projects
closer to a member-maintained community model [7], cur-
rently unusual in citizen science.

Currently, relatively few projects enlist volunteers in evaluat-
ing the content of other participants’ contributions. If mov-
ing toward a member-maintained community model in citi-
zen science can effectively support data review (e.g., iSpot
in [41]), then community-based data validation may offer a
complementary data quality strategy to help allocate expert
attention to the data that most need it.

Given the conservatism of scientific communities with re-
spect to data quality and the variability of volunteers’ exper-
tise, addressing the citizen science data quality challenge cur-
rently requires tracking the processes of data creation, vali-
dation, and modification, and then openly sharing the process
documentation (provenance) alongside the data so that poten-
tial data consumers can assess the fit to their needs.

Assessing Data Quality
Making citizen science data open access has potential to help
support evaluation of the science and legitimization of the
project [5]. For citizen science data to be viable, both the
datum itself and the process by which it has been maintained
should be readily assessable by would-be consumers. This is
a nontrivial challenge in citizen science, since the potential
data consumers include academic, conservation, governance,
and hobbyist groups [26].

Information provenance and information stewardship are re-
lated concepts that describe important features of assess-
able designs for participatory information sources, such as
Wikipedia [11]. Information provenance describes the con-
tent’s origination and the processes that have been performed
upon it, while information stewardship refers to how the
content has been maintained, often including considerations
around whom was involved. In the example of Wikipedia,
Forte et al. found that visualizing provenance and steward-
ship can significantly influence assessments of articles and of
Wikipedia itself as an information source [11].

For similarly participatory information sources in the form of
citizen science data, we expect provenance and stewardship to
be at least as important for assessability. Indeed, the standards
of scientific knowledge production routinely require such in-
formation, as reified in the methods section of the academic
paper.

Rather than studying perceptions of provenance and stew-
ardship, in this study we used the information assessability
concepts to identify evidence of practices and structures sup-
porting effective information provenance and stewardship in
an online community supported by a social computing plat-
form. This study therefore also contributes an extension of
the concepts of information assessability, information prove-

nance, and information stewardship, which are described fur-
ther in the next section.

STUDY SITE
iNaturalist is an online social network where naturalists of
all types can record what they see in nature, meet other na-
ture lovers, and learn about the natural world. In this section,
we describe the primary platform features, key user roles, and
processes by which participants generate and share data about
living organisms, and then maintain and improve the data col-
laboratively.

Platform Features
iNaturalist can be considered a social computing platform,
and along with the community of iNaturalist users, forms an
information ecosystem around nature observation data that
researchers can use for studying biodiversity and anyone can
use for learning about nature.

iNaturalist acts as a data ingestion and validation tool for con-
tributing species occurrence records to a growing biodiversity
data set used for research and conservation, among other ap-
plications. With many of the typical features of social net-
work sites, iNaturalist user interactions reflect complex social
processes, as in other online communities.

iNaturalist users can adopt multiple roles. They can be ob-
servers who observe and create records, project managers
who create and manage projects, validators who help to iden-
tify observed organisms, and data consumers, who use the
data for their own purposes and may or may not have any
other relationship to iNaturalist or its users. The observers,
validators, and data consumers were the primary actors of in-
terest in relation to our research questions. To clarify how
iNaturalist users enacted these roles, we describe the primary
participation processes.

Information Provenance: Generating and sharing data
In the context of iNaturalist, it is important to note that prove-
nance refers both to the information about the observation
(e.g., location, time/date, observer, etc.) but also information
about changes to the record of the observation through in-
teractions with the community. iNaturalist maintains excep-
tional transparency by maintaining a visible record of the pro-
cess of data quality refinement observation records, as well as
summary statistics on agreement, providing a valuable refer-
ence point for potential data users.

Provenance is inherently entwined in data creation and shar-
ing, as observers can use any tools they like (e.g., camera,
audio recorder, smartphone, paper and pen, etc.) to record
organism information. Data can be uploaded with either the
iNaturalist website on a personal computer or the Android or
iOS mobile apps. Both device types let users record detailed
observations and attach a media file such as a photograph.
Some of the specific details (location, time, date) are auto-
matically captured by mobile apps unless the user overrides
the defaults. Details on other fields in the records are dis-
cussed in the methods section. Upon upload, a new record
page is generated for the observation.
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Figure 1. Summary of agreements on an iNaturalist record; screenshot

made in May, 2015.

Information Stewardship: Maintaining and improving data
After an observer uploads data to iNaturalist, the entire iNat-
uralist user community can assist with validation. In general,
there are two types of interactions: refinements of the or-
ganism identification (hereafter referred to as ID) and agree-
ments. Agreements can be positive or negative (disagree-
ments) and can be made on the organism ID and/or other pre-
specified details. iNaturalist users can confirm the current ID
by indicating agreement, can suggest a better ID, and can in-
dicate agreement with the accuracy of the record metadata, as
well as whether or not the organism is wild (see Figure 1).
The owner of the record can also reject IDs from other users.
Agreements or disagreements with the metadata are instantly
updated on the record page.

The history of agreements with and refinements to the ID,
such as who made what changes or agreed with which ID,
are visible on each record in a threaded history that combines
taxonomic updates with user comments. However, this prove-
nance about stewardship behaviors is only recorded when
adding new information to the existing information; if a user
“removes” a prior ID agreement or suggestion, all traces of
the interaction were removed. The species ID with the high-
est consensus is displayed on the record as authoritative; ac-
cording to iNaturalist’s FAQs,

Our algorithm for deciding the community ID is a little
convoluted—but in general, we try to choose the taxon

that more than 2/3 of identifiers agree with, where agree-
ing means adding ID of a taxon matching or within an-
other taxon. So if Scott says it’s a mammal and Ken-
ichi says it’s a mammal, then the community ID is Mam-
malia. If Scott says it’s a mammal and 5 other people say
it’s a Golden Eagle, then the community ID is Golden
Eagle.

In addition, to be considered research grade, the record must
include a date, accurate longitude and latitude coordinates, at
least one photo or sound file, and as shown in Figure 1, no
disagreements from other iNaturalist users indicating that the
location does not look plausible (e.g., sharks in the middle
of desert) or the organism is not wild or has been naturalized
(e.g., is a pet). These criteria outline the acceptable minimum
standards for data to be included in several biodiversity data
repositories such as the Global Biodiversity Information Fa-
cility (GBIF).

For the data to shift from casual to research grade requires the
attention and efforts of both the initial observers and the wider
community of iNaturalist users. The platform supports col-
laborative information stewardship interactions by providing
mechanisms that blend socializing with data verification, and
displaying them on the records as a form of provenance. This
provenance provides two common indicators of data quality:
informativity and reliability.

Records that reach research grade status contain more infor-
mation content than casual grade records. The more specific
the taxon level of the ID, the more informative the record
becomes, since taxonomic hierarchies operate on inheritance
principles. Similarly, the more iNaturalist users confirm the
ID, the more reliable the ID is considered, in keeping with
standard scientific practices more broadly. We evaluate in-
formation assessability through these two concepts, informa-
tivity and reliability, which link provenance functionality and
stewardship behaviors with supporting evidence of these col-
laborative data validation practices and structures.

METHODS
We adopted a sequential mixed-methods approach in this
study [44] to investigate the role of provenance and steward-
ship in community-based validation. This section describes
our data collection, analysis procedures, and details of the
dependent and independent variables.

Data Collection
The data for this study came from two sources: participant
observation in a citizen science project, Biocubes2, that used
iNaturalist as its data management platform, and data that
were submitted to iNaturalist on the date of our participant
observation.

Participant observation data

We participated in a training event in Florida on January 24th,
2015 for educators interested in the Biocubes project. Ethno-
graphic field notes, memos, and photos documented the pro-
cess of data collection, including choosing a sampling site,
2http://www.inaturalist.org/projects/biocubes
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inventorying its inhabitants, photographing the organisms,
identifying them as well as possible, uploading data to iNat-
uralist, and returning the organisms to their habitat.

The primary participants in the three day event were ten mid-
dle school and high school science teachers in a Title I school
district in Florida, plus four informal science educators work-
ing at aquaria and nature centers. The research team included
twelve facilitators: two social scientists, three educators, five
biologists, and two professional photographers. The research
team captured approximately 1300 photos of the participa-
tion processes, providing detailed reference information for
reconstructing activities. One of the authors also presented an
introductory tutorial to participants on using iNaturalist, and
both authors helped participants troubleshoot the iNaturalist
mobile apps on Android and iOS devices.

We observed that most of the smartphone-savvy educators
and scientists experienced a substantial learning curve with
the mobile apps. For example, some participants acciden-
tally submitted incomplete or duplicate records while they
were learning to use the app. In addition, some participants
chose not to upload any data rather than using an unfamil-
iar app. These observations were critical to identifying how
the iNaturalist system recorded provenance and to interpret-
ing the findings. As will be discussed later, device type ended
up being an important variable, which would have gone unno-
ticed if we had not observed the teachers struggling to submit
data with the mobile apps. The analyses also benefitted from
identifying the system-based sources of differences between
the data we retrieved and what was expected based on field
observation [21].

iNaturalist data

For this exploratory investigation, we selected publicly acces-
sible data that were recorded on iNaturalist in the U.S. on a
single day, with a data export of species occurrence records
from iNaturalist using the site’s data download tool on March
11, 2015. The site allows users to download data retrieved
through custom queries on set fields. We initially downloaded
all the information about the records, including basic infor-
mation (e.g., ID, date, time, description, etc.), location in-
formation (e.g., latitude, longitude, positional accuracy, etc.),
taxon information (e.g., scientific and common names, taxo-
nomic level, etc.).

We limited our analysis to the U.S. on January 24, 2015 due
to our participation in the event in Florida on that date, which
provided access to the minutiae of the on-the-ground pro-
cesses that a portion of the data represented. 925 records were
made for observations in the U.S. on that date and uploaded
to iNaturalist within the arbitrary 45-day interval after the ob-
servation date. For comparison purposes, this allowed us to
control for temporal effects from the amount of time elapsed
between dates of observation and data retrieval, as well as po-
tential influences of specific temporal windows (e.g., delayed
interactions on records submitted on major holidays) [21] and
we had no reason to believe that the specific date would skew
the results for this analysis. The sample proved large enough
for statistical significance in quantitative analyses, while be-

ing amenable to comprehensive manual examination for qual-
itative analysis of interactions on records.

Data cleaning and preparation

Our statistical analyses focused on identifying the character-
istics of records that predicted data validation interactions.
After obtaining the data as described, we identified potential
influential factors and dependent variables to indicate relia-
bility and degree of informativity. We chose not to examine
data that were unrelated to the research questions, such as
usernames and time zones. Some data were unsuitable for
analysis due to extensive missing data, lack of precision, or
lack of documentation.

Of the 61 columns in the data set we downloaded, three de-
pendent variables were selected to represent the concepts of
informativity and reliability. Quality grade (one column) and
number of agreements (one column) respectively provided
system-centric and user-centric measures of reliability, while
taxon level (seven columns collapsed into one factor) repre-
sented informativity from both perspectives.

The following description of these variables also encapsulates
a partial answer to the first research question by describing
the data that resulted from the interactions through which data
quality was established within the iNaturalist context, using
the iNaturalist measures of data quality. For the purposes of
our analyses, these three variables measure data quality and
represent the outcomes of the data validation processes.

1. Quality grade: This dummy variable indicates whether
iNaturalist classifies the record as “research” grade (1) or
“casual” grade (0) by criteria described earlier.

2. Number of agreements: The more (registered) iNaturalist
users agree with a record”s ID, the more reliable the ID is
considered.

3. Taxon level: The data includes the taxonomic rank of the
community ID (i.e., organism’s name on the page) at the
time the data set was retrieved. The more specific the taxon
level is, the more informative the record is. Seven ranks are
built into the iNaturalist taxonomic hierarchy: kingdom,
phylum, class, order, family, genus, and species. Initial de-
scriptive statistics showed many more records at genus and
species levels than other taxonomic levels. Three groups of
taxonomic ranks were coded as genus or species level (2);
class, order, or family level (1); and kingdom, phylum, or
without taxon level information (0).

We then identified eight independent variables among the re-
maining 52 columns that we expected would influence the
records’ reliability and informativity as measured by the de-
pendent variables.

1. Quality grade: Although quality grade status is also in-
cluded as a dependent variable, we considered it a poten-
tially influential factor for taxon level and number of agree-
ments because research grade records must include more
contextual details. We were specifically interested in how
records with full information to achieve research grade sta-
tus compared to the casual records.
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2. Device: This dummy variable indicates whether users
chose mobile devices with the iNaturalist apps (1) or the
website on personal computers (0) to upload data. Among
the 925 records we retrieved, the majority of data that were
uploaded to iNaturalist from an app were from the official
iNaturalist iPhone and Android apps. Two records were
uploaded from different citizen science apps designed for
other initiatives that using iNaturalist for data management
(i.e.,Great Nature Project, Texas Nature Trackers).

3. License: This dummy variable indicates whether users
chose a Creative Commons (CC) license (1) or retained
copyright with “all rights reserved” (0).

4. Description: This dummy variable indicates whether users
did (1) or did not (0) add a textual description as supple-
mental information others might use in refining IDs.

5. ID please: This dummy variable indicates whether the “ID
please” flag was (1) or was not (0) active at the time we
retrieved the records. The “ID please” flag is visible on the
record and used in built-in search queries that direct atten-
tion to these records. While users who initially turned on
the “ID please” flag can later turn it off, and vice versa, data
downloaded from iNaturalist does not include the change
history of the “ID please” flag. We downloaded daily snap-
shots of data over a period of two weeks and verified that
such changes were made on only about 0.6% of all records,
which would not affect our analyses.

6. Positional accuracy: This dummy variable indicates the
range of the position accuracy chosen by users: greater
than ten meters (1), or between one and ten meters (0).
iNaturalist allows users to adjust the range of the posi-
tion accuracy manually to protect their privacy or address
other needs3. There was wide variation in positional accu-
racy, with radius sizes of one meter to over 25 kilometers,
but about 25% of records had positional accuracy between
one and ten meters. The remaining 75% were unevenly
distributed. Most records with greater positional accuracy
were uploaded from mobile apps.

7. Positioning device: This dummy variable indicates
whether users chose to manually adjust the position (1) or
used the default position information (0). The data record
four types of positioning devices: manual, GPS, Google,
and blank. Except manual, which means that the user
changed the radius of the location indicator or dragged a
pin to a different location from its initial landing point, the
other three are default position settings with variable po-
sitional accuracy. The position is generated via GPS for
smartphones using location services, by Google when a
user searches for a named location, and blank when a user
drops a pin but makes no other changes to refine the posi-
tion or radius of the location indicator.

8. Taxon group: iNaturalist’s “taxon groups” are a local con-
vention that combine several taxonomic branches to make
it easier to find specific groups of organisms. Taxon group
categories are functional shortcuts to specific targets within

3Vulnerable species’ locations are obscured automatically.

the top three levels of the taxonomic hierarchy (kingdom,
phylum, and class). These categories are: Animals, Plants,
Fungi including Lichens, Kelp, Diatoms and Allies, and
Protozoans (kingdom level); Mollusks (phylum level); and
Reptiles, Amphibians, Mammals, Ray-finned fishes, Birds,
Insects, Arachnids, and Plants (class level). In the data,
records of Birds and Plants dominated. Birds were 39%
of records, plants made up 32%, and each of the other
taxon groups individually accounted for approximately 1%
to 6.8% of the total. This variable was coded as bird (2),
plant (1), or neither-bird-nor-plant (0).

Data Analysis
Qualitative analysis methods

We matched observation data retrieved from iNaturalist with
instances in our field notes and photos representing the con-
text and behaviors that resulted in those specific data points
in order to verify our assumptions about what the downloaded
data represented. We found several quirks by comparing ex-
ported records, observation pages, and field data; this allowed
us to understand the extent of provenance recorded by the sys-
tem and begin to examine how user behavior in the field may
have impacted the validation of records they submitted. We
also performed simple content analysis on the comments for
over 400 records.

Quantitative analysis methods

Quality grade, taxon level, and number of agreements were
all distributed non-normally, so we adopted generalized linear
models (GZLM) in SPSS version 22 to analyze relationships
between dependent variables and the record metadata [16].

We chose a binary logistic model (Model 1, see Table 1) for
the quality grade dependent variable because its response is
binary, a negative binomial with log link model (Model 2) for
the number of agreements because it is a count variable, and
an ordinal logistic model (Model 3) for the taxon level depen-
dent variable because its response is ordinal. Overall model
fit was assessed by a Chi-square test for each. Exponentiated
coefficients are odds ratios for Model 1 and 3, and incident
rates for Model 2, for a standardized effect size [16, 35].

Among the variables with significant results, we were sur-
prised to observe that the type of device used to upload data
had the most substantial impact on the research grade depen-
dent variable. We then conducted additional statistical com-
parisons between devices and all other variables with Chi-
square analyses (see Table 2). We transformed number of
agreements into binary variables for Chi-square tests.

FINDINGS
In this section, we discuss our findings, beginning with a
description of community-based data validation practices on
iNaturalist. Next, we identify which metadata made records
more or less likely to receive agreements and refinements
from the community. Finally, we highlight an unexpected
finding related to the impact of technology preferences on
data quality.

1553

CSCW '16, FEBRUARY 27–MARCH2, 2016, SAN FRANCISCO, CA, USA



Model 1 Model 2 Model 3

Variables Quality grade Number of agreements Taxon level

b SE Exp(b) b SE Exp(b) b SE Exp(b)

Intercept/ 0.59 0.42 1.80 -3.78 0.49 .02*** -0.79 0.55 0.45
Threshold 0.16 0.55 1.18
Quality grade Research N/A 4.24 0.35 69.53*** 1.84 0.29 6.30***

Casual
Device Mobile -0.87 0.20 0.42*** -0.41 0.17 0.67* -0.78 0.29 0.46**

PC
Licence CC -0.22 0.34 0.81 0.38 0.27 1.47 0.60 0.42 1.83

All right reserved
Description With description -0.25 0.16 0.78 -0.02 0.11 0.98 0.37 0.27 1.44

Without description
ID please With flag -0.67 0.23 0.51** 0.17 0.22 1.18 -.2.66 0.27 0.07***

Without flag
Positional accuracy >10m 0.09 0.21 1.09 -0.21 0.16 0.81 0.87 0.28 2.39**

<=10m
Positioning device Manual -0.07 0.21 0.93 -0.20 0.13 0.82 -0.54 0.42 0.58

Default
Taxon group Bird 1.73 0.21 5.61*** 0.41 0.14 1.51** 4.25 1.03 70.18***

Plant -0.28 0.18 0.75 -0.06 0.16 0.94 1.81 0.30 6.08
Neither

x2 227.182*** 674.984*** 378.970***
Table 1. Generalized linear models using binary logistic for Research grade, ordinal logistic for Taxon level, and negative binomial distribution and log

link for Number of agreements. For Taxon level, the reference level of the threshold is genus and species level. Note *p <.05, **p <.01, ***p <.001.

Community-based Data Validation Practices
We have partially described the processes through which
iNaturalist users contributed to community-based data vali-
dation in delineating the interactions that the system permits,
which goes toward answering the first research question, How
can online community members collaboratively improve the
quality of data generated by volunteers? The specific mech-
anisms through which data quality was improved in iNatu-
ralist were discussed, with two primary types of interactions
recorded in provenance to provide evidence of community-
based data validation: agreements and refinements of organ-
ism IDs. These data-centric outcomes were constrained by
the mechanisms available to contributors, but were also the
product of social processes.

Collaborative data validation was inherently social because
data quality improvements were displayed as visible history
and involved discussion among users. We directly engaged
the iNaturalist community after our participant observation at
the Florida event, and prior to designing this study (our in-
teractions carried no explicit research intent, but were essen-
tially normal user interactions). Our records were, like others,
actively curated by other iNaturalist users who helped refine
the organism IDs. Like other users, we were personally grat-
ified by others’ attention to our records, which represented
much more than data to us [18, 27]. We provided further
details to inquiring users, whose questions conveyed a form
of social validation for effort invested in creating data and
helped us learn more about the organisms we encountered.

We performed high-level content analysis on the comments
for over 400 records. The provenance included not only the

records of actions taken toward data quality improvement,
but also evidence of socialization [7]. These included com-
ments that highlighted ongoing social relationships between
users, aesthetic reactions to the images (e.g., pretty butter-
flies), and sharing professional knowledge. Although these
interactions did not always appear task-driven, they influ-
enced the data validation processes on a more subtle level.
For example, social interaction between users might also in-
fluence the amount of attention given to the records submitted
by an individual, which could be a topic for future study.

Predictors of Community-based Validation
In this section, we answer the second research question: What
factors influence the likelihood of data quality improvement
through online community interactions? Or in other words,
what characteristics attracted the attention of the community?
We expected that more attention would go to records with full
details for “who, what, when, and where”.

Table 1 presents the results from three regression models. In
the bottom panel of Table 1, the likelihood ratio test of x2 for
all three models indicates that they are more appropriate mod-
els compared to corresponding models without any factors (a
“null” model) respectively.

Model 1: Quality Grade

Model 1 tests which factors made some records more likely
to become research grade. About 26% of the data were sub-
mitted via mobile app (Table 2), but using a mobile device
to upload data and using the “ID please” flag were negatively
associated with research grade status. Records were more
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Variables Mobile (N = 244) PC (N = 681)

n Percentage n Percentage

Quality grade Research 94 38.5% 473 69.5%
Casual 150 61.5% 208 30.5%

Taxon level Genus and species 175 71.7% 624 91.6%
Class, order, and family 23 9.4% 24 3.5%
Kingdom, phylum, and other 46 18.9% 33 4.8%

Number of agreements At least one agreement 95 38.9% 477 70.0%
No agreement 149 61.0% 204 30.0%

License CC 212 86.9% 658 96.6%
All right reserved 32 13.1% 23 3.4%

Description With description 78 32.0% 211 31.0%
Without description 166 68.0% 470 69.0%

ID please With flag 45 18.4% 73 10.7%
Without flag 199 81.6% 608 89.3%

Positional accuracy >10m 117 48.0% 620 91.0%
<=10m 127 52.0% 61 9.0%

Positioning device Manual 0 0.0% 179 26.2%
Default 244 100% 502 73.7%

Taxon group Bird 38 15.6% 323 47.4%
Plant 101 41.4% 194 28.5%
Neither 105 43.0% 164 24.1%

Table 2. The number and percentage of records for different devices and variables.

likely to reach research grade if they were submitted from a
PC and/or did not flag “ID please”.

If the records were in the bird taxon group, they were more
likely to achieve research grade level compared to neither-
bird-nor-plant records. Although plant records did not show a
statistically significant difference from neither-bird-nor-plant
records, the direction of their predicted relationships sug-
gested that plants were less likely to reach research grade.
One possible explanation is that these taxon groups have
species ID search spaces that are different by orders of mag-
nitude. According to taxonomic research [29], there are about
8.7 million distinct species on Earth, including approximately
10,000 species of birds, almost 300,000 species of plants, and
8.4 million species that are neither birds nor plants.

Model 2: Number of Agreements

Model 2 tested which factors were significantly associated
with more agreements. Quality grade status and taxon group
predicted higher numbers of agreements, while using a mo-
bile device to upload data predicted fewer agreements. Re-
search grade records and bird data were more likely to have
attracted the attention of more users to verify IDs.

Model 3: Taxon Level

Model 3 tested which factors were significantly associated
with records that had genus and species level IDs, our proxy
for high informativity. Quality grade status, positional ac-
curacy, and the taxon group of the records predicted more
specific levels of ID. If the records had research grade sta-
tus, had reasonably believable geographic information, and/or
were bird data, they were more likely to have genus or species
level IDs. Taxon group was particularly influential for birds,
for which the odds of the ID reaching genus and species level
were over 70 times greater than other records (b = 4.25, p <

.001). However, data uploaded by mobile app or with the “ID
please” flag had genus or species level IDs less often.

Impacts of Technology Use on Data Validation
In our analyses, the device type was a significant factor in
all three models; we investigated device type because we ob-
served participants experiencing difficulty using the mobile
apps during the event in Florida. We now turn to findings of
particular interest for CSCW given recent work on apps for
citizen science [4, 14, 25, 37], the implications for data qual-
ity of the users’ choices of technologies.

Chi-square tests showed every variable except descriptions
were strongly related to device type (p < .01). Table 2 shows
the number and percentage of records for different variables
according to device type. There was a strong relationship be-
tween device type and likelihood of achieving research grade
status: data uploaded from smartphones were less likely to
become research grade. Taxon group was also related to de-
vice type, since birds were more likely to be uploaded via
website than mobile apps. Bird data—which had very high
agreement and were usually identified to the species level—
were also more likely to be research grade. Based on these
results, we expect device type may mask a combination of
more subtle variables.

DISCUSSION
The implications of these results point to considerations for
technology design given the impacts of device type on the
outcomes of community-based data validation. We consider
the practical implications for project leaders and data con-
sumers, as well as the CSCW research opportunities this
study revealed.
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Implications for Design
We saw in our analyses that bird records were more likely to
be uploaded from a PC than a mobile app—but why? We be-
lieve this is in part because bird photography often requires an
optical zoom lens and faster shutter speeds than smartphones
offer. In the field, we saw that using a mobile device to pho-
tograph any motile organism well enough for another person
to verify species ID is challenging, even if the organism (e.g.,
an insect) is captive (see Figure 2).

By comparison, recording bird data takes substantially longer
with the all-taxon iNaturalist app than with a task-specific,
taxon-specific app, such as the eBird app (formerly BirdLog),
which is tailored specifically to bird data and highly stream-
lined for minimal interference with actual observation activ-
ities. Further, post hoc data entry using the mobile app at-
taches precise but inaccurate timestamp and location infor-
mation unless the user is unusually attentive.

In contrast, smartphones were used more often for plants,
which are easy to approach and photograph, and may be more
suited to this type of app. Although these examples focus on
birds and plants, the findings suggest that the physical fea-
tures and behaviors of the organisms in different branches of
the taxonomic hierarchy may have a much more substantial
influence on how users record information than is assumed
by designers and data users.

By extension, the delay between data collection in the field
and data entry using a personal computer rather than a mobile
device could potentially support observers in providing more
informative data. In the interim, the species ID may become
more apparent or a field guide could be consulted, and the
data may be more refined by the point of submission. In con-
trast, submitting data in the field rarely allows for graceful er-
ror recovery or more systematic review after leaving the field
and its distractions; users must exert substantial additional ef-
fort to retrospectively edit and improve their own data, which
is not usually supported in the apps that permit data submis-
sion. For users who are only participating because the app
makes it easy to do so, the odds of returning to refine their
own data seem low.

This is a stereotypical tradeoff in citizen science project de-
sign, pitting data quality against engagement: the smartphone
app encourages casual participation that yields casual quality
data that is unlikely to see much improvement, but could en-
gage more new audiences (however briefly) for wider overall
impact on public awareness. Enforcing separate processes for
data collection and data submission permits additional pro-
cessing by the observer to occur in the interim and requires
additional effort that usually reduces follow through, but the
data may be of greater scientific value. This becomes a trade-
off scenario because the core task is fundamentally complex;
if species ID were simplified to the level of the Citizen Sort
games [34], we would expect no difference in data quality
based on the device or taxon group.

We also suspect that users were more likely to deploy the
mobile apps specifically for help with ID when encountering
an unfamiliar organism, leading to more data submitted by

Figure 2. Teachers at a Biocubes training event used three smartphones

with a clip-on macro lens to photograph an amphipod. It took several

minutes to make a usable photo.

smartphone at a more general taxonomic level than genus or
species. Our analyses showed that such data were relatively
less likely to be validated. Further research at the individual
level would help answer the question of which devices users
choose under which circumstances.

These findings bring us to question the appropriateness of
current technology trends for the actual community practices
[40], as there is currently strong demand for citizen science
mobile apps, which are perceived as a promising means of
expanding participation [4, 42]. Mobile devices can capture
temporal and geographic information to submit automatically
and precisely [14, 28, 32]. Requiring zero user effort to ac-
curately document time and location should hypothetically
make it more likely for such data to reach research grade sta-
tus. Data submitted from mobile devices, however, could not
always satisfy the other requirements. It seems that for some
uses, task-technology fit is not as good as anticipated [13].

The fact that using a PC to upload data was positively associ-
ated with community validation interactions could also reflect
preferences for devices to access data and assess data qual-
ity. Although the iNaturalist apps were quite complex and
did support activities like browsing, agreeing, and comment-
ing on records (none of which were explored by the event
participants), the overwhelming emphasis of the apps was on
submitting data, and tasks like examining records’ details, re-
fining IDs, and downloading data may be easier to complete
on a PC. A direction for future work on mobile apps (particu-
larly for citizen science) could focus on new ways to access,
assess, and validate data with mobile devices, which might
be more feasible through a “family of apps” strategy rather
than “one app to do all the things”, as app complexity may
have contributed to confusion among new users. Since con-
ducting the analyses in this paper, the iNaturalist interfaces
and mobile apps were updated; in future work, we plan to
examine whether these design updates on iNaturalist change
the outcomes of community data validation from the current
findings.
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Implications for Practice
Several practitioner groups may be interested in the results
of this study. For project leaders considering using iNatu-
ralist, the analyses provide decision information: if focusing
on a specific taxon or recommending a device type to upload
data, these particulars could impact the likelihood of the com-
munity helping with data verification. We believe the data
quality impact of these seemingly innocuous decisions would
come as a surprise to most project leaders, who may wish to
adjust instructions to volunteers in light of these results.

In addition, encouraging low quality data that will garner little
attention is clearly counterproductive from a data collection
standpoint, and may also have mixed impact from an engage-
ment perspective. While a shiny mobile app may help recruit
more short-term participants who would not otherwise partic-
ipate at all [9], it could also ultimately undermine retention if
the lack of attention to their contributions discourages ongo-
ing participation. Research to date on motivations suggests
this is a genuine risk [38].

For the iNaturalist community and others like it, our find-
ings also underscore the need for data documentation to sup-
port appropriate data use and meaningful interpretations. The
records submitted by volunteers were of variable initial qual-
ity and many were subsequently improved. iNaturalist’s
records of the data validation process and provenance were
much more transparent than the average scientific data set,
making it feasible for us (and other potential data users) to
evaluate the quality of the records for ourselves, without di-
rect assistance from those who created and curated them.
These findings also suggest that citizen science data export
files should include metadata about the technologies used to
capture and submit data, including software version details.
This would let data consumers determine whether specific
technologies are affecting the outputs in a meaningful way.

For those interested in using data from iNaturalist or plat-
forms like it, we recommend monitoring the effects of the
topic or content and the technologies in use. iNaturalist data
about birds may be as reliable and informative as other expert-
reviewed citizen science data in use by researchers and policy
makers. However, data on plants were nearly as plentiful as
data about birds, but far less likely to receive as much atten-
tion, so the reliability and informativity of those data were
not as well documented. This points to an area of opportu-
nity for both practice and research: what strategies can elicit
validation for other taxon groups besides birds?

Implications for Research
This study introduced and explored community-based data
validation in citizen science, providing a foundation for fu-
ture work comparing collaborative data validation on iNatu-
ralist against similar activities on other citizen science plat-
forms, such as iSpot, which could offer insight for design-
ing the next generation of citizen science engagement. The
utility of community-based validation should also be estab-
lished through comparison to expert review, which would
help identify the conditions under which each strategy per-
forms best. Further, comparison of the validation processes in

this community with those in other peer production commu-
nities would support a richer dialogue about quality in open
collaboration systems.

We also applied the concept of information assessability to
guide our analysis, adding two concepts to measure assess-
ability. While reliability and informativity may not be the
correct metrics for all open collaboration communities, de-
veloping a conceptual framework around information assess-
ability will support cross-context research on peer production
with potential to drive theoretical advancements.

Additional implications for research are in part a reflection
of the limitations of the study: scaling up these analyses to
verify the results and detect new patterns across time and na-
tional boundaries are obvious next steps. Access to detailed
transaction data could also provide more insights about the
users, social structures, and interactions in this citizen science
peer production community.

CONCLUSION
This study examined practices and structures supporting
community-based data validation in the iNaturalist commu-
nity. We described the processes through which community-
based data validation was accomplished in this community,
addressing the first research question. We examined how
community interactions contributed to the informativity and
reliability of the data, which both relied upon and added to
information provenance through information stewardship be-
haviors. We identified which details made some records more
likely to be validated, answering the second research question
on the predictors of collaborative validation of data quality.

The findings highlighted the impact of the device type on sub-
sequent data improvement, or lack thereof. The choice of de-
vice may mask numerous other behavioral variations but had
a clear impact on the outcomes of community-based data val-
idation. These findings prompted us to question how well the
current technology trends in citizen science meet participants’
needs versus projects’ needs, and how well mobile apps are
supporting the complex interactions in these communities.
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