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A network consists of a set of nodes and edges with the edges representing

pairwise connections between nodes. Examples of real-world networks include the

Internet, the World Wide Web, social networks and transportation networks often

modeled as random graphs. In the first half of this thesis, we explore the degree

distributions of such random graphs. In homogeneous networks or graphs, the be-

havior of the (generic) degree of a single node is often thought to reflect the degree

distribution of the graph defined as the usual fractions of nodes with given degree.

To study this preconceived notion, we introduce a general framework to discuss the

conditions under which these two degree distributions coincide asymptotically in

large random networks. Although Erdős-Rényi graphs along with other well known

random graph models satisfy the aforementioned conditions, we show that there

might be homogeneous random graphs for which such a conclusion may fail to hold.

A counterexample to this common notion is found in the class of random threshold

graphs. An implication of this finding is that random threshold graphs cannot be



used as a substitute to the Barabási-Albert model for scale-free network modeling,

as proposed in some works.

Since the Barabási-Albert model was proposed, other network growth models

were introduced that were shown to generate scale-free networks. We study one such

basic network growth model, called the fitness model, which captures the inherent

attributes of individual nodes through fitness values (drawn from a fitness distribu-

tion) that influence network growth. We characterize the tail of the network-wide

degree distribution through the fitness distribution and demonstrate that the fit-

ness model is indeed richer than the Barabási-Albert model, in that it is capable of

producing power-law degree distributions with varying parameters along with other

non-Poisson degree distributions.

In the second half of the thesis, we look at the interactions between nodes in

a game-theoretic setting. As an example, these nodes could represent interacting

agents making decisions over time while the edges represent the dependence of their

payoffs on the decisions taken by other nodes. We study learning rules that could

be adopted by the agents so that the entire system of agents reaches a desired oper-

ating point in various scenarios motivated by practical concerns facing engineering

systems. For our analysis, we abstract out the network and represent the problem

in the strategic-form repeated game setting.

We consider two classes of learning rules – a class of better-reply rules and

a new class of rules, which we call, the class of monitoring rules. Motivated by

practical concerns, we first consider a scenario in which agents revise their actions

asynchronously based on delayed payoff information. We prove that, under the



better-reply rules (when certain mild assumptions hold), the action profiles played

by the agents converge almost surely to a pure-strategy Nash equilibrium (PSNE)

with finite expected convergence time in a large class of games called generalized

weakly acyclic games (GWAGs). A similar result is shown to hold for the monitoring

rules in GWAGs and also in games satisfying a payoff interdependency structure.

Secondly, we investigate a scenario in which the payoff information is unreliable,

causing agents to make erroneous decisions occasionally. When the agents follow

the better-reply rules and the payoff information becomes more accurate over time,

we demonstrate the agents will play a PSNE with probability tending to one in

GWAGs. Under a similar setting, when the agents follow the monitoring rule, we

show that the action profile weakly converges to certain characterizable PSNE(s).

Finally, we study a scenario where an agent might erroneously execute an intended

action from time to time. Under such a setting, we show that the monitoring

rules ensure that the system reaches PSNE(s) which are resilient to deviations by

potentially multiple agents.
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Part I

Study of Degrees on Networks

1



Chapter 1: Networks & Degrees

In the past three decades considerable efforts have been devoted to understand-

ing the rich structure and functions of complex networks, be they technologically

engineered, found in nature or generated through social interactions. A popular

research direction has been the design of “good” random graph models in the sense

of exhibiting key properties found in observed networks – Historically attention was

given to the simplest of network properties, namely the degrees of nodes and their

distributions.

The discussion invariably starts with the work of Erdős and Rényi [17]: With

n nodes and link probability p, the (binomial) Erdős-Rényi graph Gpn; pq postulates

that the npn´1q
2

potential undirected links between these n nodes are each created

with probability p, independently of each other. The degree distribution of a node in

Erdős-Rényi graphs is then announced to be “Poisson”-like, the justification going

roughly as follows: (i) WithDn,kppq denoting the degree random variable (rv) of node

k in Gpn; pq, the rvs Dn,1ppq, . . . , Dn,nppq are identically distributed, each distributed

according to a binomial rv Binpn ´ 1; pq; (ii) If the link probability scales with n

as pn „
λ
n

for some λ ą 0, then Poisson Convergence ensures the distributional

2



convergence

Dn,1ppnq ùñn D (1.1)

where the rv D is a Poisson rv with parameter λ.

A rich asymptotic theory has been developed for Erdős-Rényi graphs in the

many node regime; see the monographs [7,13,27]. However, as more networks have

come under investigation, in many cases the data suggest that the degree distribution

is not Poisson but displays instead a power-law behavior in the following sense: If

the network comprises a large number n of nodes and Nnpdq is the number of nodes

with degree d, then the data reveals a behavior of the form

Nnpdq

n
» Cd´α (1.2)

for some α in the range r2, 3s and C ą 0 – Such statements are usually left somewhat

vague as the range of d is never carefully specified in relation to n; networks where

(1.2) was observed are often called scale-free networks. On the basis of this obser-

vation, it was concluded that Erdős-Rényi graphs cannot model scale-free networks,

and new random graph models were sought. The Barabási-Albert model came to

prominence as the first random graph model to formally “explain” via the mecha-

nism of preferential attachment the possibility of power law degree distributions in

large networks [2].

The statement (1.2) concerns a degree distribution which is computed network-

wide, whereas the convergence (1.1) addresses the behavior of the (generic) degree

of a single node, its distribution being identical across nodes. A natural question

is then whether this discrepancy can be resolved, at least asymptotically, in large

3



networks and if so, under what conditions.

Our first contribution lies in exploring this issue in some detail. First we in-

troduce a general framework to investigate this discrepancy in Chapter 2 through

a sequence of random graphs tGn, n “ 1, 2, . . .u with increasingly large and un-

bounded vertex sets. The discussion is carried out under a set of three assumptions,

namely

(i) Weak Homogeneity: For each n “ 1, 2, . . ., the degree rvs in Gn are pairwise

equidistributed across nodes – Let Dn denote the generic degree rv in Gn;

(ii) Existence of an asymptotic (nodal) degree distribution: There exists an N-

valued rv D such that

Dn ùñn D. (1.3)

Let p “ pppdq, d “ 0, 1, . . .q denote the pmf of D; and

(iii) Asymptotic uncorrelatedness: The degree rvs display a weak form of asymp-

totic “pairwise independence.”

Under the aforementioned assumptions, we show the following result: If ppnpdq, d “

0, 1, . . .q is the empirical degree distribution in Gn (with pnpdq denoting the fraction

of nodes in Gn with degree d), then

pnpdq
P
ÝÑn ppdq, d “ 0, 1, . . . (1.4)

where the pmf p “ pppdq, d “ 0, 1, . . .q on N is as in (ii) above. Essentially this

result gives us a set of necessary conditions for the (empirical) degree distribution

to converge in the usual sense (1.4). As we discuss the underlying assumptions

4



in Chapter 2, we see that Erdős-Rényi graphs (under the scaling yielding (1.1))

are readily subsumed in this framework, as are several well-known homogeneous

networks of interest in applications. This resolves the discrepancy mentioned earlier

in that the appropriate version of (1.4) does hold for both Erdős-Rényi graphs and

the Barabási-Albert model.

Next we turn our attention to the belief, mostly unsubstantiated, that in ho-

mogeneous graphs the convergence (1.3) of the generic degree distribution might

automatically imply the convergence (1.4) of the empirical degree distribution. In

Chapter 2 we show in homogeneous graphs that weak asymptotic uncorrelatedness

(assumption (iii)) is necessary to ensure convergence of the empirical degree dis-

tribution in the usual sense even when the (nodal) degree distribution converges

according to (1.3). This brings us to the question – Are there counterexamples in

the class of homogeneous random graphs of any significant interest for which conver-

gence (1.3) of the generic degree distribution take place while the usual convergence

of the empirical degree distribution (1.4) does not hold ? A counterexample described

in Chapter 3 is found in the class of random threshold graphs.

We motivate the counterexample by going back to the Barabási-Albert network

model. After the Barabási-Albert network model was proposed, researchers began

to wonder whether there were mechanisms other than preferential attachment which

could also lead to power law degree distribution. Caldarelli et al. [9] proposed a

homogeneous random graph model called the random threshold model based on

the “good-get-richer” mechanism. They argued that in many scenarios, the degree

information about every node might not be readily available (as assumed in the

5



Barabási-Albert network model). Instead, two nodes might form a connection if they

are mutually beneficial to each other depending on their intrinsic properties (maybe

friendship, interaction strength, attractiveness, etc.). The intrisic property of a node

is modeled as a fitness value drawn from a fitness distribution – A connection is said

to form between any two nodes if the sum of their individual fitnesses exceeds a

certain threshold. With an exponential fitness distribution, when the threshold is

scaled appropriately, they argued that the empirical degree distribution is power-law

in the limit of large graph size.

For the setting just described, although (1.3) is known to take place [22] with

the power tail behavior

ppdq „ d´2
pdÑ 8q,

we show that (1.4) fails to hold [Proposition 3.3]. One implication of this finding

is that random threshold graphs cannot be used as an alternative scale-free model

to the Barabási-Albert model (see below) as claimed by the authors [9,37]. Indeed,

only the convergence (1.4) has meaning in the preferential attachment model while

(1.3) is meaningless, with the situation being reversed for random threshold graphs.

In other words, the two models cannot be compared in terms of their degree dis-

tributions! This also highlights the fact that even in homogeneous graphs, there

are noteworthy situations when the network-wide degree distribution and the nodal

degree distribution may capture vastly different information. We take the discus-

sion one step further by showing in Chapter 4 that the empirical degree distribution

actually converges in a weaker sense.

6



Echoing the modeling concern in the Barabási-Albert network model posed

by Caldarelli et al. [9], Ghadge et al. [23] argued that often degree information

might not be readily available, and that the inherent quality of each node captured

through a fitness variable (drawn from a fitness distribution in an i.i.d. fashion)

should instead be the primary driver of network growth. Through simulations, the

authors were able to show a wide range of achievable degree distributions including

power-law for fitness lognormally distributed. In Chapter 5, we study this model,

often called the fitness model, in great detail. We investigate convergence of the

empirical degree distribution in the following expected sense

E
„

Nnpdq

n



ÝÑn ppdq, d “ 0, 1, . . . (1.5)

where the pmf pppdq, d “ 0, 1, . . .q on N is the empirical degree distribution in the

limit of large graph size. The convergence (1.5) is a weaker form of convergence

than (1.4). However, if the convergence (1.4) were to hold, then (1.5) must also

hold with the same limiting pmf. Our results indicate that if the fitness distribution

is bounded, the tail of the (limiting) empirical degree distribution shows geometric

decay, i.e., roughly speaking

ppd` 1q » Ce´βd, d “ 0, 1, . . . (1.6)

for some β ą 0 and C ą 0. Thus, if the fitness distribution is bounded, we cannot

have a power-law behavior. Conversely, for fitness distribution with infinite support,

we prove that the tail of the (limiting) empirical degree distribution cannot have a ge-

ometric decay. We consider two special cases – (i) When fitness is pareto distributed

we show that the asymptotic empirical degree distribution tppdq, d “ 0, 1, . . .u is

7



indeed power-law with a parameter depending on the fitness distribution. By ap-

propriately choosing the fitness distribution, any power-law degree distribution of

parameter greater than two is shown to be achievable. (ii) On the other hand,

with exponentially distributed fitness we show that a power-law behavior does not

emerge, implying that unbounded fitness distribution would not necessarily lead to a

power-law behavior. The fitness model is therefore richer than the Barabási-Albert

model in the sense that it is capable of producing a variety of tail behavior along

with power-law distributions of different parameters.

This portion of the thesis is organized as follows: In Chapter 2 we introduce

a general framework for studying the degree distributions of networks modeled as

random graphs. We give necessary and sufficient conditions for homogeneous graphs

under which the empirical degree distribution will converge and be identical to the

asymptotic nodal degree distribution. We also consider well known examples of

random graph models that satisfy these conditions. In Chapter 3 we investigate

a specific counterexample in the class of random threshold graphs, where the con-

vergence (1.4) of the empirical degree distribution does not hold. In Chapter 4 we

study the degree distribution of random threshold graphs in further detail and show

that the empirical degree distribution actually converges in a weaker sense. Finally

in Chapter 5 we investigate the degree distribution of the fitness model and study

its tail behavior.

8



Chapter 2: Degree Distribution of Networks

In this chapter we first introduce a general framework for studying various

degree distributions of networks modeled as random graphs, namely the degree dis-

tribution of a particular node and the (empirical) degree distribution of the graph

defined as the fraction of nodes with given degree. We obtain necessary and suf-

ficient conditions in the large graph regime under which the network-wide degree

distribution exists and is identical to the nodal degree distribution. In the later

part of this chapter, we consider well known examples of random graph models that

satisfy these conditions.

2.1 A general framework

We are given a sequence of random graphs tGn, n “ 2, 3, . . .u defined on the

probability triple pΩ,F ,Pq with the following structure: Fix n “ 2, 3, . . .. With Vn

a finite and non-empty set, the random graph Gn is an ordered pair pVn,Enq defined

on the set of nodes Vn with random edge set En Ď Vn ˆ Vn. The edge set En is

equivalently determined by a set of t0, 1u-valued edge variables tχnpk, `q, k, ` P Vnu

– Thus, χnpk, `q “ 1 (resp. χnpk, `q “ 0) if there is an edge (resp. no edge) from

9



node k to node `, so that

En “ tpk, `q P Vn ˆ Vn : χnpk, `q “ 1u.

There is no loss in generality in taking Vn “ t1, . . . , knu for some positive integer

kn. In most cases of interest Vn “ t1, . . . , nu so that kn “ n.

We assume Gn to be an undirected graph with no self-loops. This amounts to

χnpk, kq “ 0 and χnpk, `q “ χnp`, kq, k, ` P Vn.

Under these conditions the edge set En is a symmetric subset of Vn ˆ Vn because

there is an edge from node k to node ` (i.e., χnpk, `q “ 1) if and only if there is an

edge from node ` to node k (i.e., χnp`, kq “ 1).

For each k in Vn, the degree of node k in Gn is the rv Dn,k given by

Dn,k “
ÿ

`PVn

χnpk, `q. (2.1)

For each d “ 0, 1, . . ., the rv Nnpdq defined by

Nnpdq “
ÿ

kPVn

1 rDn,k “ ds

counts the number of nodes in Vn which have degree d in Gn. The fraction of nodes

in Vn with degree d in Gn is then given by

Nnpdq

|Vn|
“

1

|Vn|

ÿ

kPVn

1 rDn,k “ ds .

This defines the pmf-valued rv

ˆ

Nnpdq

|Vn|
, d “ 0, 1, . . .

˙

10



which takes its values in the space of pmfs on N with support contained in VnYt0u.

As we focus on limiting results for n large, we assume the sets tVn, n “ 1, 2, . . .u

to grow unboundedly large with n, namely limnÑ8 |Vn| “ 8. Concretely, we assume

the sequence nÑ kn to be monotone increasing with limnÑ8 kn “ 8.

2.2 The main result

With limnÑ8 |Vn| “ 8, we seek sufficient conditions to ensure the convergence

Nnpdq

|Vn|
P
ÝÑn ppdq, d “ 0, 1, . . . (2.2)

for some pmf p “ pppdq, d “ 0, 1, . . .q on N. A set of assumptions to that effect is

presented next.

Assumption 2.1. (Weak Homogeneity) For each n “ 2, 3, . . ., the degree rvs in Gn

are pairwise equidistributed in the sense that

pDn,k, Dn,`q “st pDn,1, Dn,2q
k ‰ `

k, ` P Vn.

(2.3)

Note that (2.3) necessarily implies that the degree rvs in Gn are equidistributed

with

Dn,k “st Dn,1, k P Vn. (2.4)

Assumption 2.2. (Existence of an asymptotic (nodal) degree distribution) Under

Assumption 2.1, there exists an N-valued rv D such that

Dn,1 ùñn D. (2.5)
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Let p “ pppdq, d “ 0, 1, . . .q denote the pmf of the limiting rv D.

Assumption 2.2 can be rephrased as

lim
nÑ8

P rDn,1 “ ds “ ppdq, d “ 0, 1, . . . (2.6)

Assumption 2.3. (Asymptotic uncorrelatedness) Under Assumption 2.1, for each

d “ 0, 1, . . ., the rvs 1 rDn,1 “ ds and 1 rDn,2 “ ds are asymptotically uncorrelated

in the sense that

lim
nÑ8

Covr1 rDn,1 “ ds ,1 rDn,2 “ dss “ 0. (2.7)

Assumption 2.3 amounts to the convergence statement

lim
nÑ8

pP rDn,1 “ d,Dn,2 “ ds ´ P rDn,1 “ dsP rDn,2 “ dsq “ 0 (2.8)

for each d “ 0, 1, . . .. As will become apparent shortly, Assumption 2.2 and As-

sumption 2.3 will always be used in combination with Assumption 2.1. The main

result of this chapter can now be given.

Proposition 2.1. Under Assumptions 2.1-2.3, we have

Nnpdq

|Vn|
P
ÝÑn ppdq, d “ 0, 1, . . . (2.9)

where the pmf p “ pppdq, d “ 0, 1, . . .q is postulated in Assumption 2.2.

The proof of Proposition 2.1 mimics the classical proof of the Weak Law of

Large Numbers, and is provided in Section 2.8. A careful inspection of the arguments

given there shows that the following partial converse also holds; see Section 2.8 for

details.
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Proposition 2.2. Assume Assumptions 2.1-2.2 to hold. If for some d “ 0, 1, . . .,

we have

Nnpdq

|Vn|
P
ÝÑn Lpdq (2.10)

for some constant Lpdq in R, then we necessarily have Lpdq “ ppdq where the pmf

p “ pppdq, d “ 0, 1, . . .q is the one postulated in Assumption 2.2, and the limit

Cpdq ” lim
nÑ8

Covr1 rDn,1 “ ds ,1 rDn,2 “ dss (2.11)

must exist with Cpdq “ 0.

This converse has the following consequence to be used later: Under Assump-

tions 2.1-2.2, whenever we have

lim
nÑ8

Covr1 rDn,1 “ ds ,1 rDn,2 “ dss ą 0, (2.12)

then the conclusion (2.9) cannot hold.

Finally, under Assumption 2.1, the convergence

Nnpdq

|Vn|
P
ÝÑn Lpdq

for some d “ 0, 1, . . . with some constant Lpdq in R necessarily implies

lim
nÑ8

P rDn,1 “ ds “ Lpdq

by bounded convergence. This shows the necessity of Assumption 2.2 for (2.9) to

hold.

2.3 Concerning Assumption 2.3

Assumption 2.3 is implied by the following assumption which is easier to check

in some cases; see Section 2.5 for some examples in a commonly occurring setting.
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Assumption 2.4. (Pairwise asymptotic independence) Under Assumptions 2.1 and

2.2, the degree rvs Dn,1 and Dn,2 are asymptotically independent in the sense that

pDn,1, Dn,2q ùñn pD1, D2q (2.13)

where D1 and D2 are independent N-valued rvs, each distributed according to the

pmf p postulated in Assumption 2.2.

Assumption 2.4 can be rephrased as

lim
nÑ8

P rDn,1 “ d,Dn,2 “ d1s “ ppdqppd1q, d, d1 “ 0, 1, . . . (2.14)

Assumption 2.3 does not require the joint convergence (2.13) to hold. However, if

(2.13) is known to hold (with no further characterization of the limit), then under

Assumption 2.2 it is easy to check that (2.8) is equivalent to the independence of

the binary rvs 1 rD1 “ ds and 1 rD2 “ ds for each d “ 0, 1, . . .: Indeed, the existence

of the limit (2.13) implies

lim
nÑ8

P rDn,1 “ d,Dn,2 “ ds “ P rD1 “ d,D2 “ ds

and

lim
nÑ8

P rDn,j “ ds “ P rDj “ ds , j “ 1, 2.

The condition (2.8) is now equivalent to

P rD1 “ d,D2 “ ds “ ppdqppdq “ P rD1 “ dsP rD2 “ ds , (2.15)

and states the independence of the binary rvs 1 rD1 “ ds and 1 rD2 “ ds. It should

be pointed out that the lack of independence of the rvs D1 and D2 does not preclude
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the possibility that the rvs 1 rD1 “ ds and 1 rD2 “ ds are independent – Indeed it is

possible for (2.15) to hold even for all d “ 0, 1, . . . without the rvs D1 and D2 being

independent.

2.4 Erdős-Rényi Graphs

We first consider the popular Erdős-Rényi random graph model, and examine

whether Assumptions 2.1-2.3 are satisfied.

Consider an undirected graph of n nodes with link probability p – The Erdős-

Rényi graph Gpn; pq on the vertex set Vn :“ t1, 2, . . . , nu postulates that the npn´1q
2

potential undirected links between these n nodes are each created with probability

p, independently of each other.

The links can be modelled by a collection of i.i.d. Bernoulli rvs tBijppq, i, j “

1, 2, . . . , nu with parameter p; with the restriction that Bijppq “ Bjippq for distinct

i, j “ 1, 2, . . . , n and Biippq “ 0 for i “ 1, 2, . . . , n. For i “ 1, 2, . . . , n and 0 ă p ă 1,

let Dn,ippq denote the degree of node i in Gpn; pq. Clearly, we have

Dn,ippq “
n
ÿ

j“1,j‰i

Bijppq,

and Assumption 2.1 is satisfied given the homogeneity of the model. It is well known

that when p is scaled according to p˚ : N0 Ñ r0, 1s given by

p˚n „
λ

n
, (2.16)

the degree rvs converge to the Poisson pmf pλ “ ppλpdq, d “ 0, 1, . . .q with parameter

λ given by

pλpdq “
λd

d!
e´λ, d “ 0, 1, . . . . (2.17)
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Hence Assumption 2.2 is also satisfied with p “ pλ. It is also relatively straightfor-

ward to show that the degree rvs become pairwise asymptotically independent. For

fixed n “ 1, 2, . . ., `, k “ 0, 1, . . . , n´ 1 and 0 ă p ă 1, we have

P rDn,1ppq “ k,Dn,2ppq “ `s

“ P

«

n
ÿ

j“2

B1jppq “ k,
n
ÿ

j“1,j‰2

B2jppq “ `

ff

“ P

«

n
ÿ

j“3

B1jppq “ k,
n
ÿ

j“3

B2jppq “ `, B12ppq “ 0

ff

` P

«

n
ÿ

j“3

B1jppq “ k ´ 1,
n
ÿ

j“3

B2jppq “ `´ 1, B12ppq “ 1

ff

. (2.18)

For the second term in (2.18), we have the bound

P

«

n
ÿ

j“3

B1jppq “ k ´ 1,
n
ÿ

j“3

B2jppq “ `´ 1, B12ppq “ 1

ff

ď P rB12ppq “ 1s .

However under the scaling (2.16), we have

lim
nÑ8

P rB12pp
˚
nq “ 1s “ 0, (2.19)

which leads to

lim
nÑ8

P

«

n
ÿ

j“3

B1jpp
˚
nq “ k ´ 1,

n
ÿ

j“3

B2jpp
˚
nq “ `´ 1, B12pp

˚
nq “ 1

ff

“ 0. (2.20)

For each n “ 2, 3, . . . and 0 ă p ď 1, set

D˚n,ippq “
n
ÿ

j“3

Bijppq, i “ 1, 2.

For the first term in (2.18), using the fact that the Bernoulli rvs are assumed
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to be i.i.d., we obtain

P

«

n
ÿ

j“3

B1jppq “ k,
n
ÿ

j“3

B2jppq “ `, B12ppq “ 0

ff

“ P

«

n
ÿ

j“3

B1jppq “ k

ff

P

«

n
ÿ

j“3

B2jppq “ `

ff

P rB12ppq “ 0s

“ P
“

D˚n,1ppq “ k
‰

P
“

D˚n,2ppq “ `
‰

P rB12ppq “ 0s . (2.21)

The following reduction step will simplify calculations.

Lemma 2.3. Fix n “ 2, 3, . . . and 0 ď p ď 1. For each d “ 0, 1, . . . , n´ 1, we have

|P rDn,ippq “ ds ´ P
“

D˚n,ippq “ d
‰

| ď 2P rB12ppq “ 1s , i “ 1, 2. (2.22)

Proof. Fix n “ 2, 3, . . . and 0 ď p ď 1. For i “ 1, 2, we observe that

P rDn,ippq “ 0s “ P
“

D˚n,ippq `B12ppq “ 0
‰

“ P
“

D˚n,ippq “ 0, B12ppq “ 0
‰

“ P
“

D˚n,ippq “ 0
‰

´ P
“

D˚n,ippq “ 0, B12ppq “ 1
‰

(2.23)

and the bound (2.22) follows for d “ 0.

For each d “ 1, 2, . . . , n´ 1, and i “ 1, 2, we observe that

P rDn,ippq “ ds

“ P
“

D˚n,ippq `B12ppq “ d
‰

“ P
“

D˚n,ippq “ d,B12ppq “ 0
‰

` P
“

D˚n,ippq “ d´ 1, B12ppq “ 1
‰

“ P
“

D˚n,ippq “ d
‰

´ P
“

D˚n,ippq “ d,B12ppq “ 1
‰

` P
“

D˚n,ippq “ d´ 1, B12ppq “ 1
‰

and the bound (2.22) follows. �
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Under the scaling (2.16), using Lemma 2.3 and (2.19), we conclude that

D˚n,jpp
˚
nq ùñn Poipλq, j “ 1, 2.

In other words

lim
nÑ8

P
“

D˚n,jpp
˚
nq “ d

‰

“
λd

d!
e´λ,

d “ 0, 1, . . .

j “ 1, 2.

(2.24)

Returning to (2.21), we conclude from (2.24) (along with (2.19)) that

lim
nÑ8

P

«

n
ÿ

j“3

B1jpp
˚
nq “ k,

n
ÿ

j“3

B2jpp
˚
nq “ `, B12pp

˚
nq “ 0

ff

“ lim
nÑ8

P
“

D˚n,1ppq “ k
‰

P
“

D˚n,2ppq “ `
‰

P rB12ppq “ 0s

“ pλpkqpλp`q (2.25)

where pλ “ ppλpdq, d “ 0, 1, . . .q is the Poisson pmf with parameter λ as defined in

(2.17). Putting together (2.20) and (2.25) in (2.18), we obtain the desired result

lim
nÑ8

P rDn,1pp
˚
nq “ k,Dn,2pp

˚
nq “ `s “ pλpkqpλp`q.

This shows that the stronger Assumption 2.4 holds. Thus, we have a setting where

the Assumptions described in Section 2.2 hold and the empirical degree distribution

converges as announced in Proposition 2.1.

2.5 The generic setting

In many situations of interest the sequence of random graphs tGn, n “

1, 2, . . .u arises in the following natural manner: Given is an underlying parametric

family of random graphs, say

tGpn;αq, n “ 2, 3, . . .u, α P A Ď Rp (2.26)
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where A is some parameter set and p is the dimension of the parameter space. With

α in A, for each n “ 2, 3, . . ., the random graph Gpn;αq is a random graph on Vn

whose statistics depend on the parameter α.

For α in A, we define a set of t0, 1u-valued edge variables tχnpk, `;αq, k, ` P Vnu

corresponding to the graph Gpn;αq. Thus, χnpk, `;αq “ 1 (resp. χnpk, `;αq “ 0)

if there is an edge (resp. no edge) between node k and node `. Since the graph

Gpn;αq is an undirected graph with no self-loops, we must have

χnpk, k;αq “ 0 and χnpk, `;αq “ χnp`, k;αq, k, ` P Vn.

For each k in Vn, let Dn,kpαq denote the degree of node k in Gpn;αq. For each

d “ 0, 1, . . ., the rv Nnpd;αq defined by

Nnpd;αq “
n
ÿ

k“1

1 rDn,kpαq “ ds

counts the number of nodes in t1, . . . , nu which have degree d in Gpn;αq. The

fraction of nodes in t1, . . . , nu with degree d in Gpn;αq is then given by

pnpd;αq “
Nnpd;αq

n
.

The next assumption imposes a probabilistic structure on the edge rvs.

Property 2.1. For all α inA and n “ 2, 3, . . ., the set of rvs

$

’

’

&

’

’

%

χnpk, `;αq,
k ‰ `

k, ` P Vn

,

/

/

.

/

/

-

constitutes an exchangeable family.

Property 2.1 implies that the rvs tDn,kpαq, k P Vnu also constitute an ex-

changeable family. Therefore in Gpn;αq there is no ambiguity as to what is the

(nodal) degree distribution because all nodes have the same degree distribution,
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namely that of the rv Dn,1pαq. Further, Property 2.1 guarantees that for each α in A,

and all k, ` in Vn with k ‰ `, it holds that pDn,kpαq, Dn,`pαqq “st pDn,1pαq, Dn,2pαqq.

We construct the collection tGn, n “ 2, 3, . . .u by setting

Gn “ Gpn;α˚nq, n “ 2, 3, . . . (2.27)

where the scaling α˚ : N0 Ñ A is the (usually unique) scaling which ensures the

convergence

Dn,1pα
˚
nq ùñn D (2.28)

for some non-degenerate N-valued rv D. This scaling is often the critical scaling

associated with the emergence of a maximal component. Under these circumstances,

Assumptions 2.1 and 2.2 are automatically satisfied, and only Assumption 2.3 needs

to be verified.

The example of Erdős-Rényi graphs was given earlier. In the following sections

we consider additional examples of random graph models routinely discussed in the

literature. The setting outlined above is used as it applies to these examples : With

λ ą 0,

1. Random key graphs Kpn;K,P q (K ă P in N0) with scalings K˚, P ˚ : N0 Ñ N0

given by pK˚n q
2

P˚n
„ λ

n
[38]; and

2. Geometric random graphs Gpn;αq on a unit square (α ą 0) with scaling

α˚ : N0 Ñ R` given by πpα˚nq
2 „ λ

n
[34].

In each case, it is a simple matter to check that D in (2.28) is a Poisson rv

with parameter λ. We show that the stronger Assumption 2.4 actually holds in both
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cases, as was the case for Erdős-Rényi graphs.

We continue the discussion by imposing additional structure on the generic

setting in order to find conditions under which the stronger Assumption 2.4 might

hold. Fix integers k, ` “ 0, 1, . . . and α in A. For each n “ 2, 3, . . ., such that

maxpk, `q ` 2 ď n, we have the decomposition

P rDn,1pαq “ k,Dn,2pαq “ `s “ P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 0s

` P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 1s .

(2.29)

The second term in (2.29) satisfies the following bound

P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 1s ď P rχnp1, 2;αq “ 1s . (2.30)

Together (2.29) and (2.30) suggest the following assumption, namely

Property 2.2. Under the scaling α˚ : N0 Ñ A satisfying (2.9), it holds that

lim
nÑ8

P rχnp1, 2;α˚nq “ 1s “ 0.

If the above-mentioned property is satisfied, then the second term in (2.29)

can be disregarded in the limit of large n under the appropriate scaling. Let Nn,ipαq

denote the neighbor set of node i in Vn in the graph Gpn;αq, i.e.,

Nn,ipαq “ tj P Vn : χnpi, j;αq “ 1u, i P Vn.
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We can further decompose the first term in (2.29) as

P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 0s

“ P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 0,Nn,1pαq XNn,2pαq “ Hs

` P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 0,Nn,1pαq XNn,2pαq ‰ Hs . (2.31)

Under Property 2.1, we bound the second term in (2.31) as

P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 0,Nn,1pαq XNn,2pαq ‰ Hs

ď P rNn,1pαq XNn,2pαq ‰ Hs

“ P rχnp1, j;αq “ 1, χnp2, j;αq “ 1 for some j “ 3, . . . , ns

ď

n
ÿ

j“3

P rχnp1, j;αq “ 1, χnp2, j;αq “ 1s

“ pn´ 2qP rχnp1, 3;αq “ 1, χnp2, 3;αq “ 1s (2.32)

with the help of a simple union bound. This leads naturally to the next assumption,

namely

Property 2.3. Under the scaling α˚ : N0 Ñ A satisfying (2.9), it holds that

lim
nÑ8

nP rχnp1, 3;α˚nq “ 1, χnp2, 3;α˚nq “ 1s “ 0.

Therefore, if Properties 2.1-2.3 are satisfied, then for each k, ` “ 0, 1, . . ., we

have

lim
nÑ8

P rDn,1pα
˚
nq “ k,Dn,2pα

˚
nq “ `s (2.33)

“ lim
nÑ8

P rDn,1pα
˚
nq “ k,Dn,2pα

˚
nq “ `, χnp1, 2;α˚nq “ 0,Nn,1pα˚nq XNn,2pα˚nq ‰ Hs
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with the understanding that if one of the limits exists, so does the other, and the

limiting values coincide.

As we will see, the presence of the events rχnp1, 2;αq “ 0s and rNn,1pαq X

Nn,2pαq ‰ Hs simplifies the calculations that follow. With integers k, ` “ 0, 1, . . .

pick n “ 2, 3, . . . such that k ` `` 2 ď n, and define the set

Υnp`, kq “
 

pS, T q
ˇ

ˇ S, T Ď Vnzt1, 2u, S X T “ H, |S| “ k, |T | “ `
(

.

Under Property 2.1, for each α in A, we have

P rDn,1pαq “ k,Dn,2pαq “ `, χnp1, 2;αq “ 0,Nn,1pαq XNn,2pαq ‰ Hs

“
ÿ

pS,T qPΥnp`,kq

P rNn,1pαq “ S,Nn,2pαq “ T s

“

ˆ

n´ 2

`` k

˙ˆ

`` k

k

˙

P rNn,1pαq “ S0,Nn,2pαq “ T0s (2.34)

where we have set S0 “ t3, . . . , k ` 2u and T0 “ tk ` 3, . . . , k ` `` 2u.

Note that

P rNn,1pαq “ S0,Nn,2pαq “ T0s

“ P

»

—

—

—

—

—

—

—

—

—

—

–

χnp1, 2;αq “ 0

χnp1, s;αq “ 1, χnp2, s;αq “ 0, s P S0

χnp1, t;αq “ 0, χnp2, t;αq “ 1, t P T0

χnp1, r;αq “ 0, χnp2, r;αq “ 0, r P pS0 Y T0 Y t1, 2uq
c

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.35)

It is easy to see that we cannot proceed further without imposing additional struc-

ture on the underlying random graph model Gpn;αq. Therefore, we shall instead

consider specific examples of random graph models.
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2.6 Random Key Graphs

In this section we introduce a class of random graphs that belong to the class

of random intersection graphs; it is naturally associated with the random key pre-

distribution scheme of Eschenauer and Gligor [19] in the context of wireless sensor

networks. These random graphs have also appeared recently in application areas like

clustering analysis [24, 25] and collaborative filtering in recommender systems [29].

Consider n nodes and a pool of P keys. Each node is assigned a set of K

distinct keys which are selected at random from the pool of P keys (with K ă P ).

Two nodes form a connection if their key rings have at least one key in common. The

resulting notion of adjacency defines the random key graph Kpn;αq on the vertex set

Vn :“ t1, 2, . . . , nu, with the parameter α ” pK,P q. Clearly the parameter space A

is here given by

A ” tpK,P q : K,P P N0, K ă P u.

Conditions on n, K and P have been sought under which the random key graph

Kpn;αq exhibits a non-trivial degree distribution. In [38], the authors show that if

the parameters K˚, P ˚ : N0 Ñ N0 are scaled such that

pK˚
nq

2

P ˚n
„
λ

n
, (2.36)

the asymptotic nodal degree distribution is the Poisson pmf pλ “ tpλpdq, d “

0, 1, . . .u with parameter λ. Under this scaling we shall show that weak asymptotic

independence in the sense of (2.8) holds for the random key graphs. In fact, we shall

prove something stronger – the pairwise asymptotic independence of the degree rvs
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in the usual sense.

Throughout it is convenient to assume that the keys are labeled 1, . . . , P . For

each node i “ 1, . . . , n, let Kn,ipαq denote the random set of K distinct keys assigned

to node i. Let PK denote the collection of all subsets of t1, . . . , P u which contain

exactly K elements. The rvs Kn,1pαq, . . . , Kn,npαq are assumed to be i.i.d. rvs, each

of which is distributed uniformly over PK according to

P rKn,ipαq “ Ss “

ˆ

P

K

˙´1

, S P PK .

With this notation, distinct nodes i, j “ 1, 2, . . . , n are seen to be adjacent if,

Kn,ipαq XKn,jpαq ‰ H.

It is easy to check that

P rKn,ipαq XKn,jpαq “ Hs “ qpαq

with

qpαq “

$

’

’

&

’

’

%

0 if P ă 2K

pP´KK q

pPKq
if 2K ď P.

(2.37)

Expression (2.37) is a simple consequence of the fact that

P rS XKn,ipαq “ Hs “

$

’

’

&

’

’

%

0 if |S| ą P ´K

pP´|S|K q

pPKq
if |S| ď P ´K

for any subset S of t1, . . . , P u. Thus, with

χnpi, j;αq “ 1 rKn,ipαq XKn,jpαq ‰ Hs

under the generic setting, the probability of edge occurrence in Kpn;αq is given by

P rχnpi, j;αq “ 1s “ 1´ qpαq. (2.38)
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For each i in Vn, it is plain that

Dn,ipαq “
ÿ

jPVn,j‰i

1 rKn,ipαq XKn,jpαq ‰ Hs .

Now we consider a sequence of random key graphs tKpn;α˚nq, n “ 2, 3, . . .u with

α˚n ” pK
˚
n , P

˚
n q such that (2.36) is satisfied.

Theorem 2.4. For the class of random key graphs, under the scaling α˚ : N0 Ñ A

satisfying (2.36), we have

lim
nÑ8

P rDn,1pα
˚
nq “ k,Dn,2pα

˚
nq “ `s “ pλpkqpλp`q, k, ` “ 0, 1, . . . (2.39)

where the pmf pλ “ ppλpdq, d “ 0, 1, . . .q is the Poisson pmf on N with parameter

λ.

Theorem 2.4 is established in Section 2.9, and yields a stronger form of inde-

pendence compared to what is required for Assumption 2.3. Assumptions 2.1-2.3

therefore hold for the random key graphs under the aforementioned scaling. This

leads to the following corollary.

Corollary 2.5. For the class of random key graphs, under the scaling α˚ : N0 Ñ A

satisfying (2.36), we have

Nnpd;α˚nq

|Vn|
P
ÝÑn pλpdq, d “ 0, 1, . . . (2.40)

where the pmf pλ “ ppλpdq, d “ 0, 1, . . .q is the Poisson pmf on N with parameter

λ.
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2.7 Random Geometric Graphs

Next, we introduce a class of random graphs which is often considered to be

a relevant model for (ad-hoc) wireless sensor networks [20, 35]: Consider n nodes

which are assumed to be placed uniformly at random on the square r0, 1s2. With set

of nodes Vn “ t1, . . . , nu, let the position of node i in Vn be denoted as Zi “ pXi, Yiq.

Distinct nodes i, j “ 1, 2, . . . , n are said to be adjacent if the distance between them

is less than some α ą 0. If d : R2 ˆ R2 Ñ R denotes the (Euclidean) distance on

R2, distinct nodes i and j are then adjacent if

dpZi,Zjq ď α.

According to the notation developed in Section 2.5, with distinct nodes i, j “

1, . . . , n, we have

χnpi, j;αq “ 1 rdpZi,Zjq ď αs .

This defines the random geometric graph Gpn;αq on the vertex set Vn. This time,

for each i in Vn, we have

Dn,ipαq “
ÿ

jPVn,j‰i

1 rdpZi,Zjq ď αs .

Under the scaling α˚ : N0 Ñ R` such that

πpα˚nq
2
„
λ

n
, (2.41)

the asymptotic nodal degree distribution can be shown to be the Poisson pmf pλ “

tpλpdq, d “ 0, 1, . . .u on N with parameter λ. Under this scaling we will show that

weak asymptotic independence holds in the sense of (2.8). As was done for random
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key graphs, we prove the stronger pairwise asymptotic independence of the degree

rvs in the usual sense.

Theorem 2.6. For the class of random geometric graphs, under the scaling α˚ :

N0 Ñ R` satisfying (2.41), we have

lim
nÑ8

P rDn,1pα
˚
nq “ k,Dn,2pα

˚
nq “ `s “ pλpkqpλp`q, k, ` P N, (2.42)

where the pmf pλ “ ppλpdq, d “ 0, 1, . . .q is the Poisson pmf on N with parameter

λ.

We prove Theorem 2.6 in Section 2.10. This result is analogous to Theorem

2.4 for random key graphs, and here as well, implies convergence of the empirical

degree distribution.

Corollary 2.7. For the class of random geometric graphs, under the scaling α˚ :

N0 Ñ R` satisfying (2.41), we have

Nnpd;α˚nq

|Vn|
P
ÝÑn pλpdq, d “ 0, 1, . . . (2.43)

where the pmf pλ “ ppλpdq, d “ 0, 1, . . .q is the Poisson pmf on N with parameter

λ.

2.8 Proofs of Propositions 2.1 and 2.2

We begin with a preliminary technical lemma.

Lemma 2.8. If Assumptions 2.1-2.2 hold, then we have

lim
nÑ8

E

«

ˇ

ˇ

ˇ

ˇ

Nnpdq

|Vn|
´ ppdq

ˇ

ˇ

ˇ

ˇ

2
ff

“ lim
nÑ8

Covr1 rDn,1 “ ds ,1 rDn,2 “ dss (2.44)
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for each d “ 0, 1, . . ., with the understanding that if one of the limits exists, so does

the other and the limiting values coincide.

Proof. Fix n “ 2, 3, . . . and d “ 0, 1, . . .. By standard properties of the variance,

we note that

E

«

ˇ

ˇ

ˇ

ˇ

Nnpdq

|Vn|
´ ppdq

ˇ

ˇ

ˇ

ˇ

2
ff

“ Var

„

Nnpdq

|Vn|



`

ˆ

E
„

Nnpdq

|Vn|



´ ppdq

˙2

“
Var rNnpdqs

|Vn|2
`

ˆ

E
„

Nnpdq

|Vn|



´ ppdq

˙2

. (2.45)

Proceeding in the usual manner, we use the definition of the rv Nnpdq to obtain

the expressions

E rNnpdqs “
ÿ

kPVn

P rDn,k “ ds

and

Var rNnpdqs “
ÿ

kPVn

Var r1 rDn,k “ dss `
ÿ

k,`PVn: k‰`

Cov r1 rDn,k “ ds ,1 rDn,` “ dss

by the binary nature of the involved rvs. Under Assumption 2.1, these expressions

imply

E
„

Nnpdq

|Vn|



“
E rNnpdqs

|Vn|
“ P rDn,1 “ ds (2.46)

and

Var rNnpdqs “ |Vn|Var r1 rDn,1 “ dss ` |Vn|p|Vn| ´ 1q ¨ Cov r1 rDn,1 “ ds ,1 rDn,2 “ dss ,

respectively. Collecting terms we then conclude that

E

«

ˇ

ˇ

ˇ

ˇ

Nnpdq

|Vn|
´ ppdq

ˇ

ˇ

ˇ

ˇ

2
ff

“ pP rDn,1 “ ds ´ ppdqq2 `
Var r1 rDn,1 “ dss

|Vn|

`
|Vn| ´ 1

|Vn|
¨ Cov r1 rDn,1 “ ds ,1 rDn,2 “ dss .(2.47)
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Let n go to infinity in (2.47): Assumption 2.2 implies

lim
nÑ8

P rDn,1 “ ds “ ppdq, (2.48)

whereas

lim
nÑ8

Var r1 rDn,1 “ dss

|Vn|
“ 0

always holds, and the equivalence of the limits at (2.44) immediately follows. �

It is worth pointing out that under Assumptions 2.1-2.2, the arguments just

given also show that

lim inf
nÑ8

Cov r1 rDn,1 “ ds ,1 rDn,2 “ dss ě 0. (2.49)

2.8.1 A proof of Proposition 2.1

Fix d “ 0, 1, . . .. With ε ą 0, Tchebychev’s inequality gives

P
„
ˇ

ˇ

ˇ

ˇ

Nnpdq

|Vn|
´ ppdq

ˇ

ˇ

ˇ

ˇ

ą ε



ď
1

ε2
¨ E

«

ˇ

ˇ

ˇ

ˇ

Nnpdq

|Vn|
´ ppdq

ˇ

ˇ

ˇ

ˇ

2
ff

, n “ 2, 3, . . . (2.50)

and the convergence (2.43) will be established if we show

lim
nÑ8

E

«

ˇ

ˇ

ˇ

ˇ

Nnpdq

|Vn|
´ ppdq

ˇ

ˇ

ˇ

ˇ

2
ff

“ 0.

By virtue of Lemma 2.8 this is equivalent to having

lim
nÑ8

Cov r1 rDn,1 “ ds ,1 rDn,2 “ dss “ 0,

and the proof of Proposition 2.1 is now complete since this limiting condition coin-

cides with the enforced Assumption 2.3. �
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2.8.2 A proof of Proposition 2.2

Fix d “ 0, 1, . . ., and assume that the convergence

Nnpdq

|Vn|
P
ÝÑn Lpdq (2.51)

indeed takes place for some constant Lpdq in R. Then, it is also the case that

lim
nÑ8

E
„

Nnpdq

|Vn|



“ Lpdq (2.52)

by the Bounded Convergence Theorem. The relation (2.46) (seen earlier to hold

under Assumption 2.1) and Assumption 2.2 together imply

lim
nÑ8

E
„

Nnpdq

|Vn|



“ lim
nÑ8

P rDn,1 “ ds “ ppdq. (2.53)

Comparing (2.52) and (2.53) yields Lpdq “ ppdq.

Note that (2.51) (necessarily with Lpdq “ ppdq under the assumed conditions)

occurs if and only if

Nnpdq

|Vn|
L2

Ñ n ppdq. (2.54)

This is because convergence in probability and L2-convergence are equivalent for

uniformly bounded rvs. The latter being equivalent to

lim
nÑ8

E

«

ˇ

ˇ

ˇ

ˇ

Nnpdq

|Vn|
´ ppdq

ˇ

ˇ

ˇ

ˇ

2
ff

“ 0,

we get

lim
nÑ8

Cov r1 rDn,1 “ ds ,1 rDn,2 “ dss “ 0

by a final appeal to Lemma 2.8. This completes the proof of Proposition 2.2. �
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2.9 A proof of Theorem 2.4

Before commencing the proof we state a few preliminary results.

2.9.1 Some well known results

We state two lemmas which present simple bounds. The details of the first

lemma can be found in [38].

Lemma 2.9. For positive integers K,L and P such that K ` L ď P , we have

ˆ

1´
L

P ´K

˙K

ď

`

P´L
K

˘

`

P
K

˘ ď

ˆ

1´
L

P

˙K

. (2.55)

This lemma directly leads to the following bounds.

Lemma 2.10. With positive integers K,L and P such that K ` L ď P , we have

1´ e´
LK
P ď 1´

`

P´L
K

˘

`

P
K

˘ ď
LK

P ´K
. (2.56)

Proof. Lemma 2.9 yields the bounds

1´ e´
LK
P ď 1´

`

P´L
K

˘

`

P
K

˘ ď 1´

ˆ

1´
L

P ´K

˙K

.

The upper bound in (2.56) follows by noting that

1´

ˆ

1´
L

P ´K

˙K

“

ż 1

1´ L
P´K

KtK´1dt ď
LK

P ´K
.

�
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It is worth mentioning that the proof given above is based on a proof given

in [38, p. 2988].

Corollary 2.11. For any scaling P,K : N0 Ñ N0 and any sequence L : N0 Ñ N0

such that Kn ` Ln ă Pn for all n “ 1, 2, . . ., it holds that

1´

`

Pn´Ln
Kn

˘

`

Pn
Kn

˘ „
LnKn

Pn
(2.57)

if and only if

lim
nÑ8

LnKn

Pn
“ 0. (2.58)

Proof. From Lemma 2.10, we obtain

1´ e´
LnKn
Pn ď 1´

`

Pn´Ln
Kn

˘

`

Pn
Kn

˘ ď
LnKn

Pn ´Kn

, n “ 1, 2, . . . (2.59)

provided Kn ` Ln ą Pn. Multiply (2.59) by Pn
LnKn

and let n go to infinity in the

resulting set of inequalities. Under (2.58), we get

lim
nÑ8

Pn
LnKn

¨

´

1´ e´
LnKn
Pn

¯

“ 1

from the elementary fact limtÑ0`
1´e´t

t
“ 1, while

lim
nÑ8

Pn
LnKn

¨
LnKn

Pn ´Kn

“ lim
nÑ8

Pn
Pn ´Kn

“ 1

by virtue of (2.58) (as it implies limnÑ8
Kn
Pn
“ 0). The asymptotic equivalence (2.57)

follows.

�
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Fix a positive integer c. Under the scaling (2.36), there exists n0pcq such that,

pc` 1qK˚
n ă P ˚n

for all n ě n0pcq and Corollary 2.11 yields

1´

`

P˚n´cK
˚
n

K˚n

˘

`

P˚n
K˚n

˘
„
cpK˚

nq
2

P ˚n
. (2.60)

2.9.2 The proof

Previously in Section 2.5, we examined a generic method for establishing the

asymptotic independence of degree rvs required by Assumption 2.4. Before we can

proceed further, we first need to show that Properties 2.1-2.3 are satisfied for random

key graphs.

It is clear that Property 2.1 holds for the model. For n “ 2, 3, . . . and P,K ą 0

such that 2K ď P , we have from (2.38),

P rχnp1, 2;αq “ 1s “ 1´ qpαq “ 1´

ˆ

P ´K

K

˙

(2.61)

where α ” pK,P q. Under the scaling α˚ : N0 Ñ A satisfying (2.36), we have

lim
nÑ8

P rχnp1, 2;α˚nq “ 1s “ lim
nÑ8

P rKn,1pα
˚
nq XKn,2pα

˚
nq ‰ Hs “ 0 (2.62)

as we use (2.60) (with c “ 1). This implies that Property 2.2 is satisfied under

this scaling. Next, we show that Property 2.3 also holds under the aforementioned
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scaling. For α ” pK,P q in A such that 2K ď P , and n “ 3, 4, . . ., we find

nP rχnp1, 3;αq “ 1, χnp2, 3;αq “ 1s

“ nP rKn,1pαq XKn,3pαq ‰ H, Kn,2pαq XKn,3pαq ‰ Hs

“ nE
”

`

P rKn,1pαq X S ‰ Hs
2
˘

S“Kn,3pαq

ı

“ n

˜

1´

`

P´K
K

˘

`

P
K

˘

¸2

.

Under the scaling satisfying (2.36), by setting c “ 1 in (2.60) we conclude that

Property 2.3 is indeed satisfied.

Since Properties 2.1-2.3 hold for random key graphs, the equivalence (2.33)

holds. Therefore, continuing from (2.35), for α in A, all k, ` “ 0, 1, . . . and n “

2, 3, . . . such that n ą k ` `` 2, we find

P rNn,1pαq “ S0,Nn,2pαq “ T0s

“ P

»

—

—

—

—

—

—

—

—

—

—

–

χnp1, 2;αq “ 0

χnp1, s;αq “ 1, χnp2, s;αq “ 0, s P S0

χnp1, t;αq “ 0, χnp2, t;αq “ 1, t P T0

χnp1, r;αq “ 0, χnp2, r;αq “ 0, r P pS0 Y T0 Y t1, 2uq
c

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ P

»

—

—

—

—

—

—

—

—

—

—

–

Kn,1pαq XKn,2pαq “ H

Kn,1pαq XKn,spαq ‰ H, Kn,2pαq XKn,spαq “ H, s P S0

Kn,1pαq XKn,tpαq “ H, Kn,2pαq XKn,tpαq ‰ H, t P T0

Kn,1pαq XKn,rpαq “ H, Kn,2pαq XKn,rpαq “ H, r P pS0 Y T0 Y t1, 2uq
c

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.63)

with S0 “ t3, . . . , k ` 2u and T0 “ tk ` 3, . . . , k ` `` 2u.
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To help deal with (2.63), with R and S given in PK , we define the events

E1,npR, S;αq “ rR XKn,spαq ‰ H, S XKn,spαq “ H, s P S0s ,

E2,npR, S;αq “ rR XKn,tpαq “ H, S XKn,tpαq ‰ H, t P T0s ,

and

E3,npR, S;αq “ rR XKn,rpαq “ H, S XKn,rpαq “ H, r P Vnz pt1, 2u Y S0 Y T0qs .

Expressing (2.63) in terms of the events defined above, we see that

P rNn,1pαq “ S0,Nn,2pαq “ T0s

“ E
“

1 rKn,1pαq XKn,2pαq “ Hs

ˆ P
“

E1,npR, S;αq X E2,npR, S;αq X E3,npR, S;αq
ˇ

ˇKn,1pαq, Kn,2pαq
‰

Kn,1pαq“R,Kn,2pαq“S

‰

“ E
”

1 rKn,1pαq XKn,2pαq “ Hs

ˆ pP rE1,npR, S;αqsP rE2,npR, S;αqsP rE3,npR, S;αqsqR“Kn,1pαq,S“Kn,2pαq

ı

.

(2.64)

For R and S in PK such that RX S “ H, and α ” pK,P q in A such that 3K ď P ,

we obtain

P rE1,npR, S;αqs “ P rR XKn,jpαq ‰ H, S XKn,jpαq “ H, j P S0s

“ P rR XKn,3pαq ‰ H, S XKn,3pαq “ Hs
k

“ pP rS XKn,3pαq “ Hs ´ P rR XKn,3pαq “ H, S XKn,3pαq “ Hsq
k

“

˜

`

P´K
K

˘

`

P
K

˘ ´

`

P´2K
K

˘

`

P
K

˘

¸k

“

«

`

P´K
K

˘

`

P
K

˘

˜

1´

`

P´2K
K

˘

`

P´K
K

˘

¸ffk

, (2.65)
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and

P rE2,npR, S;αqs “

«

`

P´K
K

˘

`

P
K

˘

˜

1´

`

P´2K
K

˘

`

P´K
K

˘

¸ff`

. (2.66)

Similarly, we obtain

P rE3,npR, S;αqs “ P rR XKn,3pαq “ H, S XKn,3pαq “ Hs
n´2´k´`

“

˜

`

P´2K
K

˘

`

P
K

˘

¸n´2´k´`

. (2.67)

Substituting (2.65), (2.66) and (2.67) into (2.64) yields

P rNn,1pαq “ S0,Nn,2pαq “ T0s

“

«

`

P´K
K

˘

`

P
K

˘

˜

1´

`

P´2K
K

˘

`

P´K
K

˘

¸ffk``˜`

P´2K
K

˘

`

P
K

˘

¸n´2´k´`

P rKn,1pαq XKn,2pαq “ Hs .

(2.68)

Next, we study the asymptotics of the individual terms in (2.68) under the

scaling satisfying (2.36): Investigating the first term in (2.68), we observe

`

P˚n´K
˚
n

K˚n

˘

`

P˚n
K˚n

˘

˜

1´

`

P˚n´2K˚n
K˚n

˘

`

P˚n´K
˚
n

K˚n

˘

¸

“

˜

1´

`

P˚n´2K˚n
K˚n

˘

`

P˚n´K
˚
n

K˚n

˘

¸

´

˜

1´

`

P˚n´K
˚
n

K˚n

˘

`

P˚n
K˚n

˘

¸˜

1´

`

P˚n´2K˚n
K˚n

˘

`

P˚n´K
˚
n

K˚n

˘

¸

. (2.69)

From equation (2.60) (with c “ 1), we obtain

lim
nÑ8

n

˜

1´

`

P˚n´K
˚
n

K˚n

˘

`

P˚n
K˚n

˘

¸

“ λ (2.70)

and

lim
nÑ8

n

˜

1´

`

P˚n´2K˚n
K˚n

˘

`

P˚n´K
˚
n

K˚n

˘

¸

“ λ (2.71)

where the latter follows by substituting Pn “ P ˚n ´ K˚
n , Kn “ K˚

n in (2.60) and

using the fact that limnÑ8
K˚n
P˚n
“ 0. Expression (2.70) and (2.71) when substituted
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in (2.69) yields

lim
nÑ8

n

«
`

P˚n´K
˚
n

K˚n

˘

`

P˚n
K˚n

˘

˜

1´

`

P˚n´2K˚n
K˚n

˘

`

P˚n´K
˚
n

K˚n

˘

¸ff

“ λ. (2.72)

Next, we state a simple result to be used later.

Lemma 2.12. If for a sequence a : NÑ R there exists a˚ in R such that

lim
nÑ8

nan “ a˚,

then

lim
nÑ8

p1` anq
n`b

“ ea
˚

, b P R.

From (2.60) (with c “ 2), under the scaling satisfying (2.36), we obtain

lim
nÑ8

n

˜

1´

`

P˚n´2K˚n
K˚n

˘

`

P˚n
K˚n

˘

¸

“ 2λ. (2.73)

Returning to (2.67), we can write

˜
`

P˚n´2K˚n
K˚n

˘

`

P˚n
K˚n

˘

¸n´2´k´`

“

«

1´

˜

1´

`

P˚n´2K˚n
K˚n

˘

`

P˚n
K˚n

˘

¸ffn´2´k´`

,

and Lemma 2.12 now yields

lim
nÑ8

˜
`

P˚n´2K˚n
K˚n

˘

`

P˚n
K˚n

˘

¸n´2´k´`

“ e´2λ (2.74)

with the help of (2.73). Applying the asymptotic results (2.62), (2.72) and (2.74),

we get from (2.68) that

lim
nÑ8

nk``P rNn,1pα˚nq “ S0,Nn,2pα˚nq “ T0s “ λk``e´2λ.
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This last relation readily leads to

lim
nÑ8

P rDn,1pα
˚
nq “ k,Dn,2pα

˚
nq “ `s “

ˆ

λk

k!
e´λ

˙ˆ

λ`

`!
e´λ

˙

“ pλpkqpλp`q.

upon using (2.33) and (2.34). �

2.10 A proof of Theorem 2.6

First, we define a number of events to be used in the proof of Theorem 2.6,

and compute their asymptotic probabilities under the appropriate scaling α˚.

2.10.1 Preliminaries

Fix n “ 2, 3, . . . and 0 ă α ă 1
2
. We find it useful to define the set of points

Anpαq “ tpX, Y q | α ă X ă 1´ α, α ă Y ă 1´ αu.

For each i in Vn, we find it useful to define the event

En,ipαq “ rpXi, Yiq P Anpαqs .

It is easy to see that

P rEn,ipαqs “ p1´ 2αq2. (2.75)

On this event a particular node is at least distance α away from the borders of the

square r0, 1s2. Next we define the event where a pair of nodes (say nodes 1 and 2)

are at least distance 2α apart from each other, namely

Ẽnpαq “ rdpZ1,Z2q ą 2αs .
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Using simple arguments we obtain the following lower bound

P
”

Ẽnpαq
ı

“ P rdpZ1,Z2q ą 2αs

“ E
“

P
“

dpZ1,Z2q ą 2α
ˇ

ˇZ1

‰‰

ě 1´ 4πα2. (2.76)

For 0 ă α ă 1
2
, define the event Enpαq “ En,1pαq X En,2pαq X Ẽnpαq. Under the

scaling α˚ : N0 Ñ R` satisfying (2.41), we obtain

lim
nÑ8

P rEnpα˚nqs “ 1 (2.77)

since

lim
nÑ8

P rEn,jpα˚nqs “ 1, j “ 1, 2, and

lim
nÑ8

P
”

Ẽnpα
˚
nq

ı

“ 1.

2.10.2 The proof

First, we note that random geometric graphs satisfy Property 2.1. For 0 ă

α ă 1
2

and n “ 2, 3, . . ., it is plain that

P rχnp1, 2;αq “ 1s “ P r|Z1 ´Z2| ď αs ď πα2
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and Property 2.2 is therefore satisfied under the scaling specified in (2.41). Again,

for α in A and n “ 2, 3, . . ., we have

nP rχnp1, 3;αq “ 1, χnp2, 3;αq “ 1s “ nP r|Z1 ´Z3| ď α, |Z2 ´Z3| ď αs

“ nE
”

pP r|Z1 ´ x| ď α, |Z2 ´ x| ď αsq
x“Z3

ı

“ nE
”

pP r|Z1 ´ x| ď αs2q
x“Z3

ı

ď n ¨ pπα2
q
2

and Property 2.3 is satisfied under the scaling α˚. Properties 2.1-2.3 being satisfied,

the equivalence (2.33) is valid for random geometric graphs. Continuing from (2.35),

for 0 ă α ă 1
2
, all k, ` “ 0, 1, . . . and n “ 2, 3, . . . such that n ą k ` `` 2, we get

P rNn,1pαq “ S0,Nn,2pαq “ T0s

“ P

»

—

—

—

—

—

—

—

—

—

—

–

χnp1, 2;αq “ 0

χnp1, s;αq “ 1, χnp2, s;αq “ 0, s P S0

χnp1, t;αq “ 0, χnp2, t;αq “ 1, t P T0

χnp1, r;αq “ 0, χnp2, r;αq “ 0, r P pS0 Y T0 Y t1, 2uq
c

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ P

»

—

—

—

—

—

—

—

—

—

—

–

|Z1 ´Z2| ą α

|Z1 ´Zs| ď α, |Z2 ´Zs| ą α, s P S0

|Z1 ´Zt| ą α, |Z2 ´Zt| ď α, t P T0

|Z1 ´Zr| ą α, |Z2 ´Zr| ą α, r P pS0 Y T0 Y t1, 2uq
c

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.78)

with S0 “ t3, . . . , k ` 2u and T0 “ tk ` 3, . . . , k ` `` 2u as before.
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To help deal with (2.78), we define the events

E 11,npx,y;αq “ r|x´Zs| ď α, |y ´Zs| ą α, s P S0s ,

E 12,npx,y;αq “ r|x´Zt| ą α, |y ´Zt| ď α, t P T0s ,

and

E 13,npx,y;αq “ r|y ´Zr| ą α, |y ´Zr| ą α, r P pS0 Y T0 Y t1, 2uq
c
s (2.79)

for x,y in p0, 1q2. We decompose (2.78) further by writing

P rNn,1pαq “ S0,Nn,2pαq “ T0s (2.80)

“ P rNn,1pαq “ S0,Nn,2pαq “ T0, Enpαqs ` P rNn,1pαq “ S0,Nn,2pαq “ T0, Enpαq
c
s .

Writing the first term in (2.80) in terms of the events defined above, we obtain

P rNn,1pαq “ S0,Nn,2pαq “ T0, Enpαqs

“ E
”

1 rEnpαqs
`

P
“

E 11,npx,y;αq
‰

P
“

E 12,npx,y;αq
‰

P
“

E 13,npx,y;αq
‰˘

x“Z1,y“Z2

ı

.

(2.81)

Observe that under the event En,1pαq, we can draw a circle of radius α centered at

node 1 which is completely contained within the square r0, 1s2, implying that the

probability of an edge forming between node 1 and any node s in S0 is πα2. Also,

under the event Ẽnpαq any node connected to node 1 cannot be connected to node

2. Thus, for x,y in Anpαq such that dpx,yq ą 2α, we have

P
“

E 11,npx,y;αq
‰

“ P r|x´Zs| ď α, |y ´Zs| ą α, s P S0s

“ P r|x´Z3| ď α, |y ´Z3| ą αsk

“
`

πα2
˘k

(2.82)
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and

P
“

E 12,npx,y;αq
‰

“
`

πα2
˘`
. (2.83)

Under the event Enpαq, circles of radius α centred at x and y do not intersect.

Therefore the probability that a particular node does not connect to either node 1

or node 2 is given by p1 ´ 2πα2q. Hence, for x,y in Anpαq such that dpx,yq ą 2α,

we have

P
“

E 13,npx,y;αq
‰

“ P r|y ´Zr| ą α, |y ´Zr| ą α, r P pS0 Y T0 Y t1, 2uq
c
s

“ P r|y ´Zk```3| ą α, |y ´Zk```3| ą αsn´2´k´`

“ p1´ 2πα2
q
n´2´k´`. (2.84)

Furthermore, for all x,y in r0, 1s2, we have the following upper bound

P
“

E 11,npx,y;αq
‰

“ P r|x´Zs| ď α, |y ´Zs| ą α, s P S0s

ď P r|x´Zs| ď α, s P S0s

ď
`

πα2
˘k

(2.85)

and

P
“

E 12,npx,y;αq
‰

ď
`

πα2
˘`
. (2.86)

Using (2.82),(2.83) and (2.84) on (2.81), we obtain

P rNn,1pαq “ S0,Nn,2pαq “ T0, Enpαqs “ pπα
2
q
k``
p1´ 2πα2

q
n´2´k´`P rEnpαqs .

(2.87)

Under the scaling α˚ satisfying (2.41), we obtain

lim
nÑ8

nk``P rNn,1pα˚nq “ S0,Nn,2pα˚nq “ T0, Enpα
˚
nqs “ λk``e´2λ (2.88)
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upon using Lemma 2.12 and (2.77). The bounds (2.85) and (2.86) allow us to bound

the second term in (2.80) as

P rNn,1pαq “ S0,Nn,2pαq “ T0, Enpαq
c
s

“ E
”

1 rEnpαq
c
s
`

P
“

E 11,npx,y;αq
‰

P
“

E 12,npx,y;αq
‰

P
“

E 13,npx,y;αq
‰˘

x“Z1,y“Z2

ı

ď E
”

1 rEnpαq
c
s
`

P
“

E 11,npx,y;αq
‰

P
“

E 12,npx,y;αq
‰˘

x“Z1,y“Z2

ı

ď pπα2
q
k``P rEnpαqcs ,

whence

lim
nÑ8

nk``P rNn,1pα˚nq “ S0,Nn,2pα˚nq “ T0, Enpα
˚
nq
c
s “ 0 (2.89)

by virtue of (2.77). Returning to (2.80) and using (2.88) and (2.89), we obtain

lim
nÑ8

nk``P rNn,1pα˚nq “ S0,Nn,2pα˚nq “ T0s “ λk``e´2λ. (2.90)

Substituting into (2.34) and using the equivalence step (2.33), we obtain

lim
nÑ8

P rDn,1pα
˚
nq “ k,Dn,2pα

˚
nq “ `s “

ˆ

λk

k!
e´λ

˙ˆ

λ`

`!
e´λ

˙

“ pλpkqpλp`q.

�
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Chapter 3: A Counterexample: Random Threshold Graphs

In the previous chapter, we introduced a generic framework for studying the

degree distributions of random graphs. We identified a set of necessary and sufficient

conditions under which the network-wide (empirical) degree distribution coincides

with the nodal degree distribution in the large graph limit. We also demonstrated

three instances of homogeneous graphs where these conditions are satisfied, namely

Erdős-Rényi graphs, random key graphs and random geometric graphs.

In the present chapter, we give a counterexample to show that even in homo-

geneous graphs, the empirical degree distribution and the nodal degree distribution

may capture vastly different information. This counterexample is found in the class

of random threshold graphs, where the empirical degree distribution does not con-

verge in the usual sense even though the asymptotic nodal degree distribution exists.

3.1 The model

As discussed earlier in Chapter 1, Caldarelli et al. [9] proposed the class of ran-

dom threshold graphs as capable of achieving scale-free degree distribution without

the notion of preferential attachment [2]. It belongs to the broader class of hid-

den variable models where connections are formed on the basis of fitness variables
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associated with individual nodes. The random threshold graph model is based on

the notion that connections between nodes are driven by mutual benefit based on

intrinsic attributes, and is realized as follows – Two nodes form a connection if the

sum of their fitness variables exceeds a certain threshold.

We now formally introduce the model: Let tξ, ξk, k “ 1, 2, . . .u denote a

collection of i.i.d. R`-valued rvs defined on the probability triple pΩ,F ,Pq, each

distributed according to a given (probability) distribution function F : R Ñ r0, 1s.

1 With ξ acting as a generic representative for this sequence of i.i.d. rvs, we have

P rξ ď xs “ F pxq, x P R.

At minimum we assume that F is a continuous function on R with

F pxq “ 0, x ď 0.

Once F is specified, random thresholds graphs are characterized by two pa-

rameters, namely a positive integer n and a threshold value α ą 0. Specifically, the

network comprises n nodes, labelled k “ 1, . . . , n, and to each node k we assign a

fitness variable (or weight) ξk which measures its importance or rank. For distinct

i, j “ 1, . . . , n, nodes i and j are declared to be adjacent if

ξi ` ξj ą α, (3.1)

i.e.,

χnpi, j;αq “ 1 rξi ` ξj ą αs

1What we call here a probability distribution function is also called a cumulative distribution

function in other literatures.
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according to the notation developed in Section 2.1. The adjacency notion (3.1)

defines the random threshold graph Tpn;αq on the set of vertices Vn “ t1, . . . , nu.

For each n “ 1, 2, . . ., and each α ą 0, we set

Dn,kpαq “
n
ÿ

`“1, `‰k

1 rξk ` ξ` ą αs , k “ 1, . . . , n

so that Dn,kpαq is the degree of node k in Tpn;αq. Under the enforced assump-

tions, the rvs Dn,1pαq, . . . , Dn,npαq are exchangeable, thus equidistributed. Further-

more, the edge rvs

$

’

’

&

’

’

%

χnpi, j;αq,
i ‰ j

i, j P Vn

,

/

/

.

/

/

-

constitute an exchangeable family,

i.e., Property 2.1 is satisfied.

3.1.1 Applying Proposition 2.1 under exponential fitness

From now on we focus on the special case when ξ is exponentially distributed

with parameter λ ą 0, written ξ „ Exppλq, that is

P rξ ď xs “ 1´ e´λx
`

, x P R. (3.2)

Here we use the standard notation x` “ maxpx, 0q for x in R. Other distributions

could be considered to develop counterexamples to Proposition 2.1. However, the

exponential distribution was selected for two main reasons: This case was considered

in [9, 22, 37] to show that scale-free networks can be generated through the fitness-

based mechanism used in random threshold graphs; more on that later. Moreover,

calculations are greatly simplified in the exponential case.

Fujihara et al. [22, Example 1, p. 366] showed that under the scaling α‹ :
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N0 Ñ R` given by

α‹n “ λ´1 log n, n “ 2, 3, . . . . (3.3)

with the understanding that

Gn “ Tpn;α˚nq, n “ 2, 3, . . .

we have the following distributional convergence Dn,1pα
˚
nq ùñn D where the N-

valued rv D is a conditionally Poisson rv with pmf pFuj “ ppFujpdq, d “ 0, 1, . . .q

given by

pFujpdq “ P rD “ ds “ E
„

peλξqd

d!
e´e

λξ



, d “ 0, 1, . . . (3.4)

Therefore, Assumption 2.2 holds with

lim
nÑ8

P rDn,1pα
˚
nq “ ds “ pFujpdq, d “ 0, 1, . . . (3.5)

Hence, we are in the generic setting of Section 2.5. One way to prove Assump-

tion 2.4 would be to first show that Properties 2.1-2.3 hold. While we have already

argued that Property 2.1 is satisfied, the following result states that in the present

context Property 2.2 holds whereas Property 2.3 does not.

Proposition 3.1. Consider the class of random threshold graphs with ξ „ Exppλq

for some λ ą 0. Under the scaling α˚ : N0 Ñ R` given by (3.3), Property 2.2 holds

whereas Property 2.3 does not.
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Proof. For a fixed α ą 0, and n “ 2, 3, . . ., we get

P rξ1 ` ξ2 ą αs “ E
”

pP rξ2 ą α ´ tsqt“ξ1

ı

“ E r1 rξ1 ą αss ` E
”

1 rξ1 ď αs pP rξ2 ą α ´ tsqt“ξ1

ı

“ P rξ1 ą αs ` E
“

1 rξ1 ď αs e´λpα´ξ1q
‰

“ e´λα
“

1` E
“

1 rξ1 ď αs eλξ1
‰‰

“ e´λα p1` αλq

by easy calculation, and Property 2.2 clearly holds under the scaling α˚ satisfying

(3.3).

For a fixed α ą 0, and n “ 3, 4, . . ., we now see that

P rξ1 ` ξ3 ą α, ξ2 ` ξ3 ą αs

“ E r1 rξ3 ą αss ` E
”

1 rξ3 ď αs
`

P rξ1 ą α ´ ts2
˘

t“ξ3

ı

“ P rξ3 ą αs ` E
“

1 rξ3 ď αs e´2λpα´ξ3q
‰

“ e´λα ` e´2λα
¨ E

“

1 rξ3 ď αs e2λξ3
‰

“ e´λα ` e´2λα

ż α

0

λe´λye2λydy

“ e´λα
`

2´ e´λα
˘

.

Under the scaling α˚ given by (3.3), we conclude

lim
nÑ8

nP rξ1 ` ξ3 ą α˚n, ξ2 ` ξ3 ą α˚ns “ 2,

so that Property 2.3 does not hold. �

Therefore the approach formulated in Section 2.5 using the step (2.33) is not

applicable here. Hence, we are left with no choice but to directly test the validity
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of the weaker Assumption 2.3. The remainder of the chapter is devoted to showing

that the weaker Assumption 2.3 actually fails.

Proposition 3.2. Consider the class of random threshold graphs with ξ „ Exppλq

for some λ ą 0. Under the scaling α˚ : N0 Ñ R` given by (3.3), the limit

Cpdq ” lim
nÑ8

Covr1 rDn,1pα
‹
nq “ ds ,1 rDn,2pα

‹
nq “ dss (3.6)

exists with Cpdq ą 0 for each d “ 0, 1, . . ..

The specific values for (3.6) are omitted here but are computed during the

proof of Proposition 3.2 given from Section 3.2 to Section 3.4. For instance, we

show that

Cp0q “ E
”

e´maxpeλξ1 ,eλξ2 q
ı

´ E
”

e´pe
λξ1`eλξ2 q

ı

ą 0.

The expression of Cpdq for arbitrary d ‰ 0 is rather cumbersome and is not shown at

this time. However, the fact that Cpdq ą 0 on the entire range suffices to establish

the desired counterexample via the observation following Proposition 2.2.

Proposition 3.3. Consider the class of random threshold graphs with ξ „ Exppλq

for some λ ą 0. Under the scaling θ˚ : N0 Ñ R` given by (3.3), each of the sequence

of rvs
#

1

n

n
ÿ

k“1

1 rDn,kpθ
‹
nq “ ds , n “ 2, 3, . . .

+

, d “ 0, 1, . . . (3.7)

does not converge in probability to a constant.

The fact that the convergence (2.43) fails to occur in the context of random

threshold graphs is significant for the following reason: Caldarelli et al. [9, 37] have
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proposed this subclass of hidden variable models as an alternative scale-free model to

the preferential attachment model of Barabási and Albert [2]. The evidence behind

this proposal lies in the provable power-law behavior [22, Example 1, p. 366]

pFujpdq „ d´2
pdÑ 8q. (3.8)

However, a meaningful comparison between the two models would have required at

minimum the validity of the convergence

1

n

n
ÿ

k“1

1 rDn,kpα
‹
nq “ ds

P
ÝÑn pFujpdq, d “ 0, 1, . . .

As we now know through Proposition 3.3, this fails to happen, and the two models

cannot be meaningfully compared as already explained in the introductory section.

3.2 A proof of Proposition 3.2 – Part I

We begin with an easy observation.

3.2.1 A reduction step

For every n “ 2, 3, . . . and α ą 0, note the decomposition

Dn,jpαq “ 1 rξ1 ` ξ2 ą αs `D‹n,jpαq, j “ 1, 2 (3.9)

where we have set

D‹n,jpαq “
n
ÿ

k“3

1 rξj ` ξk ą αs .

Evaluating the limit (3.6) can be simplified through an easy reduction step which

we now develop.
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Lemma 3.4. Fix n “ 2, 3, . . . and α ą 0. For each d “ 0, 1, . . . , n´ 2, we have

ˇ

ˇP rDn,jpαq “ ds ´ P
“

D‹n,jpαq “ d
‰
ˇ

ˇ ď 2P rξ1 ` ξ2 ą αs , j “ 1, 2 (3.10)

and

ˇ

ˇP rDn,1pαq “ d,Dn,2pαq “ ds ´ P
“

D‹n,1pαq “ d,D‹n,2pαq “ d
‰
ˇ

ˇ ď 2P rξ1 ` ξ2 ą αs .

(3.11)

Proof. The first part of the Lemma can be proved similarly to that of Lemma 2.3.

To prove the second part, fix n “ 2, 3, . . . and α ą 0. Firstly for d “ 0, using the

decomposition (3.9) we find

P rDn,1pαq “ 0, Dn,2pαq “ 0s

“ P
“

D˚n,1pαq “ 0, D˚n,2pαq “ 0, ξ1 ` ξ2 ď α
‰

“ P
“

D˚n,1pαq “ 0, D˚n,2pαq “ 0
‰

´ P
“

D˚n,1pαq “ 0, D˚n,2pαq “ 0, ξ1 ` ξ2 ą α
‰

(3.12)
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and the bound (3.11) holds. For each d “ 1, 2, . . . , n´ 2, we have

P rDn,1pαq “ d,Dn,2pαq “ ds

“ P
“

1 rξ1 ` ξ2 ą αs `D‹n,1pαq “ d,1 rξ1 ` ξ2 ą αs `D‹n,2pαq “ d
‰

“ P
“

ξ1 ` ξ2 ď α,D‹n,1pαq “ d,D‹n,2pαq “ d
‰

` P
“

ξ1 ` ξ2 ą α,D‹n,1pαq “ d´ 1, D‹n,2pαq “ d´ 1
‰

“ P
“

ξ1 ` ξ2 ą α,D‹n,1pαq “ d´ 1, D‹n,2pαq “ d´ 1
‰

´ P
“

ξ1 ` ξ2 ą α,D‹n,1pαq “ d,D‹n,2pαq “ d
‰

` P
“

D‹n,1pαq “ d,D‹n,2pαq “ d
‰

(3.13)

and the bound (3.11) follows by combining (3.12) and (3.13). �

This simple fact leads to the following reduction step when evaluating the

limit at (3.6): With d “ 0, 1, . . . held fixed, for each n “ 2, 3, . . . we substitute α by

α‹n in the bound (3.11) according to (3.3), and let n go to infinity in the resulting

inequality. Since limnÑ8 α
‹
n “ 8, we conclude that

lim
nÑ8

ˇ

ˇP rDn,1pα
‹
nq “ d,Dn,2pα

‹
nq “ ds ´ P

“

D‹n,1pα
‹
nq “ d,D‹n,2pα

‹
nq “ d

‰
ˇ

ˇ “ 0,

whence

lim
nÑ8

P rDn,1pα
‹
nq “ d,Dn,2pα

‹
nq “ ds “ lim

nÑ8
P
“

D‹n,1pα
‹
nq “ d,D‹n,2pα

‹
nq “ d

‰

(3.14)

provided either limit exists. The same argument applied to the bounds (3.10) readily

yields

lim
nÑ8

P rDn,jpα
‹
nq “ ds “ lim

nÑ8
P
“

D‹n,jpα
‹
nq “ d

‰

“ pFujpdq, j “ 1, 2 (3.15)
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in light of (3.5). It follows from (3.15) and (3.14) that

Cpdq “ lim
nÑ8

Covr1
“

D‹n,1pα
‹
nq “ d

‰

,1
“

D‹n,2pα
‹
nq “ d

‰

s (3.16)

provided the limits at (3.14) exist.

3.2.2 Order statistics to the rescue

When evaluating (3.16), it will be convenient to introduce a second collection

of R`-valued rvs tη`, ` “ 1, 2, . . .u. We assume that the rvs tη`, ` “ 1, 2, . . .u are

also i.i.d. rvs, each of which is exponentially distributed with parameter λ ą 0.

The two collections tξ, ξk, k “ 1, 2, . . .u and tη`, ` “ 1, 2, . . .u are assumed to be

mutually independent. For each integer p “ 2, 3, . . ., let ηp,1, . . . , ηp,p denote the

values of the rvs η1, . . . , ηp arranged in increasing order, namely ηp,1 ď . . . ď ηp,p,

with a lexicographic tiebreaker when needed. The rvs ηp,1, . . . , ηp,p are known as the

order statistics associated with the collection η1, . . . , ηp, and the rvs ηp,1 and ηp,p are

the minimum and maximum of the rvs η1, . . . , ηp, respectively [11,16].

To evaluate (3.16), we start with the following observation: Fix d “ 0, 1, . . .

and take n “ 2, 3, . . . such that d ă n ´ 2. Under the enforced i.i.d. assumptions,

for each α ą 0 we get

`

D‹n,1pαq, D
‹
n,2pαq

˘

“

˜

n
ÿ

k“3

1 rξ1 ` ξk ą αs ,
n
ÿ

k“3

1 rξ2 ` ξk ą αs

¸

“st

˜

n´2
ÿ

`“1

1 rξ1 ` η` ą αs ,
n´2
ÿ

`“1

1 rξ2 ` η` ą αs

¸

“

˜

n´2
ÿ

`“1

1 rξ1 ` ηn´2,` ą αs ,
n´2
ÿ

`“1

1 rξ2 ` ηn´2,` ą αs

¸

. (3.17)
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With this notation the probabilities of interest can now be expressed as

P
“

D‹n,1pαq “ d
‰

“ P

«

n´2
ÿ

`“1

1 rξ1 ` ηn´2,` ą αs “ d

ff

(3.18)

and

P
“

D‹n,1pαq “ d,D‹n,2pαq “ d
‰

“ P

«

n´2
ÿ

`“1

1 rξ1 ` ηn´2,` ą αs “ d,
n´2
ÿ

`“1

1 rξ2 ` ηn´2,` ą αs “ d

ff

. (3.19)

Two different cases arise when applying these facts: With d “ 0 we find

P
“

D‹n,1pαq “ 0
‰

“ P

«

n´2
ÿ

`“1

1 rξ1 ` ηn´2,` ą αs “ 0

ff

“ P rξ1 ` η` ď α, ` “ 1, . . . , n´ 2s

“ P rξ1 ` ηn´2,n´2 ď αs , (3.20)

and

P
“

D‹n,1pαq “ 0, D‹n,2pαq “ 0
‰

“ P

«

n´2
ÿ

`“1

1 rξ1 ` ηn´2,` ą αs “ 0,
n´2
ÿ

`“1

1 rξ2 ` ηn´2,` ą αs “ 0

ff

“ P rξ1 ` η` ď α, ξ2 ` η` ď α, ` “ 1, . . . , n´ 2s

“ P rξ1 ` ηn´2,n´2 ď α, ξ2 ` ηn´2,n´2 ď αs

“ P rmaxpξ1, ξ2q ` ηn´2,n´2 ď αs . (3.21)

For the case d “ 1, 2, . . ., we introduce the index

tnpdq “ n´ 2´ d. (3.22)
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Under the enforced independence assumptions we now have

P
“

D‹n,1pαq “ d
‰

“ P

«

n´2
ÿ

`“1

1 rξ1 ` ηn´2,` ą αs “ d

ff

“ P
“

ξ1 ` ηn´2,tnpdq ď α ă ξ1 ` ηn´2,tnpdq`1

‰

“ P
“

α ´ ηn´2,tnpdq`1 ă ξ1 ď α ´ ηn´2,tnpdq

‰

“ E
”

e´λpα´ηn´2,tnpdq`1q
`

´ e´λpα´ηn´2,tnpdqq
`
ı

, (3.23)

and

P
“

D‹n,1pαq “ d,D‹n,2pαq “ d
‰

“ P

«

n´2
ÿ

`“1

1 rξ1 ` ηn´2,` ą αs “ d,
n´2
ÿ

`“1

1 rξ2 ` ηn´2,` ą αs “ d

ff

“ P
“

ξj ` ηn´2,tnpdq ď α ă ξj ` ηn´2,tnpdq`1, j “ 1, 2
‰

“ P
“

α ´ ηn´2,tnpdq`1 ă ξj ď α ´ ηn´2,tnpdq, j “ 1, 2
‰

“ E
„

´

e´λpα´ηn´2,tnpdq`1q
`

´ e´λpα´ηn´2,tnpdqq
`
¯2


. (3.24)

In particular we note that

Covr1
“

D‹n,1pαq “ d
‰

,1
“

D‹n,2pαq “ d
‰

s

“ P
“

D‹n,1pαq “ d,D‹n,2pαq “ d
‰

´ P
“

D‹n,1pαq “ d
‰

P
“

D‹n,2pαq “ d
‰

“ Var
”

e´λpα´ηn´2,tnpdq`1q
`

´ e´λpα´ηn´2,tnpdqq
`
ı

ě 0. (3.25)

We need to evaluate the quantities (3.20), (3.21), (3.23) and (3.24), and explore

their asymptotic behavior for large n when α is replaced by α‹n in these expressions.
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3.3 Asymptotic results for order statistics

In order to carry the program outlined above we need to develop some simple

facts concerning the asymptotic theory of order statistics. The notation and def-

initions are the ones introduced in Section 3.2.2. In carrying out this asymptotic

analysis, we shall rely on the following facts: Recall that for each s “ 0, 1, . . ., we

have
ˆ

p

s

˙

„
ps

s!
ppÑ 8q, (3.26)

and for any sequence a : N0 Ñ R`, it holds that

lim
pÑ8

ˆ

1´
u

p

˙ap

“ e´au, u ą 0 (3.27)

whenever

lim
pÑ8

ap
p
“ a ą 0. (3.28)

3.3.1 A result in one dimension

Fix p “ 1, 2, . . . and t “ 1, . . . , p ´ 1. It is well known [11, p. 9] that the

probability distribution function of the rv ηp,t is given by

P rηp,t ď xs “
p
ÿ

r“t

ˆ

p

r

˙

F pxqrp1´ F pxqqp´r

“

p
ÿ

r“t

ˆ

p

r

˙

`

1´ e´λx
˘r
e´λpp´rqx, x ě 0. (3.29)

For each s “ 0, 1, . . ., we introduce the mapping Gs : RÑ R` defined by

Gspxsq “

˜

s
ÿ

m“0

e´mxs

m!

¸

G0pxsq, xs P R (3.30)
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where G0 : RÑ R` is the well-known Gumbel distribution given by

G0px0q “ e´e
´x0 , x0 P R. (3.31)

Using well-known stochastic monotonicity properties of Poisson rvs (with respect to

their mean parameter), it is easy to check that Gs : RÑ R` is indeed a probability

distribution function. Let Λs denote any R-valued rv which is distributed according

to Gs, i.e.,

P rΛs ď xss “ Gspxsq, xs P R. (3.32)

In fact one could interpret (3.30) as

P rΛs ď xss “ P
“

Poipe´xsq ď s
‰

, xs P R

where Poipλq is a generic Poisson rv with parameter λ ą 0.

Lemma 3.5. For each s “ 0, 1, . . . we have

λ
`

ηp,p´s ´ α
‹
p

˘

ùñp Λs. (3.33)

Some comments before giving a proof:

With s “ 0, Lemma 3.5 gives the distributional convergence λpηp,p ´ α
‹
pq ùñp

Λ0 which expresses the well-known membership of exponential distributions in the

maximal domain of attraction of the Gumbel distribution [16]. For future use note

that (3.33) is equivalent to

lim
pÑ8

P
“

λ
`

ηp,p´s ´ α
‹
p

˘

ď xs
‰

“ Gspxsq, xs P R (3.34)

since every point in R is a point of continuity for Gs.
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Proof. Pick s “ 0, 1, . . . and xs arbitrary in R. With p ą s and t “ p´ s such that

xs ` log p ą 0, we obtain from (3.29) that

P
“

λ
`

ηp,p´s ´ α
‹
p

˘

ď xs
‰

“ P
“

ηp,p´s ď λ´1
pxs ` log pq

‰

“

p
ÿ

r“p´s

ˆ

p

r

˙ˆ

1´
e´xs

p

˙r
e´pp´rqxs

pp´r

“

s
ÿ

q“0

ˆ

p

p´ s` q

˙ˆ

1´
e´xs

p

˙p´s`q
e´ps´qqxs

ps´q

“

s
ÿ

m“0

ˆ

p

p´m

˙ˆ

1´
e´xs

p

˙p´m
e´mxs

pm

“

s
ÿ

m“0

`

p
m

˘

pm

ˆ

1´
e´xs

p

˙p´m

e´mxs . (3.35)

Let p go to infinity in this last expression: For each m “ 0, 1, . . ., we get

`

p
m

˘

pm
„

1

m!
ppÑ 8q and lim

pÑ8

ˆ

1´
e´xs

p

˙p´m

“ e´e
´xs
“ G0pxsq, xs P R

as we make use of (3.26) and (3.27)-(3.28), respectively. Therefore, (3.34) holds,

and this completes the proof. �

It is easy to see that Gs ďst Gs´1, or equivalently, Λs ďst Λs´1 for all s “

1, 2, . . . where ďst denotes the usual stochastic ordering [36, Chap. 8] – It suffices

to note that for all s “ 1, 2, . . ., we have ηp,p´s ďst ηp,p´ps´1q for all p ą s. This can

also be checked analytically through the expression (3.30).

3.3.2 A result in two dimensions

To state the key asymptotic result we introduce some additional notation: For

all t “ 0, 1, . . ., let the mapping Ht : R` Ñ R` be given by

Htpaq “

ż 8

a

vte´vdv, a ě 0.
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Then, for each s “ 1, 2, . . ., we define the mapping Js : R2 Ñ R` by

Jspxs, xs´1q “
1

s!

ˆ
ż 8

e´minpxs,xs´1q
vse´vdv ´ e´sxs´1 ¨ e´e

´minpxs,xs´1q

˙

“
1

s!

´

Hspe
´minpxs,xs´1qq ´ e´sxs´1 ¨ e´e

´minpxs,xs´1q
¯

, xs, xs´1 P R.

(3.36)

Proposition 3.6. For each s “ 1, 2, . . ., we have

lim
pÑ8

P
“

λpηp,p´s ´ α
‹
pq ď xs, λpηp,p´ps´1q ´ α

‹
pq ď xs´1

‰

“ Jspxs, xs´1q, xs, xs´1 P R (3.37)

where the mapping Js : R2 Ñ R` is given by (3.36).

Some comments concerning this result before giving a proof in Section 3.5:

First, given the convergence (3.37) it is easy to check that R2 Ñ r0, 1s : pxs, xs´1q Ñ

Jspxs, xs´1q is a bona fide probability distribution on R2 with limxs,xs´1Ñ8 Jspxs, xs´1q “

1,

limxsÑ´8 Jspxs, xs´1q “ 0 (with xs´1 held fixed) and limxs´1Ñ´8 Jspxs, xs´1q “ 0

(with xs held fixed).

Next, we turn to extracting the marginal distributions from (3.37): Upon

setting xs´1 “ 8 (resp. xs “ 8) in (3.37) with xs (resp. xs´1) arbitrary but held

fixed, we get

lim
pÑ8

P
“

λpηp,p´s ´ α
‹
pq ď xs

‰

“
1

s!
Hspe

´xsq, xs P R (3.38)

and

lim
pÑ8

P
“

λpηp,p´ps´1q ´ α
‹
pq ď xs´1

‰

“
1

s!

´

Hspe
´xs´1q ´ e´sxs´1 ¨ e´e

´xs´1
¯

, xs´1 P R. (3.39)
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As we return to Lemma 3.5, e.g., see (3.34), it is natural to wonder whether the

marginalization of the two-dimensional result can be reconciled analytically with

the one-dimensional convergence obtained earlier. In other words, is it indeed the

case that the relations

Gspxsq “
1

s!
Hspe

´xsq, xs P R (3.40)

and

Gs´1pxs´1q “
1

s!

´

Hspe
´xs´1q ´ e´sxs´1 ¨ e´e

´xs´1
¯

, xs´1 P R (3.41)

hold.

We argue as follows: For t “ 1, 2, . . ., integration by parts yields

Htpaq “ ate´a ` tHt´1paq, a ě 0 (3.42)

with boundary value H0paq “ e´a. Iterating on this relation, we readily check that

Htpaq “ t!

˜

t
ÿ

r“0

ar

r!

¸

e´a,
a ě 0

t “ 0, 1, . . .

(3.43)

Using (3.43) it is plain that

1

s!
Hspe

´xsq “ Gspxsq, xs P R

as we recall (3.30), and this shows that (3.40) indeed holds. Next, as we turn to

(3.41), use (3.42) (with t “ s and a “ e´xs´1) and note that

1

s!

´

Hspe
´xs´1q ´ e´sxs´1 ¨ e´e

´xs´1
¯

“
1

s!

´

e´sxs´1 ¨ e´e
´xs´1

` sHs´1pe
´xs´1q ´ e´sxs´1 ¨ e´e

´xs´1
¯

“
1

ps´ 1q!
Hs´1pe

´xs´1q “ Gs´1pxs´1q, xs´1 P R (3.44)
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where we again relied on (3.43). This shows that (3.41) holds.

Therefore, as we combine Lemma 3.5 and Proposition 3.6, the following con-

clusion emerges.

Corollary 3.7. For any given s “ 1, 2, . . ., there exist a pair pΛs,Λs´1q of R-valued

rvs such that

`

λ
`

ηp,p´s ´ α
‹
p

˘

, λ
`

ηp,p´ps´1q ´ α
‹
p

˘˘

ùñp pΛs,Λs´1q (3.45)

with pΛs,Λs´1q jointly distributed according to Js, and Λs and Λs´1, each distributed

according to Gs and Gs´1, respectively.

In other words,

P rΛs ď xs,Λs´1 ď xs´1s “ Jspxs, xs´1q, xs, xs´1 P R

with marginals

P rΛs ď xss “ Gspxsq and P rΛs´1 ď xs´1s “ Gs´1pxs´1q, xs, xs´1 P R.

3.4 A proof of Proposition 3.2 – Part II

The notation is that of Section 3.2.2 as we return to the expressions (3.20),

(3.21), (3.23) and (3.24) obtained there. With d “ 0, 1, . . . held fixed, for each

n “ 2, 3, . . . we substitute α by α‹n in these expressions according to (3.3), and let n

go to infinity in the resulting inequality.

62



3.4.1 The case d “ 0

For each n “ 3, 4, . . ., with the aforementioned substitution, we rewrite (3.20)

and (3.21) as

P
“

D‹n,1pα
‹
nq “ 0

‰

“ P rλpηn´2,n´2 ´ α
‹
nq ď ´λξ1s

and

P
“

D‹n,1pα
‹
nq “ 0, D‹n,2pα

‹
nq “ 0

‰

“ P rmaxpξ1, ξ2q ` ηn´2,n´2 ď α‹ns

“ P rλpηn´2,n´2 ´ α
‹
nq ď ´λmaxpξ1, ξ2qs .

By Lemma 3.5 (and comments following it), it is now plain that

pFujp0q “ lim
nÑ8

P
“

D‹n,1pα
‹
nq “ 0

‰

“ P rΛ0 ď ´λξ1s “ E
”

e´e
λξ1

ı

and

lim
nÑ8

P
“

D‹n,1pα
‹
nq “ 0, D‹n,2pα

‹
nq “ 0

‰

“ P rΛ0 ď ´λmaxpξ1, ξ2qs “ E
”

e´e
λmaxpξ1,ξ2q

ı

,

respectively, where Λ0 is any rv which is distributed according to the Gumbel dis-

tribution (3.31). Collecting these facts and using the reduction step discussed in

Section 3.2, we find

Cp0q “ lim
nÑ8

Covr1 rDn,1pα
‹
nq “ 0s ,1 rDn,2pα

‹
nq “ 0ss

“ lim
nÑ8

Covr1
“

D‹n,1pα
‹
nq “ 0

‰

,1
“

D‹n,2pα
‹
nq “ 0

‰

s

“ E
”

e´e
λmaxpξ1,ξ2q

ı

´ E
”

e´e
λξ1

ı

E
”

e´e
λξ2

ı

“ E
”

e´e
λmaxpξ1,ξ2q

ı

´ E
”

e´e
λξ1
¨ e´e

λξ2
ı

.
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Note that

Cp0q “ E
”

e´maxpeλξ1 ,eλξ2 q
ı

´ E
”

e´pe
λξ1`eλξ2 q

ı

ą 0

since maxpeλξ1 , eλξ2q ă eλξ1 ` eλξ2 a.s. �

3.4.2 The case d “ 1, 2, . . .

Pick n “ 3, 4, . . . such that d ă n´ 2. Under the aforementioned substitution,

we can rewrite (3.23) and (3.24) as

P
“

D‹n,1pα
‹
nq “ d

‰

“ E
”

e´λpα
‹
n´ηn´2,tnpdq`1q

`

´ e´λpα
‹
n´ηn´2,tnpdqq

`
ı

(3.46)

and

P
“

D‹n,1pα
‹
nq “ d,D‹n,2pα

‹
nq “ d

‰

“ E
„

´

e´λpα
‹
n´ηn´2,tnpdq`1q

`

´ e´λpα
‹
n´ηn´2,tnpdqq

`
¯2


.(3.47)

Applying Corollary 3.7 (with p “ n´ 2 and s “ d) we conclude that

`

λ
`

ηn´2,tnpdq ´ α
‹
n´2

˘

, λ
`

ηn´2,tnpdq`1 ´ α
‹
n´2

˘˘

ùñn pΛd,Λd´1q, (3.48)

whence

`

λ
`

ηn´2,tnpdq ´ α
‹
n

˘

, λ
`

ηn´2,tnpdq`1 ´ α
‹
n

˘˘

ùñn pΛd,Λd´1q (3.49)

by standard facts concerning weak convergence since limnÑ8

`

α‹n ´ α
‹
n´2

˘

“ 0. It

immediately follows by the Continuous Mapping Theorem for weak convergence that

´

λ
`

α‹n´2 ´ ηn´2,tnpdq

˘`
, λ

`

α‹n´2 ´ ηn´2,tnpdq`1

˘`
¯

ùñn pp´Λdq
`, p´Λd´1q

`
q.

(3.50)
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Applying the Continuous Mapping Theorem once more we find that

e´λpα
‹
n´ηn´2,tnpdq`1q

`

´ e´λpα
‹
n´ηn´2,tnpdqq

`

ùñn e
´p´Λd´1q

`

´ e´p´Λdq
`

. (3.51)

Let n go to infinity in (3.46) and (3.47): Making use of the convergence (3.51)

we conclude by the Bounded Convergence Theorem that

lim
nÑ8

E
”´

e´λpα
‹
n´ηn´2,tnpdq`1q

`

´ e´λpα
‹
n´ηn´2,tnpdqq

`
¯aı

“ E
”´

e´p´Λd´1q
`

´ e´p´Λdq
`
¯aı

, a “ 1, 2. (3.52)

This is made possible with the help of the obvious bounds

ˇ

ˇ

ˇ
e´λpα

‹
n´ηn´2,tnpdq`1q

`

´ e´λpα
‹
n´ηn´2,tnpdqq

`
ˇ

ˇ

ˇ
ď 1, n “ 3, 4, . . .

From (3.25) we conclude that

lim
nÑ8

Covr1
“

D‹n,1pα
‹
nq “ d

‰

,1
“

D‹n,2pα
‹
nq “ d

‰

s

“ lim
nÑ8

Var
”

e´λpα
‹
n´ηn´2,tnpdq`1q

`

´ e´λpα
‹
n´ηn´2,tnpdqq

`
ı

“ Var
”

e´p´Λd´1q
`

´ e´p´Λdq
`
ı

, (3.53)

and the reduction step via (3.16) finally leads to

Cpdq “ lim
nÑ8

Covr1 rDn,1pα
‹
nq “ ds ,1 rDn,2pα

‹
nq “ dss

“ Var
”

e´p´Λd´1q
`

´ e´p´Λdq
`
ı

. (3.54)

Note that Cpdq ą 0 as the variance of the non-degenerate rv e´p´Λd´1q
`

´ e´p´Λdq
`

.

�

Now, a sanity check: Let n go to infinity in (3.46). The arguments given earlier

also yield

lim
nÑ8

P
“

D‹n,1pα
‹
nq “ d

‰

“ E
”

e´p´Λd´1q
`

´ e´p´Λdq
`
ı

.

65



Standard calculations give

E
”

e´p´Λdq
`
ı

“

ż 8

0

P
”

e´p´Λdq
`

ą t
ı

dt

“

ż 8

0

P
“

p´Λdq
`
ă ´ log t

‰

dt

“

ż 1

0

P
“

p´Λdq
`
ă ´ log t

‰

dt

“

ż 1

0

P rΛd ą 0, 0 ă ´ log ts dt`

ż 1

0

P rΛd ď 0,´Λd ă ´ log ts dt.

“

ż 1

0

P rlog t ă Λds dt, (3.55)

and

E
”

e´p´Λd´1q
`
ı

“

ż 1

0

P rlog t ă Λd´1s dt (3.56)

by similar arguments. Therefore,

E
”

e´p´Λd´1q
`
ı

´ E
”

e´p´Λdq
`
ı

“

ż 1

0

pP rlog t ă Λd´1s ´ P rlog t ă Λdsq dt

“

ż 1

0

pP rΛd ď log ts ´ P rΛd´1 ď log tsq dt

“

ż 1

0

pGdplog tq ´Gd´1plog tqq dt

“

ż 8

0

pGdp´xq ´Gd´1p´xqq e
´xdx rt “ e´xs

“

ż 8

0

pexqd

d!
e´e

x

e´xdx

“ pFujpdq (3.57)

as it should be in view of (3.15) when combined with (3.5).

As a by product it follows that the pmf pFuj admits the multiple representations

pFujpdq “ E
”

e´p´Λd´1q
`

´ e´p´Λdq
`
ı

“ E
„

peλξqd

d!
e´e

λξ



, d “ 0, 1, . . .
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3.5 A proof of Proposition 3.6

3.5.1 Preliminaries

Fix p “ 2, 3, . . . and t “ 1, . . . , p´ 1. It is also well known [11, p. 11] that the

joint probability distribution function of the pair pηp,t, ηp,t`1q admits a probability

density function fp,t,t`1 : R` Ñ R` given by

fp,t,t`1pxt, xt`1q

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ppp´ 1q
`

p´2
t´1

˘ `

1´ e´λxt
˘t´1

e´λpp´pt`1qqxt`1λe´λxtλe´λxt`1 if 0 ď xt ď xt`1

0 otherwise.

Therefore, since ηp,t ď ηp,t`1, with arbitrary xt and xt`1 in R`, elementary calcula-

tions yield

P rηp,t ď xt, ηp,t`1 ď xt`1s

“ P rηp,t ď minpxt, xt`1q, ηp,t`1 ď xt`1s

“

ż minpxt,xt`1q

0

ˆ
ż xt`1

yt

fp,t,t`1pyt, yt`1qdyt`1

˙

dyt

“ ppp´ 1q

ˆ

p´ 2

t´ 1

˙
ż minpxt,xt`1q

0

ˆ
ż xt`1

yt

λe´λpp´tqyt`1dyt`1

˙

`

1´ e´λyt
˘t´1

λe´λytdyt

“
ppp´ 1q

p´ t

ˆ

p´ 2

t´ 1

˙
ż minpxt,xt`1q

0

`

1´ e´λyt
˘t´1

λe´λyt
`

e´λpp´tqyt ´ e´λpp´tqxt`1
˘

dyt

“ t

ˆ

p

t

˙
ż λminpxt,xt`1q

0

`

1´ e´yt
˘t´1

e´yt
`

e´pp´tqyt ´ e´λpp´tqxt`1
˘

dyt

“ t

ˆ

p

t

˙

`

Itpλminpxt, xt`1q; p´ tq ´ e
´λpp´tqxt`1 ¨ Itpλminpxt, xt`1q; 0q

˘

(3.58)
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as we use the notation

Itpa; rq “

ż a

0

`

1´ e´y
˘t´1

e´pr`1qydy,

a ě 0

r “ 0, 1, . . .

t “ 1, 2, . . .

We begin with an intermediary result that will help us in investigating the

asymptotics of the relevant pair of order statistics.

Lemma 3.8. Fix s “ 0, 1, . . . and x arbitrary in R. For each r “ 0, 1, . . ., it holds

that

lim
pÑ8

pr`1Ip´s
`

px` log pq`; r
˘

“

ż 8

e´x
vre´vdv. (3.59)

Proof. Throughout the proof the integer r “ 0, 1, . . . is held fixed. For a ě 0 and

positive integer t, elementary calculus gives

Itpa; rq “

ż a

0

`

1´ e´y
˘t´1

e´pr`1qydy

“

ż a

0

ˆ

1´
ez

ea

˙t´1 ˆ
ez

ea

˙r`1

dz rz “ a´ ys

“ e´a
ż ea

1

´

1´
u

ea

¯t´1 ´ u

ea

¯r

du ru “ ezs. (3.60)

Now pick s “ 0, 1, . . . and x arbitrary in R, and take p sufficiently large so that

p ą s and x ` log p ą 0. Then, with t “ p ´ s and a “ x ` log p, the last relation

(3.60) becomes

Ip´s px` log p; rq “
e´x

p

ż pex

1

ˆ

1´
u

pex

˙p´s´1 ˆ
u

pex

˙r

du

“
1

pr`1

ż p

e´x

ˆ

1´
v

p

˙p´s´1

vrdv rv “ e´xus. (3.61)
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On the range 0 ď v ď p, the bounds

0 ď

ˆ

1´
v

p

˙p´s´1

ď e´
p´s´1
p

v
ď 1

hold uniformly in p, while

lim
pÑ8

ˆ

1´
v

p

˙p´s´1

“ e´v, v ě 0

as we again make use of (3.27)-(3.28). Using the Bounded Convergence Theorem,

we readily conclude by standard arguments that

lim
pÑ8

ż p

e´x

ˆ

1´
v

p

˙p´s´1

vrdv “

ż 8

e´x
vre´vdv (3.62)

since the rth moment of Expp1q is finite and given by
ş8

0
vre´vdv “ r!. This completes

the proof of (3.59). �

3.5.2 Proving Proposition 3.6

Fix positive integers p and t such that t ă p, and pick xt and xt`1 arbitrary

in R. Take p large enough so that such minpxt, xt`1q ` log p ą 0. Under such

conditions, using (3.58) we find that

P
“

λpηp,t ´ α
‹
pq ď xt, λpηp,t`1 ´ α

‹
pq ď xt`1

‰

“ P
„

ηp,t ď
xt ` log p

λ
, ηp,t`1 ď

xt`1 ` log p

λ



“ t

ˆ

p

t

˙

`

Itpminpxt, xt`1q ` log p; p´ tq ´ e´pp´tqpxt`1`log pq
¨ Itpminpxt, xt`1q ` log p; 0q

˘

“ t

ˆ

p

t

˙ˆ

Itpminpxt, xt`1q ` log p; p´ tq ´
e´pp´tqxt`1

pp´t
¨ Itpminpxt, xt`1q ` log p; 0q

˙

.

Now pick s “ 1, 2, . . ., and xs and xs´1 arbitrary in R. With positive integer p

sufficiently large so that p ą s and minpxs, xs´1q` log p ą 0, we use the last relation
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with t “ p´ s, xt “ xs and xt`1 “ xs´1. This gives

P
“

λpηp,p´s ´ α
‹
pq ď xs, λpηp,p´s`1 ´ α

‹
pq ď xs´1

‰

“ pp´ sq

ˆ

p

s

˙ˆ

Ip´spminpxs, xs´1q ` log p; sq ´
e´sxs´1

ps
¨ Ip´spminpxs, xs´1q ` log p; 0q

˙

.

Let p go to infinity in this last expression: Lemma 3.8 yields

lim
pÑ8

ps`1Ip´s
`

pminpxs, xs´1q ` log pq`; s
˘

“

ż 8

e´minpxs,xs´1q
vse´vdv (3.63)

and

lim
pÑ8

pIp´s
`

pminpxs, xs´1q ` log pq`; 0
˘

“

ż 8

e´minpxs,xs´1q
e´vdv “ e´e

´minpxs,xs´1q

.

(3.64)

Next, noting

pp´ sq

ˆ

p

s

˙

„
ps`1

s!
ppÑ 8q

by virtue of (3.26), we easily conclude from (3.63) that

lim
pÑ8

pp´ sq

ˆ

p

s

˙

Ip´spminpxs, xs´1q ` log p; sq

“ lim
pÑ8

pp´ sq
`

p
s

˘

ps`1
¨ ps`1Ip´spminpxs, xs´1q ` log p; sq

“
1

s!

ż 8

e´minpxs,xs´1q
vse´vdv, (3.65)

while (3.64) gives

lim
pÑ8

pp´ sq

ˆ

p

s

˙

e´sxs´1

ps
¨ Ip´spminpxs, xs´1q ` log p; 0q

“ lim
pÑ8

pp´ sq
`

p
s

˘

ps`1
e´sxs´1 ¨ pIp´spminpxs, xs´1q ` log p; 0q

“
1

s!
e´sxs´1 ¨ e´e

´minpxs,xs´1q

. (3.66)

Collecting these last two convergence statements we readily obtain the convergence

(3.37) with (3.36). �
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Chapter 4: More on Random Threshold Graphs: Weak Convergence

In Chapter 3, we considered a specific counterexample in the class of homo-

geneous random graphs: Let tξ, ξk, k “ 1, 2, . . .u represent an i.i.d. collection of

R`-valued rvs with ξk being a fitness rv associated with node k denoting its impor-

tance or rank. With n nodes and threshold α, the random threshold graph Tpn, αq

postulates that two distinct nodes i and j form a connection iff ξi` ξj ą α. With ξ

exponentially distributed and the threshold α scaled as

α˚n “
1

λ
log n, n “ 1, 2, . . . (4.1)

the following distributional convergence in the sequence of graphs tTpn;α˚nq, n “ 1, 2, . . .u

[22] is known to take place

Dn,1pα
˚
nq ùñn D, (4.2)

where the rv D has a power-tail. However, in Chapter 3 we concluded that when

ξ is exponentially distributed, the usual convergence (2.9) of the empirical degree

distribution fails to take place. Following the discussions in the previous chapter 3,

two questions naturally emerge:

1. While in the previous chapter we considered the special case of ξ exponen-

tially distributed, there are other regimes under which interesting asymptotic
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behaviour of the degree distribution occurs in the sense of (4.2). An obvi-

ous question is whether the assertions made in the previous chapter can be

extended to these more general fitness distributions.

2. Under the regime where the empirical degree distribution does not converge

in the usual sense (which we now know includes the case of ξ exponentially

distributed), are there weaker forms of convergence that could be shown to

hold?

In what follows, we show that under certain conditions the empirical degree

distribution actually converges weakly: For each d “ 0, 1, . . ., there exists a non-

degenerate r0, 1s-valued rv Πpdq such that

Nnpd;α‹nq

n
ùñn Πpdq (4.3)

where the scaling α‹ : N0 Ñ R` is the one yielding a non-trivial degree distribution

in the sense of (4.2), and Nnpd;α‹nq
n

is the fraction of nodes with degree d in Tpn;α‹nq.

The non-degeneracy of the rv Πpdq for each d “ 0, 1, . . ., ascertains that the empirical

degree distribution cannot converge in the sense of (2.9).

4.1 Degree distribution – Generic fitness distribution

The setting is that of Section 3.1: Let tξ, ξk, k “ 1, 2, . . .u denote a collection

of i.i.d. R`-valued rvs defined on the probability triple pΩ,F ,Pq, each distributed

according to a given (probability) distribution function F : R Ñ r0, 1s. With ξ
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acting as a generic representative for this sequence of i.i.d. rvs, we have

P rξ ď xs “ F pxq, x P R.

As mentioned in the previous chapter, we assume that F is a continuous function

on R with

F pxq “ 0, x ď 0. (4.4)

Recall that with n number of nodes and threshold α ą 0, distinct nodes i, j “

1, 2, . . . , n are said to be adjacent if ξi ` ξj ą α. For each k “ 1, 2, . . . , n, and

threshold α ą 0 the degree of node k in Tpn;αq is the rv Dn,kpαq given by

Dn,kpαq :“
n
ÿ

`“1, `‰k

1 rξk ` ξ` ą αs .

Under the enforced assumptions on the rvs ξ1, . . . , ξn, the rv Dn,kpαq is a Binomial

rv Binpn´ 1; 1´ F pα´ ξkqq conditioned on ξk. Throughout we make the following

assumption.

Assumption 4.1. There exists a scaling α‹ : N0 Ñ R` with the property

lim
nÑ8

α‹n “ 8, (4.5)

such that

lim
nÑ8

n p1´ F pα‹n ´ xqq “ λpxq, x ě 0 (4.6)

for some non-identically zero mapping λ : R` Ñ R`.

The mapping λ : R` Ñ R` is necessarily non-decreasing. The following result

overlaps with a similar result by Fujihara et al. [22, Thm. 2, p. 362]:
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Proposition 4.1. Under Assumption 4.1, there exists an N-valued rv D such that

Dnpα
‹
nq ùñn D. (4.7)

The rv D is conditionally Poisson with pmf given by

P rD “ ds “ E
„

λpξqd

d!
e´λpξq



, d “ 0, 1, . . . (4.8)

Proof. Fix n “ 2, 3, . . ., α ą 0 and z in R. Standard pre-conditioning arguments

yield

E
“

zDnpαq
‰

“ E

«

n
ź

`“2

z1rξ1`ξ`ąαs

ff

“ E
„

´

E
“

z1rx`ξąαs
‰

x“ξ1

¯n´1


where

E
“

z1rx`ξąαs
‰

“ P rx` ξ ď αs ` P rx` ξ ą αs z

“ 1´ p1´ zqP rx` ξ ą αs

“ 1´ p1´ zq p1´ F pα ´ xqq , x P R. (4.9)

Consequently, as we use (4.4), we get

E
“

zDnpαq
‰

“ E
“

p1´ p1´ zq p1´ F pα ´ ξqqqn´1
‰

“ P rξ ą αs zn´1
` E

“

1 rξ ď αs p1´ p1´ zq p1´ F pα ´ ξqqqn´1
‰

.(4.10)

For each n “ 1, 2, . . ., replace α by α‹n in (4.10) according to the scaling

α‹ : N0 Ñ R`. Let n go to infinity in the resulting equality when |z| ď 1: It is plain

that limnÑ8 P rξ ą α‹ns z
n´1 “ 0, while

lim
nÑ8

p1´ p1´ zq p1´ F pα‹n ´ ξqqq
n´1

“ e´p1´zqλpξq
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by standard arguments as we note that

lim
nÑ8

np1´ zq p1´ F pα‹n ´ ξqq “ p1´ zqλpξq

under Assumption 4.1. Invoking the Bounded Convergence Theorem we conclude

that

lim
nÑ8

E
“

zDnpα
‹
nq
‰

“ E
“

e´p1´zqλpξq
‰

, |z| ď 1

and the desired conclusion follows upon noting that the right-hand side is the pgf

of the pmf (4.8). �

In what follows we use the standard notation x` “ maxpx, 0q for x in R.

Assumption 4.1 holds in a number of interesting cases: Consider the case discussed

in the previous chapter where ξ is exponentially distributed with parameter λ ą 0,

i.e.,

P rξ ą xs “ e´λx
`

, x P R.

Assumption 4.1 holds with

λpxq “ eλx, x ě 0

upon taking

α‹n “ λ´1 log n, n “ 1, 2, . . .

The rv ξ is said to be a Pareto rv with parameters ν ą 0 and a ą 0, if

P rξ ą xs “

ˆ

a

a` x`

˙ν

, x P R.

Assumption 4.1 holds if we take

α‹n “ an
1
ν , n “ 1, 2, . . .
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in which case

λpxq “ 1, x ě 0.

4.2 The main result

Fix n “ 2, 3, . . . and α ą 0. For each d “ 0, 1, . . ., the rv Nnpd;αq defined by

Nnpd;αq “
n
ÿ

k“1

1 rDn,kpαq “ ds

counts the number of nodes in t1, . . . , nu which have degree d in Tpn;αq. The

fraction of nodes in t1, . . . , nu with degree d in Tpn;αq is then given by

pnpd;αq “
Nnpd;αq

n
.

We now state the main result of the chapter.

Theorem 4.2. Assume Assumption 4.1 to hold. Then, for each d “ 0, 1, . . ., there

exists a non-degenerate r0, 1s-valued rv Πpdq such that

Nnpd;α‹nq

n
ùñn Πpdq (4.11)

where the scaling α‹ : N0 Ñ R` is the one postulated in Assumption 4.1

In the process of proving Theorem 4.2 we will show that for each d “ 0, 1, . . .,

E rΠpdqs “ P rD “ ds with VarrΠpdqs ą 0. (4.12)

In other words, the rv Πpdq is never a degenerate rv with the following consequence.

Corollary 4.3. Assume Assumption 4.1 to hold. Then, for each d “ 0, 1, . . ., the

sequence
"

Nnpd;α‹nq

n
, n “ 1, 2, . . .

*

76



cannot converge in probability, i.e., there exists no constant Lpdq such that

Nnpd;α‹nq

n
P
ÝÑn Lpdq. (4.13)

Proposition 3.3 is a special case of the corollary stated above.

4.3 A roadmap to a proof of Theorem 4.2

The remainder of the chapter is concerned with a proof of Theorem 4.2. The

technical approach is rooted in the method of moments, and articulated through sev-

eral intermediary results, the first one being a multi-dimensional version of Propo-

sition 4.1.

Proposition 4.4. Assume Assumption 4.1 to hold. For each r “ 1, 2, . . ., there

exists an Nr-valued rv pD1, . . . , Drq such that

pDn,1pα
‹
nq, . . . , Dn,rpα

‹
nqq ùñn pD1, . . . , Drq. (4.14)

The limiting rvs D1, . . . , Dr are exchangeable, but not independent, each being dis-

tributed according to the limiting rv D whose existence is established in Proposition

4.1.

Proposition 4.4 is a simple consequence of Proposition 4.5 discussed next, but

first some notation: For each r “ 1, 2, . . ., let ξr,1, . . . , ξr,r denote the values of the

fitness rvs ξ1, . . . , ξr arranged in increasing order, namely ξr,1 ď . . . ď ξr,r, with

a lexicographic tiebreaker when needed. Thus, the rvs ξr,1, . . . , ξr,r are the order

statistics associated with the collection ξ1, . . . , ξr; the rvs ξr,1 and ξr,r are simply

the minimum and maximum of the rvs ξ1, . . . , ξr, respectively [11]. In what follows,
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the random permutation β : t1, . . . , ru Ñ t1, . . . , ru arranges the rvs ξ1, . . . , ξr in

increasing order, i.e.,

ξr,s “ ξβpsq, s “ 1, . . . , r

(under the lexicographic tiebreaker) – Note that β is determined by the rvs ξ1, . . . , ξr

and is uniformly distributed over the group of permutations of t1, . . . , ru. Finally,

with the notation introduced so far, write

Grpz1, . . . , zrq “ E
”

e´
řr
t“1p1´zβptqqp

śr
s“t`1 zβpsqqλpξr,tq

ı

,
0 ď zs ď 1,

s “ 1, . . . , r.

(4.15)

Proposition 4.5. Assume Assumption 4.1 to hold. For each r “ 1, 2, . . ., we have

lim
nÑ8

E

«

r
ź

s“1

zDn,spα
‹
nq

s

ff

“ Grpz1, . . . , zrq (4.16)

for all z1, . . . , zr in R satisfying

0 ď zs ď 1, s “ 1, . . . , r. (4.17)

This result is established in several steps which are presented across Section

4.5, Section 4.6 and Section 4.7. However, Proposition 4.5 does imply Proposition

4.4 by the usual arguments: Indeed, by the Bounded Convergence Theorem we get

lim
zsÒ1, s“1,...,r

Grpz1, . . . , zrq “ 1

where the convergence is taken from inside r0, 1qr, and the mapping Gr : r0, 1sr Ñ R

is therefore continuous at the point p1, . . . , 1q. This fact, coupled with the conver-

gence (4.16), suffices to reach the conclusion that Gr is an r-dimensional pgf. Thus,
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there exists an Nr-valued rv, denoted pD1, . . . , Drq, such that

E

«

r
ź

s“1

zDss

ff

“ Grpz1, . . . , zrq,
0 ď zs ď 1,

s “ 1, . . . , r.

(4.18)

and the convergence (4.14) follows; see details in [21, p. 431] . This completes the

proof of Proposition 4.4. It is also plain that the rvs D1, . . . , Dr are not independent;

see below.

The next step establishes the requisite convergence of the moments; its proof

is available in Section 4.8.

Proposition 4.6. Assume Assumption 4.1 to hold. For each r “ 1, 2, . . ., we have

lim
nÑ8

E
„ˆ

Nnpd;α‹nq

n

˙r

“ P rD1 “ d, . . . , Dr “ ds , d “ 0, 1, . . . (4.19)

where the Nr-valued rv pD1, . . . , Drq is the limiting rv shown to exist in Proposition

4.4.

The following information is easily obtained by combining (4.15) and (4.18):

As expected, we get back Proposition 4.1 by looking at the case r “ 1. For r “ 2,

we read

E
“

zD1
1 zD2

2

‰

“ E
“

e´p1´zβp1qqzβp2qλpξ2,1q´p1´zβp2qqλpξ2,2q
‰

, 0 ď z1, z2 ď 1. (4.20)

By bounded convergence it follows from Proposition 4.6 that the first half of (4.12)

holds with

VarrΠpdqs “ P rD1 “ d,D2 “ ds ´ P rD1 “ dsP rD2 “ ds .
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It is now straightforward to argue that VarrΠpdqs ą 0. Rewriting (4.20), we obtain

E
“

zD1
1 zD2

2

‰

“ E
“

e´p1´zβp1qqzβp2qλpξ2,1q´p1´zβp2qqλpξ2,2q
‰

“ E
“

e´p1´zβp1qqλpξ2,1q´p1´zβp2qqλpξ2,2q`p1´zβp1qqp1´zβp2qqλpξ2,1q
‰

“ E
“

e´p1´zβp1qqλpξβp1qq´p1´zβp2qqλpξβp2qq`p1´zβp1qqp1´zβp2qqλpξ2,1q
‰

“ E
“

e´p1´z1qλpξ1q´p1´z2qλpξ2q`p1´z1qp1´z2qλpξ2,1q
‰

(4.21)

for 0 ď z1, z2 ď 1. Collecting a single term corresponding to zd1z
d
2 from (4.21), we

obtain the lower bound

P rD1 “ d,D2 “ ds ě E
„

λpξ1q
d

d!

λpξ2q
d

d!
e´λpξ1q´λpξ2qeλpminpξ1,ξ2qq



(4.22)

for each d “ 0, 1, . . .. Therefore for each d “ 0, 1, . . ., using (4.22) and (4.8), we

obtain the desired lower bound

VarrΠpdqs “ P rD1 “ d,D2 “ ds ´ P rD1 “ dsP rD2 “ ds

ě E
„

λpξ1q
d

d!

λpξ2q
d

d!
e´λpξ1q´λpξ2q

`

eλpminpξ1,ξ2qq ´ 1
˘



ą 0,

where the last step follows from Assumption 4.1.

4.4 A proof of Theorem 4.2

Equipped with Propositions 4.4 and 4.6 we can now provide a proof of Theorem

4.2: Fix d “ 0, 1, . . .. Proposition 4.6 suggests that we consider the mapping φd :

RÑ C given by

φdptq “ 1`
8
ÿ

r“1

pitqr

r!
P rD1 “ d, . . . , Dr “ ds , t P R.

80



This definition is well posed with φdptq always an element of C since

1`
8
ÿ

r“1

|t|r

r!
P rD1 “ d, . . . , Dr “ ds ď 1`

8
ÿ

r“1

|t|r

r!
“ e|t|, t P R.

In particular, the mapping φd : RÑ C is analytic on R, hence continuous at t “ 0.

Now, for each n “ 2, 3, . . ., let φd,n : RÑ C denote the characteristic function

of the rv Nnpd;α‹nq
n

, i.e.,

φd,nptq “ E
”

eit
Nnpd;α

‹
nq

n

ı

, t P R.

The obvious bounds

0 ď
Nnpd;α‹nq

n
ď 1, n “ 2, 3, . . . (4.23)

can be used to validate the series expansion

φd,nptq “ 1`
8
ÿ

r“1

pitqr

r!
E
„ˆ

Nnpd;α‹nq

n

˙r

, t P R

since here as well we have

1`
8
ÿ

r“1

|t|r

r!
E
„ˆ

Nnpd;α‹nq

n

˙r

ď 1`
8
ÿ

r“1

|t|r

r!
“ e|t|, t P R.

In view of these remarks, for each n “ 2, 3, . . . and t in R, we can write

φd,nptq ´ φdptq “

8
ÿ

r“1

pitqr

r!

ˆ

E
„ˆ

Nnpd;α‹nq

n

˙r

´ P rD1 “ d, . . . , Dr “ ds

˙

.

Picking a positive integer R, we get

|φd,nptq ´ φdptq|

“

R
ÿ

r“1

|t|r

r!

ˇ

ˇ

ˇ

ˇ

E
„ˆ

Nnpd;α‹nq

n

˙r

´ P rD1 “ d, . . . , Dr “ ds

ˇ

ˇ

ˇ

ˇ

` 2
8
ÿ

r“R`1

|t|r

r!
.
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With arbitrary ε ą 0 there exists a positive integer R‹pε, tq such that

8
ÿ

r“R`1

|t|r

r!
ď ε, R ě R‹pε, tq,

and on that range we obtain

lim sup
nÑ8

|φd,nptq ´ φdptq|

“ lim
nÑ8

R
ÿ

r“1

|t|r

r!

ˇ

ˇ

ˇ

ˇ

E
„ˆ

Nnpd;α‹nq

n

˙r

´ P rD1 “ d, . . . , Dr “ ds

ˇ

ˇ

ˇ

ˇ

` 2ε

“ 2ε (4.24)

upon invoking Proposition 4.6. Since ε ą 0 is arbitrary, we conclude that limnÑ8 φd,nptq “

φdptq.

The mapping φd : R Ñ C being continuous at t “ 0, it follows by a standard

result on weak convergence due to Lévy [21, p. 431] that the distributional conver-

gence (4.11) takes place. The distribution of the limiting rv Πpdq is determined in

terms of its characteristic function through

φdptq “ E
“

eitΠpdq
‰

, t P R.

�

4.5 A proof of Proposition 4.5 – A reduction step

Throughout this section the integer r “ 1, 2, . . . and the parameter α ą 0 are

being held fixed. Pick n ą r. Thus, for each k “ 1, . . . , r, we find

Dn,kpαq “
r
ÿ

`“1, `‰k

1 rξk ` ξ` ą αs ` rD
prq
n,kpαq
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with

rD
prq
n,kpαq “

n
ÿ

`“r`1

1 rξk ` ξ` ą αs .

Because the scaling α‹ : N0 Ñ R` satisfies limnÑ8 α
‹
n “ 8, it is plain that

lim
nÑ8

max

˜

r
ÿ

`“1, `‰k

1 rξk ` ξ` ą α‹ns , k “ 1, . . . , r

¸

“ 0 a.s.

and (4.14) takes place if and only if

p rD
prq
n,1pα

‹
nq, . . . ,

rDprqn,rpα
‹
nqq ùñn pD1, . . . , Drq. (4.25)

The remainder of the proof consists in establishing that (4.25) holds. This will be

done by showing that the joint pgfs converge to the joint pgf of an Nr-valued rv over

a suitable range.

To do so, our first step is to evaluate the pgfs. Pick z1, . . . , zr in R. Under the

enforced independence assumptions, it is plain that

E

«

r
ź

s“1

z
rD
prq
n,spαq

s

ff

“ E

«

r
ź

s“1

z
řn
`“r`1 1rξs`ξ`ąαs

s

ff

“ E

«

r
ź

s“1

n
ź

`“r`1

z1rξs`ξ`ąαss

ff

“ E

«

n
ź

`“r`1

r
ź

s“1

z1rξs`ξ`ąαss

ff

“ E

«

E

«

n
ź

`“r`1

r
ź

s“1

z1rξs`ξ`ąαss

ˇ

ˇ

ˇ
ξ1, . . . , ξr

ffff

“ E

»

–E

«

n
ź

`“r`1

r
ź

s“1

z1rxs`ξ`ąαss

ff

x1“ξ1,...,xr“ξr

fi

fl . (4.26)

With arbitrary x1, . . . , xr in R`, we get

E

«

n
ź

`“r`1

r
ź

s“1

z1rxs`ξ`ąαss

ff

“

n
ź

`“r`1

E

«

r
ź

s“1

z1rxs`ξ`ąαss

ff

“ Frpα; z1, . . . , zr;x1, . . . , xrq
n´r
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where we have set

Frpα; z1, . . . , zr;x1, . . . , xrq “ E

«

r
ź

s“1

z1rxs`ξąαss

ff

“ E

«

r
ź

s“1

p1 rxs ` ξ ą αs zs ` 1 rxs ` ξ ď αsq

ff

(4.27)

In short, we have

E

«

r
ź

s“1

z
rD
prq
n,spαq

s

ff

“ E
“

Frpα; z1, . . . , zr; ξ1, . . . , ξrq
n´r

‰

, (4.28)

and the desired result (4.16) will hold if we show that

lim
nÑ8

E
“

Frpα; z1, . . . , zr; ξ1, . . . , ξrq
n´r

‰

“ Grpz1, . . . , zrq (4.29)

for all z1, . . . , zr in R which satisfy (4.17).

4.6 A proof of Proposition 4.5 – A decomposition

To further analyze this last expression, with x1, . . . , xr in R`, we introduce

the index set

Spα;x1, . . . , xrq “ ts “ 1, . . . , r : xs ą αu .

There are two possibilities which we now explore in turn: Either Spα;x1, . . . , xrq is

empty or it is not, leading to a natural decomposition expressed through Lemmas

4.7 and 4.8.

Lemma 4.7. With x1, . . . , xr in R, whenever Spα;x1, . . . , xrq is non-empty, we have

Frpα; z1, . . . , zr;x1, . . . , xrq

“

¨

˝

ź

sPSpα;x1,...,xrq

zs

˛

‚¨ E

»

–

r
ź

sRSpα;x1,...,xrq

p1´ p1´ zsq1 rxs ` ξ ą αsq

fi

fl (4.30)

for all z1, . . . , zr in R.
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Proof. Pick arbitrary x1, . . . , xr in R` with non-empty Spα;x1, . . . , xrq. For all

z1, . . . , zr in R, it is easy to check by direct inspection from the expression (4.27)

that (4.30) holds since

1´ p1´ zsq1 rxs ` ξ ą αs “ zs

whenever s belongs to Spα;x1, . . . , xrq. �

As an immediate consequence of (4.30) we have the inequality

0 ď Frpα; z1, . . . , zr;x1, . . . , xrq ď 1,

x1, . . . , xr P R`

with

|Spα;x1, . . . , xrq| ą 0

(4.31)

for all z1, . . . , zr in R in the range

|zs| ď 1, s “ 1, . . . , r. (4.32)

This is because, it is always the case that

|1´ p1´ zsq1 rxs ` ξ ą αs| ď 1 if |zs| ď 1.

We now turn to the case when the index set Spα;x1, . . . , xrq is empty, a fact

characterized by the conditions

xs ď α, s “ 1, . . . , r. (4.33)

It will be convenient to arrange the values x1, . . . , xr in increasing order, say xp1q ď

xp2q ď . . . ď xprq, say with a lexicographic tiebreaker. Let β be any permutation of

t1, . . . , ru such that xpsq “ xβpsq for all s “ 1, . . . , r – Obviously this permutation

depends on x1, . . . , xr. In what follows we shall use the convention xp0q “ ´8 and

xpr`1q “ 8.
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Lemma 4.8. With x1, . . . , xr in R, whenever Spα;x1, . . . , xrq is empty, we have

Frpα; z1, . . . , zr;x1, . . . , xrq “
r
ÿ

t“0

˜

r
ź

s“t`1

zβpsq

¸

¨
`

F pα ´ xptqq ´ F pα ´ xpt`1qq
˘

(4.34)

for all z1, . . . , zr in R. In this expression the product of an empty number of factors

is set to unity by convention.

Proof. In what follows, the values z1, . . . , zr in R are held fixed. Fix x1, . . . , xr in

R and α ą 0. We define the events

Ar|tpx1, . . . , xr;αq “
“

xptq ` ξ ď α ă xpt`1q ` ξ
‰

, t “ 0, 1, , . . . , r.

Under the enforced conventions, we have

Ar|0px1, . . . , xr;αq “ rα ă xp1q ` ξs and Ar|rpx1, . . . , xr;αq “ rxprq ` ξ ď αs.

When Spα;x1, . . . , xrq is empty, these r`1 eventsAr|0px1, . . . , xr;αq, . . . , Ar|rpx1, . . . , xr;αq

are mutually exclusive and form a partition of the sample space, so that

Frpα; z1, . . . , zr;x1, . . . , xrq

“

r
ÿ

t“0

E

«

1
“

Ar|tpx1, . . . , xr;αq
‰

r
ź

s“1

p1 rxs ` ξ ą αs zs ` 1 rxs ` ξ ď αsq

ff

.(4.35)

(i) On the event Ar|0px1, . . . , xr;αq, we have α ă xp1q ` ξ, thus α ă xs ` ξ for

all s “ 1, . . . , r, so that

r
ź

s“1

p1´ p1´ zsq1 rxs ` ξ ą αsq “
r
ź

s“1

zs.
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It then follows that

E

«

1
“

Ar|0px1, . . . , xr;αq
‰

r
ź

s“1

p1´ p1´ zsq1 rxs ` ξ ą αsq

ff

“

˜

r
ź

s“1

zs

¸

¨ P
“

α ă xp1q ` ξ
‰

“

˜

r
ź

s“1

zs

¸

¨
`

1´ F pα ´ xp1qq
˘

. (4.36)

(ii) With t “ 1, . . . , r´1, on the event Ar|tpx1, . . . , xr;αq it holds that xp1q`ξ ď

α, . . . , xptq ` ξ ď α and α ă xpt`1q ` ξ, . . . , α ă xprq ` ξ. Therefore,

r
ź

s“1

p1´ p1´ zsq1 rxs ` ξ ą αsq “

˜

r
ź

s“t`1

zβpsq

¸

,

and we readily conclude to

E

«

1
“

Ar|tpx1, . . . , xr;αq
‰

r
ź

s“1

p1´ p1´ zsq1 rxs ` ξ ą αsq

ff

“

˜

r
ź

s“t`1

zβpsq

¸

¨ P
“

xptq ` ξ ď α ă xpt`1q ` ξ
‰

“

˜

r
ź

s“t`1

zβpsq

¸

¨
`

F pα ´ xptqq ´ F pα ´ xpt`1qq
˘

. (4.37)

(iii) Finally, on the event Ar|rpx1, . . . , xr;αq, xprq ` ξ ď α, thus xs ` ξ ď α for

all s “ 1, . . . , r, so that

r
ź

s“1

p1´ p1´ zsq1 rxs ` ξ ą αsq “ 1,

whence

E

«

1
“

Ar|rpx1, . . . , xr;αq
‰

r
ź

s“1

p1´ p1´ zsq1 rxs ` ξ ą αsq

ff

“ P
“

xprq ` ξ ď α
‰

“ F pα ´ xprqq.(4.38)

To complete the proof we substitute (4.36), (4.37) and (4.38) into (4.35), and

recall that F pα´xp0qq “ 1 and F pα´xpr`1qq “ 0 under the enforced conventions. �
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4.7 A proof of Proposition 4.5 – Taking the limit

In order to establish the convergence (4.25) we return to the expression (4.28)

for the joint pgf of the relevant rvs. Fix n “ 2, 3, . . . with r ă n, and replace α by

α‹n according to the scaling α‹ : N0 Ñ R` appearing in Assumption 4.1.

4.7.1 A useful intermediary fact

For arbitrary α ą 0, consider x1, . . . , xr in R and z1, . . . , zr in R. In what

follows it will be convenient to define

Λrpα; z1, . . . , zr;x1, . . . , xrq “ 1´ Frpα; z1, . . . , zr;x1, . . . , xrq

so that

Frpα; z1, . . . , zr;x1, . . . , xrq “ 1´ Λrpα; z1, . . . , zr;x1, . . . , xrq. (4.39)

Whenever Spα;x1, . . . , xrq is empty, Lemma 4.8 gives

Λrpα; z1, . . . , zr;x1, . . . , xrq

“ 1´
r
ÿ

t“0

˜

r
ź

s“t`1

zβpsq

¸

¨
`

F pα ´ xptqq ´ F pα ´ xpt`1qq
˘

“ ´

r´1
ÿ

t“0

˜

r
ź

s“t`1

zβpsq

¸

¨
`

F pα ´ xptqq ´ F pα ´ xpt`1q

˘

`
`

1´ F pα ´ xprqq
˘

.(4.40)

Now fix n “ 2, 3, . . . with r ă n, and replace α by α‹n in (4.40) according to

the scaling α‹ : N0 Ñ R` appearing in Assumption 4.1: We get

lim
nÑ8

n
`

1´ F pα‹n ´ xprqq
˘

“ λpxprqq

88



and

lim
nÑ8

n
`

F pα‹n ´ xptqq ´ F pα
‹
n ´ xpt`1qq

˘

“ lim
nÑ8

n
``

1´ F pα‹n ´ xpt`1q

˘

´
`

1´ F pα‹n ´ xptqq
˘˘

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λpxp1qq if t “ 0

λpxpt`1qq ´ λpxptqq if t “ 1, . . . , r ´ 1.

(4.41)

As a result, with Spα;x1, . . . , xrq empty, we have

lim
nÑ8

nΛrpα
‹
n; z1, . . . , zr;x1, . . . , xrq

“ ´λpxp1qq

˜

r
ź

s“1

zs

¸

´

r´1
ÿ

t“1

˜

r
ź

s“t`1

zβpsq

¸

`

λpxpt`1qq ´ λpxptqq
˘

` λpxprqq

“ ´

r
ÿ

t“1

λpxptqq

˜

r
ź

s“t

zβpsq ´
r
ź

s“t`1

zβpsq

¸

“

r
ÿ

t“1

λpxptqqp1´ zβptqq
r
ź

s“t`1

zβpsq, (4.42)

and the conclusion

lim
nÑ8

Frpα
‹
n; z1, . . . , zr;x1, . . . , xrq

n´r

“ lim
nÑ8

p1´ Λrpα
‹
n; z1, . . . , zr;x1, . . . , xrqq

n´r

“ e´
řr
t“1 λpxptqqp1´zβptqq

śr
s“t`1 zβpsq (4.43)

follows by standard arguments.
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4.7.2 In the limit

Pick z1, . . . , zr in R such that (4.17) holds. For each n “ 2, 3, . . . with r ă n,

the decomposition

E
“

Frpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r
‰

“ E
“

1 r|Spα‹n; ξ1, . . . , ξrq| ą 0sFrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r
‰

` E
“

1 r|Spα‹n; ξ1, . . . , ξrq| “ 0sFrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r
‰

(4.44)

holds. Because limnÑ8 α
‹
n “ 8, it follows that

lim
nÑ8

P r|Spα‹n; ξ1, . . . , ξrq| “ 0s “ lim
nÑ8

P rξ1 ď α‹n, . . . , ξr ď α‹ns “ 1,

and the inequality (4.31) readily yields

lim
nÑ8

E
“

1 r|Spα‹n; ξ1, . . . , ξrq| ą 0sFrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r
‰

“ 0 (4.45)

since the condition (4.17) is more restrictive than (4.32).

Next,

E
“

1 r|Spα‹n; ξ1, . . . , ξrq| “ 0sFrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r
‰

“ E
“

1 r|Spα‹n; ξ1, . . . , ξrq| “ 0s p1´ Λrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrqq

n´r
‰

(4.46)

with (4.40) yielding

Λrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

“ 1´ F pα‹n ´ ξr,rq ´
r´1
ÿ

t“0

˜

r
ź

s“t`1

zβpsq

¸

¨ pF pα‹n ´ ξr,tq ´ F pα
‹
n ´ ξr,t`1q .(4.47)
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Here the order statistics ξr,1, . . . , ξr,r associated with ξ1, . . . , ξr were introduced in the

statement of Proposition 4.5, together with the random permutation β : t1, . . . , ru Ñ

t1, . . . , ru.

It is plain that

0 ď

˜

r
ź

s“t`1

zβpsq

¸

ď 1, t “ 0, . . . , r ´ 1

under the condition (4.17), and direct inspection gives

0 ď Λrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq ď 1

so that

ˇ

ˇFrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r
ˇ

ˇ ď 1.

Therefore, with the fact limnÑ8 1 r|Spα‹n; ξ1, . . . , ξrq| “ 0s “ 1 noted earlier, we see

that the convergence

lim
nÑ8

1 r|Spα‹n; ξ1, . . . , ξrq| “ 0sFrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r

“ e´
řr
t“1 λpξr,tqp1´zβptqq

śr
s“t`1 zβpsq (4.48)

takes place boundedly. By the Bounded Convergence Theorem it follows that

lim
nÑ8

E
“

1 r|Spα‹n; ξ1, . . . , ξrq| “ 0sFrpα
‹
n; z1, . . . , zr; ξ1, . . . , ξrq

n´r
‰

“ E
”

e´
řr
t“1 λpξr,tqp1´zβptqq

śr
s“t`1 zβpsq

ı

“ Grpz1, . . . , zrq (4.49)

Collecting (4.45) and (4.49), and using (4.44) we conclude that (4.29) holds on the

range (4.17). �
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4.8 A proof of Proposition 4.6

Fix α ą 0, d “ 0, 1, . . . and r “ 1, 2, . . .. With n “ r, r ` 1, . . ., let Pn,r

denote the collection of all ordered arrangements of r distinct elements drawn from

the set t1, . . . , nu. Any such arrangement can be viewed as a one-to-one mapping

π : t1, . . . , ru Ñ t1, . . . , nu.

We begin by noting that we can always write

Nnpd;αqr “

˜

n
ÿ

k“1

1 rDn,kpαq “ ds

¸r

“
ÿ

πPPn,r

1
“

Dn,πp1qpαq “ d
‰

. . .1
“

Dn,πprqpαq “ d
‰

`Rn,rpd;αq(4.50)

where the correction term Rn,rpd;αq is a sum comprising t0, 1u-valued rvs. Since

the correction term Rn,rpd;αq is a sum of exactly nr ´ |Pn,r| terms, with each term

bounded by 1, we have the upper bound

Rn,rpd;αq ď nr ´ |Pn,r| . (4.51)

Therefore, taking expectations, we obtain

E rNnpd;αqrs

“
ÿ

πPPn,r

E
“

1
“

Dn,πp1qpαq “ d
‰

. . .1
“

Dn,πprqpαq “ d
‰‰

` E rRn,rpd;αqs

“ |Pn,r| ¨ P rDn,1pαq “ d, . . . , Dn,rpαq “ ds ` E rRn,rpd;αqs (4.52)

as we make use of the fact that the rvs Dn,1pαq, . . . , Dn,npαq are exchangeable. As

a result,

E
„ˆ

Nnpd;αq

n

˙r

“
|Pn,r|
nr

¨ P rDn,1pαq “ d, . . . , Dn,rpαq “ ds ` E
„

Rn,rpd;αq

nr



, (4.53)
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and the bound (4.51) implies

E
„

Rn,rpd;αq

nr



ď 1´
|Pn,r|
nr

(4.54)

with

|Pn,r| “ npn´ 1q . . . pn´ r ` 1q.

Now consider the scaling α‹ : N0 Ñ R` whose existence is assumed in As-

sumption 4.1. For each n “ r, r ` 1, . . . replace α by α‹n in (4.53) according to this

scaling and let n go to infinity in the resulting relation: First, we note that

lim
nÑ8

|Pn,r|
nr

“ 1

by direct inspection, so that

lim
nÑ8

E
„

Rn,rpd;α‹nq

nr



“ 0

as we make use of (4.54). It follows that

lim
nÑ8

E
„ˆ

Nnpd;α‹nq

n

˙r

“ lim
nÑ8

P rDn,1pα
‹
nq “ d, . . . , Dn,rpα

‹
nq “ ds

with the understanding that if one of the limits exists, so does the other and their

value coincide. The latter exists since by Proposition 4.4 we have

lim
nÑ8

P rDn,1pα
‹
nq “ d, . . . , Dn,rpα

‹
nq “ ds “ P rD1 “ d, . . . , Dr “ ds

where the rvs D1, . . . , Dr are the limiting rvs appearing in the convergence (4.14).

It is now plain that (4.19) holds and the proof of Proposition 4.6 is now complete.

�
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Chapter 5: Degree Distribution in Growth Models

As indicated in Chapter 1, we are interested in growth models that can explain

power-law behavior in real-world networks. There we mentioned a number of exist-

ing models that implement preferential attachment on the basis of degree and fitness

information combined in various ways. Existing works consider special cases where

power-law behavior is observed under these models, but do not give a satisfactory

account of what conditions are required (e.g., on the fitness distribution) to obtain

power-law behavior. We consider arguably the simplest of these models, called the

fitness model and analyze its degree distribution. Our main motivation is to explore

how the fitness distribution affects the empirical degree distribution, if at all, and

under what conditions power-law behavior could be obtained.

5.1 The model

A word on notation: Here we consider the sequence of graphs indexed by t

instead of n (as was done in the previous chapters). This notation is natural when

considering growth models where there is a notion of adding nodes and edges over

time.

The fitness-based random graph model is defined by means of two collections
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of rvs, namely tU,Ut, t “ 0, 1, . . .u and tξ, ξt, t “ 0, 1, . . .u, defined on some prob-

ability triple pΩ,F ,Pq – All probabilistic statements are made with respect to the

probability measure P, whose expectation operator is denoted by E.

The discussion is carried out under the following set of assumptions:

(i) The rvs tU,Ut, t “ 0, 1, . . .u and tξ, ξt, t “ 0, 1, . . .u are mutually independent;

(ii) The rvs tU,Ut, t “ 0, 1, . . .u are i.i.d. rvs, each of which is uniformly dis-

tributed on the interval p0, 1q; and

(iii) The rvs tξ, ξt, t “ 0, 1, . . .u are i.i.d. R`-valued rvs. Throughout we assume

the non-degeneracy condition

P rξ “ 0s “ 0, (5.1)

as well as the finite mean condition

0 ă E rξs ă 8. (5.2)

Under these assumptions we can always select (as we do from now on) the

probability triple pΩ,F ,Pq, and the rvs tU,Ut, t “ 0, 1, . . .u and tξ, ξt, t “ 0, 1, . . .u

defined on it as mappings Ω Ñ R which simultaneously satisfy the conditions

ξ ą 0, ξt ą 0 and 0 ă U,Ut ă 1, t “ 0, 1, . . .

We shall find it convenient to write

Ξ´1 ” 0, Ξt “

t
ÿ

s“0

ξs, t “ 0, 1, . . . (5.3)
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and

ξt “ pξ0, ξ1, . . . , ξtq, t “ 0, 1, . . . (5.4)

We shall also make use of the filtration tFt, t “ 0, 1, . . .u on Ω given by

Ft “ σ pUs, ξs, s “ 0, 1, . . . , tq , t “ 0, 1, . . . .

We now formally define the sequence of (undirected) random graphs tGt, t “

0, 1, . . .u studied in this chapter: For each t “ 0, 1, . . ., the random graph Gt has

vertex set Vt “ t0, 1, . . . , tu and random edge set Et Ď Vt ˆ Vt. As this is a growth

model, imagine there being an initial node, labelled node 0, present in the system at

time t “ 0, with new nodes, labelled t “ 1, 2, . . ., arriving one at a time, say at times

t “ 1, 2, . . .. The definition is a recursive one, starting with the initial random graph

G0 “ pV0,E0q where V0 “ t0u and E0 “ H. With t “ 0, 1, . . ., once the random

graphs G0, . . . ,Gt have been defined, we can generate Gt`1 from Gt by introducing

a new vertex not in Vt (which we label t ` 1), and connecting it to the node St`1

randomly selected in Vt according to

St`1 “ s if
Ξs´1

Ξt

ă Ut`1 ď
Ξs

Ξt

, s P Vt. (5.5)

Only the fitness levels of the nodes already present in Vt matter in determining

the likelihood of the node to which node t ` 1 will attach. The newly created link

between nodes t` 1 and St`1 is interpreted as an undirected link, so that

Et`1 “ Et Y tpt` 1, St`1q, pSt`1, t` 1qu .

Although the rvs S1, . . . , St are not mutually independent, they are condition-
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ally mutually independent given ξt. It is a simple matter to check that

P rS1 “ r1, . . . , St “ rt, St`1 “ rt`1|Fts “

t`1
ź

τ“1

P rSτ “ rτ |Fts (5.6)

with arbitrary r1 in V1, . . ., rt`1 in Vt`1, where

P rSτ “ rτ |Fts “
ξrτ

Ξτ´1

, τ “ 1, . . . , t` 1 (5.7)

Fix t “ 1, 2, . . .. For each s “ 0, 1, . . . , t, let the rv Dtpsq denote the degree of

node s in Gt. By construction the rv Dtpsq can be expressed as

Dtpsq “ 1`
t
ÿ

r“s`1

1 rSr “ ss (5.8)

with possible values 1, . . . , t ´ s ` 1. With d “ 1, 2, . . ., the number Ntpdq of nodes

in Gt with degree d is then the rv given by

Ntpdq “
t
ÿ

s“0

1 rDtpsq “ ds , (5.9)

and

Ntpdq

t` 1
“

1

t` 1

t
ÿ

s“0

1 rDtpsq “ ds

is the fraction of nodes in Gt whose degree is d.

5.2 The convergence results

Before stating the main result of the chapter, we introduce the pmf pξ “

ppξpdq, d “ 1, 2, . . .q on N0 defined by

pξpd` 1q “ E
„

Λpξqd

d!
e´Λpξq



, d “ 0, 1, . . . (5.10)
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where the rv Λpξq is given by

Λpξq “
ξ

E rξs
log

ˆ

1

U

˙

. (5.11)

The pmf pξ can be interpreted as the pmf of the rv 1`Zpξq where the rv Zpξq is a

conditionally Poisson rv with random parameter Λpξq, namely

P rZpξq “ ds “ E
„

Λpξqd

d!
e´Λpξq



, d “ 0, 1, . . .

5.2.1 The main result

With this notation we have the following result.

Theorem 5.1. Under the foregoing assumptions, we have the convergence

lim
tÑ8

E
„

Ntpdq

t` 1



“ pξpdq, d “ 1, 2, . . . (5.12)

A proof of Theorem 5.1 is given in Sections 5.5-5.9. The pmf pξ depends on ξ

only through normalization to its mean, namely ξ
Erξs , since

Λpξq “ Λ

ˆ

ξ

E rξs

˙

.

This implies

pξpdq “ p ξ
Erξs
pdq, d “ 1, 2, . . .

as should be expected from the form (7.4) of the link creation probabilities.

For each t “ 0, 1, . . ., let νt denote a rv which is uniformly distributed over the

edge set Vt and independent of Ft, thus of Gt. It is plain that the representation

E
„

Ntpdq

t` 1



“ P rDtpνtq “ ds , d “ 1, 2, . . . (5.13)
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holds, and Theorem 5.1 can be given the following probabilistic form.

Theorem 5.2. Under the foregoing assumptions, we have the convergence

lim
tÑ8

P rDtpνtq “ ds “ pξpdq, d “ 1, 2, . . . (5.14)

More compactly,

Dtpνtq ùñt Dpξq (5.15)

where Dpξq is an N0-valued rv distributed according to the pmf pξ.

5.2.2 An alternate expression for the limiting pmf pξ

The pmf pξ admits an alternate expression which will yield insights into its

tail behavior.

Proposition 5.3. It holds that

pξpdq “ E

«

E rξs
E rξs ` ξ

¨

ˆ

ξ

E rξs ` ξ

˙d´1
ff

, d “ 1, 2, . . . (5.16)

In other words, the pmf pξ can also be viewed as the pmf of a conditionally

geometric rv on N0 with random parameter Rpξq given by

Rpξq “
ξ

E rξs ` ξ
(5.17)

as we note from (5.16)-(5.17) that

pξpdq “ E
“

p1´RpξqqRpξqd´1
‰

, d “ 1, 2, . . . (5.18)
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Proof. In view of the expressions (5.10)-(5.11) and (5.16)-(5.17), there is no loss of

generality in assuming E rξs “ 1 (as we do from now on in this proof) – Just replace

ξ by ξ
Erξs , in which case the quantities Λpξq and Rpξq become

Λpξq “ ξ log

ˆ

1

U

˙

and Rpξq “
ξ

1` ξ
,

respectively. Thus, e´Λpξq “ U ξ and for each d “ 0, 1, . . ., we use (5.10) to obtain

pξpd` 1q “ E

«

ξd

d!

ˆ

log

ˆ

1

U

˙˙d

U ξ

ff

“ p´1qd ¨ E
„

ξd

d!
¨ E

“

U ξ
plogUqd|ξ

‰



“ p´1qd ¨ E
„

ξd

d!
¨ E

“

U t
plogUqd

‰

t“ξ



(5.19)

by the independence of the rvs ξ and U , where we note that

E
“

U t
plogUqd

‰

“

ż 1

0

xtplog xqddx “ p´1qd
d!

p1` tqd`1
, t ą 0.

This last fact follows by repeated integration by parts; details are left to the inter-

ested reader. Substituting into (5.19) we get

pξpd` 1q “ p´1qd ¨ E

«

ξd

d!
¨ p´1qd

d!

p1` ξqd`1

ff

“ E

«

ξd

p1` ξqd`1

ff

as desired. �

5.3 Tail behavior

The tail behavior of the pmf pξ depends on the distributional properties of

the rv ξ, with a key role being played by the quantity ξ‹ given by

ξ‹ “ inf px ě 0 : P rξ ď xs “ 1q (5.20)
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with the customary understanding that ξ‹ “ 8 if the defining set in (5.20) is empty.

Under (5.2) we necessarily have ξ‹ ą 0 (possibly infinite).

The next result provides some important information regarding the tail behav-

ior of the pmf pξ. Of particular interest in the discussion is the bounded mapping

gξ : r0,8s Ñ R given by

gξpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x
Erξs`x if x P R`

1 if x “ 8,

the value at x “ 8 being determined by continuity.

Lemma 5.4. Under the foregoing assumptions, it is always the case that

lim
dÑ8

pξpdq
1
d “ gξpξ

‹
q (5.21)

with

gξpξ
‹
q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ξ‹

Erξs`ξ‹ if 0 ă ξ‹ ă 8

1 if ξ‹ “ 8.

The proof of Lemma 5.4 is given in Section 5.10. When ξ‹ is finite, then

gξpξ
‹q ă 1 so that

lim
dÑ8

1

d
log pξpdq “ log

ˆ

ξ‹

E rξs ` ξ‹

˙

ă 0. (5.22)

This indicates a geometric decay for pξ in the following sense: For ε in p0, 1q suf-

ficiently small so that p1 ` δqgξpξ
‹q ă 1 where we have set ε “ logp1 ` δq, the
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convergence (5.22) implies

´ε ă
1

d
log pξpdq ´ log gpξ˚q ă ε (5.23)

or
ˆ

gξpξ
‹q

p1` δq

˙d

ă pξpdq ă pp1` δqgξpξ
‹
qq
d

for all d “ 1, 2, . . . sufficiently large (and determined by δ). In fact, direct inspection

of (5.17) yields

pξpdq “ E
“

p1´RpξqqRpξqd´1
‰

ď E
“

p1´RpξqqRpξ‹qd´1
‰

“ p1´ E rRpξqsq ¨ gξpξ‹qd´1

“

ˆ

1´ E rRpξqs
gξpξ‹q

˙

¨ gξpξ
‹
q
d (5.24)

for all d “ 1, 2, . . ..

5.4 Special cases when ξ‹ “ 8

When ξ‹ is infinite, geometric decay is not possible anymore, and many types

of tail behavior are possible for the pmf pξ as we now illustrate with two special cases.

The probability distribution function of the rv ξ is assumed to admit a probability

density function fξ : R` Ñ R`. For each d “ 0, 1, . . ., the expression (5.16) becomes

ppd` 1q “ E

«

ˆ

1´
1

1` ξ

˙d
1

1` ξ

ff

“

ż 8

0

ˆ

1´
1

1` t

˙d
1

1` t
¨ fξptqdt

“

ż 1

0

p1´ sqd

s
¨ fξ

ˆ

1´ s

s

˙

ds [s “ 1
1`t

and t “ 1´s
s

]. (5.25)
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5.4.1 Pareto distribution

We say that the rv ξ has a power law if

P rξ ď ts “ 1´

ˆ

a

a` α

˙α

, t ě 0 (5.26)

for some a ą 0 and α ą 0. Its probability density function is given by

fξptq “ αaαpa` tq´pα`1q, t ě 0 (5.27)

and the first moment is easily computed to be

E rξs “
a

pα ´ 1q`
.

The requirement that E rξs be finite is equivalent to α ą 1, in which case E rξs “

a pα ´ 1q´1. Thus, E rξs “ 1 amounts to α ą 1 and a “ α ´ 1.

Fix d “ 0, 1, . . .. If we insert (5.27) into (5.25) we obtain by elementary

calculations that

pξpd` 1q “ αaα
ż 1

0

p1´ sqd sα p1` pa´ 1qsq´pα`1q ds

“ αaαd´pα`1q

ż d

0

´

1´
y

d

¯d

yα
´

1` pa´ 1q
y

d

¯´pα`1q

dy [s “ y
d
].(5.28)

By the Bounded Convergence Theorem it is now plain that

lim
dÑ8

pξpd` 1q

αaαd´pα`1q
“

ż 8

0

yαe´ydy,

and the following result follows.

Lemma 5.5. When ξ is distributed according to (5.26) with α ą 1 and a “ α´ 1,

then the asymptotic equivalence

pξpd` 1q „ Cpαqαaαd´pα`1q with Cpαq “

ż 8

0

yαe´ydy
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holds.

Note that Cpαq is finite for all α ě 1.

5.4.2 Exponential distribution

The rv ξ is an exponentially distributed rv with unit mean if

P rξ ď ts “ 1´ e´t, t ě 0, (5.29)

in which case its probability density function is given by

fξptq “ e´t, t ě 0.

For each d “ 0, 1, . . ., with (5.25) as starting point, elementary calculations now give

pξpd` 1q “

ż 1

0

p1´ sqd
e´

1´s
s

s
ds

“ e

ż 1

0

p1´ sqd
e´

1
s

s
ds. (5.30)

Lemma 5.6. When ξ is distributed according to (5.29), then the asymptotic equiv-

alence

pξpd` 1q „

c

π

e2

e´2
?
d

4
?
d

holds.

A discussion of Lemma 5.6 can be found in Section 5.11.
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5.5 A proof of Theorem 5.1 – Preliminaries

Pick d “ 0, 1, . . .. Theorem 5.1 is concerned with the existence and value of

the limit

lim
tÑ8

1

t` 1

t
ÿ

s“0

P rDtpsq “ d` 1s .

Fix t “ 1, 2, . . . and s “ 0, . . . , t. As we recall the definition (5.8) of the degree

rv Dtpsq, we start by asking how can the rv Dtpsq achieve the value d` 1. To avoid

trivial situations of limited interest we assume that t´ s` 1 ą d` 1 or equivalently,

t´ s ą d. Note that

P rDtpsq “ d` 1s “ P

«

1`
t
ÿ

r“s`1

1 rSr “ ss “ d` 1

ff

“ P

«

t
ÿ

r“s`1

1 rSr “ ss “ d

ff

. (5.31)

Thus, the event Dtpsq “ d` 1 corresponds to the following situation: Amongst the

t´ s nodes arriving at time s`1, . . . , t, exactly d arrivals attach themselves to node

s, while the remaining t´s´d arrivals attach themselves to a node other than node

s. This observation naturally leads to considering the set Pdrs ` 1, ts of partitions

of ts` 1, . . . , tu into two sets of size d and t´ s´ d, respectively. Thus, Pdrs` 1, ts

is given by

Pdrs` 1, ts “

$

’

’

&

’

’

%

pA,Bq : A,B Ď ts` 1, . . . , tu,
|A| “ d, |B| “ t´ s´ d,

AXB “ H

,

/

/

.

/

/

-
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With this notation we get

P

«

t
ÿ

r“s`1

1 rSr “ ss “ d

ff

“
ÿ

pA,BqPPdrs`1,ts

P rSr “ s, s P A, Sr ‰ s, s P Bs . (5.32)

For a given pair pA,Bq in Pdrs ` 1, ts, a standard preconditioning argument

yields

P rSr “ s, s P A, Sr ‰ s, s P Bs

“ E
“

P
“

Sr “ s, s P A, Sr ‰ s, s P B|ξt
‰‰

“ E

«

ź

rPA

ˆ

ξs
Ξr´1

˙

¨
ź

rPB

ˆ

1´
ξs

Ξr´1

˙

ff

(5.33)

“ E

«

ź

rPA

ˆ

ξ

ξ ` Ξr´2

˙

¨
ź

rPB

ˆ

1´
ξ

ξ ` Ξr´2

˙

ff

(5.34)

with the following justifications: The relation (5.33) is a consequence of the fact that

the rvs S1, . . . , St are conditionally mutually independent given ξt. The equality

(5.34) takes advantage of the fact that

pξs,Ξr´1, r “ s` 1, . . . , tq “st pξ, ξ ` Ξr´2, r “ s` 1, . . . , tq

under the enforced i.i.d. assumptions on the fitness variables.

Next, elementary calculations show that

ź

rPA

ˆ

ξ

ξ ` Ξr´2

˙

¨
ź

rPB

ˆ

1´
ξ

ξ ` Ξr´2

˙

“

t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

¨
ź

rPA

˜

ξ
ξ`Ξr´2

1´ ξ
ξ`Ξr´2

¸

“
ź

rPA

ˆ

ξ

Ξr´2

˙

¨

t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

“ ξd
t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

¨
ź

rPA

ˆ

1

Ξr´2

˙

. (5.35)
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since |A| “ d.

Therefore, we can write

P

«

t
ÿ

r“s`1

1 rSr “ ss “ d

ff

“
ÿ

pA,BqPPdrs`1,ts

E

«

ξd
t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

¨

˜

ź

rPA

1

Ξr´2

¸ff

“ E

»

–ξd
t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

¨

¨

˝

ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

Ξr´2

¸

˛

‚

fi

fl . (5.36)

In the next section we present some useful preliminary results that will be used in

the main proof.

5.6 Useful technical facts

Before giving a proof of Theorem 5.1 we present three useful technical facts to

be used in the course of the discussion.

5.6.1 A consequence of the Strong Law of Large Numbers

We begin with an easy consequence of the Strong Law of Large Numbers.

Lemma 5.7. Assume E rξs “ 1. For arbitrary α and ε in the unit interval p0, 1q we

have

lim
tÑ8

P rBtpα, εqs “ 1 (5.37)

where

Btpα, εq “ X
t
r“rαts

„ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



, t “ 0, 1, . . . (5.38)
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Proof. Consider the event

C “

„

lim
tÑ8

Ξt

t` 1
“ 1



,

and for every ε in p0, 1q note the inclusion

C Ă Y8t“0 X
8
r“t

„
ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



.

Therefore,

P rCs ď P
„

Y
8
t“0 X

8
r“t

„
ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



“ lim
tÑ8

P
„

X
8
r“t

„
ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



by the usual monotonicity argument. By the Strong Law of Large Numbers we have

P rCs “ 1, whence

lim
tÑ8

P
„

X
8
r“t

„
ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



“ 1.

Applying this fact along the subsequence tÑ rαts, we get

lim
tÑ8

P
„

X
8
r“rαts

„
ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



“ 1

and the desired result follows by virtue of the inclusion

X
8
r“rαts

„ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



Ď Btpα, εq, t “ 0, 1, . . .

�

5.6.2 Uniform selection

Consider α in the unit interval p0, 1q. For each t “ 1, 2, . . ., let να,t denote a

rv which is uniformly distributed over the set trαts, rαts ` 1, . . . , tu. The following

fact is elementary and given here for easy reference.
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Lemma 5.8. For each α in p0, 1q, it holds

να,t
t
ùñt Uα (5.39)

where the rv Uα is uniformly distributed over the interval pα, 1q.

Proof. Fix α in p0, 1q. With b ą 0, elementary facts concerning geometric series

yield

E
”

e´b
να,t
t

ı

“
1

t´ rαts` 1

t
ÿ

r“rαts

e´
br
t “

1

t´ rαts` 1
¨
e´

brαts
t ´ e´

bpt`1q
t

1´ e´
b
t

.

Therefore, since

lim
tÑ8

´

1´ e´
b
t

¯

¨
t

b
“ 1 and lim

tÑ8

t

t´ rαts` 1
“ p1´ αq´1 ,

it is easy to check that

lim
tÑ8

E
”

e´b
να,t
t

ı

“
e´bα ´ e´b

bp1´ αq
. (5.40)

The desired conclusion (5.39) follows by standard arguments upon noting that the

right handside of (5.40) is the Laplace transform of Uα. �

5.6.3 Limits of certain expectations

Pick α in the unit interval p0, 1q, and take λ, γ ą 0. To simplify the presenta-

tion here and elsewhere, we write

Jpd;α, λ, γq “
ξd

d!
¨ Uλξ

α

ˆ

log

ˆ

1

Uα

˙˙d

1 rξ ď γs , d “ 0, 1, . . .

with the rv Uα being uniformly distributed on the open interval pα, 1q and indepen-

dent of ξ. The expected values

T pd;α, λ, γq “ E rJpd;α, λ, γqs , d “ 0, 1, . . . (5.41)
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will play a crucial role in the proof of Theorem 5.1.

Fix d “ 0, 1, . . .. Note that Jpd;α, λ, γq ě 0 so that the expected value at

(5.41) is always well defined, possibly infinite. However, the bounds α ă Uα ă 1

imply

0 ď Uλξ
α

ˆ

log

ˆ

1

Uα

˙˙d

ď
`

logα´1
˘d
. (5.42)

while it is plain that

0 ď
ξd

d!
1 rξ ď γs ď

γd

d!
1 rξ ď γs . (5.43)

Combining these bounds we conclude that

0 ď Jpd;α, λ, γq ď
γd

d!

`

logα´1
˘d
, (5.44)

and T pd;α, λ, γq is in fact finite with

0 ď T pd;α, λ, γq ď
γd

d!

`

logα´1
˘d
. (5.45)

Lemma 5.9. Fix d “ 0, 1, . . .. With α in the unit interval p0, 1q, and λ, γ ą 0, it

holds that

lim
λÑ1

T pd;α, λ, γq “ T pd;α, 1, γq, (5.46)

lim
γÑ8

T pd;α, 1, γq “ E

«

ξd

d!
¨ U ξ

α

ˆ

log

ˆ

1

Uα

˙˙d
ff

(5.47)

and

lim
αÓ0

E

«

ξd

d!
¨ U ξ

α

ˆ

log

ˆ

1

Uα

˙˙d
ff

“ pξpd` 1q. (5.48)
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Proof. Fix d “ 0, 1, . . .. The deterministic bound (5.44) being uniform in λ, the

conclusion (5.46) is immediate by the Bounded Convergence Theorem. For each α in

p0, 1q the validity of (5.47) follows by the Monotone Convergence Theorem because

T pd;α, λ, γq is non-negative for each γ ě 0 and is non-decreasing as γ Ñ 8.

We finally turn to (5.48): For each α in p0, 1q note that

ξd

d!
¨ U ξ

α

ˆ

log

ˆ

1

Uα

˙˙d

“
1

d!

ˆ

ξ log

ˆ

1

Uα

˙˙d

e´ξ logp 1
Uα
q ď 1 (5.49)

since this term corresponds to a Poisson pmf with parameter ξ log
´

1
Uα

¯

evaluated

at d. Obviously, we have Uα ùñα U (when α is driven to zero), and the Continuous

Mapping Theorem yields

ξd

d!
¨ U ξ

α

ˆ

log

ˆ

1

Uα

˙˙d

ùñα
ξd

d!
¨ U ξ

ˆ

log

ˆ

1

U

˙˙d

.

The convergence (5.48) is now a consequence of the Bounded Convergence Theorem

by virtue of the bound (5.49) (which is uniform in α). �

In particular, it follows that

lim
αÓ0

ˆ

lim
γÑ8

´

lim
λÑ1

T pd;α, λ, γq
¯

˙

“ lim
αÓ0

ˆ

lim
γÑ8

T pd;α, 1, γq

˙

“ lim
αÓ0

˜

E

«

ξd

d!
¨ U ξ

α

ˆ

log

ˆ

1

Uα

˙˙d
ff¸

“ pξpd` 1q, d “ 0, 1, . . . (5.50)

5.7 A proof of Theorem 5.1

We shall establish Theorem 5.1 in the equivalent form given in Theorem 5.2.

To do so, fix d “ 0, 1, . . .. Under the assumptions of Theorem 5.1 we shall now show
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that the convergence statements

lim sup
tÑ8

P rDtpνtq “ d` 1s ď pξpd` 1q (5.51)

and

pξpd` 1q ď lim inf
tÑ8

P rDtpνtq “ d` 1s (5.52)

hold where for each t “ 0, 1, . . ., the rv νt is uniformly distributed over the edge set

Vt and independent of Ft, thus of Gt.

Pick α and ε in the unit interval p0, 1q, and γ ą 0. With t “ 1, 2, . . . sufficiently

large so that t´ rαts ě d, consider the event

Btpα, ε; γq “ Btpα, εq X rξ ď γs .

with Btpα, εq defined at (5.38).

Keeping (5.13) in mind, consider the decomposition

E rNtpd` 1qs “ E

«

t
ÿ

s“0

1 rDtpsq “ d` 1s

ff

“

rαts´1
ÿ

s“0

P rDtpsq “ d` 1s `
t
ÿ

s“rαts

P rDtpsq “ d` 1s

“

rαts´1
ÿ

s“0

P rDtpsq “ d` 1s ` Ttpd;α, ε, γq

`

t
ÿ

s“rαts

P rrDtpsq “ d` 1s XBtpα, ε; γq
c
s (5.53)

where we have set

Ttpd;α, ε, γq “
t
ÿ

s“rαts

P rrDtpsq “ d` 1s XBtpα, ε; γqs (5.54)

for notational convenience
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5.7.1 Establishing the upper bound (5.52)

The first and third terms in (5.53) are easily upper bounded. Specifically, we

get
rαts´1
ÿ

s“0

P rDtpsq “ d` 1s ď rαts (5.55)

and

t
ÿ

s“rαts

P rrDtpsq “ d` 1s XBtpα, ε; γq
c
s ď pt´ rαts` 1qP rBtpα, ε; γq

c
s

ď pt´ rαts` 1q pP rBtpα, εq
c
s ` P rγ ă ξsq

ď pt` 1q pP rBtpα, εq
c
s ` P rγ ă ξsq . (5.56)

Therefore,

lim sup
tÑ8

˜

1

t` 1

rαts´1
ÿ

s“0

P rDtpsq “ d` 1s

¸

ď α

and

lim sup
tÑ8

¨

˝

1

t` 1

t
ÿ

s“rαts

P rrDtpsq “ d` 1s XBtpα, ε; γq
c
s

˛

‚

ď P rγ ă ξs ` lim sup
tÑ8

P rBtpα, εq
c
s

“ P rγ ă ξs (5.57)

as we invoke Lemma 5.7. We readily conclude from (5.13) that

lim sup
tÑ8

P rDtpνtq “ d` 1s ď α ` lim sup
tÑ8

ˆ

Ttpd;α, ε, γq

t` 1

˙

` P rγ ă ξs . (5.58)

Most of the technical work that remains consists in identifying the limiting

term in this last inequality; a proof can be found in Section 5.8.
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Proposition 5.10. Under the assumptions of Theorem 5.1, we have

lim sup
tÑ8

ˆ

Ttpd;α, ε, γq

t` 1´ rαts

˙

ď p1´ εq´d ¨ T
`

d;α, p1` εq´1, γ
˘

(5.59)

Collecting (5.58) and (5.59) we find that

lim sup
tÑ8

P rDtpνtq “ d` 1s

ď α ` p1´ αqp1´ εq´d ¨ T
`

d;α, p1` εq´1, γ
˘

` P rγ ă ξs (5.60)

The left handside does not depend on either of the parameters α, ε or γ. Therefore,

in (5.60) let ε go to zero, γ go to infinity and α go to zero in that order, and Lemma

5.9 leads to (5.51). �

5.7.2 Establishing the lower bound (5.51)

This time, neglecting the first and last terms in (5.53) (which are non-negative),

we get

lim inf
tÑ8

ˆ

Ttpd;α, ε, γq

t` 1

˙

ď lim inf
tÑ8

P rDtpνtq “ d` 1s (5.61)

by arguments similar to those used earlier for deriving the upper bound. This time

we need to show the following analog of Proposition 5.10; a proof is available in

Section 5.9.

Proposition 5.11. Under the assumptions of Theorem 5.1, we have

lim inf
tÑ8

ˆ

Ttpd;α, ε, γq

t` 1´ rαts

˙

ě p1` εq´d ¨ T
`

d;α, p1´ εq´1, γ
˘

(5.62)
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It now follows from (5.61) and (5.62) that

p1´ αqp1` εq´d ¨ T
`

d;α, p1´ εq´1, γ
˘

ď lim inf
tÑ8

P rDtpνtq “ d` 1s (5.63)

Here as well the left handside does not depend on either of the parameters α, ε or

γ. Therefore, in (5.63) let ε go to zero, γ go to infinity and α go to zero in that

order. The validity of (5.52) is now a straightforward consequence of Lemma 5.9. �

5.8 A proof of Proposition 5.10

Fix d “ 0, 1, . . .. Fix α and ε in the unit interval p0, 1q and γ ą 0. For ease of

exposition we recollect some notation: For each d “ 0, 1, . . ., t “ 1, 2, . . ., α and ε in

p0, 1q and γ ą 0, recall that we had set

Ttpd;α, ε, γq “
t
ÿ

s“rαts

P rrDtpsq “ d` 1s XBtpα, ε; γqs

where the event

Btpα, ε; γq “ Btpα, εq X rξ ď γs

with

Btpα, εq “ X
t
r“rαts

„
ˇ

ˇ

ˇ

ˇ

Ξr

r ` 1
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε



.

Fix t “ 1, 2, . . . and s “ rαts, . . . , t. From (5.36), we have

P rDtpsq “ d` 1s “ E

»

–ξd
t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

¨

¨

˝

ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

Ξr´2

¸

˛

‚

fi

fl .

(5.64)
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Under the event Btpα, ε; γq, we have the following upper bound

t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

ď

t
ź

r“s`1

ˆ

1´
ξ

γ ` pr ´ 2qp1` εq

˙

ď

t
ź

r“s`1

e´
ξ

γ`pr´2qp1`εq

“ e
´

ξ
1`ε

řt´1
r“s

1
γ

1`ε`pr´1q . (5.65)

By observing that

t´1
ÿ

r“s

1
γ

1`ε
` pr ´ 1q

ě

ż t

s

1
γ

1`ε
` pp´ 1q

dp “ log

˜

t´ 1` γ
1`ε

s´ 1` γ
1`ε

¸

we refine the bound (5.65) as follows

t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

ď e
´

ξ
p1`εq

log

ˆ

t´1`
γ

1`ε

s´1`
γ

1`ε

˙

“

˜

s´ 1` γ
1`ε

t´ 1` γ
1`ε

¸

ξ
p1`εq

. (5.66)

Upper bounding the final term in (5.64) on the set Btpα, ε; γq, we get

ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

Ξr´2

¸

ď
ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

p1´ εqpr ´ 2q

¸

“
1

p1´ εqd

ÿ

pA,BqPPdrs,t´1s

˜

ź

rPA

1

r ´ 1

¸

ď
1

p1´ εqd
¨

1

d!

˜

t´1
ÿ

r“s

1

r ´ 1

¸d

ď
1

p1´ εqd
¨

1

d!

ˆ
ż t

s

1

p´ 1
dp

˙d

“
1

p1´ εqd
¨

1

d!

ˆ

log

ˆ

t´ 1

s´ 1

˙˙d

. (5.67)
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Substituting the upper bounds (5.66) and (5.67) in (5.64), we obtain

P rrDtpsq “ d` 1s XBtpα, ε; γqs

ď
1

p1´ εqd
E

»

–

ξd

d!

˜

s´ 1` γ
1`ε

t´ 1` γ
1`ε

¸
ξ

p1`εq ˆ

log

ˆ

t´ 1

s´ 1

˙˙d

1 rξ ă γs

fi

fl . (5.68)

For c0 ą 1, t ą c0
α

and s “ rαts, . . . , t, we have the upper bound

ξd

d!

˜

s´ 1` γ
1`ε

t´ 1` γ
1`ε

¸
ξ

p1`εq ˆ

log

ˆ

t´ 1

s´ 1

˙˙d

1 rξ ă γs ď
γd

d!

ˆ

log

ˆ

t´ 1

αt´ 1

˙˙d

“
γd

d!

ˆ

log

ˆ

1´ 1
t

α ´ 1
t

˙˙d

ď
γd

d!

˜

log

˜

1´ α
c0

α ´ α
c0

¸¸d

. (5.69)

Substituting (5.68) in the expression for Ttpd;α, ε, γq, we obtain

Ttpd;α, ε, γq ď
1

p1´ εqd
E

»

–

ξd

d!

˜

να,t ´ 1` γ
1`ε

t´ 1` γ
1`ε

¸

ξ
p1`εq ˆ

log

ˆ

t´ 1

να,t ´ 1

˙˙d

1 rξ ă γs

fi

fl .

(5.70)

Allowing t to go to infinity in (5.70), we get the desired result using the Bounded

Convergence theorem (by virtue of the upper bound (5.69)) and Lemma 5.8.

�

5.9 A proof of Proposition 5.11

Fix d “ 0, 1, . . .. Fix α and ε in the unit interval p0, 1q and γ ą 0. For each

t “ 1, 2, . . . and s “ rαts, . . . , t, we have

P rDtpsq “ d` 1s “ E

»

–ξd
t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

¨

¨

˝

ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

Ξr´2

¸

˛

‚

fi

fl .

(5.71)

117



Under the event Btpα, ε; γq, we have the lower bound

t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

ě

t´1
ź

r“s

ˆ

1´
ξ

ξ ` p1´ εqpr ´ 1q

˙

“

t´1
ź

r“s

e´
ξ

ξ`p1´εqpr´1q
´Ψp ξ

ξ`p1´εqpr´1qq

“ e´
řt´1
r“s

ξ
ξ`p1´εqpr´1q

´
řt´1
r“s Ψp ξ

ξ`p1´εqpr´1qq

ě e´
ξ

1´ε

řt´1
r“s

1
r´1

´
řt´1
r“s Ψp ξ

ξ`p1´εqpr´1qq (5.72)

where we have set

Ψpxq “

ż x

0

t

1´ t
dt, 0 ď x ă 1.

The first term in (5.72) can be bounded as follows

t´1
ÿ

r“s

1

r ´ 1
ď

ż t´1

s

1

r ´ 2

“ log

ˆ

t´ 2

s´ 2

˙

. (5.73)

Before bounding the second term in (5.72) we note that for 0 ď x ď y ă 1,

1

2
ď

Ψpxq

x2
ď

Ψpyq

y2
ă 8. (5.74)

In view of the above fact for sufficiently large t we would like to uniformly bound

the sequence of rvs
$

’

&

’

%

Ψ
´

ξ
ξ`p1´εqpr´1q

¯

´

ξ
ξ`p1´εqpr´1q

¯2 , r “ rαts, . . . , t

,

/

.

/

-

.

Since ξ
ξ`p1´εqpr´1q

is monotonically increasing in ξ and decreasing in r, on the set

rξ ă γs it is sufficient to ensure γ
γ`p1´εqpαt´1q

is strictly less than one for all t being

considered. Under the condition t ą γ
p1´εqα

` 1,

γ

γ ` p1´ εqpαt´ 1q
ă

1

2
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which implies the uniform bound

Ψ
´

ξ
ξ`p1´εqpr´1q

¯

´

ξ
ξ`p1´εqpr´1q

¯2 ă
Ψ
`

1
2

˘

`

1
2

˘2 ,
r “ rαts, . . . , t

t ą γ
p1´εqα

(5.75)

by virtue of the fact (5.74). Using the bound (5.75), on the set rξ ă γs we have the

upper bound

t´1
ÿ

r“s

Ψ

ˆ

ξ

ξ ` p1´ εqpr ´ 1q

˙

“

t´1
ÿ

r“s

Ψ
´

ξ
ξ`p1´εqr

¯

´

ξ
ξ`p1´εqpr´1q

¯2

ˆ

ξ

ξ ` p1´ εqpr ´ 1q

˙2

ď
Ψ
`

1
2

˘

`

1
2

˘2

t´1
ÿ

r“s

ˆ

ξ

ξ ` p1´ εqpr ´ 1q

˙2

ď 4Ψ

ˆ

1

2

˙

γ2

p1´ εq2

t´1
ÿ

r“s

1

pr ´ 1q2

ď 4Ψ

ˆ

1

2

˙

γ2

p1´ εq2

ż t´1

s

1

p2
dp

ď 4Ψ

ˆ

1

2

˙

γ2

p1´ εq2
1´ α

αt
, (5.76)

where the last step follows by noting that s ě αt. The bounds (5.73) and (5.76)

when substituted in (5.72) yields the lower bound

t
ź

r“s`1

ˆ

1´
ξ

ξ ` Ξr´2

˙

ě e
´4Ψp 12q

γ2

p1´εq2
1´α
αt E

«

ˆ

s´ 2

t´ 2

˙
ξ

p1´εq

ff

(5.77)

on the set Btpα, ε; γq. The final term inside the expectation in (5.71) can be lower

bounded as

ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

Ξr´2

¸

ě
ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

p1` εqpr ´ 2q

¸

“
1

p1` εqd

¨

˝

ÿ

pA,BqPPdrs,t´1s

˜

ź

rPA

1

r ´ 1

¸

˛

‚ (5.78)

on the set Btpα, ε; γq. Before we proceed further, we note that
˜

t´1
ÿ

r“s

1

r ´ 1

¸d

“ d!

¨

˝

ÿ

pA,BqPPdrs,t´1s

˜

ź

rPA

1

r ´ 1

¸

˛

‚`Rps, tq (5.79)
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where Rps, tq is an error term that we would like to bound. Observe that the

number of terms in Rps, tq is
`

pt´ 1´ sqd ´
`

t´1´s
d

˘

d!
˘

where each term is at most

1
sd

. Therefore for s “ rαts, . . . , t, we have the upper bound

Rps, tq ď

„

pt´ 1´ sqd ´ d!

ˆ

t´ 1´ s

d

˙

1

pαtqd

ď
1

αd

˜

pt´ 1´ sqd ´ d!
`

t´1´s
d

˘

td

¸

. (5.80)

Also, we have the lower bound
˜

t´1
ÿ

r“s

1

r ´ 1

¸d

ě

ˆ
ż t

s

1

p´ 1
dp

˙d

ě

ˆ

log

ˆ

t´ 1

s´ 1

˙˙d

(5.81)

Substituting the bounds (5.80) and (5.81) in (5.78), we obtain

ÿ

pA,BqPPdrs`1,ts

˜

ź

rPA

1

Ξr´2

¸

ě
1

p1` εqd
¨

1

d!

«

ˆ

log

ˆ

t´ 1

s´ 1

˙˙d

´
1

αd

˜

pt´ 1´ sqd ´ d!
`

t´1´s
d

˘

td

¸ff

(5.82)

using the expression (5.79) on the set Btpα, ε; γq.

The lower bounds (5.77) and (5.82) when substituted in (5.71) yields

P rrDtpsq “ d` 1s XBtpα, ε; γqs ě
1

p1` εqd
e
´4Ψp 12q

γ2

p1´εq2
1´α
αt

ˆ E

«

ξd

d!

ˆ

s´ 2

t´ 2

˙

ξ
p1´εq

«

ˆ

log

ˆ

t´ 1

s´ 1

˙˙d

´
1

αd

˜

pt´ 1´ sqd ´ d!
`

t´1´s
d

˘

td

¸ff

1 rξ ă γs

ff

(5.83)

Substituting the bound (5.83) in the expression of Ttpd;α, ε, γq and using Lemma

5.8 and the following limit
˜

pt´ 1´ να,tq
d ´ d!

`

t´1´να,t
d

˘

td

¸

ÝÑt 0, d “ 0, 1, . . . .

we get the desired result by virtue of the Bounded Convergence theorem. �
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5.10 A proof of Lemma 5.4

Let µ denote the probability measure on pR`,BpR`qq induced by the rv ξ, i.e.,

µpBq “ P rξ P Bs , B P BpR`q.

With µ we associate another measure ν on pR`,BpR`qq which is absolutely contin-

uous with respect to µ, its Radon-Nikodym derivative being given by

dν

dµ
pxq “

E rξs
E rξs ` x

, x ě 0.

The measure ν is finite with

0 ă νpR`q “
ż 8

0

ˆ

E rξs
E rξs ` x

˙

dµpxq ď 1.

Thus, while µ is a probability measure, the positive measure ν will be a sub-

probability measure on pR`,BpR`qq. The measures µ and ν are mutually absolutely

continuous, so that with B in BpR`q we have µpBq “ 0 if and only if νpBq “ 0.

Fix d “ 0, 1, . . .. We note that

pξpd` 1q “ E
“

p1´RpξqqRpξqd
‰

“

ż 8

0

E rξs
E rξs ` x

¨

ˆ

x

E rξs ` x

˙d

dµpxq

“

ż 8

0

gξpxq
ddνpxq (5.84)

We can now rewrite (5.84) more compactly as

ppξpd` 1qq
1
d “ }gξ}LdpR`;νq (5.85)

where } ¨ }LdpR`;νq denotes the usual prenorm on the linear space Ldpν,R`q of all

Borel measurable functions R` Ñ R which are d-integrable with respect to ν.
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Standard arguments based on Hölder’s inequality can be used to show the

convexity of the mapping

R` Ñ R : aÑ log

˜

ş8

0
|gξpxq|

adνpxq

νpR`q

¸

,

and the mapping

p0,8q Ñ R : aÑ
1

a
log

˜

ş8

0
|gξpxq|

adνpxq

νpR`q

¸

is therefore non-decreasing. In particular for 0 ă a ă b we have

˜

ş8

0
|gξpxq|

adνpxq

νpR`q

¸
1
a

ď

˜

ş8

0
|gξpxq|

bdνpxq

νpR`q

¸
1
b

,

or equivalently,
`ş8

0
|gξpxq|

adνpxq
˘

1
a

`ş8

0
|gξpxq|bdνpxq

˘
1
b

ď νpR`q
1
a
´ 1
b .

Because νpR`q ď 1, the mapping

p0,8q Ñ R` : aÑ

ˆ
ż 8

0

|gξpxq|
adνpxq

˙
1
a

is also non-decreasing, and the limit

lim
aÑ8

ˆ
ż 8

0

|gξpxq|
adνpxq

˙
1
a

therefore exists. It is easy to see that

lim
aÑ8

ˆ
ż 8

0

|gξpxq|
adνpxq

˙
1
a

“ }gξ}L8pR`;νq

with

}gξ}L8pR`;νq “ ν ´ Ess sup p|gξpxq| : x ě 0q

“ inf pa P R` : νtx ě 0 : |gξpxq| ą au “ 0q

“ inf pa P R` : µtx ě 0 : |gξpxq| ą au “ 0q (5.86)
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where the last step follows from the fact noted earlier that the measures µ and ν

are mutually absolutely continuous (in which case νtx ě 0 : |gξpxq| ą au “ 0 if and

only if µtx ě 0 : |gξpxq| ą au “ 0. From the definition of gξ it is plain that

tx ě 0 : |gξpxq| ą au “ tx ě 0 :
x

E rξs ` x
ą au

“ tx ě 0 : p1´ aqx ą aE rξsu

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`

a
1´a

¨ E rξs ,8
˘

if 0 ď a ă 1

H if 1 ď a,

(5.87)

whence

µtx ě 0 : |gξpxq| ą au “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

P
“

ξ ą a
1´a

¨ E rξs
‰

if 0 ď a ă 1

0 if 1 ď a.

(5.88)

Next, note that the mapping gξ : r0,8s Ñ r0, 1s admits an inverse mapping

g´1
ξ : r0, 1s Ñ r0,8s given by

g´1
ξ paq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

a
1´a

E rξs if 0 ď a ă 1

8 if a “ 1.

Therefore, using the obvious convention

P
„

ξ ą
a

1´ a
¨ E rξs



“ 0, if a “ 1,
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we readily conclude

inf pa P R` : µtx ě 0 : |gξpxq| ą au “ 0q

“ inf

ˆ

a P r0, 1s : P
„

ξ ą
a

1´ a
¨ E rξs



“ 0

˙

“ inf
`

a P r0, 1s : P
“

ξ ą g´1
ξ paq

‰

“ 0
˘

“ gξ pinf px P r0,8s : P rξ ą xs “ 0qq “ gξpξ
‹
q (5.89)

as we make use of the definition (5.20) of ξ‹. The desired conclusion (5.21) readily

follows. �

5.11 A proof of Lemma 5.6

Fix d “ 0, 1, . . .. From (5.30) we have

pξpd` 1q “ e

ż 1

0

p1´ sqd
e´

1
s

s
ds. (5.90)

We shall find it helpful to write

Idpsq “ p1´ sq
d e

´ 1
s

s
, s ě 0

with the understanding that Idp0q “ 0 by the usual continuity argument since

limsÓ0 e
´ 1
s “ 0 much faster than s. With

Jdpsq “ log Idpsq “ d logp1´ sq ´ log s´
1

s
, 0 ă s ă 1,

we have

Idpsq “ eJdpsq, 0 ă s ă 1.

Note that

Jdpsq
1
“ ´dp1´ sq´1

´ s´1
` s´2

“ ´
d

1´ s
`

1´ s

s2
, 0 ă s ă 1.
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Therefore, Jdpsq
1 “ 0 is equivalent to

1´ s

s2
“

d

1´ s
,

an equation with a unique solution s‹pdq in the interval p0, 1q given by

s‹pdq “
1

1`
?
d
.

It is easy to check that sÑ Jdpsq is increasing on the interval p0, s‹pdqq and decreas-

ing on the interval ps‹pdq, 1q.

For future reference we note that

1´ s‹pdq “ 1´
1

1`
?
d
“

?
d

1`
?
d

and

1

1´ s‹pdq
“

1`
?
d

?
d

.

It is plain that s‹pdqmaximizes Jdpsq, hence Idpsq, on the interval r0, 1s, namely

Idpsq ď Idps
‹
pdqq, 0 ď s ď 1

so that
ż 1

0

Idpsqds ď Idps
‹
pdqq.

We have

Jdps
‹
pdqq “ d logp1´ s‹pdqq ´ log s‹pdq ´

1

s‹pdq

“ d log

˜ ?
d

1`
?
d

¸

´ log

ˆ

1

1`
?
d

˙

´

´

1`
?
d
¯

“ d log

˜ ?
d

1`
?
d

¸

` log
´

1`
?
d
¯

´

´

1`
?
d
¯

, (5.91)
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so that

eIdps
‹
pdqq “ eeJdps

‹pdqq

“ e

˜ ?
d

1`
?
d

¸d
´

1`
?
d
¯

¨ e´p1`
?
dq

“

˜ ?
d

1`
?
d

¸d
´

1`
?
d
¯

¨ e´
?
d. (5.92)

An easy induction argument shows the following fact: For all k “ 1, 2, . . ., we

have

dk

dsk
Jdpsq “ ´pk ´ 1q!dp1´ sq´k ` p´1qkpk ´ 1q!s´k ´ p´1qkk!s´pk`1q, 0 ă s ă 1.

Now fix k “ 1, 2, . . .. It is easy to check that

ˆ

dk

dsk
Jdpsq

˙

s“s‹pdq

“ ´pk ´ 1q!dp1´ s‹pdqq´k ` p´1qkpk ´ 1q!s‹pdq´k ´ p´1qkk!s‹pdq´pk`1q

“ ´pk ´ 1q!d

˜

1`
?
d

?
d

¸k

` p´1qkpk ´ 1q!
´

1`
?
d
¯k

´ p´1qkk!
´

1`
?
d
¯k`1

.

If we set

akpdq “
1

k!
¨

ˆ

dk

dsk
Jdpsq

˙

s“s‹pdq

,

then

akpdq “ ´
d

k

˜

1`
?
d

?
d

¸k

` p´1qk
1

k

´

1`
?
d
¯k

´ p´1qk
´

1`
?
d
¯k`1

“

˜

´
d1´ k

2

k
`
p´1qk

k
´ p´1qk

´

1`
?
d
¯

¸

´

1`
?
d
¯k

. (5.93)

We note that akpdq ă 0 if and only if

´
d1´ k

2

k
`
p´1qk

k
´ p´1qk

´

1`
?
d
¯

ă 0,
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a condition equivalent to

´d1´ k
2 ` p´1qk ă p´1qkk

´

1`
?
d
¯

. (5.94)

When k is even, say k “ 2p for p “ 1, 2, . . ., this condition becomes

1´ d1´p
ă 2p

´

1`
?
d
¯

,

and is clearly satisfied.

When k is odd, say k “ 2p` 1 for p “ 1, 2, . . ., then condition (5.94) becomes

p2p` 1q
´

1`
?
d
¯

ă d´p`
1
2 ` 1,

and is never satisfied. The discussion can be summarized as follows.

Fact 5.12. For k ě 2, we always have p´1qkakpdq ă 0.

We now turn to the question as to whether the power series

ÿ

k“2

akpdqps´ s
‹
pdqqk

is convergent on the interval p0, 1q.
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To answer this question, fix k “ 2, 3, . . . and consider

ak`1pdq

akpdq
“

ˆ

´d1´
k`1
2

k`1
`
p´1qk`1

k`1
´ p´1qk`1

`

1`
?
d
˘

˙

`

1`
?
d
˘k`1

´

´d1´
k
2

k
`
p´1qk

k
´ p´1qk

`

1`
?
d
˘

¯

`

1`
?
d
˘k

“

ˆ

´d1´
k`1
2

k`1
`
p´1qk`1

k`1
´ p´1qk`1

`

1`
?
d
˘

˙

´

´d1´
k
2

k
`
p´1qk

k
´ p´1qk

`

1`
?
d
˘

¯ ¨

´

1`
?
d
¯

“

ˆ

´d´
k´1
2

k`1
`
p´1qk`1

k`1
´ p´1qk`1

`

1`
?
d
˘

˙

ˆ

´d´
k´2
2

k
`
p´1qk

k
´ p´1qk

`

1`
?
d
˘

˙ ¨

´

1`
?
d
¯

“
k

k ` 1

´

´d´
k´1
2 ` p´1qk`1 ´ p´1qk`1pk ` 1q

`

1`
?
d
˘

¯

´

´d´
k´2
2 ` p´1qk ´ p´1qkk

`

1`
?
d
˘

¯ ¨

´

1`
?
d
¯

“
k

k ` 1

´

´p´1qkd´
k´1
2 ´ 1` pk ` 1q

`

1`
?
d
˘

¯

´

´p´1qkd´
k´2
2 ` 1´ k

`

1`
?
d
˘

¯ ¨

´

1`
?
d
¯

. (5.95)

It is now plain that

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak`1pdq

akpdq

ˇ

ˇ

ˇ

ˇ

“ 1`
?
d.

Therefore, with s in p0, 1q we have

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak`1pdqps´ s
‹pdqqk`1

akpdqps´ s‹pdqqk

ˇ

ˇ

ˇ

ˇ

“

ˆ

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ak`1pdq

akpdq

ˇ

ˇ

ˇ

ˇ

˙

¨ |s´ s‹pdq|

“ |s´ s‹pdq| ¨
´

1`
?
d
¯

. (5.96)

Is it possible for some s in p0, 1q to have

|s´ s‹pdq| ¨
´

1`
?
d
¯

ă 1?

This last condition is equivalent to having

´
1

1`
?
d
ă s´ s‹pdq ă

1

1`
?
d
,
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or equivalently,

´s‹pdq ă s´ s‹pdq ă s‹pdq.

In other words, the condition becomes

0 ă s ă 2s‹pdq “
2

1`
?
d
.

In particular, the interval p0, 2s‹pdqq where Jdpsq admits a Taylor series representa-

tion shrinks with increasing d.

Pick λ in the unit interval r0, 1s. Note that

p1˘ λqs‹pdq “
1˘ λ

1`
?
d

so that

1´ p1˘ λqs‹pdq “
¯λ`

?
d

1`
?
d
.

Therefore,

Jdpp1˘ λqs
‹
pdqq “ d logp1´ p1˘ λqs‹pdqq ´ logpp1˘ λqs‹pdqq ´

1

p1˘ λqs‹pdq

“ d log

˜

¯λ`
?
d

1`
?
d

¸

´ log

ˆ

1˘ λ

1`
?
d

˙

´
1`

?
d

1˘ λ
, (5.97)

whence

Idpp1˘ λqs
‹
pdqq “

˜

¯λ`
?
d

1`
?
d

¸d

¨

˜

1`
?
d

1˘ λ

¸

¨ e´
1`
?
d

1˘λ . (5.98)

Next, with α in r0, 1q and β in r0, 1s, we conclude that

Idpp1` βqs
‹pdqq

Idpp1´ αqs‹pdqq
“

´

´β`
?
d

1`
?
d

¯d

¨

´

1`
?
d

1`β

¯

¨ e´
1`
?
d

1`β

´

α`
?
d

1`
?
d

¯d

¨

´

1`
?
d

1´α

¯

¨ e´
1`
?
d

1´α

“

˜

´β `
?
d

α `
?
d

¸d

¨
1´ α

1` β
¨ e´

1`
?
d

1`β
` 1`

?
d

1´α .
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Note that

1`
?
d

1` β
´

1`
?
d

1´ α
“ ´Cpα, βq ¨

´

1`
?
d
¯

where we have set

Cpα, βq “
α ` β

p1´ αqp1` βq
,

whence

Idpp1` βqs
‹pdqq

Idpp1´ αqs‹pdqq
“

˜

´β `
?
d

α `
?
d

¸d

¨
1´ α

1` β
¨ eCpα,βq¨p1`

?
dq.

Next, write

˜

´β `
?
d

α `
?
d

¸d

“

ˆ

1´
α ` β

α `
?
d

˙d

“ e
´d

´

α`β

α`
?
d
`Ψ

´

α`β

α`
?
d

¯¯

(5.99)

where we have set

Ψpxq “

ż x

0

t

1´ t
dt, 0 ď x ă 1.

.

dΨ

ˆ

α ` β

α `
?
d

˙

“ d

ˆ

α ` β

α `
?
d

˙2

rpdq (5.100)

as we set

rpdq “
Ψ
´

α`β

α`
?
d

¯

´

α`β

α`
?
d

¯2 “
1

2
p1` op1qq .

It is plain that

lim
dÑ8

d

ˆ

α ` β

α `
?
d

˙2

“ pα ` βq2,

whence

lim
dÑ8

dΨ

ˆ

α ` β

α `
?
d

˙

“
pα ` βq2

2
.
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Thus,

d

ˆ

α ` β

α `
?
d
`Ψ

ˆ

α ` β

α `
?
d

˙˙

“
pα ` βqd

α `
?
d
`
pα ` βq2

2
p1` op1qq (5.101)

and collecting we conclude that

Idpp1` βqs
‹pdqq

Idpp1´ αqs‹pdqq

“ e
´
pα`βqd

α`
?
d ¨ e´

pα`βq2

2
p1`op1qq

¨
1´ α

1` β
¨ eCpα,βqp1`

?
dq

“ e
´
pα`βqd

α`
?
d ¨ eCpα,βq

?
d
¨

1´ α

1` β
e
´

ˆ

´Cpα,βq` pα`βq
2

2
p1`op1qq

˙

(5.102)

However,

lim
dÑ8

1
?
d

ˆ

pα ` βqd

α `
?
d
´ Cpα, βq

?
d

˙

“ α ` β ´ Cpα, βq

“ pp1´ αqp1` βq ´ 1qCpα, βq

“ pβp1´ αq ´ αqCpα, βq. (5.103)

In other words,

pα ` βqd

α `
?
d
´ Cpα, βq

?
d „ pβp1´ αq ´ αqCpα, βq

?
d,

and the following conclusion follows.

Lemma 5.13. With α and β in p0, 1s such that

α

1´ α
ă β,

we have

Idpp1` βqs
‹
pdqq “ o pIdpp1´ αqs

‹
pdqqq
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in the sense that

lim
dÑ8

Idpp1` βqs
‹pdqq

Idpp1´ αqs‹pdqq
¨ epβp1´αq´α`op1qqCpα,βq

?
d
“ Kpα, βq

where

Kpα, βq “
1´ α

1` β
¨ e
´

ˆ

pα`βq2

2
´Cpα,βq

˙

.

In other words

Idpp1` βqs
‹pdqq

Idpp1´ αqs‹pdqq
„ Kpα, βq ¨ e´pβp1´αq´α`op1qqCpα,βq

?
d

We exploit this fact as follows: With α and β in p0, 1s such that α ă p1 ´ αqβ,

Lemma 5.13 ensures that for all d sufficiently large, the inequality

5Idpp1` βqs
‹
pdqq ă Idpp1´ αqs

‹
pdqq

holds. However, recall that the mapping s Ñ Idpsq is monotone increasing on

p0, s‹pdqq and monotone decreasing on ps‹pdq, 1q, with a maximum at s “ s‹pdq.

Therefore, with d sufficiently large, there exists tpdq to the right of s‹pdq in the

interval ps‹pdq, p1` βqs‹pdqq which depends on α, β and d such that

Idptpdqq “ Idpp1´ αqs
‹
pdqq.

It is now plain that

ż 1

p1`βqs‹pdq

Idpsqds ď p1´ p1` βqs
‹
pdqq ¨ Idpp1` βqs

‹
pdqq

while

ptpdq ´ p1´ αqs‹pdqq ¨ Idpp1´ αqs
‹
pdqq ď

ż p1`βqs‹pdqq

0

Idpsqds.
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Therefore,

ş1

p1`βqs‹pdq
Idpsqds

şp1`βqs‹pdq

0
Idpsqds

ď
p1´ p1` βqs‹pdqq

ptpdq ´ p1´ αqs‹pdqq
¨
Idpp1` βqs

‹pdqq

Idpp1´ αqs‹pdqq
.

As we note that

tpdq ´ p1´ αqs‹pdq ą s‹pdq ´ p1´ αqs‹pdq “ αs‹pdq

by construction, it follows that

ş1

p1`βqs‹pdq
Idpsqds

şp1`βqs‹pdq

0
Idpsqds

ď
1

αs‹pdq
¨
Idpp1` βqs

‹pdq

Idpp1´ αqs‹pdqq

“
1`

?
d

α
¨
Idpp1` βqs

‹pdq

Idpp1´ αqs‹pdqq
(5.104)

Lemma 5.14. For every β in r0, 1s, we have

lim
dÑ8

ş1

p1`βqs‹pdq
Idpsqds

şp1`βqs‹pdq

0
Idpsqds

“ 0

and
ż 1

0

Idpsqds „

ż p1`βqs‹pdq

0

Idpsqds.

Pick d “ 1, 2, . . .. Pick α and β in p0, 1q. Recall that for s in the interval

pp1´ αqs‹pdq, p1` βqs‹pdqq, we have

Jdpsq ´ Jdps
‹
pdqq “

8
ÿ

k“2

akpdq ps´ s
‹
q
k

“ ´

´

1`
?
d
¯3

ps´ s‹pdqq2 `
8
ÿ

k“3

akpdq ps´ s
‹
pdqqk

“ ´

´

1`
?
d
¯3

ps´ s‹pdqq2
˜

1´
8
ÿ

k“3

akpdq
`

1`
?
d
˘3 ps´ s

‹
pdqqk´2

¸

“ ´

´

1`
?
d
¯3

ps´ s‹pdqq2 p1´ hdps´ s
‹
pdqqq (5.105)
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where we have set

hdpsq “
8
ÿ

k“3

akpdq
`

1`
?
d
˘3 ¨ s

k´2, |s| ă s‹pdq

Therefore,

ż p1`βqs‹pdq

p1´αqs‹pdq

Idpsqds “ eJdps
‹pdqq

ż p1`βqs‹pdq

p1´αqs‹pdq

eJdpsq´Jdps
‹pdqqds (5.106)

“ Idps
‹
pdqq

ż p1`βqs‹pdq

p1´αqs‹pdq

e´p1`
?
dq

3
ps´s‹pdqq2p1´hdps´s

‹pdqqqds

“ Idps
‹
pdqq

ż βs‹pdq

´αs‹pdq

e´p1`
?
dq

3
y2p1´hdpyqqdy ry “ s´ s‹pdqs

“ s‹pdqIdps
‹
pdqq

ż β

´α

e´p1`
?
dqx2p1´hdps‹pdqxqqdx ry “ s‹pdqxs(5.107)

Thus, with x such that |x| ă 1, we obtain

|hdps
‹
pdqxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“3

akpdq
`

1`
?
d
˘3 ps

‹
pdqxqk´2

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

k“3

|akpdq|
`

1`
?
d
˘3 s

‹
pdqk´2

|x|k´2

“

8
ÿ

k“3

|akpdq|s
‹
pdqk`1

|x|k´2 (5.108)

with

|akpdq|s
‹
pdqk`1

“

ˇ

ˇ

ˇ

ˇ

ˇ

˜

´
d1´ k

2

k
`
p´1qk

k
´ p´1qk

´

1`
?
d
¯

¸

´

1`
?
d
¯k

ˇ

ˇ

ˇ

ˇ

ˇ

s‹pdqk`1

ď 1`
1` d1´ k

2

k
¨ s‹pdq

ď 1`
1`

?
d

k
?
d
¨ s‹pdq

“ 1`
1

k
?
d
, k “ 3, 4, . . . (5.109)
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As a result,

|hdps
‹
pdqxq| ď

8
ÿ

k“3

ˆ

1`
1

k
?
d

˙

|x|k´2

ď 2
8
ÿ

k“3

|x|k´2

“
2|x|

1´ |x|
, d “ 1, 2, . . . (5.110)

Hence, with γ “ maxpα, βq, we get

sup p|hdps
‹
pdqxq|, ´α ď x ď βq ď

2γ

1´ γ
(5.111)

uniformly in d. It follows then for each λ in p0, 1q,

sup p|hdps
‹
pdqxq|, ´α ď x ď βq ď λ

uniformly in d whenever

γ ă
λ

2` λ
:“ γ‹pλq

with γ‹pλq in the unit interval p0, 1q.

Thus, fix λ in p0, 1q. With γ in p0, γ‹pλqq, whenever γ “ maxpα, βq, we have

ż β

´α

e´p1`
?
dqx2p1´hdps‹pdqxqqdx ď

ż β

´α

e´p1`
?
dqp1´λqx2dx

and
ż β

´α

e´p1`
?
dqp1`λqx2dx ď

ż β

´α

e´p1`
?
dqx2p1´hdps‹pdqxqqdx

uniformly in d.

We will make use of these bounds together with the following asymptotics.

Lemma 5.15. For arbitrary α ą 0 and β ą 0 it holds that

ż β

´α

e´θx
2

dx „

c

π

θ
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as θ goes to infinity.

Proof. Fix θ ą 0. We get

ż β

´α

e´θx
2

dx “
1
?

2θ

ż β
?

2θ

´α
?

2θ

e´
y2

2 dy ry “
?

2θxs

“

c

π

θ

´

Φpβ
?

2θq ´ Φp´α
?

2θq
¯

“

c

π

θ

´

Φpβ
?

2θq ` Φpα
?

2θq ´ 1
¯

(5.112)

and the conclusion follows. �

Consequently,

ż β

´α

e´p1`
?
dqp1˘λqx2dx „

d

π
`

1`
?
d
˘

p1˘ λq

Assume from the time being that

ż 1

0

Idpsqds „

ż 1

p1´αqs‹pdq

Idpsqds, α P p0, 1q

so that

ppd` 1q „

ż 1

p1´αqs‹pdq

Idpsqds

„

ż p1`βqs‹pdq

p1´αqs‹pdq

Idpsqds

“ s‹pdqIdps
‹
pdqq

ż β

´α

e´p1`
?
dqx2p1´hdps‹pdqxqqdx

“ s‹pdqIdps
‹
pdqq ¨

c

π

1`
?
d
¨

şβ

´α
e´p1`

?
dqx2p1´hdps‹pdqxqqdx
b

π
1`
?
d

(5.113)

It follows that

ppd` 1q

s‹pdqIdps‹pdqq ¨
b

π
1`
?
d

„

şβ

´α
e´p1`

?
dqx2p1´hdps‹pdqxqqdx
b

π
1`
?
d

(5.114)
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From earlier inequalities we conclude that

lim sup
dÑ8

şβ

´α
e´p1`

?
dqx2p1´hdps‹pdqxqqdx
b

π
1`
?
d

ď lim
dÑ8

şβ

´α
e´p1`

?
dqp1´λqx2dx

b

π
1`
?
d

“
1

?
1´ λ

(5.115)

and

1
?

1` λ
“ lim

dÑ8

şβ

´α
e´p1`

?
dqp1`λqx2dx

b

π
1`
?
d

ď lim inf
dÑ8

şβ

´α
e´p1`

?
dqx2p1´hdps‹pdqxqqdx
b

π
1`
?
d

(5.116)

Finally,

lim sup
dÑ8

ppd` 1q

s‹pdqIdps‹pdqq ¨
b

π
1`
?
d

ď
1

?
1´ λ

and

1
?

1` λ
ď lim inf

dÑ8

ppd` 1q

s‹pdqIdps‹pdqq ¨
b

π
1`
?
d

Since λ is arbitrary in p0, 1q we conclude that

lim
dÑ8

pξpd` 1q

s‹pdqIdps‹pdqq ¨
b

π
1`
?
d

“ 1,

or equivalently,

pξpd` 1q „ s‹pdqIdps
‹
pdqq ¨

c

π

1`
?
d
.

Substituting we find

pξpd` 1q „

c

π

e2

e´2
?
d

a

1`
?
d
„

c

π

e2

e´2
?
d

4
?
d

�

137



Part II

Games on Networks

138



Chapter 6: Learning in Games

There has been a growing interest in game theory as a tool to solve complex

engineering problems that involve interactions among (many) distributed agents or

subsystems. As these agents are expected to interact many times over time, re-

searchers proposed a variety of learning rules with desired properties, that helped

the agents to determine their future strategies on the basis of the past information

available to them. One example of such a desired property is convergence to some

form of equilibrium that might be thought of as an approximation of a desired oper-

ating point for the entire system. Many researchers have worked on this interesting

problem, and as a result many different types of learning rules have been already

proposed in the literature, e.g., [74, 75,78,78,79].

However, when casting an engineering problem in a game-theoretic frame-

work there are a few important practical considerations that need to be taken into

account. For instance, controllers in engineering systems are not necessarily syn-

chronized; instead, they are often event driven and update their (control) actions as

new measurements or observations become available. For this reason, guaranteeing

acceptable performance under asynchronous operations is crucial in many engineer-

ing systems. Moreover, in settings where the system consists of many individual
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subsystems with their own individual controllers, the measurements available to a

particular subsystem or a controller could reflect the past decisions taken by the in-

dividual controllers. For example, consider the setting of a wind farm composed of

a number of wind turbines 1. The sensor data available at a particular wind turbine

could reflect past decisions taken by other wind turbines because the actions taken

by the other wind turbines could affect the former with varying time delays.

Unfortunately, most of the existing studies on learning in games do not con-

sider either delays experienced by payoff information or asynchronous updates of

strategies by players. In our work we propose two classes of learning rules which

could be thought as a first step towards bridging this gap between the current liter-

ature and the sound design of engineering systems on a game-theoretic framework.

First, we consider the better-reply rule [85] in which the players aim to improve

their immediate payoffs. This learning rule has been studied extensively due to its

simplicity [73, 74, 95]. More precisely, the proposed rule requires the following: (i)

if there is no strictly better reply (SBR), the agent stays with the same action, and

(ii) if there exists at least one SBR, it switches to each SBR with positive probabil-

ity and also sticks with the previous actions with positive probability (often called

inertia). This inertia may, for instance, model the scenario where an agent waits

at least one more period and tries the same action before switching/commiting to

an SBR. Clearly, the learning rule is computationally inexpensive in that only a

number of simple comparisons need to be made.

1A wind turbine can control how much power it draws from the wind by varying its axial

induction factor [77]
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In Chapter 7 we introduce a general framework for modelling asynchronous

updates of strategies by the players, possibly based on delayed or even outdated

payoff information. Assuming that the payoff information available to the players

is accurate, we prove that if all the agents update in accordance to the better-reply

rule, under a set of mild technical conditions, the action profiles 2 played by the

agents converges to a pure strategy Nash equilibrium (PSNE) almost surely [58]

in a class of games, which we call generalized weakly acyclic games (GWAGs). We

note that this almost sure convergence of action profiles takes place even when the

players update their strategies in an asynchronous manner on the basis of delayed

payoff information. Finally, we demonstrate that if the game is not generalized

weakly acyclic, the better-reply rule in general cannot guarantee the almost sure

convergence of action profiles even when the strategies are updated synchronously

using current payoff information.

In many practical scenarios, erroneous decision-making by the individual agents

(possibly controllers in an engineering system) is also a major concern along with

delayed payoff information and asynchronous operations. Such erroneous decision-

making could stem from faulty available payoff information and that is what we

consider in Section 7.6. We show in fact that as the payoff information becomes

more reliable, the probability that the agents play a PSNE under the better-reply

rule tends to one over time. When the probability of error is sufficiently small, the

set of action profiles that are played by the system most of the time are called the

stochastically stable states [95]. Thus for the GBRR rules the set of stochastically

2An action profile specifies the actions played by all the agents in the system
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stable states are a subset of the set of PSNE(s). However there are two shortcom-

ings of the better reply rules – (i) a somewhat undesirable property is that under

the exact payoff information setting the system converges almost surely to a PSNE

depending on the system’s initial conditions, and (ii) under the faulty payoff infor-

mation setting the set of stochastically stable states are not easily characterisable.

This gives us the reason to devise a learning rule which is not only robust with

respect to delayed payoff information and asynchrony but also addresses the above-

mentioned shortcomings. This leads us to our next piece of work where we have

proposed a new class of rules, which we call the class of monitoring rules.

In Chapter 8, we discuss a simplified representative version in the class of

monitoring rules called the reduced simple experimentation with monitoring (RSEM)

rule [86]. Under the RSEM rule, the agents can either be in an explore state or in

a converged state – where the state dictates how actions are chosen at a particular

time. While at the explore state the agent tries out every action with a positive

probability in an effort to play the action which cannot be improved any further.

Once such an action is played the agent switches to the converged state with a

positive probability. At the converged state, the agent simply keeps playing the

previous action as long as ‘playing conditions remain unchanged’, i.e., the payoff

remains the same and no better reply exists. As promised earlier, in Chapter 8,

we show convergence of the action profile to a PSNE under asynchronous updates

and payoff information delays, firstly, in the class of GWAGs, and also in games

satisfying a ‘payoff interdependence assumption’ [79, 86, 87, 96]. When the game

satisfies the ‘payoff interdependence assumption’, the RSEM rule ensures almost sure
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convergence to the set of PSNE(s) independent of the initial conditions. Also, under

the setting of erroneous determination of the SBRs, i.e., erroneous estimation of the

set of better replies, the set of stochastically stable states are well characterisable.

In particular, they are those PSNE(s) such that when it is in effect in the system,

it is least likely that any of the agents see a better reply. It is worth pointing out

that the results for the RSEM rule have been shown for erroneous determination of

the SBRs but an accurate received payoff for the played action. Future work is in

order to consider the situation of erroneous payoff for the played action as well.

Until now, we argued erroneous decision-making by the agents to be a result

of faulty available payoff information. However there might be practical situations

where the agents receive correct payoff information yet implement non-equilibrium

actions either by mistake or maybe because its system has been compromised. Con-

sider the model described earlier where the agents correspond to controllers driving

their own (sub)-systems which in turn are a part of a much bigger system. There is

a possibility that the controller decides on a certain action but its own (sub)-system

cannot implement it either due to mistakes or maybe because its system has been

compromised and the controller has lost command on its (sub)-system.

Such a scenario could be potentially detrimental to a system which is already

at an equilibrium. A moment of thought suggests that the algorithm should allow

brief changes in the received payoff information and instead be responsive to long

term changes. A simple implementation of this idea leads to a generalization of the

RSEM rule where the agents at the converged state allow at most a fixed number of

successive changes in its payoff information before permanently moving away from
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an equilibrium action. This rule is formally introduced in Chapter 9 as the simple

experimentation with monitoring (SEM) rule. We show that when the agents follow

the SEM rule, the action profiles selectively converge to resilient PSNE(s) that can

tolerate deviations by potentially multiple agents. By controlling the number of

successive changes in the payoff information that can be allowed by the agents as a

tunable parameter, either (i) PSNEs with certain desired resilience or (ii) the most

resilient PSNE(s) could be reached.

This portion of the thesis is organized as follows: In Chapter 7, we first intro-

duce the framework for considering asynchronous updates and delayed payoff infor-

mation, and also present the results under better-reply rules. In the same chapter

we also introduce a setting for considering faulty payoff information and investigate

convergence under the better-reply rules. In the next chapter, we introduce the

RSEM rule and present convergence results under delays and asynchrony. We also

distinguish our findings from that obtained under the better-reply rules under faulty

payoff information. In Chapter 9, we generalize the RSEM rule to ensure selective

convergence to resilient PSNEs under erroneous decision-making due to faulty im-

plementation of intended actions. But first, in the following section we present an

outline of our main contributions before doing a brief literature review.

6.1 Summary of Contributions

Our main contributions can be summarized as follows:

1. We propose a general framework for considering delayed payoff information
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and asynchronous updates by agents. To the best of our knowledge, this

work is the first one that introduces a general game-theoretic framework for

modeling more realistic engineering systems with delays and asynchrony.

2. We demonstrate that a simple and intuitive rule such as the better-reply rule

can ensure almost sure convergence to the set of PSNEs even under asyn-

chronous updates and delays in a class of games, which we call the generalized

weakly acyclic games. Not only that, we also show the probability that the

players have not converged to a PSNE decays geometrically with time, thereby

proving that the expected convergence time is finite.

3. Motivated by practical scenarios, we model erroneous decision-making by

agents due to faulty payoff information. Under the better-reply rule, we show

that as the payoff information becomes more reliable, the probability that the

players play a PSNE tends to one over time.

4. For the better reply rules, under the setting where there are no errors, the

system converges to a PSNE which could depend on its initial conditions.

Also, under the aforementioned setting of faulty available payoff information,

we are unable to characterise the set of stochastically stable equilibria. To

resolve these issues, we propose the RSEM rule:

(a) Firstly, the RSEM rule is shown to ensure almost sure convergence of

the action profiles to a PSNE under delays and asynchrony for GWAGs

and also in games that satisfy a ‘payoff interdependence assumption’.
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Moreover, under both the settings we show that the probability that the

agents have not converged to a PSNE decays geometrically with time.

When the game satisfies the payoff interdependence assumption the sys-

tem converges to any PSNE independently of the initial conditions.

(b) Under the setting of faulty determination of SBRs, the stochastically

stable states under the RSEM rule are those PSNE(s) which make it

least likely for any of the agents to see a better reply when it is in effect.

5. While erroneous decision-making could occur due to faulty available payoff

information, it could also be a result of faulty implementation of an intended

action. Firstly, we consider a model to account for such a scenario. Next, we

show that the RSEM rule can be generalized to ensure that the system reaches

PSNE(s) which are resilient to deviations by potentially multiple agents.

6.2 Related Literature

There is already a large volume of literature on learning in games with findings

of varying nature, e.g., [39,43,52,56,63,69,95,96]. For this reason, we only provide

a very brief summary of a limited number of studies, and refer an interested reader

to the references therein for additional studies. First, a popular early learning

procedure is fictitious play [45, 55, 56, 82, 83]; players form beliefs regarding the

opponents’ players, for instance, based on the empirical frequencies of their plays,

and pick optimal strategies with respect to their beliefs. The convergence of strategy

profile to equilibria is proven only in somewhat restrictive settings, such as zero-sum
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games and potential games.

Bayesian learning has drawn attention of many researchers for quite some time:

In [66], Jordan studied the Bayesian learning processes for normal form games and

convergence to a Nash equilibrium under mild assumptions on the prior distribution

over payoff functions. In [67], he also studied far-sighted Bayesian learning and

its convergence to a Nash equilibrium in repeated game settings. Another related

work by Kalai and Lehrer [68] showed that, if players in a repeated game start with

subjective beliefs about their opponents’ strategies and their beliefs are “compatible”

with their true strategies, i.e., the players’ prior beliefs assign positive probability

to all strategy profiles that will be chosen with positive probability according to the

true strategies, Bayesian learning leads to accurate prediction of future play of the

game. Moreover, they illustrated that if the players know their payoff functions, the

convergence to a Nash equilibrium occurs.

Researchers also considered non-Bayesian learning. For instance, Foster and

Vohra [50] studied the problem of forecasting and pointed out the benefits of ran-

domized forecasting against an oblivious or adaptive adversary. In their follow-up

study [49], they demonstrated that when the players in a normal form game use

a learning rule with calibrated forecast of the other players’ plays and each player

plays myopically with respect to the forecast distribution, the limit points of the

sequence of plays are correlated equilibria. This was put forth as an alternative to

Aumann’s proof that the common prior assumption and rationality imply a corre-

lated equilibrium. Interestingly, they also showed the converse of the finding also

holds in the sense that, for every correlated equilibrium, there exists some calibrated
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learning rule that would result in the equilibrium being played in the limit.

Another class of learning rules is based on regrets. Regrets capture the addi-

tional payoff a player could have received by playing a different action. There are

several regret-based learning rules, e.g., [57,59,62], which guarantee convergence to

Nash equilibria, correlated equilibria or Hannan set in an appropriate sense. Hart

and Mas-Colell in [59] introduced a simple adaptive procedure called the regret

matching where players switch from their current plays to others with probabilities

proportional to their regrets. They showed that the empirical distribution of plays

converges to a correlated equilibrium if all the players follow the procedure. In a

slightly different informational setting, Hart and Mas-Colell proposed a reinforce-

ment learning-based technique to estimate regrets, which they called the modified

regret matching, with a similar convergence property. A summary of existing conver-

gence results for generalized regret matching can be found in [61]. Regret testing is

another regret-based uncoupled learning rule, which was first introduced by Foster

and Young [51]. Germano and Lugosi [57] showed that when all players adopt this

scheme, the (mixed) strategy profile of the players converges to a Nash equilibrium

of the stage game almost surely.

Oftentimes, real world problems exhibit special structures which could be

leveraged while designing learning rules. In this context many of the existing learn-

ing rules target games with special structures, such as identical interest games,

potential games (PGs), and weakly acyclic games (WAGs). Although an arbitrary

game is not guaranteed to possess a PSNE, one exists for PGs because a maximizer

of the potential function is a PSNE [88]. This led to further research with problems
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being formulated as PGs. For example, Arslan et al. [41] model the autonomous

vehicle-target assignment problem as a PG. They present two learning rules and

demonstrate their convergence to PSNEs. Marden et al. [76] study large-scale games

with many players with large strategy spaces. They generalize the notion of PGs

and propose a learning rule that guarantees convergence to a PSNE in the class

of games they consider, with applications to congestion games. The WAGs were

first studied in a systemic manner in [95]. Since then, there has been considerable

interest in WAGs. For instance, Marden et al. [73] establish the relations between

cooperative control problems (e.g., consensus problem) and game theoretic models.

In addition, they propose the better reply with inertia dynamics and apply it to a

class of games, which they call sometimes weakly acyclic games, to address time-

varying objective functions and action sets. In another related study [74], Marden

et al. proposed regret-based dynamics that achieve almost sure convergence to a

strict Nash equilibrium in weakly acyclic games.

More recently, researchers aimed to design so-called payoff-based learning rules

(also known as ‘completely uncoupled dynamics’) with provable convergence to ef-

ficient Nash equilibria (in an appropriate sense) in potential games [78] and weakly

acyclic games [75]. Pradelski and Young extended the result to general games satis-

fying what they called an interdependence assumption, a weaker form of which has

been actually used in our work. Related to these studies, Marden et al. [79] pro-

posed learning rules that seek Pareto optimal strategy profile, i.e., a maximizer of

aggregate payoff. This result was sharpened by Menon and Baras [80] to show that,

under some conditions, the probability that the strategy profile lies in the set of
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aggregate payoff maximizers converges to one over time. Marden and Shamma [78]

studied the effects of asynchrony in log-linear learning using independent revision

processes and showed that, in potential games with sufficiently small probability of

players revising their strategies at each time t P N, only the maximizers of potential

functions can be stochastically stable. We also point out an interesting study by

Hart and Mansour [64] on the communication complexity of uncoupled equilibrium

procedures. Not surprisingly, they showed that any pure Nash equilibrium proce-

dure has communication complexity that grows exponentially with the number of

players.

150



Chapter 7: Class of Better reply rules

In this chapter, we consider a simple and intuitive class of learning rules called

the better-reply rules. Along with identifying a new class of games – generalized

weakly acyclic games which contains well known classes of games such as weakly

acyclic games, potential games and identical interest games (see Section 6.2 for prac-

tical significance of these classes of games), we also show convergence results of the

action profiles under the better-reply rules in the context of these games. We draw

connections between the better-reply rules and the GWAGs, and argue that the

GWAGs is a class of games naturally associated with the better-reply rules. Keep-

ing in mind our original motivation to better model practical engineering concerns

in a game-theoretic setting, we outline a framework for considering asynchronous

updates of strategies by the agents based on payoff information with potentially

time-varying delays. We demonstrate that when all agents update their strategies

according to the better-reply rules, the action profile converges to a pure-strategy

Nash equilibrium with probability 1 (or almost surely) if the game is a GWAG. As

discussed in Chapter 6, we take our attempt at modelling practical scenarios one

step further, and consider the setting of erroneous decision-making by the agents

due to faulty payoff information.
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7.1 Stage and Repeated Games

In this section, we first describe the strategic-form stage game and the infinitely

repeated game we adopt for analysis. A word on notation: An inequality between

two action profiles is an element-wise inequality.

Finite stage game: Let P :“ t1, 2, . . . , nu be the finite set of agents. The

pure action or strategy space of agent i P P and the joint strategy space of all agents

are denoted by Ai “ t1, 2, . . . , Aiu and A :“
ś

iPP Ai, respectively. We assume that

the strategy spaces Ai are finite for all i P P . The payoff function of agent i is given

by Ui : A Ñ R :“ p´8,8q. Hence, the strategic-form finite (stage) game is given

by G :“ pP , tAi, i P Pu, tUi, i P Puq.

A mixed strategy of agent i P P is a probability distribution pi “ ppipaiq,

ai P Aiq P ∆pAiq, where ∆pAiq denotes the probability simplex over Ai; agent i P P

chooses action ai P Ai with probability pipaiq. A pure strategy is a special case

where the probability distribution is concentrated on a single action.

A strategy profile is a collection of strategies, one strategy for each agent.

Throughout the remainder of the thesis, a strategy profile refers to a pure strategy

profile unless stated otherwise. Furthermore, we find it convenient to differentiate

the (mixed) strategy profile from the actions played by the agents (according to the

mixed strategy profile). For this reason, we refer to the set of actions played by the

agents as an action profile.

Given a strategy profile a “ pa1, a2, . . . , anq P A, a´i denotes the strategy
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profile of all the agents other than agent i, i.e., a´i “ pa1, . . . , ai´1, ai`1, . . . , anq.

Similarly, given a subset of agents I Ĺ P , aI is the strategy profile comprising

strategies picked by the agents in I. We say that a‹ P A is a pure-strategy Nash

equilibrium if, for every agent i P P ,

Uipa
‹
i , a

‹
´iq ě Uipai, a

‹
´iq for all ai P Aizta‹i u. (7.1)

The pure-strategy Nash equilibrium is strict if the inequality in (7.1) is strict for

all agents i P P . Hereafter a Nash equilibrium refers to a pure-strategy Nash

equilibrium. We denote the set of Nash equilibria of G by ANE.

Repeated game: We employ a repeated game setting to model the repeated

interactions among agents. In an (infinitely) repeated game, the above stage game

G is repeated at each time t P N :“ t1, 2, . . .u. At time t, agent i P P chooses its

action aiptq according to some mixed strategy piptq P ∆pAiq. We denote the action

profile played by the agents at time t by aptq “ paiptq, i P Pq. However, unlike in

a traditional repeated game, we do not necessarily assume that the payoffs agents

receive at time t depend on aptq.

The agents are allowed to revise their strategies based on (the history of)

payoffs in a repeated game. In this chapter we describe two simple better-reply

rules (that were first studied in [85]) which ensures almost sure convergence under

asynchronous updates of strategies by agents based on their delayed payoff informa-

tion in a class of games we call generalized weakly acyclic games described in the

following section.

153



7.2 Generalized weakly acyclic games

In order to define the GWAGs [85], we first need to introduce the notion of

generalized better reply paths (GBRPs). A GBRP is a sequence of action profiles

(a1, a2, . . . , aL) such that, for every 1 ď ` ď L´1, there exists a set of agents I` Ď P

that satisfies

i. a`i ‰ a``1
i and Uipa

`q ă Uipa
``1
i , a`´iq for all i P I`, and

ii. a`i “ a``1
i for all i P PzI`.

These conditions mean that a GBRP consists of transitions from one action profile to

another action profile, in each of which a set of agents that can achieve a higher payoff

via unilateral deviation switch their actions simultaneously, while the remaining

agents stay with their previous actions. A better reply path (BRP) used to define

WAGs [73,74] is a special case of GBRPs with |I`| “ 1 for all ` “ 1, 2, . . . , L´ 1.

Definition 7.1. A game is a GWAG if (i) the set of PSNEs is nonempty and (ii)

for every action profile a˚ P AzANE, there exists a GBRP pa1, a2, . . . , aLq such that

a1 “ a˚ and aL P ANE.

It is clear from the definition that WAGs are special cases of GWAGs where

only BRPs are allowed, i.e., only a single agent is allowed to switch or deviate at

a time. Due to this constraint, we suspect that there is a large class of games that

are GWAGs, but not WAGs as illustrated by the following simple game.
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4, 8, 5

5, 5, 5 5, 7, 5

6, 7, 5

0, 0, 6 0, 0, 0

1, 10, 0 10, 10, 5

0

1

0 1

1

0

1

a   = 0 a   = 13 3

Player 1 Player 1

Player 2Player 2

(a)

simultaneous deviation by multiple players

0, 0, 01, 0, 0

0, 1, 00, 0, 1

1, 1, 0

1, 0, 1 1, 1, 1

0, 1, 1

unilateral deviation

(b)

Figure 7.1: An example of a GWAG that is not a WAG. (a) Game in normal form,

(b) all possible unilateral deviations and simultaneous deviations
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˛ Example of a GWAG that is not a WAG: Consider a three-agents game

shown in Fig 7.1 in normal form. All three agents have the identical action space

{0, 1}. The unique PSNE of the game is aNE “ p1, 1, 1q. The solid red arrows in

Fig. 7.1(b) indicate all possible unilateral deviations that would improve the payoff

of the agent that deviates. From the figure, we can verify that there does not exist

a BRP from any action profile that is not the PSNE or a: “ p0, 1, 1q; the PSNE is

reachable only from a:, and it is not possible to reach either the PSNE or a: from

any other action profile. For this reason, this game is not a WAG.

On the other hand, this game is a GWAG. To see this, note that both agents

2 and 3 have an incentive to deviate at a˚ “ p0, 0, 0q. Therefore, from action profile

a˚, we can find a GBRP given by pa1, a2, a3q “ pa˚, a:, aNEq with I1 “ t2, 3u and

I2 “ t1u. Since it is possible to reach a˚ from other remaining action profiles, we

can construct a GBRP from them as well. Therefore, this example illustrates that

the GWAGs give rise to a strictly larger class of games than WAGs.

In Section 7.4, we draw a relationship between a class of better reply algorithms

and the class of GWAGs. However, next we state the following lemma which provides

an alternate definition of a GWAG.

Lemma 7.1. A game G is a GWAG if and only if there exists a potential function

φ : A Ñ R such that, for every a R ANE, there exists a subset of agents Ipaq Ď P

and a1i ‰ ai for all i P Ipaq such that Uipa
1
i, a´iq ą Uipaq and φpa1Ipaq, a´Ipaqq ą φpaq.
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Proof. Sufficiency (‘if ’): Pick a0 R ANE. Then, there exists some subset Ipa0q Ď

P with action profile a1Ipa0q
‰ a0

Ipa0q
1 such that Uipa

1
i, a

0
´iq ą Uipa

0q for all i P Ipa0q

and φpa1q ą φpa0q, where a1 “ pa1Ipa0q
, a0
´Ipa0q

q.

If a1 R ANE, we can repeat this process and construct a sequence a0, a1, . . .,

until we have an action profile that belongs to ANE. Since φpa`q ă φpa``1q for all

` “ 0, 1, . . . and there are finitely many action profiles, this process will terminate

after a finite number of iterations and the final action profile, say aM , must be

a PSNE. It is an easy exercise to verify that pa0, a1, . . . , aMq is a GBRP from its

construction. Since we can find a GBRP that leads to a PSNE for any non-PSNE

action profile a0, the game is a GWAG.

Necessity (‘only if ’): Define the length of a GBRP to be the number of action

profiles in the sequence. For each a R ANE, find a shortest GBRP to a PSNE. If we

represent all PSNEs in ANE using a single node aNE, then these shortest GBRPs

from all non-PSNE action profiles to aNE give rise to a spanning tree rooted at aNE,

which we denote by T .

Suppose that we assign a value φ0 to all PSNEs (represented by aNE in T ).

Let φ : AÑ R be a potential function, where φpaq “ φ0 ´ dpaq and dpaq is the hop

distance of a to aNE in T . Then, from the construction of the spanning tree T , it is

clear that, for any action profile a R ANE, there exists a subset I Ď P and a1I ‰ aI

such that Uipa
1
i, a´iq ą Uipaq for all i P I and φpa1I , a´Iq ą φpaq. �

1The inequality between two action profiles is an element-wise inequality throughout the thesis.
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7.3 Proposed Update Rules - Generalized Better Reply Rules

Payoff information for updates – Let S “ tB, I,W u and, for each agent

i P P , define its classification mapping Ci : Ai ˆAÑ S, where

Cipa1i, aq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B if Uipa
1
i, a´iq ą Uipaq,

I if Uipa
1
i, a´iq “ Uipaq,

W otherwise.

The payoff information on which agent i bases its decision lies in Ii “ SAi . The

interpretation is that, if the strategy profile generating the payoff information is

a P A, the payoff information agent i has available is pCipa1i, aq, a1i P Aiq. To simplify

notation, for fixed a P A, we denote the payoff information vector pCipa1i, aq, a1i P Aiq

by Cipaq.

Remark: Clearly, the payoff information we assume is less restrictive than the

payoff vector pUipa
1
i; a´iq, a

1
i P Aiq assumed in [57, 59], but is more stringent than

that of the completely uncoupled payoff-based learning rules, e.g., [79, 80, 87]. We

argue that in some scenarios, even though agents cannot determine the exact payoffs

for the strategies not played, they might be able to determine which strategies could

have yielded higher (or smaller) payoffs than the previously chosen strategy.

For example, consider an interdependent security game in which each agent

chooses a combination of security measures from a set of available security measures

for its own protection [72], e.g., cybersecurity measures including incoming-traffic

monitoring and intrusion detection systems. In this case, based on the number of

successful attacks a agent suffers, the resulting losses, as well as the costs of various
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security measures, it might be able to determine if another combination of security

measures would have achieved a lower overall cost.

We find it convenient to define following mappings we use in the subsequent

sections: For each agent i P P , let BRi : AÑ 2Ai and IRi : AÑ 2Ai , where

BRipaq “ ta
1
i P Ai | Cipa1i, aq “ Bu and

IRipaq “ ta
1
i P Ai | Cipa1i, aq “ Iu.

Clearly, BRipaq is the set of better replies for agent i given the strategy profile of

the other agents a´i.

In Sections 7.4 and 7.5, we assume that the payoff information available to the

agents, i.e., Cipãiptqq, is accurate. In other words, the agents can correctly determine

BRipã
iptqq and IRipã

iptqq. In Section 7.6, we relax this assumption and consider the

scenario where agents cannot perfectly determine these sets and, as a result, make

mistakes.

In this section, we describe the better-reply rules we study. Recall that T i “

tT ik, k P Nu Ď N is the update time sequence of agent i.

At time t “ 1, the agents choose their initial action profile ap1q according to

some distribution G over A. Subsequently, agents revise their strategies according

to the following rule: Fix ε ą 0 and βi : SAi Ñ ∆pAiq, i P P . The mappings

βipciq “ pβipai; ciq, ai P Aiq are used to determine the mixed strategy to be em-

ployed when there is a better reply.

GBRR-I Rule
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• if BRipã
iptqq “ H

– choose aiptq “ aipt´ 1q ;

• else (i.e., BRipã
iptqq ‰ H)

– choose aiptq “ ai with probability βipai; Cipãiptqqq ě ε for each ai P

BRipã
iptqq, and aiptq “ aipt´ 1q with the remaining probability;

Note that when there is no better reply, i.e., BRipã
iptqq “ H, agent i plays

the same action aipt ´ 1q at time t. On the other hand, if there exists at least

one better reply, agent i (a) picks each of the better replies with probability at

least ε or (b) continues to play the same action aipt ´ 1q with probability 1 ´

ř

aiPBRipãiptqq
βpai; Cipãiptqqq. Thus, it plays a mixed strategy.

Throughout the chapter, we assume

max
iPP

´

max
aPA

ÿ

a1iPBRipaq

βipa
1
i; Cipaqq

¯

“: µ ă 1.

This guarantees that, even when the set of better replies is nonempty, the agent

continues to play the same action aipt´ 1q with strictly positive probability.

In the GBRR-I rule, the same action aipt ´ 1q is chosen at time t when-

ever BRipã
iptqq “ H. In the following slightly modified rule, which we call the

GBRR-II rule, we relax this constraint and allow additional exploration among best

responses. Assume ε‹ ą 0 and let ϑi : SAi Ñ ∆pAiq, i P P . The role of the map-

pings ϑipciq “ pϑipai; ciq, ai P Aiq, i P P , is similar to that of βi, i P P , and they

determine the mixed strategies to be played by the agents when there are multiple
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best responses.

GBRR-II Rule: Set θi “ TRUE at time t “ 1.

• if BRipã
iptqq “ H

– if |IRipã
iptqq| “ 1 (i.e., IRipã

iptqq “ taipt´ 1qu)

∗ choose aiptq “ aipt´ 1q ;

– else (i.e., |IRipã
iptqq| ą 1)

∗ if θi “ TRUE

˛ choose each action ai P IRipã
iptqq with probability ϑpai; Cipãiptqqq ě

ε‹ (with
ř

aiPIRipãiptqq
ϑpai; Cipãiptqqq “ 1); (*)

˛ set θi “ FALSE;

∗ else (i.e., θi “ FALSE)

˛ choose aiptq “ aipt´ 1q ;

• else (i.e., BRipã
iptqq ‰ H)

– choose aiptq “ ai with probability βpai; Cipãiptqqq ě ε for each ai P

BRipã
iptqq, and aiptq “ aipt´ 1q with the remaining probability;

– set θi “ TRUE;

The key difference between the two update rules is that GBRR-II permits the

agent to explore among the best responses in some cases even when there is no

better reply (case (*)).
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These rules are quite intuitive; an agent picks every better reply with positive

probability (without knowing the exact payoffs achieved by those better replies).

But, if no better reply is found, the agent either keeps playing the same action

(GBRR-I) or selects one of the best responses (GBRR-II).

Modeling mixed strategies in GBRRs – For the completeness of ex-

position and analysis, we describe how we model mixed strategies exercised by the

agents in GBRRs: For every i P P , define ui :“ puit, t P N`q and vi :“ pvit, t P N`q to

be two sequences of independent uniform random variables over (0, 1]. We assume

that pui,viq, i P P , are mutually independent.

Suppose that agent i revises its strategy at time t P T i and BRipã
iptqq ‰ H.

agent i first orders the better replies, for example, by increasing index. We denote

the ordered set of better replies by OBRipã
iptqq “ ta

p1q
i , a

p2q
i , . . . , a

pm˚q
i u, where m˚

is the number of better replies. It then chooses

aiptq “

$

’

’

&

’

’

%

a
plq
i if uit P pΛpl ´ 1q,Λplqq, l “ 1, 2, . . . ,m˚,

aipt´ 1q otherwise,

,

where Λplq :“
řl
l1“1 β

`

a
pl1q
i ; Cipãiptqq

˘

, l “ 1, . . . ,m˚.

Under GBRR-II, agent i’s mixed strategy in case (*) is handled in an analogous

manner. agent i first orders the best responses in IRipã
iptqq, which we denote

by OIRipã
iptqq “ ta

p1q
i , a

p2q
i , . . . , a

pm:q
i u, where m: is the number of best responses.

Then, it picks aiptq “ a
plq
i , l “ 1, 2, . . . ,m:, if vit P pΥpl ´ 1q,Υplqs, where

Υplq :“
l
ÿ

l1“1

ϑ
`

a
pl1q
i ; Cipãiptqq

˘

, l “ 1, . . . ,m:.

We would like to point out one observation that we make use of in our analy-
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sis. Because mixed strategies are implemented using mutually independent uniform

random variables, given a mixed strategy selected by agent i at some time t, the

action picked by the agent is conditionally independent of the past history.

Convergent sequences of strategy profiles – For each t P N, let At “
śt

t1“1A. Similarly, A8 “
ś8

t1“1A. When the agents revise their strategies ac-

cording to fixed update rules described above, together with the revision processes

Ni, i P P , and (the distribution of) initial action profile ap1q, the update rules

S “ pSi, i P Pq induces a distribution over A8 (with a suitable σ-field F̃ on A8);

let ~a “ paptq, t P Nq be the sequence of action profiles played by the agents.

We first define some subsets of A8, which are of interest to us. For each t P N,

let

A8t :“ tā P A8 | āpt1q “ a‹ @ t1 ě t for some a‹ P ANEu.

Note that these sets are increasing in t, i.e., A8t Ĺ A8t`1 for all t P N. In addition,

define

A8‹ :“
ď

tPN

A8t

“ tā P A8 | āpt1q “ a‹ @ t1 ě T ˚ for some a‹ P ANE and T ˚ ă 8u.

Simply put, A8t (resp. A8‹ ) is the set of strategy profile sequences that converge to

a Nash equilibrium by time t (resp. at some finite time).
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7.4 Convergence under GBRR – Synchronous Update Case

In this section, we start with a simpler scenario in which every agent receives

the payoff information Cipapt´1qq at each t P N`, and updates its strategy according

to a GBRR rule. In other words, T i “ N for all i P P and ãiptq “ apt ´ 1q for all

i P P and t P N`. We will consider more general settings in the following section.

Let ~a “ paptq, t P Nq be the sequence of action profiles selected by the agents

using a GBRR rule (either GBRR-I or GBRR-II). The following theorem guarantees

the almost sure convergence (or convergence with probability 1) of the played action

profiles aptq, t P N, to a Nash equilibrium as t Ñ 8 [58]. Its proof can be found

in [85] and is omitted here. Instead we will prove the convergence results under the

asynchronous update scenario.

Theorem 7.2. Suppose that the game G is generalized weakly acyclic. Then, for

any fixed initial distribution ν P ∆pAq, we have P r~a P A8‹ s “ 1.

In addition to the almost sure convergence of action profiles, the following

theorem states that the probability that the action profile has not converged to a

Nash equilibrium by time t P N decays geometrically with t.

Theorem 7.3. Suppose that the game G is generalized weakly acyclic. Then, there

exist C ă 8 and ζ P p0, 1q such that, regardless of the initial distribution ν P ∆pAq,

P r~a R A8t s ď minp1, C ¨ ζtq for all t P N.

Theorem 7.3 implies that the expected convergence time E rNconvs is finite, where

Nconv “ inftt P N | ~a P A8t u is the time it takes for the agents to reach a Nash
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equilibrium and remain there afterward.

Before we proceed, let us comment on the convergence rate, which is captured

by ζ. Recall from Section 7.1 that, for a R ANE, the length of a shortest gener-

alized better reply path h˚paq to a Nash equilibrium is L‹paq. The parameter ζ

in Theorem 7.3 is shaped by maxaPAzANE L
‹paq. A possible interpretation of this

observation is as follows: One can view the length of a generalized better reply path

from strategy profile a to a Nash equilibrium as a measure of how “difficult” it is to

reach the Nash equilibrium from the action profile following the generalized better

reply path, and a shortest generalized better reply path offers the “easiest” path

to a Nash equilibrium. Hence, the lower bound on convergence rate captured by ζ

is influenced by the “most difficult” strategy profile from which the agents need to

find the “easiest” path to a Nash equilibrium.

Theorem 7.4. Suppose that the game G is not generalized weakly acyclic. Then,

there exists at least one strategy profile a1 R ANE such that, under the GBRR-I

rule,

P raptq R ANE for all t P N | ap1q “ a1s “ 1.

Proof. Since the game is assumed to be not generalized weakly acyclic, there ex-

ists a strategy profile a` R ANE with no generalized better reply path to a Nash

equilibrium. From the description of the GBRR-I rule, it is clear that any admis-

sible transition from a strategy profile a1 to another strategy profile a2 (a1 ‰ a2)

constitutes a generalized better reply path pa1, a2q. Therefore, if ap1q “ a`, it is

not possible to reach any Nash equilibrium under the GBRR-I rule. �
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Note that

P r~a R A8‹ | ap1q “ a1s ě P raptq R ANE @ t P N | ap1q “ a1s

and, hence,

P r~a R A8‹ | ap1q “ a1s “ 1.

To rephrase it, conditional on tap1q “ a1u, the probability that aptq, t P N, converge

to a Nash equilibrium is equal to zero.

Theorems 7.2 and 7.4 together state that, if νpa1q ą 0 for all a1 P A, i.e., every

strategy profile is selected with positive probability at time t “ 1, the GBRR-I rule

guarantees the almost sure convergence of action profiles to a Nash equilibrium if

and only if the game is generalized weakly acyclic.

A similar, but somewhat weaker result holds for the GBRR-II rule: We call a

sequence of strategy profiles pa1, a2, . . . , aLq a weak generalized better reply path if,

for every ` P t1, . . . , L´ 1u, there exists a subset of agents I 1` Ď P such that

i. a`i ‰ a``1
i and Uipa

`q ď Uipa
``1
i , a`´iq for all i P I 1`, and

ii. a`i “ a``1
i for all i P PzI 1`.

A game is said to be generalized weakly acyclic` if, for every a1 R ANE,

there exists a weak generalized better reply path pa1, a2, . . . , aLq with a1 “ a1 and

aL P ANE. One can show that if the game is not generalized weakly acyclic`, there

exists at least one strategy profile a: R ANE such that Praptq R ANE @ t P N | ap1q “

a:s “ 1 when the agents employ the GBRR-II rule for revising strategies.
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Remark: The class of generalized weakly acyclic` games is strictly larger than

that of generalized weakly acyclic games and there are generalized weakly acyclic`

games that are not generalized weakly acyclic, for which GBRR-II guarantees the

almost sure convergence of action profiles to a Nash equilibrium. In this sense,

GBRR-II possesses a somewhat stronger convergence property than GBRR-I.

7.5 Convergence under GBRR – Asynchronous Update Case

In the previous section, we assumed that all agents update their strategies at

every t P N` based on the action profile played at time t´ 1. As already indicated

in Chapter 6, in some settings this assumption might not hold. In this section, we

extend the model in two directions: We allow (i) asynchronous updates of strategies

by the agents and (ii) time-varying delays experienced by payoff information avail-

able to the agents. Note that the latter implies that the agents might base their

decisions on outdated payoff information at times. We mention that there are some

related studies that examine the effects of delays in evolutionary games, e.g., [94]

and asynchronous distributed computation of average values, e.g., [48, 93].

7.5.1 Model with asynchronous updates and delays

There are many different ways in which one can capture and model asyn-

chronous operation and delays in payoff information. In this subsection, we de-

scribe the model we assume for our study. For concreteness, we explain it using an

example.
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SYSTEM 1 SYSTEM 2 INTERACTION 
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Figure 7.2: Example – two interacting systems controlled by separate agents.

Consider the system in Figure 7.2. There are two interacting systems, each of

which is controlled by a agent (controller); for each agent i, i “ 1, 2, a corresponding

system i generates payoffs for agent i. Obviously, the case in which a single system

provides payoffs to all agents is a special case of this more general setting.

In this scenario, depending on the structure of the system, new strategies

adopted by agents might experience delays before taking effect at the systems. In

addition, the payoffs to agents (e.g., the current states of the systems) may not be

observable to the agents instantaneously. In other words, they can only observe

delayed past payoffs.

To model this scenario, we introduce two types of delays – (i) forward delays

and (ii) feedback delays. A forward delay refers to the amount of time that elapses

before a agent’s strategy goes into effect at a system after it is adopted. On the

other hand, a feedback delay is the amount of time it takes for payoff information to

become available to a agent after it is generated. These are illustrated in Figure 7.3

for the example in Figure 7.2. In the figure, after agent i, i “ 1, 2, updates its
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Player 1 

Player 2 

System 1 

update update 

System 2 

A A A 

A A 

F F F 

F F 

INTERACTION 

player 1 action in effect 

player 2 action in effect 

player 1 action in effect 

player 2 action in effect 

Figure 7.3: Forward and feedback delays in the system.

strategy, the forward delay experienced before system i sees the new strategy is

shown as a (red or green) solid arrow (with label ‘A’), whereas the additional forward

delay to the other system appears as a dotted arrow. The feedback delay experienced

by payoff information generated by a system before the corresponding agent observes

it is shown as a (blue or purple) solid arrow (with label ‘F’).

We shall model these delays using random variables as follows. First, recall

that the agents choose their initial action profile ap1q “ paip1q, i P Pq according

to some distribution ν and the sequence of agent i’s update times, namely T i, is

determined by a discrete-time counting process. Denote the inter-update times of

agent i by U i
k :“ T ik`1 ´ T

i
k, k P N.
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Each inter-update time U i
k is given by a sum of two random variables – X i

k

and Y i
k . The random variable X i

k models the forward delay experienced by the

kth action of agent i chosen at time T ik, i.e., aipT
i
kq; we assume that apT ikq goes

into effect at system i at time T ik ` X i
k “: Ri

k after incurring a forward delay of

X i
k, at which point system i generates payoff information for agent i. This payoff

information undergoes a delay of Y i
k and is observed by agent i at the next update

time T ik`1p“ Ri
k`Y

i
k q. Throughout this section, we assume that X i

k ě 0 and Y i
k ě 1

for all i P P and k P N. For notational simplicity, we denote the pair pX i
k, Y

i
k q by

Zi
k and the sequences tZi

k, k P Nu and tRi
k, k P Nu by Z i and Ri, respectively.

Similarly, the actions chosen by agent i at time T ik might not be seen by

another system j, j ‰ i, immediately; instead, it takes effect at system j at time

T ik`V
i,j
k “: Ri,j

k , where V i,j
k is the forward delay that action aipT

i
kq experiences before

influencing system j. In the example shown in Figure 7.2, once the new action anew
i

of agent i starts affecting system i, through the interaction between the systems, the

other system will also be affected by anew
i possibly after some additional delay. In

this case, we will have X i
k ď V i,j

k . For every i, j P P , i ‰ j, let V i,j :“ tV i,j
k , k P Nu

and Ri,j :“ tRi,j
k , k P Nu.

In order to complete the model, we need to take care of initial conditions.

Because the actions chosen by the agents at time t “ 1 might not take effect at the

systems right away, we impose the following initial conditions: For each system i,

we assume that there is some strategy profile āi “ pāij, j P Pq P A that is in place

at the system. In other words, for each i P P , system i sees action āii from agent i

till Ri
1 “ 1 ` X i

1 and āij from agent j, j ‰ i, till Rj,i
1 “ 1 ` V j,i

1 . Although we can
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easily handle scenarios in which these strategy profiles are random, here we assume

that they are deterministic for the ease of exposition.

Remark: The settings studied in the previous section can be viewed as a

special case of the general settings described in this section with X i
k “ V i,j

k “ 0 and

Y i
k “ 1 (so that U i

k “ X i
k ` Y i

k “ 1) for all i, j P P (i ‰ j) and k P N. To rephrase

it, not only do the agents update strategies synchronously, there is no forward delay

(and the strategies take effect immediately) and the feedback delay is always one.

In order to make progress, we assume that Ni,Z i, and V i,j satisfy the following

assumptions.

A1 The random variables tZ i,V i,j, j ‰ iu for different agents i P P are mutually

independent.

A2. For every i P P , P
“

U i
k ă 8, V

i,j
k ă 8 for all j ‰ i and k P N

‰

“ 1.

A3. P
“

Ri,j
k ă Ri,j

k`1 for all k P N
‰

“ 1 for all i, j P P , j ‰ i.

A4. Let Hi
k :“

`

pZi
`, V

i,j
` , j ‰ iq, 1 ď ` ď k

˘

. There exist η ą 0 and ∆η ă 8 such

that, for all i P P , k P N and ϕ P Z`,

P
“

U i
k`1 ď ∆η ` ϕ, V

i,j
k`1 ď ∆η ` ϕ for all j ‰ i | U i

k`1 ě ϕ,Hi
k

‰

ě η.

A5. There exist δ ą 0 and ∆δ ă ∆η such that, for all i P P and k P N,

P
“

X i
k`1 ď ∆δ | Hi

k

‰

ě δ (7.2)

and

P
“

V i,j
k`1 ě ∆δ for all j ‰ i | Hi

k

‰

ě δ. (7.3)
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A6. For all 0 ď u ď u1 ă 8,

P
“

X i
k`1 ď x | U i

k`1 ď u,Hi
k

‰

ě P
“

X i
k`1 ď x | U i

k`1 ď u1,Hi
k

‰

for all x P Z`,

i.e., the conditional distribution of X i
k`1 is stochastically larger given tU i

k`1

ď u1u than tU i
k`1 ď uu [91].

Assumption A2 ensures that every agent updates infinitely many times with

probability 1. Assumption A3 guarantees that agents see the effects of new actions

in the same order they were adopted. Assumption A4 essentially implies that the

distributions of random variables tX i
k, V

i,j
k , j ‰ iu, k P N, do not have a heavy tail.

Assumption A5 means that, with positive probability, agent i’s action affects its

own payoff no later than those of other agents.

Although these assumptions are technical in nature, we feel that they are not

restrictive and are likely to hold in many cases of practical interest. For example,

when the strategy update times are given by suitable delayed renewal processes with

constant forward delays (with X i
k ď V i,j

k for all j ‰ i), the above assumptions hold.

7.5.2 Convergence of action profiles with asynchronous updates and

delays

Let ~a “ paptq, t P Nq be the sequence of action profiles played by the agents

using a GBRR rule. The following two theorems suggest that when the game is gen-

eralized weakly acyclic and a GBRR rule is employed for updating strategies, neither
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payoff information delays nor asynchronous updates of strategies among the agents

prevent their action profiles from reaching a Nash equilibrium with probability 1,

under Assumptions A1 through A6.

Theorem 7.5. Suppose that the game G is generalized weakly acyclic and that

Assumptions A1 through A6 hold. Then, for any initial distribution ν P ∆pAq,

P r~a P A8‹ s “ 1.

Proof. A proof of the theorem is provided in Section 7.7. �

Theorem 7.6. Suppose that the game G is generalized weakly acyclic and that

Assumptions A1 through A6 are in place. Then, there exist C 1 ă 8 and ζ̄ P p0, 1q

such that, for any initial distribution ν P ∆pAq, P r~a R A8t s ď minp1, C 1 ¨ ζ̄tq for all

t P N.

Theorem 7.6 follows directly from Corollary 2 in the proof of Theorem 7.5 as

explained in Section 7.7.

Remark: Theorem 7.5 and 7.6 are established under Assumptions A1 through

A6 for generalized weakly acyclic games. However, as we explain in Section 7.7, for

weakly acyclic games, they hold under Assumptions A1 through A4.

7.6 Case with Erroneous Payoff Information

In the previous sections, we assumed that accurate payoff information Cipãiptqq

is available to the agents for updates. Although this is a reasonable assumption in

some cases, there are other scenarios, in which agents might not be able to reliably
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determine better replies. To address this partially, we replace it with a somewhat

weaker assumption that the agents are able to make more reliable determinations

over time, for instance, by observing its own payoff history.

Clearly, when the agents make mistakes with the determinations of Cipãiptqq, it

is unlikely that the strategy profile will converge to a Nash equilibrium and remain

there forever with probability 1. Instead, we will show that, under some conditions,

the probability that the agents play a Nash equilibrium at time t P N goes to one

over time. Although we suspect that our result can be generalized to settings with

asynchronous updates studied in the previous section under suitable assumptions,

here we only consider settings with synchronous updates studied in Section 7.4.

7.6.1 Preliminaries

Modeling unreliable payoff information – We assume that, for all t´1 P

N, given the action profile apt´ 1q, (a) the events of having false payoff information

at time t are conditionally independent of the past and (b) their probabilities depend

only on the action profile apt´1q. This is modeled as follows: First, the probabilities

of erroneous classification of actions are given by mappings qit : A ˆ Ai Ñ ∆pSq,

t P N`. The interpretation is that (i) qitpa, a
1
iq :“ pqitpς; a, a

1
iq, ς P Sq is a probability

distribution over S and (ii) conditional on the event tapt´ 1q “ au, the probability

of action a1i P Ai being classified as ς P S by agent i at time t is equal to qitpς; a, a
1
iq.

Second, for each agent i P P , we define an array of independent uniform(0,1]

random variables Wi “ twi
t, t P N`u, where wi

t “ pwit,a, a P Aiq with wit,a „

174



uniform(0,1]. To facilitate the exposition, we order the elements in S as follows:

ς1 “ B, ς2 “ I and ς3 “ W . Then, action a1i P Ai is classified as ςl, l “ 1, 2, 3, by

agent i at time t P N` if

wit,a1i P

˜

l´1
ÿ

l1“1

qitpςl1 ; apt´ 1q, a1iq,
l
ÿ

l1“1

qitpςl1 ; apt´ 1q, a1iq

ff

.

We note that, because the uniform random variables are mutually independent,

given the action profile apt ´ 1q, each action is incorrectly classified by a agent

independently of each other at time t and also of the past history. This allows us to

model the evolution of the action profile as a Markov process in our analysis.

Assumption 7.1. For every i P P and t P N`, qitpa, a
1
iq ą 0 :“ r0 0 0sT for all

a P A and a1i P Ai.

Nonhomogeneous Markov chain – Before presenting our main results,

we first introduce some terminologies we borrow from [53]. Once the mappings

qit, i P P and t P N`, and βi and ϑi, i P P , are fixed, the evolution of action

profile taptq, t P Nu can be modeled as a nonhomogeneous (discrete-time) Markov

chain [44], where the transition matrix at time t P N, denoted by Pptq, is determined

by the mappings βi and ϑi, i P P , and qit, i P P and t P N`. Because we assume

qitpa, a
1
iq ą 0, every action a1i of agent i will be classified as a better reply with

positive probability at every t P N` and, consequently, we have Pa1,a2ptq ą 0 for all

a1, a2 P A.

In addition to the nonhomogeneous Markov chain taptq, t P Nu, we define, for

each t P N, a time homogeneous (discrete-time) Markov chain Xt “ txtpnq, n P Nu

with a common state space A and a transition matrix Pt “ Pptq. Since P t
a1,a2 ą 0

175



for all a1, a2 P A as mentioned above, the Markov chain Xt is ergodic with a unique

stationary distribution [58, 89], which we denote by µt “ pµtpaq, a P Aq. We call

the Markov chain in which the agents make no mistake (i.e., the model assumed in

Section 7.4) an unperturbed Markov chain. We denote the transition matrix of the

unperturbed Markov chain by P0.

Assumption 7.2. There exists a decreasing, positive sequence pεt, t P Nq such that

(i) limtÑ8 εt “ 0 and (ii) for every i P P , a P A, a1i P Aiztaiu, and ς ‰ Cipa1i, aq,

there are constants cipa, a
1
i, ςq ą 0 and γipa, a

1
i, ςq ą 0 satisfying

lim
tÑ8

qitpς; a, a
1
iq

ε
γipa,a1i,ςq
t

“ cipa, a
1
i, ςq,

i.e., qitpς; a, a
1
iq „ cipa, a

1
i, ςq ¨ ε

γipa,a
1
i,ςq

t .

First, Assumption 7.2 implies that the probability of agent i making an erro-

neous determination goes to zero as tÑ 8, i.e.,

lim sup
tÑ8

¨

˝max
iPP

´

max
a1iPAi,aPA

´

ÿ

ς‰Cipa1i,aq

qitpς; a, a
1
iq

¯¯

˛

‚“ 0.

Second, it states that, for all sufficiently large t, the transition probabilities Pa1,a2ptq

can be well approximated using finite sums of power functions of εt. In other words,

Pa1,a2ptq „
řK
k“1 ck ¨ pεtq

rk , where ck P R and rk ě 0. As a result, for all a1, a2 P A,

a1 ‰ a2, there is rpa1, a2q ě 0 such that

0 ă lim
tÑ8

Pa1,a2ptq

ε
rpa1,a2q

t

ă 8,

and we can find 0 ă ξ ă ξ ă 8 such that, for all sufficiently large t,

ξ ¨ ε
rpa1,a2q

t ă Pa1,a2ptq ă ξ ¨ ε
rpa1,a2q

t . (7.4)
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Resistance of paths – A path from a strategy profile a1 to another strategy

profile a2 is a sequence of strategy profiles pap1q, ap2q, . . . , apMqq with ap1q “ a1, apMq “

a2 and ap`q ‰ ap``1q for all ` “ 1, 2, . . . ,M ´ 1.

Definition 7.1. The resistance of a path hpa1 Ñ a2q :“ pap1q “ a1, ap2q, . . . , apMq “

a2q from a1 to a2 is equal to rpphpa
1 Ñ a2qq “

řM´1
`“1 rpap`q, ap``1qq. The resis-

tance from a1 to a2, denoted by ρpa1, a2q, is defined to be the smallest resistance

among the paths from a1 to a2, i.e., ρpa1, a2q :“ inftrpphpa
1 Ñ a2qq | hpa1 Ñ

a2q is a path from a1 to a2u.

Definition 7.2. Given a subset Ã Ă A, its co-radius is given by τpÃq “ maxa1PAzÃ

`

minaPÃ ρpa
1, aq

˘

.

The co-radius τpÃq is the maximum resistance that must be overcome to reach

some strategy profile in Ã from a strategy profile outside Ã. Thus, it measures how

“easy” it is for the agents to reach a strategy profile in Ã starting from any strategy

profile outside Ã.

Define κ :“ mina˚PANE τpta˚uq, i.e., the smallest co-radius among all Nash

equilibria. Based on the above observation, κ indicates how “easily” the agents can

reach a Nash equilibrium starting from any strategy profile.

Minimum resistance W -tree – Construct a directed graph G “ pV , Eq,

where V “ A and the (directed) edge set E contains all possible one-step transitions

in the Markov chain Xt, i.e., pa1, a2q P A ˆ A with P t
a1,a2

ą 0. Recall that, from

Assumption 7.1, we have Pa1,a2ptq ą 0 for all a1, a2 P A. Hence, the edge set

E “ AˆA.
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Given a subgraph G 1 “ pV 1, E 1q of G, where V 1 Ď V and E 1 Ď E , its resistance

is defined as the sum of the resistances of all edges in the subgraph [53], and we

denote it by πpG 1q. In other words, πpG 1q “
ř

ePE 1 rpeq, where rpeq is the resistance

of (directed) edge e.

For every a P A, let GT paq be the set of trees in G rooted at a, such that

there exists a path from every a1 P A to a. The trees in GT paq are called W -

trees rooted at a. A minimum resistance W -tree in GT paq is denoted by Γ˚paq, i.e.,

Γ˚paq P arg minΓpaqPGT paq πpΓpaqq. Let πminpaq :“ πpΓ˚paqq “ minΓpaqPGT paq πpΓpaqq.

7.6.2 Main results

First, we state an auxiliary result that follows directly from Theorem 7.2

(which implies that Nash equilibria are absorbing states of the unperturbed Markov

chain) and [95, Theorem 4].

Theorem 7.7. As t Ñ 8, µt Ñ µ0, where µ0 is a stationary distribution of the

unperturbed Markov chain. In addition, µ0pa‹q ą 0 if and only if (i) a‹ P ANE and

(ii) πminpa
‹q “ mina1PANE πminpa

1q.

A Nash equilibrium a‹ with µ0pa‹q ą 0 is said to be stochastically stable [53]. We

denote the set of stochastically stable Nash equilibria by ASS Ď ANE.

We now prove that, under some conditions, the nonhomogeneous Markov chain

taptq, t P Nu is strongly ergodic [44]; the strong ergodicity of the nonhomogeneous

Markov chain means that its distribution converges to µ0 as t Ñ 8. Thus, it tells

us P raptq P ASSs Ñ 1 as t Ñ 8, which in turn implies limtÑ8 P raptq P ANEs “ 1

178



because ASS Ď ANE.

Before we proceed, we introduce the assumption under which we establish the

strong ergodicity of the nonhomogeneous Markov chain.

Assumption 7.3. For every i P P , a P A, a1i P Aiztaiu, and ς ‰ Cipa1i, aq, there

exist some function f P C8 and ε‹ ą 0 such that (i) qitpς; a, a
1
iq “ fpεtq if 0 ă εt ă ε‹

and (ii) fpεq „ α ¨ εβ for some α, β ą 0. In addition, f 1pεq „ α1 ¨ εβ
1

for some α1 ą 0

and β1 P R.

The first part of Assumption 7.3 is simply rehashing of Assumption 7.2. The

assumption essentially states that both the probabilities of false classifications and

their derivatives with respect to εt asymptotically behave like power functions of

εt. Thus, for sufficiently large t, both the transition probabilities Pa1,a2ptq and their

derivatives can be well approximated using finite sums of power functions of εt.

In addition, the assumption implies that the probability of correct classification of

actions tends to one over time.

Theorem 7.8. Suppose that Assumptions 7.2 and 7.3 hold with
ř

tPN ε
κ
t “ 8. Then,

the nonhomogeneous Markov chain taptq, t P Nu is strongly ergodic with limiting

distribution µ0. Consequently, it satisfies limtÑ8 P raptq P ASSs “ 1.

Proof. A proof of Theorem 7.8 is provided in Section 7.9. �

The condition
ř

tPN ε
κ
t “ 8 in Theorem 7.8 reveals the following interesting

observation. When κ is larger, it is more difficult for agents to reach a Nash equilib-

rium in the worst case. This demands that the erroneous classification probabilities
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decrease slower. The intuition behind this is that greater erroneous classification

probabilities make it “easier” for the played action profile to transition from one

strategy profile to another, thereby facilitating the exploration of new strategy pro-

files, including Nash equilibria.

Remark: Suppose that Assumption 7.2 does not hold and agents continue to

make mistakes with probability that does not vanish. However, if the probability of

making a mistake is sufficiently small, our results can be modified to demonstrate

that, for large t P N, the probability that the chosen action profile aptq is a Nash

equilibrium is close to one. Hence, even though the probability of playing a Nash

equilibrium does not reach one as t Ñ 8 in this case, the probability will be close

to one.

A question that arises is whether anything more can be said about the set

of stochastically stable Nash equilibria ASS. For any a˚ P ANE, let the states

from which we can reach a˚ through zero resistance paths (GBRPs) be denoted as

Da˚ Ď A, i.e.,

Da˚ “ ta P A | ρpa, a˚q “ 0u

This represents the domain of attraction of a particular PSNE. By the GWAG

assumption, Ya˚PANEDa˚ “ A, i.e., we can reach at least one PSNE from any

non-equilibrium action profile by following a GBRP. Choose any a1 P ANE. The

minimum resistance W -tree Γ˚pa1q contains resistance paths from other PSNE(s)

and non-PSNE action profiles. For any action profile in Da1 , by definition we can

construct zero resistance paths to a1. However for reaching a1 from any action profile
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outside of Da1 , perturbations due to the error model is required. Therefore, nothing

more can be inferred about ASS than already stated. It would in general depend

both on the error model and the structure of the game itself. This is a major reason

for considering the class of RSEM rules which seem to exhibit more favourable

properties in similar settings, in particular, the domain of attraction of each PSNE

is better characterisable.

7.7 Proof of Theorem 7.5

Before we present the proof, we introduce the following notation. Consider

a mapping L : A˚ Ñ Z` :“ t0, 1, 2, . . .u, where A˚ denotes the Kleene star on A.

Given a sequence of L action profiles, say pa1, a2, . . . , aLq, Lppa1, a2, . . . , aLqq “ L´1

gives us its length, i.e., the number of transitions in it.

Since the game G is generalized weakly acyclic, for every strategy profile a R

ANE, there exists at least one generalized better reply path that starts with a and

leads to a Nash equilibrium. For each strategy profile a P A, we choose a generalized

better reply path with the shortest length (according to the mapping L) and denote

it by ppaq. Clearly, for a Nash equilibrium a˚ P ANE, we have ppa˚q “ pa˚q and

Lpppa˚qq “ 0.

Although it is not necessary, in order to facilitate the exposition, we assume

that the shortest generalized better reply paths tppaq, a P Au satisfy the following

consistency condition: Suppose that a non-Nash equilibrium strategy profile a1

appears in the generalized better reply path, ppa2q, of another action profile a2.
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Then, the subsequence in ppa2q that starts with a1 is identical to ppa1q. Such

generalized better reply paths can be constructed easily in a manner similar to

Dijkstra’s algorithm, starting with ANE [42].

We introduce two mappings: Φ : AzANE Ñ A and I : AzANE Ñ 2P , where

Φpaq denotes the second strategy profile in ppaq following a and Ipaq “ ti P P | ai ‰

Φipaqu, i.e., the set of agents that change their strategies going from strategy profile

a to Φpaq.

We prove Theorem 7.5 with the help of several lemmas, whose proofs are

deferred to the following section. The first lemma states that, if the action profile

at time t is not a Nash equilibrium, the action profile will reach Φpaptqq within 3∆η

periods with positive probability, where ∆η is the constant in Assumption A4.

Lemma 7.9. Under the assumptions in Theorem 7.5, there exists q1 ą 0 such that,

for every a R ANE and t P N,

P rapt` 3∆ηq “ Φpaptqq | aptq “ as ě q1. (7.5)

Repeating Lemma 7.9, we readily obtain the following corollary that tells us

that, starting at aptq at time t, we reach a Nash equilibrium within a finite number

of periods with positive probability.

Corollary 1. Suppose that the assumptions in Theorem 7.5 hold. Then, for any

a R ANE and every t P N, we have

P
“

a
`

t` 3∆ηLpppaqq
˘

P ANE | aptq “ a
‰

ě q
Lpppaqq
1 . (7.6)

The next lemma states that, once the agents reach a Nash equilibrium a˚,
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there is positive probability that they will remain at the Nash equilibrium a˚ for

good.

Lemma 7.10. Under the assumptions in Theorem 7.5, there exists q2 ą 0 such

that, for all a˚ P ANE and t P N, we have

P rapt1q “ a˚ for all t1 ě t` 1 | aptq “ a˚s ě q2. (7.7)

Lemmas 7.9 and 7.10 yield the following corollary. Let Lmax :“ maxaPAzANE

Lpppaqq.

Corollary 2. Suppose that the assumptions in Theorem 7.5 are true. Then, for

any a P A, we have

P rapt1q P ANE for all t1 ě t` 3∆ηLmax | aptq “ as ě qLmax
1 ¨ q2. (7.8)

Define L̄ :“ 3∆ηLmax and q̄ :“ qLmax
1 ¨q2. Corollary 2 implies that, for all n P N,

P
“

~a R A8
nL̄`1

‰

ď p1´ q̄qn. Recall that A8t increases with t. Consequently, P r~a R A8t s

decreases with t and P
“

~a R A8t`1

‰

ď p1 ´ q̄qtt{L̄u ď C̃ ¨ ζ̃t, where C̃ “ p1 ´ q̄q´1 and

ζ̃ “ p1´ q̄q1{L̄ ă 1. Because A8‹ “ YtPNA8t , we have P r~a P A8‹ s ě P r~a P A8t s for all

t P N. Finally, limtÑ8 P r~a P A8t s “ 1´ limtÑ8 P r~a R A8t s “ 1, yielding the desired

result P r~a P A8‹ s “ 1.

Remark: As mentioned in Section 7.5, Theorems 7.5 and 7.6 hold under less

restrictive assumptions for weakly acyclic games. This is because Lemma 7.9 is

true under Assumptions A1 through A4 for weakly acyclic games and the proof of

Lemma 7.10 presented in Section 7.8.2 requires only Assumptions A1 through A4.
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7.8 Proofs of Lemmas introduced in Section 7.7

7.8.1 Proof of Lemma 7.9

For each i P P , we define kimax : NÑ N, where kimaxptq “ maxtk P N | T ik ď tu.

In addition, for every i P P and t P N, dFi ptq “ X i
kimaxptq

and dRi ptq “ Y i
kimaxptq

.

Similarly, for all i, j P P , i ‰ j, and t P N, d´i,jptq “ V i,j
kimaxptq

and d`i,jptq “ V i,j
kimaxptq`1

.

For notational convenience, we denote the interval tt`p`´ 1q∆η ` 1, . . . , t` ` ¨∆ηu

by T `ptq, ` P N, where ∆η is the constant in Assumption A4 in Section 7.5.

Next, we define following events. Note that T ikimaxptq
(resp. T ikimaxptq`1) denotes

the last time by time t (resp. the first time after time t) at which agent i updates

its strategy.

E0 “ tT
i
kimaxptq`1 ď t`∆η for all i P P

and T ikimaxptq
` d´i,jptq ď t`∆η for all i, j P P , i ‰ ju

E1 “ tT i X T 2ptq ‰ H for all i P Pu, i.e., all agents update at least once during

the interval T 2ptq

E2 “ taipt
1
q “ aiptq, t

1
“ t` 1, . . . , T ikimaxpt`2∆ηq`1 ´ 1 for all i P Pu

E3 “ td
F
i pt` 2∆ηq ď t` 2∆η `∆δ ´ T

i
kimaxpt`2∆ηq

for all i P Pu

E4 “ tT i X T 3ptq ‰ H for all i P Pu

E5 “ taipT
i
kimaxpt`2∆ηq`1q “ Φipaptqq for all i P Pu

E6 “ td
`
i,jpt` 2∆ηq ě ∆δ for all i, j P P , i ‰ ju

E7 “ taipt
1
q “ Φipaptqq for all i P P and t1 “ T ikimaxpt`2∆ηq`1 ` 1, . . . , t` 3∆ηu
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Event E0 ensures that (a) all agents update at least once during the interval

T 1ptq and (b) action profile aptq starts affecting the payoffs of all agents by time

t `∆η. The second event E1 demands that all the agents revise their strategies at

least once during the interval T 2ptq. Events E2 and E5 together require every agent

i P P to continue playing the same action aiptq till T ikimaxpt`2∆ηq`1´1 and then switch

to Φipaptqq at time T ikimaxpt`2∆ηq`1. In order to make sure that event E5 is feasible,

events E3 and E6 ensure that, at the first time agents update their strategies during

the interval T 3ptq, they will see the payoff information in response to aptq and, as

a result, choose Φipaptqq with positive probability. Finally, event E7 demands that

the agents continue to play strategy Φipaptqq till t` 3∆η.

We can lower bound the conditional probability in (7.5) in Lemma 7.9 as

follows. First,

P rapt` 3∆ηq “ Φpaptqq | aptq “ as

ě P rapt` 3∆ηq “ Φpaptqq, Ei, i “ 0, 1, . . . , 7 | aptq “ as (7.9)

We rewrite (7.9) as a product of conditional probabilities.

p7.9q “ P rapt` 3∆ηq “ Φpaptqq | aptq “ a, Ei, i “ 0, 1, . . . , 7s (7.10)

ˆP rE7 | aptq “ a, Ei, i “ 0, 1, . . . , 6s (7.11)

ˆP rE5 X E6 | aptq “ a, Ei, i “ 0, . . . , 4s (7.12)

ˆP rE3 X E4 | aptq “ a, Ei, i “ 0, 1, 2s (7.13)

ˆP rE2 | aptq “ a, Ei, i “ 0, 1s (7.14)

ˆP rE0 X E1 | aptq “ as (7.15)
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We now lower bound the terms in (7.10) through (7.15). First, it is clear from the

definitions of the events Ei, i “ 0, 1, . . . , 7, that (7.10) is equal to one. Since 1´µ is a

lower bound to the probability with which a agent with a better reply plays the same

action played at the previous time, p7.11q ě p1´µqnp∆η´1q and p7.14q ě p1´µq2∆ηn.

From Assumption A5 (more precisely, (7.3)), we have p7.12q ě pε ¨ p1´µq ¨δqn, where

ε is a positive lower bound to the probability with which a agent chooses a better

reply. By Assumptions A4 through A6, p7.13q ě pη ¨ δqn. Finally, Assumption A4

implies p7.15q ě η2n. From these lower bounds, the inequality in (7.5) holds with

q1 :“
`

p1´ µq3∆η ¨ ε ¨ δ2 ¨ η3
˘n

.

7.8.2 Proof of Lemma 7.10

We first define the following three events.

E 10 “ tT ikimaxptq`1 ď t`∆η for all i P P

and T ikimaxptq
` d´i,jptq ď t`∆η for all i, j P P , i ‰ ju

E 11 “ tT i X T 2ptq ‰ H for all i P Pu

E 12 “ tapt1q “ a˚ for all t1 “ t` 1, . . . , t` 2∆ηu

First, events E 10 and E 12 ensure that the payoffs of all agents are determined

by strategy profile a˚ by time t ` ∆η. Note that it also implies that every agent

updates its strategy at least once during the interval T 1ptq because T ikimaxptq`1 ď

t`∆η. Second, event E 11 demands the agents to revise their strategies at least once

during the interval T 2ptq as well. Finally, event E 12 requires that the agents play the

equilibrium strategies till t` 2∆η.
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Note that, if the events E 10 through E 12 occur, all payoff information will be

produced on the basis of strategy profile a˚ after time t ` ∆η and, as a result, no

agent will change its action after time t ` 2∆η. This is because, for every agent

i P P , we have ãi´ipT
i
kimaxpt`2∆q`1q “ a˚´i. Once this happens, no agent will ever see

a better reply after t` 2∆η and, consequently, will not deviate from its equilibrium

action, and the strategy profile will remain a˚ for good. Thus,

P rapt1q “ a˚ for all t1 ě t` 1 | aptq “ a˚, E 1i , i “ 0, 1, 2s “ 1.

Putting things together, we get

P rapt1q “ a˚ for all t1 ě t` 1 | aptq “ a˚s

ě P rapt1q “ a˚ for all t1 ě t` 1 | aptq “ a˚, E 1i , i “ 0, 1, 2s

ˆP rE 10 X E 11 X E 12 | aptq “ a˚s

“ P rE 10 X E 11 X E 12 | aptq “ a˚s

From Assumption A4, we get the following lower bound.

P rE 10 X E 11 X E 12 | aptq “ a˚s ě ηn ¨ ηnp1´ µq2n∆η “
`

η ¨ p1´ µq∆η
˘2n

ą 0.

Hence, the lemma follows with q2 :“
`

η ¨ p1´ µq∆η
˘2n

.

7.9 Proof of Theorem 7.8

From [53, Lemma 3.1, p. 177], we know that the stationary distribution µt “

pµtpaq, a P Aq is given by

µtpaq “
Qaptq

ř

a1PAQa1ptq
, a P A, (7.16)
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where Qa1ptq “
ř

TPT pa1q

´

ś

pa1,a2qPT Pa1,a2ptq
¯

. Consider the derivative of µtpaq with

respect to εt.

`

µtpaq
˘1
“
Q1aptq

ř

a1PAQa1ptq ´Qaptq
ř

a1PAQ
1
a1ptq

p
ř

a1PAQa1ptqq
2 (7.17)

By Assumption 7.3 and the comment following it, for all sufficiently large t, the

numerator of (7.17) behaves like a finite sum of power functions of εt. Therefore,

there exists finite T ˚ such that, for all t ě T ˚ and all a P A, the sign of pµtpaqq1

remains the same. Based on this observation, we can partition the set A into A´

and A` “ AzA´, where A´ “ ta P A | pµtpaqq1 ď 0 for all t ě T ˚u.

Theorem 8.3 of [44, p. 242] tells us that the nonhomogeneous Markov chain

taptq, t P Nu is strongly ergodic if it is weakly ergodic and the following inequality

holds.

ÿ

tPN

ˇ

ˇ

ˇ

ˇµt ´ µt`1
ˇ

ˇ

ˇ

ˇ

1
ă 8 (7.18)

First, the following lemma tells us that, under the conditions in Theorem 7.8, the

Markov chain is weakly ergodic. Its proof can be found in Section 7.10.

Lemma 7.11. Suppose that Assumption 7.2 holds with
ř

tPN ε
κ
t “ 8. Then, the

nonhomogeneous Markov chain taptq, t P Nu is weakly ergodic.

Second, we can show (7.18) as follows. We first break the summation into two

summations.

ÿ

tPN

ˇ

ˇ

ˇ

ˇµt ´ µt`1
ˇ

ˇ

ˇ

ˇ

1
“

T˚
ÿ

t“1

ˇ

ˇ

ˇ

ˇµt ´ µt`1
ˇ

ˇ

ˇ

ˇ

1
`

ÿ

tąT˚

ˇ

ˇ

ˇ

ˇµt ´ µt`1
ˇ

ˇ

ˇ

ˇ

1
(7.19)
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Applying the inequality ||µt ´ µt`1||1 ď 2 to the first term in (7.19) and the defini-

tion of ||¨||1 norm for the summands in the second term, we obtain

p7.19q ď 2T ˚ `
ÿ

tąT˚

˜

ÿ

aPA
|µtpaq ´ µt`1

paq|

¸

“ 2T ˚ `
ÿ

tąT˚

˜

ÿ

aPA´

´

µt`1
paq ´ µtpaq

¯

¸

`
ÿ

tąT˚

˜

ÿ

aPA`

´

µtpaq ´ µt`1
paq

¯

¸

“ 2T ˚ `
ÿ

aPA´

`

µ0
paq ´ µT

˚`1
paq

˘

(7.20)

`
ÿ

aPA`

`

µT
˚`1
paq ´ µ0

paq
˘

ď 2T ˚ ` 2 ă 8,

where the second equality in (7.20) follows from Theorem 7.7, i.e., µt Ñ µ0 as

tÑ 8.

7.10 Proof of Lemma 7.11

Let us first introduce some notation and terminology we use in the proof.

For notational ease, we denote the product Ppmq ˆ Ppm ` 1q ˆ ¨ ¨ ¨ ˆ Ppn ´ 1q

of transition matrices by Ppm,nq. Given a stochastic matrix P, its Dobrushin’s

ergodic coefficient [44, p. 235] is given by

δpPq “ 1´ min
a1,a2PA

˜

ÿ

aPA
min pPa1,a, Pa2,aq

¸

. (7.21)

Theorem 8.2 of [44, p. 241] states that the nonhomogeneous Markov chain taptq, t P

Nu is weakly ergodic if

ÿ

nPN

´

1´ δpPptn, tn`1qq

¯

“8. (7.22)

189



For each a˚ P ANE and a P A, let `pa, a˚q “ mintLphpa Ñ a˚qq | rpphpa Ñ

a˚qq “ ρpa, a˚qu, i.e., the shortest length of the paths hpa Ñ a˚q with the least

resistance rpphq “ ρpa, a˚q, and define `maxpa
˚q :“ maxaPA `pa, a

˚q. Then, the

bounds in eq. (7.4) tell us that, for all a P A and all sufficiently large t,

Pm
a,a˚ptq ą ξm ¨ ε

τpta˚uq
t`m for all m ě `maxpa

˚
q. (7.23)

Let `max “ maxa˚PANE `maxpa
˚q, and consider the sequence (tk, k P Nq, where

tk “ k ¨ `max. First, from (7.23), for all distinct a1, a2 P A and all sufficiently large

k P N, we have the following bound.

ÿ

aPA
min

´

Pa1,aptk, tk`1q, Pa2,aptk, tk`1q

¯

ě
ÿ

a˚PANE

min
´

Pa1,a˚ptk, tk`1q, Pa2,a˚ptk, tk`1q

¯

ě ξ`max
ÿ

a˚PANE

ε
τpta˚uq
tk`1

, (7.24)

where the second inequality follows from (7.23).

Using the expression for Dobrushin’s coefficient in (7.21), we obtain

ÿ

nPN

´

1´ δpPptn, tn`1qq

¯

“
ÿ

nPN

min
a1,a2PA

˜

ÿ

aPA
min pPa1,aptn, tn`1q, Pa2,aptn, tn`1qq

¸

. (7.25)

In light of (7.24), it is clear that (7.25) diverges if
ř

nPN

´

ř

a˚PANE ε
τpa˚q
tn`1

¯

diverges.

We state the following lemma without a proof, which is straightforward.

Lemma 7.12. Suppose that pαpnq, n P Nq is a decreasing, positive sequence with

ř

nPN αpnq “ 8. Then, for any k P N and ` P Z`, we have
ř

nPN αpk ¨ n` `q “ 8.
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First, because κ “ mina˚PANE τpta
˚uq

ÿ

nPN

˜

ÿ

a˚PANE

ε
τpta˚uq
tn`1

¸

ě
ÿ

nPN

εκtn`1
. (7.26)

Second, recall that
ř

tPN ε
κ
t “ 8 by the assumption in Lemma 7.11. Thus, by

Lemma 7.12, we get
ř

nPN ε
κ
tn`1

“ 8. Together with (7.26), this implies that (7.25)

diverges, completing the proof of (7.22).
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Chapter 8: Class of Monitoring Rules

In the previous chapter we considered the class of better reply rules which

ensures convergence to a pure strategy Nash equilibrium in a large class of games,

identified as the generalized weakly acyclic games, under asynchronous updates and

payoff information delays. Moreover, we also showed convergence to a PSNE under

faulty available payoff information, causing players to make erroneous decisions oc-

casionally. Under the latter setting of erroneous payoff information, when the better

reply rules are followed by the agents, the PSNE(s) that are stable in the long run

or are stochastically stable would in general depend both on the error model and

the structure of the game itself. In this chapter we consider another class of learn-

ing rules that are also robust to delays and asynchrony like the better reply rules.

However, under a (partial) erroneous payoff information setting where the SBRs are

estimated with errors, the stochastically stable states are better characterisable.

The learning rule in its simplest form is described in the first section, followed

by the convergence results under the learning rule for the asynchronous update

setting introduced in Section 7.5. Later, we consider the faulty payoff informa-

tion setting introduced in Section 7.6 and contrast the convergence results from

that obtained for the better-reply rules. It is worth mentioning that we adopt the
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strategic-form repeated game setting described in Section 7.1.

8.1 Proposed Update Rule

In this section, we present our proposed learning rule, called the Reduced

Simple Experimentation with Monitoring (RSEM). Under the RSEM update rule,

at each time t P N, every agent is at one of two possible states – Explore (E) or

Converged (C). We denote the state of agent i P P at time t by siptq P Ψ0 :“ tE,Cu.

Let Ψ :“ Ψn
0 , and the state vector sptq :“ psiptq, i P Pq P Ψ. The rule governing the

update of an agent’s state will be explained shortly.

Recall that the mappings Ci and BRi introduced in the previous chapter are

the classification and the better reply mappings for agent i respectively. Also, recall

that the update time sequence for player i is denoted as T i “ tT ik, k P Nu Ď N.

In the synchronous update case with no delays we have T i “ N for all i P P and

ãiptq “ apt ´ 1q for all i P P and t P N`, where ãiptq P A is the strategy profile

responsible for generating the payoff information observed by player i at time t.

Payoff Information for updates – We assume that the payoff information

available to agent i at time T ik, k ě 2, is of the form ppCipai, ãipT ikqq, ai P Aiq ; Uipã
ipT ikqqq,

compactly denoted as pCipãipT ikqq;UipãipT ikqqq. In other words, as assumed in the

previous chapter, agent i knows the actions that would lead to higher payoff with

respect to the played action given the action profile of the other agents in effect (at

the agent i’s system) at the time the payoff feedback is generated, i.e., Ri
k´1.
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8.1.1 Action updates

In this subsection, we first describe how the agents choose their actions ac-

cording to the payoff feedback they receive at the times of updates.

Initially, at time T i1 “ 1, the agents choose their actions according to some

(joint) distribution G over A. For k ě 2, agent i P P updates its action at time

T ik according to the rule provided below: We assume that agent i continues to play

action aipT
i
kq between T ik and T ik`1´1, i.e., aiptq “ aipT

i
kq for all t P tT ik, . . . , T

i
k`1´1u.

Fix δ P p0, 1{pmaxiPP |Ai|qq and βi : SAi Ñ ∆pAiq, i P P . The mappings βipciq “

pβipai; ciq, ai P Aiq are used to determine the mixed strategy to be employed given

the payoff information.

Action Selection Rule:

For k “ 2, 3, . . .,

• if sipT
i
kq “ E

– choose aipT
i
kq “ ai with probability βipai; CipãipT ikqqq ě δ for all ai P Ai

• else (i.e., sipT
i
kq “ C)

– set aipT
i
kq “ aipT

i
k ´ 1q;

It is clear that, under RSEM, an agent may choose a new action only if it is at state

E. Otherwise, it continues to play the same action employed at the previous time.
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Modeling mixed strategies in RSEM rule – As was done for the GBRR

rules, we describe how we model mixed strategies exercised by the players under

the RSEM rule: For every i P P , define ui :“ puit, t P N`q to be a sequence of

independent uniform random variables over (0, 1].

Suppose that player i revises its strategy at time t P T i and siptq “ E. It then

chooses

aiptq “ `, if uit P pΛp`´ 1q,Λp`qs, ` “ 1, 2, . . . , Ai (8.1)

where Λp`q :“
ř`
`1“1 β

`

a
p`1q
i ; Cipãiptqq

˘

, ` “ 1, . . . , Ai.

8.1.2 State dynamics

As explained in the previous subsection, under the RSEM rule, the state of

an agent plays a key role in its action selection. Hence, the dynamics of sptq, t P N,

play a major role in the algorithm. In this subsection, we explain how the agents

update their states based on the received payoff feedback.

At time t “ 1, we assume that all agents are at stateE, i.e., sp1q “ pE,E, . . . , Eq.

Agent i first updates its state right after it receives new payoff information at T ik,

k P N, following which it chooses an action.

The state of agent i at time T ik depends on (i) the payoff information vector

CipãipT ikqq if sipT
i
k´1q “ E and (ii) the payoffs obtained at time T ik´1 and T ik if

sipT
i
k´1q “ C. Note that at time T i2 only case S1 is applicable because at time

T i1 “ 1 all the agents are in the Explore state. Therefore case S2 in the state update

rule can be effective only for k ě 3.
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State Update Rule: Fix p P p0, 1q.

For k “ 2, 3, . . .

S1. if sipT
i
k´1q “ E

• if BRipã
ipT ikqq ‰ H, then sipT

i
kq “ E

• else
`

i.e., BRipã
ipT ikqq “ H

˘

sipT
i
kq “

$

’

’

&

’

’

%

E with probability p

C with probability 1´ p

S2. else (i.e., sipT
i
k´1q “ C)

• if BRipã
ipT ikqq ‰ H, then sipT

i
kq “ E

• else
`

i.e., BRipã
ipT ikqq “ H

˘

– if Uipã
ipT ikqq ‰ Uipã

ipT ik´1qq, then sipT
i
kq “ E

– else
`

i.e., Uipã
ipT ikqq “ Uipã

ipT ik´1qq
˘

, then sipT
i
kq “ C

In a nutshell, agent i transitions to or remains at stateE if eitherBRipã
ipT ikqq ‰

H or Uipã
ipT ikqq ‰ Uipã

ipT ik´1qq. Note that when an agent is at the converged state,

seeing a better reply is equivalent to a change in the payoff information vector

Cipãip¨qq. The second condition means that although there are no better replies, the

received payoff has changed from the last time. In such a scenario, the agent prefers

to transition to the Explore state.
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The RSEM rule and the GBRR rules– In the RSEM rule when the

agents are in the explore state, all the actions are chosen with positive probability.

In the converged state, they play their previous action as long as the received payoff

remains the same and there are no better replies. While the GBRR-I rule only

allows agents to experiment among their better replies and, if there are no better

replies, then the previous action is played. It is easy to see that the class of RSEM

rules are more exploratory since in the RSEM rule the agent is allowed to choose

actions that are not among the better replies. Hence, if we have a sequence of action

profiles generated by the GBRR rule ~a “ paptq, t P Nq, it can also be generated

under the RSEM rule.

8.2 Convergence under RSEM

Let ~a “ paptq, t P Nq be the sequence of action profiles played by the players

using the RSEM rule. First, we state the convergence results under the RSEM rule

for the asynchronous update setting described in Section 7.5.1 when the game is

generalized weakly acyclic.

Theorem 8.1. Suppose that the game G is generalized weakly acyclic and that

Assumptions A1 through A6 hold. Then, for any initial distribution G P ∆pAq,

under the RSEM rule,

P r~a P A8‹ s “ 1.

Proof. From the discussion in Section 8.1, we conclude that the agents under the

RSEM rule can also follow the GBRPs. Thus, the proof follows from arguments
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similar to that for the GBRR rule in Section 7.7. �

Theorem 8.2. Suppose that the game G is generalized weakly acyclic and that

Assumptions A1 through A6 are in place. Then, there exist Crsem ă 8 and ζrsem P

p0, 1q such that, for any initial distribution G P ∆pAq under the RSEM rule

P r~a R A8t s ď minp1, Crsem ¨ ζ
t
rsemq

for all t P N.

The above-mentioned results not only hold for games that are generalized

weakly acyclic, but also for games that satisfy the following interdependence as-

sumption.

Assumption 8.1. (Interdependence Assumption) For every a “ pai, i P Pq P A and

J Ĺ P , there exist an agent i R J and a˚J P
ś

jPJ Aj such that Uipaq ‰ Uipa
˚
J , a´Jq.

Assumption 8.1 simply states that, given any action profile and a strict subset

J of the agents, we can find another agent i R J whose payoff would change if the

agents in J changed their actions to a˚J . Put differently, it implies that it is not

possible to partition the set of agents into two subsets that do not interact with

each other. The interdependence assumption has been used in the literature, for

instance, to prove the convergence of action profile to efficient equilibria or Pareto

optimal point [79,87,96]. Also, it is worth noting that there is no clear relationship

between the class of GWAGs and the class of games satisfying the interdependence

assumption. In general, there could be games that are GWAGs but do not satisfy the

interdependence assumption and vice versa. Under this interdependence assump-

tion, we can show that, if all agents update their actions according to the RSEM
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rule, the action profile converges almost surely to a PSNE. However, we can have

the desired convergence result under a weaker form of interdependence assumption.

Assumption 8.2. (Weak Interdependence Assumption) For every a “ pai, i P Pq P

A and J Ĺ P such that BRipaq “ H for all i R J , then there exist an agent i˚ R J

and a˚J P
ś

jPJ Aj such that either Ui˚paq ‰ Ui˚pa
˚
J , a´Jq or BRi˚pa

˚
J , a´Jq ‰ H.

Assumption 8.2 implies that for any action profile a P A and a strict subset

J Ĺ P where all the agents outside the set J see no better reply, there exists

an action profile a˚J for the agents in the set J such that when the action profile

pa˚J , a´Jq is adopted at least one agent outside the set J either sees a better reply

or a change in its received payoff.

The following two theorems suggest that when the game satisfies the weak

interdependence assumption and has a non-empty set of PSNE(s), and a RSEM rule

is employed for updating strategies, the action profile reaches a Nash equilibrium

under payoff information delays and asynchronous updates with probability 1, under

Assumptions A1 through A4.

Theorem 8.3. Suppose that the gameG satisfies Assumption 8.2 and has a nonempty

set of PSNE(s) denoted by ANE and that Assumptions A1 through A4 hold. Then,

for any initial distribution G P ∆pAq,

P r~a P A8‹ s “ 1.

Proof. A proof of the theorem is provided in Section 8.3. �

In addition to the almost sure convergence of the action profile, we can estab-

lish that the probability that the action profile has not converged to a PSNE decays
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geometrically with time t.

Theorem 8.4. Suppose that the gameG satisfies Assumption 8.2 and has a nonempty

set of PSNE(s) denoted by ANE and that Assumptions A1 through A4 are in place.

Then, there exist C̃rsem ă 8 and ζ̃rsem P p0, 1q such that, for any initial distribution

G P ∆pAq,

P r~a R A8t s ď minp1, C̃rsem ¨ ζ̃
t
rsemq.

Theorem 8.4 follows directly from Corollary 4 in the proof of Theorem 8.3 in

Section 8.3.

Remark: While both Theorem 8.1 and 8.3 ensure convergence to the set

of PSNE almost surely, it is important to make the distinction that starting from

any initial action profile ap1q under the interdependence assumption the agents can

converge to any PSNE, which is not always true for the case of GWAGs. This fact

will become essential under various erroneous settings when we characterise the set

of stochastically stable equilibria in this chapter and also in the next chapter.

8.3 Proof of Theorem 8.3

First, we define some notation: Let Z :“ SˆA and denote the pair psptq, aptqq P

Z by zptq, t P N. Define s‹ P S to be the state vector in which every agent is at

state C, i.e, s‹ “ pC, . . . , Cq, and ZNE “ tps‹, a˚q P Z | a˚ P ANEu.

The theorem will be proved with the help of several lemmata we introduce.

Their proofs are provided in Sections 8.4.1 through 8.4.3. For any s P S,

Cpsq “ ti P P | si “ Cu and Epsq “ ti P P | si “ Eu.
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The first lemma states that, if the action profile at time t is not a PSNE, then

even if all agents are at state C at time t, there is positive probability that at least

one agent will transition to state E after 3∆η periods (where ∆η is the constant

introduced in Assumption A4 in Section 7.5.1).

Lemma 8.5. For every a R ANE and t P N,

P rEpspt` 3∆ηqq ‰ H | zptq “ ps‹, aqs ě ζ0 ą 0. (8.2)

The second lemma shows that, if there is at least one agent at state E at time

t P N, there is positive probability that the number of agents at state E will increase

after a finite number of periods.

Lemma 8.6. For every r P t1, 2, . . . , n ´ 1u, there exists 0 ă D1 ď 4∆η such that,

for every t P N and z “ ps, aq P Z with |Epsq| “ r, we have

P r|Epspt`D1qq| ě r ` 1 | zptq “ zs ě ςr ą 0. (8.3)

The following corollary now follows from Lemmas 8.5 and 8.6, by repeatedly

applying Lemma 8.6 until all agents switch to state E.

Corollary 3. There exists 0 ă D ď 4n∆η such that, for all z P ZzZNE and t P N,

P
“

|Epspt`Dq| “ n
ˇ

ˇ zptq “ z
‰

ě µ ą 0. (8.4)

The final lemma has two parts; first, it states that, if all agents are at state E

at some time t, then for any z‹ P ZNE, there is positive probability that they will

reach z‹ within 4∆η periods. Second, if the agents are at some z‹ P ZNE at time t,

with positive probability they will remain at z‹ for good.
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Lemma 8.7. (i) Suppose that zptq “ z “ ps, aq where |Epsq| “ n, i.e., all agents

are at state E. Then, for all z‹ “ ps‹, a‹q P ZNE, we have

P rzpt` 4∆ηq “ z‹ | zptq “ zs ě ρ1 ą 0.

(ii) For every z‹ P ZNE,

P rzpt1q “ z‹ for all t1 ě t | zptq “ z‹s ě ρ2 ą 0.

The following corollary is a consequence of the above lemmas.

Corollary 4. There exist 0 ă D̃ ď 4pn ` 1q∆η such that, for all z P ZzZNE,

z‹ P ZNE and t P N, we have

P
”

zpt1q “ z‹ for all t1 ě t` D̃
ˇ

ˇ zptq “ z
ı

ě µ̃ ą 0. (8.5)

Comparing Corollary 4 with Corollary 2 from the previous chapter, we observe

that unlike the better reply rules the RSEM allows convergence to any PSNE starting

from any initial action profile.

We now proceed with the proof of Theorem 8.3. Lemma 8.5 shows that, if

the action profile is not a PSNE at time t, then after a finite number of periods, at

least one agent will be at state E. Lemma 8.6 then claims that, whenever there is

at least one agent at state E, after finitely many periods, all agents will be state E

(Corollary 3). Once all agents are at state E, Lemma 8.7 asserts that they can reach

any z‹ P ZNE with positive probability after a finite number of periods and stay there

forever. Finally, Corollary 4 implies that, for all n P N, P
”

~a R A8
nD̃`1

ı

ď p1 ´ µ̃qn.

The rest of the proof follows using arguments similar to that of the proof for Theorem

7.5.
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8.4 Proof of Lemmata for Theorem 8.3

8.4.1 Proof of Lemma 8.5

Because a R ANE, when the agents adopt a, there is at least one agent, say

agent i˚, with an incentive to deviate from ai˚ when the action profile a is in effect

at the systems of all agents. We will prove that the state of agent i will transition

to E with positive probability after 3∆η periods.

We recall some of the notation introduced in the previous chapter: For each

i P P , we define kimax : N Ñ N, where kimaxptq “ maxtk P N | T ik ď tu. Similarly,

for all i, j P P , j ‰ i, and t P N, d´i,jptq “ V i,j
kimaxptq

and d`i,jptq “ V i,j
kimaxptq`1

, where

V i,j
k , as defined in Section 7.5, is the forward delay that action aipT

i
kq experiences

before influencing system j. For notational convenience, we denote the interval

tt ` p` ´ 1q∆η ` 1, . . . , t ` ` ¨ ∆ηu by T `ptq, ` P N, where ∆η is the constant in

Assumption A4 in Section 7.5.

Next, we define the following events. Note that T ikimaxptq
(resp. T ikimaxptq`1)

denotes the last time by time t (resp. the first time after time t) at which player i

updates its strategy.

E1 “ tT
i
kimaxptq

` d´i,jptq ď t`∆η for all i, j P P , j ‰ iu

E2 “ tT i
˚

X T `ptq ‰ H, ` “ 2, 3u

E3 “ taipt
1
q “ ai for all i P Epspt1qq, t1 “ t` 1, . . . , t` 3∆ηu

E4 “ ti
˚
P Epspt1 ` 1qq if i˚ P Epspt1qq for all t1 “ t, . . . , t` 3∆η ´ 1u.
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The event E1 implies that the action profile at time t is seen by all systems by time

t`∆η. The second event E2 simply states that agent i˚ updates its action at least

once in each of the intervals T 2 and T 3. Event E3 requires any agent at state E

between t ` 1 and t ` 3∆η to choose the same action it did at time t (which will

happen with strictly positive probability). Finally, the fourth event E4 demands

that the agent i˚, once it switches to state E (which will happen by time t` 3∆η if

the events E1 through E3 take place because a R ANE), remain at state E till time

t` 3∆η.

We use the following lower bound to complete the proof.

P rEpapt` 3∆ηqq ‰ H | zptq “ ps‹, aqs

ě P rEpapt` 3∆ηqq ‰ H, E1, E2, E3, E4 | zptq “ ps‹, aqs

“ P rEpapt` 3∆ηqq ‰ H | E1, E2, E3, E4, zptq “ ps
‹, aqs

ˆP rE1, E2, E3, E4 | zptq “ ps‹, aqs (8.6)

From the explanations of the events E1 through E4 above, it is clear that for every

player i P P , we have ãi´i

´

T ikimaxpt`2∆ηq`1

¯

“ a´i. When this happens it is clear that

at least one agent, namely agent i˚ will see a better reply after t ` 2∆η and move

to state E. Hence, the first conditional probability in (8.6) is one. Hence, if we can

show that the second conditional probability is also positive, the lemma is proved.

First, we rewrite P rE1, E2, E3, E4 | zptq “ ps‹, aqs as follows.

P rE1, E2, E3, E4 | zptq “ ps‹, aqs

“ P rE1, E2 | zptq “ ps‹, aqs ¨ P rE3, E4 | zptq “ ps‹, aq, E1, E2s . (8.7)
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The first term in (8.7) is lower bounded by ηn`2 from Assumption A4. Bounding

the second term in (8.7),

P rE3, E4 | zptq “ ps‹, aq, E1, E2s

“ P rE4 | zptq “ ps‹, aq, E1, E2s ¨ P rE3 | zptq “ ps‹, aq, E1, E2, E4s

ě p3∆η ¨

t`3∆η
ź

`“t`1

P
”

aip`q “ ai for all i P Epsp`qq
ˇ

ˇ

ˇ
aipmq “ ai for all i P Epspmqq

for m “ t` 1, . . . , t` `´ 1, zptq “ ps‹, aq, E1, E2, E4

ı

ě p3∆ηδ3n∆η (8.8)

where the last step follows by noting that agents in the Explore state experiment

with every action with a probability of at least δ, while the step before that is a

result of the fact that under the RSEM rule every agent remains at the explore

state with a probability of at least p (recall that when an agent sees a better reply

it continues at the explore state and when it sees no better replies it moves to the

converged state with probability 1 ´ p). Putting together, we have the following

lower bound

P rEpapt` 3∆ηqq ‰ H | zptq “ ps‹, aqs ě pδn ¨ pq3∆η ¨ ηn`2
“: ζ0 ą 0.

8.4.2 Proof of Lemma 8.6

We consider two cases.

c1. There exists at least one agent i` P Cpsptqq such that Ui`pã
i`pT i

`

k qq ‰ Ui`paptqq

or BRi`paptqq ‰ H. In other words, either the payoff received by agent i` at

the last time of update is different from what it would receive if its system
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generated the payoff in response to the current action profile at time t, or the

present action profile allows a better response for agent i`.

c2. There is no such agent, i.e., for all i P Cpsptqq, we have Uipã
ipT ikqq “ Uipaptqq

and BRipaptqq “ H.

Case c1: First, we define the following events.

E 11 “ tT ikimaxptq
` d´i,jptq ď t`∆η for all i, j P P , i ‰ ju

E 12 “ tT i
`

X T `ptq ‰ H, ` “ 2, 3u

E 13 “ taipt1q “ ai for all i P Epspt1qq, t1 “ t` 1, . . . , t` 3∆ηu

E 14 “ tEpspt1qq Ď Epspt1 ` 1qq for all t1 “ t, . . . , t` 3∆η ´ 1u

Using a similar argument used in Section 8.4.1, we obtain

P r|Epspt` 3∆ηqq| ě r ` 1 | zpkq “ zs

ě P r|Epspt` 3∆ηqq| ě r ` 1, E 11, E 12, E 13, E 14 | zpkq “ zs

“ P r|Epspt` 3∆ηqq| ě r ` 1 | E 11, E 12, E 13, E 14, zptq “ zs ¨ P rE 11, E 12, E 13, E 14 | zptq “ zs .(8.9)

Event E 14 ensures that the set of exploring agents is non-decreasing, i.e., no

exploring agents goes to the Converged state in the interval pt, t ` 3∆ηs. Also the

event E 13 does not allow any agent to change its action. Therefore, if events E 11

through E 14 take place, by time t ` 3∆η agent i` would have received the payoff

information corresponding to the action profile aptq and switched its state to E,

leading to an increase in the number of exploring agents. Thus, the first conditional
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probability in (8.9) is equal to one. Decomposing the second term in (8.9), we obtain

P rE 11, E 12, E 13, E 14 | zptq “ zs

“ P rE 11, E 12 | zptq “ zs ¨ P rE 13 | zptq “ z, E 11, E 12s ¨ P rE 14 | zptq “ z, E 11, E 12, E 13s . (8.10)

From Assumption A4, the first term in (8.10) can be lower bounded by ηn`2. The

second term can be lower bounded by δ3n∆η following similar arguments used in the

proof of Lemma 8.5. Lower bounding the third term in (8.10),

P rE 14 | zptq “ z, E 11, E 12, E 13s “
t`3∆η´1
ź

`“t

P
”

Epsp`qq Ď Epsp`` 1qq
ˇ

ˇ

ˇ
Epspmqq Ď Epspm` 1qq

for all m “ t, . . . , `´ 1, zptq “ z, E 11, E 12, E 13
ı

ě p3n∆η (8.11)

Returning to (8.9), the second conditional probability is lower bounded by

pδ ¨ pq3n∆η ¨ ηn`2 ą 0.

Case c2: Recall that, in this case, for every agent i P Cpsptqq, we have

Uipã
ipT ikqq “ Uipaptqq and BRipaptqq “ H. Now, Assumption 8.2 implies that there

exists i1 R Epsptqq :“ J1 and a˚J1 such that if the agents in J1 adopt the actions in a˚J1

while the other agents choose the same action stipulated by aptq, then either agent

i1’s payoff changes or it sees a better reply. To move an agent in the Converged

state to the Explore state, we will be using the weak interdependence assumption

and argue that the exploring agents can change their actions such that at least one

of the agents in the Converged state see a change in their payoff or a better reply

and start exploring. As we will prove, this implies that there is positive probability

that agent i1 will switch its state to E after 4∆η periods.
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To this end, we define the following events

E`1 “ tT ikimaxpt`∆ηq
` d´i,jpt`∆ηq ď t` 2∆η for all i, j P P , i ‰ ju

E`2 “ tT i
1

X T `ptq ‰ H, ` “ 3, 4u

E`3 “ tEpspt1qq Ď Epspt1 ` 1qq for all t1 “ t, . . . , t` 4∆η ´ 1u

E`4 “ tT i X T 1ptq ‰ H for all i P J1u

E`5 “ taipt1q “ ãi for all i P P and t1 “ T ikimaxptq`1, . . . , t` 4∆ηu

where

ãi “

$

’

’

&

’

’

%

aiptq if i R J1,

a˚i if i P J1.

The rest of the proof follows from a similar argument.

P r|Epspt` 4∆ηqq| ě r ` 1 | zptq “ zs

ě P
“

|Epspt` 4∆ηqq| ě r ` 1, E`1 , E`2 , E`3 , E`4 , E`5 | zptq “ z
‰

“ P
“

|Epspt` 3∆ηqq| ě r ` 1 | E`1 , E`2 , E`3 , E`4 , E`5 , zptq “ z
‰

ˆP
“

E`1 , E`2 , E`3 , E`4 , E`5 | zptq “ z
‰

. (8.12)

Event E`4 ensures that all the agents in the Explore state update during the in-

terval T 1ptq, while event E`5 ensures that the exploring agents update their actions

according to the action profile pa´J1 , a
˚
J1
q and keep it fixed. Event E`1 enforces that,

under events E`4 and E`5 , the current action profile at time t`∆η – pa´J1 , a
˚
J1
q takes

effect in the system of agent i1 by time t ` 2∆η. Finally, events E`2 and E`3 ensure

that agent i` reaches the Explore state by time t` 4∆η and stays there. From the

definitions of the above events, the first conditional probability is one because agent
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i1 will have switched its state to E (from C) by time t ` 4∆η and the exploring

agents would still be exploring if the events E`1 through E`5 take place.

Lower bounding the second term in (8.12),

P
“

E`1 , E`2 , E`3 , E`4 , E`5 | zptq “ z
‰

“ P
“

E`4 | zptq “ z
‰

¨ P
“

E`1 , E`2 | E`4 , zptq “ z
‰

(8.13)

ˆ P
“

E`3 | E`1 , E`2 , E`4 , zptq “ z
‰

¨ P
“

E`5 | E`1 , E`2 , E`3 , E`4 , zptq “ z
‰

(8.14)

Using Assumption A4, we lower bound the first and second term in (8.13) by

ηr and ηn`2 respectively. Since the event E 14 defined in the previous case is similar to

event E`3 , we can use a similar argument to lower bound the first term in (8.14) by

p4n∆η . A lower bound of δ4n∆η is obtained for the final term in (8.14) by following

similar steps as in the proof for Lemma 8.5 (see (8.8)).

Therefore, the second conditional probability in (8.12) is lower bounded by –

ηn`2`r pδ ¨ pq4n∆η :“ ςr, which is smaller than the lower bound obtained in case c1

–

`

pδ ¨ pq3n∆η ¨ ηn`2
˘

.
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8.4.3 Proof of Lemma 8.7

We first prove Lemma 8.7(i). First, define the following events.

E#
1 “ tT i X T 1ptq ‰ H for all i P Pu

E#
2 “ tT

i
kimaxpt`∆ηq

` d´i,jptq ď t` 2∆η for all i, j P P , j ‰ iu

E#
3 “ taipt

1
q “ a‹i for all i P P and t1 “ T ikimaxptq`1, . . . , t` 4∆ηu

E#
4 “ tT i X T `ptq ‰ H for all i P P and ` “ 3, 4u

E#
5 “ tsipT

i
kimaxpt`3∆ηq`1q “ C for all i P Epspt` 3∆ηqqu

Events E#
1 , E

#
2 , E

#
3 together imply that all agents update their actions to a‹i

during T 1ptq and their actions go into effect by t ` 2∆η. Events E#
4 and E#

5 state

that all agents update at least once during the intervals T 3ptq and T 4ptq, and switch

their state to C. Hence, together these events mean that all agents are at state C

and adopt the PSNE a‹ at time t` 4∆η. Therefore,

P rzpt` 4∆ηq “ z‹ | zptq “ zs

ě P
”

zpt` 4∆ηq “ z‹ | E#
1 , E

#
2 , E

#
3 , E

#
4 , E

#
5 , zptq “ z

ı

ˆP
”

E#
1 , E

#
2 , E

#
3 , E

#
4 , E

#
5 | zptq “ z

ı

. (8.15)

As argued above, the first conditional probability in (8.15) is one. Lower bounding

the second conditional probability,

P
”

E#
1 , E

#
2 , E

#
3 , E

#
4 , E

#
5 | zptq “ z

ı

“ P
”

E#
1 , E

#
2 , E

#
4 | zptq “ z

ı

¨ P
”

E#
3 | zptq “ z, E#

1 , E
#
2 , E

#
4

ı

(8.16)

ˆ P
”

E#
5 | zptq “ z, E#

1 , E
#
2 , E

#
3 , E

#
4

ı

. (8.17)
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From previous arguments the first two terms in (8.16) are lower bounded by η4n and

δ4n∆η respectively. To lower bound (8.17), observe that conditioned on the events

tE#
i , i “ 1, 2, 3, 4u, the agents in the Explore state at time t` 3∆η all see an empty

better reply set whenever they update in the interval T 4ptq. Therefore, under the

RSEM rule, (8.17) is lower bounded by p1 ´ pqn. Collecting the lower bounds, the

second conditional probability in (8.15) can be lower bounded by η4n ¨δ4n∆η ¨p1´pqn.

This completes the proof of Lemma 8.7(i).

Before we prove Lemma 8.7(ii), note that even though the agents are at z‹ P

ZNE at time t, it is still possible for some agents to transition to state E due to

the delays in the system. Hence, the conditional probability in the lemma is strictly

positive as we will show, but is in general less than one.

First, we define the following events.

E´1 “ tT i X T `ptq ‰ H for all i P P and ` “ 2, 3u

E´2 “ taipt1q “ a‹i for all i P P and t1 “ T ikimaxptq`1, . . . , t` 3∆ηu

E´3 “ tT ikimaxptq
` d´i,jptq ď t`∆η for all i, j P P , j ‰ iu

E´4 “ tsipT ikimaxpt`2∆ηq`1q “ C for all i P Epspt`∆ηqqu

Note that events E´1 through E´4 mean that all agents continue to play the action

profile a‹ between time t and t ` 3∆η (and afterwards). All agents see a‹ after

time t`∆η (event E´3 ) and all agents update during the interval T 2ptq (event E´1 ).

Thus, when the agents update during the interval T 3ptq, conditional on event E´2 , all

agents will see the payoff in response to a‹, i.e., ãi
´

T ikimaxpt`2∆ηq`1

¯

“ a˚. Finally,

the agents’ states will have changed to C by time t ` 3∆η (event E´4 ) and, as a
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result, they will keep playing a‹ after time t` 3∆η.

Following essentially the same argument, we have

P
“

zpt1q “ z‹ for all t1 ě t
ˇ

ˇ zptq “ z
‰

ě P
“

zpt1q “ z‹ for all t1 ě t
ˇ

ˇ zptq “ z, E´1 , E´2 , E´3 , E´4
‰

ˆP
“

E´1 , E´2 , E´3 , E´4 , | zptq “ z
‰

, (8.18)

where the first conditional probability in (8.18) is one. The second conditional

probability can be lower bounded by η2n ¨ δ3n∆ηp1´ pqn.

8.5 Case with Erroneous Payoff Information

Until now in this chapter, we assumed that accurate payoff information pCipãiptqq;Uipãiptqqq

is available to the players for updates. For reasons already discussed in Section 7.6,

it would be helpful to relax the above setting by assuming that the agents make

mistakes while determining the payoff information Cipãiptqq. Once again for ease of

exposition, we consider the setting of the synchronous update case, which we believe

can be easily extended to the asynchronous update scenario.

8.5.1 Preliminaries

The setting is that of Section 7.6. Recall that the probabilities of erroneous

classification of actions are given by mappings qit : AˆAi Ñ ∆pSq, where qitpa, a
1
iq :“

pqitpς; a, a
1
iq, ς P Sq is a probability distribution over S. We assume that the mappings

tqit, i P P , t P N`u satisfy Assumptions 7.1 and 7.2 stated in the previous chapter.
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As we did in Section 7.6, we can model the evolution of joint states tpsptq, aptqq, t P

Nu as a nonhomogeneous (discrete-time) Markov chain, where the transition matrix

at time t P N, denoted by Pptq, is determined by: (i) βi, i P P , and the parameters

of the RSEM rule p and δ, and (ii) the mapping qit, i P P and t P N`. For each

t P N, a time homogeneous (discrete-time) Markov chain Xt can be defined with a

common state space C Ă Z 1and transition matrix Pt “ Pptq. For each t P N the

Markov chain Xt will be ergodic, which follows from the fact that, given any initial

state with zp1q “ ppE, . . . , Eq, aq with a P A, we will revisit the same initial state

zp1q w.p. 1. The MC Xt will thus have an unique stationary distribution denoted

by µt “ pµtpzq, z P Cq. In this context, the MC in which the players make correct

payoff observation is called an unperturbed Markov chain.

As in Section 7.6 we can construct a minimum resistance W -tree rooted at

any z P C denoted by Γ˚pzq with resistance πminpzq :“ πpΓ˚pzqq. From Theorem 7.7

we know that, a state will be stochastically stable if its corresponding W -tree has

the least resistance among all the minimum resistance W -trees. Next, we present

results that characterize the set of stochastically stable states CSS Ă C.

8.5.2 Main result

Theorem 8.8. As t Ñ 8, µt Ñ µ0, where µ0 is a stationary distribution of the

unperturbed Markov chain. In addition, µ0pz‹q ą 0 if and only if (i) z‹ P ZNE

and (ii) ψpa‹q “ maxa1PZNE ψpa
1q, where ψpaq “ miniPP mina1iPAiztaiu γipa, a

1
i, Bq for

1There may be some states in Z which are unreachable from the initial state zp1q, and we do

not include those unreachable states in the state space C.
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a P ANE.

Proof. First we prove the first statement. For any z1 P CzZNE, from Corollary 4

we know that there exists a zero resistance path from z1 to any joint state in ZNE.

In other words according to the terminology introduced in Section 7.6, the domain

of attraction of the joint state z1 is ZzZNE. Also, it is clear that the minimum

resistance path from any state in ZNE to any state in CzZNE is strictly positive.

Therefore, for all z1 P CzZNE,

πminpz
1
q ą πminpz

˚
q, z˚ P ZNE

which is sufficient to prove the first statement.

To prove the second statement we once again use Corollary 4 to conclude that

any state z1 P CzZNE will contribute zero resistance to the resistance tree Γ˚pz˚q for

any z˚ P ZNE. Therefore, for z˚ P ZNE

πminpz
˚
q “

ÿ

zPZNEztz˚u

ρpz, z˚q. (8.19)

Choose z2 “ ps˚, a2q, z˚ “ ps˚, a˚q P ZNE. The minimum resistance transition from

the state z2 to a state where at least one agent is exploring, i.e., a joint state in

CzZNE, has a resistance of ψpa2q. Once a state in CzZNE is reached, we know

that a zero resistance path to z˚ exists, which implies that ρpz2, zq is simply ψpa2q.

Returning to (8.19), we obtain

πminpz
˚
q “

ÿ

z“ps˚,aqPZNEztz˚u

ψpaq “
ÿ

z“ps˚,aqPZNE

ψpaq ´ ψpa˚q (8.20)

which implies that

CSS “ arg min
z˚PZNE

πminpz
˚
q “ arg max

z˚PZNE
ψpa˚q. (8.21)
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For z “ ps˚, aq P ZNE, by definition, ψpaq is the resistance of the minimum

resistance transition from the PSNE z to any other state. For all time t P N`, the

probability of deviation from a PSNE joint state ps˚, aq is given by
ř

z1PCzZNE Pz,z1ptq.

We know for each z “ ps˚, aq P ZNE there exists a constant cpaq ą 0 such that

ř

z1PCzZNE Pz,z1ptq „ cpaqε
ψpaq
t . Therefore for large t, Theorem 8.8 ensures stochas-

tic stability of those PSNE(s) which under the error model has among the least

probability to get destabilised.

From the expression of CSS in (8.21), it is worth noting that the RSEM rule

is such that the set of stochastically stable states is completely characterised by the

error model tqit, i P P , t P N`u. This is certainly not the case for the GBRR rules,

where the set of stochastically stable states depend both on the structure of the

game and the error model.
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Chapter 9: Monitoring Rules under Erroneous Execution

In the previous chapter we introduced the class of monitoring rules by looking

at a simple version called the Reduced Simple Experimentation with Monitoring

(RSEM) rule. We considered asynchronous updates by agents under delayed payoff

information and errors due to faulty payoff information, more particularly, errors

due erroneous estimation of SBRs. In this chapter we specifically consider errors

due to faulty execution of intended actions. This requires a generalization of the

simple RSEM by endowing an agent with several monitoring or alert states such

that the agent/controller becomes resilient to occasional deviations from expected

situations but is instead responsive to long term changes.

9.1 Resilience of PSNEs

As mentioned earlier, we are interested in designing a distributed learning rule

that will allow the agents to target (more) resilient equilibria. To this end, we first

define the resilience of a PSNE as follows.

Denote the set of PSNEs by ANE Ă A. Let d : A ˆ A Ñ Z` :“ t0, 1, 2, . . .u

be a mapping that measures the distance between two action profiles, where

dpa1, a2
q “

ÿ

iPP
1
“

a1
i ‰ a2

i

‰

, a1, a2
P A. (9.1)
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For each τ P Z`, let Nτ : A Ñ 2A, where Nτ paq “ ta1 P A | dpa, a1q ď τu, a P A.

In other words, Nτ paq is the set of action profiles whose distance from a is at most

τ according to the distance measure in (9.1).

Recall from Chapter 7 that Ci and BRi are the classification and better reply

mappings respectively. The resilience of a PSNE is given by a mapping R : ANE Ñ

Z`, where for a‹ P ANE,

Rpa‹q “maxtτ ě 0 | BRipa
‹
i , a

1
´iq “ H for all i P P and a1 P Nτ pa‹qu.

It is clear from the definition that the resilience of a PSNE is the largest number of

deviating agents the PSNE can tolerate before at least one agent finds an incentive

to switch its action. When Rpa‹q “ K, we say that a‹ is K-resilient. Define

R‹max :“ maxa‹PANE Rpa
‹q to be the maximum resilience among all PSNEs.

9.2 Proposed Update Rule

In this section, we present our proposed algorithm, called the Simple Ex-

perimentation with Monitoring (SEM), for seeking resilient PSNEs. This is an

extension of the RSEM algorithm discussed in the previous chapter. In order to

describe the algorithm, we first introduce some notation. At each time t P N, the

state of agent i P P is denoted by siptq P Ψ1
0. The set Ψ1

0 consists of (i) Con-

verged (C), (ii) Explore (E), and (iii) Alert (L1, . . . , LT ), where T is the number of

alert states. We let Ψ1 “
ś

iPP Ψ1
0, and the state vector at time t P N is given by

sptq “ psiptq, i P Pq P Ψ1. The rule governing the update of an agent’s state will be

explained shortly.
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‚ Action profile selected by agents vs. action profile adopted by

agents: Since we are interested in scenarios where the agents intermittently make

mistakes and execute incorrect actions, we distinguish (i) the action that is selected

by agent i at time t P N, namely aiptq, according to the action update rule (described

in Section 9.2.1) and (ii) the action that is adopted at time t P N, denoted by ãiptq

(Section 9.2.2). We denote the action profile selected by the agents at time t P N by

aptq, and the action profile adopted at time t by ãptq. Note that aptq and ãptq may

not be identical unless no agent makes a mistake at time t.

Payoff Information for updates – First, let us denote âiptq “ paiptq, ã´iptqq.

Clearly, âiptq is the action profile that would be in effect at time t assuming agent

i did not make any erroneous implementation of its selected action. We assume

that the payoff information available to agent i at time t ě 2 is of the form –

`

pCipai, âipt ´ 1qq, ai P Aiq ; Uipãpt ´ 1qq
˘

. Therefore, the payoff classification in-

formation evaluates which strategies would have yielded a higher or a lower payoff

than the previously selected strategy aipt´1q. Clearly, it is sensible to use the payoff

classification information with respect to the intended action aipt ´ 1q irrespective

of whether that action was actually implemented or not. We also assume that an

agent knows whether or not an action was correctly implemented in the previous

time instant. This makes sense in many practical scenarios where an agent can

monitor if the intended action was actually implemented. For instance, returning to

the example of distributed traffic routing considered in Chapter 6, it is reasonable

to assume that a driver can comprehend in hindsight if it correctly followed the

suggested route.
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Now, in case there were an error in implementation by a particular agent i,

i.e., ãipt ´ 1q ‰ aipt ´ 1q, there might be scenarios where obtaining the aforemen-

tioned payoff classification information might be difficult for that particular agent.

Although we do not consider such a setting here, we would however like to comment

that the algorithm can be easily modified to account for such scenarios.

9.2.1 Action updates with no errors – aptq, t P N

In this subsection, we first describe how the agents choose their actions ac-

cording to the payoff feedback. At time t “ 1, the agents choose their action profile

ap1q according to some joint distribution G. Starting with t “ 2, at time t P N, every

agent updates its action using some update rule, which will be explained shortly.

Fix δ P p0, 1{pmaxiPP |Ai|qq and βi : SAi Ñ ∆pAiq, i P P .

Action Selection Rule:

For t “ 2, 3, . . .,

• if siptq “ E

– choose aiptq “ ai with probability βipai; Cipai, âipt´1qq ě δ for all ai P Ai

• else (i.e., siptq “ C or L`, ` P L :“ t1, 2, . . . , T u)

– set aiptq “ aipt´ 1q
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Note that, under SEM, an agent may choose a new action only if it is at state

E. Otherwise, it continues to play the same action employed at the previous time.

9.2.2 Adopted action profiles – ãptq, t P N

As mentioned earlier, we are interested in designing a distributed learning rule

that will allow the agents to seek out resilient PSNEs under erroneous decision-

making by the agents. Here, we describe one way to model these erroneous actions

with the help of mutually independent Bernoulli processes1: For each agent i P P ,

let Bi “ tBiptq, t P Nu be a Bernoulli process with P rBiptq “ 1s “ ε for some ε ą 0.

The random variable Biptq, i P P and t P N, indicates whether or not system of

agent i makes a mistake and executes an incorrect action at time t as follows. For

each i P P and t P N`,

E1. if Biptq “ 0, ãiptq “ aiptq;

E2. else (i.e., Biptq “ 1), P rãiptq “ ais “ gipaiptq, aiq independently of the past,

where for each ai P Ai, gipai, ¨q is some arbitrary distribution over Aiztaiu with

gipai, a
1
iq ą 0 for all a1i P Aiztaiu.

According to this setup, each agent adopts an erroneous action with probability

ε at each time t P N`, independently of the past and other agents. As previously

1While we use a specific model for introducing perturbations in the system as a reasonable

approximation, identifying the correct or accurate faulty behavior is not the focus here and other

perturbation models may be used instead.
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mentioned, for each i P P and t “ 2, 3, . . ., we assume at time t agent i can observes

Bipt ´ 1q. In other words, at a particular time t, agent i knows whether an action

was correctly implemented or not in the previous time instant t´ 1.

9.2.3 State dynamics

As explained in the previous subsections, under SEM, agents’ selections of

actions depend on their states. Hence, the dynamics of the agents’ states play a key

role in the algorithm. In this subsection, we explain how the agents update their

states based on the received payoff information.

For each i P P and t P N` such that siptq P tL`, ` P Lu, let

νit “ maxtt1 ă t : sipt
1
q “ Cu (9.2)

and U˚i ptq “ Uipãpν
i
tqq. Note that the payoff information vector is determined by

the actions adopted by other agents, not those selected by them. Hence, even when

the agents select a PSNE at time t, i.e., aptq P ANE, the adopted action profile ãptq

and, hence, the payoff information vectors seen by the agents may differ from those

of the selected PSNE.

At time t “ 1, all agents are initially at state E, i.e., sp1q “ pE, . . . , Eq.

The state of agent i at time t ě 2 depends on its state at time t´ 1 and the payoff

information available at time t. Note that at time instant 2 only case S1 is applicable

because at time instant 1 all the agents are in the Explore state. Therefore case

S2 in the state update rule can be effective only for t ě 3. Similarly, case S3 is

applicable only for t ě 4.
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Fix p P p0, 1q.

State Update Rule:

For t “ 2, 3, . . .,

S1. if sipt´ 1q “ E

• if BRipâipt´ 1qq ‰ H: siptq “ E

• else (i.e., BRipâipt´ 1qq “ H):

siptq “

$

’

’

&

’

’

%

E with probability p

C with probability 1´ p

S2. if sipt´ 1q “ C

• if BRipâipt´ 1qq ‰ H: siptq “ E

• else

– if Bipt´ 1q “ 0 and Uipãpt´ 1qq ‰ U˚i pt´ 1q: siptq “ L1

– else
´

i.e., (i) Bipt´ 1q “ 1, or (ii) Bipt´ 1q “ 0 and Uipãpt´ 1qq “

U˚i pt´ 1q
¯

: siptq “ C

S3. if sipt´ 1q “ L`, ` “ 1, 2, . . . , T ´ 1

• if BRipâipt´ 1qq ‰ H: siptq “ E

• else

– if Bipt´ 1q “ 1: siptq “ L`
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– else if Bipt´ 1q “ 0 and Uipãpt´ 1qq ‰ U˚i pt´ 1q: siptq “ L``1

– else
´

i.e., Bipt´ 1q “ 0 and Uipãpt´ 1qq “ U˚i pt´ 1q
¯

: siptq “ C

S4. if sipt´ 1q “ LT

• if BRipâipt´ 1qq ‰ H: siptq “ E

• else

– if Bipt´ 1q “ 1: siptq “ LT

– else if Bipt´ 1q “ 0 and Uipãpt´ 1qq ‰ U˚i pt´ 1q: siptq “ E

– else
´

i.e., Bipt´ 1q “ 0 and Uipãpt´ 1qq “ U˚i pt´ 1q
¯

: siptq “ C

In essence, if the SBR set is nonempty, the agent always moves to state E. Also,

when the agent is at an alert state, L`, ` P L, if there were erroneous implementation

of the selected action then the agent stays in the same state, otherwise if the selected

action was carried out and the received payoff goes back to U˚i pt´1q, i.e., the payoff

it was expecting the last time it was at state C, it immediately returns to state C.

Otherwise, even when the SBR set is empty, it moves to the next alert state. The

state transition of an agent is summarized in Figure 9.1.

9.3 Main Result

We redefine some notation from the previous chapter: Let Z :“ Ψ1 ˆ A and

denote the pair psptq, aptqq P Z by zptq, k P N. Define s‹ P Ψ1 to be the state vector
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∗
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∗
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∗
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⋮

⋮

⋮

⋮

⋮

⋮
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⋮

monitoring states

Bi(t)=1

Bi(t)=1

Figure 9.1: State transition diagram in SEM.

in which every agent is at state C, i.e, s‹ “ pC, . . . , Cq, and ZNE “ tps‹, a˚q P

Z | a˚ P ANEu.

We assume the game satisfies the weak payoff interdependence assumption

(Assumption 8.2) introduced in the previous chapter, which essentially states that,

for every action profile a P A and subset of agents J Ĺ P such that all the agents out-

side the set J see no better reply, there exists an agent i˚ R J and a choice of action

profile a˚J P
ś

jPJ Aj such that under the action profile pa˚J , a´Jq, agent i˚ either sees

a better reply pBRi˚pa
˚
J , a´Jq ‰ Hq or a change in its payoff pUi˚paq ‰ Ui˚pa

˚
J , a´Jqq

.
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Assumption 9.1. There exists a decreasing, positive sequence pεt, t P Nq such that

limtÑ8 εt “ 0.

As in the previous chapter, we can model the evolution of joint states tpsptq, aptqq, t P

Nu as a nonhomogeneous (discrete-time) Markov chain, where the transition matrix

at time t P N is denoted by Pptq. For each t P N, a time homogeneous (discrete-

time) Markov chain Xt can be defined with a common state space C Ă Z 2 and

transition matrix Pt “ Pptq. For reasons explained in the previous chapter, under

Assumption 9.1, for every t P N the present Markov chain Xt will also be ergodic

with an unique stationary distribution denoted by µt “ pµtpzq, z P Cq.

The following main result tells us that, if all agents adopt the proposed SEM

learning rule, one of the two statements holds. The proof of the theorem is provided

in Section 9.4.

Theorem 9.1. Suppose that the game G satisfies Assumption 8.2 and ANE is

nonempty. Under Assumption 9.1, as t Ñ 8, µt Ñ µ0 where µ0 is a stationary

distribution of the unperturbed Markov chain.

(a) IfR˚max ă T , then µ0pz˚q ą 0 if and only if (i) z˚ P ZNE, and (ii) Rpa˚q “ R˚max.

(b) If R˚max ě T , then µ0pz˚q ą 0 if and only if (i) z˚ P ZNE, and (ii) Rpa˚q ě T .

The findings in Theorem 9.1 can be interpreted as follows. First, note that,

when ε ą 0, due to the occasional erroneous actions, it is not possible to obtain

2As we noted in the previous chapter, there may be some states in Z which are unreachable

from the initial state zp1q, and we do not include those unreachable states in the state space C.
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almost sure convergence to any PSNE. However, our result demonstrates that it

is possible to guide the agents to PSNEs with certain resilience properties. If the

parameter T , i.e., the number of alert states, is strictly larger than the maximum

resilience among all PSNEs, when all agents adopt the SEM rule, for small error

probability ε, the agents will spend a majority of time at the most resilient PSNE(s).

On the other hand, if there are PSNEs whose resilience is at least T , then the agents

will spend most of their time at the PSNEs that are at least T -resilient. Hence, the

SEM rule offers a tunable knob, namely T , with which we can choose the desired

resilience of PSNEs at which the agents will spend most of the time.

Elementary Markov chain theory allows us to assert that when ε “ 0, aptq

converges to a PSNE in ANE almost surely under Assumption 8.2. Theorem 9.1

goes one step further; it states that, even when the agents are not perfect and make

sporadic mistakes in executing the selected actions, under the SEM rule, the agents

will stay at the resilient PSNEs most of the time, and the subset of PSNEs at which

they spend most time can be chosen via the tunable parameter T in the rule.

9.4 Proof of Theorem 9.1

We first state a lemma that will be used to prove the theorem. Recall that

given a state vector s P Ψ1, the set of agents in the Explore state is denoted by Epsq.

Lemma 9.2. Suppose that the game G satisfies Assumption 8.2 and ANE ‰ H.

When ε “ 0, under SEM, the following hold.

226



i. For all z˚ P ZNE and z “ ps, aq P C with s P Ψ1 such that Epsq ‰ H, there

exist 0 ă D1 ă 8 and 0 ă ρ1 ă 1 such that

P
“

zpt`D1q “ z˚
ˇ

ˇ zptq “ zq
‰

ě ρ1.

ii. For all z “ ps, a˚q P C with a˚ P ANE and s P Ψ1zts‹u, there exist 0 ă D2 ă 8

and 0 ă ρ2 ă 1 such that

P
“

zpt`D2q “ ps
‹, a˚q

ˇ

ˇ zptq “ z
‰

ě ρ2.

iii. For all z˚ P ZNE and z “ ps, aq P C with a R ANE, there exist 0 ă D3 ă 8

and 0 ă ρ3 ă 1 such that

P
“

zpt`D3q “ z˚
ˇ

ˇ zptq “ z
‰

ě ρ3.

Lemma 9.2 also implies that ZNE Ă C. It also leads to the following corollary.

Corollary 9.3. Suppose that the game G satisfies Assumption 8.2 and ANE ‰ H.

Then, when ε “ 0, under the SEM rule, only the states in ZNE are absorbing states.

We now proceed with the proof of the theorem. Recall that Xt denotes the

MC with state space C Ă Z, in which each agent makes mistake with probability εt,

independently of each other. Let Pt “ rP t
z1,z2

; z1, z2 P Cs denote the corresponding

(one-step) transition matrix, where P t
z1,z2

is the transition probability from z1 to z2.
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Under Assumption 9.1, if for some t P N, z1, z2 P C, z1 ‰ z2, and εt ą 0,

Pz1,z2ptq ą 0, then there is rpz1, z2q ě 0 such that

0 ă lim
tÑ8

Pz1,z2ptq

ε
rpz1,z2q
t

ă 8.

This defines the resistance between two joint states in C. Since the Markov chain

X
t is ergodic for all t P N, we know there exists at least one sequence of transitions

between any two joint states in C. Therefore, we can define path resistances and

resistance of minimum resistance paths between any two joint states as in Section

7.6. Therefore we can proceed as in Section 8.5, and construct minimum resistance

W -tree Γ˚pzq rooted at any z P C, to characterize the set of stochastically stable

states.

First, we can show that any state z P CzZNE is not SS. In other words, only

the absorbing states of the unperturbed MC, which belong to ZNE by Corollary 9.3,

are SS from the definition of stochastic stability.

The theorem can be proved with the help of the following three claims, which

we will prove shortly.

C1. For any z˚ P ZNE, the resistance of the minimum resistance z˚-tree, Γ˚pz˚q,

is equal to that of the Steiner tree in Γ˚pz˚q that connects only the states in

ZNE to z˚. In order to prove this, we argue that the edges not in the Steiner

tree have zero resistance.

C2. Fix any z1 “ ps‹, a1q P ZNEztz˚u and let z: be the first state in ZNE visited

along the (directed) path from z1 to z˚. We call z: the parent state of z1 in
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Γ˚pz˚q and denote it by ηpz1,Γ˚pz˚qq. Then, the resistance of the subpath

from z1 to z: is equal to mintRpa1q, T u ` 1.

C3. Suppose that z1 and z2 (z1, z2 P ZNEztz˚u) have the same parent state, say z:.

Then, the intersection of the subpaths from z1 and z2 to z: has zero resistance.

Together, these claims imply that

πpΓ˚pz˚qq “
ÿ

ps‹,a1qPZNEztz˚u

pmintRpa1q, T u ` 1q . (9.3)

The theorem then follows directly from (9.3).

Proof of C1 – First, define

CA “ tps, aq P C | a R ANEu and

CB “ tps, a˚q P C | s ‰ s‹, a˚ P ANEu .

Then, tZNE, CA, CBu forms a partition of C.

Fix z‹ “ ps‹, a‹q P ZNE, and consider any minimum resistance z‹-tree, Γ˚pz‹q “

pC, E‹q. Let SpΓ˚pz‹qq “ pṼ , Ẽq denote the Steiner tree in Γ˚pz‹q which connects the

states in ZNEztz‹u to z‹. An example of this is shown in Fig. 9.2, where the states

in ZNE appear as shaded circles, and the edges in the Steiner tree are shown as solid

arrows.

We now argue that

πpΓ˚pz‹qq “ πpSpΓ˚pz‹qqq. (9.4)
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z

z1

z2

z3

Figure 9.2: An example of a minimum resistance z‹-tree, Γ˚pz‹q, and the corre-

sponding Steiner tree SpΓ˚pz‹qq.

Let Vc “ CzṼ and Ec “ E‹zẼ , i.e., the set of edges in Γ˚pz‹q which do not belong to

the Steiner tree.

Since tZNE, CA, CBu is a partition of C and ZNE Ă Ṽ , we have Vc Ă CA Y CB.

Therefore, for any state z P Vc, by Lemma 9.2-ii and -iii, there is a zero resistance

path from z to some z: P ZNE. Therefore, since Γ˚pz‹q is assumed to be a minimum

resistance z‹-tree, the subpath from any state z P Vc to the Steiner tree SpΓ˚pz‹qq

should have zero resistance; otherwise, we can find another subpath to the Steiner

tree with zero resistance, which contradicts the assumption that Γ˚pz‹q is a minimum

resistance z‹-tree. This observation means that only the edges in Ẽ can have positive
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resistance and the equality in (9.4) follows.

Proof of C2 and C3 – Define

CC “ tps, aq P C | Epsq ‰ Hu .

We first introduce a lemma that will be used to prove the claims. For each z1 P

ZNEztz‹u, we denote the first state in CC along the path from z1 to z‹ in Γ˚pz‹q by

ζpz1,Γ˚pz‹qq.

Lemma 9.4. For every z P ZNE and its minimum resistance tree Γ˚pzq, the follow-

ing hold.

i. The (directed) path from any z1 P ZNEztzu to z in Γ˚pzq includes a state in

CC .

ii. For any distinct z1 and z2 in ZNEztzu, the directed subpath from z1 to ζpz1,Γ˚pzqq

and that from z2 to ζpz2,Γ˚pzqq are edge disjoint, i.e., the subpaths do not

share any edge.

iii. The resistance of the subpath from z1 “ ps‹, a1q P ZNEztzu to ζpz1,Γ˚pzqq is

equal to mintRpa1q, T u ` 1.

Proof. Lemma 9.4-i follows from the observation that a transition from z1 P ZNE

to another z2 P ZNE requires some agents to change their selected actions. From

the description of our algorithm, this is only possible when such agents first change
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their states from C to E. Lemma 9.4-ii a consequence of the observation that, while

transitioning from some z1 “ ps˚, a1q to ζpz1,Γ˚pzqq, the selected action profile is

fixed at a1 because the agents can change their selected actions only when they are

at state E.

Recall that there are only two possible ways for an agent to reach the state

E, starting at state C: i) It can move directly to E when it finds an SBR, or ii) it

can travel through the sequence of alert states (L`, ` P L) when it sees a change in

observed payoff information. In the first case, from the definition of the resilience

of a PSNE, for every z1 “ ps‹, a1q P ZNE, there exists (i) J Ă P with |J | “ Rpa1q` 1

and a`J P
ś

iPJ Ai such that, if the agents in J switch their actions to a`J , at least

one agent sees an SBR. By definition of the resilience of a PSNE, it is clear that the

resistance of such a transition is Rpa1q ` 1.

In the second case, using Assumption 8.2, we can find (a) an agent, say i,

and action a`i P Ai and (b) another agent j ‰ i such that if agent i switches its

action to a`i (from a1i), then agent j sees different payoff information. Therefore, if

agent i repeats this T ` 1 times (by mistake), then agent j will switch its state to

E (through the chain of alert states). The total resistance along this sequence of

transitions is equal to T ` 1. From these two cases, the resistance of the (directed)

path from z1 to ζpz1,Γ˚pzqq is equal to mintRpa1q, T u ` 1. �

Consider a state z1 “ ps‹, a1q P ZNEztz‹u. Lemma 9.2-i tells us that there

exists a path from ζpz1,Γ˚pz‹qq to z‹ with zero resistance. This observation and

Lemma 9.4-ii prove the claim C3. In addition, the (directed) subpath from z1 to
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ηpz1,Γ˚pz‹qq has all of its resistance in the subpath from z1 to ζpz1,Γ˚pz‹qq. Together

with Lemma 9.4-iii, this observation proves the claim C2.

9.5 Proof of Lemma 9.2

Before proving Lemma 9.2, we prove an intermediate result which claims that

starting from any initial state with Epsq non-empty, we can reach a state where all

the agents are exploring (within a finite number of steps and with positive proba-

bility). Note that this is similar to Corollary 3 from the previous chapter. While we

had proven a similar statement for the RSEM rule, we now prove the statement for

the more general SEM rule.

Lemma 9.5. Suppose that the game G satisfies Assumption 8.2. Then, under the

SEM rule with ε “ 0, there exist 0 ă De ă 8 and 0 ă ρe ă 1 such that for all t ą 0,

z “ ps, aq P C with Epsq ‰ H,

P
“

sipt`Deq “ E for all i P P
ˇ

ˇ zptq “ z
‰

ě ρe. (9.5)

Proof. First we introduce the following notation: Given a state vector s P S,

Lpsq “ ti P P | si “ L` for some ` P Lu ,

Cpsq “ ti P P | si “ Cu .

By definition, Lpsq Y Epsq Y Cpsq “ P . The proof is a two step process.

First we show that with positive probability and in finite time t# we reach a state
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zpt` t#q “ z# “ ps#, a#q, such that Eps#q ‰ H, Lps#q “ H and Lpspt` t#`1qq “

H. Then, we show that the rest of the agents in the converged state can be driven

to the explore state in finite time with positive probability.

Let us define some events: For any time κ ą 0, K ą 0, J Ď P and ā P A,

E1pκ,Kq “ tEpsp`qq Ě Epsp`´ 1qq for all ` “ κ` 1, . . . , κ`Ku ,

E2pā, κ,Kq “ taip`q “ āi for i P Epsp`qq, for all ` “ κ, . . . , κ`Ku ,

E3pJ, κq “ tsipκq “ E, i P Ju .

Fix z “ ps, aq P C satisfying Epsq ‰ H. Given the state and action configura-

tion at time t, Lpspt`1qq is deterministic. Consider the case where Lpspt`1qq ‰ H.

For i P Lpspt` 1qq it is clear that Uipãptqq ‰ U˚i ptq. Therefore if the agents who are

in the explore state, i.e., Epspt ` 1qq continue playing their previous actions, agent

i would reach state E at least within the next T periods. If agent i reached state E

before T periods, we require it to continue playing its previous action for the rest

of the time so that the remaining agents in Lpspt ` 1qq (if any) also reach state E.

Therefore, we have

P
“

Epspt` T ` 1qq “ Epsq Y Lpspt` 1qq
ˇ

ˇzptq “ z
‰

ě P
“

E1pt, T ` 1q X E2pa, t, T ` 1q
ˇ

ˇzptq “ z
‰

“ P
“

E1pt, T ` 1q
ˇ

ˇzptq “ z
‰

¨ P
“

E2pa, t, T ` 1q
ˇ

ˇE1pt, T ` 1q, zptq “ z
‰

. (9.6)
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Lower bounding the first term in (9.6),

P
“

E1pt, T ` 1q
ˇ

ˇzptq “ z
‰

“

t`T`1
ź

`“t`1

P
”

Epsp`qq Ě Epsp`´ 1qq
ˇ

ˇ

ˇ
Epspmqq Ě Epspm´ 1qq

for all m “ t` 1, . . . , `´ 1, zptq “ z
ı

ě δ

ˇ

ˇEpsqYLpspt`1qq

ˇ

ˇpT`1q (9.7)

where the final step follows by noting that in the Explore state each agent plays a

particular (desired) action with probability at least δ. Moving to the second term

in (9.6)

P
“

E2pa, t, T ` 1q
ˇ

ˇzptq “ z, E1pt, T ` 1q
‰

“

t`T`1
ź

`“t

P
”

aip`q “ ai for i P Epsp`qq
ˇ

ˇ

ˇ
aipmq “ ai for i P Epspmqq,

m “ t, . . . , `´ 1, zptq “ z
ı

ě p

ˇ

ˇEpsqYLpspt`1qq

ˇ

ˇpT`1q, (9.8)

where the final bound follows from the fact that each agent at state E will remain in

the same state with probability at least p. Collecting the lower bounds and returning

to (9.6),

P
“

Epspt` T ` 1qq “ Epsq Y Lpspt` 1qq
ˇ

ˇzptq “ z
‰

ě pδpq

ˇ

ˇEpsqYLpspt`1qq

ˇ

ˇpT`1q. (9.9)

Define the set J1 “ EpsqYLpspt`1qq. By time t1 “ t`T `1 we have all the agents

either in the explore state or the converged state. Next, we look at events that will

force the agents in the converged state to the explore state. By Assumption 8.2,
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there exists at least one player i1 R J1 such that with a choice of action a1J1 P AJ1

either

Ui1pa
1
J1
, a´J1q ‰ Ui1paJ1 , a´J1q

or BRi1pa
1
J1
, a´J1q ‰ H. In case there are multiple possible action configurations

then choose one using some convention, e.g., lexical.

Denote the set of agents who see a better reply due to the agents in J1 changing

their actions to a1J1 by BBR
1 ; while BPI

1 be the agents observing a change in payoff

without seeing a better reply. From Assumption 8.2 we know that B1 ” BBR
1 Y

BPI
1 ‰ H.

Agents in BBR
1 will transition to the explore state in one time step, whereas

the agents in BPI
1 needs T ` 1 time periods to transition through the chain of alert

states before it can explore. For simplicity, we ensure that the action configuration

a:1 “ pa
1
J1
, a´J1q is continued for T `1 consecutive time steps. We have the following

bound

P
”

E3 pJ1 YB1, t1 ` T ` 1q
ˇ

ˇ

ˇ
zptq “ z, E3pJ1, t1q

ı

ě P
“

E1pt1, T ` 1q X E2pa
:

1, t1, T ` 1q
ˇ

ˇzptq “ z, E3pJ1, t1q
‰

ě pδpq|J1XB1|pT`1q, (9.10)

where the final step follows from similar arguments used to obtain the bound (9.9).

Set J2 “ J1 X B1 Ě J1 Y ti1u; and repeat the same argument noting that Lpspt1 `

T ` 1qq “ H if the events described above occur.

Suppose the following sequence of sets are defined tJ1, . . . , Jαu such that Jα “
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P and the following sequence of times are defined tt1, t2, . . . , tαu, where

tj “ t` jpT ` 1q, j “ 1, . . . , α.

The time tj denotes the time by which all the agents in the set Jj are in state E if the

proper sequence of events is followed. The worst case scenario would be when α “ n

. Note that the sequence of sets tJ1, . . . , Jα´1u are not random sets but depends

only on the initial state zptq “ ps, aq. Next we move on to show the lower bound as

proposed in (9.5), using (9.9) and (9.10). Observing that the event E3pP , tαq implies

that all the agents are in the Explore state by time tα, we obtain

P
“

E3pP , tαq
ˇ

ˇzpkq “ z
‰

ě P
“

E3pJ`, t`q, ` “ 1, . . . , α
ˇ

ˇzptq “ z
‰

“

α
ź

`“1

P
”

E3pJ`, t`q
ˇ

ˇ

ˇ
zptq “ z, E3pJm, kmq for m “ 1, . . . , `´ 1

ı

ě pδpqp|J1|`...`|Jα|qpT`1q
ě pδpq

npn`1q
2

pT`1q . (9.11)

Therefore, De “ npT ` 1q and set ρe as pδpq
npn`1q

2
pT`1q.

�

Having proved the intermediate result Lemma 9.5, we show the proof for

Lemma 9.2. Throughout the proof, for any s P Ψ1, the set of agents in the Explore,

Converged and the Alert states are denoted as Epsq,Cpsq and Lpsq respectively.
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Proof of Lemma 9.2(i) – Fix z “ ps, aq P C with Epsq ‰ H. By virtue of Lemma

9.5, there exists 0 ă De ă 8 and 0 ă ρe ă 1 such that

P
“

sipt`Deq “ E, for all i P P
ˇ

ˇzptq “ z
‰

ě ρe. (9.12)

Fix a˚ P ANE and let te “ t`De. Define the following events

E1 “ tsipteq “ E for all i P Pu

E2 “ taipteq “ a˚i for all i P Pu

Let D1 “ De ` 1. Then, we have

P rzpt`D1q “ z˚ | zptq “ zs “ P rzpt`D1q “ z˚, E1, E2 | zpkq “ zs

“ P rzpt`D1q “ z˚ | E1, E2, zpkq “ zs (9.13)

ˆ P rE1 | zpkq “ zs ¨ P rE2 | E1, zpkq “ zs (9.14)

The term (9.13) corresponds to the probability that all the agents go to the

Converged state conditioned on the events that at time te all the agents reached

the Explore state and played the equilibrium action corresponding to a˚. Hence,

at time D1 none of the agents will see an SBR, and as a result the conditional

probability in (9.13) can be lower bounded by p1´ pqn. From (9.12), the first term

in (9.14) is lower bounded by ρe ą 0. Further, the second conditional probability in

(9.14) which corresponds to a particular action profile being played by agents in the

Explore state, is lower bounded by δn from the description of the SEM algorithm in

Section 9.2. Putting the bounds together, we obtain

P rzpt`D1q “ z˚ | zptq “ zs . ě ρerδp1´ pqs
n. (9.15)
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Proof of Lemma 9.2(ii) – Fix z “ ps, a˚q P C with a˚ P ANE and s P Ψ1zts˚u.

Within one time interval, the agents in Epsq could move (with positive probability)

to the converged state because they see no better reply, which yields

P
“

sipt` 1q “ C for all i P Epsq
ˇ

ˇ zptq “ z
‰

ě p1´ pq|Epsq|. (9.16)

For those agents in Lpsq who still continue to see a change in payoff information

due to the action configuration at time t, they move to the next alert state or the

explore state if they were at the final alert state. Otherwise they move to the

converged state. Therefore, we now look at events which ensure that agents in

Epspt`1qq play their equilibrium action and move to the converged state; and agents

in Lpspt ` 1qq traverse the chain of alert states – move to the explore state – play

their equilibrium action and finally end up in the converged state. Let D2 “ T ` 1.

Therefore,

P
“

zpt`D2q “ z˚
ˇ

ˇ sipt` 1q “ C for all i P Epsq, zptq “ z
‰

ě rδp1´ pqsn´|Epsq| , (9.17)

where we assume all the agents in Lpspt ` 1qq are in mood L1 as a worst case

scenario, and we use the fact that under the conditioning event, Cpspt`1qq “ Epsq.

Combining (9.16) and (9.17) we obtain

P
“

zpt`D2q “ z˚
ˇ

ˇ zptq “ z
‰

ě rδp1´ pqsn .

Proof of Lemma 9.2(iii) – Fix z “ ps, aq P C such that a R ANE, then

P
“

Epspt` 1qq ‰ H
ˇ

ˇzptq “ z
‰

“ 1.
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Once, the number of agents in state E becomes positive we are back to Lemma

9.2(i).
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Chapter 10: Future work

In this part of the thesis we study two classes of learning rules that ensure con-

vergence to PSNE(s) under delayed payoff information and asynchronous decision-

making.

For the class of better reply rules, we consider faulty payoff information in

that the agents cannot estimate the better reply set reliably. We show that the set

of stochastically stable states, i.e., the states that are played most of the time as

the payoff information becomes more reliable, are a subset of the set of PSNE(s).

However due to difficulty in characterising the set of stochastically stable states

we consider the class of monitoring rules. We first look at the setting where the

erroneous decision-making of the agents are due to occasional misclassification of

better replies while the payoff for the played action is assumed to be accurate. For

this scenario, we are able to characterise the set of stochastically stable states as the

PSNE(s) which when in effect would make it less likely for any of the agents to see

a better reply. As a future work, we would like to formulate a more realistic setting

where not only the payoff classification information is spurious but the payoff for the

played action is also not accurate. Under such a setting, we would like to explore

if the set of stochastically stable states can be characterised when the agents follow

241



the monitoring rules.

Since the existence of PSNE is not always guaranteed in strategic-form games,

we would like to explore other learning rules that might yield convergence (in an

appropriate sense) to possibly other kinds of equilibria (mixed Nash equilibria, cor-

related equilibria) under delayed payoff information and asynchronous settings.
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[13] M. Draief and L. Massoulié, Epidemics and Rumours in Complex Networks,
London Mathematical Society Lecture Note Series 369, Cambridge University
Press, Cambridge (UK), 2010.

[14] S.N. Dorogovstev and J.F.F. Mendes, “Evolution of networks,” Advances in
Physics 51 (2002), pp. 1097-1187.

[15] R. Durrett, Random Graph Dynamics, Cambridge Series in Statistical and
probabilistic mathematics, Cambridge University Press, Cambridge (U.K.),
2007.
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