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In this dissertation, multi-community-based Susceptible-Infected-Recovered

(SIR) and Susceptible-Infected-Susceptible (SIS) models of infection/innovation dif-

fusion are introduced for heterogeneous social networks in which agents are viewed

as belonging to one of a finite number of communities. Agents are assumed to have

well-mixed interactions within and between communities. The communities are con-

nected through a backbone graph which defines an overall network structure for the

models. The models are used to determine conditions for outbreak of an initial

infection. The role of the strengths of the connections between communities in the

development of an outbreak as well as long-term behavior of the diffusion is also

studied. Percolation theory is brought to bear on these questions as an independent

approach separate from the main dynamic multi-community modeling approach of

the dissertation. Results obtained using both approaches are compared and found

to be in agreement in the limit of infinitely large populations in all communities.

Based on the proposed models, three classes of marketing problems are formu-

lated and studied: referral marketing, seeding marketing and dynamic marketing. It



is found that referral marketing can be optimized relatively easily because the associ-

ated optimization problem can be formulated as a convex optimization. Also, both

seeding marketing and dynamic marketing are shown to enjoy a useful property,

namely “continuous monotone submodularity.” Based on this property, a greedy

heuristic is proposed which yields solutions with approximation ratio no less than

1-1/e. Also, dynamic marketing for SIS models is reformulated into an equivalent

convex optimization to obtain an optimal solution. Both cost minimization and

trade-off of cost and profit are analyzed.

Next, the proposed modeling framework is applied to study competition of

multiple companies in marketing of similar products. Marketing of two classes of

such products are considered, namely marketing of durable consumer goods (DCG)

and fast-moving consumer goods (FMCG). It is shown that an epsilon-equilibrium

exists in the DCG marketing game and a pure Nash equilibrium exists in the FMCG

marketing game. The Price of Anarchy (PoA) in both marketing games is found

to be bounded by 2. Also, it is shown that any two Nash equilibria for the FMCG

marketing game agree almost everywhere, and a distributed algorithm converging

to the Nash equilibrium is designed for the FMCG marketing game.

Finally, a preliminary investigation is carried out to explore possible concepts

of network centrality for diffusions. In a diffusion process, the centrality of a node

should reflect the influence that the node has on the network over time. Among the

preliminary observations in this work, it is found that when an infection does not

break out, diffusion centrality is closely related to Katz centrality; when an infection

does break out, diffusion centrality is closely related to eigenvector centrality.
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Chapter 1: Introduction

Social networks are a powerful means for the diffusion of ideas, information

and products. With the advent of electronic media, the speed and scale of social

network interactions has grown immensely. However, social networks are as old as

civilization, since interactions also occur through word-of-mouth communications

and other interactions. Through interactions with their circle of acquaintances,

individuals’ choices may be influenced toward deciding to adopt an idea or product;

of course, it can also happen that the influence factors are not sufficiently strong

or convincing to result in significant adoption as the idea propagates through a

population. Decisions in a social network about whether or not to adopt an idea

or product are primarily influenced by two types of sources, namely individual-to-

individual interactions and external influences [1].

External influences can come from news media, changes in legal regulations,

etc. A typical example of an external influence is commercial advertising. For exam-

ple, people may choose to purchase a product after seeing it advertised on television

or on the Internet. Word-of-mouth effects and inter-individual interactions occur

between those who have connections with one another. Through successive interac-

tions among individuals, an idea or innovation can diffuse through the population,
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reaching and possibly being accepted by an growing set of individuals over time.

The concept of viral marketing [2–4] has attracted great interest from both

academia and business [5]. Viral marketing refers to advertising strategies that cap-

italize on information diffusion in social networks. Here, not only does a company

promote its product via advertising, but it seeks to achieve broad reach of the adver-

tising message through subsequent information sharing among individuals through

social network interactions. If an early set of individuals who are exposed to the idea

or product are favorably impressed and relay their opinion to their acquaintances,

the acquaintances might also have a favorable opinion and in turn share the infor-

mation with their circle of acquaintances, and so on, resulting in a viral advertising

campaign. When successful, this is a very efficient and effective approach to infor-

mation diffusion or product advertising. While a true viral marketing campaign is

difficult if not impossible to design, the viral marketing concept will lead us to ad-

dress the question of how to design an advertising strategy so as to maximize social

network communication effects and optimize the effectiveness of a campaign pro-

moting an idea or product. In this thesis, sometimes we refer to any social network

marketing campaign simply as viral marketing.

It is often the case that multiple company entities simultaneously promote

competing products or ideas. This leads to competition in social network marketing.

For such a competition among advertisers, one can ask how efficient (or inefficient)

the dynamics are as a function of the selfishness of the involved companies or entities.

Mathematically, the question of existence of a Nash equilibrium for such a situation

arises. If a Nash equilibrium is known to exist, it is interesting to ask whether or
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not the participating companies can coordinate their actions so as to reach the Nash

equilibrium. One can also ask if companies can cooperate to maximize their profits.

All these questions are critical for the analysis of competition and gaming in viral

marketing.

Another interesting question in viral marketing is how to determine an in-

dividual’s economic value as a recommender of products within a social network.

Here, the interest is in the eventual benefit of an individual recommending a product

to his connections, who will in turn advocate the product to their connections at

least to some extent, and so on. This can be addressed by determining a reasonable

measure of each node’s “centrality” with regard to the diffusion process. Although

there has been significant work on defining centrality measures that are exclusively

a function of a network’s topology [6–11], these studies are generally static in na-

ture and it’s worthwhile to investigate new concepts of centrality in the context of

diffusion dynamics.

In the following sections we briefly review existing work on modeling of dif-

fusion dynamics in social networks, optimal viral marketing, viral marketing com-

petition, and concepts of “diffusion centrality.” We follow this discussion with a

summary of the contributions of this dissertation in these areas. We note that

this dissertation addresses a subject (social network dynamics) which has received

a great deal of interest using a large variety of approaches and from researchers

with diverse scientific backgrounds. The past work that is mentioned below and in

the references is chosen from this vast literature based on its relevance to the work

presented in the dissertation.
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1.1 Modeling of Diffusion Dynamics

Since diffusion is common in various types of networks, researchers have pro-

posed models for diffusion of information using a variety of perspectives. This

includes using analogies between information diffusion and other kinds of diffusion

processes such as the spread of infectious diseases in large populations.

In sociology, there have been rich studies on the diffusion of innovations in

social networks, mostly focused on studying the influence of “word of mouth” com-

munications in spreading innovations. Two models, the threshold model [12] of

Granovetter and the cascade model [3] of Goldenberg et al. are considered funda-

mental in this area [13]. The famous cascade model [14] of Kempe et al. further

generalizes these two models.

In the economics community, researchers study the propagation of information

from a game theory perspective, in which agents are postulated to receive a payoff

if they adopt an innovation or learn the new information being spread. Morris [15]

and Young [16] consider a model in which, at each time step, all agents decide to

adopt the new innovation or not based on maximization of their utilities. Ghaderi

et al. [17] consider a scenario containing “stubborn agents” who consistently insist

on their original opinions. Haller et al. [18] and Bala et al. [19] explore situations in

which an agent can form a connection with another to earn a higher payoff.

The natural analogy between the spread of an infectious disease and the spread

of information is utilized by numerous researchers to study innovation diffusion.

These studies derive benefit from past work in mathematical epidemiology. Two
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important models from epidemiology are the susceptible-infected-recovered (SIR)

model and the susceptible-infected-susceptible (SIS) model [20–23]. The SIR model

assumes that agents are initially susceptible, and after exposure to disease they may

become infected with some probability, and can eventually recover. Newman [24]

uses percolation theory to study the steady state of the SIR model for a random

network. Pastor-Satorras and Vespignani [25, 26] use mean-field approximation to

derive a dynamical SIS model for scale-free networks. Wang et al. [27], Ganesh

et al. [28] and Mieghem et al. [29] propose a dynamical SIS model for any network

represented by a fixed graph. Meanwhile, Youssef et al. [30] explore the SIR dynamic

model in a similar scenario.

Although the diffusion of innovations has been studied from various perspec-

tives, the nature of the propagation mechanism is similar in the various approaches.

Shakarian et al. [31] employ the generalized annotated program (GAP) as a general

framework to express different types of existing diffusion models on graphs [32–34].

In this dissertation, we focus on two improvements to commonly used models

of innovation diffusion. First, most diffusion models directly employ the actual

social network topology where each agent is viewed as a vertex in a graph. A

practical issue is that these networks are usually of extremely large size, which

implies that the associated models are computationally very demanding or even

intractable. Also, the connections between all agents are difficult to determine

and costly to estimate. As noted by Newman [35], there is considerable difficulty in

studying network dynamics for medium and large scale networks. Also, since human

behavior appears random on a local scale [36–38], it is likely inefficient to exploit the
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whole detailed topology that explicitly represents all agents in a large population.

Therefore it is important to make further simplifications on network structure to

reduce the computational burden in diffusion modeling for social networks. Thus,

it is important to develop models that allow for a reduced computational burden

compared with detailed multi-agent models, while maintaining essential elements of

the network structure and dynamics. We address this critical need by developing

a multi-community social network model that is much simpler than detailed multi-

agent models, while respecting the basic network structure of a social network and

maintaining the dynamical contagion effects in the model. The second direction

for improvement that we address is that most models do not incorporate external

dynamic influences on innovation diffusion. In addition to the “word-of-mouth”

effects, the diffusion of an innovation is also shaped by influences from external

sources, such as news media and actions and statements of public figures. A typical

example of such external influences is commercial advertising, which functions to

influence consumers’ choices.

We derive a dynamic model for innovation diffusion with external influences

using the analogy between information propagation and the spreading of an infec-

tious disease. First, we generalize the SIR model in [30] and the SIS model in [29] of

infectious disease propagation by utilizing a continuous-time Markov chain setting

to model the innovation diffusion process, which is based on the assumption that

the arrival of an innovation to an agent and the recovery process (i.e., loss of interest

in adopting the innovation) of an agent who has previously adopted the innovation

are independent Poisson processes. We also model the effect of external influences
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by assuming that such an influence increases the rates of the Poisson processes by

which agents decide to adopt an innovation.

Next, we introduce the concept of “community” [39,40] into our modeling and

view a large social network as a finite set of interacting communities, where these

communities are connected to each other through a backbone network. Agents be-

longing to the same community are assumed to have fully-mixed interactions with

each other; this assumption entails that each community consists of many indi-

viduals, and the individuals are mixed uniformly within the community. Also, we

assume that agents from any two connected communities interact with each other

uniformly [41]. Through this construction, we simplify our model to only consider

innovation diffusion within and between communities, allowing each community to

be represented as a vertex in the simplified social network model. Therefore the

complexity of the social network using the new “networked communities” modeling

framework is significantly reduced, rendering the new model much more tractable

computationally than a full multi-agent model that explicitly includes the inter-

actions and actions of all individuals in the population. Also, we will show that

our community-based diffusion model is an extension of the well-known mean-field

model [42], and that it produces results that are in agreement with full agent-based

models [27, 29, 30] under certain conditions.

As noted above, one type of information innovation process involves advertising

of commercial products through a social network. In this work, we at times make use

of the following observation about adoption of commercial products depending on

the type of product being advertised. Commercial products are commonly viewed
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as falling into one of the following two broad categories: durable consumer goods

(DCG) and fast-moving consumer goods (FMCG). The similarity between disease

propagation and innovation diffusion enables us to interpret the SIR and SIS models

in the context of product diffusion. If we view the adoption of a product as an

infectious disease, then those who have not adopted the products are susceptible and

those who have adopted the product and recommend it to others are infected. After

having been using the DCG for some time, agents may get tired of the product and

quit the diffusion by neither making recommendations to others nor making another

purchase, which fits into the SIR framework. Meanwhile, when agents are tired of

the FMCG, they simply stop using the product or making recommendations, but

they are still likely to adopt the product (or a competing product) again later. Such

a scenario for FMCG fits with the assumptions inherent in the SIS framework.

To maintain consistency with research in epidemiology and to readily observe

correspondences between innovation diffusion and infectious disease propagation,

we will use the terms “susceptible,” “infected” and “recovered” to refer to agents’

corresponding states in an innovation diffusion process. Also, we at times refer to

models of DCG diffusion as SIR models and those for FMCG diffusion as SIS models.

Note that the DCG and FMCG terminologies are used here for information diffusion

in general, and that the analogy with consumer products is made for convenience

and to increase intuition on the processes being studied.
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1.2 Optimal Social Network Marketing

There has been extensive research aimed at maximizing the effectiveness of

information diffusion through word-of-mouth communication. A famous example

involves viral marketing [2–4]. A typical question formulated in viral marketing

is if we can convince a given number of agents to adopt a product initially, how

can we select these agents so as to maximize the word-of-mouth effects as well as

inter-individual interactions and thus the global expected profits (or other similar

benefit) resulting from the campaign [43].

To answer this question, Domingos et al. [44, 45] use data mining techniques

and proposed a heuristic algorithm. Kempe et al. [14, 46] show that in a variety

of famous models, the spreading maximization problem is NP-hard. They also

determine a greedy algorithm with guaranteed approximation ratio to within 1−1/e

of the true optimum. Shakarian et al. [31] further generalizes this algorithm into

the framework of GAP with the same approximation ratio.

In reality, advertising on a social network is a continuous process occurring

over time. In previous research on advertising in social networks, it is common to

assume that an advertising campaign consists simply of initially targeting a few

“influential” agents in a network. These research results do not use models that can

incorporate continuous advertising that acts throughout the diffusion of the message.

For example, in [14] Kempe et al. study spreading maximization primarily based on

two types of models: the linear threshold model [15,47] and the independent cascade

model [3, 4]. Both of these two models cannot incorporate continuous advertising

9



during diffusion processes.

There is also a body of research that formulates social network marketing in

terms of an optimal control problem [48,49]. Economics researchers have introduced

various dynamic models for diffusion of advertising campaigns, such as the advertis-

ing capital model [50], the random walk model [51], the product quality model [52]

and the market growth model [53]. Dynamic advertising is investigated based on

these dynamic models. Khouzani et al. [54] also explore optimal controls based on

epidemic models. However, all of these efforts employ homogeneous model, which

means that the connection topology of a social network is not reflected in these

works. Also, the reliance on classical optimal control theory leads to only qualita-

tive descriptions of the optimal advertising strategies.

In this dissertation we consider social network marketing based on the community-

based SIR and SIS models as introduced in Section 1.1. We formulate and study

three types of marketing problems: referral marketing, seeding marketing and dy-

namic marketing. In referral marketing, we study the maximization of product

diffusion via increasing a product’s spreading rates at a given cost in the form of

referral bonus [55]. Seeding marketing is similar to the spreading maximization

problem in [14,31,46], where we aim to maximize a diffusion by convincing a set of

agents to adopt a product initially. Dynamic marketing corresponds to the scenario

where a company advertises its product continuously during the product’s diffusion.

This problem is mathematically formulated as an optimal control problem.

We will show that the referral marketing problem can be converted into a con-

vex optimization problem, which is straightforward to solve. However, the seeding
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marketing and dynamic marketing problems are nonlinear optimization and non-

linear optimal control problems respectively, which are extremely difficult, if not

impossible, to solve analytically. Therefore we propose heuristics allowing us to

approximately solve these problems numerically.

In discrete mathematics, submodularity is an important property of set func-

tions with deep theoretical consequences and many applications [56]. The maxi-

mization of submodular functions is widely studied in various areas [57,58]. In [14],

Kempe et al. formulate the spreading maximization problem as maximization of a

submodular function and solve it by using a greedy heuristic. It should be noted

that the solution space in [14] is finite, which suits the definition of submodularity.

However, the solution space in both the seeding and dynamic marketing problems

is at least a continuum, which is beyond the scope of traditional studies using sub-

modularity.

We therefore generalize the traditional notion of submodularity into “con-

tinuous monotone submodularity” and show that both the seeding marketing and

dynamic marketing problems can be converted into maximization of continuous

monotone submodular functions. Also, we propose a new greedy heuristic to max-

imize continuous monotone submodular functions. With these preparations, the

seeding marketing and dynamic marketing problems are solved in a unified algo-

rithmic framework. Through rigorous analysis, we show that our greedy heuristic

has an approximation ratio no less than 1 − 1/e for both problems. Moreover, we

show that the greedy heuristic can be converted into a closed-loop form for the SIR

model, which improves resilience to external noises and model uncertainties.

11



Our continuous monotone submodularity concept can be readily described in

the following way: if a mapping from investment to the corresponding profit in

economics is continuous monotone submodular, then with the investment increased,

the profit is increases but marginal profit decreases. Intuitively, such a property

should generally hold for various readouts in product diffusion and marketing. It

should be noted that whenever this property applies, the greedy heuristic achieves

an approximation ratio no less than 1− 1/e.

We also formulate other variants of dynamic marketing problems, including

minimization of cost to achieve a minimum desired profit, and studying trade-offs

between profits and cost. The greedy heuristic is modified for the minimum cost

problem while a bi-directional local search algorithm is designed for the trade-off

problem. Analysis is conducted on corresponding approximation ratios for both

problems.

Taking advantage of recent progress in monotone control systems [59], we

show that the marketing problems based on the SIS model are intrinsically convex.

This convexity implies that a locally optimal marketing policy found via using any

numerical optimal control toolbox is automatically globally optimal.

1.3 Social Network Marketing Game

Imagine several companies simultaneously promoting similar and competing

products (such as Pepsi and Coca-Cola) on a social network. Using game theory

terminology, we call such a competition in marketing of multiple competing products
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a social network marketing game. In a marketing game, each company is viewed as

a player and chooses an advertising strategy to maximize its own product’s sales or

other objectives that are formulated in terms of a utility function.

To analyze a marketing game, the first step is to model diffusions of multiple

competitive products on a social network. Existing models of competitive innovation

diffusion generally fall into two categories. The first category, which we call cascade

competition models, include the linear threshold competition model and the inde-

pendent cascade competition model [60–63]. Another category is the dynamic com-

petition model [64–67], which generally uses ordinary differential equations (ODEs)

to model competitive contagions’ diffusions.

Research on viral marketing games based on cascade competition models is

classified into two categories. In the first category, it is assumed that all but one

of the players already have determined their strategies and the problem is to figure

out the best response of the remaining player. Bharathi et al. [61] and Carnes et

al. [68] study how to maximize one’s profits, while on the contrary Budak et al. [69]

and He et al. [70] consider how to minimize the competitors’ profits. In the second

category, one assumes that all players choose their strategies simultaneously. Dubey

et al. [71] and Tzoumas et al. [63] focus on existence of a pure Nash equilibrium

for marketing games; Tsai et al. [72] propose a heuristic to compute a mixed Nash

equilibrium; Goyal et al. [62] and He et al. [70] study price of anarchy (PoA) of such

marketing games based on cascade models.

The formulation of viral marketing games based on cascade competition mod-

els allows each company to target a set of “influential” agents to use their products
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initially and thus promote their product via word-of-mouth effects and other inter-

individual interactions. However, in practice companies can exert external influence

on product diffusion during the whole process (e.g., via online advertising) but such

continuous advertising cannot be incorporated into cascade competition models. On

the contrary, dynamic competition models take continuous advertising into account

as an input signal to a dynamical system. Within the scope or our knowledge, all

the existing research [73] on viral marketing games based on dynamic competition

models [64–66] primarily employ the traditional differential game theory [74] and

provide certain qualitative descriptions of an Nash equilibrium.

Although the dynamical competition model is more flexible than the cascade

competition model, it is also more complicated. Existing studies on social network

marketing games based on dynamic models primarily suffer from two critical prob-

lems. Firstly, the dynamic competition models that all existing research focuses

on are aggregate, which means that agents’ connections in a social network are

neglected. Secondly, all the research efforts to-date use classical differential game

theory [74] and transform the specification of the Nash equilibrium into a two-point

boundary value problem, which is extremely difficult to analytically solve in general.

For this reason most of these efforts merely provide certain qualitative descriptions

of the Nash equilibrium and few result in a closed-form solution.

As noted above (and in Section 1.1), commodities are usually classified into

two categories: durable consumer goods (DCG) and fast-moving consumer goods

(FMCG). To model diffusion dynamics of multiple competitive DCGs, we propose

a DCG competition model by generalizing our community-based SIR model.
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In FMCG diffusion, after a customer tires of a product, he may either switch

to another competing product or choose not to use any product in the category.

However, he is still likely to purchase the product again later. This process fits the

assumptions of the voter model [75–77]. In this dissertation, we generalize the voter

model in [76] to formulate FMCG competition models.

It should be noted that both the DCG competition model and the FMCG

competition model in this dissertation are developed for social networks, and the

first problem of the current marketing game studies based on dynamic competition

models as mentioned above is overcome in this work. In this dissertation, we call

social network marketing games based on the DCG and FMCG competition models

as the DCG marketing game and the FMCG marketing game, respectively.

Next, in addition to using the differential game theory [74] to analyze existence

of Nash equilibrium in viral marketing games, we are also inspired by work of Vetta

[78] and Rosen [79] to perform further analysis. The inspiration from Vetta [78]

sheds light on the analysis of PoA of marketing games, which yields a result that the

PoA is bounded by 2 in both the DCG and the FMCG marketing games. Through

generalizing the result of Rosen [79] in combination with the recent progress in

monotone control systems [59,80], we also show that FMCG marketing game enjoys

almost uniqueness of the Nash equilibrium (i.e., any two Nash equilibria agree almost

everywhere), and we propose a “best-response” mechanism for each company to find

the Nash equilibrium in a distributed iterative algorithm.
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1.4 Diffusion Centrality

An increasingly important problem arising in studies of social networks is to

identify the “centrality” of network vertices. Centrality of a vertex is a measure of

the vertex’s importance relative to other vertices in the network, in some well-defined

sense. Notions of network centrality can be useful in identifying important vertices

in various practical settings [81], such as targeted marketing [44, 82], epidemiology

modeling [83] and network robustness [84], among others. Numerous centrality

metrics have been proposed. A few examples of such metrics are degree centrality [6],

eigenvector centrality [7], Katz centrality [8], PageRank [9], closeness centrality [10]

and betweenness centrality [11].

Most of the current research on network centrality only takes static network

structure into account. However, social networks function as a medium for the

diffusion of information over time (such as the spread of opinions, rumors or even

infectious diseases [14]). Thus, it is worthwhile to measure the importance of each

vertex within the context of a specific diffusion process, which cannot be achieved

using the network graphical structure alone. Instead, it is necessary to study the

notion of centrality in the context of a diffusion process. In this thesis, we call this

the problem of measuring diffusion centrality.

The idea to measure an agent’s centrality associated with a diffusion process

in a network [85] has attracted increasing interest. Researchers from various areas

are gradually realizing the importance of the diffusion centrality. For example,

Banerjee et al. [86] examine how “central” agents are in diffusions of micro-finance,
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and Grindrod et al. [87] investigate this concept in monitoring broadcast activities

in a network.

Current research on measuring centrality in a diffusion primarily divides into

two categories: one body of work extends the existing centrality metrics, while the

other aims at development of new metrics. Ide et al. [88] compare the performance of

various centrality metrics using simulation of spreads of an infection. Kim et al. [81]

make such a comparison based on an empirical dataset from the Haggle project [89].

Carreras et al. [90] focus on eigenvector centrality in a highly partitioned mobile

network. Guimarães et al. [91] attempt to modify traditional centrality metrics to

adapt to a diffusion process.

Lerman et al. [92] propose a definition of centrality metric for dynamic net-

works and apply it in rankings of a citation network. Kim [93] designs a temporal

centrality notion and investigates its performance in the Haggle dataset [89]. Wang

et al. [94] design an algorithm to numerically determine agents’ dynamic centrality

via data mining. There are also several contributions focusing on potentials applica-

tion of such dynamic centrality metrics. For instance, Mochalova et al. [95] consider

application of dynamic centrality in influence maximization.

In this dissertation we propose a diffusion centrality notion based on the

community-based SIR and SIS models introduced in Section 1.1. Since in the net-

work associated with the community-based model, each vertex represents a commu-

nity instead of an individual, the centrality we study in this dissertation measures

the importance of each community in a diffusion process.

We investigate the notion of diffusion centrality in two scenarios: when the
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diffusion involves an outbreak and when it does not, where the definition of outbreak

will be explained later in this dissertation. In the case when an outbreak does

not occur, we study the influence of one specific community over another one by

extending sensitivity analysis of steady-state equations of the SIR model. We also

interpret such influences (matrix) by generalizing the idea of counting walks on

networks. The diffusion centrality of each community is then defined as weighted

sum of its influences over other communities, which turns out to be related to Katz

centrality [8].

When an outbreak occurs, we also study diffusion centrality from another

viewpoint: we investigate how vulnerable each community is. More specifically,

centrality can be defined as the solution to steady-state equations of both the SIR

and SIS models. This definition makes sense because the more seriously a community

is influenced, the closer it is to the center of a diffusion process. We show that when

the outbreak is weak, i.e., a relatively small percentage of the population is influenced

in the diffusion, such a centrality metric is connected with eigenvector centrality [7].

1.5 Organization of the Dissertation

The remainder of this dissertation is organized as follows: In Chapter 2, we

propose community-based SIR and SIS models and study properties of diffusions

based on these models. We also employ an approach based on percolation theory

to study diffusion for community-based networks, and obtain conclusions that agree

with those obtained using the SIR and SIS models.
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In Chapter 3 we formulate three types of marketing problems based on the

proposed SIR and SIS models. A greedy heuristic algorithm is designed to solve

these problems in a unified framework, and approximation ratios are obtained for

each of the problems. We also show that some of the marketing problems are convex

in special scenarios, in which case it is feasible to find a globally optimal solution.

We study and model diffusions of multiple competitive contagions in Chapter

4. Based on the proposed models of diffusion of competitive contagions, we use

game theory to investigate competition of multiple companies in marketing their

commercial goods. This can also be viewed more generally in terms of competition

in promoting competing ideas or opinions. Also, an algorithm is designed for each

player to distributively seek a Nash equilibrium.

In Chapter 5 we initiate a study of dynamic centrality of communities in our

community-based social network diffusion model. Concepts of diffusion centrality

are proposed for several scenarios, and their connections with classical network cen-

trality metrics are discussed. In Chapter 6 we give concluding remarks and suggest

topics for future research.
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Chapter 2: Modeling and Analysis

This chapter deals with the modeling and analysis of diffusion dynamics in

social networks viewed as a finite set of communities connected by a backbone

network. Starting from modeling a diffusion in a social network as a random walk

and then invoking the structure of a network of communities, we propose vector

SIR and SIS models for diffusion dynamics. In Section 2.1 we derive community-

based dynamically models for both SIR and SIS infection diffusion. We analyze the

accuracy of our model in Section 2.2. In Section 2.3 we study conditions for infection

outbreak. In Section 2.4 we study the final states reached by a diffusion. Finally,

in Section 2.5 we use percolation theory to study diffusion in the community-based

network and compare the obtained results with those achieved using the vector

dynamic system models.

2.1 Modeling Diffusion Among Communities

In [30] Youssef et al. consider SIR epidemic diffusion in a network consisting

of N agents connected through a directed graph. In the model below, coefficient

ajk = 1 when there is a link from agent k to agent j, and ajk = 0 otherwise. With λ

and γ denoting the infection rate and the recovery rate, respectively, the agent-based
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SIR epidemic model of Youssef is

d sj(t)

d t
= −sj(t)λ

N
∑

k=1

ajkik(t)

d ij(t)

d t
= sj(t)λ

N
∑

k=1

ajkik(t)− γij(t)

d rj(t)

d t
= γij(t)

(2.1)

where sj(t), ij(t) and rj(t) denote the probability that agent j is susceptible, infected

or recovered at time t, respectively.

Before deriving our community-based SIR model, we make two generalizations

to the agent-based SIR model of Youssef (2.1). First, in our configuration infection

and recovery rates can differ for different agents. We denote the infection rate from

agent k to agent j by λjk and the recovery rate of agent j by γj. Also, we introduce

a term uj(t), which represents the strength of an external influence on agent j at

time t. In this setting, if agent j is susceptible at time t, then the infection rate for

this agent is increased by uj(t).

Denote the state of agent i at time t by Xj(t); the state Xj(t) takes values

in {sus, inf, rec}. Assume that for any pair of agents, their states are independent

of each other, i.e. Xj (t) ⊥⊥ Xk (t) for any 1 ≤ j, k ≤ N and time t. Under this

assumption, our generalized agent-based SIR model is

d sj(t)

d t
= −sj(t)

(

N
∑

k=1

ajkλjkik(t) + uj(t)

)

d ij(t)

d t
= sj(t)

(

N
∑

k=1

ajkλjkik(t) + uj(t)

)

− γjij(t)

d rj(t)

d t
= γjij(t)

(2.2)

where detailed derivation of (2.2) are provided in Appendix A.
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As mentioned previously, in the agent-based SIR model (2.2), each agent corre-

sponds to a vertex (node) in the network. For a network of large size, the agent-based

SIR model is greatly complicated and may be intractable in practice. In reality, be-

cause of factors such as geographic location or educational or language backgrounds,

a social network can be viewed as a finite set of communities. The division of agents

into communities should be performed according to attributes that are significant to

the particular type of information or product whose diffusion is being considered. If

we then abstract each community as an aggregated vertex in the social network, an

innovation can correspondingly spread either within a community or between pairs

of communities. In this section we further elaborate on this approach of viewing a

large network of agents in terms of interconnected communities, and simplify the

agent-based SIR model (2.2).

We assume that the whole population is divided into n communities, and

that each agent belongs to one and only one community. The i-th community

includes Ni agents. The primary feature of each community is that all the agents

in the community have equal probability to interact with each other. Also, any

two agents from a given pair of connected communities also have equal probability

to be connected. These are well-mixedness assumptions that are reasonable when

each community is very large and homogeneous, and when connections between

individuals in different connected communities are also uniform.

In our configuration, the agents in the j-th community have a probability of

pjj to have an acquaintance with others in the same community. Similarly. they

have probability of pjk to know individuals from the k-th community. Assume that
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pjj is strictly positive, which means that agents of the same community are always

likely to be acquainted with one another. At the same time, a positive pjk describes

how tightly the j-th and the k-th communities are connected, while pjk = 0 means

the two communities are not directly connected. Using this mathematical structure,

we assume well-mixedness within each community within a network of communi-

ties, and uniform connectedness of agents among any two directly interconnected

communities.

Figure 2.1 depicts an example of a community structure in a social network

generated by pii = 0.4 for i = 1 . . . 4, p12 = p41 = 0.05, p21 = p13 = p31 = p14 = 0.1,

p23 = 0.15 and with all the other probabilities set to zero. The arrowhead indicates

a directed connection. For example the agent with index 1 in community 2 is

connected with the agent with index 1 in community 1. A bi-directional line means

the two agents are connected to each other and each influences the other.

1

1

1

1

2

2
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2

3

3
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44 5
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Figure 2.1: Illustrating a sample community-based social network structure
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Let Xv
j (t) denote the states of agent v in community j, which takes a value in

{sus, inf, rec}. Denote the connection from the agent w in community k to the agent

j in community v as avwjk . If they are connected, avwjk = 1 and otherwise avwij = 0. We

easily have Pr
[

avwjk = 1
]

= pjk. Let svj = Pr
[

Xv
j (t) = sus

]

, ivj = Pr
[

Xv
j (t) = inf

]

and rvj = Pr
[

Xv
j (t) = rec

]

.

Let λ′jk ≥ 0 and γ′j > 0 be the infection rate from an agent in community k

to another agent in community j and the recovery rate of agents in community j,

respectively. Assume that the advertising strengths to each agent in the same com-

munity are identical. This assumption makes sense because of the well-mixedness

within each community. Let u(t) =

[

u1(t) u2(t) . . . un(t)

]

be the advertising

strength vector, where uj(t) is the strength of the external influence for all agents

in community j at time t.

Applying our agent-based SIR model (2.2) to the social network with the

community structure as specified above, we have the following model:

d svj (t)

d t
= −svj (t)

(

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t) + uj(t)

)

d ivj (t)

d t
= svj (t)

(

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t) + uj(t)

)

− γ′ji
v
j (t)

d rvj (t)

d t
= γ′ji

v
j (t)

(2.3)

We are especially interested in the expected fraction of susceptible, infected

and recovered populations in each community, i.e., sj(t) = E

[

∑Nj

v=1 s
v
j (t)

Nj

]

, ij(t) =

E

[

∑Nj

v=1 i
v
j (t)

Nj

]

and rj(t) = E

[

∑Nj

v=1 r
v
j (t)

Nj

]

, where E [·] denotes mathematical ex-

pectation. To study dynamics of the quantities sj(t), ij(t) and rj(t), the following

assumption is essential.
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Assumption 2.1 States of any pair of agents are independent of each other and

jointly independent of whether or not there is a direct connection between them, i.e.,

Xv
j (t) ⊥⊥ avwjk , a

vw
jk ⊥⊥ Xw

k (t) as well as Xw
k (t) ⊥⊥ Xv

j (t) for any 1 ≤ j, k ≤ n,

1 ≤ v ≤ Nj and 1 ≤ w ≤ Nk.

Taking the sum of each equation in (2.3) over all v for every fixed j, and

replacing auvjk with E
[

auvjk
]

= pjk, we have

dsj(t)

d t
=E



−
1

Nj

Nj
∑

v=1

svj (t)

(

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t) + uj(t)

)





=−

Nj
∑

v=1

1

Nj

(

N
∑

k=1

Nk
∑

w=1

E
[

λ′jka
vw
jk s

v
j (t)i

w
k (t)

]

+ E
[

svj (t)uj(t)
]

)

=−

Nj
∑

v=1

E

[

1

Nj

svj (t)

] N
∑

k=1

Nk
∑

w=1

λ′jkE
[

avwjk i
w
k (t)

]

− sj(t)uj(t)

=− sj(t)

(

N
∑

k=1

λ′jkpjk

Nk
∑

w=1

NkE

[

1

Nk
iwk (t)

]

+ uj(t)

)

=− sj(t)

(

N
∑

k=1

Nkλ
′
jkpjkik(t) + uj(t)

)

(2.4)

Similarly, for ij(t) and rj(t),

dij(t)

d t
=E





1

Nj

Nj
∑

v=1

svj (t)

(

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t) + uj(t)

)



−E





1

Nj

Nj
∑

v=1

γ′ii
v
j (t)





=sj(t)

(

N
∑

k=1

Nkλ
′
jkpjkik(t) + uj(t)

)

− γ′jij(t)

drj(t)

d t
=E





1

Nj

Nj
∑

v=1

γ′ji
v
j (t)



 = γ′jij(t)

It should be noted that the equation E
[

svi (t)a
vw
ij i

w
j (t)

]

= E [svi (t)] = E
[

avwij
]

=

E
[

iwj (t)
]

is in the derivations above; this equation is a consequence of Assumption
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2.1. This assumption especially makes sense for populations of large scale because

if an agent has many connections, then the state of one of its acquaintances and

whether or not he has a connection with another specific agent are not determining

factors for his state.

Finally, define matrices Λ and Γ by Λ := [λjk]N×N where each entry λjk =

Nkλ
′
jkpjk, and Γ := diag [γj]N×N which is diagonal with diagonal entries γj = γ′j,

where diag [·]. The SIR model on the social network with networked community

structure is then:

dS(t)

d t
= −diag [S(t)] (ΛI(t) + U(t)) (2.5a)

d I(t)

d t
= diag [S(t)] (ΛI(t) + U(t))− ΓI(t) (2.5b)

dR(t)

d t
= ΓI(t) (2.5c)

where S(t) :=

[

s1(t) s2(t) . . . sN(t)

]T

, I(t) =

[

i1(t) i2(t) . . . iN(t)

]T

,

R(t) :=

[

r1(t) r2(t) . . . rN(t)

]T

and U(t) :=

[

u1(t) u2(t) . . . uN(t)

]T

.

Using all the notations specified above and following similar derivation speci-

fied above, we obtain the community-based SIS model as follows:

dS(t)

d t
= −diag [S(t)] (ΛI(t) + U(t)) + ΓI(t) (2.6a)

d I(t)

d t
= diag [S(t)] (ΛI(t) + U(t))− ΓI(t) (2.6b)

Unless specified otherwise, we will refer to the community-based SIR model

(2.5) and the community-based SIS model (2.6) as SIR model and SIS model, re-

spectively, in the rest of this chapter.

The SIR model (2.5) and the SIS model (2.6) are community-based diffusion
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models proposed in this chapter. Compared with the agent-based models in [27–29],

the model we have derived using the community-based topology is of much smaller

size and therefore more convenient for simulation and analysis. Also, since human

behavior appears random on a local scale [36–38], it is likely inefficient to work

with the whole detailed topology explicitly representing all individuals in a large

population. Instead, the community-based model considers individuals’ connections

at a higher level, which is more compact and amenable for study.

The community-based model introduced above can be extended to a more gen-

eral case in which the agents within each community are not fully mixed but rather

carry specific degree distributions governing their number of connections within

their community and to other communities. To deal with such a scenario, we can

simply view individuals with the same number of degrees as belonging a “smaller”

community, and then follow the same derivation as above. This approach would be

similar to the mean-field approximation proposed by Vespignani et al. [25, 26].

It is interesting to note that Vespignani’s mean-field approximation model

for large enough populations [25] is a special case of our model if we take agents

who have the same number of connections into the same community and follow the

approach above. Also, if we view each individual as an independent “community”

then our model is reduced to Youssef’s agent-based SIR model [30]. Thus, our

model generalizes these existing models while allowing a reduction in computational

burden.
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2.2 Accuracy of the Community-Based Approximation

Recalling that Assumption 2.1 was essential in the derivation of the SIR model

(2.5), we next investigate the accuracy of this model through both theoretical anal-

ysis and numerical simulation.

2.2.1 Theoretical Analysis

The only approximation made in the derivation of the model (2.5) based on

Assumption 2.1 is E
[

svj (t)a
vw
jk i

w
k (t)

]

= E [svk(t)]E
[

avwjk
]

E [iwk (t)]. The following equa-

tion always holds:

E
[

svj (t)a
vw
jk i

w
k (t)

]

= E
[

svj (t)i
w
k (t)

∣

∣avwjk = 1
]

E
[

avwjk
]

When avwjk = 1, i.e. there is a connection between the two agents, we have

E
[

svj (t)i
w
k (t)

∣

∣avwjk = 1
]

≤ E
[

svj (t)i
w
k (t)

]

≤ E
[

svj (t)
]

E [iwk (t)]

because for a given a pair of agents, the connection from one to another cannot posi-

tively influence the probability that the former agent is infected and the latter agent

is susceptible. Meanwhile, the infection of one agent cannot positively influence the

probability of being susceptible for another agent.

Therefore, we have E
[

svj (t)a
vw
jk i

w
k (t)

]

≤ E [svk(t)]E
[

avwjk
]

E [iwk (t)]. Looking at

(2.4), we can conclude that sj (t) is a lower bound for E

[

∑Nj

v=1 s
v
j (t)

Nj

]

. Correspond-

ingly, ij(t) is an upper bound for E

[

∑Nj

v=1 i
v
j (t)

Nj

]

.

According to (2.4), the term

N
∑

k=1

Nk
∑

v=1

λ′jka
jk
jki

w
k (t) is a component of transition
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rate of sj(t). Next we are going to focus on the deviation that arises from Assumption

2.1 by studying the variance of

N
∑

k=1

Nk
∑

v=1

λ′jka
jk
jki

w
k (t) as follows: Since the input term

uj (t) is not directly associated with Assumption 2.1, we simply ignore the term

uj (t) by setting uj(t) ≡ 0.

Var

[

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t)

]

=E





(

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t)

)2


−E

[

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t)

]2

=
∑

1≤k≤N
1≤k′≤N

∑

1≤w≤Nk

1≤w′≤Nk′

pjkpjk′λjkλjk′
(

E
[

iw
′

k′ (t)i
w
k (t)

∣

∣

∣
avwjk = 1, avw

′

jk′ = 1
]

− E
[

iwk (t)
∣

∣avwjk = 1
]

E
[

iw
′

k′ (t)
∣

∣

∣
avw

′

jk′ = 1
] )

=

N
∑

k=1

Nk
∑

w=1

Var
[

λ′jka
vw
jk i

w
k (t)

]

+
∑

1≤k≤N
1≤k′≤N

(k,w)6=(k′,w′)
∑

1≤w≤Nk

1≤w′≤Nk′

pjkpjk′λjkλjk′

·
(

E
[

iw
′

k′ (t)i
w
k (t)

∣

∣

∣
avwjk = 1, avw

′

jk′ = 1
]

− E
[

iwk (t)
∣

∣avwjk = 1
]

E
[

iw
′

k′ (t)
∣

∣

∣
avw

′

jk′ = 1
] )

(2.7)

Notice that if all iwj (t)’s are independent, then Var





N
∑

j=1

Nj
∑

w=1

λ′ija
vw
ij i

w
j (t)



 is

actually the first term at the R.H.S. of (2.7). However, infection of one agent cannot

have negative impacts on the probability of infection at another agent, therefore we

have

E
[

iw
′

k′ (t)i
w
k (t)

∣

∣

∣
avwjk = 1, avw

′

jk′ = 1
]

≥ E
[

iwk (t)
∣

∣avwjk = 1
]

E
[

iw
′

k′ (t)
∣

∣

∣
avw

′

jk′ = 1
]

and hereby the second term at the R.H.S. of (2.7) is always positive. This obser-

vation leads us to understand that positive correlations among the iwj (t)’s actually

exacerbate the variance of
N
∑

j=1

Nj
∑

w=1

λ′ija
vw
ij i

w
j (t) compared with the case that all iwj (t)’s

are independent.
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Also, it should be noted that Var

[

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t)

]

actually scales with

the number of connections that a specific agent has. The number of connections

that each agent has, i.e., pijNj for each 1 ≤ j ≤ n, is bounded whatever the social

network is like, therefore this variance is still moderate even if the whole social

network is of extremely large size.

When each agent can become infected with a small probability, i.e., iwj (t) <

ǫ for some small ǫ, then the second term at the R.H.S. of (2.7) scales as O(ǫ2).

Therefore the variance we are investigating in this scenario is very close to the first

term, which corresponds to the case that all iwj (t)’s are independent.

In another interesting case where each agent is infected with a high probability,

notice that

E





(

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t)

)2


 =E

[

N
∑

k=1

N
∑

k′=1

Nk
∑

w=1

Nk′
∑

w′=1

λ′jkλ
′
jk′a

vw
jk a

vw′

jk′ i
w
k (t)i

w′

k′ (t)

]

≤E

[

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t)

]

N
∑

k′=1

N ′

j
∑

w′=1

λ′jk′pjk′

then coefficient of variation
√

Var
[

∑N
k=1

∑Nk

w=1 λ
′
jka

vw
jk i

w
k (t)

]

E
[

∑N
k=1

∑Nk

w=1 λ
′
jka

vw
jk i

w
k (t)

] ≤

√

√

√

√

√

∑N
k=1

∑Nj

w=1 λ
′
jkpjk

E
[

∑N
k=1

∑Nk

w=1 λ
′
jka

vw
jk i

w
k (t)

] − 1

Since agents are infected with high probability, then E

[

N
∑

k=1

Nk
∑

w=1

λ′jka
vw
jk i

w
k (t)

]

is very close to
N
∑

k=1

Nj
∑

w=1

λ′jkpjk. Therefore the coefficient of variation is small in this

case, which is again in favor of Assumption 2.1.
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2.2.2 Numerical Simulation

In addition to the theoretical analysis above, we also run a numerical simula-

tion on a social network consisting of four communities. In each community there are

100 agents and we are given the following connectivity matrix for the communities:

P =

























0.08 0.04 0.02 0.02

0.01 0.08 0.05 0.04

0.03 0.03 0.08 0.01

0.02 0.01 0.01 0.08

























Also, we assume the parameters are uniform, i.e. λ′ij = λ and γ′k = γ for

any 1 ≤ i, j, k ≤ 4. We run the simulation for four sets of parameters: λ = 0.001,

γ = 0.1; λ = 0.006, γ = 0.1; λ = 0.03, γ = 0.1 and λ = 0.5, γ = 0.1, which represent

the scenarios with different spreading strength and the recovery rate. The input term

u4(t) = |sin t|, while all the other input terms are identically zero. For each set of

parameters, we run the simulation 10 times and average the normalized percentage

of susceptible and infected population. We also make a comparison between the

results both from the agent-based model (2.2) and the community-based model

(2.5). The simulation results are shown in Fig. 2.2.

The simulation result in Fig. 2.2 verifies our theoretical analysis in Section

2.2.1. First of all, looking at all the four figures in Fig. 2.2, we can observe that the

quantity sj(t) in (2.5) is a lower bound of that in (2.2). Similarly, the quantity ij(t)

in (2.5) is an upper bound of in (2.2).

Also, the observable deviation of the community-based model (2.5) in Fig.
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Figure 2.2: The comparison between the agent-based SIR dynamical model (A.6)

and the community-based SIR dynamical model (2.5) with corresponding parame-

ters.
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2.2(b) and Fig. 2.2(c) verify that states of agents within the same community are

actually not independent. Because each community is of size 100, if such inde-

pendence holds true then there should be no observable deviation. Therefore the

observed deviation verifies that indeed iwj (t)’s are not all independent.

Another observation is that in Fig. 2.2(a), agents are infected with a very low

probability, while in Fig. 2.2(d) they are infected with a high probability. These are

the two special cases that we have discussed in Section 2.2.1. As we have shown,

compared with normal cases as in Fig. 2.2(b) and Fig. 2.2(c), the deviation of the

model (2.5) in these two special cases are smaller than in the normal cases.

2.3 Diffusion Outbreak

Outbreak has been a topic of great interest in various studies of diffusion in

networks. We will rigorously study outbreak from a mathematical perspective as

well as the effect of inter-community connection strengths on outbreak of a diffusion.

2.3.1 Condition for Outbreak

Intuitively, outbreak means that even if a small fraction of the population

is initially infected, the infection is still likely to reach a non-negligible portion of

population without the help of an external influence, i.e., as time tends to infinity,

there will be a significant percentage of agents affected by the diffusion in the case

that all the input terms vanish. To make this mathematically rigorous, we will use

the following definition for outbreak:
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Definition 2.1 In both the SIR model (2.5) and the SIS model (2.6), an outbreak

occurs if ∃ǫ > 0, such that ∀δ > 0, ∃I0 ∈ [0, 1]n ∩ {‖I0‖2 < δ}, I(0) = I0 such that

lim sup
t→∞

‖1n − S(t)‖2 > ǫ. Otherwise the diffusion dies out. It should be noted that

S(t0) = 1n − I0 and U(t) ≡ 0. Here 1n ∈ Rn is a vector with all entries equal to 1.

Notice that Definition 2.1 is quite similar to definitions of Lyapunov instabil-

ity and stability, which actually gives us inspiration about how to determine the

outbreak condition. Definition 2.1 also implies that outbreak is a property based on

the network topology, instead of being dependent on initial conditions.

Theorem 2.1 For the SIR model (2.5) and the SIS model (2.6), if the matrix Λ−

Γ 6� 0 the infection breaks out. On the other hand, if Λ− Γ ≺ 0, then the infection

dies out.

Theorem 2.1 is easy to understand intuitively. The matrix Λ represents in-

fection rate while Γ is recovery rate. Then Λ − Γ ≺ 0 means the infection rate is

totally dominated by the recovery rate, in which case the diffusion should die out.

Otherwise, if infection is not overwhelmed by recovery, i.e., Λ−Γ 6� 0, then outbreak

occurs. A proof of Theorem 2.1 follows:

Proof: We primarily focus on proving Theorem 2.1 for the SIR model (2.5). A

corresponding proof for the SIS model (2.6) is very similar and skipped here.

For the first part of the theorem, consider a scalar function

V (I(t)) = IT (t)
(

Λ + ΛT − 2Γ
)

I(t).
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Calculating the derivative of V (I(t)) with respect to t, we obtain

dV (I(t))

d t
=IT (t)

[

(Λ + ΛT − 2Γ) (diag [S(t)] Λ− Γ)

+ (diag [S(t)] Λ− Γ)T (Λ + ΛT − 2Γ)
]

I(t)

=IT (t)
(

Λ + ΛT − 2Γ
)2
I(t)− IT (t)

[

(Λ + ΛT − 2Γ) (In − diag [S(t)]) Λ

+ ΛT (In − diag [S(t)])T (Λ + ΛT − 2Γ)
]

I(t)

where In is the identity matrix of size n.

The eigenvector associated with the greatest eigenvalue of Λ + ΛT − 2Γ has

all its entries nonnegative and the largest eigenvalue of this matrix is positive since

Λ−Γ 6� 0. This is because the matrix Λ+ΛT−2Γ+2γmaxIn, where γmax = max
1≤i≤n

{γi},

is a nonnegative matrix, and by the Perron-Frobenius Theorem [96] the eigenvector

associated with the greatest eigenvalue of Λ+ΛT−2Γ+2γmaxIn is nonnegative while

Λ + ΛT − 2Γ + 2γmaxIn and Λ + ΛT − 2Γ share the same eigenvectors. Therefore

∃x ∈ [0, 1]n such that xT
(

Λ+ ΛT − 2Γ
)

x > 0.

We proceed using a contradiction argument. Suppose the infection dies out,

then for a small enough ǫ <
σmin(Λ + ΛT − 2Γ)

2‖Λ‖2
we can find a choice of I(0) =

I0 ∈ [0, 1]n, such that ‖I(t)‖2 < ǫ for any t ≥ 0, where σmin(·) denotes the smallest

nonzero singular value. With such an ǫ, we will have
dV (I(t))

d t
> 0 if V (I(t)) > 0.

Also since Λ + ΛT − 2Γ has positive eigenvalues, we have V (0) = 0 and V (I0) > 0

for some I0 with arbitrarily small ‖I0‖2. Therefore, there ∃ǫ′ > 0 so that ∀δ > 0,

we can find a I(0) = I0 ∈ [0, 1]N ∩ {‖I0‖2 < δ} so that ‖I(t′)‖2 > ǫ′ for some t′ ≥ 0,

then lim
t→∞
‖R(t)‖2 > ‖I(t

′)‖2 > ǫ′, i.e., the infection does not die out. This is a

contradiction.
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Next we consider the second part of this theorem. Since ∀t ≥ 0, S(t) < 1n,

from equation (2.5b) we have

d I(t)

d t
= diag [S(t)] ΛI(t)− ΓI(t) < (Λ− Γ)I(t)

Then by the Comparison Lemma [97], we have I(t) < exp ((Λ− Γ)t) I0, where

I(0) = I0. Because Λ− Γ ≺ 0 by equation (2.5c), we find that

lim
t→∞
‖R(t)‖2 =

∥

∥

∥

∥

∫ ∞

0

ΓI(t) d t

∥

∥

∥

∥

2

≤

∫ ∞

0

‖Γ‖2 ‖I(t)‖2 d t

≤

∫ ∞

0

‖Γ‖2 ‖I0‖2 ‖exp((Λ− Γ)t)‖2 d t

≤

∫ ∞

0

‖Γ‖2 ‖I0‖2 exp

(

−1

‖(Λ− Γ)−1‖2
t

)

d t

= ‖Γ‖2 ‖I0‖2
∥

∥(Λ− Γ)−1
∥

∥

2

Therefore, lim
t→∞
‖R(t)‖2 can be made arbitrarily small with a choice of small

enough ‖I0‖2. The infection dies out according to Definition 2.1.

�

It should be noted that in the SIR model, since S(t) is monotone decreasing,

‖1n − S(t)‖2 is convergent as t→∞. Therefore the statement lim sup
t→∞

‖1n−S(t)‖2 >

ǫ in Definition 2.1 can be replaced with lim
t→∞
‖1n−S(t)‖2 > ǫ for the SIR model and

Theorem 2.1 still holds true.

If we view each individual as a separate community and consider the uniform

parameter case, i.e., Λ = λA and Γ = γIn, where A ∈ {0, 1}
n×n is the adjacency

matrix and In ∈ Rn×n is an identity matrix, then Theorem 2.1 is reduced the

epidemic threshold in Section 5.1 of [30]. Therefore, Theorem 2.1 generalizes this

existing result on diffusion outbreak threshold.
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2.3.2 Effect of Inter-Community Connections

Theorem 2.1 specifies a condition for infection outbreak. Next, we will employ

Theorem 2.1 to gain insights on the contribution of inter-community connections to

propagations infections.

In Theorem 2.1, the condition Λ − Γ 6� 0 means that the greatest eigenvalue

of Λ − Γ is positive. To investigate the effects of inter-community connections, we

focus on the largest eigenvalue of Λ − Γ. Let Λ − Γ = (ΛD − Γ) + ΛLU , where ΛD

denotes the diagonal matrix with diagonal entries of Λ and ΛLU = Λ− ΛD. Denote

the largest eigenvalue by λmax(·). The following theorem addresses the effects of the

connections.

Theorem 2.2 The inequality λmax(ΛD − Γ) < λmax ((ΛD − Γ) + ΛLU) holds true,

where λmax(·) denotes the largest eigenvalue. In other words, the inter-community

connections increase the chance of an infection outbreak.

Proof: First, consider ΛD − Γ + γmaxIn, where γmax = max
1≤i≤n

{γi}. Since ΛD −

Γ + γmaxIn and ΛLU are both nonnegative, it follows that |ΛD − Γ + γmaxIn| <

|ΛD − Γ + ΛLU + γmaxIn|. By the Wielandt’s Theorem [98], ρ(ΛD − Γ + γmaxIn) <

ρ(ΛD − Γ + γmaxIn + ΛLU), in which ρ(·) is spectral radius. By the Peron-Frobenius

theorem [96], the largest eigenvalues of both of these matrices are positive, and we
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have

λmax(ΛD − Γ)− λmax ((ΛD − Γ) + ΛLU)

= [λmax(ΛD − Γ + γmaxIn)− γmax]− [λmax ((ΛD − Γ) + γmaxIn + ΛLU)− γmax]

=ρ(ΛD − Γ + γmaxIn)− ρ(ΛD − Γ + γmaxIn + ΛLU) < 0

�

Theorem 2.2 corroborates an intuitive fact: strong connectivity among com-

munities enhances the propagation of the infection. Next we investigate the case of

weak interconnections to get further insight into effects of such interconnections.

2.3.3 Weak Interconnections: A Special Case

To further investigate effects of inter-community connections on outbreaks, we

consider the following simple case. Let Λ = ΛD +ΛLU , where ΛD = λIn and ΛLU =

λ′A. Here A = [aij]n×n ∈ {0, 1}
N×N is the adjacency matrix, i.e., if community j is

connected to community i then aij = 1 and otherwise aij = 0. Also we assume that

all agents have the same recovery rate, i.e., Γ = γIn.

For the weak interconnections case, we assume that λ≫ λ′. This means that

the infection rate is much higher within communities than among them (hence the

reference to “weak-interconnections”). Let τ =
λ

γ
, τ ′ =

λ′

γ
. If τ > 1, then according

to Theorem 2.1, the infection will break out even if τ ′ = 0, i.e., even if there is no

network connection. Thus we assume that τ < 1, which means that the infection

will die out without the help of inter-community connections, and we study the

minimum value of τ ′ to trigger infection outbreak.

First we recall the following useful lemma.
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Lemma 2.1 If A is adjacency matrix for a graph, then the largest eigenvalue of A

satisfies

d̄ < λmax(A) < dmax (2.8)

where d̄ and dmax are the average and maximum degree of the graph.

Proof: See [99]. �

With Lemma 2.1, we easily determine the following condition for infection

outbreak in the weak interconnections case.

Theorem 2.3 For the case of weak interconnections, if τ ′ >
1− τ

dmax
, the infection

breaks out.

Proof: According to Theorem 2.1, infection outbreak occurs if

λmax(λIn + λ′A− γIn) = γλmax [τ
′A− (1− τ)In] > 0

This is equivalent to the condition τ ′ >
1− τ

λmax(A)
. Using the upper bound on λmax(A)

from Lemma 2.1, we have

τ ′ >
1− τ

λmax(A)
>

1− τ

dmax
(2.9)

�

For example, if the graph associated with A has chain structure, i.e., all the

communities are arranged in a line, then we have d̄ = 2 −
2

n
and dmax = 2 when

n ≥ 3. For sufficiently large n, d̄ is close to dmax and thus Lemma 2.1 provides

an accurate estimate for λmax(A). Theorem 2.3 specifies the condition τ ′ >
1− τ

dmax

and in some special cases Theorem 2.3 is accurate for determining the minimum

interconnection strength τ ′ to result in infection outbreak.
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2.4 Final State of the Diffusion

After determining the condition of infection outbreaks, it is natural to ask

what will it be like at the end of a diffusion. What’s the percentage of population

involved in the diffusion in each community? Will all communities be influenced by

the diffusion? We will answer these questions in this section.

2.4.1 Final State

First, we establish a connection between the initial state of a diffusion and the

corresponding final state. It should be noted that in the SIS model (2.6), the final

state is irrelevant with the initial state, hence we focus on the SIR model (2.5) here.

The following theorem provides such a connection.

Theorem 2.4 Consider the SIR model (2.5) with initial condition S(0) = 1n − I0,

I(0) = I0 and R(0) = 0 where I0 ∈ [0, 1]n, and suppose lim
t→∞

S(t) = S̃, lim
t→∞

I(t) = Ĩ

and lim
t→∞

R(t) = R̃. Then the following equations hold:

Ĩ = 0 (2.10a)

S̃ = 1n − R̃ (2.10b)

S̃ = diag [1n − I0] exp(−ΛΓ
−1R̃) (2.10c)

where we define that exp
(

[x1, x2, . . . , xn]
T
)

:= [exp(x1), exp(x2), . . . , exp(xn)]
T for

[x1, x2, . . . , xN ]
T ∈ Rn and diag [·] is the diagonal matrix with each entry of · on its

diagonal line.
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Proof: As time tends to infinity, all the infected individuals finally get recovered.

Therefore equations (2.10a) and (2.10b) are trivial. With use of equation (2.5a), we

have

diag [S(t)]−1 dS(t) = −ΛI(t) d t (2.11)

We use the notation log
(

[x1, x2, . . . , xn]
T
)

:= [log(x1), log(x2), . . . , log(xn)]
T

for vectors

[x1, x2, . . . , xn]
T ∈ Rn. Using equation (2.5c), equation (2.11) can be rewritten as

d log (S(t)) = −ΛΓ−1 dR(t) (2.12)

Integrating (2.12) from t = 0 to ∞ gives

log
(

diag [1n − I0]
−1 S̃

)

= −ΛΓ−1R̃

which is equivalent to (2.10c). �

2.4.2 Outbreak Impact Within Communities

If an infection breaks out, it is natural to ask whether all the communities are

affected. We are interested in whether or not it is possible that an outbreak occurs

for the overall social network, but some communities are affected by the outbreak

while other communities have no internal outbreak. To rigorously study this issue

we first provide a definition on whether or not a community is affected during an

infection outbreak:

Definition 2.2 The j-th community (1 ≤ j ≤ n) is affected by infection outbreak

if there exists an ǫj > 0 such that under any initial condition which leads to an
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infection outbreak, we have lim
t→∞
‖1− sj(t)‖2 > ǫi.

The following theorem concerns the impact of an outbreak within the commu-

nities.

Theorem 2.5 In both the SIR model (2.5) and the SIS model (2.6), if Λ is irre-

ducible and Λ − Γ 6� 0, then there exists ǫj > 0 for each 1 ≤ j ≤ n such that with

any initial condition that S(0) = 1n − I0, I(0) = I0 (and R(0) = for the SIR model

(2.5)), we have lim
t→∞
|1− sj (t)| > ǫj.

Proof: The assertion can be proved similarly for the SIR model (2.5) and the SIS

model (2.6), so we present a proof only for the SIR model (2.5). Let r̃j = lim
t→∞

rj(t)

for 1 ≤ j ≤ n. We will first prove that r̃j > 0 for all 1 ≤ j ≤ n.

Since the infection breaks out, ∃1 ≤ k1 ≤ n s.t. r̃k1 > 0. If ∃km and

r̃km = 0, since Λ is irreducible, therefore ∃k2, . . . , km−1 such that k1, k2, . . . , km ∈

{1, 2, . . . , n} are distinct and for any 2 ≤ l ≤ m, we have λkl−1,kl > 0. Using the

kl-th row of equation (2.10c), easily if rkl∞ = 0 then rkl−1∞ = 0. Letting l vary from

m down to 2, we have rk1∞ = 0, which is a contradiction. Therefore rj∞ > 0 for

any 1 ≤ j ≤ n.

Since I0 can be taken sufficiently small, equation (2.10c) can be approximated

as 1n − R̃ = exp(−ΛΓ−1R̃). Since the function f
(

R̃
)

= exp
(

−ΛΓ−1R̃
)

+ R̃− 1 is

analytic, there is a finite number of solutions to the equation 1n−R̃ = exp(−ΛΓ−1R̃)

on [0, 1]n. For any 1 ≤ j ≤ n, r̃j > 0 and there are finite solutions, then ∃ǫj =

1

2
min {r̃j |r̃j satisfies (2.10)}. With such a choice of ǫj , according to Definition 2.2,

all the communities are affected in the course of the infection outbreak.
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Theorem 2.5 illustrates that if network topology is strongly connected, then

all the communities are affected during any infection outbreak. On the other hand,

if the topology is not strongly connected, i.e. there exist two communities between

which there is no connecting path, such global effects cannot be guaranteed.

2.4.3 Bounds on the Final State

Since there does not exist a closed-form expression for a diffusion’s final state

for either the SIR model (2.5) and the SIS model (2.6), hence it is helpful to estimate

the final state by coming up with an upper bound and lower bound. In Section IV.B

of [29], Van Mieghem et al. analyze bounds of the steady state in their agent-based

SIS model and their results can be easily extended to our community-based SIS

model (2.6), therefore we primarily focus on the SIR model (2.5) here. The following

theorem gives an upper bound of final states in the SIR model (2.5).

Theorem 2.6 Consider a sequence {vn} with v1 = exp
(

−ΛΓ−11n
)

, and for any

k ≥ 1, vk+1 = exp
(

−ΛΓ−1 (1n − vk)
)

. Note that {vk} ⊂ [0, 1]n, then for any k ≥ 1,

we have R̃ < 1 − vk, where R̃ ∈ Rn represents the percentage of finally recovered

population in each community.

Proof: Construct a function series {fk(·)} by the following procedure: for any

k ≥ 0 where fk : Rn 7→ Rn. First, let f0(x) = 1 − x, then for any k ≥ 0, let

fk+1(x) = exp
(

−ΛΓ−1(1n − fk(x))
)

.
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If R̃ is a solution to equation (2.10), it’s easy to verify f0(R̃) = f1(R̃) =

· · · = fk(R̃) = . . . . We can also find that vk = fk(1n). Therefore for any ∀k ≥ 1,

1− R̃ = f0(R̃) = fk(R̃) > fk(1n) = vk, and therefore R̃ < 1n − vk. �

Notice that because ΛΓ−1 is a nonzero matrix, therefore vk < vk+1 for any

k ≥ 1, i.e. {vk} is monotonically increasing. Thus {1n − vk} is a sequence of

increasingly tighter upper bounds for R̃. The following theorem concerns lower

bounding R̃.

Theorem 2.7 For nonzero R̃ satisfying equation (2.10), we have the inequality

ΛΓ−1R̃ > 2 diag
[

ΛΓ−11n
]−1 (

ΛΓ−1 − In
)

1n

Proof: Since ΛΓ−1 is nonnegative, according to Theorem 2.5, R̃ is positive, and

−ΛΓ−1R̃ is negative. Since the second order term in Taylor expansion of exponential

of a negative variable is greater than the exponential itself, we have

1n = R̃ + exp
[

−ΛΓ−1R̃
]

< R̃ + 1n − ΛΓ−1R̃ +
1

2
diag

[

ΛΓ−1R̃
]

ΛΓ−1R̃

(2.13)

Simplifying inequality (2.13), we have

1

2
diag

[

ΛΓ−11n
]

ΛΓ−1R̃ >
(

ΛΓ−1 − In
)

1n (2.14)

Inequality (2.14) is equivalent to the inequality in this theorem. �

With Theorem 2.7, we find a bound for r̃max := max
1≤i≤n

{r̃i} with the following

corollary.
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Corollary 2.1 The quantity r̃max satisfies

r̃max > 2max
{

diag
[

ΛΓ−11n
]−2 (

ΛΓ−1 − In
)

1n

}

,

where max{·} indicates the maximum entry of a vector.

Proof: Since ΛΓ−1 and R̃ are nonnegative, then ΛΓ−1R̃ < r̃maxΛΓ
−11n. Combining

this inequality with Theorem 2.7, the result follows. �

Theorem 2.7 actually specifies a polyhedron as the bound for R̃. Corollary 2.1

gives a way to simplify Theorem 2.7 to obtain further insight on the lower bound of

r̃max.

2.5 A View from Percolation Theory

It should be noted that our community-based model (2.5) is an approximation

of the agent-based model (2.3). As noted by Youssef et al. in [30], even the agent-

based model is also an approximation of actual diffusion dynamics in social networks.

On the grounds of this observation, one may question the validity of our analysis in

Section 2.3 and 2.4, which is conducted based on the approximated community-based

model (2.5) and (2.6). Here, we are going to analyze diffusions in the community-

based network as specified in Section 2.1 via the percolation theory [100] in order

to validate our previous analysis.

Percolation theory is a favorite tool that physicists use to analyze complex

networks. A representative problem in percolation theory is the following: if we

pour water on the upper surface of an object made of a porous material, will the
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water reach the bottom side of the object? The material can be mathematically

modeled as a lattice of m ×m×m small cubes, with every two neighboring cubes

either open to each other (i.e., water can flow from one to another) with probability p

or closed to each other with probability 1−p, and these connection probabilities are

all independent. In percolation theory, we are interested in finding the relationship

between the probability that water flows through the material and p. It happens

that under general circumstances (for very large lattices), there is a critical value

pc of p such that for p > pc, water flows through with probability 1 and for smaller

values of p there is 0 probability of water flowing through to the bottom.

More generally, in a large network as p increases from 0 through the critical

threshold pc, large clusters and long-range connectivity in the network appear. More

general percolation problems may involve multiple such probabilities p1, p2, etc. For

example in our problem studied in this section, we have a probability matrix, instead

of a scalar.

Newman [24] appears to have been the first to make a connection between

percolation theory and epidemic spread in networks. Leicht et al. [101] extends

percolation theory to an interacting network, which is similar to our community-

based network that was presented in Section 2.1. Allard et al. [102] relate percolation

to epidemic spreading in networks with community structure.

To maintain the readability of this chapter, we will briefly explain the connec-

tion between percolation theory and the infection diffusion of Section 2.5.1, and we

will summarize the solution proposed by Leicht et al. [101] and Allard et al. [102]

in Section 2.5.2. In Sections 2.5.3 and 2.5.4, we compare the results from our work
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using dynamical models and from percolation theory. Also we investigate the condi-

tions under which these results using alternate approaches agree. This comparison

strengthens our analysis in Sections 2.3 and 2.4. Moreover, it provides further in-

sights about the underlying assumptions in our work.

2.5.1 Transmissibility and Percolation

We consider a pair of connected agents, one of which (j) is infected while the

other (i) is susceptible. Suppose the infection rate from j to i is λij and the infected

agent will remain infected for a duration τj . Then the probability that the disease

will be transmitted from agent j to agent i, denoted T ′
ij , is

T ′
ij = 1− lim

∆t→0
(1− λij∆t)

τj/∆t = 1− exp (−λijτj) (2.15)

In the SIR model, the infection rate is exactly λij in (2.15) while the time τj

is a random variable with an exponential distribution with parameter γj. Therefore

the average transmission probability is

Tij =

∫ ∞

0

exp(−γjτj) (1− exp(−λijτj)) d τj =
λij

λij + γj
(2.16)

Here we call Tij the transmissibility of the infection. Notice that in our inter-

connected community model, the infection transmission from any agent in commu-

nity j to another in community i is only dependent on the community indices i and

j. Therefore we use Tij to indicate the transmissibility from community j to i.

In this section we extend the fact [24] that we can simply use the expectation
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(mean value) of the probability of infection spread between communities. Infection

will propagate as if all transmission probabilities from community j to i were equal

to Tij. The truth of this result in the single community case is demonstrated in [24],

and we apply it in a general interconnected community context.

Imagine that an infection outbreak starts from a single infected agent and

the infection spreads with probability Tij from community j to i. We retain the

edge from community j to community i with probability Tij and discard it with

probability 1−Tij . The remaining edges thus form an “infected network.” Then the

final size of an outbreak is exactly the size of the cluster of vertices that is connected

from the initial infected vertex in the “infected network.” Therefore the epidemic

model here is equivalent to the percolation model on an interacting network, which

is studied by Leicht et al. [101].

2.5.2 Solution to the Percolation Problem

We consider a system with n ≥ 2 interacting networks. Any network i with 1 ≤

i ≤ n enjoys a multi-degree distribution
{

pik1,k2,...,kn
}

, where pik1,k2,...,kn is the fraction

of all vertices in network i that have k1 connections in network 1, k2 connections

in network 2, etc. This degree distribution can be represented using a generating

function

Gi(X) =
∞
∑

k1,k2,...,kn=0

pik1,k2,...,knx
k1
1 x

k2
2 . . . xknn

with X = [x1, x2, . . . , xn]
T .

We need to emphasize that our system of networks is considered in the limit
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of large size (i.e., there are infinitely many agents in each network) and are totally

random in all aspects but obey the joint multi-degree distribution
{

pik1,k2,...,kN
}

. All

the results given in this section are averaged over the ensemble of all possible network

systems, in the limit of large network size.

A further observation that will prove crucial is the following: Consider a ran-

domly selected edge from a vertex in network j to another vertex in network i (an

i − j edge). If we follow an i − j edge to its end (a vertex), then that vertex is

more likely to have more connections to network j than a randomly chosen vertex

in network i, since the high-connection vertices have more edges connected to them

than the low-connection ones. More specifically, let qijk1...kj ...,kn denote the probability

of following a randomly chosen i−j edge to a vertex with k1 connections in network

1, k2 connections in network 2, etc., then qijk1...kj ...,kn ∝ (kj + 1) pik1...kj+1...,kn and the

generating function for
{

qijk1...kj ...,kn

}

is

Gij (X) =
∞
∑

k1,k2,...,kn=0

qik1,k2,...,knx
k1
1 x

k2
2 . . . xknn

=
∞
∑

k1,k2,...,kn=0

(kj + 1) pik1...kj+1...,kn
∑∞

l1,l2,...,ln=0 (lj + 1) pil1...lj+1...,ln

xk11 x
k2
2 . . . xknn

=

(

∞
∑

l1,l2,...,ln=0

ljp
i
l1,l2...,ln

)−1
∂

∂xj

∞
∑

k1,k2,...,kn=0

pik1,k2,...,knx
k1
1 x

k2
2 . . . xknn

=
∂Gi(X)/∂xj

∂Gi(X)/∂xj |X=1n

In order to solve the percolation problem, we also need generating functions

Gi (X|T ) and Gij (X|T ) for degree distributions on the “infected networks” which

is described in Section 2.5.1, corresponding to Gi (X) and Gij (X) on the original
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networks. These are simple to derive. Gi (X|T ) is calculated as follows:

Gi(X|T )

=

∞
∑

k1,k2,...,kn=0

l1=k1,l2=k2,...,ln=kn
∑

l1,l2,...,ln=0

pik1,k2,...,kn

n
∏

m=1

(

km
lm

)

T lm
mi (1− Tmi)

km−lm xlmm

=

∞
∑

k1,k2,...,kn=0

pik1,k2,...,kn

l1=k1,l2=k2,...,ln=kn
∑

l1,l2,...,ln=0

n
∏

m=1

(

km
lm

)

(xmTmi)
lm (1− Tmi)

km−lm

=
∞
∑

k1,k2,...,kn=0

pik1,k2,...,kn

n
∏

m=1

(1− Tmi + xmTmi)
km

=Gi (1n + diag [T1i, T2i, . . . , Tni] (X − 1n))

(2.17)

Through similar calculations in (2.17), we have

Gij(X|T ) = Gij (1n + diag [T1i, T2i, . . . , Tni] (X − 1n))

Now we are ready to calculate the size distribution of small components in

the network ensemble. A component is any closed connected cluster of vertices.

Here, “small” means the intensive component (i.e., the component that does not

scale with the network size). Define Hij(X|T ) as the generating function for the

size distribution of the component reached by following an i− j edge.

Small components are typically finite and therefore the chance that any two

small components that are connected to the same vertex have an edge between them

goes as the inverse of the size of the whole network, and therefore is 0 in the limit

of a large system of networks [24]. In other words the small component should be

completely tree-like in structure.

Further, the cluster reached by an i− j edge may be either 1) a single vertex

without any other outgoing edges connected to it or 2) a single vertex connected

by any number m ≥ 1 of edges other than the one we reach it by, each leading to
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another cluster whose size distribution is generated by H(X|T ) as well. With all

the previous analysis, Hij(X|T ) can be solved through the following self-consistent

equation:

Hij (X) = xiGij (H1i (X) , H2i (X) , . . . , Hni (X)) (2.18)

Then the size of clusters connected from a randomly chosen vertex has its

distribution generated by

Hi (X) = xiGi (H1i (X) , H2i (X) , . . . , Hni (X)) (2.19)

2.5.3 Condition for Infection Outbreak

As noted in Section 2.5.1, percolation theory can be applied in studying in-

fection propagation. Using percolation theory to determine an infection outbreak

condition over the interacting networks as specified in Section 2.5.1, we have the

following theorem.

Theorem 2.8 Define an n × n block matrix F , whose blocks [Fij] are also n × n

matrices with

[Fij ]pq = δiq ·
∂

∂xj
Gip (X|T )

∣

∣

∣

∣

X=1n

Denote by In2 the identity matrix. If In2 −F ≻ 0, the infection does not break

out. If In2 − F 6� 0, the infection breaks out. (Intuitively λmax (F ) is a measure of

the strength of the infection propagation.)
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Proof: First, for any randomly chosen agent from community i, we compute the

average number 〈si〉j of agents from community j that are connected to it:

〈si〉j =
∂

∂xj
Hi(X|T )

∣

∣

∣

∣

X=1n

= δij +
n
∑

l=1

∂

∂xl
Gi(X|T )

∂

∂xj
Hli(X|T )

∣

∣

∣

∣

∣

X=1n

(2.20)

From (2.20), to compute each 〈si〉j , we need to find
∂

∂xl
Hij(X|T )

∣

∣

∣

∣

X=1n

for

each i, j and l. In order to compute these quantities, we first calculate every partial

derivative of each side of the equation

Hij (X|T ) = xiGij [H1i (X|T ) , H2i (X|T ) , . . . , Hni (X|T )] ,

after which we obtain the following linear equations:

∂

∂xl
Hij(X|T )

∣

∣

∣

∣

X=1n

= δil +
n
∑

k=1

∂

∂xk
Gij(X|T )

∂

∂xl
Hki(X|T )

∣

∣

∣

∣

∣

X=1n

(2.21)

∀1 ≤ i, j, l ≤ n.

To write (2.21) more compactly, define hl =
[

hl11 . . . h
l
1n, . . . h

l
n1 . . . h

l
nn

]

∈ Rn2

,

with each entry hlpq =
∂

∂xl
Hpq(X|T )

∣

∣

∣

∣

X=1n

. Also for convenience we define ∆l =

[

δ
(1)
1l . . . δ

(n)
1l . . . δ

(1)
nl . . . δ

(n)
nl

]

where δ(k)pq = 1 when p = q and δ(k)pq = 0 when p 6= q.

With these preparations, equation (2.21) can be written in the form

hl = ∆l + F · hl (2.22)

with 1 ≤ l ≤ n.

If In2 − F ≻ 0, since F is nonnegative, then F is a convergent matrix, then

by (2.22) combined with [103], we have hl = (I − F )−1∆l =
(

I + F + F 2 + . . .
)

∆l,

and therefore hl is finite and nonnegative. In this case, all the components across
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the network are of a finite size. That is to say, the infection does not break out in

this case.

However, as λmax(F ) approaches 1 from below, hl =
(

I + F + F 2 + . . .
)

∆l

will also increase and the component size will be correspondingly larger. At the

point when λmax(F ) = 1, the component size h starts to diverge. The condition

λmax(F ) = 1 is thus the point of onset of infection outbreak. Therefore, when

In2 − F 6� 0 the infection breaks out.

�

We need to emphasize that the interacting networks structure as specified in

Section 2.5.1 is more general than the community-based network of Section 2.1.

Hence Theorem 2.8 deals with a more general case than Theorem 2.1. However,

the next corollary shows that if we apply Theorem 2.8 to the community-based

network of Section 2.1, we will get the same result as Theorem 2.1 under certain

approximations.

Corollary 2.2 Applying Theorem 2.8 to the community-based network specified in

Section 2.1 with infection rate λ′ij significantly smaller than the recovery rate γ′j (i.e.

1

λ′ij + γ′j
≈

1

γ′j
) for all 1 ≤ i, j ≤ n, Theorem 2.8 reduces to Theorem 2.1.

Proof: Because the communities that constitute the network described in Section

2.1 are all random networks, therefore all the degree distributions should be Poisson

[104], i.e., Gi(X) =

n
∏

k=1

exp (−Nipki (1− xk)). It is easy to show that

Gij(X) =

N
∏

k=1

exp (−Nkpik (1− xk)) = Gi(X)
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. Therefore, for all 1 ≤ i, j, k ≤ n,

∂

∂xk
Gij(X|T )

∣

∣

∣

∣

X=1n

= Tki
∂

∂xk
Gij(X)

∣

∣

∣

∣

X=1n

=
λ′ikpikNk

λ′ik + γ′k

Since λ′ij ≪ γ′i for all 1 ≤ i, j ≤ n, we have

∂

∂xk
Gij(X|T )

∣

∣

∣

∣

X=1n

=
λ′ikpikNk

λ′ik + γ′k
≈
λ′ikpikNk

γ′k

Moreover, noting that Hij(X|T ) = Hi(X|T ) for all 1 ≤ i, j ≤ n, equation

(2.21) can be simplified to

∂

∂xj
Hi(X|T )

∣

∣

∣

∣

X=1n

= δij +

N
∑

k=1

∂

∂xk
Gi(X|T )

∂

∂xj
Hk(X|T )

∣

∣

∣

∣

∣

X=1n

≈ δij +
λ′ikpikNk

γ′k

∂

∂xj
Hk(X|T )

∣

∣

∣

∣

X=1n

= δij +
λik
γk
·
∂

∂xj
Hk(X|T )

∣

∣

∣

∣

X=1n

(2.23)

for ∀1 ≤ i, j ≤ n.

For any fixed j, equation (2.23) is a set of n linear equations. To write it

in a compact form, let hj =
[

hj1, h
j
2, . . . , h

j
n

]T
with hji =

∂

∂xj
Hi(X|T )

∣

∣

∣

∣

X=1n

for all

1 ≤ i ≤ n. Let F = [fij ]n×n ∈ Rn×n, with fij =
λij
γi

. Let ∆j = [δ1j , δ2j , . . . , δnj]
T

where δjj = 1 and δjk = 0 for all 1 ≤ k ≤ n, k 6= j. Then equation (2.23) is

hj = ∆j + F · hj

with 1 ≤ j ≤ n.

Noting that F = ΛΓ−1, invoking Theorem 2.8 now reveals the same result as

Theorem 2.1.

�
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2.5.4 Final State of the Diffusion

In addition to determining the infection outbreak condition, percolation theory

can also be applied to calculate final state of a diffusion. The following theorem

shows how we can employ percolation theory to calculate the final state. We also

compare it with Theorem 2.4, which is derived from our dynamical model.

Theorem 2.9 For the community-based network specified in Section 2.1 with infec-

tion rate λ′ij significantly smaller than the recovery rate γ′j (i.e.
1

λ′ij + γ′j
≈

1

γ′j
) for

all 1 ≤ i, j ≤ n, we have that S̃ = exp
(

−ΛΓ−1R̃
)

holds true where lim
t→∞

S(t) = S̃

and lim
t→∞

R(t) = R̃.

Proof: Denote S̃ = [s̃1, s̃2, . . . , s̃n]
T and R̃ = [r̃1, r̃2, . . . , r̃n]

T . With the analysis in

Section 2.5.2, the following equation holds true:

Hi (X|T ) = xiGij [H1i (X|T ) , H2i (X|T ) , . . . , Hni (X|T )] (2.24)

If an infection does not break out, Hi(1n|T ) = 1. However, as Newman argues

in [24], if an infection breaks out, equation (2.24) does not hold because a giant

component is formed, which is extensive and contains loops. Instead, (2.24) holds

true if we redefine Hi(X|T ) and Hij(X|T ) as corresponding generating functions for

degree distributions of the parts of the network that are not in the giant component.

These parts do not constitute the entire network but instead only a portion of it.

Therefore, if the infection breaks out, we would have Hi(1n|T ) = s̃i. Equation

(2.24) is converted as follows

s̃i = Gi ( s̃1, s̃2, . . . , s̃n|T ) (2.25)
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Following similar analysis as in the proof for Corollary 2.2, we have

Gi(X|T ) =
n
∏

k=1

exp (−NkpikTki (1− xk))

Combined this with (2.25) and (2.16), we have

s̃i = exp

(

n
∑

k=1

Nkpik
λ′ik

λ′ik + γ′k
(1− s̃k)

)

≈ exp

(

n
∑

k=1

Nkpikλ
′
ik

γ′k
r̃k

)

= exp

(

N
∑

k=1

λik
γk
r̃k

)

(2.26)

for i = 1 . . . n. Actually (2.26) is equivalent to S̃ = exp
(

ΛΓ−1R̃
)

.

�

Both Corollary 2.2 and Theorem 2.9 show connections between our community-

based dynamical model and the percolation model. Through the comparison, we

may have the insights that our dynamical model is valid in the case that infec-

tion rates are significantly smaller than recovery rates. Actually this condition also

agrees with our assumption that any two agents’ states are independent of whether

or not they are directly connected. In addition, the fact that our dynamic model

gives conclusions in agreement with the percolation model also adds credence to our

community-based dynamical model.
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Chapter 3: Optimal Social Network Marketing

This chapter deals with optimal marketing on social networks. To keep in ac-

cordance with current research [14, 44, 46, 105, 106], we formulate the maximization

of diffusion through altering the network structure or convincing an initial set of

agents to adopt the innovation, both for the referral marketing and seeding mar-

keting problems. We also investigate dynamic marketing, which is formulated as an

optimal control problem both for the SIR model (2.5) and the SIS model (2.6).

Then, we extend to the continuous setting a property known as submodularity,

giving a concept of “continuous monotone submodularity,” and use this concept to

propose a greedy heuristic to optimize a continuous monotone submodular function.

The approximation ratio of the heuristic is shown to be bounded by 1 − 1/e. By

showing that the social network marketing problems that we formulate all obey this

property, we apply this greedy heuristic to solve each of the marketing problems of

interest in this thesis. Based on the characteristics of the SIR model (2.5), we are

able to modify the greedy heuristic for SIR models into a closed-loop form.

Also, we investigate other scenarios with different objectives. More specifically,

we study the problem of minimizing the cost with the profits guaranteed to be

greater than a given threshold. We also conduct trade-off analysis on profits vs.
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cost. Finally, we show that the formulated viral marketing problem based on the SIS

model (2.6) is convex, implying that any locally optimal solution is automatically

globally optimal. At the end of this chapter a numerical experiment is given for

validation.

3.1 Problem Formulation

Referral marketing, seeding marketing and dynamic marketing have been in-

troduced in Section 1.2. Next, we mathematically formulate these problems specif-

ically for the SIR and SIS models specified in Section 2.1.

3.1.1 Referral Marketing

Referral marketing, in which the current customers are offered an in-kind or

cash reward for referring their acquaintances [55], is a popular marketing strategy

to stimulate contagion of an innovation through word-of-mouth effects or electronic

communications. With a referral bonus as stimulus, the agents are more likely to

recommend a product to others, which can be modeled as an increase in the infection

rate between individuals. For simplicity of analysis, we assume that the increase in

the infection rate is proportional to the amount of the corresponding investment,

while the recovery rate is fixed and unaffected by the investment.

For referral marketing, we propose two natural problems: the minimum cost

problem, which aims to specify the minimum cost to facilitate infection outbreak,

and the profit maximization problem, which is to determine the maximum possible
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profit with a fixed budget. With the SIR model (2.5), these two problems are

respectively formulated as (3.1) via Theorem 2.1 and (3.2) via Theorem 2.4.

min tr
(

W TX
)

s.t. Λ′ − Γ 6� 0

Λ′ = Λ +X

X ≥ 0

(3.1)

max ZT · R

s.t. R + exp
(

−Λ′Γ−1R
)

= 1n

tr
(

W T ·X
)

≤ B

X ≥ 0, Λ′ = Λ +X

(3.2)

where B > 0 is the total budget, the vector Z ∈ Rn refers to the weight of each

community and the matrix X ∈ Rn×n with xij representing the increase in λij .For

the SIS model (2.6), the minimum cost problem is of the same form as (3.1) while the

maximum profit problem is trivial and hereby not investigated here. By Theorem

3.1, the profit maximization problem (3.2) can be formulated into a convex form.

Theorem 3.1 The solution of (3.2) remains unchanged with the constraint R +

exp
(

−Λ′Γ−1R
)

= 1n replaced with R + exp
(

−Λ′Γ−1R
)

≤ 1n. This replacement

makes (3.2) convex.

Proof: See Appendix B.1. �

The following lemma connects the existence of a nonzero solution to the equa-

tion R + exp
(

−ΛΓ−1R
)

= 1n with the occurrence of infection outbreak.

Lemma 3.1 If there is a nonzero solution to R + exp
(

−ΛΓ−1R
)

= 1n×1 for every

R ∈ [0, 1]n, then we have Λ− Γ 6� 0.

Proof: See Appendix B.2. �
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According to Lemma 3.1, we can take advantage of (3.2) to determine whether

a given budget is sufficient to produce infection outbreak. Then by conducting

binary search with solving (3.2) to determine whether a budget B is enough to

trigger the outbreak repeatedly, we can efficiently find an approximate solution to

problem (3.1).

3.1.2 Seeding Marketing

The seeding marketing strategy [107] is another useful strategy in social net-

work marketing, where the aim is to maximize inter-agent communication effects

by convincing a set of influential agents to adopt and advertise a product to their

acquaintances. We mathematically formulate the seeding marketing problem, which

aims to maximize the product’s diffusion under a given budget constraint. This

problem is similar to the spreading maximization problem in [14], where the prob-

lem is studied based on the linear threshold model [15, 47] and the independent

cascade model [3, 4].

As found in Section 2.4, in the SIS model (2.6) the final state (i.e., after infinite

time) is independent of the initial state. Since here we consider seeding marketing

effects asymptotically as time approaches infinity, we consider only seeding market-

ing for the SIR model (2.5). Using Theorem 2.4, the seeding marketing problem can

60



be formulated as follows:

max ZT · R

s.t. R + diag [1− I0] exp
(

−ΛΓ−1R
)

= 1n

W T I0 ≤ B, I0 ≥ 0

(3.3)

Here, Z ∈ Rn denote the weights of the communities in terms of value to the

advertiser, W ∈ Rn denotes the costs to infect the agents in each community and

B > 0 is the budget (a scalar). The problem can be re-cast more compactly as

follows. Transform I0 into X0 = diag [W ] I0, which is actually the investment in

each community. Unless specified otherwise, we will use D to represent the feasible

set for the seeding marketing problem, i.e. D =
{

X0 ∈ Rn
∣

∣1T ·X0 ≤ B, X0 ≥ 0
}

.

By Lemma 3.2, with any X0 = diag [W ] I0 ∈ D, the final state R that satisfies the

equation R + diag [1− I0] exp
(

−ΛΓ−1R
)

= 1n is unique.

Lemma 3.2 For every nonzero X0 ≥ 0 with its j-th component less than or equal

to wj, then ∃! R ∈ [0, 1]n so that the following equation holds.

R + diag
[

1n − diag [W ]−1X0

]

exp
(

−ΛΓ−1R
)

= 1n

Proof: See Appendix B.3. �

Define the mapping φ(1) : D → Rn, which maps the investment X0 into the so-

lution to R+diag [1− I0] exp
(

−ΛΓ−1R
)

= 1n. Then the seeding marketing problem

(3.2) is written as

max ZTφ(1) (X0)

s.t. X0 ∈ D

(3.4)
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The problem (3.4) is nonlinear, and we have not found an equivalent convex

formulation. Solving this problem accurately is expected to be computationally

burdensome. However, the techniques that both Kempe et al. [14] and Shakarian et

al. [31] employ in their research inspires us to propose a heuristic algorithm which

will be given later in this chapter.

3.1.3 Dynamic Marketing

Dynamic marketing is more flexible than referral or seeding marketing. Un-

fortunately, there is limited existing work in this area. Through advertising, a

company exerts external dynamic influences over time to maximize profits as well

as the achieved extent of diffusion. The dynamic marketing problem aims to max-

imize such profits with a given budget. Taking advantage of the SIR model (2.5)

and the SIS model (2.6), dynamic marketing can be formulated in terms of a class

of optimal control problems.

For convenience, the configurations here are set up as follows. Let the initial

condition to be S(0) = 1n, I(0) = R(0) = 0 for the SIR model (2.5) or S(0) = 1n

and I(0) = 0 for the SIS model (2.6), which implies that the product is adopted in

nowhere initially. With a given input term U(·), the value of S(T ) is determined in

either the SIR model (2.5) and the SIS model (2.6), where T is the final time.

Using the cost matrix W ∈ Rn, we transform the input U(·) into V (·) =

diag [W ]U(·), which is interpreted as the investment in each community. Any

investment term V (·) also determines the value of S(T ). Unless specified other-
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wise, we use D to represent the feasible field for dynamic marketing, i.e. D =

{

V (·)
∣

∣V (t) ≥ 0, 1Tn · V (t) ≤ B(t), for 0 ≤ t ≤ T
}

where B(t) refers to the budget

at time t. Then we define the mapping φ
(2)
T : D → Rn, where φ

(2)
T (V (·)) is the value

S(T ) of the SIR model (2.5) with the input U(·) = diag [W ]−1 V (·). Similarly, we

define φ
(3)
T : D → Rn for the SIS model (2.6).

Then the dynamic marketing problem is formulated as follows:

max ZT
(

1n − φ
(i)
T (V (·))

)

s.t. V (·) ∈ D, i = 2, 3

(3.5)

Here Z ∈ Rn represents the weights of the communities in the overall payoff, i = 2

corresponds to marketing for a system following the SIR model (2.5); similarly, i = 3

is used to denote marketing for a system following the SIS model (2.6). We also

study other variants of the dynamic marketing problem via putting other objectives

into (3.5). These variants will be discussed later in this chapter.

3.2 Continuous Monotone Submodularity

In discrete mathematics, submodularity is an important property of set func-

tions with deep theoretical consequences and many applications [56]. A set function

f : 2M → R is submodular if for every X, Y ⊆M with X ⊆ Y and every x ∈M\Y

we have that f (X ∪ {x}) − f (X) ≥ f (Y ∪ {x}) − f (Y ). Also, such a function f

is monotone if for every X, Y ⊆M with X ⊆ Y we have f(X) ≤ f(Y ).

A famous theorem guarantees that, when using the greedy heuristic to max-

imize a submodular function, the approximation ratio is bounded by 1 − 1/e [56].
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This theorem is used by Kempe et al. in [14,46] to obtain an approximate solution

to the spreading maximization problem using the linear threshold model [15,47] and

the independent cascade model [3, 4]. However, notice that both the domain D for

seeding marketing (3.3) and D for dynamic marketing (3.5) are more complicated

than the discrete domainM in the submodularity definition. Thus, the first step in

proceeding using the submodularity concept and finding associated greedy heuristics

is to generalize the notion of submodularity.

We set the domain as the lattice (M,≤,+, ·) which are closed w.r.t. two

operations, addition + and scalar multiplication ·. Denote 0 as the minimum inM.

The setM is required to possess the following properties.

1. x+ 0 = x.

2. ∀x, y ∈M, x ≤ x+ y.

Two examples of such a domainM are [0,∞)n and {V (·) |V (t) ∈ [0,∞)n , 0 ≤ t ≤ T }.

These coincide, respectively, with the feasible set D in seeding marketing (3.3) and

the feasible set D in dynamic marketing (3.5). Then the definition of continuous

monotone submodularity of a function f :M→ Rn is formulated in the following

four steps, culminating in Definition 3.4.

Definition 3.1 A function f :M→ R with M denoting the domain is monotone

if for ∀x, y ∈M and x ≤ y, we have f(x) ≤ f(y).

Definition 3.2 A function f :M→ R withM denoting the domain is continuous

submodular if for ∀∆x, x, y ∈M and x ≤ y we have
∂

∂α
f(x+α∆x)

∣

∣

∣

α=0
≥

∂

∂α
f(y+
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α∆x)
∣

∣

∣

α=0
.

Definition 3.3 A function f :M→ R withM denoting the domain is continuous

monotone submodular if it is monotone and continuous submodular.

Definition 3.4 A vector function f : M → Rn with M denoting the domain is

continuous monotone submodular if each of its components is continuous monotone

submodular.

The continuous monotone submodularity is easily interpreted from an eco-

nomics viewpoint. If we view f (x) as an profit function while the argument x is the

investment, then that f(·) is continuous monotone submodular means that with the

increasing investment, the utilities also increase but the marginal utility decreases.

The following theorem connects continuous monotone submodularity in Defi-

nition 3.4 with seeding marketing (3.4) and dynamic marketing (3.5).

Theorem 3.2 The function φ(1)(·) in the seeding marketing problem (3.4), and the

functions −φ
(2)
T (·) and −φ

(3)
T (·) in dynamic marketing are all continuous monotone

submodular.

Proof: See Appendix B.4. �

Notice that Theorem 3.2 implies that both the seeding marketing problem

(3.4) and the dynamic marketing problem (3.5) enjoy the continuous monotone

submodularity property, which is a generalization of classical submodularity. This

inspires us to generalize the traditional greedy heuristic to solve these two problems

in a unified framework. We address this issue in the following sections.
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3.3 Greedy Heuristic

In discrete mathematics, the maximization of submodular function is widely

studied in various areas [14, 57, 58]. The simplest example is the maximization

problem with cardinality constraints as follows.

max
S⊆D

f(S), s.t. |S| ≤ m (3.6)

for some m ≥ 0 where the function f : 2M → R is submodular. As Kempe et al.

points out in [14] that this problem is NP-hard and thus to design an efficient algo-

rithm finding the global optimal solution with polynomial complexity is impossible.

An intuitive approach to solve (3.6) is the greedy heuristic [56], which starts

with the empty set S0 = ∅, and in iteration i, adds the element maximizing

that f(Si−1 ∪ {e}) − f(Si−1), i.e. Si = Si−1 ∪ argmax
e
{f(Si−1 ∪ {e})− f(Si−1)}.

Nemhauser et al. [108] shows that such greedy heuristic yields a 1−1/e approxima-

tion ratio.

Our notion of continuous monotone submodularity given in Section 3.2 is an

extension of the traditional notion of submodularity. This inspires us to generalize

the greedy heuristic so as to maximize the continuous monotone submodular func-

tions φ(1)(·), −φ
(2)
T (·) and −φ

(3)
T (·) in both the seeding marketing problem (3.4) and

the dynamic marketing problem (3.5). Section 3.3.1 generalizes the greedy heuristic

to maximize the continuous monotone submodular function and Section 3.3.2 applies

it in the seeding marketing (3.4) and dynamic marketing (3.5) with modifications.
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3.3.1 General Greedy Algorithm

For convenience, we define the notion of “magnitude” as a mapping | · | :M→

[0,+∞) where the magnitude |x| of x ∈M intuitively represents how large x is. To

be a magnitude, such a mapping | · | is required to satisfy the following properties:

1. |0| = 0.

2. ∀x, y ∈M, if x ≤ y then |x| ≤ |y|.

3. ∀x, y ∈M and ∀α, β ≥ 0, |αx+ βy| = α|x|+ β|y|.

For the feasible set D in seeding marketing (3.4) and D in dynamic marketing

(3.5), an intuitive example of the magnitude | · | is the 1-norm. With this magnitude

function, consider the maximization of continuous monotone submodular function

as follows:

max
x∈M

f(x)

s.t. x ∈ Ω

|x| ≤ k

(3.7)

where f : M → R such that f(0) = 0, Ω ⊆ M is a convex subset of M, rep-

resenting the general constraints on x, and k ∈ R+ is a given positive constant.

Inspired by the greedy heuristic in discrete mathematics, we design the following

algorithm (Algorithm 1) to maximize a continuous monotone submodular func-

tion, which we call a “continuous greedy algorithm,” with the assumption that

arg max
|∆x|=1

∂

∂α
f(x+ α∆x)

∣

∣

∣

∣

α=0

is always nonempty ∀x ∈M.
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Algorithm 1 General Continuous Greedy Algorithm

Input: function f :M→ R, general constraints Ω and upper bound l.

set x = 0, s = 0

while |x| < l do

x← x+∆x · d s, ∆x ∈ arg max
|∆x|=1

{

∂

∂α
f(x+ α∆x)

∣

∣

∣

∣

α=0

s.t. ∆x ∈ TC(x,Ω)

}

s← s+ d s

end while

Output: x

Let TC(x,Ω) denote the tangent cone to Ω at x. It should be noted that since

| · | satisfies Property 3 above, we have
d

d s
|x(s)| =

∣

∣

∣

∣

d

d s
x(s)

∣

∣

∣

∣

= 1, and therefore

|x(l)| = l. Let x∗(k) denote the solution to the problem (3.7) while x(l) is the

solution generated by Algorithm 1 to (3.7) where the constraint |x| < k is replaced

by |x| < l. The next theorem connects x∗(k) with x(l).

Theorem 3.3 For all positive k and l we have

f(x(l)) ≥ (1− exp (−l/k)) f(x∗(k))

In particular, when k = l, f(x(l)) ≥
e− 1

e
f(x∗(k)).

Proof: See Appendix B.5. �

3.3.2 Application to Social Network Marketing

Recall the seeding marketing (3.4) and dynamic marketing (3.5) problems:
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max ZTφ(1) (X0)

s.t. X0 ∈ D

(3.4)
max ZT

(

1n − φ
(i)
T (V (·))

)

s.t. V (·) ∈ D, i = 2, 3

(3.5)

According to Theorem 3.2, the functions ZTφ(1) (X0) and −Z
Tφ

(i)
T (V (·)) are

both continuous monotone submodular, therefore both problems fit into the frame-

work of continuous monotone submodularity.

Algorithm 1 requires the existence of arg max
|∆x|=1

∂

∂α
f(x+ α∆x)

∣

∣

∣

∣

α=0

, which is

an assumption and holds for seeding marketing (3.4) because D is compact but is not

necessarily valid for dynamic marketing (3.5) since V (·) lives in a Banach space. This

may cause trouble in theory but is not a big issue for practical purposes. With the

discretization of V (·) by dividing [0, T ] into a number of smaller intervals, the feasible

domain D becomes compact and the existence of arg max
|∆x|=1

∂

∂α
f(x+ α∆x)

∣

∣

∣

∣

α=0

is

guaranteed.

The details of applying Algorithm 1 to seeding marketing (3.4) and dynamic

marketing (3.5) are straightforward and are not detailed here. The main step in

solving dynamic marketing (3.5) is to discretize V (·) by dividing the [0, T ] into small

intervals. Also, dynamic marketing based on the SIR model enjoys an interesting

property which is helpful to further improve the corresponding greedy algorithm;

the following lemma highlights this property.

Lemma 3.3 With any V (·) ≥ 0, ∆V (·) ≥ 0 and the time delay τ > 0, then

−
∂

∂α
φ
(2)
T (V (t) + α∆V (t))

∣

∣

∣

∣

α=0

≥ −
∂

∂α
φ
(2)
T (V (t) + α∆V (t− τ))

∣

∣

∣

∣

α=0

. Here ∆V (t) =

0 for t 6∈ [0, T − τ ].
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Proof: See Appendix B.6. �

Lemma 3.3 highlights an interesting property of the SIR model (2.5): if part of

the external influence over the diffusion process is delayed, then the corresponding

inter-agent communication effects are decreased.

When solving the dynamic marketing based on the SIR model (2.5) for practi-

cal purposes, we discretize V (·) via partitioning the time interval [0, T ] into several

steps. The greedy heuristic serves to iteratively find the pair of the community and

time-step which has the greatest contribution towards the profits increase and add

the corresponding investment by a small unit.

According to Lemma 3.3, an increase of investment in the first time-step always

leads greater profit lift than in other time-steps afterwards. Therefore, we can

modify the greedy heuristic to iteratively find the community which has the greatest

contribution and increase it at the first time-step until the investment in the first

time-step reaches its bound. Then we move on to the second time-step and repeat

the same procedure. With such modification, if there’s still budget to increase the

investment in one time-step, there’s no need to check the time-steps later than it.

In such a way the algorithm efficiency is greatly improved.

More importantly, we can introduce feedback into the greedy heuristics. In

essence, at each iteration the greedy heuristics is simulating the SIR model (2.5)

to predict in which component of the discretized input V (·) should we increase

the investment. Due to the model uncertainties and the external disturbances, a

feedforward simulation has the risk to be divergent from the reality. By Theorem

3.3, we can calculate the investment in the first time-step, exert the input, wait until
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the end of the first time-step, estimate the states, use such estimates to update our

simulation to improvement the prediction accuracy and calculate the investment for

the second time-step, so on so forth.

It should be noted that as long as the continuous monotone submodularity

holds, the Algorithm 1 achieves the approximation ratio of 1− 1/e. Intuitively, the

continuous monotone submodularity widely exists in various aspects concerning the

product diffusion and marketing, therefore the Algorithm 1 may be potentially ap-

plied in other problems besides the seeding marketing (3.4) and dynamic marketing

(3.5) problems formulated in this chapter.

Taking advantage of the recent progress in monotone control systems [59], we

show that the dynamic marketing problems based on the SIS model are intrinsically

convex. Such convexity means that a locally optimal marketing policy that is found

out via using any numerical optimal control toolboxes is automatically globally

optimal. We will address this issue later in this chapter.

3.4 Two Variants of Dynamic Marketing

Up to now, dynamic marketing primarily focuses on maximizing the profits

with a fixed budget. This section deals with another two scenarios: to minimize the

cost with a given profit guaranteed and the trade-off between the profit versus cost.
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3.4.1 Minimum Cost Marketing

Unlike the dynamic marketing problem (3.5), the minimum cost marketing

problem aims to find out the minimum possible investment to achieve a certain

effect of the advertisement diffusion. We formulate the minimum cost marketing

problem as (3.8). Similar to how we deal with the dynamic marketing problem (3.5)

in Section 3.3, we generalize (3.8) into the general minimum cost problem (3.9) and

solve it by modifying the termination condition of the Algorithm 1.

min

∫ T

0

1Tn · V (t) d t

s.t. φ(i) (V (·)) ≤ θ, i = 2, 3

V (t) ≥ 0, t ∈ [0, T ]

(3.8)

min
x∈M

|x|

s.t. f(x) ≥ θ

x ∈ Ω

(3.9)

The function f :M→ R is continuous monotone submodular with f(0) = 0

and θ > 0 is a given threshold. The main idea for our approach to solving (3.9) is

similar to Algorithm 1, with the only difference being the termination condition, i.e.,

we keep increasing x until the value of f(x) reaches the threshold θ. This procedure

is formulated as in algorithmic form as follows:

The following theorem specifies the approximation ratio achieved by Algorithm

2.

Theorem 3.4 For 0 ≤ s ≤ η, we define ξ(s) = min
|∆x|=1







1

∂
∂α
f(x(s) + α∆x)

∣

∣

∣

α=0







.

Also, with a fixed x ∈M we define ν(·, ·) : [0, η]×M→ R as

ν(s, x) =
∂

∂α
f

(

x(s) + α
x ∨ x(s)− x(s)

|x ∨ x(s)− x(s)|

)∣

∣

∣

∣

α=0

· |x ∨ x(s)− x(s)|

Let k1 =
ξ (η)

ξ (0)
and k2 = max

x≤x∗

ν (0, x)

ν (η, x)
where x∗ is the solution to (3.9), then the
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Algorithm 2 General Greedy Algorithm for Minimum Cost Problem

Input: function f :M→ R, general constraints Ω and threshold θ.

set x = 0, s = 0

while f(x) < θ do

x← x+∆x · d s, ∆x ∈ arg max
|∆x|=1

{

∂

∂α
f(x+ α∆x)

∣

∣

∣

∣

α=0

s.t. ∆x ∈ TC(x,Ω)

}

s← s+ d s

end while

Output: |x|

value of the corresponding solution obtained by the Algorithm 2, which is denoted as

η ∈ R, and the optimal value ζ = |x∗| of (3.9) satisfies that

η ≤ [1 + logmin (k1, k2)] ζ

Proof: See Appendix B.7. �

Theorem 3.4 yields a lower bound of the approximation ratio achieved using

Algorithm 2. Intuitively, if the first order derivative ḟ(x) does not decrease too

dramatically as x increases, the approximation ratio
ζ

η
≥ [1 + logmin {k1, k2}]

−1 is

relatively close to 1. Application of Algorithm 2 to minimum cost marketing (3.8)

is straightforward, and the details are not included here.

3.4.2 Trade-Off Between Profit and Cost

In addition to maximizing the profit and minimizing the cost, another problem

of interest is the trade-off between profit and cost. For the SIR model (2.5) and the
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SIS model (2.6), this trade-off problem can be formulated as follows:

max ZT
(

1n − φ
(i)
T (V (·))

)

−

∫ T

0

1Tn · V (t) d t

s.t. V (·) ∈ D, i = 2, 3

(3.10)
max
x∈M

f(x)

s.t. x ∈ Ω

(3.11)

The objective function in the trade-off problem (3.10) is still continuous sub-

modular but no longer monotone. Without loss of generality, we formulate the max-

imization of the general continuous non-monotone submodular function as (3.11).

The function f : M → R is continuous submodular and f(0) = 0. Also, Ω ⊆ M

is a convex subset ofM, representing the general constraints on x. In addition, we

require the Ω satisfy the following properties:

1. For ∀x, y ∈ Ω, we have x ∨ y ∈ Ω and x ∧ y ∈ Ω.

2. For ∀x, y ∈ Ω, if x ≤ y, then ∃z ∈ Ω such that x+z = y; denote z as z = y−x.

An example of the feasible set D in the trade-off problem (3.10) satisfying

these properties is

D = {V (·) |0 ≤ V (t) ≤ Vmax(·), for 0 ≤ t ≤ T }

where Vmax(·) is the upper bound on the investment V (·). Assuming the existence

of such an upper bound Vmax(·) is helpful for theoretically addressing the problem;

moreover we believe that it is reasonable from a practical point of view.

In [109], Feige et al. study the maximization of traditional non-monotone sub-

modular set function. Inspired by their work, we propose the bi-directional local

search algorithm to maximize the continuous non-monotone submodular function

f(x) in (3.11). At each iteration, unlike the greedy algorithm, the local search algo-
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rithm seeks a descent that increases f(x) by a certain ratio instead of maximizing the

increase. Also, the greedy algorithm iteratively increases x but in the bi-directional

local search algorithm, it is also allowed to decease x when necessary. This is also

why we call this algorithm “bi-directional.” Denote the maximum in Ω as ω and ǫ

as the parameter which controls the accuracy of the algorithm, then the local search

algorithm is as follows.

Algorithm 3 Bi-Directional General Local Search Algorithm

Input: function f :M→ R, general constraints Ω and the parameter ǫ > 0.

set x = x0, s = 0 such that f(x0) > 0

while ∃∆x ∈ TC(x,Ω), |∆x| = 1 s.t.
∂

∂α
f(x+α∆x)

∣

∣

∣

∣

α=0

≥
ǫ

|ω|
f(x) or

∂

∂α
f(x−

α∆x)

∣

∣

∣

∣

α=0

≥
ǫ

|ω|
f(x) do

if ∃∆x ∈ TC(x,Ω), |∆x| = 1 s.t.
∂

∂α
f(x+ α∆x)

∣

∣

∣

∣

α=0

≥
ǫ

|ω|
f(x) then

x← x+∆x · d s

else

x← x−∆x · d s

end if

s← s+ d s

end while

Output: x or ω − x if f(ω − x) > f(x)

The following theorem deals with the approximation ratio of the Algorithm 3.

Theorem 3.5 Let x̃ denote the solution obtained by using the Algorithm 3 to solve

the maximization of non-monotone continuous submodular function (3.11) and x∗
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is the optimal solution to (3.11). With ω denoting the maximum in Ω, if f(ω) ≥ 0,

then either f (x̃) ≥
1

3
(1− ǫ) f (x∗) or f (ω − x̃) ≥

1

3
(1− ǫ) f (x∗) holds true.

Proof: See Appendix B.8. �

Theorem 3.5 shows that the approximation ratio of the Algorithm 3 is
1

3
. It

should also be noted that, the value of f(x) increases exponentially until termination

in the Algorithm 3, therefore this algorithm is highly efficient in the running time.

3.5 The Convexity of φ
(3)
T (·) (for SIS model (2.6))

In addition to the continuous monotone submodularity of φ
(3)
T (·) as specified

by Theorem 3.2, with the recent progress in monotone control system [80], we can

show that the φ
(3)
T (·), which connects the investment V (·) and the final percentage

of the susceptible agents S(T ) in the SIS model (2.6), is convex with the following

theorem.

Theorem 3.6 Each component of the function φ
(3)
T (·) : D → Rn as specified in

Section 3.1.3 is convex.

Proof: See Appendix B.9. �

By Theorem 3.6, the dynamic marketing (3.5), the minimum investment (3.8)

and the trade-off (3.10) problems based on the SIS model (2.6) are all essentially

convex. This important observation implies that any locally optimal solution to

these problems generated by an numerical optimization toolbox is automatically

globally optimal. Therefore, it is realistic to solve all the problems formulated
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based on the SIS model (2.6) in this chapter efficiently.

3.6 Numerical Experiments

This section specifies two numerical experiments on seeding marketing (3.4)

and dynamic marketing (3.5) respectively. We implement the Algorithm 1 to solve

each of the problem and analyze the accuracy numerically.

3.6.1 Seeding Marketing

We consider a network consisted of four communities as for the seeding mar-

keting (3.4). The weight vector Z = W = [1 1 1 1]T and the recovery rate Γ =

diag [0.1 0.1 0.1 0.1]. The budget B = 0.4 while the spreading strength matrix is

Λ = λ0
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where we will investigate the cases with λ0 = 0.1, λ0 = 0.8 and λ0 = 3 respectively,

which represents the scenarios where the outbreak does not occur, the outbreak oc-

curs with relatively weak spreading strength and the outbreak occurs with relatively

strong spreading strength.

In order to evaluate the performance of our greedy algorithm, we also need to

find the globally optimal solution numerically. To achieve this, we randomly select

a starting point and employ the MATLAB Optimization Toolbox to find an optimal
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solution. Then we repeat this process 1000 times for different starting points and

select the best solution among them. We treat the solution obtained in this way as

our globally optimal solution to the seeding marketing problem (3.4). Then, in each

scenario, the greedy solution and the optimal solution are given in Table 3.1.

Table 3.1: Comparison between the Greedy Solution and Globally Optimal Solution

λ0 I0 I∗0 ZTφ(1) (diag [W ] I0) ZTφ(1) (diag [W ] I∗0 )

0.1
[0, 0.105,

0.169, 0.126]

[0, 0.109,

0.166, 0.125]

0.4640 0.4641

0.8
[0, 0,

0.111, 0.289]

[0, 0,

0.112, 0.288]

2.1386 2.1387

3 [0, 0, 0, 0.4] [0, 0, 0, 0.4] 3.9578 3.9578

where I0 and I∗0 are the greedy solution and the optimal solution respectively. Al-

though Theorem 3.3 only gives a lower bound for the approximation ratio as 63.2%,

from Table 3.1 we can see that in the seeding marketing problem (3.4) with the

parameters listed above, the accuracy of the greedy heuristic is very high. In fact

our continuous greedy algorithm yields a solution almost identical to the globally

optimal solution.

3.6.2 Dynamic Marketing

We apply the Algorithm 1 to the dynamic marketing (3.5) for the SIS model

(2.6) on a network consisted of four communities. Let the final time T = 20, the
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weight vector Z = W = [1 1 1 1]T and the recovery rate Γ = diag [0.1 0.1 0.1 0.1].

The spreading strength matrix is

Λ = λ0
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with λ0 = 0.3, B(t) ≡ 0.04; λ0 = 0.3, B(t) ≡ 0.4 and λ0 = 1, B(t) ≡ 0.04,

which respectively correspond to the scenarios that the outbreak does not occur

with low budget, the outbreak does not occur with high budget and the outbreak

occurs. We discretize the time horizon into 20 intervals of equal length for practical

implementation of Algorithm 1.

Since φ
(3)
T (·) is convex, we can minimize it by using any numerical toolbox

to find a locally optimal solution. Such a locally optimal solution is automatically

globally optimal due to convexity. Figures 3.1, 3.2 and 3.3 depict the optimal control

solution and the solution generated by the greedy algorithm.

The performance is summarized in Table 3.2, where the greedy and optimal

results refer to the final profits achieved by the optimal solution and greedy solution

respectively. The approximation ratio equals to the greedy result over the optimal

result.

The experiments in this section show excellent practical performance of our

greedy algorithm. Although Theorem 3.3 asserts that the approximation ratio can

be as low as 63.2%, its practical accuracy is actually much better in the experiments

that we have undertaken.
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Figure 3.1: Case 1: λ0 = 0.3 and B(t) ≡ 0.04
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Figure 3.2: Case 2: λ0 = 0.3 and B(t) ≡ 0.4
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Figure 3.3: Case 3: λ0 = 1 and B(t) ≡ 0.04

Table 3.2: Comparing Greedy Solution and Optimal Solution in a Dynamic Mar-

keting Problem

Greedy Result Optimal Result Approximation Ratio (%)

Case 1 0.4363 0.4369 99.86

Case 2 2.1838 2.1840 99.99

Case 3 0.9741 0.9753 99.88
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Chapter 4: Social Network Marketing Games

In marketing, usually multiple companies are simultaneously promoting their

products by maximizing communications between individuals, which is a diffusion of

multiple competitive contagions. Since our SIR model (2.5) or SIS model (2.6) con-

sider diffusions of one contagion, it is necessary to derive new models for diffusions

of competitive products.

In DCG diffusions, after purchasing a product, an agent spontaneously recom-

mends the product to others for a duration of time. Afterwards, he gets tired and

neither make recommendations nor purchase another product in short time, which

means he quits the diffusion. We generalize the SIR model (2.5) to model the DCG

diffusion, where by being infected with product i or recovered from i we mean agents

spontaneously recommend products or stop making the recommendations.

The main difference for FMCG diffusions is that after an agent gets tired, he

may either switches to another product or choose not to use any of them. However,

he is still likely to purchase this product later again. To model the FMCG diffusion,

we generalize current research works on voter models [75–77].

In this chapter we formulate social network marketing games based on the

DCG model and the FMCG model respectively, which is referred to as DCG mar-
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keting game and FMCG marketing game. We show existence of an ǫ-equilibrium

with arbitrarily small ǫ in DCG marketing games and a pure Nash equilibrium in

FMCG marketing games. The Price of Anarchy (PoA) is shown to be bounded by

2. In FMCG marketing game, we show that any two Nash equilibria equal to each

other almost everywhere and design a “best-response” mechanism to seek the Nash

equilibrium distributively.

4.1 DCG Marketing Game

In reality, because of reasons such as geographical locations or education back-

grounds [41], a social network can be divided into a set of communities and agents’

interactions within each community are well-mixed. Therefore each community can

be abstracted into a vertex in the social network while a backbone graph captures

the connections among the communities.

In this chapter we consider diffusions over a population consisting of n well-

mixed communities connected by a backbone network, where each individual (or

agent) belongs to one and only one community. The i-th community includes Ni

agents. A primary feature of communities is that all agents in the same community

have equal probability to be connected with each other (well mixedness). Also, any

two agents from a given pair of communities have equal probability to be connected

(uniform likelihood of connection between agents of two connected communities).

In the remainder of this chapter, we denote by pjj the probability that agents in

the j-th community have an acquaintance with any other selected agent in the same
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community. Similarly. they have probability of pij to know those from the i-th

community.

Assume that there are m players (companies) promoting their products simul-

taneously. As mentioned in Section 1.3, each agent may either be susceptible (has

not purchased any product), infected with the i-th product (active in recommending

the i-th product after purchasing it), or recovered from the i-th product (tired of the

i-th product and no longer recommending it). Because people usually purchase a

DCG no more than once in a short time, there are no agents simultaneously infected

with or recovered from two or more products, and thus in total there are 2m + 1

possible states for each agent.

An agent infected with a product “spreads” this product to his susceptible

neighbors at some infection rate, while he becomes recovered from the product with

some recovery rate. We assume that all the DCGs in competition are substitute

goods with similar price and function, and therefore on average each community

does not have any pa personal preference for each product. In other words, both

infection rates and recovery rates are intrinsic properties of each specific community

and irrelevant to different products. In this chapter, we denote by λ′ij the infection

rate from agents in community j to agents in community i, and by γ′i the recovery

rate for agents in community i.

Also, each player can increase chances that agents in certain communities

adopt their products via advertising in the corresponding communities. To resolve

the conflict that a susceptible agent may be exposed to multiple products simulta-

neously, we assume that he will adopt the product that first “infects” (convinces)
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him.

Let S (t) =

[

s1 (t) s2 (t) . . . sn (t)

]T

, Ik (t) =

[

i1k (t) i2k (t) . . . ink (t)

]T

and Rk (t) =

[

r1k (t) r2k (t) . . . rnk (t)

]T

for k = 1, . . . , m, where sj (t), ijk (t) and

rjk (t) represent the percentage of agents in the j-th community who are suscepti-

ble, infected with the k-th product, or recovered from the k-th product at time t,

respectively. We also use Uk (t) =

[

u1k (t) u2k (t) . . . unk (t)

]T

where ujk (t) is the

advertising strength of player k in community j at time t. Similar to the derivation

of the community-based SIR model in Section 2.1, the DCG competition model is

formulated as follows:

dS(t)

d t
= − diag [S(t)]

m
∑

j=1

(ΛIj(t) + CjUj(t)) (4.1a)

d Ik(t)

d t
= diag [S(t)] (ΛIk(t) + CkUk(t))− ΓIk(t) (4.1b)

dRk(t)

d t
= ΓIk(t) (4.1c)

where Λ = [λij ]n×n is the infection rate matrix and Γ = diag [γi]n×n is the recovery

rate matrix, with λij = Njλ
′
ijpij and γi = γ′i. Also, the diagonal matrix Ck =

diag
[

cjk
]

n×n
is the cost matrix, where cjk denotes the strength of advertising that

player k can exert on community j per unit of cost.

Initially we assume that all agents in the population are susceptible (have not

made any purchase yet), i.e. S(0) = 1n while Ik(0) = Rk(0) = 0 and the competitive

DCGs spread under influence of the companies’ advertising. With any strategy

profile U(·) = [U1(·), U2(·), . . . , Um(·)], the solution of (4.1) is uniquely determined,

and we define that φ
(1)
j (t,U) = Ij(t) + Rj(t) with input U(·). Also, we use weight

vector W ∈ Rn to represent the relative importance of each of the communities. We
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denote the corresponding payoff function for player k as ζ
(1)
k (U) = W T · φ

(1)
k (T,U),

which measures revenue of the k-th player at time T . Here T denotes the duration

of the DCG marketing campaign.

Also, we use Bk (t) ∈ R to denote the budget of player k at time t, i.e. 1Tn ·

Uk(t) ≤ B(t), where each Bk(t) is continuous for t ∈ [0, T ]. Then the feasible

strategy set for player k is denoted as

Dk =
{

Uk(·)
∣

∣Uk(t) ≥ 0, 1Tn · Uk(t) ≤ Bk(t)
}

. Thus, U(·) takes values in the set

D := D1 ×D2 × · · · × Dm

In the DCG marketing game, each player k picks a strategy in Dk to maximize his

utility function ζ
(1)
k (U(·)).

To study Price of Anarchy (PoA), we define social welfare η(1) (U(·)), which

is the total profit of all the players, as η(1) (U(·)) =

m
∑

k=1

ζ
(1)
k (U(·)). For U(·) =

[U1(·), U2(·), . . . , Um(·)], we denote combinations of the k-th player’s competitors’

strategies as

U−k(·) = [U1(·), . . . , Uk−1(·), Uk+1(·), . . . , Um(·)]

Also, we denote the strategy profile in which player k changes his strategy from

Uk(·) into U ′
k(·) as U(·) ⊕ U ′

k(·) = [U1(·), . . . , U
′
k(·), . . . , Um(·)]. All these notations

are commonly used in the existing literature on game theory, such as [110]. Unless

specified otherwise, the model (4.1) and the game defined as above are referred to

as the DCG competition model and the DCG marketing game in the remainder of

this chapter.
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We have now completed the formulation of DCG marketing games. In the rest

of this section we will determine two properties of DCG marketing games that will

be used later in the chapter.

4.1.1 Continuous Monotone Submodularity

In Section 3.2, we introduced the definition of continuous monotone submod-

ularity. The first property that we observe for DCG marketing games is that the

social welfare function η(1)(U(·)) is continuous monotone submodular w.r.t. U(·).

Formally, we have the following theorem.

Theorem 4.1 Social welfare, η(1)(U(·)), is continuous monotone submodular w.r.t.

U(·). To wit, for any U(·) ≤ U′(·), ∆U(·) ∈ D, we have
∂

∂α
η(1) (U(·) + α∆U(·))

∣

∣

∣

∣

α=0

≥

0 and
∂

∂α
η(1) (U(·) + α∆U(·))

∣

∣

∣

∣

α=0

≥
∂

∂α
η(1) (U′(·) + α∆U(·))

∣

∣

∣

∣

α=0

.

Proof: See Appendix B.10. �

4.1.2 Competitiveness

Next, we study a property called competitiveness for DCG marketing games.

Intuitively, a game being competitive means that any player will not benefit if other

players increase their investment. Formally, competitiveness is defined as follows:

Definition 4.1 The marketing game is competitive if any player k increases his

investment from Uk(·) to U
′
k(·) s.t. Uk(·) ≤ U ′

k(·), then all the other players’ payoffs

do not increase, i.e., ζi(t,U(·)) ≤ ζi(t,U(·)⊕ U
′
k(·)) with i 6= k.
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Intuitively in DCG marketing games, no player can benefit from others’ in-

creasing their investment. The following theorem asserts this mathematically.

Theorem 4.2 The DCG marketing game is competitive, i.e., for any Uk(·), U
′
k(·) ∈

Dk such that Uk(·) ≤ U ′
k(·), we have ζ

(1)
i (U(·)) ≤ ζ

(1)
i (U(·)⊕U ′

k(·)) for k = 1, . . . , m

and i 6= k.

Proof: See Appendix B.11. �

We have shown two properties of the DCG marketing game: continuous mono-

tone submodularity and competitiveness. Later in this chapter we will see that these

are useful in the analysis of PoA of the DCG marketing game.

4.2 FMCG Marketing Game

The primary difference between FMCG and DCG is that customers repeatedly

purchase a product in FMCG, and therefore whenever a customer tires of a product

he is currently using, he will immediately switch to adopt a different product or not

use any. However, he is still likely to adopt this product again later. This process is

similar to dynamics of opinion diffusions and can serve as generalized voter models

for the diffusion in competitive FMCGs.

The voter model, which first was proposed to formulate the dynamics of in-

teracting particle systems [75, 111], was later applied to studying formation and

diffusion of opinions across social networks [76, 77, 112–114]. Similar to the presen-

tation in Section 4.1, here we consider the case where m players are simultaneously

promoting their products. The adoption of each product (or none of the products) is
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treated as a different opinion and thus there are in total m+1 opinions propagating

in the population.

We study diffusions of competitive FMCGs in a social network as specified

in Section 4.1, where the population consists of n communities. At every time

instant, an agent using one of the products (or not using any of them) attempts

to persuade his neighbors to adopt his product (or not use any product). Also,

this agent has the potential to switch to another product under the influence of

his connected neighbors. As in Section 4.1, we assume that the agents in each

community on average have no personal preference for any product(s) and use λ′ij

to denote the spreading rate for the influence of an agent from community j on

agents in community i.

Also, each player (company) can increase the chances that agents in a com-

munity adopt his product by advertising in that community. We use Uk (t) =
[

u1k (t) u2k (t) . . . unk (t)

]T

to denote the k-th player’s strategy where ujk (t) is

his advertising investment in community j at time t. Also, we define Xk (t) =
[

x1k (t) x2k (t) . . . xnk (t)

]T

where xjk (t) is the fraction of agents in community j

who are using the k-th product at time t. W take k = 0 to apply to the agents

choosing not to use any product at time t.

Generalizing the voter model in [76] and following a development similar to

that for the community-based SIR model in Section 2.1, the FMCG competition
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model is formulated as

dXk(t)

d t
=diag [1n −Xk(t)] (ΛXk(t) + CkUk(t))

− diag [Xk(t)]

(

∑

i 6=k

ΛXi(t) + CiUi(t)

) (4.2)

where the notation Λ and Ck’s are as in Section 4.1. The dynamics of FMCG

diffusion is composed of two terms. The first term is associated with the agents

using the i-th product trying to influence others to use the same product, while the

second term arises from the influence agents receive from their neighbors.

As in Section 4.1, we use Dk and D to denote the strategy set for player k

and the strategy space, where the strategy profile U(·) = [U1(·), U2(·), . . . , Um(·)].

We assume that initially the whole population has not yet adopted any product,

i.e., X0(0) = 1n. With a given strategy profile U(·), the solution to the FMCG

competition model (4.2) is uniquely determined, and is denoted as φ
(2)
k (t,U(·)) =

Xk (t). The utility function for player k is ζ
(2)
k (U(·)) = W T · φ(2)

k (T,U(·)) where T

is the duration of the FMCG marketing campaign.

In the FMCG marketing game, each player k picks his strategy in Dk to

maximize his utility function ζ
(2)
k (U(·)). In order to analyze the PoA, we also define

social welfare as η(2) (U(·)) =
m
∑

k=1

ζ
(2)
k (U(·)). Unless specified otherwise, the model

(4.2) and the game defined as above are referred to as the FMCG competition model

and the FMCG marketing game in the rest of this chapter. Next ,we will give three

important properties of the FMCG marketing game.
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4.2.1 Competitiveness

Similar to the DCG marketing game, the FMCG marketing game is competi-

tive. The next theorem asserts competitiveness of the FMCG marketing game.

Theorem 4.3 The FMCG game is competitive, i.e., for any Uk(·), U
′
k(·) ∈ Dk

such that Uk(·) ≤ U ′
k(·) we have ζ

(2)
k (U(·)) ≤ ζ

(2)
k (U(·)⊕ U ′

k(·)) and ζ
(2)
i (U(·)) ≥

ζ
(2)
i (U(·)⊕ U ′

k(·)) for any k = 1, . . . , m and i 6= k.

Proof: See Appendix B.12. �

4.2.2 Continuous Monotone Submodularity

The definition of continuous monotone submodularity is given in Section 4.1.1.

As was the case for the DCG marketing game, the social welfare function of the

FMCG marketing game is continuous monotone submodular. We record this asser-

tion as a theorem.

Theorem 4.4 The social welfare function η(2)(·) for FMCG marketing game is con-

tinuous monotone submodular.

Proof: See Appendix B.13. �

4.2.3 Concavity-Convexity

In the foregoing, we have shown that both the DCG and FMCG games enjoy

the properties of continuous monotone submodularity and competitiveness. Notice
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that the FMCG competition model (4.2) has simpler dynamics than the DCG com-

petition model (4.1). Indeed, we will show that the FMCG marketing game features

enjoys a stronger property, called “concavity-convexity.” Its mathematical definition

is given as follows:

Definition 4.2 A marketing game has the concavity-convexity property if the payoff

of each player is concave w.r.t. his own strategy and convex w.r.t. his competitors’

strategies. More specifically, for a strategy profile U(·) and two different strategies

of the k-th player, Uk(·) and U
′
k(·), we have

ζk (αU(·) + (1− α)U(·)⊕ U ′
k(·)) ≥ αζk (U(·)) + (1− α) ζk (U(·)⊕ U

′
k(·))

ζi (αU(·) + (1− α)U(·)⊕ U ′
k(·)) ≤ αζi (U(·)) + (1− α) ζi (U(·)⊕ U

′
k(·))

where α ∈ [0, 1] and i 6= k. Function ζk(·) is the payoff function of the k-th player.

Then the following theorem asserts that the FMCG marketing game has the

aforementioned property.

Theorem 4.5 The FMCG marketing game has the concavity-convexity property of

Definition 4.2.

Proof: See Appendix B.14. �

We will find that the three properties of FMCG marketing games shown in

this section are very important later. It should be noted that the FMCG marketing

game has stronger properties than the DCG marketing game, and thus we expect

to have stronger conclusions for FMCG games in the analysis below.
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4.3 Existence of Nash Equilibrium

For readability of the discussion on Nash equilibrium, we first define the con-

cept of ǫ-equilibrium in the context of marketing games. Intuitively, if all players

choose their strategies according to an ǫ-equilibrium, then a single player’s switching

his strategy will not bring him an additional benefit of more than ǫ.

Definition 4.3 A given strategy profile U(·) is an ǫ-equilibrium, where ǫ ≥ 0, if

were the k-th player to switch his strategy from Uk(·) ∈ Dk to U ′
k(·) ∈ Dk, then

ζk (t,U(·)) ≥ ζk (t,U(·)⊕ U
′
k(·))− ǫ, where ζk(·) is the utility function. The case in

which ǫ = 0 is special; in this situation, the corresponding strategy profile U(·) is

called a Nash equilibrium.

It is well-known that a mixed-strategy Nash equilibrium always exists in games

whose strategy space is finite dimensional. However, both DCG and FMCG mar-

keting games are differential games, whose strategy spaces are of infinite dimension.

In general a Nash equilibrium is not guaranteed to exist in such games. Our con-

clusions on the existence of Nash equilibrium in the DCG and FMCG marketing

games are summarized in the following theorem.

Theorem 4.6 For any ǫ > 0 there exists an ǫ-equilibrium for the DCG marketing

game as formulated in Section 4.1. Also, there exists a Nash equilibrium for the

FMCG marketing game in Section 4.2.

Proof: See Appendix B.15. �
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As mentioned in Section 4.2, FMCG marketing games enjoy stronger proper-

ties than DCG marketing games. This observation is supported in the analysis of

the Nash equilibrium’s existence in this section: the former has a Nash equilibrium

while the latter is only shown to have an ǫ-equilibrium.

4.4 Price of Anarchy

In game theory, Price of Anarchy (PoA) is a measure of efficiency degradation

in a competition due to players’ selfishness. It is a general concept because it applies

in a variety of competitions, and the notion of efficiency can be defined in a variety

of ways. In this chapter, we study the PoA of DCG and FMCG marketing games,

where PoA is defined as follows:

Definition 4.4 Assume that there exists a strategy profile U∗(·) that maximizes

social welfare function η(·)(·). Also, let U(·) be a(n) (ǫ-)equilibrium for this marketing

game. Then the Price of Anarchy (PoA) is defined as

PoA =
η(·) (U∗(·))

η(·) (U(·))

where η(·)(·) refers to the social welfare for both types of the marketing games.

Although the existence of U∗(·) is an assumption in Definition 4.4, according

to [115] or Theorem 5.1.1 in [116], such a U∗(·) is guaranteed to exist in both the

DCG and FMCG marketing games. The following theorem gives an upper bound

of the PoA in marketing games.
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Theorem 4.7 For a given DCG marketing game, ∃δ > 0 such that for any 0 < ǫ <

δ, if U(·) is an ǫ-equilibrium, then η(1) (U∗(·)) ≤ 2η(1) (U(·)). In an FMCG marketing

game with U(·) being the Nash equilibrium, η(2) (U∗(·)) ≤ 2η(2) (U(·)) holds.

Proof: See Appendix B.16. �

Theorem 4.7 shows that the PoA is bounded by 2 for both DCG and FMCG

marketing games. This is reassuring, in that players’ selfishness does not severely

damage efficiency of the marketing game.

4.5 Almost Uniqueness of the Nash Equilibrium

Compared with existence, uniqueness of Nash equilibrium is more rare and

also more valuable. In a real competition, if there are multiple Nash equilibria and

players are not well coordinated, they may play according to different equilibria

and results of the competition thus become unpredictable. However, if the Nash

equilibrium is unique, we may be confident that all players will act based on the

same equilibrium, making the game much more tractable.

For any strategy profile U(·), if we change its value on a zero-measure sub-

set, the payoff for each player remains unchanged. Therefore Nash equilibrium for

marketing games cannot be strictly unique, nor even countable. To resolve this

dilemma, we relax uniqueness of Nash equilibrium into “almost uniqueness” with

the following definition.

Definition 4.5 A marketing game has an almost unique Nash equilibrium if for

any Nash equilibria U1(·), U2(·), we have U1(·) = U2(·) almost everywhere on [0, T ].
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As mentioned in Section 4.2, FMCG marketing games have stronger properties

than DCG games. In this section we focus on analyzing FMCG marketing games.

We have the following theorem result.

Theorem 4.8 If both U1(·) and U2(·) are Nash equilibria for an FMCG marketing

game, then
∥

∥U1(·)− U2(·)
∥

∥

2
= 0.

Proof: See Appendix B.17. �

Here
∥

∥U1(·)− U2(·)
∥

∥

2
= 0 is equivalent to requiring U1(·) = U2(·) almost

everywhere. However, it is actually extremely difficult to find one of such “almost

unique” equilibria. In classical differential game theory [74], it is typical to convert

specifications of a Nash equilibrium in differential games into a corresponding two-

point boundary value problem, which can be quite intractable theoretically. In the

next section, we will circumvent this dilemma and propose a distributive mechanism

for searching for a Nash equilibrium.

4.6 Distributive Algorithm for Seeking a Nash Equilibrium

In the case where each player can repeatedly play the FMCG marketing game,

here is a question we may ask: is there a way that the players can iteratively update

their strategies such that the utility for each of them converges to the utility at

the Nash equilibrium? Fortunately, the answer is in the affirmative.To analyze this

problem, it is useful to first consider the following infinite dimensional dynamical
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system:

dUk (t, ·)

d t
= fk (U (t, ·) , µk(·)) = ∇kζ

(2)
k (U (t, ·)) +


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µk0(·)
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
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














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(4.3)

The Fréchet differentiability of ζ
(2)
k (·) by Theorem 3.2.6 in [116] ensures that the

first term on the right side of (4.3) is well defined. Notice that the solution U (t, s)

of (4.3) involves two dimensions of time. Time t refers to the time scale along which

(4.3) evolves. For each t, U (t, ·) represents a strategy profile, which is a function on

[0, T ], and thus U (t, s) is the value of the strategy profile U (t, ·) at time s ∈ [0, T ].

Before we explain the auxiliary functional vector µk(·) = [µki(·)]n+1 for each k, we

need to define an index set as follows:

Jk (U (t, s)) =

{

i

∣

∣

∣

∣

∣

uki (t, s) ≤ 0, i = 1 . . . n

}

∪

{

0

∣

∣

∣

∣

∣

n
∑

i=1

uki(t, s) ≥ bk(s)

}

The index set Jk (U (t, s)) represents the indices for the constraints that are

violated by the k-th player’s strategy Uk (t, ·) at time s. Then µk (s) is determined

by the following equation:

µk(s) =
µki(s)≥0,(k,i)∈Jk(U(t,s))
µki(s)=0,(k,i)6∈Jk(U(t,s))

argmin ‖fk (U (t, ·) , µk(·)) (s)‖2 (4.4)

Now, (4.3) can be interpreted intuitively: the term∇kζ
(2)
k (U (t, ·)) functions to

maximize the utility ζ
(2)
k (·) by driving Uk (t, ·) in the gradient descent; the quantities

µk(·) are similar to Lagrange multipliers [117], and their inclusion aims to ensure

the strategy Uk (t, ·) stays in the feasible set Dk. We call (4.3) the “best-response”

mechanism.
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In the FMCG marketing game, the almost uniqueness of the Nash equilibrium

ensures the uniqueness of the payoff for each player k at all Nash equilibria given

that the differences between the Nash equilibria on a zero-measure set make no

difference to the diffusion process. Let ζ
(2)
k denote the utility for player k at the Nash

equilibrium. The following theorem asserts that with the best-response mechanism,

the strategy Uk (t, ·) remains in Dk and the corresponding utility converges to ζ
(2)
k .

Theorem 4.9 Let U (t, ·) evolve according to (4.3) starting from any feasible strat-

egy profile U (0, ·) ∈ D. Then for each 1 ≤ k ≤ m, Uk (t, ·) ∈ Dk for any time t.

Also, lim
t→∞

ζ
(2)
k (U (t, ·)) = ζ

(2)
k .

Proof: See Appendix B.18. �

It should be noted that the best-response mechanism (4.3) is by nature a dis-

tributive algorithm, assuming that each player is aware of the opponents’ strategies.

More specifically, each player can update his strategy independently and Theorem

4.9 ensures that his payoff will converge to the utility at the Nash equilibrium.

Also, for practical purposes, in implementation of the algorithm, we need to

discretize U (t, s) w.r.t. both t and s. Following such a discretization the strategy

space D becomes finite dimensional and analysis of both the DCG and the FMCG

marketing games becomes simpler. For example, the existence of the Nash equi-

librium becomes trivial and the analysis of the best-response mechanism (4.3) also

simplifies. However, we emphasize the novelty of the case in which D is a Banach

space, since this extends existing differential game theory [74] and is therefore of

theoretical value.

98



Chapter 5: Diffusion Centrality

In this chapter we study diffusion dynamics from a different perspective: in-

vestigating network centrality for a diffusion process. Centrality is a measure of

importance of a vertex or a group of vertices in a network. It is of interest to find

centrality notions such that the higher the centrality, the more important the vertex

(or group of vertices) is for the network. Of course this depends on the quality that

is of interest. In Section 5.1 we briefly recall several traditional network central-

ity metrics. In Section 5.2 we introduce a notion of sensitivity centrality for the

scenario when a diffusion does not break out, and we relate this notion to Katz

centrality. In Section 5.3 we introduce a notion of vulnerability centrality for the

case in which a diffusion outbreak occurs, and show its connection with eigenvector

centrality for the situation in which the outbreak affects only a small portion of the

whole population.

5.1 Background and Related Work

In this section we recall several traditional centrality metrics, all based on

the static topology of an unweighted network. Let A = [aij ]n×n be the adjacency

matrix associated with the network, where aij = 1 if there is an edge connecting

99



vertex j to vertex i and aij = 0 otherwise. The traditional notions of degree cen-

trality, eigenvector centrality and Katz centrality are summarized in the following

subsections.

5.1.1 Degree Centrality

Degree centrality is perhaps the simplest centrality metric for vertices of a

network. The degree centrality of a vertex equals the number of edges connected to

the vertex. In a directed network, vertices have both an in-degree and an out-degree,

and therefore we can consider both in-degree centrality and out-degree centrality as

follows:

cin−d (i) =
n
∑

j=1

aij cout−d (i) =
n
∑

j=1

aji (5.1)

where cin−d (i) and cout−d (i) are in-degree and out-degree centralities for vertex i.

5.1.2 Eigenvector Centrality

If we view degree centrality of a vertex as a measure of its direct influence

on other vertices, then eigenvector centrality incorporates both direct and indirect

influence. With eigenvector centrality, the importance of each vertex is taken to

scale with the sum of importance of its neighbors. More specifically, if ce (i) is the

importance of vertex i, then we have the following equation:

ce (i) = κ

n
∑

j=1

aijce (j) (5.2)

Here κ is a positive constant. By the Perron-Frobenius theorem, an adjacency

matrix for a strongly-connected network has one and only one eigenvector with all

100



entries positive, and this eigenvector is associated with the largest eigenvalue λ1 (A).

Therefore by inserting κ = λ1 (A) into (5.2), we find that the vector of eigenvector

centralities is the eigenvector of the adjacency matrix A corresponding to the largest

eigenvalue.

5.1.3 Katz Centrality

It is known that only vertices that are in a strongly connected component of

two or more vertices, or the out-component of such a component, can have nonzero

eigenvector centrality [118]. To overcome this issue, we define Katz centrality as

ck (i) = α

n
∑

j=1

aijck (j) + 1 (5.3)

where ck (i) is the Katz centrality for vertex i and α a positive constant. With Ck =
[

ck (1) ck (2) . . . ck (n)

]

, equation (5.3) can be transformed into the following

form:

Ck = (In − αA)
−1 · 1n (5.4)

For (5.4) to be well defined, the constant α should be taken between 0 and

λ1 (A)
−1. A possible extension of the Katz centrality is obtained by allowing the

additive term in (5.3) to not be the same for each vertex. In this way, we can

generalize Katz centrality as follows:

ck (i) = α
n
∑

j=1

aijck (j) + βk (5.5)

This generalized Katz centrality can also be written more compactly as Ck =

(In − αA)
−1 ·β where β =

[

β1 β2 . . . βn

]

. This generalization will be very help-

ful when discussing the diffusion centrality later in this chapter. Most researchers
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set the value of α close to λ1 (A)
−1, in which case Katz centrality turns out to be

numerically close to ordinary eigenvector centrality, but assigns small nonzero values

to vertices that are not in strongly connected components or their out-components.

5.2 Sensitivity Centrality

One notion of diffusion centrality can be defined by increasing the percentage

of infected agents in a specific community and investigating how this will change

the fraction of individuals who are finally affected by the diffusion. This idea rests

on a sensitivity analysis of the diffusion’s final state, and for this reason we refer

to it as sensitivity centrality. In the scenario of viral marketing, a critical step is

to initially target a few “influential” agents, and sensitivity centrality is helpful to

determine how influential each agent is. As specified in Section 3.1.2, in the SIS

model (2.6) the final state does not depend on the initial state. Therefore in this

section we relegate our attention and analysis to the SIR model (2.5).

For the SIR model (2.5), let the initial state be S(0) = 1n− I0−R0, I(0) = I0

and R(0) = R0, then following the derivation in the proof of Theorem 2.4, we have

that the final states I (∞) = 0, S (∞) = 1n − R (∞) and R := R (∞) satisfy the

following equation:

R + diag [1n − I0 − R0] exp
(

−ΓΛ−1 (R− R0)
)

= 1n (5.6)

Following the proof for Lemma 3.2 in Section 3.1.2, we can show that with

given I0, R0 ∈ Rn such that I0, R0 ≥ 0 and I0+Rn < 1n, there exists a unique R ∈ Rn

such that equation (5.6) holds. Therefore we can define a mapping φ : Rn×Rn → Rn
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such that R = φ (I0, R0) is the solution to (5.6).

Before proceeding to define sensitivity centrality, we first investigate the in-

fluence of one specific community over another. Intuitively, with a given initial

condition, if we increase the fraction of agents that are initially infected in one

community, then the influence of this community over other communities can be

viewed in terms of the corresponding increase in the finally affected population.

Let tjk (I0, R0) denote the influence of community j over community k with initial

condition I(0) = I0 and R(0) = R0. Then we have

tjk (I0, R0) =
∂φj (I, R)

∂ik

∣

∣

∣

∣

I=I0,R=R0

(5.7)

where φj(·) and ik are the j-th entry of φ(·) and k-th entry of I. Using the definition

of influence tjk (I0, R0), the sensitivity centrality of each community is the weighted

sum of its influence over other communities, i.e.

cs (j, I0, R0) =

n
∑

k=1

wktkj (I0, R0) (5.8)

Here the positive constant wk is the weight associated with community k. The

most important difference between sensitivity centrality and other static centrality

metrics is that sensitivity centrality is associated with a diffusion process and hence

dependent on the initial conditions of the diffusion. Formally, we define cs (j, I0, R0)

as the sensitivity centrality of community j under the initial condition I(0) = I0

and R(0) = R0.

For convenience, we use the matrix form T (I0, R0) = [tjk (I0, R0)]n×n. To

investigate tjk (I0, R0), we calculate partial derivatives on both sides of (5.6) w.r.t.
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each entry of I0, yielding the following equation:

T (I0, R0)− diag [1− I0 −R0]D (R0) ΛΓ
−1T (I0, R0) = D (R0) (5.9)

Here D (R0) = diag
[

exp
(

−ΛΓ−1 (R− R0)
)]

. To better interpret the influence

matrix T (I0, R0) in (5.9), we first investigate the case where a diffusion does not

break out and I0 = R0 = 0, i.e., none of agents are involved in the diffusion initially.

Then (5.9) is reduced to

T0 − ΛΓ−1T0 = In (5.10)

where T0 = T (I0, R0). From (5.10) we know that T0 =
(

In − ΛΓ−1
)−1

. Since the

diffusion does not break out, we have λ1
(

ΛΓ−1
)

< 1 and therefore T0 =
∞
∑

i=0

(

ΛΓ−1
)i
.

Combining with the equation (5.8), we can conclude that in this case sensitivity

centrality is connected with Katz centrality.

To better understand the connection between sensitivity centrality and Katz

centrality, we consider T0 in the following way. If information contagion spreads

from one community to another via k intermediate communities, then we refer to

it as a k-step spread. Correspondingly, we define k-step transmissibility as the

probability that a k-step spread occurs from an agent in community j to another

agent in community i, which is denoted as t
(k)
ij . According to Section 2.5.1, we have

t
(0)
ij =

λij
γj

, which can be written in compactly as
[

t
(0)
ij

]

n×n
= ΛΓ−1. Similar to

counting walks of a specific length in a network [119], it is straightforward to show

that the k-step transmissibility
[

t
(k)
ij

]

n×n
=
(

ΛΓ−1
)k
. Therefore for initial conditions

I0 = R0 = 0, the influence defined in (5.7) is the sum of the transmissibilities in all

steps from 0 to ∞.
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The foregoing connects sensitivity centrality to Katz centrality in the case

where an outbreak does not occur and I0 = R0 = 0. As long as λ1
(

ΛΓ−1
)

< 1, i.e.,

if the diffusion does not break out, for any initial condition I0 and R0 the sensitivity

centrality in (5.8) with influence matrix T (I0, R0) determined by (5.9) takes the

form of Katz centrality.

It should be noted that in most cases, at least in the scenario of social network

marketing, an outbreak does not occur spontaneously. As long as a diffusion does

not break out, the sensitivity centrality defined in this section is still in the form of

Katz centrality and can be interpreted in the same way as in this Section.

5.3 Vulnerability Centrality

As mentioned in Section 5.2, sensitivity centrality can be readily interpreted in

the case where a diffusion does not break out. However, when there is an outbreak,

according to Definition 2.1 and Theorem 2.1, if spreading strengths dominates re-

covery rates, then an arbitrarily small fraction of initially infected agents will lead to

a significant portion of the whole population being affected by the diffusion. In this

case the idea to define diffusion centrality by generalizing the sensitivity analysis of

final state equations does not work well.

Instead, we want to measure the importance of each community in a diffusion

in terms of the size of the agent population that is influenced by the diffusion

process. This idea arises from an idea that if a community is closer to the center

in a diffusion process, the more information/contagion will propagate through this
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community, and thus the higher the fraction of agents that will finally be influenced.

In other words, we want to use the final state of a diffusion in each community as

an index of its centrality in the diffusion process. We call this notion vulnerability

centrality. We will investigate this notion based on both the SIR model (2.5) and the

SIS model (2.6) in the case that a negligible fraction of agents are initially infected

while all others are susceptible.

According to Theorem 2.1, when spreading strengths dominate recovery rates,

i.e., Λ−Γ 6� 0 or λ1 (Λ− Γ) > 0, an outbreak occurs. Also, the larger λ1 (Λ− Γ) is,

the diffusion breaks out to a greater extent. When λ1 (Λ− Γ) is positive but close

to 0, we call the corresponding outbreak a “weak outbreak.” Here, we investigate

vulnerability centrality in the scenario of a weak outbreak.

For SIR model (2.5), since it is assumed that only a negligible fraction of

agents are initially infected, we just insert I0 = R0 = 0 into (5.6), obtaining

R + exp
(

−ΛΓ−1R
)

= 1n (5.11)

Use the Taylor expansion of exp
(

−ΛΓ−1R
)

=

∞
∑

j=0

1

j!

(

−ΛΓ−1R
)j
, where the

j-th power of a vector is the j-th power of its entries. Then (5.11) can be written as

R = ΛΓ−1R−
1

2!

(

ΛΓ−1R
)2

+
1

3!

(

ΛΓ−1R
)3
− . . . (5.12)

In case of a weak outbreak, we can assume that R is small and thus neglect

higher order terms in (5.12). Therefore vulnerability centrality in the weak outbreak

case is expressed as follows:

R = ΛΓ−1R (5.13)
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This equation indicates that in the weak outbreak case, vulnerability centrality

based on SIR model (2.5) can be approximated as eigenvector centrality for matrix

ΛΓ−1.

For SIS model (2.6), we denote I∞ ∈ Rn as the percentage of agents finally

becoming infected in each community, then using equation (2.6b), we have

diag [1n − I∞] ΛI∞ − ΓI∞ = 0 (5.14)

This can be transformed into

ΛI∞ = diag [1n − I∞]−1 ΓI∞

= Γ
(

I∞ + I2∞ + . . .
)

(5.15)

Similar to the derivation based on SIR model (2.5), we neglect higher order

terms in I∞ in (5.15) and approximate the vulnerability centrality of SIS model (2.6)

in the weak outbreak case as

I∞ = Γ−1ΛI∞ (5.16)

This equation implies that the vulnerability centrality is aligned with the pri-

mary eigenvector of Γ−1Λ. Therefore in case of weak outbreak, vulnerability cen-

trality for both the SIR and SIS models is connected with eigenvector centrality.

Moreover, if the recovery rates are identical for all communities, then Γ−1Λ = ΛΓ−1

and therefore vulnerability centrality is the same for both models.
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Chapter 6: Conclusions and Suggestions for Future Work

In this chapter we briefly summarize the work in this dissertation and discuss

some issues for future work.

6.1 Main Contributions of the Dissertation

In this dissertation we have studied a variety of problems in the area of diffusion

dynamics for large social networks, with a modeling theme that attempts to reduce

computational burden by viewing a large network in terms of a network of connected

homogeneous communities.

In Chapter 2 we proposed a community-based dynamical model for SIR and

SIS infection diffusion. We have shown that our model generalize the well known

mean-field approach and agent-based approach to modeling of SIR and SIS infection

diffusion. Also, we investigated the accuracy of our model both through mathemat-

ical analysis and numerical simulations.

Based on our community-based dynamical model, we introduced a rigorous

definition of infection outbreak and determined conditions for an outbreak to occur.

We studied contributions of inter-community connections to a contagion based on

the outbreak condition. Also, we investigated the final states of an infection diffusion
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as well as the impact of a diffusion on the individual communities.

We also employed a percolation theory approach to study SIR diffusion in

the community-based network. We observed that the predictions of analysis based

on the dynamical model agree with those based on percolation theory. This was

useful not only as an interesting exercise in its own right, but also as a check of

reasonableness of the dynamical model and the ensuing predictions.

In Chapter 3 we studied referral marketing, seeding marketing and dynamic

marketing problems based on the community-based SIR and SIS models. The re-

ferral marketing problem can be easily reformulated in a convex form. However,

seeding marketing is a nonlinear optimization and dynamic marketing involves a

nonlinear optimal control problem, which are both extremely difficult, if not im-

possible, to solve analytically. The difficulties in solving nonlinear optimization

and optimal control problems drove us to seek alliterative, heuristic algorithms. In

Chapter 3, we defined the continuous monotone submodularity property and showed

that both seeding marketing and dynamic marketing enjoy this property. Based on

this property, we proposed a greedy algorithm to solve seeding marketing and dy-

namic marketing problems, and found that the approximate solutions satisfy an

approximation ratio bound of 1−
1

e
.

Also, we formulated two other variants of the dynamic marketing problem,

including determining the minimum possible cost to achieve a given level of prof-

its, and conducting a trade-off between profits and cost. The greedy heuristic was

modified to solve the minimum cost problem and a local bi-directional search al-

gorithm was designed for the trade-off problem both with analysis conducted on
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corresponding approximation ratio, respectively. The greedy heuristic was also con-

verted into closed-loop form for the SIR model, which is more resilient to external

noise and model uncertainties. Also, all the marketing problems based on the SIS

model were shown to be convex, and could therefore be solved numerically for the

globally optimal solution.

The analysis of approximation ratios for all the heuristic algorithms designed

in Chapter 3 was based on continuous submodularity. From the perspective of eco-

nomics, continuous submodularity simply means the decreasing marginal profit with

increasing investment. We believe that this property is satisfied in various problems

related to marketing in social networks, and therefore the heuristic algorithms pro-

posed in Chapter 3 are potentially applicable in other scenarios of marketing strategy

design.

In Chapter 4 we studied the competition of multiple companies that are si-

multaneously promoting their products, all of which are interchangeable, substitute

goods. As a first step, we proposed community-based dynamic models for diffusions

of competitive DCGs as well as FMCGs. Also, we formulated DCG and FMCG

marketing games based on these two models. Then we showed the existence of an

ǫ-equilibrium for the DCG marketing game and a Nash equilibrium for the FMCG

marketing game. We also showed that the Price of Anarchy (PoA) for both games is

bounded by 2. We then showed that any two Nash equilibria of an FMCG marketing

game agree almost everywhere, and designed a distributive mechanism to find Nash

equilibria.

Our contributions in Chapter 4 can be viewed as addressing two basic issues.
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Firstly, we proposed dynamic models for diffusion of competitive contagions on a

social network. This enabled us to study continuous advertising over a specific

network while existing literature either only allows each company to target a set of

agents initially or fails to take the heterogeneous connections of the social network

into account. Also, instead of invoking classical differential game theory, in Chapter

4 we analyzed the PoA of social network marketing games and proposed a mechanism

to seek a Nash equilibrium based on its specific properties. The classical differential

game theory typically converts configurations of a Nash equilibrium into a two-point

boundary value problem, which is extremely difficult to solve analytically. Instead

we designed a best-response mechanism (4.3), which circumvents this dilemma and

finds a Nash equilibrium in an iterative fashion.

In Chapter 5 we proposed concepts of diffusion centrality, which attempts to

rank the importance of each vertex in a diffusion process. The community-based SIR

and SIS models formulated in Section 2.1 were employed for modeling the diffusion

process. We investigated the importance of each community based on connections

between initial states and final states in a diffusion process in case there is no

diffusion outbreak. By undertaking a sensitivity analysis of the equation for the

final state, we showed that diffusion centrality defined in this way is connected with

Katz centrality. We also investigated diffusion centrality in case when an outbreak

occurs. Through approximating the solution of the final state equation, we observed

that this diffusion centrality notion is connected with eigenvector centrality when

only a small portion of agents are affected in the diffusion process.
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6.2 Suggestions for Future Work

The work presented in this dissertation gives a modeling framework that is

conceptually simply and computationally tractable. However there are many issues

requiring further study. Among the most basic is determining and implementing

model parameter identification schemes, and tuning the parameters and models so

that the models are predictive for real world social networks. Finding the best com-

munity detection algorithm for our setting and connecting them with our modeling

framework can also be of great value.

In order to determine the contribution of a specific pair of communities and

time-step to the objective in social network marketing problems, what we typically

do is increase the corresponding input infinitesimally, simulate the diffusion and ob-

serve the resulting increase in profit. This process consumes major computational

resources. Algorithm 1 is very expensive given it involves multiple such simulations

at each iteration. Minoux [120] proposed an accelerated greedy algorithm maximiz-

ing discrete submodular set functions by using ”lazy evaluations,” which often leads

to performance improvements of several orders of magnitude [121, 122]. The idea

of Minoux is based on a fundamental observation that at each iteration it is not

necessary to check all the remaining elements via simulation. Instead, some of the

simulations can be skipped.

To accelerate Algorithm 1 for practical performance, we can further generalize

the ”lazy evaluation” idea from discrete submodular set functions to the continuous

monotone submodular functions. With this generalization, our improved greedy
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heuristics will be more practical in the application of social network marketing.

In addition, the work on dynamic marketing in Chapter 3 is based on the

assumption that Λ and Γ are known. Also, it only applies in deterministic cases,

which means there are either no external disturbances nor time-dependent variations

in Λ or Γ. For practical purposes it is necessary to generalize our work to make it

robust to such external perturbations.

In [123], Streeter et al. proposes an online algorithm for maximizing discrete

submodular set functions [124]. His online algorithm was successfully applied in

sensor selection [125] and webpage ranking [126, 127]. Guillory et al. [128, 129]

suggests its potential application in viral marketing with hidden information. In

the future, we can explore generalizing Streeter’s algorithm to continuous monotone

submodular functions and thus solve dynamic marketing problems with uncertain

or varying Λ or Γ.

Golovin et al. [122] propose an adaptive algorithm for stochastic optimization

of discrete submodular set functions with external disturbances. We can examine

whether it is possible to extend the work in [122] to continuous monotone submod-

ular functions. This could allow solving dynamic marketing problems with external

or even adversarial noises.

In Chapter 4, our research primarily focused on analyzing marketing games

as well as a distributive algorithm for seeking a Nash equilibrium. However, since

not every player will necessarily choose their strategy according to an equilibrium, it

also makes sense to design an online marketing strategy for each individual player in

the presence of competitors. By treating competitors’ marketing efforts as external
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disturbances, the online adaptive algorithm as specified previously may be helpful

for dynamic marketing against the actions of competitors.

In Chapter 4 we considered social network marketing games where players

independently compete with each other. However, in reality some players may

cooperate with each other so as to gain higher profits, and this possibility is not taken

into account in Chapter 4. How to appropriately formulate the players’ cooperation

and how to fairly distribute the profits becomes a problem worthy of further study.

Last but not least, it would also be interesting to apply our SIR and SIS

models to empirical data. Because of the lack of a suitable dataset, the first step

for this numerical work should be using a web crawler to collect the occurrence of

several keywords within a specific time span from a fixed set of users in an online

social network (such as Twitter). Next, we can detect community structures in

the network formed by these users and fit our model to the collected data. This

experimentation will allow us to assess how our models work in practice and explore

possibilities for developing refinements to the models.
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Appendix A: Derivation of the Agent-Based SIR Model

Consider all combinations of agents’ states in the network. Since each agent

can only be susceptible, infected or recovered, there are in total 3N such com-

binations, which could be denoted as x1, , x2, . . . , x3N ∈ {sus, inf, rec}
N . Here

“sus” stands for susceptible, “inf” for infected and “rec” for recovered. Let X =

{x1, . . . , x3N} denote the set of all possible combinations and yi(t) as the probability

that the combination of states at time t is xi.

With all these preparations, a diffusion process is connected with a continuous-

time Markov Chain (CTMC). Fig. A.1(a) shows an example of a Markov state tran-

sition diagram in a graph with N = 2 agents. For the general case, the corresponding

transition rate matrix Q = [qij ]3N×3N [30] is as follows:
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(a) State Transition Diagram without Input

SS

SI IS

SR II RS

IR RI

RR

γ1γ2
λ12 + u1 λ21 + u2

u1u2

γ1γ2u1 u2

γ2γ1

(b) State Transition Diagram with Input

Figure A.1: Markov chain state transition diagram for a network of size 2
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
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







∑

l 6=k

aklλkl1{xl
j=inf} if xkj = sus, xki = inf

and xlj = xli for l = 1, 2, . . . , N, l 6= k

γk if xkj = inf, xki = rec

and xlj = xli for l = 1, 2, . . . , N, l 6= k

−
∑

k 6=j

qkj if i = j

0 otherwise

(A.1)

Here xki represents the k-th agent’s state in combination xi. In addition,

1{xl
j=inf} = 1 if xlj = inf and 1{xl

j=inf} = 0 otherwise.

Then time dependence of the probability vector y(t) = [y1(t) y2(t) . . . y3N (t)]
T

satisfies the following differential equation:

d

d t
y(t) = Qy(t) (A.2)

To serve our purpose to incorporate external influences on diffusion processes,
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we would make further modifications on the previous model by Youseff [30]. We

assume that recovering processes are spontaneous and cannot be altered. However,

people can influence infecting processes. In addition to being influenced with in-

fected neighbors, we can also put them under the influence of external source while

the strength of such source can be artificially adjusted. In advertisement promotion

scenarios, it means we can show advertisements in people’s daily life in addition

to the “word-of-mouth” effects as well inter-individual interactions to increase the

chance of people knowing our products.

Let u(t) =

[

u1(t) u2(t) . . . uN(t)

]

stand for the external influence, where

ui(t) is the strength of such influence for agent i at time t. With the influence u(t),

the Markov state transition diagram becomes Fig. A.1(b) and then transition rate

matrix Q′(u) =
[

q′ij(u)
]

3N×3N
would become as follows:

q′ij(u) =


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


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
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

∑

l 6=k

aklλkl1{xl
j=inf} + uk if xkj = sus, xki = inf

and xlj = xli for l = 1, 2, . . . , N, l 6= k

γk if xkj = inf, xki = rec

and xlj = xli for l = 1, 2, . . . , N, l 6= k

−
∑

k 6=j

qkj if i = j

0 otherwise

(A.3)
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For convenience, we define Bk =
[

bkij
]

3N×3N
with k = 1, 2, . . . , N as follows:

bkij =



































1 if xkj = sus, xki = inf

and xlj = xli for l = 1, 2, . . . , N, l 6= k

0 otherwise

With definition of Bk’s, we can write Q′(u) = Q +
N
∑

k=1

uk(t)Bk. Thus time

dependence of the probability state vector y(t) would obey the following differential

equation:

d

d t
y(t) = (Q+

N
∑

k=1

uk(t)Bk)y(t) (A.4)

As for a network consisted of N agents, the state of each agent j at any

time t, denoted as Xj(t), in the network can be susceptible, infected or recovered.

Let sj(t) = Pr [Xj(t) = sus], ij(t) = Pr [Xj(t) = inf] and rj(t) = Pr [Xj(t) = rec]

denoting the probability that agent j is susceptible, infected or recovered. Applying

Markov theory specifically to study such probabilities [29,30], we have the following

equation:

d

d t

















sj(t)

ij(t)

rj(t)

















=





















−

(

N
∑

k=1

ajkλjk1{Xk=inf} + uj(t)

)

0 0

N
∑

k=1

ajkλjk1{Xk=inf} + uj(t) −γi 0

0 γi 0





































sj(t)

ij(t)

rj(t)

















(A.5)

Here the indicator function 1{Xk=inf} equals to 1 when Xk(t) = inf and equals

to 0 otherwise.

It should be noted that the equation (A.5) is no longer Markovian since transi-

tion rates from being susceptible to infected for each agent is also a random variable,
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which depends on the rest of the network. With the assumption thatXi (t) ⊥⊥ Xj (t)

for any 1 ≤ i, j ≤ N and time t, we would like to use the mathematical expectation

of the transition rate to replace the actual rate.

Notice that E
[

1{Xk(t)=inf}

]

= Pr [Xk(t) = inf] = ik(t) while ajk’s, λkj’s and γi’s

are all given constants. Therefore we have

E

[

N
∑

k=1

ajkλjk1{Xk=inf} + uj(t)

]

=
N
∑

k=1

ajkλjkik(t) + uj(t)

Then the equation (A.5) becomes

d sj(t)

d t
= −sj(t)

(

N
∑

k=1

ajkλjkik(t) + uj(t)

)

d ij(t)

d t
= sj(t)

(

N
∑

k=1

ajkλjkik(t) + uj(t)

)

− γjij(t)

d rj(t)

d t
= γjij(t)

(A.6)

The equation (A.6) is the agent-based SIR dynamical model we derive from

Markovian model (A.4). Notice that we replace transition rates of each state with

the corresponding mathematical expectation to derive agent-based SIR model (A.6),

therefore (A.6) is actually an approximation of Markovian model (A.4).
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Appendix B: Proofs of Several Theorems

B.1 Proof for Theorem 3.1

We prove it by contradiction here. If R is the solution to (3.2) and the equality

on k-th row of this constraint does not hold, i.e. rk +exp
([

−Λ′Γ−1R
]

k

)

< 1, where

[·]k is the k-th component of the vector. Then if we increase rk by a little bit, rk +

exp
([

−Λ′Γ−1R
]

k

)

< 1 still holds. Meanwhile, for the other rows of this inequality,

i.e. rj + exp
(

[

−Λ′Γ−1R
]

j

)

≤ 1 with j 6= k. Since rj’s are not changed while rk is

increased by a little bit, noted that all the components of Λ′Γ−1 are nonnegative,

the term exp
(

[

−Λ′Γ−1R
]

j

)

is at least not increased. Thus the constraint rj +

exp
(

[

−Λ′Γ−1R
]

j

)

≤ 1 still holds but the objective function ZT · R is increased.

This is a contradiction.

B.2 Proof for Lemma 3.1

Without loss of generality, let’s assume that Λ is irreducible. This is because

if Λ is reducible, then the associated network can be divided into several connected

components, and we can apply Theorem 3.1 on each component respectively.

If the nonzero R satisfies that R ∈ [0, 1]n, then first we will show that R <
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ΛΓ−1R in the component-wise sense by contradiction. Otherwise we have rk ≥

[

ΛΓ−1R
]

k
for some 1 ≤ k ≤ n, where [·]k is the k-th component of the vector.

On the other hand, rk + exp
(

−
[

ΛΓ−1R
]

k

)

= 1. Since rk ≥
[

ΛΓ−1R
]

k
, we have

rk + exp(−rk) ≤ 1. For rk ≥ 0, the only possibility is that rk = 0. However,

according to Theorem 2.5 in Section 2.4.2, if Λ is irreducible, rk = 0 means that

R = 0, which is a contradiction.

Now since R < ΛΓ−1R, with R′ = Γ−1R we have ΛR′ > ΓR′, i.e. (Λ−Γ)R′ > 0.

Since R′ is nonzero, we have R′T (Λ− Γ)R′ > 0. Therefore we may conclude that

Λ− Γ 6� 0. Proved.

B.3 Proof for Lemma 3.2

Suppose that for some X0, ∃R1, R2 ∈ [0, 1]n where R1 6= R2 are both the

solutions. Define h(α) as

h (α) = (αR1 + (1− α)R2)

+ diag
[

1n − diag [W ]−1X0

]

exp
(

−ΛΓ−1 (αR1 + (1− α)R2)
)

Obviously that h (·) is strictly convex w.r.t. α. Select k ∈ arg min
1≤k≤n
rk1<rk2

{

rk2
rk2 − r

k
1

}

and α0 =
rk2

rk2 − r
k
1

where rqp represents the q-th component of Rp, p = 1, 2 and

1 ≤ q ≤ n. Note that h (·) is convex, h (0) = h (1) = 1n. Since α0 > 1, therefore

h (α0) > 1n. However, since α0R1 + (1− α0)R2 ≥ 0 with its k-th entry being 0,

therefore hk(α0) = exp

(

−
n
∑

i=1

λkiγ
−1
i

(

α0r
i
1 + (1− α0) r

i
2

)

)

≤ 1, where hk(·) is the

k-th component of h(·). This is a contradiction. Proved.
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B.4 Proof for Theorem 3.2

We are going to show the continuous monotone submodularity of the φ(1)(·),

−φ
(2)
T (·) and −φ

(3)
T (·) respectively.

B.4.1 Continuous Monotone Submodularity of φ(1)(·)

First, we need to show the monotonicity of φ(1)(·) and the following lemma is

helpful.

Lemma B.1 For any feasible X0 ∈ D, if R′ ∈ [0, 1]n satisfies that

R′ + diag
[

1n − diag[W ]−1X0

]

exp
(

ΛΓ−1R′
)

≤ 1n

then R = φ(1)(X0) ≥ R′.

Proof: We show by contradiction. Define index set Z =
{

j
∣

∣

∣
rj < r′j , 1 ≤ j ≤ n

}

where rj is the j-th component of R, r′j is the j-th component of R′ and xj is

the j-th component of X0. If Z 6= ∅, then similar to the proof of Lemma 3.2, let

k ∈ argmin
k∈Z

{

r′k
r′k − rk

}

and α0 =
r′k

r′k − rk
. It’s easy to check that α0 > 1 Also, let

define hk(α) as follows:

hk(α) = αrk + (1− α)r′k +
(

1− w−1
k xk

)

exp

(

−
n
∑

i=1

λkiγ
−1
i (αri + (1− α)r′i)

)

It is easy to verify that hk(α) is strictly convex w.r.t. α. Also, because hk(0) ≤

1, hk(1) = 1 and α0 > 1, we can conclude that hk(α0) > 1. However, because α0rk+

(1−α0)r
′
k = 0, then hk(α0) =

(

1− w−1
k i′k

)

exp

(

−
n
∑

i=1

λkiγ
−1
i (α0ri + (1− α0)r

′
i)

)

<

1. This is a contradiction.
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With Theorem B.1, we can show the following corollary about φ(1)(·) being

monotone:

Corollary B.1 For any feasible X0, X
′
0 ∈ D, if X0 ≤ X ′

0 then φ(1)(X0) ≤ φ(1)(X ′
0).

Proof: Let R = φ(1)(X0), then easily we can show

R + diag
[

1n − diag[W ]−1X ′
0

]

exp
(

ΛΓ−1R
)

≤ 1n

Using Theorem B.1, we have R′ = φ(1)(X ′
0) ≥ φ(1)(X0) = R. Proved. �

The next lemma is very helpful to show the continuous submodularity of φ(1)(·).

Lemma B.2 For any feasible X0, X
′
0 ∈ D such that X0 ≤ X ′

0, with ∀β ∈ [0, 1], we

have

φ(1) (βX0 + (1− β)X ′
0) ≥ βφ(1) (X0) + (1− β)φ(1) (X ′

0)

Proof: Let R = φ(1)(X0) and R′ = φ(1)(X ′
0). By Theorem B.1 we know that

R ≤ R′. Then, let’s look at the following inequalities:

(βR + (1− β)R′) + diag
[

1n − diag[W ]−1 (βX0 + (1− β)X ′
0)
]

· exp
(

−ΛΓ−1 (βR+ (1− β)R′)
)

≤ (βR + (1− β)R′) + diag
[

1n − diag[W ]−1 (βX0 + (1− β)X ′
0)
]

·
(

β exp
(

−ΛΓ−1R
)

+ (1− β) exp
(

−ΛΓ−1R′
))

≤ (βR + (1− β)R′) + β diag
[

1n − diag[W ]−1X0

]

exp
(

−ΛΓ−1R
)

+ (1− β) diag
[

1n − diag[W ]−1X ′
0

]

exp
(

−ΛΓ−1R′
)
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=β
(

R + diag
[

1n − diag[W ]−1X0

]

exp
(

−ΛΓ−1R
))

(1− β)
(

R′ + diag
[

1n − diag[W ]−1X ′
0

]

exp
(

−ΛΓ−1R′
))

=1n

The first inequality holds because each component of exp
(

ΛΓ−1R
)

is convex

w.r.t. R. The second equality holds in that exp
(

−ΛΓ−1R
)

≥ exp
(

−ΛΓ−1R′
)

since

R ≤ R′. Using Lemma B.1, we can see that φ(1) (βX0 + (1− β)X ′
0) ≥ βφ(1) (X0) +

(1− β)φ(1) (X ′
0). Proved. �

The property of φ(1)(·) in Lemma B.2 is quite similar to convexity. However,

we need to notice that Lemma B.2 requires that X0 ≤ X ′
0 while the convexity is not

limited by it. Then we can come to the following lemma, which is very close the

definition of continuous submodularity.

Lemma B.3 For any feasible X0 ≤ X ′
0 and any ∆X such that X0+∆X, X ′

0+∆X ∈

D, we have that φ(1) (X0 +∆X)− φ(1)(X0) ≥ φ(1)(X ′
0 +∆X)− φ(1)(X ′

0).

Proof: For convenience let’s denote f(I, R) as following

f(X,R) = R + diag
[

1n − diag[W ]−1X
]

exp
(

−ΛΓ−1R
)

Then, with fixed I, the first-order derivative of f(I, R) with respect to R is

∂

∂R
f(X,R) = In − diag

[

1n − diag[W ]−1X
]

diag
[

exp
(

−ΛΓ−1R
)]

ΛΓ−1 (B.1)

where In represents the identity matrix. Using Theorem B.1 in combination with

(B.1), we can see that

∂

∂R
f(X,R)

∣

∣

∣

∣

X=X0,R=φ(1)(X0)+∆R

≤
∂

∂R
f(X,R)

∣

∣

∣

∣

X=X′

0,R=φ(1)(X′

0)+∆R

(B.2)

124



for any ∆R such that R1 +∆R, R2∆R ∈ D.

Let R1 = φ(1)(X0), R
′
1 = φ(1)(X0 + ∆X), R2 = φ(1)(X ′

0) and R
′
2 = φ(1)(X ′

0 +

∆X). Then using (B.2) we have

f (X0 +∆X,R1 + (R′
2 −R2))− f(X0 +∆X,R1)

=

∫ R1+(R′

2−R2)

R1

∂

∂R
f(X0 +∆X,R) dR

≤

∫ R2+(R′

2−R2)

R2

∂

∂R
f(X ′

0 +∆X,R) dR

=f (X ′
0 +∆X,R2 + (R′

2 −R2))− f(X
′
0 +∆X,R2)

=f (X ′
0, R2)− f(X

′
0 +∆X,R2)

On the other hand,

f (X ′
0, R2)− f(X

′
0 +∆X,R2)

=diag
[

diag[W ]−1∆X
]

exp
(

−ΛΓ−1R2

)

≤ diag
[

diag[W ]−1∆X
]

exp
(

−ΛΓ−1R1

)

=f (X0, R1)− f(X0 +∆X,R1)

=f (X0 +∆X,R′
1)− f(X0 +∆X,R1)

Therefore we have f (X0 +∆X,R1 + (R′
2 − R2)) ≤ f (X0 +∆X0, R

′
1) = 1n.

Using Theorem B.1, we have R1 + (R′
2 − R2) ≤ R′

1, namely R′
1 − R1 ≥ R′

2 − R2.

Proved. �

Now with all these preparations, we can come to the following theorem showing

that φ(1)(·) is continuous monotone submodular.
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Theorem B.1 For any X0 and any ∆X ≥ 0 such that X0, X0+∆X ∈ D, we have

∂

∂α
φ(1)(X0+α∆X)

∣

∣

∣

α=0
≥ 0. Also, with any X ′

0 ≥ X0 such that X ′
0, X

′
0+∆X ∈ D,

we have
∂

∂α
φ(1)(X0 + α∆X)

∣

∣

∣

α=0
≥

∂

∂α
φ(1)(X ′

0 + α∆X)
∣

∣

∣

α=0
.

Proof: First of all, for ∀0 < α1 < α2, by using Theorem B.2, we have

α1

α2
φ(1) (X0 + α2∆X) +

α2 − α1

α2
φ(1)(X0) ≤ φ(1)(X0 + α1∆X)

Therefore
φ(1)(X0 + α1∆X)− φ(1)(X0)

α1

≥
φ(1)(X0 + α2∆X)− φ(1)(X0)

α2

. This

means that we have
φ(1)(X0 + α∆X)− φ(1)(X0)

α
is increasing as α decreases. There-

fore
φ(1)(X0 + α∆X)− φ(1)(X0)

α
is convergent (including being convergent to +∞)

as α→ 0+ and thus
∂

∂α
φ(1)(X0+α∆X)

∣

∣

∣

α=0
exists. The fact that φ(1)(·) is monotone

guarantees that
∂

∂α
φ(1)(X0 + α∆X)

∣

∣

∣

α=0
≥ 0.

With Theorem B.3, we can show that for α > 0,

φ(1)(X0 + α∆X)− φ(1)(X0)

α
≥
φ(1)(X ′

0 + α∆X)− φ(1)(X ′
0)

α

Therefore we have that
∂

∂α
φ(1)(X0 + α∆X)

∣

∣

∣

α=0
≥

∂

∂α
φ(1)(X ′

0 + α∆X)
∣

∣

∣

α=0
.

Proved. �

It should be noted that the derivative
∂

∂α
φ(1)(X0 + α∆X)

∣

∣

∣

α=0
is potential to

be infinite. However, since each component of
∂

∂α
φ(1)(X0 + α∆X)

∣

∣

∣

α=0
gets smaller

as X0 gets greater, mostly
∂

∂α
φ(1)(X0 + α∆X)

∣

∣

∣

α=0
takes a regular real value.

By now, we have showed the continuous monotone submodularity of φ(1)(·).
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B.4.2 Continuous Monotone Submodularity of −φ
(2)
T

Before we proceed into details, we will restate the following lemma from [59],

which will be helpful later.

Lemma B.4 Let ΦA(t, s) be the fundamental matrix to the system

ẋ(t) = A(t)x(t)

where A(t) is locally bounded and Metzler, i.e. Aij ≥ 0 for i 6= j then we have

ΦA(t, s) ≥ 0, t ≥ s.

Proof: For any compact interval I one can find a constant c such that B(t) :=

A(t) + c · In ≥ 0 for t ∈ I. We have ΦA(t, s) = exp (−c(t− s))ΦB(t, s) where

d

d t
ΦB(t, s) = B(t)ΦB(t, s)

ΦB(s, s) = In

from which follows that ΦB(t, s) ≥ 0 for t ≥ s and [s, t] ⊆ I. Proved. �

Firstly we discuss about the monotonicity of φ
(2)
T (·) and the following lemma

illustrates this.

Lemma B.5 For any V (·) ≥ 0 and continuous ∆V (·) ≥ 0, we have the inequality

∂

∂α
φ
(2)
T (V (·) + α∆V (·))

∣

∣

∣

∣

α=0

≤ 0 and thus φ
(2)
T (V (·) + α∆V (·)) ≤ φ

(2)
T (V (·)).

Proof: In the SIR model (2.5) one of the three equations is redundant since S(t)+

I(t) + R(t) = 1n is constant. Therefore we consider the two equations of them as
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follows:

dSα(t)

d t
= − diag [Sα(t)]

(

Λ (1n − Sα (t)−Rα (t)) + diag[W ]−1 (V (t) + α∆V (t))
)

dRα(t)

d t
= Γ (1n − Sα (t)− Rα (t))

(B.3)

where Sα(t) and Rα(t) means that S(t) and R(t) are related to α.

Fix T , V (·) and ∆V (·). For convenience let’s define ∆S(α, t) := Sα(t)− S0(t)

and ∆R(α, t) := Rα(t) − R0(t). Calculate the partial derivative w.r.t. α on both

sides of the equation (B.3), we have

d

d t

∂

∂α
∆S(α, t) = A11(t)

∂

∂α
∆S(α, t) + A12(t)

∂

∂α
∆R(α, t) +B1(t)∆V (t)

d

d t

∂

∂α
∆R(α, t) = A21(t)

∂

∂α
∆S(α, t) + A22(t)

∂

∂α
∆R(α, t) +B2(t)∆V (t)

(B.4)

where A11(t) = − diag
[

Λ (1n − Sα (t)− Rα (t)) + diag[W ]−1 (V (t) + α∆V (t))
]

+

diag[Sα(t)]Λ, A12(t) = diag [Sα(t)] Λ, A21(t) = A22(t) = −Γ. For the matrix B,

B1(t) = − diag[Sα(t)] diag[W ]−1 and B2(t) = 0.

Without loss of generality, we assume that the nonnegative V (0) 6= 0. Looking

at the equation (B.4), since ∆S(α, 0) = ∆R(α, 0) = 0 and B1(0) < 0, which means

that the term B1(t)∆V (t) < 0 dominates the other terms around the neighborhood

of t = 0+, therefore
∂

∂α
∆S(α, t) < 0 around t = 0+ for any α ≥ 0. If for some

α > 0,
∂

∂α
∆S(α, t) is not negative on t ∈ [0, T ], we can find a t0 ∈ [0, T ] so that

at least one component of
∂

∂α
∆S(α, t0), denoted as

∂

∂α
∆k

S(α, t0), equals to zero and

for ∀0 < t < t0,
∂

∂α
∆S(α, t) < 0.

Let’s look back at (B.3), for the first equation, we can divide the j-th row of

it by the corresponding sj(t). Notice that
d sj(t)

sj(t)
= d log (sj(t)), and Γ−1dRα(t)

d t
=
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Iα(t), we have

d log (Sα(t)) = −ΛΓ
−1 dRα(t)− diag [W ]−1 (V (t) + α∆V (t)) d t

Integrate both sides the this equation from t = 0 to t = t0, we have

log(S(t0)) = −ΛΓ
−1R(t0)−

∫ t0

0

diag [W ]−1 (V (t) + α∆V (t)) d t

Calculate the partial derivative w.r.t. α of both sides of the equation, we have

diag [Sα(t0)]
−1 ∂

∂α
∆S(α, t0) = −ΛΓ

−1 ∂

∂α
∆R(α, t0)−

∫ t0

0

diag [W ]−1∆V (t) d t

Since
∂

∂α
∆k

S(α, t0) = 0, Sα(t0) > 0 and

∫ t0

0

∆V (t) d t > 0, it is easy to show

that

[

ΛΓ−1 ∂

∂α
∆R(α, t0)

]

k

< 0, where [·]k is the k-th component of the given vector.

However, if we look at the second equation in (B.4), we have that

[

∂

∂α
ΛΓ−1∆R(α, t0)

]

k

= −

∫ t0

0

[

ΛΓ−1 exp (−Γ(t0 − t)) Γ
∂

∂α
∆S(α, t)

]

k

d t

As we assume, for t ∈ [0, t0],
∂

∂α
∆S(α, t) ≤ 0. Since exp (−Γ(t0 − t)) Γ > 0,

therefore exp (−Γ(t0 − t)) Γ
∂

∂α
∆S(α, t) ≤ 0 and thus

[

∂

∂α
ΛΓ−1∆R(α, t0)

]

k

≥ 0.

This is a contradiction.

Therefore
∂

∂α
∆S(α, t) < 0 for t ∈ [0, T ], α ≥ 0. Thus φ

(2)
T (V (t) + α∆V (t)) ≤

φ
(2)
T (V (t)). �

Theorem B.5 shows the monotonicity of φ
(2)
T (·). Before we proceed to the

continuous submodularity part, we need first to show the following lemma, which

would be helpful later.

Lemma B.6 The matrices A(1)(t) and A(2)(t) are continuous time-variant and Met-

zler such that A(1)(t) ≥ A(2)(t) for any t ≥ 0. Also, B(1) (t) and B(2) (t) are continu-

ous time-variant matrices such that B(1)(t) ≥ B(2)(t) ≥ 0 for any t ≥ 0. Then for the
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dynamical system ẋ(t) = A(1)(t)x(t)+B(1)(t)u(t) and ẏ(t) = A(2)(t)y(t)+B(2)(t)u(t)

with equal initial condition x(0) = y(0) > 0 and nonnegative input u(t), we have

x(t) ≥ y(t).

Proof: Firstly, ẋ(0) − ẏ(0) =
(

A(1)(0)− A(2)(0)
)

x(0) +
(

B(1)(0)−B(2)(0)
)

u(0).

Because A(1)(t)−A(2)(t) ≥ 0, B(1)(t)−B(2)(t) ≥ 0 ,x(0) > 0 and u(t) ≥ 0, we have

ẋ(0)− ẏ(0) ≥ 0. Therefore in a neighborhood around t = 0+, we have x(t) ≥ y(t).

However, if x(t) ≥ y(t) does not hold for any t ≥ 0, in that case there exist

some t0 ≥ 0 such that x(t) ≥ y(t) for t ∈ [0, t0] and at time t = t0, ∃1 ≤ k ≤ n, we

have xk(t0) = yk(t0), ẋk(t0) < ẏk(t0).

It should be noted that according to Theorem B.4, we have x(t) ≥ 0 and

y(t) ≥ 0 for ∀t ≥ 0. Therefore we can see that

ẋk(t0)− ẏk(t0) =
n
∑

i=1

[(

a
(1)
ki (t0)xi(t0)− a

(2)
ki (t0)yi(t0)

)

+
(

b
(1)
ki (t0)− b

(2)
ki (t0)

)

ui(t0)
]

≥
n
∑

i=1

(

a
(1)
ki (t0)xi(t0)− a

(2)
ki (t0)yi(t0)

)

≥
n
∑

i=1

(

a
(1)
ki (t0)− a

(2)
ki (t0)

)

yi(t0) ≥ 0

This is a contradiction. Therefore x(t) ≥ y(t) for ∀t ≥ 0. �

Next, we can show the continuous submodularity of −φ(2)
T (·) with the following

lemma:

Lemma B.7 For any 0 ≤ V (t) ≤ V ′(t) and ∆V (t) ≥ 0, we have
∂

∂α
φ
(2)
T (V (t) +

α∆V (t))

∣

∣

∣

∣

∣

α=0

≤
∂

∂α
φ
(2)
T (V ′(t) + α∆V (t))

∣

∣

∣

∣

∣

α=0

.
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Proof: In the proof for Theorem B.5, with the input V (t) + α∆V (t) we have that

d

d t

∂

∂α
∆R(α, t) = −Γ

(

∂

∂α
∆S(α, t) +

∂

∂α
∆R(α, t)

)

(B.5)

and

∂

∂α
∆S(α, t) = − diag [Sα(t)]

(

ΛΓ−1 ∂

∂α
∆R(α, t) +

∫ t

0

diag [W ]−1∆V (τ) d τ

)

(B.6)

Insert (B.6) into (B.5), we have

d

d t

∂

∂α
∆R(α, t) =Γ

(

(

diag [Sα(t)] ΛΓ
−1 − In

) ∂

∂α
∆R(α, t)

+ diag [Sα(t)]

∫ t

0

diag [W ]−1∆V (τ) d τ

)

We denote S ′
α(t) and R

′
α(t) as the solution to the following equations:

dS ′
α(t)

d t
= − diag [S ′

α(t)]
(

ΛI ′α(t) + diag[W ]−1 (V ′(t) + α∆V (t))
)

dR′
α(t)

d t
= ΓI ′α(t)

and ∆S′(α, t) = S ′
α(t)− S

′
0(t), ∆R′(α, t) = R′

α(t)− R
′
0(t). Similarly, we have

d

d t

∂

∂α
∆R′(α, t) =Γ

(

(

diag [S ′
α(t)] ΛΓ

−1 − In
) ∂

∂α
∆R′(α, t)

+ diag [S ′
α(t)]

∫ t

0

diag [W ]−1∆V (τ) d τ

)

Notice that both
(

diag [Sα(t)] ΛΓ
−1 − In

)

and
(

diag [S ′
α(t)] ΛΓ

−1 − In
)

are con-

tinuous Metzler matrices. By Lemma B.5, we have

diag [Sα(t)] ΛΓ
−1 − In ≥ diag [S ′

α(t)] ΛΓ
−1 − In

because diag [Sα(t)] ≥ diag [S ′
α(t)]. Using Theorem B.6, we have

∂

∂α
∆R′(α, t) ≤

∂

∂α
∆R(α, t). We need to notice that

∂

∂α
∆S′(α, t) = − diag [S ′

α(t)]

(

ΛΓ−1 ∂

∂α
∆R′(α, t) +

∫ t

0

diag [W ]−1∆V (τ) d τ

)

(B.7)
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Comparing the equation (B.6) and (B.7), since diag [Sα(t)] ≥ diag [S ′
α(t)] ≥ 0

and
∂

∂α
∆R(α, t) ≥

∂

∂α
∆R′(α, t) ≥ 0, we have

∂

∂α
∆S(α, T ) ≤

∂

∂α
∆S′(α, T ). Proved.

�

Up to now, we have managed to show that the mapping φT (·) which is deter-

mined by the SIR model (2.5) is also continuous monotone submodular.

B.4.3 Continuous Monotone Submodularity of −φ
(3)
T

Firstly we show the monotonicity of the −φ
(3)
T (·) by the following lemma:

Lemma B.8 For any V (·) ≥ 0, ∆V (·) ≥ 0, we have φ
(3)
T (V (t) + α∆V (t)) ≤

φ
(3)
T (V (t)) and

∂

∂α
φ
(3)
T (V (t) + α∆V (t))

∣

∣

∣

∣

α=0

≤ 0.

Proof: For convenience, we define f(·, ·) as

f(S(t), V (t)) = −diag [S(t)]
(

Λ(1n − S(t)) + diag[W ]−1V (t)
)

+ Γ(1n − S(t))

and thus Ṡ(t) = f(S(t), V (t)). Denote fi(·, ·) as the i-th component of f(·, ·). It’s

easy to check that

∂

∂sj
fi(S, V ) = λijsi ≥ 0 ∀1 ≤ i, j ≤ n and i 6= j

∂

∂vj
fi(S, V ) = −w−1

i si1{i=j} ≤ 0 ∀1 ≤ i, j ≤ n

which means that Ṡ(t) = f(S(t), V (t)) is a monotone control system [80, 130].

Also f(·, ·) is continuously differentiable, according to the Theorem 1 [80], we have

φ
(3)
T (V (·) + α∆V (·)) ≤ φ

(3)
T (V (·)) and

∂

∂α
φ
(3)
T (V (·) + α∆V (·))

∣

∣

∣

∣

α=0

≤ 0. �
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Next, we proceed to show the continuous submodularity of φ
(3)
T (·) with the

following lemma. The proof of the continuous submodularity is a little bit more

technical than of monotonicity.

Lemma B.9 For any 0 ≤ V (·) ≤ V ′(·) and ∆V (·) ≥ 0, we have
∂

∂α
φ
(3)
T (V (·) +

α∆V (·))

∣

∣

∣

∣

α=0

≤
∂

∂α
φ
(3)
T (V ′(·) + α∆V (·))

∣

∣

∣

∣

α=0

.

Proof: Instead of investigating
∂

∂α
φ
(3)
T (V (·) + α∆V (·))

∣

∣

∣

∣

α=0

, we will consider

∂

∂α
φ
(3)
T (V (·)− α∆V (·))

∣

∣

∣

∣

α=0

= −
∂

∂α
φ
(3)
T (V (·) + α∆V (·))

∣

∣

∣

∣

α=0

and to show that
∂

∂α
φ
(3)
T (V (·)− α∆V (·))

∣

∣

∣

∣

α=0

≥
∂

∂α
φ
(3)
T (V ′(·)− α∆V (·))

∣

∣

∣

∣

α=0

.

With V (t)− α∆V (t) as input, the SIS model (2.6) becomes

dSα(t)

d t
= −diag [Sα(t)]

(

Λ(1n − Sα(t)) + diag[W ]−1 (V (t)− α∆V (t))
)

+Γ(1−Sα(t))

(B.8)

Denote ∆S(α, t) = Sα(t) − S0(t) and calculate the partial derivative w.r.t. α

for both sides of (B.8), we have

d

d t

∂

∂α
∆S(α, t) = A(t)

∂

∂α
∆S(α, t) +B(t)∆V (t) (B.9)

the A(t) = − diag
[

Λ(1n − Sα(t)) + diag [W ]−1 (V (t)− α∆V (t))
]

−Γ+diag [Sα(t)] Λ

and B(t) = diag[Sα(t)] diag [W ]−1.

Similarly, with S ′
α(t) as the solution to (2.6) with the input V ′(t) − α∆V (t),

the variation term ∆S′(α, t) = S ′
α(t)− S

′
0(t) satisfies the following equation:

d

d t

∂

∂α
∆S′(α, t) = A′(t)

∂

∂α
∆S′(α, t) +B′(t)∆V (t) (B.10)
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A′(t) = − diag
[

Λ(1n − S
′
α(t)) + diag [W ]−1 (V ′(t)− α∆V (t))

]

− Γ + diag [S ′
α(t)] Λ

and B′(t) = diag[S ′
α(t)] diag [W ]−1.

Here, both A(t) and A′(t) are Metzler matrices. Since Sα(t) ≥ S ′
α(t) and

V (t) ≤ V ′(t), we have A(t) ≥ A′(t) and B(t) ≥ B′(t) ≥ 0 for any t ≥ 0. Comparing

equation (B.9) and (B.10), according to Lemma B.6, since ∆S(α, 0) = ∆S′(α, 0) = 0

and ∆V (t) ≥ 0, we have
∂

∂α
∆S′(α, t) ≤

∂

∂α
∆S(α, t) for ∀α, t ≥ 0. Therefore

∂

∂α
φ
(3)
T (V (t)− α∆V (t))

∣

∣

∣

∣

α=0

≥
∂

∂α
φ
(3)
T (V ′(t)− α∆V (t))

∣

∣

∣

∣

α=0

, i.e.

∂

∂α
φ
(3)
T (V (t) + α∆V (t))

∣

∣

∣

∣

∣

α=0

≤
∂

∂α
φ
(3)
T (V ′(t) + α∆V (t))

∣

∣

∣

∣

∣

α=0

The lemma is proved. �

Up to now we have shown that −φ
(3)
T (·) is continuous monotone submodular.
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B.5 Proof for Theorem 3.3

Firstly, let’s fix l and k. Then we have the following sequence of inequalities

for all τ < l.

f(x∗(k)) ≤f(x∗(k) ∨ x(τ)) (B.11a)

=f(τ) +

∫ |x∗(k)∨x(τ)|−|x(τ)|

0

∂

∂α
f

(

x(τ) + α
x∗(k) ∨ x(τ)− x(τ)

|x∗(k) ∨ x(τ)| − |x(τ)|

)

dα

(B.11b)

≤f(τ) + |x∗(k) ∨ x(τ)− x(τ)| (B.11c)

·
∂

∂α
f

(

x(τ) + α
x∗(k) ∨ x(τ)− x(τ)

|x∗(k) ∨ x(τ)| − |x(τ)|

)∣

∣

∣

∣

α=0

(B.11d)

≤f(τ) + |x∗(k) ∨ x(τ)− x(τ)| · max
|∆x|=1

∂

∂α
f (x(τ) + α∆x)

∣

∣

∣

∣

α=0

(B.11e)

=f(τ) + |x∗(k) ∨ x(τ)− x(τ)| ·
d

d s
f(x(s))

∣

∣

∣

∣

s=τ

(B.11f)

≤f(τ) + k
d

d s
f(x(s))

∣

∣

∣

∣

s=τ

(B.11g)

Here, the equation (B.11a) follows from the monotonicity of f(·). The in-

equality (B.11d) arises from the submodularity of f(·). The equation (B.11f) holds

because x(s) is obtained by the continuous greedy algorithm 1 and inequality (B.11g)

follows from the fact that x∗(k) + x(l) ≥ x∗(k) ∨ x(l). Hence

f(x∗(k))− f(x(τ)) ≤ k ·
d

d s
f(x(s))

∣

∣

∣

∣

s=τ

(B.12)

Now let’s define δ(k, τ) = f(x∗(k)) − f(x(τ)). Thus the equation (B.12) be-

comes

δ(k, τ) ≤ −k ·
d

d τ
δ(k, τ) (B.13)
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Since δ(k, 0) = f(x∗(k)), therefore solving (B.13) we have

δ(k, l) ≤ exp(−l/k)δ(k, 0) = exp(−l/k)f(x∗(k))

Therefore

f(x(l)) ≥ (1− exp (−l/k)) f(x∗(k))

In particular, for k = l, f(x(k)) ≥
e− 1

e
f(x∗(k)). Proved.

B.6 Proof for Theorem 3.3

First, let’s define ∆V ′(t) = ∆V (t) − ∆V (t − τ). It is easy to verify that
∫ t0

0

∆V ′(t) d t ≥ 0 for any t0 ∈ [0, T ]. Without loss of generality, we assume that

on a neighborhood around time t = 0+, we have ∆V ′(t) > 0.

With the input V (t) + α∆V ′(t), the SIR model (2.5) becomes

dSα(t)

d t
= − diag [Sα(t)]

(

Λ (1n − Sα(t)− Rα(t)) + diag[W ]−1 (V (t) + α∆V ′(t))
)

dRα(t)

d t
= Γ (1n − Sα(t)− Rα(t))

(B.14)

For convenience, let’s use the notations that ∆S(α, t) = Sα(t) − S0(t) and

∆R(α, t) = Rα(t) − R0(t). Similar to the proof of Theorem B.5, we calculate the

partial derivative w.r.t. α on both sides of the equation (B.14), we have

d

d t

∂

∂α
∆S(α, , t) = A11(t)

∂

∂α
∆S(α, t) + A12(t)

∂

∂α
∆R(α, t) +B1(t)∆V

′(t)

d

d t

∂

∂α
∆R(α, t) = A21(t)

∂

∂α
∆S(α, t) + A22(t)

∂

∂α
∆R(α, t) +B2(t)∆V

′(t)

(B.15)

where A11(t) = − diag
[

Λ
(

1n − Sα(t)− Rα(t) + diag[W ]−1 (V (t) + α∆V ′(t))
)]

+

diag[Sα(t)]Λ, A12(t) = diag[Sα(t)]Λ, A21(t) = A22(t) = −Γ,. For matrix B, B1(t) =

− diag[Sα(t)] diag[W ]−1 and B2(t) = 0.
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Looking at the equation (B.15), since ∆S(α, 0) = ∆R(α, 0) = 0 and B1(0) < 0,

which means that the term B1(t)∆V (t) < 0 dominates the other terms around the

neighborhood of t = 0+, therefore
∂

∂α
∆S(α, t) < 0 around t = 0+ for any α ≥ 0. If

for some α > 0,
∂

∂α
∆S(α, t) is not negative on t ∈ [0, T ], we can find a t0 ∈ [0, T ] so

that a component of
∂

∂α
∆S(α, t0), denoted as

∂

∂α
∆k

S(α, t0), equals to zero and for

any 0 < t < t0, we have
∂

∂α
∆S(α, t) < 0.

Let’s look back at (B.14), for the first equation, we can divide the j-th row of it

by the corresponding sj(t). Notice that
d sj(t)

sj(t)
= d log (sj(t)), and Γ−1dR(t)

d t
= I(t),

we have

d log (S(t)) = −ΛΓ−1 dR(t)− diag[W ]−1 (V (t) + α∆V ′(t)) d t

Integrate both sides the this equation from t = 0 to t = t0, we have

log(S(t0)) = −ΛΓ
−1R(t0)−

∫ t0

0

diag[W ]−1 (V (t) + α∆V ′(t)) d t

Calculate the partial derivative w.r.t. α of both sides of the equation, we have

diag [Sα(t0)]
−1 ∂

∂α
∆S(α, t0) = −ΛΓ

−1 ∂

∂α
∆R(α, t0)−

∫ t0

0

diag [W ]−1∆V ′(t) d t

Since
∂

∂α
∆k

S(α, t0) = 0, Sα(t0) > 0 and

∫ t0

0

∆V ′(t) d t ≥ 0, we have that
[

ΛΓ−1 ∂

∂α
∆R(α, t0)

]

k

≤ 0.

However, if we look at the second equation in (B.15), we have that

[

ΛΓ−1 ∂

∂α
∆R(α, t0)

]

k

= −

∫ t0

0

[

ΛΓ−1 exp (−Γ(t0 − t)) Γ
∂

∂α
∆S(α, t)

]

k

d t

As we assume, for t ∈ [0, t0),
∂

∂α
∆S(α, t) < 0. Since exp (−Γ(t0 − t)) Γ > 0,

therefore exp (−Γ(t0 − t)) Γ
∂

∂α
∆S(α, t) < 0 and thus

[

ΛΓ−1 ∂

∂α
∆R(α, t0)

]

k

> 0.

This is a contradiction.
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Therefore
∂

∂α
∆S(α, t) < 0 for any t ∈ [0, T ] and α ≥ 0. Thus easily with α = 1

and t = T , we have
∂

∂α
φ
(2)
T (V (t) + α∆V (t))

∣

∣

∣

∣

α=0

≤
∂

∂α
φ
(2)
T (V (t) + α∆V (t− τ))

∣

∣

∣

∣

α=0

.

B.7 Proof for Theorem 3.4

Before we start to prove Theorem 3.4, we first reformulate the problem (3.9)

using the the following lemma:

Lemma B.10 The general minimum cost problem (3.9) is equivalent to the follow-

ing problem:

min
x∈D

|x|

s.t.
∂

∂α
f

(

y + α
x ∨ y − y

|x ∨ y − y|

)∣

∣

∣

∣

α=0

· |x ∨ y − y| ≥ θ − f(y), ∀y ∈ Ω

x ∈ Ω

(B.16)

Proof: The objective functions of (3.9) and (B.16) are the same. Therefore we

only need to compare the constraints of them. First, for the feasible x in (3.9), i.e.

f(x) ≥ θ, we have that

∂

∂α
f

(

y + α
x ∨ y − y

|x ∨ y − y|

)∣

∣

∣

∣

α=0

· |x ∨ y − y|

≥

∫ |x∨y−y|

0

∂

∂α
f

(

y + α
x ∨ y − y

|x ∨ y − y|

)

dα

=f(x ∨ y)− f(y)

≥f(x)− f(y)

≥θ − f(y)

therefore such x is also feasible in (B.16).
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At the same time, if we let x = y in the inequality of (B.16), then instantly

we have f(x) ≥ θ, which means the x feasible in (B.16) is also feasible in (3.9).

Therefore Theorem B.10 is proved. �

Denote the solution to the minimum cost problem (3.9) obtained by the Al-

gorithm 2 as x(η) where we have |x(η)| = η. Also, denote the optimal solution to

(3.9) as x∗ and assume that |x∗| = ζ . Then the following optimization problem is

easily a relaxation from (B.16).

min
x∈D

|x|

s.t.
∂

∂α
f

(

x(s) + α
x ∨ x(s)− x(s)

|x ∨ x(s)− x(s)|

)∣

∣

∣

∣

α=0

· |x ∨ x(s)− x(s)|

θ − f(x(s)), ∀s ∈ [0, η]

x ∈ Ω

(B.17)

whose optimal solution is denoted as x′ with |x′| = ζ ′. Easily we have ζ ′ ≤ ζ . The

following lemma is also helpful in showing the Theorem (3.4).

Lemma B.11 Let u(·), x(·) ∈ C1[0, T ], with u̇(t) ≥ 0 and ẋ(t) ≤ 0. If we have

u(0) > 0 and x(T ) > 0, then as for S = u(0)x(0)+

∫ T

0

d u(t)

d t
·x(t) d t = u(T )x(T )−

∫ T

0

d x(t)

d t
· u(t) d t, we have

S ≤

(

max
t∈[0,T ]

u(t)x(t)

)[

1 + logmin

(

x(0)

x(T )
,
u(T )

u(0)

)]

Proof: First of all, since u(t)x(t) is differentiable on [0, T ], therefore max
t∈[0,T ]

u(t)x(t)

always exists. Then, because x(t) ≤
maxt∈[0,T ] u(t)x(t)

u(t)
, we have

S ≤

(

max
t∈[0,T ]

u(t)x(t)

)[

1 +

∫ T

0

d u(t)/u(t)

d t
d t

]

=

(

max
t∈[0,T ]

u(t)x(t)

)[

1 + log
u(T )

u(0)

]
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Similarly, taking u(t) ≤
maxt∈[0,T ] u(t)x(t)

x(t)
, we have

S ≤

(

max
t∈[0,T ]

u(t)x(t)

)[

1 + log
x(0)

x(T )

]

Combining these two inequalities, this lemma is proved. �

For s ∈ [0, η], we define ξ(s) = min
|∆x|=1

{

1
∂
∂α
f(x(s) + α∆x)

∣

∣

α=0

}

. Also, we

define ν(·, ·) : [0, η]×M→ R as

ν(s, x) =
∂

∂α
f

(

x(s) + α
x ∨ x(s)− x(s)

|x ∨ x(s)− x(s)|

)∣

∣

∣

∣

α=0

· |x ∨ x(s)− x(s)|

Because f(·) is continuous monotone submodular and |x ∨ x(s)− x(s)| is non-

increasing w.r.t. s due to the monotonicity of x(s), we have that ξ(s) is nondecreas-

ing and ν(s, x) is nonincreasing w.r.t. s. Using Theorem B.11, we have that

∫ η

0

d ξ(s)

d s
ν(s, x) d s+ ξ(0)ν(0, x)

≤

(

max
s∈[0,η]

ξ(s)ν(s, x)

)[

1 + logmin

(

ξ(η)

ξ(0)
,
ν(0, x)

ν(η, x)

)]

Also, we need to notice that

max
s∈[0,η]

ξ(s)ν(s, x) ≤ max
s∈[0,η]

|x ∨ x(s)− x(s)| ≤ |x|

With µ(s) for s ∈ [0, T ] as the dual variable, the Lagrangian of the problem

(B.16) is

L(x, µ(·)) = |x|+

∫ η

0

µ(s) (θ − f (x(s))− ν(s, x)) d s

With k1 =
ξ (η)

ξ (0)
and k2 = max

x≤x∗

ν (0, x)

ν (η, x)
, if we let µ∗(s) =

d ξ(s)
d s

+ ξ(0)δ(s)

1 + logmin {k1, k2}

where δ(s) is the impulse function, then to achieve the minimum of the Lagrangian

L(x, µ∗(s)) w.r.t. x, we need that x = 0. By duality theory, because µ∗ (s) is dual

feasible, we know that L(0, µ∗(s)) ≤ ζ ′ ≤ ζ .
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On the other hand,

η =

∫ η

0

ξ(s)
d f(x(s))

d s
d s

=ξ(η)f(x(η))− ξ(0)f(x(0))−

∫ η

0

f(x(s))
d ξ(x(s))

d s
d s

=

∫ η

0

(

f(x(η))
d ξ(x(s))

d s
− f(x(s))

d ξ(x(s))

d s

)

d s+ f(x (η)) ξ(0)

=

∫ η

0

d ξ(x(s))

d s
(θ − f(x(s))) d s+ θξ(0)

Therefore we have

η = [1 + logmin {k1, k2}]L(0, µ
∗(s)) ≤ [1 + logmin {k1, k2}] ζ

B.8 Proof for Theorem 3.5

First, for any x ∈ Ω such that x ≤ x̃, we have

f(x)− f(x̃) =

∫ |x̃−x|

0

∂

∂α
f

(

x̃− α
x̃− x

|x̃− x|

)

dα

≤ |x̃− x| ·
ǫ

|ω|
f (x̃)

≤ ǫ · f (x̃)

therefore (1+ ǫ)f(x̃) ≥ f(x). Similarly, for any x ∈ Ω such that x ≥ x̃, we also have

(1 + ǫ)f(x̃) ≥ f(x).

With the previous analysis, it easily follows that (1 + ǫ)f(x̃) ≥ f(x̃ ∨ x∗) and
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(1 + ǫ)f(x̃) ≥ f(x̃ ∧ x∗). Therefore we have

2(1 + ǫ)f(x̃) + f(ω − x̃) ≥ f(x̃ ∧ x∗) + f(x̃ ∨ x∗) + f(ω − x̃) (B.18a)

≥ f(x̃ ∧ x∗) + f(x∗ − x̃ ∧ x∗) + f(ω) (B.18b)

≥ f(x̃ ∧ x∗) + f(x∗ − x̃ ∧ x∗) (B.18c)

≥ f(x∗) + f(0) = f(x∗) (B.18d)

where (B.18a) holds because of our previous analysis, (B.18b) and (B.18d) follows

from the continuous submodularity of f(·) and (B.18c) is due to that f (ω) ≥ 0.

Therefore easily we have either f(x̃) ≥
1

3
(1− ǫ)f(x∗) or f(ω − x̃) ≥

1

3
(1− ǫ)f(x∗).

B.9 Proof for Theorem 3.6

The following lemma is modified from [59], which is very helpful showing the

convexity of the φ
(3)
T (·).

Lemma B.12 If f(·, ·) : Rn ×Rn → Rn ∈ C1 is convex. Also,
∂

∂xj
fi(x, u) ≥ 0 and

∂

∂uk
fi(x, u) ≤ 0 for all i, j and k with i 6= j, where fi(·, ·) denotes the i-th component

of f(·, ·). Then for the dynamical system ẋ(t) = f(x(t), u(t)) with the fixed initial

condition x(0) = x0, then each component of the solution x(t) = φ(t, u(·)) is convex

w.r.t. u(·).

Proof: First of all, let g(x, u, v) = f(x, u) + v. It’s easy to verify that for any i

and j we have
∂

∂vj
fi(x, u, v) ≥ 0. For dynamical system ẋ(t) = g(x(t), u(t), v(t))

and ẋ′(t) = g(x′(t), u′(t), v′(t)), define the convex cone K = Rn
− × Rn

+. By the
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Theorem 1 in [80], we know that if x(0) = x′(0) and (u(t), v(t)) �K (u′(t), v′(t)),

then x(t) ≤ x′(t) for ∀t ≥ 0.

Let x1(t) = φ(t, u1(·)), x2(t) = φ(t, u2(·)), xλ(t) = φ (t, λu1(·) + (1− λ)u2(·))

with 0 ≤ λ ≤ 1. Then we have

ẋλ(t) = f(xλ(t), λu1(t) + (1− λ)u2(t))

Also, it will be easy to verify that

λẋ1(t) + (1− λ)ẋ2(t) = f(λx1(t) + (1− λ)x2(t), λu1(t) + (1− λ)u2(t)) + v(t)

where v(t) = λf(x1(t), u1(t))+(1−λ)f(x2(t), u2(t))−f(λx1(t)+(1−λ)x2(t), λu1(t)+

(1 − λ)u2(t)). Since f is convex, therefore v(t) ≥ 0 for any t ≥ 0. Then as we

discuss before, because (λu1+(1−λ)u2, 0) �K (λu1+(1−λ)u2, v) we have xλ(t) ≤

λx1(t) + (1− λ)x2(t) for any t ≥ 0. �

Theorem B.12 provides a powerful tool to show the convexity of the dynamical

system. Next, we are going to reformulate the SIS model (2.6) so as to use Theorem

B.12 to show its convexity. The SIS epidemic dynamical model can be formulated

as follows:

d

d t
S(t) = − diag [S(t)]

(

Λ(1n − S(t)) + diag[W ]−1V (t)
)

+ Γ(1− S(t)) (B.19)

Divide the j-th component of both sides of (B.19) by sj(t), we have

d

d t
log (S(t)) = −

(

Λ(1n − S(t)) + diag[W ]−1V (t)
)

+ Γ(diag [S(t)]−1 − 1n) (B.20)

With the variable transform Z(t) = log(S(t)), then (B.20) becomes

d

d t
Z(t) = −

(

Λ(1n − exp (Z(t))) + diag[W ]−1V (t)
)

+ Γ (exp (−Z(t))− 1n) (B.21)
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Using Theorem B.12, we know that for any V1(·), V2(·) ∈ D and 0 ≤ λ ≤ 1

with Vλ(·) = λV1(·) + (1− λ)V2(·), we have that

φ
(3)
T (Vλ(·)) = exp

(

log(φ
(3)
T (Vλ(·)))

)

(B.22a)

≤ exp
(

λ log(φ
(3)
T (V1(·)) + (1− λ) log(φ

(3)
T (V2(·))))

)

(B.22b)

≤λ exp
(

log(φ
(3)
T (V1(·))

)

+ (1− λ) exp
(

log(φ
(3)
T (V2(·))

)

(B.22c)

=λφ
(3)
T (V1(·)) + (1− λ)φ

(3)
T (V2(·)) (B.22d)

where the inequality (B.22b) holds because of the convexity of (B.21) and inequality

(B.22c) holds because the exponential function is convex. The theorem is thus

proved.

B.10 Proof for Theorem 4.1

With the transform that I(t) =

m
∑

k=1

Ik(t), R(t) =

m
∑

k=1

Rk(t) and U(t) =

m
∑

k=1

CkUk(t), the DCG competition model (4.1) is converted as follows:

dS(t)

d t
= − diag [S(t)] (ΛI(t) + U(t))

d I(t)

d t
= diag [S(t)] (ΛI(t) + U(t))− ΓI(t)

dR(t)

d t
= ΓI(t)

(B.23)

which is actually the community-based SIR model (2.5) in Section 2.1. Then by

invoking Theorem 3.2 in Section 3.2, this theorem becomes an instant corollary.
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B.11 Proof for Theorem 4.2

It should be noted that S(t) = 1n − diag [W ]−1 η(1) (t,U(·)). Without loss of

generality, for any j 6= k, let’s typically investigate the following two equations from

(4.1), which is shown as follows:

d Ij(t)

d t
= diag

[

1n − diag [W ]−1 η(1)(t,U(·))
]

(ΛIj(t) + CjUj(t))− ΓIj(t)

dRj(t)

d t
= ΓIj(t)

(B.24)

For convenience let’s write the equation (B.24) in the compact form as İj =

f1(Ij, Rj, Uj , η
(1)) and Ṙj = f2(Ij , Rj, Uj , η

(1)), where we implicitly views η(1)(·) as a

kind of input. Denote the p-th entry of f(·)(·) as f
p
(·)(·) while the q-th entry of Ij(t),

Rj(t), Uj(t) and η(1)(·) as iqj(t), r
q
j (t), u

q
j(t) and η(1)q (·) respectively, it will be easy

to verify that for any p 6= q, we have

∂f p
1

∂iqj
=

(

1−
η(1) (t,U(·))

wp

)

λpq ≥ 0
∂f p

2

∂iqj
= 0

∂f p
1

∂rqj
= 0

∂f p
2

∂iqj
= 0

Also, for any p and q, we have

∂f p
1

∂η
(1)
q

= −

∑n
l=1 λplil
wp

· 1{p=q} ≤ 0
∂f p

2

∂η
(1)
q

= 0

∂f p
1

∂uqj
=

(

1−
η(1) (t,U(·))

wp

)

cqj · 1{p=q} ≥ 0
∂f p

2

∂uqj
= 0

By Theorem 1 in [80], we have that (B.24) is a monotone control system. In

particular, if η
(1)
1 (·) is increased by any means, we have that Ij(t)+Rj(t) is decreased

for any time t > 0.

Therefore if the k-th player has his strategy increased from Uk(·) to U
′
k(·), then

according to Theorem 4.1, we have that the social welfare η(1) (U(·)) is increased
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to η(1) (U(·)⊕ U ′
k(·)). According to the analysis above, we got that Ij(t) + Rj(t)

is decreased for any time t > 0, which proves the competitiveness of the DCG

marketing game.

B.12 Proof for Theorem 4.3

For simplicity of expression, we would first write the voter competitive model

in the compact form as Ẋk(t) = fk (Xk(t),U(·)). Denote the i-th entry of Xk(·),

f(·) and Uk(·) as x
i
k(·), f

i
k(·) and u

i
k respectively,. It is easy to verify the following

inequalities:

∂f i
k

∂xjk
= λij > 0

where i 6= j and

∂f i
k

∂xjl
= 0

∂f i
k

∂ujk
=
(

1− xik
)

cjk · 1{i=j} ≥ 0
∂f i

k

∂ujl
= −xikc

j
l · 1{i=j} ≤ 0

with any 1 ≤ i, j ≤ m and k 6= l. Invoking the Theorem 1 in [80], the statements in

this theorem is proved.

B.13 Proof for Theorem 4.4

For the monotonicity part, consider the dynamics of X0(·) in the FMCG com-

petition model (4.2). Notice that U0(t) ≡ 0, then according to Theorem 4.3, the

competitiveness of FMCG diffusion ensures that any increase in Uk(·) will not cause

an increase in the value of ζ
(2)
0 (·) for 1 ≤ k ≤ m. Since η(2)(·) = 1Tn ·W

T − ζ
(2)
0 (·),

then η (U(·)) is monotone w.r.t. U(·).
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Then let’s sum up the fraction of agents adopting one of the m products and

denote it as X(·) =
m
∑

k=1

Xk(·). Also, we sum up the investment from all the players

as U(·) =
m
∑

k=1

Uk(·). Then the voter competitive model (4.2) is transformed into

(B.25).

d

d t
X (t) = (Λ− diag [Λ1n])X (t) + diag [1n −X(t)]U(t) (B.25)

Then, replace U(·) with U(·) + α∆U(·) and (B.25) becomes (B.26).

d

d t
Xα (t) = (Λ− diag [Λ · 1n])Xα (t) + diag [1n −Xα(t)] (U(t) + α∆U(t)) (B.26)

Let’s denote ∆X (α, t) = Xα (t) − X (t) and calculate the partial derivative

w.r.t. α for both sides of (B.26), then we have

d

d t

∂

∂α
∆X (α, t) = A (t)

∂

∂α
∆X (α, t) +B (t)∆U (t) (B.27)

where A (t) = Λ− diag [Λ · 1n − (U(t) + α∆U(t))] and B (t) = diag [1n −Xα (t)].

Similarly, with X ′
α (t) as the solution to (B.25) where U(·) is replaced with

U ′(·) + α∆U(·), then the variation term ∆X′ (α, t) = X ′
α (t) − X

′
0 (t) would satisfy

the following equation:

d

d t

∂

∂α
∆X′ (α, t) = A′ (t)

∂

∂α
∆X′ (α, t) +B′ (t)∆U (t) (B.28)

where A (t) = Λ− diag [Λ · 1n − (U ′(t) + α∆U(t))] and B (t) = diag [1n −X
′
α (t)].

If U(·) ≤ U ′(·), then we’ve already shown that Xα (t) ≤ X ′
α (t). Notice that

both A (t) and A′ (t) are Metzler matrices. Also, A (t) ≥ A′ (t) and B (t) ≥ B′ (t)

for any t ≥ 0. Then according to Lemma B.6, we have
∂

∂α
∆X′ (α, t) ≤

∂

∂α
∆X (α, t)

for any α and t ≥ 0, which follows that

∂

∂α
η(2) (U(·) + α∆U(·)) ≥

∂

∂α
η(2)

(

U
′

(·) + α∆U(·)
)
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with U
′

(·) ≥ U(·) ≥ 0 and ∆U(·) ≥ 0. This theorem is proved.

B.14 Proof for Theorem 4.5

For the FMCG competition model (4.2), divide the j-th entry of both sides

by xji (t), we have

d logXk(t)

d t
= diag [Xk(t)]

−1 ΛXk(t) + diag [Xk(t)]
−1CkUk(t)−

m
∑

i=1

CiUi(t)− Λ · 1n

(B.29)

Replacing logXi(t) with Zi(t), the equation (B.29) becomes

dZk(t)

d t
=diag [exp (−Zk(t))] Λ exp (Zk(t)) + diag [exp (−Zk(t))]CkUk(t)

−
m
∑

i=1

CiUi(t)− Λ · 1n

(B.30)

For the equation (B.30), notice that with Uk(·) fixed, the time derivative Żk(t)

is convex w.r.t. Zk(t) and U−k(t). It is also easy to verify that the dynamical system

in (B.30) is monotone w.r.t. Zk(·) and U−k(·). Therefore according to Theorem B.12,

log
(

φ
(2)
k (U(·))

)

is convex w.r.t. U−k(·).

Then for given strategy profile U(·) and U′(·) with Uα = αU(·)+ (1− α)U′(·),

we have

φ
(2)
k (t,Uα) = exp

(

log
(

φ
(2)
k (t,Uα)

))

(B.31a)

≤ exp
(

α log
(

φ
(2)
k (t,U(·))

)

+ (1− α) log
(

φ
(2)
k (t,U′(·))

))

(B.31b)

≤α exp
(

log
(

φ
(2)
k (t,U(·))

))

+ (1− α) exp
(

log
(

φ
(2)
k (t,U′(·))

))

(B.31c)

=αφ
(2)
k (t,U(·)) + (1− α)φ

(2)
k (t,U′(·)) (B.31d)
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for α ∈ [0, 1]. Here the inequality (B.31b) holds because of the convexity of

(B.30) while the inequality (B.31c) holds because exp(·) is also convex. Therefore

φ
(2)
k (t,U(·)) is convex w.r.t. U−k(·), and so is the payoff function ζ

(2)
k (t,U(·)).

To show that ζ
(2)
k (·) is concave w.r.t. Uk(·) needs a little trick. With the

transform Yi(t) = 1n−Xi(t), the voter competitive model (4.2) becomes as follows:

dYi(t)

d t
=(Λ− diag [Λ · 1n]) Yi(t)

− diag [Yi(t)]CiUi(t) + diag [1n − Yi(t)]
∑

k 6=i

CkUk(t)

Following the same derivations as the first half of this proof, we can show that

1n − φ
(2)
k (t,U(·)) is convex w.r.t. Uk(·), i.e. φ

(2)
k (t,U(·)) is concave w.r.t. Uk(·) and

so is the payoff function ζ
(2)
k (U(·)). The theorem is proved.

B.15 Proof for Theorem 4.6

The proof is divided into two parts for the DCG marketing game and the

FMCG marketing game respectively.

B.15.1 The DCG Marketing Game

In 1976 Kononenko [131] studies the existence of ǫ-equilibrium for general

differential games. His conclusion is summarized in Theorem B.13.

Lemma B.13 For a general differential game by m players with the dynamics

Ẋ(t) = f(t, X(t), U1(t), . . . , Um(t))
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with XT denoting the terminal state. In this game, the player i plays with the control

Ui(·) which takes value in the set U i. He aims at maximizing his payoff gi(XT ). We

assume the following conditions hold:

1. The sets Uk with k = 1, . . . , m are compact subsets of some finite dimensional

spaces.

2. f : [0, T ]×Rn ×U1 × · · · × Um → Rn is continuous and bounded, and globally

Lipschitz continuous w.r.t. X.

3. The maps gi : R
n → R are Lipschitz continuous and bounded for i = 1, . . . , m.

Let us set

U−i := U1 × · · · × U i−1 × U i+1 × · · · × Um

Then we also assume that the following famous Isaacs condition holds.

inf
U−i∈U−i

sup
Ui∈U i

〈f (t, x, U−i ⊕ Ui) , p〉 = sup
Ui∈U i

inf
U−i∈U−i

〈f (t, x, U−i ⊕ Ui) , p〉

with (t, x, p) ∈ [0, T ]×Rn×Rn. The 〈·, ·〉 is the inner product. Then with any initial

condition, there exists an ǫ-equilibrium for the differential game for ∀ǫ > 0.

Proof: See [131] or Chapter 4 in [132]. �

Then we write the DCG competition model (4.1) in a compact form as follows:

Ẏ (t) = f (t, Y (t), U1(t), . . . , Um(t)) (B.32)

where Y (t) =
[

ST (t), IT1 (t), . . . , I
T
m(t), R

T
1 (t) . . . , R

T
m(t)

]T
and f : [0, T ]×R(2m+1)n×

Rmn → R2m+1 is the dynamics of the DCG competition model (4.1). Comparing
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with the conditions in Theorem B.13, the primary difference in our context is that

the feasible field Uk where Uk(t) takes value may vary at different time because the

budget Bk(t) for each player is assumed to be time-variable. To overcome this issue,

we define ψ : Rn × R→ Rn as ψ(U,B) = U ·min

{

B

1T · U
, 1

}

.

Then, we define f ′(·) as

f ′ (t, Y (t), U1(t), . . . , Um(t)) = f (t, Y (t), ψ (U1(t), B1(t)) , . . . , ψ (Um(t), Bm(t)))

It is easy to verify that for each Uk(t) such that 1T · Uk(t) ≤ Bk(t) where

k = 1, . . . , m, we have f (t, Y (t), U1(t), . . . , Um(t)) = f ′ (t, Y (t), U1(t), . . . , Um(t)).

Therefore the DCG competition model (4.1) is recast into

Ẏ (t) = f ′ (t, Y (t), U1(t), . . . , Um(t))

Also, we set Uk =

{

U ∈ Rn

∣

∣

∣

∣

U ≥ 0, 1T · U ≤ max
0≤t≤T

Bk(t)

}

. Since Bk(·) is

continuous, thus each Uk is well defined.

It is easy to verify that each set Uk is compact and of finite dimensions. The

dynamics f ′(·) is continuous and bounded, which is also globally Lipschitz w.r.t.

Y (t). (The f ′(·) being continuous w.r.t. t is because Bk(t) is continuous.) The

payoff functions are linear w.r.t. the terminal state and thus Lipschitz and bounded.

Also, since f ′(·) is linear w.r.t. each Uk(t), the Isaacs condition naturally holds.

Then according to Theorem B.13, the DCG marketing part of the theorem

holds.
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B.15.2 The FMCG Marketing Game

For convenience, let’s define the mapping of best response with the following

definition:

Definition B.1 In the marketing game, the best response Brk (·) for the player k

with a given strategy profile U(·) is

Brk (U(·)) = arg max
U ′

k
(·)∈Dk

(

ζ (·) (U(·)⊕ U ′
k(·))

)

In 2014 Seierstad [133] studies the existence of Nash equilibrium for a special

class of nonlinear differential games. His main result, the Theorem 1 in [133], is

restated in Theorem B.14.

Lemma B.14 For a general differential game by m players with the dynamics

Ẋ(t) = f(t, X(t), U1(t), . . . , Um(t))

with XT denoting the terminal state, each player k plays with the strategy Uk(·) which

takes value in some compact set Uk and he aims at maximizing his payoff gk(XT ).

Then if his best response Brk (U(·)) is nonempty and convex with any strategy profile

U(·), then the Nash equilibrium exists for this game.

Proof: See [133]. �

By Theorem 4.5, ζ
(2)
k (U(·)) is concave w.r.t. Uk(·), therefore for any U1

k (·)

and U2
k (·) that maximizes the utility function ζ

(2)
k (U(·)⊕ Uk(·)), it follows that

αU1
k (·) + (1− α)U2

k (·) is also the maximal with α ∈ [0, 1]. Therefore the Brk (U(·))
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is convex. According to Theorem B.14, the existence of Nash equilibrium for the

FMCG marketing game is guaranteed.

B.16 Proof for Theorem 4.7

Unless specified otherwise, we will analyze both the DCG and the FMCG

marketing game in the unified framework, where η(·)(·) and ζ
(·)
k (·) refer to the social

welfare and the payoff for the player k in both games.

For simplicity of expression, we use notion U∗
k(·) = [U∗

1 (·), . . . , U
∗
k (·), 0, . . . , 0]

and Uk(·) = [U1(·), . . . , Uk(·), 0, . . . , 0]. Also, we define the operator ⊕ by requiring

that

U∗(·)⊕ ∅k =
[

U∗
1 (·), . . . , U

∗
k−1(·), 0, U

∗
k+1(·), . . . , U

∗
m(·)

]

U(·)⊕ ∅k = [U1(·), . . . , Uk−1(·), 0, Uk+1(·), . . . , Um(·)]

First of all, we will use the following lemma to show a very important property

of the social welfare function η(·)(·) based on its continuous monotone submodularity.

Lemma B.15 For the social welfare function η(·)(·), with any strategy profile U(·)

and U′(·) s.t. U(·) ≤ U′(·) as well as any variation ∆U(·) ≥ 0 we have

η(·) (U′(·) + ∆U(·))− η(·) (U′(·)) ≤ η(·) (U(·) + ∆U(·))− η(·) (U(·))
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Proof: According to the Theorem 3.2.6. in [116], η(·)(·) is Fréchet differentiable,

therefore

η(·) (U′(·) + ∆U(·))− η(·) (U′(·)) =

∫ 1

0

∂

∂α
η(·) (U′(·) + α∆U(·)) dα

≤

∫ 1

0

∂

∂α
η(·) (U(·) + α∆U(·)) dα

=η(·) (U(·) + ∆U(·))− η(·) (U(·))

Here the inequality arises from that η(·)(·) is continuous monotone submodular. �

The following corollary is instantly available from Theorem B.15.

Corollary B.2 For any strategy profile U(·) and U′(·), we have

η(·) (U′(·) + Uk(·)) ≤
m
∑

k=1

[

η(·) (U′(·) + Uk(·))− η
(·) (U′(·) + Uk−1(·))

]

Proof: Notice that η(·) (U′(·) + U(·)) − η(·) (U(·)) ≤ η(·) (U′(·)), this corollary is

proved. �

Next, we’d proceed to the following lemma, which is crucial to the analysis of

the PoA.

Lemma B.16 For any strategy profile U(·) ∈ D, we have

η(·) (U∗(·)) ≤η(·) (U(·)) +
m
∑

k=1

[

η(·) (U(·)⊕ U∗
k (·))− η

(·) (U(·)⊕ ∅k)
]

−
(

η(·) (U∗(·) + U(·))− η(·) (U∗(·))
)
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Proof: First of all, according to Theorem B.15 and Theorem B.2, we have

η(·) (U∗(·) + U(·)) ≤ η(·) (U(·)) +
m
∑

k=1

[

η(·) (U(·) + U∗
k(·))− η

(·)
(

U(·) + U∗
k−1(·)

)]

≤ η(·) (U(·)) +
m
∑

k=1

[

η(·) (U(·)⊕ U∗
k (·))− η

(·) (U(·)⊕ ∅k)
]

(B.33)

On the other side, we have

η(·) (U∗(·) + U(·)) = η(·) (U∗(·)) +
[

η(·) (U∗(·) + U(·))− η(·) (U∗(·))
]

(B.34)

Combining (B.33) and (B.34), we have

η(·) (U∗(·)) ≤η(·) (U(·)) +
m
∑

k=1

[

η(·) (U(·)⊕ U∗
k (·))− η

(·) (U(·)⊕ ∅k)
]

−
(

η(·) (U∗(·) + U(·))− η(·) (U∗(·))
)

The lemma is hereby proved. �

In Theorem B.16, U(·) is any feasible strategy profile. Now let us consider the

case that U(·) is an ǫ-equilibrium in the following lemma:

Lemma B.17 Let U(·) be an ǫ-equilibrium for the marketing game with η(·)(·) as

the social welfare function and ζ
(·)
k (·) as the payoff for the player k. The strategy

profile U∗(·) maximizes the η(·) (U∗(·)). Then we have

η(·) (U∗(·)) ≤ 2η(·) (U(·))−
[

η(·) (U∗(·) + U(·))− η(·) (U∗(·))−m · ǫ
]
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Proof: First of all, we have the following inequalities:

m
∑

k=1

[

η(·) (U(·)⊕ U∗
k (·))− η

(·) (U(·)⊕ ∅k)
]

(B.35a)

≤
m
∑

k=1

max
U ′

k
(·)∈Dk

[

η(·) (U(·)⊕ U ′
k(·))− η

(·) (U(·)⊕ ∅k(·))
]

(B.35b)

≤
m
∑

k=1

max
U ′

k
(·)∈Dk

[

ζ
(·)
k (U(·)⊕ U ′

k(·))
]

(B.35c)

≤
m
∑

k=1

[

ζ
(·)
k (U(·)⊕ Uk(·)) + ǫ

]

(B.35d)

=η(·) (U(·)) +m · ǫ (B.35e)

where (B.35b) arises from the max operation, (B.35c) is due to the competitiveness

of the marketing game, (B.35d) holds because U(·) is the ǫ-equilibrium and (B.35e)

is out of the definition of η(·)(·) the fact that ζ
(·)
k (U(·)⊕ ∅k) = 0.

Then, using Theorem B.16, we have

η(·) (U∗(·)) ≤η(·) (U(·)) +
m
∑

k=1

[

η(·) (U(·)⊕ U∗
k (·))− η

(·) (U(·)⊕ ∅k)
]

−
(

η(·) (U∗(·) + U(·))− η(·) (U∗(·))
)

≤2η(·) (U(·))−
(

η(·) (U∗(·) + U(·))− η(·) (U∗(·))−m · ǫ
)

The theorem is proved.

�

Theorem B.17 is sufficient to show that the PoA is bounded by 2 in the FMCG

marketing game because the ǫ can be set at 0. However, for the DCG marketing

game, we still need to show that η(·) (U∗(·) + U(·))−η(·) (U∗(·)) is greater than some

constant which is irrelevant to the choice of U(·). The following lemma deals with

this.
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Lemma B.18 Denote U∗(·) ∈ D as the maximizer for η(1)(·) and U(·) ∈ D as an

ǫ-equilibrium for the DCG marketing game. There exists a constant δ > 0 such that

η(1) (U∗(·)⊕ U(·))− η(1) (U(·)) ≥ δ. Here the value of δ is irrelevant to the choice of

ǫ or U(·).

Proof: As for the DCG competition model (4.1), let I(t) =
m
∑

k=1

Ik(t) and R(t) =

m
∑

k=1

Rk(t), then (4.1) can be written as (B.36).

dS(t)

d t
= − diag [S(t)]

(

diag [V (t)] Λ (1n − S (t)− R (t)) +

m
∑

k=1

CkUk(t)

)

dR(t)

d t
= Γ (1n − S (t)− R (t))

(B.36)

where V (t) ≡ 1n. Because S(t)+ I(t)+R(t) = 1n, we consider the dynamics of S(t)

and R(t) in (B.36) and write it in the compact form follows:

Ṡ(t) = fS (S(t), R(t), U(t), V (t))

Ṙ(t) = fR (S(t), R(t), U(t), V (t))

(B.37)

At each time t, the value of S(t) and R(t) are determined by the input U(·) and

V (·) as well as the initial condition S(0) = S0 and R(0) = R0. Therefore, we use the

notion that S(t) = φS (t, S0, R0, U(·), V (·)) and R(t) = φR (t, S0, R0, U(·), V (·)). The

social welfare function as specified in Section 4.1 is η(1) (U(·)) = W T ·(1n − φS (T, 1n, 0,U(·), 1n)).

Let’s define a new strategy profile U′(·) as

U′(t) =















U∗(t) 0 ≤ t ≤ T

U(t− T ) T < t ≤ 2T

157



Then using Lemma 3.3 in Section3.3.2, we have that

φS (T, 1n, 0,U
∗(·), 1n)− φS (T, 1n, 0,U(·) + U∗(·), 1n)

≥φS (T, 1n, 0,U
∗(·), 1n)− φS (2T, 1n, 0,U

′(·), 1n)

(B.38)

Denote fk
S(·) as the k-th entry of fS(·), f

k
R(·) as the k-th entry of fR(·), u

j
k as

the j-th entry of Uk, v
j as the j-th entry of V , sk as the k-th entry of S and rk as

the k-th entry of R. Then it’s easy to verify that

∂f i
S

∂sj
= visiλij ≥ 0

∂f i
S

∂rj
= visiλij ≥ 0

∂f i
R

∂sj
= 0

∂f i
R

∂rj
= 0

for any i 6= j. Also, we can verify that

∂f i
S

∂vj
= −si

n
∑

k=1

λjk
(

1− sk − rk
)

· 1{i=j} ≤ 0
∂f i

S

∂ujk
= −sic

j
k · 1i=j ≤ 0

∂f i
R

∂vj
= 0

∂f i
R

∂ujk
= 0

for any i, j and k. According to [80], equation (B.37) is a monotone control system,

with φ0 = φS (T, 1n, 0,U
∗(·), 1n), we have

φS (T, 1n, 0,U
∗(·), 1n)− φS (2T, 1n, 0,U

′(·), 1n)

≥φ0 − φS (T, φ0, 1n − φ0,U(·), 1n)

≥φ0 − φS (T, φ0, 1n − φ0,U(·), 0)

Looking at equation (B.36), easily we may claim that

φ0 ≥ exp

[

−

∫ T

0

(

Λ1n +

m
∑

j=1

CjU
∗
j (t) d t

)]
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For each k, since the budget Bk(t) is continuous for t ∈ [0, T ], therefore Bk(t)

is also bounded. Therefore there exists some constant vector ξ such that φ0 ≥ ξ.

Similarly, we have

φS (T, φ0, 1n − φ0,U(·), 0) = diag [φ0] · exp

[

−

∫ T

0

m
∑

j=1

CjUj(t)

]

Since U(·) is the ǫ-equilibrium, each player strive to maximize his own payoff

and each ζ
(1)
k (U(·)) is monotone w.r.t. Uk(·), we have that 1Tn · Uk(t) = Bk(t) for

each k and time t ≥ 0. Hereby there exists some constant vector ξ′ > 0 such that

exp

[

−

∫ T

0

m
∑

j=1

CjUj(t)

]

≤ 1n − ξ
′. Then we have

η(1) (U∗(·) + U(·))− η(1) (U∗(·))

=W T · [φS (T, 1n, 0,U
∗(·), 1n)− φS (T, 1n, 0,U

∗(·) + U(·), 1n)]

≥W T · [φS (T, 1n, 0,U
∗(·), 1n)− φS (2T, 1n, 0,U

′(·), 1n)]

≥W T · [φ0 − φS (T, φ0, 1n − φ0,U(·), 0)]

≥W T · diag [ξ] · ξ′

By now this lemma is proved. �

Theorem B.18 indicates that η(1) (U∗(·) + U(·)) − η(1) (U∗(·)) features with a

positive lower bound which is not dependent on the specific choice of the U(·).

Therefore, we may claim that with U(·) being the ǫ-equilibrium for the DCG mar-

keting game with sufficiently small ǫ, then the PoA is no greater than 2. Up to now

the who theorem has been proved.
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B.17 Proof for Theorem 4.8

Before starting the specific analysis, we first define some notations for the

convenience of analysis later on. According to the Theorem 3.2.6 in [116], the utility

function ζ
(2)
k (·) is twice continuously Fréchet differentiable. Then for ζ

(2)
k (U(·)), we

write its first order derivative as

∂ζ
(2)
k (·)

∂U(·)
(U(·))U(·) =

m
∑

i=1

∂ζ
(2)
k (·)

∂Ui(·)
(U(·))Ui(·)

as well as the second order derivative as

(

∂2ζ
(2)
k (·)

∂U(·)2
(U(·))U1(·)

)

U2(·) =
m
∑

i=1

m
∑

j=1

(

∂2ζ
(2)
k (·)

∂Ui(·)∂Uj(·)
(U(·))U1

j (·)

)

U2
i (·) (B.39)

Since ζ
(2)
k (·) is Fréchet differentiable, according to the Rietz-Fréchet theorem

(Theorem 4.12 in [134]), we can write the gradient of ζk(·) as follows:

∇ζ
(2)
k (·) =

[

∇1ζ
(2)
k (·)T ∇2ζ

(2)
k (·)T . . . ∇mζ

(2)
k (·)T

]T

where ∇iζ
(2)
k (U(·)) =

∂ζ
(2)
k (U(·))

∂Ui(·)
. Using 〈·, ·〉 as the notion for inner product we

have that
〈

∇iζ
(2)
k (U(·)) , Ui(·)

〉

=
∂ζ

(2)
k (·)

∂Ui(·)
(U(·))Ui(·). We also extends the denota-

tion of the inner product as follows:

〈

∇ζ
(2)
k (U(·)) ,U

′

(·)
〉

=
m
∑

i=1

〈

∇iζ
(2)
k (U(·)) , U ′

i(·)
〉

Also, for simplicity of notations, let’s define matrix Q (U(·)) = [Qij (U(·))]m×m

with the entry Qij (U(·)) to be the 2nd-order partial derivative of a twice contin-

uously Fréchet differentiable function at U(·). Then for any U1(·),U2(·) ∈ D, we
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define the notation 〈·, ·, ·〉 as follows:

〈

U1(·),Q (U(·)) ,U2(·)
〉

=
m
∑

i=1

m
∑

j=1

(

Qij (U(·))U
2
j (·)
)

U1
i (·)

We would call such a matrix Q (U(·)) to be positive definite if

〈U(·),Q (U(·)) ,U(·)〉 > 0

for any feasible strategy profile U(·) such that ‖U(·)‖2 > 0. Here the 2-norm of U(·)

is defined as follows:

‖U(·)‖2 =
m
∑

k=1

n
∑

i=1

∥

∥uik(·)
∥

∥

2

uik(·) is the i-th entry of Uk(·). As an example, (B.39) can be expressed as

〈

U1(·),
∂2ζ

(2)
k (·)

∂U(·)2
(U(·)) ,U2(·)

〉

=

m
∑

i=1

m
∑

j=1

(

∂2ζ
(2)
k (·)

∂Ui(·)∂Uj(·)
(U(·))U2

j (·)

)

U1
i (·)

where
∂2ζ

(2)
k (·)

∂U(·)2
is the matrix with

∂2ζ
(2)
k (·)

∂Ui(·)∂Uj(·)
being on its i-th row and j-th col-

umn. Also, we define the quasi gradient g (U(·)) of the social welfare function

η(2) (U(·)) =
m
∑

k=1

ζ
(2)
k (U(·)) as follows:

g (U(·)) =

























∇1ζ
(2)
1 (U(·))

∇2ζ
(2)
2 (U(·))

. . .

∇mζ
(2)
m (U(·))

























(B.40)

A very important property, the quasi strict concavity of the social welfare

function η(2) (U(·)) is given by the following definition:
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Definition B.2 The social welfare function η(2) (U(·)) is called quasi strictly con-

cave if

〈

g
(

U1(·)
)

,
(

U2(·)− U1(·)
)〉

+
〈

g
(

U2(·)
)

,
(

U1(·)− U2(·)
)〉

> 0

with any strategy profiles U1(·),U2(·) ∈ D such that
∥

∥U1(·)− U2(·)
∥

∥

2
> 0.

The quasi strict concavity is essential to showing the almost uniqueness of Nash

equilibrium for the FMCG marketing game, which the readers will see later. Before

that, we may need first to show that the quasi gradient g (U(·)) of η(2) (U(·)) =
m
∑

k=1

ζ
(2)
k (U(·)) is quasi strictly concave, which is given by Theorem B.19.

Lemma B.19 As for the FMCG marketing game as specified in Section 4.2, the

quasi gradient g (U(·)) defined by (B.40) is quasi strictly concave, i.e.

〈

g
(

U1(·)
)

,
(

U2(·)− U1(·)
)〉

+
〈

g
(

U2(·)
)

,
(

U1(·)− U2(·)
)〉

> 0

for any feasible strategy profiles U1(·),U2(·) ∈ D such that
∥

∥U1(·)− U2(·)
∥

∥

2
> 0.

Proof: First, let’s investigate matrix G (U(·)) = [Gij (U(·))]m×m with Gij (U(·)) =

∂2ζ
(2)
i (U(·))

∂Ui(·)∂Uj(·)
. It should be noted that such G (U(·)) is in fact the Fréchet derivative

of the quasi gradient g (U(·)), i.e. G (U(·)) =
∂g (U(·))

∂U(·)
.

To investigate G (U(·)), we define auxiliary matrices P (U(·)) = [Pij (U(·))]m×m,

Qk (U(·)) =
[

Qk
ij (U(·))

]

m×m
and H (U(·)) = [Hij (U(·))]m×m with the corresponding
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component defined as follows:

Pij (U(·)) =
∂2ζ

(2)
i (U(·))

∂Ui(·)∂Uj(·)
· 1{i=j}

Hij (U(·)) =
m
∑

k=1

∂2ζ
(2)
k (U(·))

∂Ui(·)∂Uj(·)

Qk
ij (U(·)) =

∂2ζ
(2)
k (U(·))

∂Ui(·)∂Uj(·)
· 1{i 6=k,j 6=k}

It is easy to verify that for any i and j we have

Gij (U(·)) +Gji (U(·)) = Pij (U(·))−
m
∑

k=1

Qk
ij (U(·)) +Hij (U(·))

Also, by Theorem 4.5, for each k the utility function ζ
(2)
k (U(·)) is concave w.r.t.

Uk(·) and convex w.r.t. U−k(·), therefore the matrices P (U(·)) and −Qk (U(·)) are

both negative positive.

In addition, according to Theorem 4.5 we know that the social welfare η(2)(·) =
m
∑

k=1

ζ
(2)
k (·) is concave w.r.t. U(·), therefore the matrix H (U(·)), which can be viewed

as the generalized “Hessian” of η(2) (U(·)), is also negative positive. Therefore, we

may conclude that G (U(·)) +GT (U(·)) is negative positive for any strategy profile

U(·) ∈ D.

Next, let’s take any two feasible strategy sets U1(·),U2(·) ∈ D. For any

0 ≤ α ≤ 1, let’s denote Uα(·) = αU1(·) + (1− α)U2(·). Since g (U(·)) is Fréchet

differentiable, we have

g
(

U2(·)
)

− g
(

U1(·)
)

=

∫ 1

0

∂g (Uα(·))

∂U(·)

(

U2(·)− U1(·)
)

dα

=

∫ 1

0

G (Uα(·))
(

U2(·)− U1(·)
)

dα

(B.41)
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Then, calculate the inner product of (B.41) with U1(·)− U2(·), we have

〈

g
(

U1(·)
)

,
(

U2(·)− U1(·)
)〉

+
〈

g
(

U2(·)
)

,
(

U1(·)− U2(·)
)〉

=−
〈

g
(

U2(·)
)

− g
(

U1(·)
)

,
(

U2(·)− U1(·)
)〉

=−

∫ 1

0

〈

U2(·)− U1(·),G (Uα(·)) ,U2(·)− U1(·)
〉

dα

=−
1

2

∫ 1

0

〈

U2(·)− U1(·),G (Uα(·)) +GT (Uα(·)) ,U2(·)− U1(·)
〉

dα

>0

where the inequality holds because G (U(·)) + GT (U(·)) is negative positive as is

shown previously. This lemma is hereby proved. �

With all these preparations, we are now ready to show this theorem by con-

tradiction. Assume there exists two distinct Nash equilibriums U1(·),U2(·) ∈ D for

the FMCG marketing game and
∥

∥U1(·)− U2(·)
∥

∥

2
> 0. In the strategy profile U1(·),

by the definition of Nash equilibrium, each strategy U1
k (·) is actually the solution to

the following optimization problem:

max ζ
(2)
k

(

U1
−k ⊕ U

1
k (·)
)

s.t.
n
∑

i=1

u1ki (t) ≤ Bk(t)

u1ki(t) ≥ 0

i = 1, . . . , n, 0 ≤ t ≤ T

where u1ki(·) is the i-th entry of U1
k (·) and U1

−k is already given. Let the generalized

Lagrange multiplier µ1
k0(·) ≥ 0 be associated with the constraint

n
∑

i=1

u1ki (t) ≤ Bk(t)

and µ1
ki(·) ≥ 0 associated with the constraint with u1ki(·) ≥ 0 for each i. Invoking

the generalized Karush-Kuhn-Tucker (KKT) conditions (see Chapter 2 in [117]), we
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have (B.42).

∇kζ
(2)
k

(

U1(·)
)

+

























µ1
k1(·)

0

...

0

























+

























0

µ1
k2(·)

...

0

























+ · · ·+

























0

0

...

µ1
kn(·)

























−

























µ1
k0(·)

µ1
k0(·)

...

µ1
k0(·)

























= 0 (B.42)

Similarly, for the strategy set U2(·), we also have

∇kζ
(2)
k

(

U2(·)
)

+

























µ2
k1(·)

0

...

0

























+

























0

µ2
k2(·)

...

0

























+ · · ·+

























0

0

...

µ2
kn(·)

























−

























µ2
k0(·)

µ2
k0(·)

...

µ2
k0(·)

























= 0 (B.43)

Calculate the inner product of (B.42) with U2(·)− U1(·) as well as the inner

product of (B.43) with U1(·)− U2(·) and add them together, we have the follows:

〈

g
(

U1(·)
)

,
(

U2(·)− U1(·)
)〉

+
〈

g
(

U2(·)
)

,
(

U1(·)− U2(·)
)〉

= 0

which is in contradiction with Theorem B.19. The theorem is proved.

B.18 Proof for Theorem 4.9

First, we will prove that the starting from any strategy profile U (0, ·) ∈ D,

as U (t, ·) evolves according to (4.3), the strategy profile U (t, ·) will stay feasible,

i.e. U (t, ·) ∈ D for any t ≥ 0 by contradiction. First let’s define t̂ such that

t̂ = inf {t |U (t, ·) 6∈ D}. Easily there exists some t̂′ > t̂ such that at the interval

t ∈
[

0, t̂′
]

, the right side of (4.3) remains bounded and therefore U (t, ·) is continuous

for t ∈
[

0, t̂′
]

.
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Since D is naturally a closed set, therefore at time t̂, the strategy profile

U
(

t̂, ·
)

∈ D while after t̂ it immediately gets out of D. There are only two kinds of

possibilities for this. First, for some 1 ≤ i ≤ n, 1 ≤ k ≤ m and s ∈ [0, T ] such that

uki(t̂, s) = 0 and
d

d t
uki(t, s)

∣

∣

∣

∣

t=t̂

< 0. Secondly, for some 1 ≤ k ≤ m and s ∈ [0, T ]

we have

n
∑

i=1

uki(t̂, s) = Bk(s) and
d

d t

n
∑

i=1

uki(t, s)

∣

∣

∣

∣

∣

t=t̂

> 0. Notice that

∥

∥fk
(

U
(

t̂, ·
)

, µk(·)
)

(s)
∥

∥

2

=
∥

∥

∥
∇kζ

(2)
k

(

U
(

t̂, ·
))

(s)
∥

∥

∥

2

+

n
∑

i=1

[

2 (µki (s)− µk0 (s))
T · ∇kiζ

(2)
k (U (t, ·)) (s) + (µki (s)− µk0 (s))

2
]

where ∇kiζ
(2)
k (U(·)) (s) refers to the i-th entry of ∇kζ

(2)
k (U(·)) (s) For the first kind

of possibility, consider the first-order derivative

∂

∂µki (s)

∥

∥fk
(

U
(

t̂, ·
)

, µ(·)
)

(s)
∥

∥

2

=2
(

∇kiζ
(2)
k

(

U
(

t̂, ·
))

(s) + (µki (s)− µk0 (s))
)

=2
d

d t
uki(t, s)

∣

∣

∣

∣

t=t̂

< 0

where uki(·) is the i-th entry of Uk(·). However, since uki(t̂, s) = 0, according to (4.4)

we have that µki (s) is nonnegative and minimize
∥

∥fk
(

U
(

t̂, ·
)

, µ(·)
)

(s)
∥

∥

2
, which

means that we can further decrease ‖fk (U (t, ·) , µ(·)) (s)‖2 by increasing µki (s),

which is in contradiction to (4.4). Therefore the first possibility does not hold.
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Similarly, as for the second possibility we have

∂

∂µk0 (s)

∥

∥fk
(

U
(

t̂, ·
)

, µ(·)
)

(s)
∥

∥

2

=− 2
n
∑

i=1

[

∇kiζ
(2)
k

(

U
(

t̂, ·
))

(s) + (µki (s)− µk0 (s))
]

=− 2
d

d t

n
∑

i=1

uki(t, s)

∣

∣

∣

∣

∣

t=t̂

< 0

Following the similar analysis for the first possibility, the second possibility

does not hold either. Therefore, we may conclude that starting from any feasible

strategy profile, the solution by the best-response mechanism (4.3) is continuous

and remains feasible in D for each t ≥ 0. The first part of the theorem is proved.

Next, we move on to show the second part of the theorem. As the first step, we will

use the following lemma to show that ‖fk (t)‖2 is convergent to 0 for each k as each

player updates their strategies according to the best-response mechanism (4.3).

Lemma B.20 Starting from any initial feasible strategy set U (0, ·), for any 1 ≤

k ≤ m, we have the magnitude of the dynamics ‖fk (t)‖2 → 0 as the time t→∞.

Proof: Let’s consider f(·) =

[

fT
1 (·) fT

2 (·) . . . fT
m(·)

]T

, the time derivative of

f(·) is given as follows:

d

d t
f (U (t, ·) , µ(·)) = 〈G (U (t, ·)) , f (U (t, ·) , µ(·))〉+

























µ̇1(·)

µ̇2(·)

...

µ̇n(·)

























−

























µ̇10(·) · 1n

µ̇20(·) · 1n

...

µ̇n0(·) · 1n

























where G(·) is as defined in the proof for Theorem B.19. For convenience, we denote

that µk(·) =

[

µk1(·) µk2(·) . . . µkn(·)

]T

. According to the definition of µ(·)’s in
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(4.4), if µki (s) or µ̇ki (s) does not equal to 0, then we must have uki(s) = 0 for

i = 1, . . . , n or

n
∑

i=1

uki (s) = Bk(s) for i = 0. However, since µki(s)’s minimize

fk (U (t, ·) , µ(·)) (s), according to the Hilbert Projection Theorem in combination

with (4.3), we have that

















































µ̇k1(·)

µ̇k2(·)

...

µ̇kn(·)

























−

























µ̇k0(·)

µ̇k0(·)

...

µ̇k0(·)
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
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































T

· fk (U (t, ·) , µ(·)) = 0

for 1 ≤ k ≤ m. Therefore the time derivative of ‖f(·)‖2 can be expressed as follows:

d

d t
‖f (U (t, ·) , µ(·))‖2 = 〈f (U (t, ·) , µ(·)) ,G (U (t, ·)) , f (U (t, ·) , µ(·))〉

According to the proof for Theorem B.19, we have

d

d t
‖f (U (t, ·) , µ(·))‖2

= 〈f (U (t, ·) , µ(·)) ,G (U (t, ·)) , f (U (t, ·) , µ(·))〉

≤
m
∑

k=1

〈

fk (U (t, ·) , µ(·)) ,∇2
kζ

(2)
k (U (t, ·)) , fk (U (t, ·) , µ(·))

〉

According to the proof for Theorem 4.5, ζ
(2)
k (U(·)) is the exponential of some

other functional which is concave w.r.t. Uk(·). Therefore there exists some ǫ > 0

such that the following equation holds:

〈

fk (U (t, ·) , µ(·)) ,∇2
kζ

(2)
k (U (t, ·)) , fk (U (t, ·) , µ(·))

〉

≤− ǫ ·
〈

∇kζ
(2)
k (U (t, ·) , µ(·)) , fk (U (t, ·) , µ(·))

〉2

=− ǫ ·

(

〈fk (U (t, ·) , µ(·)) , fk (U (t, ·) , µ(·))〉
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− 〈µk(·)− µk0(·) · 1n, fk (U (t, ·) , µ(·))〉

)2

=− ǫ · 〈fk (U (t, ·) , µ(·)) , fk (U (t, ·) , µ(·))〉2

=− ǫ · ‖fk (U (t, ·) , µ(·))‖42

Since ‖f (U (t, ·) , µ(·))‖2 =
m
∑

k=1

‖fk (U (t, ·) , µ(·))‖2, we have

d

d t
‖f (U (t, ·) , µ(·))‖2 ≤ −ǫ · ‖f (U (t, ·) , µ(·))‖42

Therefore ‖f (U (t, ·) , µ(·))‖2 is convergent to 0 as time t → ∞, so as each

‖fk (U (t, ·) , µ(·))‖2 does. This lemma is proved. �

Now denote U0(·) as a Nash equilibrium for the FMCG marketing game, then

invoking the KKT condition [117], we have

∇kζ
(2)
k

(

U0(·)
)

+








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...
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




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


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0
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+ · · ·+
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0
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...

µ0
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
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



−
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


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
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...
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
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


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











= 0 (B.44)

for each 1 ≤ k ≤ m, where the quantities µ0
ki(·)’s are the corresponding Lagrange

multipliers.

For fk (U (t, ·) , µ(·)), let’s plus
〈

U0
k (·)− Uk(t, ·), fk (U (t, ·) , µ(·))

〉

with the in-
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ner product of Uk (t, ·)− U
0
k (·) and (B.44) sum them over k, then we have

〈

g
(

U0(·)
)

,
(

U (t, ·) − U0(·)
)〉

+
〈

g (U (t, ·)) ,
(

U0(·)− U (t, ·)
)〉

+

m
∑

k=1

[

n
∑

i=1

〈

µ0
ki(·), uki (t, ·)

〉

+
〈

µ0
k0(·), Bk(·)− 1Tn · Uk (t, ·)

〉

+

n
∑

i=1

〈

µki(·), u
0
ki(·)

〉

+
〈

µk0(·), Bk(·)− 1Tn · U
0
k (·)
〉

]

=
〈

U0(·)− U (t, ·) , f (U (t, ·) , µ(·))
〉

≤
∥

∥U0(·)− U (t, ·)
∥

∥

2
· ‖f (U (t, ·) , µ(·))‖2

(B.45)

Since for any time t ≥ 0, we have U (t, ·) ∈ D, where the feasible set D is

bounded, therefore the term
∥

∥U0(·)− U (t, ·)
∥

∥

2
is bounded. According to Theorem

B.20, we know that ‖f (U (t, ·) , µ(·))‖2 is convergent to 0 and thus the R.H.S. of

(B.45) goes to 0 as t→∞.

At the same time, because U0(·),U (t, ·) ∈ D and g(·) is quasi strictly concave

as as specified by Theorem B.19, each term at the L.H.S. of (B.45) is actually

nonnegative. Therefore, we can get the follows:

lim
t→∞

〈

g
(

U0(·)
)

,
(

U (t, ·) − U0(·)
)〉

+
〈

g (U (t, ·)) ,
(

U0(·)− U (t, ·)
)〉

= 0

On the other hand, we have that

〈

g
(

U0(·)
)

,
(

U (t, ·) − U0(·)
)〉

+
〈

g (U (t, ·)) ,
(

U0(·)− U (t, ·)
)〉

=−
〈

g (U (t, ·))− g
(

U0(·)
)

,U (t, ·)− U0(·)
〉

=−

∫ 1

0

〈

U (t, ·)− U0(·),G
(

αU (t, ·) + (1− α)U0(·)
)

,U (t, ·)− U0(·)
〉

dα

170



By the proof for Theorem B.19 and B.20, we have

−

∫ 1

0

〈

U (t, ·)− U0(·),G
(

αU (t, ·) + (1− α)U0(·)
)

,U (t, ·)− U0(·)
〉

dα

≥−
m
∑

k=1

∫ 1

0

〈

U (t, ·)− U0(·),∇2ζ
(2)
k

(

αU (t, ·) + (1− α)U0(·)
)

,U (t, ·)− U0(·)
〉

dα

(B.46a)

≥ǫ ·
m
∑

k=1

∫ 1

0

〈

∇ζ
(2)
k

(

αU (t, ·) + (1− α)U0(·)
)

,U (t, ·)− U0(·)
〉2

dα (B.46b)

≥ǫ ·
m
∑

k=1

[
∫ 1

0

〈

∇ζ (2)k

(

αU (t, ·) + (1− α)U0(·)
)

,U (t, ·)− U0(·)
〉

dα

]2

(B.46c)

=ǫ ·
m
∑

k=1

[

ζ
(2)
k (U (t, ·))− ζ

(2)
k

(

U0(·)
)

]2

(B.46d)

where (B.46a) holds based on the proof for Theorem B.19 and (B.46b) is based

on the proof for Theorem B.20. The third inequality (B.46c) holds as a result of

Cauchy-Schwartz inequality. Here ǫ > 0 is a constant. Up to now, we have shown

that

lim
t→∞

m
∑

k=1

[

ζ
(2)
k (U (t, ·))− ζ

(2)
k

(

U0(·)
)

]2

= 0

The theorem is hereby proved.
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