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A burning Deuterium-Tritium plasma is one which depends upon fusion-produced

alpha particles for self-heating. Whether a plasma can reach a burning state re-

quires knowledge of the transport of alpha particles, and turbulence is one such

source of transport. The alpha particle distribution in collisional equilibrium forms

a non-Maxwellian tail which spans orders of magnitude in energy, and it is this tail

that is responsible for heating the plasma. Newly-born high-energy alpha particles

are not expected to respond to turbulence as strongly as alpha particles that have

slowed down to the bulk plasma temperature. This dissertation presents a low-

collisionality derivation of gyrokinetics relevant for alpha particles and describes the

upgrades made to the GS2 flux-tube code to handle general non-Maxwellian energy

distributions. With the ability to run self-consistent simulations with a population

of alpha particles, we can examine certain assumptions commonly made about al-

pha particles in the context of microturbulence. It is found that microturbulence

can compete with collisional slowing-down, altering the distribution further. One

assumption that holds well in electrostatic turbulence is the trace approximation,



which is built upon to develop a model for efficiently calculating the coupled radial-

energy turbulent transport of a non-Maxwellian species. A new code was written

for this purpose and corrections to the global alpha particle heating profile due

to microturbulence in an ITER-like scenario are presented along with sensitivity

studies.
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Chapter 1: Introduction

1.1 Motivation

The ultimate goal of the global fusion research program is to sustain a plasma

in a burning state: where the energetic products of the nuclear fusion reaction

provide sufficient heating to keep the plasma at fusion-relevant temperatures. The

easiest fusion reaction to achieve (based on the required plasma temperature) is that

between two isotopes of hydrogen, deuterium and tritium:

H2 + H3 → He4 (3.5MeV) + n1 (14.1MeV) . (1.1)

In magnetic confinement experiments, a plasma with a temperature of at least 10 keV

(about 11 million kelvin) is kept isolated from cool material by strong magnetic

fields. Charged particles (of a particular species s, such as deuterons, tritons, or

electrons) in magnetic fields are known to follow Larmor orbits in the plane perpen-

dicular to the magnetic field. In a strong enough magnetic field (to be elaborated

upon in chapter 2), this orbit is a circle of a radius proportional to its perpendicular

speed v⊥. This radius is known as as the Larmor- or gyro-radius. On the other

hand, the motion of a charged particle along a straight magnetic field line is unaf-
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fected by the magnetic field. This characteristic motion is a critical component to

magnetic confinement, but it is not sufficient. Other phenomena, such as gradients

in the field, pressure gradients, imposed electromagnetic waves, radiation, collisions,

fluid and kinetic instabilities all play crucial roles in the feasibility of a confinement

scheme. The tokamak and stellarator are two configurations that have gotten the

most attention and are currently the most promising technologies for controlled

fusion.

From the D-T reaction (1.1), it is clear that the neutron carries away most of

the energy produced by fusion. There is no way to confine a neutron in a magnetic

field, and since its collision cross section is so small, it will escape the plasma. Power

plant concepts (such as DEMO) rely upon these high energy neutrons to heat a

“blanket”, which converts the neutron energy into heat. Such high energies can also

cause problems for other components, the mitigation of which is an important line

of study.

Since neutrons escape the plasma, if we wish to have a burning plasma which

requires little or no external heating, it is the alpha particle which must eventually

provide energy to the plasma. This transfer of energy will most likely occur through

collisions, although there are alternative concepts to capture this energy in waves

for efficiency (a hypothetical technique known as alpha channelling [7, 8]). We will

describe this basic collisional heating mechanism later in section 1.4.2.

Despite decades of research, this burning state has not yet been achieved,

and one of the critical roadblocks was the experimental discovery of “anomalous”

transport. We now know that this escape of energy is caused by turbulence driven
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by plasma microinstabilities that feed off of the free energy in equilibrium gradients.

This turbulence limits, for example, how strongly the ion temperature (an increase

in which is necessary for fusion) can increase throughout the core of the device.

The turbulence generated also has effects, either beneficial or detrimental, on the

transport of plasma impurities1. Once an alpha particle has slowed down and lost

its usefulness in heating the plasma, it is considered an impurity: spent fuel known

as helium ash.

This dissertation focuses on the effect of this turbulence on the transport of

fusion-produced alpha particles.

1.2 Scope of this work

Since the fate of alpha particles is so important to the goal of fusion, it has

gotten a lot of attention, and the most important aspects have been identified and

studied. Also because the topic is important, we as a community ought to thoroughly

understand all sources of alpha transport. This dissertation represents an effort to

develop a unified view of alpha particles in the context of primarily electrostatic

drift wave turbulence.

One important effect of alpha particles is the destabilization of Alfvén waves

under certain conditions [9–11]. These waves, in turn, can have a dramatic effect on

alpha particle transport. For example, wave-particle interaction can cause resonance

overlap [12, 13], which opens an especially efficient channel for radial transport of

alphas. While not the focus of this dissertation, appendix A includes a brief study of

1Defined, for our purposes, as anything that isn’t fusion fuel or neutralizing electrons
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non-Maxwellian effects on TAE destabilization. We make no claim that turbulent

transport is dominant over these Alfvénic phenomena when and where they are

active. However, turbulence is nearly ubiquitous and provides a baseline level of

transport, and will be present even if these other transport mechanisms are somehow

solved or mitigated. Furthermore, since turbulence plays a role in determining

the alpha particle profile, it can have an effect on when and where this enhanced

Alfvénic activity occurs. Indeed, stiff transport models for TAEs, combined with

anomalous transport, are actively being developed [14]. It is in this context that this

dissertation can be most appreciated: as part of a radially-global, comprehensive

transport model for alpha particles.

An important transport mechanism of alpha particles we do not consider here

is so-called ripple-loss. Neoclassical effects are usually small for fast ions in toka-

maks, but the breaking of axisymmetry (due to a finite number of toroidal magnetic

coils, for example) enhances this neoclassical transport to appreciable levels. This

is expected to occur mostly in the edge region, where the error field (that which is

not axisymmetric) is the highest. As an alpha particle gets even closer to the edge,

its finite-orbit size could cause it to directly escape the confined plasma.

This dissertation focuses on tokamak geometry, which is toroidal with an ax-

isymmetric magnetic field. A key feature of the tokamak is a plasma current that

induces a magnetic field in the poloidal direction (the “short way” around the torus)

that is necessary for confinement. The techniques developed and insights gained in

this dissertation, however, apply equally well to stellarators or to any other magne-

tized confinement concept in which gyrokinetic turbulence plays a significant role.
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1.3 Present state of research and the approach of this dissertation

There has been a considerable amount of work done on the topic of turbu-

lence and alpha particles. Estrada-Mila, Candy, Waltz [15] performed numerical

simulations using GYRO [16] and found significant transport of high-energy alpha

particles in the core due to electrostatic turbulence. This was confirmed by Alber-

gante [17] using GENE [18], and it was stressed that turbulence can result in a pinch

of low-energy helium ash, a result which Angioni [19] also found with GS2 [20, 21].

Dannert [22] also used GENE to study the effect of turbulence on anisotropic beam

ions. All of these nonlinear gyrokinetic simulations of alpha particle transport were

performed by treating the alpha particle population as a hot Maxwellian species,

using the so-called equivalent Maxwellian approximation. This approximation has

been in use for a long time [23], and was formalized in reference [15].

However, alpha particles are not Maxwellian [24], a fact which is well-recognized

in the above references. Indeed, care was taken to show that using a Maxwellian of

the same temperature gave approximately accurate linear results for their particular

cases. Then, linear simulations using GS2 were performed using the non-Maxwellian

slowing-down distribution [25] to obtain the radial flux of alpha particles, where

attention was drawn to the incorrectness of the radial gradient of the equivalent

Maxwellian. In this work, we demonstrate that the numerical value of the alpha

particle flux found this way can be poorly estimated, depending on the local param-

eters used. The equivalent Maxwellian approximation is inadequate, and we present

a method to rigorously obtain the correct energy-dependent flux which is valid in
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the trace2 limit.

However, turbulent diffusion is selectively relevant depending on energy, in

which there is a wide range of scales between the bulk temperature at 10 keV and

the alpha particle birth energy Eα ≈ 3.5 MeV. Therefore, an overall integrated

diffusion coefficient cannot be expected to capture all the relevant physics. An effort

at IPP Garching, lead by Hauff, Jenko [26, 27], and later Pueschel [28] sought to

develop energy scalings of turbulent diffusion by treating the electrostatic ion-scale

turbulence as a given background field with known properties, to which the energetic

particles passively react. It was found [15,29] that the diffusion of energetic particles

scales inversely with energy (E−1) for particles with high pitch angle (v‖ ∼ v),

and as E−3/2 for deeply-trapped energetic particles. It was later pointed out [28]

that this is an expansion in Larmor radius, with the former result valid only for

prohibitively large pitch angles for particles of such high energy. Therefore, an

overall E−3/2 scaling is expected, a result we confirm. This is in contrast to parallel

work by Zhang, Lin, and colleagues [30], who find a different energy scaling from

their simulations.

This work builds upon these foundations to solve for the global transport of al-

pha particles, coupled in radius and energy. The basic technique for trace transport

(described fully in chapter 4) was first applied by Albergante [17] to the simpler case

of Maxwellian trace species. We expand upon this by solving for the entire equilib-

rium distribution as a function of radius and energy with no a priori assumptions

2When we refer to a species as “trace”, what is meant is a species that contributes negligibly
to the electromagnetic fields, usually because of its /low concentration in the plasma.
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about its form, apart from imposed boundary conditions. This approach is indebted

to the insights of Hauff [27] in treating the diffusion coefficient as a strong function

of energy, and to Angioni [25] in recognizing the linear dependence of the fluxes on

the energy-dependent equilibrium.

We begin in chapter 2 by formally deriving gyrokinetics for a non-Maxwellian

species, including the transport equation for the equilibrium, which will depend

upon the steady-state behavior of the turbulence. We choose to use the Eulerian

flux-tube gyrokinetic solver GS2 to solve the gyrokinetic equation because of issues

encountered with the δf particle-in-cell algorithm, discussed in appendix B. Fur-

thermore, a method to retain spectral accuracy for velocity space integrals for an

arbitrary isotropic distribution was found and developed (see appendix C), which

further influenced this decision. With GS2 so upgraded to handle non-Maxwellian

species, in chapter 3 and reference [31], we challenge several assumptions commonly

used in the analysis of alpha particles. We show that the Maxwellian model for fast

alpha particles is inadequate, but also that the slowing-down distribution (discussed

in the next section), the next-best approximation, is also invalid due to the influence

of turbulent transport. Since we therefore need to solve the gyrokinetic equation

without knowing the form of the equilibrium distribution, a novel technique is re-

quired. Based on the trace approximation, we showcase a new code in chapter 4,

T3CORE, which acts as a post-processor to existing gyrokinetic simulations and con-

structs the radius-energy coupled equilibrium distribution, taking into account the

effects of collisions and microturbulence. Finally, we apply this new tool to the

problem of alpha particle transport in chapter 5 and show that turbulence has a
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significant effect on the most interesting and important aspects of alpha particles in

fusion plasmas.

1.4 Basic alpha particle physics

We begin by introducing some of the basic ideas that we will be revisiting

throughout this dissertation. We do so by chronologically telling the story of a

fusion-produced alpha particle as it slows down in the plasma. In the process, we

will derive the analytic slowing-down distribution of Gaffey [24], which is now a

textbook plasma physics problem [32, 33]. While this work challenges the strict

validity of this distribution in the presence of microturbulence, it is the structure

upon which we build, and the physics that go into its derivation remain important.

1.4.1 High-energy source

From the DT fusion reaction (1.1), alpha particles are born universally at a

constant energy Eα ≈ 3.5 MeV. So one may choose to define the source as a Dirac

delta function:

Sα,m (v) =
σα

4πv2
α

δ (v − vα) , (1.2)

where vα =
√

2Eα/mα is the alpha particle birth speed. The total source of alpha

particles σα is a function of plasma density, temperature, and composition, and can

be approximated [34] by:

σα = 3.68× 10−18 m3

s
nDnT

(
Ti

keV

)−2/3

exp

[
−19.94

(
Ti

keV

)−1/3
]
, (1.3)
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where nD and nT are the number densities of deuterium and tritium respectively,

and Ti is the ion temperature, assumed common to both species.

The mono-energetic source in equation (1.2) is as measured in the center of

mass frame of the reactant ions. We must transform into the lab frame3 to get the

apparent distribution in energy from the perspective of the bulk plasma. One might

think that, since the typical energies of the reactant deuterium and tritium ions are

so much smaller than Eα, that this spread is negligible. However, it is not typical

ions that fuse; only the most energetic ones do. Therefore, this spread is determined

by the speed of fusing ions, not thermal ions. The actual source of alpha particles

can be approximated by a Gaussian in energy [36,37], with a width proportional to

the geometric mean of Eα and Ti:

Sα (v) = A exp

[
−mn +mα

16mα

m2
α (v2 − v2

α)
2

TiEα

]
, (1.4)

where mα and mn are the masses of an alpha particle and a neutron, respectively.

The normalization constant A is chosen so that
∫
Sα d3v = σα from equation (1.3).

A representative shape of this source is shown in figure 1.1.

Another common misconception about the source of alpha particles is that it

is a very strong function of temperature. One may then expect that the majority

of alpha particles are only produced very close to the magnetic axis, where the ion

temperature is the highest. However, this is not the case. Even though Ti appears in

an exponent in equation (1.3), it does so only with a fractional power. In figure 1.2,

3or at least to the rest-frame of the plasma or even a particular flux surface, see reference [35]
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Figure 1.1: The shape of the alpha particle source in the plasma rest frame at Ti = 10 keV.

Figure 1.2: The radial dependence of the fusion cross section σα/nDnT in a typical ITER scenario
[1]. On the right, the area of the flux surfaces are taken into account to illustrate the relative total
number of alpha particles produced at different radii. The shaded region is the computational
domain studied in chapter 5.

we plot the radial dependence of the fusion cross section for a representative ITER

scenario (one which we will revisit in chapters 3 and 5). We can see that a significant

fraction of alpha particles are produced in the region where microturbulence is most

active.

When alphas are born at this high energy, they typically have a very large

Larmor radius as a result, about an order of magnitude larger than that of the bulk

ions. The turbulence generated by these slower ions has eddies of a characteristic
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Figure 1.3: A Larmor orbit of a 3.5 MeV alpha particle super-imposed on a representative snapshot
of the electrostatic potential in ITG turbulence, along with that of a thermal deuterium ion. When
the potential is averaged over such an orbit, one observes an attenuated effective potential. Note
that the thermal ion Larmor radius is the scale in the x and y directions.

size several times larger than the Larmor radius of the ions, but still significantly

less than that of the alpha particles. See figure 1.3 for an illustration of these scales.

Furthermore, the magnetic orbit of an alpha particle (characterized by the

poloidal Larmor radius; see table 1.1) is even larger still, and these effects combine

to weaken the response of the highest-energy alpha particles to the turbulence, since

their orbits average over many fluctuations. As alpha particles slow down, they begin

responding more and more strongly to the turbulence.

If the poloidal Larmor radius is too large, however, this means that the mag-

netic orbit causes a significant deviation from a flux surface, and as a result the local

flux-tube approach of gyrokinetics can be called into question. For this reason, we

focus on ITER results, since that is the device in which one could most rigorously
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Table 1.1: Properties of some typical tokamak properties, using the radial-average values from [1].
Ion species is deuterium, and alpha particle parameters are taken at 3.5 MeV.

TFTR JET ITER

Toroidal ion gyroradius ρi/a 0.0028 0.0037 0.0013
Toroidal alpha gyroradius ρα/a 0.040 0.058 0.018
Poloidal ion gyroradius ρi,pol/a 0.026 0.026 0.0079
Poloidal alpha gyroradius ρα,pol/a 0.37 0.41 0.11
Ion-ion collision frequency νiia/vti 2.7× 10−5 5.0× 10−5 1.6× 10−4

α-e slowing-down frequency ναes a/vti 1.3× 10−6 2.4× 10−6 5.9× 10−6

Slowing-down time (s) τs 0.48 1.0 0.85
Energy confinement time (s) τE 0.13 0.59 2.98

apply the flux tube approximation for alpha particles.

1.4.2 Collisional slowing-down

To examine how alpha particles slow down and scatter off of the background,

we must introduce the distribution of their positions and velocities. Much of plasma

physics is concerned with describing the behavior of charged particles in a statistical

sense through the distribution function fs, with s labelling a particle species which

has charge Zse and mass ms. This distribution is a function of spatial position r,

particle velocity v, and time, normalized such that the probability dP of finding a

particle in a infinitesimal volume spanned by r and r+ d3r, and with an infinitesimal

range of velocities between v and v + d3v at a particular time t is given by:

dP = fs (r,v, t) d3r d3v. (1.5)

The spatial distribution of the plasma is almost always relevant, but it is often
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helpful and sufficient to average over velocity space by taking moments such as

density:

ns ≡
∫
fs d3v, (1.6)

flow velocity

us ≡
1

ns

∫
fsv d3v, (1.7)

and temperature

Ts ≡
1

ns

ms

3

∫
fs |v − us|2 d3v. (1.8)

Descriptions of plasma which are primarily concerned with achieving a closed set of

equations for moments and manipulating them directly are known as fluid theories,

and if a phenomenon is well-described by such equations, we say the plasma is a fluid

in that context. This is in contrast to kinetic theory, which is concerned with the

evolution of fs directly to account for phenomena such as Landau damping, wave-

particle interaction, and collisions. Kinetic theory has the advantage of being a more

complete description of the plasma, but is often computationally and analytically

intractable. Nevertheless, there are useful reductions that make the kinetic problem

easier to solve. Gyrokinetics, discussed in chapter 2, is one such reduction.

The effects that inter-particle collisions have on the distribution function are

represented by a collision operator. The Fokker-Planck collision operator is appli-

cable to fully ionized plasma [32] such as found in fusion devices. For collisions of
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test particles against a Maxwellian field, it is:

C [fs] =
∑
s′

C [fs, fs′ ]

=
∑
s′

[
νs,s

′

D

2

∂

∂ξ

(
1− ξ2

) ∂fs
∂ξ

+
1

v2

∂

∂v

(
νs,s

′

s v3fs +
1

2
νs,s

′

‖ v4∂fs
∂v

)]
(1.9)

To clarify the perhaps confusing notation of νs,s
′

s , the subscript s stands for “slowing-

down” and the superscripts s and s′ refer to species. The pitch angle ξ ≡ v‖/v is the

ratio of the speed parallel to the magnetic field to the total speed. In this disserta-

tion, we concern ourselves with isotropic fs, and when averaging over pitch angle,

the first term in equation (1.9) (the Lorentz operator) vanishes. The quantities νs

and ν‖, when fs collides with Maxwellian species s′, are defined in our notation as:

νs,s
′

s (v) ≡ 4πns′Z
2
sZ

2
s′e

4 ln Λs,s′

msTs′

G
(

v
vts′

)
v

(1.10)

νs,s
′

‖ (v) ≡ 8πns′Z
2
sZ

2
s′e

4 ln Λs,s′

m2
s

G
(

v
vts′

)
v3

, (1.11)

where ln Λs,s′ is the Coulomb logarithm, and the Chandrasekhar functionG is related

to the error function by:

G (x) ≡
Erf (x)− 2√

π
xe−x

2

2x2
. (1.12)
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This function has the following asymptotic forms, which will shortly come in handy:

G (x� 1) ≈ 2x

3
√
π

(1.13)

G (x� 1) ≈ 1

2x2
. (1.14)

Now, let us consider what all this means for isotropic alpha particles colliding

against a bulk background of ions and electrons:

C [fα] =
1

v2

∂

∂v

[
v3
(
ναis + ναes

)
fα +

1

2
v4
(
ναi‖ + ναe‖

) ∂fs
∂v

]
. (1.15)

Even though newly-born alphas have very high energy, thermal electrons are signif-

icantly faster. Therefore, we will apply the small argument expansion of G (1.13) to

the alpha-electron terms in equation (1.15) and the large-argument expansion (1.14)

to the alpha-ion terms. Furthermore, we will consider only the slowing-down term,

because energy diffusion (as the ν‖ term is called) is only appreciable when v ∼ vti.

We are left with the following approximate form for the collision operator

C [fα] ≈ 1

τs

1

v2

∂

∂v

[(
v3
c + v3

)
fα
]
, (1.16)

valid for vti � v � vte. We have defined the critical speed

vc ≡ vte

(
3
√
π

4

∑
i

nime

nemi

Z2
i

)1/3

(1.17)
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and the characteristic slowing-down time:

τs ≡
3

16
√
π

mαmev
3
te

Z2
αe

4ne ln Λαe

. (1.18)

For simplicity, let us solve for the distribution which balances the mono-

energetic source (1.2), with the approximate collision operator. That is, we seek

an approximate steady-state solution to the equation

∂fα
∂t

= C [fα] + Sα,m. (1.19)

When we plug in equation (1.16), we can solve for fα as the analytic slowing down

distribution:

Fs (v) ≡ 3

4π

1

ln (1 + v3
α/v

3
c )

nα
v3
c + v3

, (1.20)

where we have chosen to express it in terms of the alpha particle density nα, directly

related to the source by:

nα =
σατs

3
ln

(
1 +

v3
α

v3
c

)
. (1.21)

If we know the gradients of the equilibrium properties, we can find the gradient
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of the slowing down distribution as follows:

∇FSα
FSα

=
1

FSα

∂FSα
∂nα

∇nα +
1

FSα

∂FSα
∂vc
∇vc (1.22)

=
∇nα
nα

+
1

FSα

∂FSα
∂vc

(
∂vc
∂Te
∇Te +

∂vc
∂ni
∇ni +

∂vc
∂ne
∇ne

)
=
∇nα
nα

+

[
v3
α

v3
c + v3

α

1

ln (1 + v3
α/v

3
c )
− v3

c

v3
c + v3

]
×(

3

2

∇Te
Te
− ∇ne

ne
+

∑
i Z

2
i∇ni/mi∑

i Z
2
i ni/mi

)
.

Let us introduce the scale-length notation, in which we will find it convenient to

express radial gradients, with an arbitrary radial coordinate4 ψ. The density and

temperature scale lengths for species s, for example, are respectively:

1

Lns
≡ − 1

ns

∂ns
∂ψ

(1.23)

and

1

LTs
≡ − 1

Ts

∂Ts
∂ψ

. (1.24)

With this notation, we can also define a scale length for the alpha critical speed:

1

Lvc
≡ − ∂

∂ψ
ln vc =

3

2

1

LTe
− 1

Lne
+

∑
i Z

2
i ni/miLni∑
i Z

2
i ni/mi

. (1.25)

At the high energies at which they are born, alpha particles’ main interaction

with the plasma is collisional heating of the electrons. As they slow down, scattering

4Not to be confused with the toroidal or poloidal magnetic flux, which are specific choices of
radial coordinate
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against ions becomes more important, and they begin heating as well. Overall,

depending on vc, only about 30-40% of the alpha particle power goes to the ions [38].

This preferential heating of electrons can be seen as an inefficiency, since electrons

do not fuse.

1.4.3 Thermalization

The fact that we were able to find a steady-state solution to equation (1.19)

should give us pause; that equation does not admit a steady-state because it has a

source! This can be easily verified by noting that the collision operator conserves

density: (
∂ns
∂t

)
coll

=
∂

∂t

∫
C [fs] d3v = 0, (1.26)

and integrating equation (1.19) over velocity space. Recall that we applied the

approximation vti � v � vte to simplify the collision operator in equation (1.16),

so this added density must build up where this approximation is not valid, namely

where v ∼ vti. So one cannot simply wait for a larger population of hot alpha

particles to develop; the high-energy tail of the slowing down distribution is indeed

a steady state. The alpha particles that build up are of lower energy.

Consider equation (1.19) without a source, or at least a very weak one. The

steady-state solution is a Maxwellian distribution:

fMs ≡ ns

(
ms

2πTs

)3/2

e−msv
2/2Ts , (1.27)
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parametrized by density ns and temperature Ts
5. It stands to reason that the low-

energy part of the distribution (where collisions are much stronger) is Maxwellian in

equilibrium with the ions, with ever-increasing density. This population of “cold”

helium is what we refer to as “ash”.

1.4.4 Transport

Of course, the density of this thermalized helium cannot continue growing

forever. Eventually, radial transport must play a role. If the population of ash

builds to too high of a level, it can get in the way of the fusion reaction. Effectively,

if the total density of the plasma is fixed, then any non-fusing ions like ash decrease

the densities nD and nT in equation (1.3). This effect is known as dilution.

However, it is not only the Maxwellian ash that transports. The primary

result of this dissertation is that transport interferes with collisional slowing-down

at moderate energies [31], modifying the distribution function further. Effectively,

there should be an additional term in equation (1.19) accounting for the radial

transport, such as in equation (4.16). This modification of fα is not trivial and

has important order-unity effects on key alpha particle diagnostics (see chapter 5).

Figure 1.4 shows the overall effect of microturbulent radial transport from simulation

on the alpha particles trajectories.

The remainder of this dissertation is organized to motivate this modification

to the alpha particle distribution, convince the reader that it is physical and ought

5More generally, the mean flow us can also play a role. However, for clarity in this thesis, we
ignore flow and the associated transport of momentum.
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Figure 1.4: Streamlines of alpha particle trajectories in phase space under the influence of collisions
and microturbulence for the baseline ITER scenario discussed in chapter 5.

to be accounted for, and to present an efficient solution method to find such a

modification from first principles. The primary results concerning alpha particle

transport are contained in chapter 5, and should be readable without building up

the formalities of chapters 2 or 4. If the reader is interested in a basic motivation

of why this work is necessary, chapter 3, based on reference [31], might be a useful

place to start.
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Chapter 2: Non-Maxwellian gyrokinetics

With the goal of studying alpha particles, a natural reduced kinetic formalism

to use is gyrokinetics, since fast ions have a large Larmor radius compared to typical

eddy sizes (see figure 1.3). Although the original treatments of gyrokinetics [39,40]

were derived for general anisotropic non-Maxwellian equilibrium distributions, the

codes that have since been developed to solve the nonlinear gyrokinetic equation

typically assume a Maxwellian equilibrium. Furthermore, the equation for the time

evolution of a non-Maxwellian equilibrium (i.e., the transport equation) has not

been developed until recently [41,42]. For high-energy alpha particles, the collision

frequency is low, and the alpha particles do not form a Maxwellian distribution and

instead form a power law (1.20). Therefore, the gyrokinetic ordering necessitates a

low-collisionality generalization if it is to be useful in the study of alpha particles.

This chapter will present a derivation of gyrokinetics, allowing for isotropic

non-Maxwellian distributions. This derivation is indebted to, and attempts to

closely follow, the derivation of Abel and colleagues [35]. Here, we generalize for

non-Maxwellian equilibrium, while excluding for clarity sonic flow, flow shear, and

neoclassical corrections. This is not to be interpreted as dismissing the importance

of these phenomena; in fact, these are rich topics of great importance to fusion. The
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inclusion of equilibrium flow and neoclassical effects are coupled in subtle ways, a

proper exposition of which is a dissertation in its own right [43], and to give it the

attention it deserves herein would distract from the goal at hand, which is to illus-

trate the ways in which low-collisionality gyrokinetics differs from the “standard”

Maxwellian treatment.

We start from the Fokker-Planck equation:

∂fs
∂t

+ v · ∇fs +
Zse

ms

(
E +

1

c
v ×B

)
· ∂fs
∂v

= C [fs] + Ss, (2.1)

which describes the evolution of the distribution function fs in the presence of a

source Ss (r,v), and self-consistent electric and magnetic fields E and B respec-

tively. The velocity v has components parallel and perpendicular to the equilibrium

magnetic field: v‖ and v⊥ respectively. The collision operator is given by equation

1.9, and includes contributions from all species: C [fs] =
∑

s′ C [fs, fs′ ].

Let us perform a change of variables [44] of equation (2.1) into coordinates

defined by the orbit gyrocenter

R ≡ r− 1

Ωs

b× v, (2.2)

where Ωs ≡ ZseB/msc is the frequency of cyclotron motion, and b ≡ B/B is the

unit vector along the magnetic field. The velocity space coordinates are defined

by energy E, approximate magnetic moment µ, gyro-motion phase angle ϑ, and the

sign of the parallel velocity σ‖ (without which the velocity would not be fully defined
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in terms of only E and µ). These quantities are defined respectively as follows:

E ≡ 1
2
msv

2 + Zseφ, (2.3)

µ =
msv

2
⊥

2B
, (2.4)

ϑ ≡ tan−1

(
vy
vx

)
, (2.5)

σ‖ ≡
v‖∣∣v‖∣∣ . (2.6)

The electrostatic potential is φ such that the electric field can be represented as

E = −∇φ − c−1∂A/∂t, with vector potential A defined such that ∇×A = B. In

equation (2.5), vx and vy are two mutually-perpendicular velocity components in

the plane normal to the magnetic field.

In these coordinates, equation (2.1) becomes

∂fs
∂t

+ Ṙ · ∂fs
∂R

+ Ė
∂fs
∂E

+ µ̇
∂fs
∂µ

+ ϑ̇
∂fs
∂ϑ

= C [fs] + Ss, (2.7)

where the over-dot notation represents the convective derivative in phase space:

ġ ≡ dg

dt
≡ ∂g

∂t
+ v · ∇g +

Zse

ms

(
E +

1

c
v ×B

)
· ∂g
∂v

, (2.8)

for any function g.
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2.1 Orderings

In this chapter, we are performing an expansion of equation (2.7) in the ratio

of Larmor radius ρs ≡ vts/Ωs (where vts ≡
√

2Ts/ms is the thermal speed1) to an

equilibrium length scale length a (here taken to be the minor radius of a tokamak):

ρ∗s ≡
vts
aΩs

. (2.9)

We expand the distribution function into an equilibrium slowly-varying in time and

space, and a more rapidly-varying fluctuation (though still slow compared to the

cyclotron frequency) :

fs = F0s + f1s + f2s . . . . (2.10)

Similarly, we expand the magnetic field as

B = B0 + δB + . . . (2.11)

= B0 + δB‖b +∇×
(
A‖b

)
+ . . . . (2.12)

Since we are not considering sonic flows, the E × B drift speed should be small

compared to the thermal speed, and φ has only a small fluctuating component

(φ = δφ). Similarly, unless otherwise stated, when we write the vector potential A,

it will refer only to the fluctuating magnetic field (such that δB = ∇×A), and not

1“Temperature” (and thus “thermal”) will always refer to the second moment of the distribution
function, divided by the zeroth moment. Later, we will find it convenient to define a different
characteristic speed for alpha particles vα ≡

√
2Eα/mα. Care will be taken to specify which is

being referred to when the time comes.
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to the equilibrium field (which will always be denoted with B0).

We are developing a theory valid for when the fluctuating quantities δfs, φ,

A‖, and δB‖ vary on a characteristic timescale ω ∼ vts/a. Fluctuations are taken

to be spatially anisotropic: they vary much more slowly along the magnetic field

than in the plane perpendicular. A characteristic of gyrokinetics, indeed its greatest

strength, is its ability to describe perpendicular fluctuations on the scale of a Larmor

radius, which is beyond the reach of orderings such as drift kinetics [45] and MHD

[46]. In return, however, gyrokinetics forfeits the ability to describe very fast drift

velocities or cyclotron timescales.

The primary role of collisions is to determine the form of the equilibrium

(including any necessary neoclassical corrections, for which collisions play a crucial

role), and to provide dissipation in a turbulent cascade. If collisions are “strong”

such that the collision frequency ν ∼ ω, then it can be shown [35, 47] that F0s is

a Maxwellian distribution (1.27). However, for non-Maxwellian species, we shall

order the collisions as weak in the sense that C [F0s] ∼ ∂F0s/∂t, at which timescale

other physics come into play (particularly, transport due to turbulence). Formally,

this means that collisions are ordered as ν ∼ O (ρ∗3s Ωs), which is justified by the

parameters for alpha particles in 1.1. The parallel length scale is characterized by

wavenumber k‖ ∼ 1/qR ∼ 1/a, and the perpendicular length scale by k⊥ ∼ 1/ρs.

To summarize, our orderings are:

ω

Ωs

∼
k‖
k⊥
∼ ρs

a
∼ δfs
F0s

∼ ∂F0s/∂t

∂δfs/∂t
� 1, (2.13)
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while

C [F0s] ∼
∂F0s

∂t
. (2.14)

2.2 Averaging operations

Before we proceed, we introduce the operations critical to our expansion: the

gyroaverage and the turbulence average.

2.2.1 Gyroaverage

In our expansion, the gyrophase ϑ will be largely treated as a redundant

(cyclic) coordinate, as it is in MHD. In contrast to MHD, this redundancy comes

not from the small size of the Larmor radius, but from the fast timescale of the

cyclotron motion. However, we must take care to ensure this averaging over gy-

rophase is done correctly, since we wish to capture the relevant dynamics on the

Larmor radius scale.

To this end, let us define two complementary spatial averages: the gyroaverage

at fixed gyrocenter R,

〈Q〉R ≡
1

2π

2π∫
0

Q (r) dϑ; (2.15)

and the gyroaverage at fixed position r,

〈Q〉r ≡
1

2π

2π∫
0

Q (R) dϑ (2.16)

for some arbitrary scalar Q. The former relation is perhaps the clearest; it represents
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r
R

r

R

Figure 2.1: An illustration of the gyroaverage at fixed gyrocenter R (on left), and spatial position
r (at right). In the latter, many particles with different gyrocenters R contribute to the charge at
r. Note that what is represented as a discrete set of particles over which to average (red dots on
the left, blue dots on the right), is actually a continuous function, discretized only for the sake of
illustration.

the average over the Larmor orbit of a particle whose gyrocenter is R and perpen-

dicular speed is v⊥. For example, in figure 1.3, the field experienced by the alpha

particle (whose guiding center motion is described by R) is the average of the field

(which is a function r) over its Larmor orbit. Conversely, equation (2.16) is a bit

more subtle; it can be used to find, for example, the effective charge at a given point

in space r as provided by many particles of perpendicular speed v⊥ whose Larmor

orbit happens to intersect with the point r, and thus have a gyrocenter a distance

ρ = v⊥/Ωs away from r (see figure 2.1). This latter average is used for the purposes

of calculating fluctuating electromagnetic fields such as φ (r), as determined from

the cyclotron-rotating charges at various gyrocenters R.

Since our simulations are in a periodic flux-tube geometry, it is worth drawing

attention to the form that the gyroaverage takes in Fourier space. Suppose the
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quantity Q̃ (k) is the Fourier transform of Q (r):

Q̃ =
1

(2π)3/2

∫
Qe−ik·r d3r, (2.17)

Q =
1

(2π)3/2

∫
Q̃eik·r d3r. (2.18)

Then, if 〈Q〉R is the gyroaverage of Q, then its Fourier transform is:

〈
Q̃
〉
R

=
1

(2π)3/2

∫
Qe−ik·(R+v⊥/Ωs) d3R

=
1

(2π)3/2

∫
Qe−ik·Re−ik⊥ρ cos η d3R

= J0

(
k⊥v⊥

Ωs

)
Q̃, (2.19)

where η is the angle between k⊥ and ρ = v⊥/Ωs, and J0 is the zeroth-order Bessel

function. In equation (2.19), we used the fact that d3R = d3r when integrating

over the entire spatial domain. The same relation holds for the gyroaverage at fixed

r. Therefore, the effect of the gyroaverage in Fourier space is simply multiplication

by a Bessel function, a fact which is immensely useful in numerical calculations.

Note that successive applications of equation (2.15) and equation (2.16) do

not undo each other. In fact, when integrating such a doubly-gyroaveraged function

over velocity space, we will find the following identity useful:

∫
e−v

2/v2
ts

π3/2v3
ts

[
J0

(
k⊥vts

Ωs

)]2

d3v = e−k
2
⊥ρ

2
s/2I0

(
k⊥ρs

2

)
≡ Γ0 (k⊥ρs) , (2.20)
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with zeroth-order modified Bessel function I0.

An important property of the gyroaverage that we will make use of is in con-

verting from the gyrophase derivative in one basis to another:

∂Q

∂ϑ

∣∣∣∣
R

=
∂Q

∂ϑ

∣∣∣∣
r

− 1

Ωs

v⊥ · ∇Q. (2.21)

Using periodicity of any physical operand Q with respect to ϑ, the gyroaverage of

equation (2.21) is:

〈v⊥ · ∇Q〉R = Ωs

〈
∂Q

∂ϑ

∣∣∣∣
r

〉
R

. (2.22)

Particularly, since ϑ is a velocity coordinate, note that if Q is not a function of

velocity, such as the case of electromagnetic fields, then (2.22) vanishes:

〈v⊥ · ∇Q〉R = 0 for Q = Q (r) . (2.23)

2.2.2 Turbulence average

Even though the equilibrium distribution F0s is stationary with respect to

the fluctuations, it still evolves in time, but on a longer timescale. How it evolves

will depend on the steady-state turbulent fluxes (which can and do persist for long

time scales). Therefore, we seek an averaging operation which obtains the long-time

average of a fluctuating quantity:

〈Q〉T ≡
1

T

T∫
0

Q(t′)dt′ , (2.24)
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where T is a suitably large time (much larger than the correlation time).

In addition to time-averaging, we will also wish to average over a flux surface.

From the theory of MHD equilibria, a flux surface is one on which magnetic field lines

stay, and ψ labels such a surface. Particularly, if a coordinate system is defined by

this ψ, a toroidal angle ζ (in which an axisymmetric magnetic field does not change

by definition), and a poloidal coordinate θ, then ∇ψ is the coordinate perpendicular

to the magnetic field:

b · ∇ψ = 0. (2.25)

Any flux function which is zero at the magnetic axis, and monotonic with respect

to increasing radius can be a suitable generalized radial coordinate.

The flux surface average of a quantity Q is defined as:

〈Q〉ψ ≡ lim
δψ→0

∫
δψ
Q d3r∫

δψ
d3r

, (2.26)

where δψ is the volume between the flux surface labelled by ψ and an infinitesimally-

close neighboring surface labelled by ψ+∆ψ. A defining property of the flux surface

average is that it eliminates the parallel derivative operator:

〈B · ∇Q〉ψ = 0. (2.27)

Another useful identity is that the flux surface average of a divergence is:

〈∇ · Γ〉ψ =
1

V ′(ψ)

∂

∂ψ

(
V ′(ψ) 〈Γ · ∇ψ〉ψ

)
. (2.28)
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Here, Γ is an arbitrary vector, and V = V (ψ) (whose derivative appears in equation

2.28) is the volume enclosed by the flux surface labelled by ψ.

In averaging over turbulent scales, we will often combine both operations (2.24)

and (2.26) into the turbulence average:

〈Q〉t ≡
〈
〈Q〉ψ

〉
T

(2.29)

2.3 The gyrokinetic hierarchy

In this section, the dynamical equation for the fluctuating part of the distribu-

tion function is derived as an expansion in ε ≡ ρ∗. The strategy is as follows: at the

fastest timescale we learn that the equilibrium distribution function is gyrotropic

(i.e., does not depend on gyrophase). This allows us to apply the gyroaverage op-

erator at the next order, when we find that F0s is constant along a field line (and

is therefore a flux function). Furthermore, we find that the fluctuation f1s is also

gyrotropic. Next, we gyroaverage at order ε2 to obtain the gyrokinetic equation.

The transport equation at order ε3, which finally deals with the time evolution of

the equilibrium in terms of the time-averaged turbulent fluxes, is considered in the

next section. Refer to table 2.1 to aid in the organization of the expansion.

At this point, it is helpful to calculate the coefficient time derivatives in equa-

tion (2.7) in a useful form considering our orderings. Firstly, µ is defined to be
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Table 2.1: Organizing which terms appear at what order in the low-collisionality gyrokinetic
expansion, when acting on which part of the distribution function. Order in ε = ρ∗ is in terms of
Ωsfs as it appears in equation (2.7). Here, all terms of higher order than ε3 are ignored.

∂
∂t

v‖b · ∇ Ṙ⊥ · ∇⊥ Ė ∂
∂E

ϑ̇ ∂
∂ϑ

C [ ] Acting on . . .

ε3 ε1 ε2 ε2 ε0 ε3 F0s

ε2 ε2 ε2 ε3 ε1 f1s

ε3 ε3 ε3 ε2 f2s

ε3 f3s

exactly conserved (and is only approximately msv
2
⊥/2B to leading order):

µ̇ = 0, (2.30)

so that term will always vanish in the expansion below. Also, since the cyclotron

frequency is the dominant frequency, the change in gyrophase is dominated by the

circular cyclotron motion:

ϑ̇ ≈ −Ωs. (2.31)

For the other two convective derivatives in equation (2.7), it is convenient to define

the acceleration from the fields:

v̇ = Ωsv × b− Zse

ms

∇φ− Zse

msc

∂A

∂t
, (2.32)

where the first term is the centripetal acceleration from the magnetic field and the

last two terms are the acceleration from the electric field. To find dR/dt, we take

the convective derivative of equation (2.2), keeping the equilibrium magnetic field
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constant in time:

Ṙ = v − v · ∇
[(

b

Ωs

)
× v

]
− b× v̇

Ωs

(2.33)

= v − v · ∇
[(

b

Ωs

)
× v

]
+
c

B
b×∇χ+

1

B
b× dA

dt
,

where the electromagnetic potential is

χ ≡ φ− 1

c
v ·A. (2.34)

Upon gyroaveraging, equation 2.33 becomes:

〈
Ṙ
〉
R

= v‖b + vds +
c

B
b×∇〈χ〉R . (2.35)

Here, we have defined the magnetic drift velocity of species s due to curvature and

gradient of the magnetic field:

vds ≡
1

Ωs

b×
(
v2
‖b · ∇b + 1

2
v2
⊥∇ lnB

)
. (2.36)

In deriving (2.35), we noted that ∂/∂t ∼ v‖b · ∇ � v⊥ · ∇ in equation 2.8 and

applied identity (2.23) so that, to leading order:

〈
Ȧ
〉
R

= 〈v⊥ · ∇A〉R = 0. (2.37)
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Now, take the total time derivative of equation (2.3):

Ė = Zseφ̇+msv · v̇ (2.38)

= Zse
∂φ

∂t
− Zse

c
v · ∂A

∂t

= Zse
∂χ

∂t
,

whose gyroaverage is: 〈
Ė
〉
R

= Zse
∂ 〈χ〉R
∂t

. (2.39)

With the Fokker-Planck equation (2.7), combined with the relations (2.33),

(2.38), (2.30), and (2.31), we proceed with the gyrokinetic expansion, using orderings

that are described in the next section.

2.3.1 O (Ωsfs)

Upon applying the orderings equations (2.13)-(2.7) and expanding fs, we find

the leading-order equation is simply:

dϑ

dt

∂F0s

∂ϑ
= −Ωs

∂F0s

∂ϑ
= 0, (2.40)

which means that F0s is independent of gyrophase ϑ.
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2.3.2 O (εΩsfs)

At next order, we have:

v‖b · ∇F0s − Ωs
∂f1s

∂ϑ
= 0. (2.41)

First, we gyroaverage equation (2.41) to eliminate the last two terms. We discover

that b · ∇F0s = 0, which says F0 is constant along a field line.

We will be working in a flux tube geometry, which is densely populated with

irrational surfaces. There would also be rational surfaces (perhaps low-order), where

the magnetic field is periodic after a finite number of toroidal revolutions, but these

are arbitrarily close to (and thus influenced by the finite-Larmor radius effects of) a

nearby irrational surface. Therefore, we consider the only spatial dependence of F0s

to be the radial variable ψ because magnetic fields lines densely cover an irrational

flux surface. In other words, F0s = F0s (ψ,E, µ) is a flux function in the sense of

equation (2.25). Furthermore, since we are working with alpha particles, which enter

the plasma isotropically, we will assume isotropy in velocity space and we thus have

F0s = F0s (ψ,E) exclusively.

The assumption of isotropy might give one pause in recalling that Hauff and

colleagues [29] obtain different scalings for the transport of passing and trapped

alpha particles. However, as pointed out by [28], this is actually an expansion in

Larmor radius, and in order to obtain the “passing” scaling in [29], one must consider

alpha particles of very small gyroradius, of which there is a vanishingly small number
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(since the alpha particles of interest have high energy). In chapter 3, we verify that

the latter scaling is dominant for the alpha particle population overall. Therefore,

we consider ourselves justified in [31] by treating the alpha particles as isotropic.

Since the first term in equation (2.41) vanishes, we are left with the fact that

f1s ≡ hs is also independent of gyrophase. Following convention, we will use hs from

here on to refer to the perturbed distribution. We break from convention, however,

in the fact that f1s = hs instead of the usual relationship f1s = −qφF0s/Ts + hs in

more traditional derivations of gyrokinetics [35, 40]. This is ultimately due to the

fact that we include the potential φ in the energy variable, and there is therefore no

large contribution from dE/dt that occurs at this order.

Consider the fact that msv
2 � eφ in equation (2.3) and Taylor expand F0s (E)

about E for the small correction to msv
2/2.:

F0s (E) = F0s

(
1
2
msv

2
)

+ Zseφ
∂F0s

∂E
+O

(
ε2F0s

)
. (2.42)

The second term is the so-called adiabatic response to the electrostatic potential φ.

We will use it when calculating velocity moments of F0s in the field equations.

2.3.3 O
(
ε2Ωsfs

)
At this order, the evolution of the fluctuating distribution function is found,

while the equilibrium is still treated as a static background. The remaining terms
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at this order are:

(
∂

∂t
+ b · ∇+ Ṙ⊥ · ∇⊥

)
hs +

(
Ṙ⊥ · ∇⊥ + Ė

∂

∂E

)
F0s − Ωs

∂f2s

∂ϑ
= 0. (2.43)

First, we must get rid of the terms involving f2s. We accomplish this by gyroaver-

aging, noting that each remaining term includes at most one factor that depends on

gyroangle:

(
∂

∂t
+ b · ∇+

〈
Ṙ⊥

〉
R
· ∇⊥

)
hs +

(〈
Ṙ⊥

〉
R
· ∇⊥ +

〈
Ė
〉
R

∂

∂E

)
F0s = 0. (2.44)

Before proceeding, we note that the term vds · ∇F0s plays a role in the neoclassical

correction to the equilibrium distribution F1. As noted earlier, in this dissertation

we are focusing on the fluctuating part, hs.

Combining equations (2.44), (2.35), and (2.39), we arrive at the collisionless

gyrokinetic equation:

∂hs
∂t

+
(
v‖b + vds + vχ

)
· ∇hs (2.45)

= −Zse
∂ 〈χ〉R
∂t

∂F0s

∂E
− ∂F0s

∂ψ
vχ · ∇ψ,

where vχ is defined as:

vχ =
c

B
b×∇〈χ〉R . (2.46)
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2.4 A note about the parallel nonlinearity

In the low-collisionality ordering presented here, there is no collision operator

acting on hs in equation (2.45). However, as pointed out by Krommes [48], this could

leave us vulnerable to the entropy paradox, because dissipation is required to reach

a steady-state. The gyrokinetic equation typically includes an appropriate collision

operator [49–51] that provides this dissipation. By allowing extraordinarily-fine

structure in velocity space that can occur in a situation with very weak collisions,

it is possible that the nonlinear term Ė ∂hs/∂E could be promoted and needed in

equation (2.45). This is the so-called parallel nonlinearity, whose name comes from

the form in takes in v‖ − µ coordinates.

Previous work [52] studied in-depth the relevance of the parallel nonlinearity

in gyrokinetic simulations, and it was found to have little to no effect on turbulence

simulations with realistic values of ρ∗. However, that study did not account for the

possibility of extremely fine-scale structure.

In order for the parallel nonlinearity to be of appreciable size, fine structure

must develop velocity space. If this were the case, one would expect a lack of

convergence in energy grid resolution. Figure 2.2 demonstrates that this is not

the case for a sample ITG simulation including alpha particles in GS2. Note the

lack of fine-scale structure and the lack of a trend in the flux at ever-increasing

energy resolution. The alpha particles in the simulation have a low - but realistic

- density, but are not taken to be perfectly trace. Furthermore, the alpha particles

are collisionless. This is taken as evidence that the parallel nonlinearity would not
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have a significant effect on the flux of alpha particles, even if it were included in the

simulation and velocity space resolution were high enough to resolve it.

Through most of this thesis, we consider alpha particles of such low density

that they are only passively affected by the turbulence. The cascade path (whether

through spatial or velocity space structure, or some combination) of a high-energy

collisionless passive species remains an open problem and deserves further study.

Even if energy does end up at extremely small scales in velocity space, it is unclear

if this is relevant when considering the larger-scale dynamics.

In addition, numerical simulations inevitably include some finite amount of nu-

merical dissipation. While not strictly physical, this can at times act as a suitable

proxy for collisions in gyrokinetic simulations. In order to reduce this numerical dis-

sipation and allow extremely fine-scale velocity space structure, one requires a factor

of ρ∗−1 finer resolution, which remains beyond the capacity of current technology.

For these reasons, we ignore this term in equation (2.45), and in the simula-

tions presented in this thesis. We justify this decision a posteriori by examining

the dependence of the velocity space resolution on the turbulent fluxes. For con-

sistency, by ignoring the parallel nonlinearity, we also exclude collisions acting on

the perturbed distribution. In other words, if one is going to account for extremely

fine scale velocity space structure in the fluctuating distribution, one must do so

consistently.

Furthermore, we have the option to perform a subsidiary expansion on the

orderings presented herein. Particularly, the assumption that τE � τs, used in

the derivation of the slowing-down distribution, can be interpreted as a statement
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Figure 2.2: Demonstrating the convergence of Γψ(E) on energy grid resolution (negrid) for an
electrostatic ITG case with collisionless alpha particles. The plot on the left shows the different
resolutions super-imposed. On the right, a few select test energies are chosen and the radial flux
at that energy is plotted as function of resolution.
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that collisions are a bit stronger than the more general theory allows. If collisions

are so strengthened, it would dissipate velocity space structure before the parallel

nonlinearity becomes respectably large. This of course depends on this subsidiary

expansion being valid, which we will find in chapter 3 is not the case at all energies.

However, as energy increases (where we would expect the parallel nonlinearity to

be most relevant), the confinement of alpha particles becomes stronger, as does this

particular argument.

An important caveat is that the physics present in this term (the nonlinear

effects of particle trapping due to a parallel electric field) accounts for the pri-

mary saturation mechanism of a few discrete unstable Aflvén eigenmodes [12, 53].

Therefore, our gyrokinetic simulations, which drop the parallel nonlinearity and its

associated fine-scale velocity space structure, cannot be expected to capture this

phenomenon.

While it would be surprising if the inclusion of the parallel nonlinearity makes

a substantial difference to results in this dissertation, further study is of course

welcomed.

2.5 Maxwell’s equations

The dynamical equation (2.45) is not closed until one solves for the fields

φ, A‖, and δB‖. In this section, we will apply the gyrokinetic orderings, keeping

F0s (E,ψ) arbitrary. Since the fields are functions of spatial position r and we use the

coordinate R for the distribution function, we will be making use of the gyroaverage
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at constant r (see equation 2.16).

2.5.1 Poisson’s equation / quasineutrality

To leading order, Poisson’s equation is the quasi-neutrality relation of the

equilibrium: ∑
s

Zse

〈∫
F0s d3v

〉
r

=
∑
s

Zsens = 0. (2.47)

The fluctuations, as well as the adiabatic response (2.42) play a role at next order:

∑
s

Zseδns = 0
∑
s

Zse

(
Zseφ

∫
∂F0s

∂E
d3v +

∫
〈hs〉r d3v

)
= 0, (2.48)

which can be rearranged to solve for φ:

φ = −

∑
s

Zse
∫
〈h〉r d3v∑

s

Z2
s e

2
∫

∂F0s

∂E
d3v

. (2.49)

2.5.2 Parallel Ampere’s Law

Consistent with our orderings, we ignore the displacement current in Ampere’s

law, leaving:

∇×B = −∇2A =
4π

c
j, (2.50)

where we make use of the definition of A and our choice of the Coulomb gauge:

∇ · A = 0. The current density is j = δj, and under our assumption that F0s is

isotropic in velocity space (see the discussion at the beginning of this chapter), to
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leading order, the parallel component reads:

−∇2
⊥A‖ =

4π

c

∑
s

Zse

∫
〈hs〉r v‖ d3v. (2.51)

2.5.3 Perpendicular Ampere’s Law

To find a suitable equation for δB‖, first operate on equation (2.50) with∇·b×

to obtain:

∇ · b× (∇× δB) ≈ ∇2
⊥δB‖ =

4π

c
∇ ·
∑
s

Zse

∫
〈b× vhs〉r d3v. (2.52)

Now, commute the gyroaverage outside of the integral, use the equation (2.21), and

integrate by parts in ϑ to write the left-hand side as

∫
〈hsb× v⊥〉r d3v =

〈∫
v⊥

(
∂hs
∂ϑ

)
r

d3v

〉
r

.

= −
〈∫

1

Ωs

v⊥ (v⊥ · hs) d3v

〉
r

. (2.53)

Now substitute this into equation (2.52) and use the definition of Ωs to obtain:

B0∇2
⊥δB‖ = −4π

∑
s

ms

∫
〈v⊥v⊥ : ∇⊥∇⊥hs〉r d3v. (2.54)
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2.6 The low-collisionality transport equation

In this section, we follow the approach of references [35, 47] and break from

the formal hierarchy to aid in the derivation of the transport equation. This equa-

tion determines the temporal evolution of the equilibrium F0s due to collisions and

turbulent transport. Its form is similar to that given in reference [41].

In working with the collision operator, we will find it convenient to use the

speed coordinate v instead of E = msv
2/2. Furthermore, to keep the velocity space

Jacobian separable, it is useful to use the pitch-angle coordinate λ for integrating:

λ ≡ µ

E
=

v2
⊥

Bv2
. (2.55)

In these coordinates, the velocity space volume element is:

d3v =
∑
σ‖

Jvdvdλdϑ =
∑
σ‖

Bv2

2

dvdλdϑ√
1− λB

, (2.56)

which defines the velocity space Jacobian of these coordinates:

Jv ≡
Bv2

2
√

1− λB
. (2.57)

Return to the Fokker-Planck equation (2.7), and this time write it in flux-

conservative form:

∂

∂t
(J fs) +

∑
i

∂

∂zi
(J żifs) = J (C [fs] + Ss) (2.58)
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with a set of phase-space variables zi, whose Jacobian is J . In the coordinates

(R, v, λ), this is the velocity space Jacobian to leading order2

J = Jv +O (ε) =
Bv2

2
√

1− λB
+O (ε) . (2.59)

Now, take the gyro-average of equation (2.58):

∂

∂t
〈J fs〉R + v‖b · ∇ 〈J fs〉R +

∂

∂R⊥
·
〈
J Ṙ⊥fs

〉
R

(2.60)

+
∂

∂v
〈J v̇fs〉R = 〈J (C [fs] + Ss)〉R .

Now perform the turbulence average equation (2.29) directly on equation (2.60),

noting that single powers of fluctuating quantities vanish by definition:

∂

∂t
(JF0s) +

〈
∂

∂R⊥
·
〈
J Ṙ⊥hs

〉
R

〉
t

+

〈
∂

∂v
〈J v̇hs〉R

〉
t

= 〈J 〈C [F0s] + Ss〉R〉t (2.61)

Note that the turbulence average includes a flux-surface-average, which annihilated

the second term in equation (2.58). By equation (2.28), we can write the second

term in equation (2.61) as:

〈
∂

∂R⊥
·
(〈
J Ṙ⊥hs

〉
R

)〉
t

=
〈
∇ ·
〈
J Ṙ⊥hs

〉
R

〉
t

=
1

V ′(ψ)

∂

∂ψ

[
V ′(ψ)

〈〈
J hsṘ⊥ · ∇ψ

〉
R

〉
t

]
. (2.62)

2We perform a change of variables from the phase-space Jacobian derived in reference [43]
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Define the turbulence-averaged radial flux:

Γψs ≡

〈∑
σ‖

∫
hs
c

B
(b× 〈∇χ〉R) · ∇ψ πBdλ√

1− λB

〉
t

(2.63)

where the vds·∇hs term vanishes because vds is non-fluctuating, and thus its product

with hs vanishes upon time-averaging. Similarly, the flux in speed3 is defined as:

Γvs ≡
Zse

msv

〈∑
σ‖

∫
hs
∂ 〈χ〉R
∂t

πBdλ√
1− λB

〉
t

. (2.64)

So now, when we take the λ integral of equation (2.61), which eliminates the pitch-

angle part of the collision operator. After dividing through by v2, we finally arrive

at the transport equation for general isotropic F0:

∂F0s

∂t
+

1

V ′
∂

∂ψ
(V ′Γψs) +

1

v2

∂

∂v

(
v2Γvs

)
=

1

v2

∂

∂v

(
ν(s)
s v3F0s +

1

2
ν

(s)
‖ v4∂F0s

∂v

)
+ Ss. (2.65)

If we integrate over velocity space by applying
∫

4πv4dv to equation (2.65), then we

recover the usual transport equation for particle density. That is,

∂ns
∂t

+
1

V ′
∂

∂ψ
(V ′Γps) = Sps, (2.66)

3Where there is no ambiguity, we will also call this quantity the flux in energy even when
working in the coordinate v
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where the source of particles is Sps =
∫
Ss d3v, and

Γps = 4π

∫
Γψsv

2dv (2.67)

is the particle flux. Similarly, we can obtain a pressure transport equation by taking

the second moment of equation (2.65):

∂ps
∂t

+
1

V ′
∂

∂ψ
(V ′qs)−

∫
msvΓvs d3v = Sps (2.68)

where the heat flux is

qs =

∫
1
2
msv

2Γψs d3v, (2.69)

and the last term on the left hand side of equation (2.68) is the turbulent heat

exchange. Note that an analogous term does not appear in equation (2.66) because,

even though turbulence can heat an individual species (at the expense of another),

it does not create particles.

We have nearly closed the problem. What remains is to calculate the steady-

state radial (2.63) and energy (2.64) fluxes by numerically solving the gyrokinetic

equation (2.45) for hs. Once this is done, we can solve for the solution of the

equilibrium that satisfies equation (2.65). However, the solution of equation (2.45)

itself depends on the equilibrium, whose form we do not know yet! Later, we will

solve this issue by making ample use of the trace approximation. In the next chapter,

we proceed on the assumption that the slowing down distribution (1.20) is accurate

and examine the gyrokinetic behavior of alpha particles.
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Chapter 3: Testing alpha particle assumptions in electrostatic tur-

bulence

In the previous chapter, we laid out the theory of low-collisionality gyrokinet-

ics: an appropriate theory for the dynamics of energetic non-Maxwellian alpha parti-

cles. The nonlinear flux-tube code GS2 was upgraded [31] to handle non-Maxwellian

equilibria1. Armed with the ability to self-consistently model general energy distri-

butions, we proceed to use this tool to validate several assumptions commonly used

by the community to model alpha particles.

First, we will verify that alpha particles at realistic concentrations have little

effect on electrostatic turbulence. Then we demonstrate that, if one is interested

in the response of alpha particles to turbulence, the correct distribution function

must be used, and the usual practice of using an “equivalent Maxwellian” produces

incorrect results. Then, with the alpha particle flux calculated from simulations,

we compare this to a characteristic collision time for ITER-like parameters. This is

used to verify the assumption, used in the derivation of the slowing-down distribution

(1.20), that τE � τs. It is found that this subsidiary ordering holds at high energies,

where the transport is very weak, and at low energies, where collisions are strong.

1In the alphas branch as of revision 3682
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However, at moderate energies, these timescales compete and one can have transport

occurring on at least as fast of a timescale as collisions. This calls the slowing-down

distribution (1.20) itself into question, the consequences of which are elaborated

upon in chapter 5.

This chapter concerns itself with microturbulence driven by ITG, which is

primarily electrostatic in nature, so we limit ourselves to the electrostatic limit of

gyrokinetics. Finite-beta effects are expected to have a significant effect on alpha

particle transport [29], and recent results imply that the presence of fast ions could

have a stabilizing effect on the turbulence [54]. A linear study of some finite-beta

effects is given in appendix A.

3.1 The trace-alphas approximation

At what concentration do alpha particles begin contributing to the turbulent

dynamics? In any of the existing or planned fusion devices, the fraction nα/ne is

expected to peak at most around 1% [1]. Considering that alpha particles have such

high energy, it is not immediately obvious whether or not they contribute to the

electrostatic nonlinear dynamics of the plasma.

When the density of a charged species is negligible, so is its contribution to

the right hand side of the quasineutrality condition (2.48). In the limit of nα → 0,

φ no longer depends on the perturbation hα, in which case the gyrokinetic equation
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(2.45) is linear in hα. We can therefore write the gyrokinetic equation (2.45) as:

L [hα, φ] = −Zαe
∂F0α

∂E

∂ 〈φ〉Rs

∂t
− c

B
b×∇〈φ〉Rs

· ∇F0α, (3.1)

where L is the linear operator defined by the left hand side of equation (2.45), and

φ is treated as a given function of space and time, determined by the turbulent

dynamics of the other, non-negligible species. Note that this does not imply that

the usually-nonlinear E×B-drift term in (2.45) is ignored. Invert equation (3.1) to

obtain hα and plug into equation (2.67). It follows that we can write the particle

flux in the form [25]:

R

nα
Γα = D

R

Lnα
+DE

R

LTe
+ Vp. (3.2)

From left to right, the terms are: particle diffusion, thermodiffusion, and the pinch

flux (flux at zero gradient). Following reference [25], the electron temperature gra-

dient appears here because that is the dominant dependence of the vc parameter

when a single ion species is present with Zi = 1 and ni ≈ ne in equation (1.22).

This ability to rigorously write the flux in terms of diffusion coefficients is one of

the benefits of the trace approximation, and one that we will revisit throughout this

dissertation.

3.1.1 Linear theory

A first estimate of how much of an effect alphas have on the plasma can be

obtained by examining the linear growth rate of an unstable ITG mode. We examine
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Figure 3.1: Comparison of linear growth rates for different models of alpha particles at a range
of concentrations. Calculations were performed by running GS2 for a single ky = 0.3 mode of the
cyclone base case [2] with R/Lnα = R/Lni = R/Lne = 2.2. Agreement between all three is within
1% up to nα/ne ≈ 0.05, and still within 10% up to an impossibly-large nα/ne ≈ 0.15. Note that
the equivalent Maxwellian and diluted-ion models are nearly identical.
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Figure 3.2: Growth rate spectrum of linear ITG growth rate at a 20% alpha particle concentration.
Same case as figure 3.1.
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the frequency and growth rate of the kyρi = 0.4 poloidal mode as alpha particles

are introduced at ever-increasing density in figure 3.1. The growth rate decreases

with increasing alpha particle concentration, but only changes by about 5% up to

an alpha particle concentration of 2%. Even at a concentration of 20%, we still

see in figure 3.2 that there is no qualitative and little quantitative difference in the

poloidal spectrum. We find that the effect of a small population of alpha particles

is negligible, at least linearly.

As nα/ne increases, the relative fraction of main ions (whose temperature gra-

dient drives the instability) must decrease to compensate and maintain equilibrium

quasineutrality, resulting in a dilution of the turbulence [55,56]). It could be argued

whether this effect alone is responsible for the change in growth rate shown in figures

3.1 and 3.2. Therefore, what is also shown (labelled “diluted ions”) is the case where

alphas do not contribute to the field at all, even at significant density. Indeed, it

takes very high concentrations of alpha particles (' 10%) to distinguish between the

different models (see section 3.2 for an explanation of the “equivalent Maxwellian”

model), and no model at all. This suggests that, even beyond realistic reactor densi-

ties, the primary effect of alpha particles on electrostatic turbulence is only to dilute

the ITG-driving ions, introducing no particularly interesting electrostatic effects of

their own.
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3.1.2 Nonlinear simulations

We then proceed to demonstrate that these conclusions continue to hold in

turbulence. We turn on the nonlinear term in equation (2.45) and examine the

evolution of fluxes to an approximate steady-state. The time evolution to saturation

of the total heat flux is shown in figure 3.3. In this case, the decrease in outward

total heat flux is due to the combined effect of: 1) alpha particles carrying some

heat inward; and 2) reducing the ITG drive by the main ions. An inward heat and

particle flux for the alpha particles is seen because there is an inward flux of alphas

due to the second two terms in equation 3.2, but the alpha density gradient is not

strong enough in this case (with R/Lnα = R/Lni) for the diffusion term to dominate

and drive the alpha particles outward.

Even at high concentrations of alpha particles (∼ 10%), the effect on the

turbulence is indistinguishable from that of mere dilution of the main ions, consistent

with linear theory. This is demonstrated in figure 3.5, which shows only a 10%

difference in the heat fluxes between the case with alpha particles and that without.

In the latter, only the ion dilution effect is taken into account.

To see the effect this has on alpha transport, let us also compare the alpha

particle flux. If alphas have little or no effect on the turbulence, we would then

expect Γα/nα to be constant as the concentration changes. The time-averaged value

of Γα/nα compared to alpha particle concentration is shown in figure 3.4. It is clear

that no significant change occurs below a concentration of about 5%.

As mentioned previously, by assuming energetic ions are of negligible density,
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Figure 3.3: Time evolution of the turbulent heat flux. The dotted horizontal lines are the time-
averaged heat fluxes for the different concentrations of alpha particles. Here, the normalization
factor is QGB ≡ 2nevtiTiρ

∗2. (a) shows the total heat flux for different alpha particle concentra-
tions, and (b) shows the breakdown by species at nα/ne = 0.1, compared to the ion heat flux at
negligible alpha density.
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Figure 3.4: Steady-state turbulent flux of alpha particles as a function of alpha particle concen-
tration. Units are gyro-Bohm normalised by the alpha particle density. Error bars indicate the
standard deviation of the departure of fluctuations from the time average, and is intended to put
into context the variations of flux at low concentration.

it can be shown [28, 29] that for almost all pitch angles (the dependence on which

is not covered in this work since we are focusing on isotropic alpha particles), the

diffusion coefficient scales like E−3/2. To make sense of this quantity, consider the

energy-dependent analogue of equation (3.2) consistent with the energy-dependent

flux of equation (2.63):

R

F0α(E)
Γα(E) = D(E)

R

Lnα
+DE(E)

R

LTe
+ Vp(E). (3.3)

Note that, with this definition, D(E) has the same units as its energy-integrated

counterpart. By performing several nonlinear runs with a range of density gradients,

a linear fit of Γα(E) versus R/Lnα was obtained, the slope of which is proportional

to the diffusion coefficient D(E). The results are plotted in figure 3.6, with a scaling

and approximate magnitude consistent with references [28,29].

The conclusion of this section is to confirm that in the presence of electrostatic
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Figure 3.5: Time evolution of the turbulent heat flux, comparing the case of: a small alpha
population (solid cyan), a large alpha population (solid black), and a case where the presence of
alphas is “simulated” only by diluting the ion density (dashed green)

turbulence, an energetic species has little effect up to a concentration of at least 2%.

However, even beyond such a density, they do not have much of a direct effect on

the turbulence. Instead, their effect is simply to dilute the main ions, decreasing

the ITG drive. This dilution effect is the dominant influence of fast ions up to at

least a concentration of 10%.

3.2 The equivalent-Maxwellian approximation

Even though a concentration of fast ions appears to have little effect on electro-

static turbulence, the response of alpha particles to that turbulence depends quite

explicitly on the equilibrium distribution function, and especially its radial gradient.

To take advantage of existing tools to solve the gyrokinetic equation for Maxwellian

equilibria, it is often suggested that, instead of representing the alpha particles with
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Figure 3.6: Diffusion coefficient of trace alpha particles (nα = 0.002ne) as a function of energy.

a slowing-down distribution (1.20), one could instead define a Maxwellian that has

the same temperature, and that this may provide satisfactory results. This method

of modelling alpha particles has been widely used in gyrokinetic studies of alpha

particles [15,17,19,28,30,54,57,58].

3.2.1 Definitions

The zeroth and second moment of the slowing-down distribution, equation

(1.20), can be evaluated analytically. We use these to define an effective temperature

Teff = Teff (vc/vα) such that:

3nαTeff =

∫
FMαmαv

2 d3v =

∫
FSαmαv

2 d3v, (3.4)
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so [15]:

Teff =
mαv

2
c

2 ln (1 + v3
α/v

3
c )
× (3.5)[

v2
α

v2
c

− 1

3
ln

(
v2
α − vαvc + v2

c

(vα + vc)
2

)
− 1

2
√

3
tan−1

(
2vα − vc√

3vc

)
− π

3
√

3

]
.

However, the gradient of the equivalent Maxwellian also appears in the gy-

rokinetic equation (2.45), so we need a way of calculating it. Fortunately, vc (hence

Teff) is a known function of ion and electron parameters, so we can find the effective

Maxwellian temperature gradient scale length by using the chain rule, similarly to

equation (1.22):

∇FMα

FMα

=
∇nα
nα

+
1

Teff

dTeff

dvc

(
∂vc
∂Te
∇Te +

∂vc
∂ni
∇ni +

∂vc
∂ne
∇ne

)(
E

Teff

− 3

2

)
. (3.6)

We take the derivative of equation (3.5) and write down an expression for R/LTeff

as a function of x ≡ vc/vα:

R

LTeff

=
R

Lvc

1

ln (1 + x−3)

[
1

1 + x3
− x2

3

(
Eα
Teff

)
2π

3
√

3
+

2√
3

tan−1

(
2− x√

3x

)
+

1

3
ln

(
x2 − x+ 1

(1 + x)2

)
− x

(1 + x) (x2 − x+ 1)

]
(3.7)

where R/Lvc is given by equation (1.25).
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3.2.2 Linear theory

Proceeding in a manner analogous to section 3.1, we analyze the linear mode

that results from a concentration of alpha particles using the equivalent Maxwellian

versus the slowing-down distribution. Consistent with [15] (which used a different

test case), we find that the growth rates for the slowing-down and Maxwellian distri-

butions in the cyclone base case follow each other very closely up to relatively high

concentration (see figure 3.1). This is unsurprising given the conclusion of the pre-

vious section: that a modest concentration of alpha particles plays no electrostatic

role except dilution.

We proceed to ask the inverse question: how do alpha particles respond to

a given linearly unstable eigenfunction, and how does the equilibrium distribution

function used affect the result? We can use quasilinear theory to estimate the fluxes

with the same method as [25]. That is, for each set of parameters, we choose a single

unstable mode and calculate the alpha particle flux (equation 2.67) as a function

of time. Because it is exponentially growing, we must normalize it to a quantity

growing at the same rate, such as the flux of ash. This only works because in

both cases, the density is taken to be trace, otherwise there would be a small but

finite difference in exponential growth rates. This ratio of alpha flux to ash flux in

response to the linear eigenfunction is what we calculate.

Consider again the fact that, in the trace limit, the right-hand side of the

gyrokinetic equation (3.1) is linear in the equilibrium gradients. Then, equation

(3.2) holds, and the particle flux is easily found after finding the coefficients D,

59



0 2 4 6 8 10

R/LTe

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Γ
α
/
Γ
a
s
h

(a)

R
Lnα

=2.2

Slowing down

Equiv. Maxw

0 2 4 6 8 10

R/LTe

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Γ
α
/
Γ
a
s
h

(b)

R
Lnα

=10

Slowing-down

Equiv. Maxw

Figure 3.7: Quasilinear alpha particle flux determined by finding linear fits for the coefficients in
equation (3.2). Showing the dependence on the electron temperature gradient for (a) R/Lnα =
R/Lni = 2.2, and (b) R/Lnα = 10.

DE, and Vp. After fitting these coefficients to a series of linear simulations for the

cyclone case, we plot the dependence of particle flux on the dominant parameters

(R/Lnα and R/LTe) in figure 3.7. From inspection, one can see that, depending

on the problem parameters, we can achieve anything from very good to very poor

agreement between the slowing-down distribution and the equivalent Maxwellian.

3.2.3 Nonlinear simulations

The disagreement between the flux of Maxwellian alphas versus the slowing

down distribution continues for nonlinear simulations (see figure 3.8). Using the

same parameters as before, figure 3.8 compares the total heat flux for the two

distributions. Since they are both sufficiently below the threshold to be considered

trace, there is little statistical difference in the total heat flux between these two, as

would be expected. However, the turbulent fluxes shown in figure 3.8 demonstrate

that the equivalent Maxwellian gets the wrong direction of the alpha particle flux

and is off by more than an order of magnitude.

60



While we do not claim that this strong of a disagreement will be seen in all

relevant cases, the observation that: a) such an agreement is so sensitive to the

parameters of the problem; b) a drastic difference is found for such a common test

case as cyclone; and c) that such an agreement, when it does exist by coincidence,

has no physical basis, should be enough to convince the reader that any results for

alpha particle flux obtained by using an equivalent-Maxwellian ought to be treated

with skepticism. Any disagreement in the fluxes is especially troublesome if one is

performing a critical-gradient analysis to determine the alpha particle profile. From

inspection of figure 3.7, one can observe very different critical gradients (the gradient

for which Γα → 0) between the two distribution functions.

3.2.4 Explanation of discrepancy

To explain this disagreement, consider the ∇F0α term in the gyrokinetic equa-

tion (2.45). For a Maxwellian distribution, ∇FMα/FMα is linear in energy, but the

gradient of the slowing-down distribution has a different energy dependence as in

equation (1.22). From figure 3.9, we see that when E ∼ Ti (near which the inter-

action with the ion-scale turbulence is expected to be the strongest), the gradient

of F0α is off by over an order of magnitude. This stark difference in the right hand

side of equation (2.45) ultimately carries through to the particle flux, resulting in

the discrepancies in figures 3.7 and 3.8.

We conclude that the equivalent Maxwellian approximation is wrong precisely

because it fails to capture the energy dependence of ∇F0α, and at least sometimes
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Figure 3.8: Time evolution of (a) total heat flux, and (b) alpha particle flux. Comparing two
models for the alphas particles: the slowing down distribution (solid black), and the equivalent
Maxwellian (dashed red). In both cases, the alpha particle concentration is 0.1%. The negative
particle flux for the slowing-down distribution is shown, since the signs do not agree.
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strongly disagrees at the most relevant energies. In the particle-diffusive limit, where

the gradient of F0α is dominated by∇nα, this energy dependence is not as important,

and one would expect the equivalent Maxwellian to predict at least the correct order

of magnitude. Even so, if one wishes to find the gradient R/Lnα that eliminates the

alpha particle flux, the balance with DE (which is sensitive to the energy dependence

of ∇FSα) and Vp in equations (3.2) and (3.3) is necessary.

3.2.5 Correcting the equivalent Maxwellian

We can take advantage of the trace approximation to decompose the energy

dependence of the transport coefficients given in equation (3.3). Doing so will allow

one to obtain the fluxes that one would get from a simulation with the slowing-

down distribution, provided the coefficients D, DE and Vp are known from a series

of equivalent Maxwellian simulations.

Consider again the linearity of (3.1). Decompose the right hand side into terms
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with the known velocity dependences of ∂F0/∂E and ∇F0 factored out. When using

the slowing-down distribution, we can write the gyrokinetic equation as:

1

FSα
L [hα] = a0M

(S)
0 + a1M

(S)
1

R

Lnα
+ a2M

(S)
2

R

Lvc
. (3.8)

Analogously for the equivalent Maxwellian:

1

FMα

L [hα] = a0M
(M)
0 + a1M

(M)
1

R

Lnα
+ a2M

(M)
2

R

Lvc
. (3.9)

The following quantities are defined:

M
(S)
0 = −Eα

∂

∂E
lnFSα =

3

2

v2vα
v3
c + v3

(3.10)

M
(M)
0 = −Eα

∂

∂E
lnFMα =

Eα
Teff

(3.11)

M
(S)
1 = M

(M)
1 = 1 (3.12)

M
(S)
2 = vc

∂

∂vc
lnFSα =

3v3
α

v3
c + v3

α

1

ln (1 + v3
α/v

3
c )
− 3v3

c

v3
c + v3

(3.13)

M
(M)
2 = vc

∂Teff

∂vc

∂

∂Teff

lnFMα =

(
E

Teff

− 3

2

)
Lvc
LTeff

, (3.14)

where Lvc and LTeff
are given by equations (1.25) and (3.7) respectively. These

factors together contain the only dependence on F0 that appear in the gyrokinetic

equation. The other factors a0, a1, and a2 are allowed to depend on velocity, but

not through F0. Therefore, these factors are the same in both equations (3.8) and

(3.9), and the dependence on the equilibrium distribution is entirely contained in

the a priori -known functions M0, M1, and M2.
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Figure 3.10: Quasilinear radial flux for the kyρi = 0.3 mode normalized to the total amplitude
of φ. Triangles represent adjustments made directly to the equivalent Maxwellian via equations
(3.15) to (3.17). Dashed lines represent negative values.

10
-3

10
-2

10
-1

10
0

E / Eα

10
-10

10
-9

10
-8

10
-7

10
-6

|Γ
(E

)|

Reconstructed

Direct simulation

Figure 3.11: Turbulent radial flux of alpha particles for the ITER case of section 3.3. Blue dots
are the energy-dependent fluxes as run with the slowing down distribution, and the dotted green
line is the reconstructed flux from a simulation with Maxwellian alphas, using equations (3.15) to
(3.17).

65



Suppose we know, from a simulation campaign using Maxwellian distribu-

tions, the energy-dependent diffusion coefficients D(M)(E), D
(M)
E (E), and V

(M)
p (E).

We can find the corresponding turbulent transport coefficients D(S)(E), D
(S)
E (E),

V
(S)
p (E), and hence the radial flux Γα(E) for the slowing-down distribution, even if

a gyrokinetic simulation with FSα was never run. To convert between the two:

D(S)(E) = D(M)(E) (3.15)

D
(S)
E (E) =

M
(S)
2

M
(M)
2

D
(M)
E (E) (3.16)

V (S)
p (E) =

M
(S)
0

M
(M)
0

V (M)
p (E), (3.17)

and apply equation (3.3). For the case whose nonlinear particle flux is shown in

figure 3.8, these relationships were applied to the quasilinear flux of the fastest-

growing mode. Figure (3.10) shows the Γα(E) that results when the equivalent

Maxwellian is corrected for a linear simulation, and figure (3.11) is for a nonlinear

turbulent simulation.

This technique of finding the turbulent flux of one distribution in terms of that

of another, will be liberally applied in chapter 4 where a transport model is built

around it.

3.3 Confinement of alpha particles in ITG turbulence

Implicit in the use of the slowing-down distribution (1.20) is the assumption

that alpha particles are well-confined in the sense that all collisional slowing-down
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Figure 3.12: Global steady-state profiles for ITER scenario 10010100. For these plots, r is the
half-diameter on the plane of the magnetic axis, and serves to label the flux surface. Plots show,
as a function of radius, (a) number density of bulk ions, electrons and cold helium ash, (b) relative
concentration of alpha particles, (c) temperature, and (d) safety factor q

happens on approximately the same flux surface: that the particle transport time

is long compared to the slowing-down time. In this section, we will analyze this

assumption using the results from a nonlinear local ITER simulation. Said analysis

will be a posteriori : assuming a classical slowing-down velocity distribution for fast

alpha particles, how likely is it to remain so when taking into account turbulent

transport?

3.3.1 Test case

We move from the cyclone base case to a projected ITER ELMy H-mode

scenario (case #10010100) from the CCFE 2008 public release database [59, 60],
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with radial profiles obtained fromTRANSP simulations [1]. Figure 3.12 shows radial

profiles of some of the equilibrium properties. We use a Miller expansion [61] of the

geometry about a flux tube on the surface defined by r/a = 0.6, which gives the

following geometrical properties: safety factor q = 1.66, magnetic shear ŝ = 0.39,

ellipticity κ = 1.53 (with aκ′(r) = 0.35), triangularity δ = 0.22 (aδ′(r) = 0.41), and a

Shafronov shift derivative of ∆′(r) = −0.097. Electrons are assumed to be adiabatic,

with an alpha particle concentration of nα/ne = 0.12%, and an ash concentration

of nash/ne = 7.9%. The gradient length scales were a/Lne = 0.0, a/Lni = −0.37,

a/Lnash
= 0.95, a/Lnα = 6.9, and a/LTi = a/LTash

= 2.2. The main ions were taken

to be a species with an averaged mass weighted by the density of deuterium, tritium,

and a small amount of heavy impurities, resulting in mi/mD = 1.484, and Zi = 1.

The ash is assumed to be at the same temperature as the ions: Ti = 0.847Te, and

Te = 10.9 keV. The box size is 319ρi× 157ρi in x and y respectively, with Nx = 144

and Ny = 96. This large box size is not strictly necessary, but was chosen to ensure

that many alpha-particle gyroradii fit inside the simulation domain. The parallel

and velocity space resolutions are: Nθ = 32, Nv = 16, and Nλ = 33. The total heat

flux resulting from this simulation is shown in figure 3.13 for reference.

3.3.2 Characteristic time scales

We define the alpha particle transport time as a characteristic timescale on

which the turbulent particle flux acts. It is found by balancing the appropriate
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Figure 3.13: The time-evolution of the total heat flux at r = 0.6a for the ELMy H-mode ITER
shot 10010100.

terms in the transport equation (2.65):

∂F0α

∂t
+∇ · Γ(E) ∼ F0α

τΓ

− Γ(E)

Lnα
, (3.18)

where Lnα is chosen as the characteristic length scale on which the alpha particle

flux varies. This serves to define:

τΓ(E) ≡ LnαF0α

Γ(E)
. (3.19)

We wish to compare this transport time to a timescale representative of the

effects of collisions. The energy-diffusion term is given by:

CE [F0α] =
∑
s=i,e

1

v2

∂

∂v

(
ναss v

3F0α +
1

2
ναs‖ v

4∂F0α

∂v

)
, (3.20)

where νs and ν‖ are given by equations (1.10) and (1.11). For the slowing-down

distribution ∂FSα/∂v = −3v2FSα/ (v3
c + v3), so we will use this to estimate the
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derivative in the ν‖ terms in equation (3.20) for a slightly more general F0α.

Adding all these terms, we can define a total collision time by:

1

τc
∼ 1

F0α

CE [F0α] ≈
∑
s=i,e

16πnsZ
2
s e

4 ln Λαs

m2
α

[
mα

Tsv
− 3

v3
c + v3

]
G

(
v

vts

)
. (3.21)

Now, by comparing equations (3.19) and (3.21), we can make a reasonable

estimate of how relevant a transport term would be in an equation like (2.65). This

is shown in figure 3.14. Around Eα = 3.5 MeV, we see that collisions are dominant

over transport, and τc flattens out to the slowing-down time τs as expected. Also,

if τΓ is interpreted as a particle confinement time, we expect hot alphas to be well-

confined on the order of several seconds. This is roughly consistent with previous

work [19]. Our local estimate for the actual alpha particle confinement time (defined

as the average number of alpha particles leaving a flux surface divided by the total

number of particles contained within the flux surface) is about 2.4 s in our simulation,

roughly consistent with the energy confinement time estimated in table 1.1.

However, at lower energies, but still well above the ion or ash temperatures,

the radial transport of alpha particles becomes important compared to collisions.

For this case, it can be seen in figure 3.14 that the relative importance peaks near

the critical speed. There is no reason to believe this is more than coincidence: there

are a number of parameters that could, in principle, be independently tuned. For

example, the transport time scale scales quadratically with both ρ∗ and Lnα, neither

of which would have a direct effect on the characteristic collision time.

Since these simulations were run with adiabatic electrons, kinetic electrons
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Figure 3.14: Comparing characteristic transport time (τΓ) and collision time (τc) as a function
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71



would change the numerical value of the flux and thus the ratio of collision time

to transport time. However, in our experience, including kinetic electrons generally

tends to increase the fluctuation amplitudes, which would increase the alpha particle

flux accordingly. Therefore, the analysis presented here is a best-case scenario:

more rigorous simulations with kinetic electrons would make any modification to the

slowing-down distribution even stronger. In later chapters, electrons are included

as a kinetic species in the local gyrokinetic simulations.

This chapter established: a) that the trace limit is well-justified for alpha par-

ticles in electrostatic turbulence, b) that the equivalent Maxwellian gives incorrect

particle fluxes, and c) that that the form of distribution function could be sensitive

to the strength of the turbulence. This motivates the work of the remaining chapters

in solving for the coupled radial-energy transport of alpha particles.
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Chapter 4: Coupled radius-energy trace transport

The results of the previous chapter suggested that the slowing down distri-

bution (1.20) is insufficient to describe alpha particles in microturbulence. In this

section, we briefly outline these difficulties and showcase a novel algorithm to effi-

ciently solve for the microturbulent transport of a trace species.

4.1 Difficulties with current technology

In the previous chapter, we found that not only does a Maxwellian model

give incorrect results for the turbulent flux of alpha particles, but the slowing-

down distribution does as well. As such, the equilibrium distribution needs to be

solved self-consistently with the turbulence, and such a distribution cannot be easily

parametrized by quantities such as ns, Ts, or even vc.

One solution is to use a global full-f algorithm for gyrokinetics [62, 63] in the

first place. While in some ways this is the most straightforward solution, it is far

from optimal. There is a separation of scales that provides an efficiency advantage

to flux-tube gyrokinetics [64], even for high-energy alpha particles1. If the goal is

to routinely solve for the turbulent dynamics, it would be wasteful to ignore this

1Finite orbit widths in smaller devices notwithstanding. See table 1.1.
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efficiency advantage. Running a full-f simulation for a confinement time (which

is the scale on which the transport evolves) has only recently been achieved [65].

Multiscale gyrokinetics is fully capable of solving for global transport when local

simulations are coupled to transport codes such as Trinity [66] and TGYRO [67],

provided the gyrokinetic ordering ρ∗ � 1 holds [68].

These codes utilize the local flux tube approximation to solve for the turbulent

fluxes given an initial equilibrium profile. With these steady-state fluxes, these

transport codes self-consistently evolve the equilibrium profile of density, flow, and

temperature, and the process is iterated. Trinity in particular is well-optimized to

limit the number of times the expensive nonlinear simulations need to be run.

However, these transport codes work by parametrizing the equilibrium distri-

bution F0s and solve for the global transport of these parameters. In principle, these

tools could be generalized to include collisions at the transport-scale, and evolve each

energy coupled together via collisions. A serious difficulty presents itself: instead of

needing to evolve the global profile of ns and Ts, for example, one must solve for

an entire grid of F0s according to the energy-dependent transport equation (2.65).

This increases the simulation cost by at least an order of magnitude. Since a full

transport simulation already costs on the order of 1 million CPU hours, this is an

unacceptable computational cost for routine use in the near future. This is particu-

larly frustrating if the dynamics of the troublesome species is well-approximated as

only passively responding to the turbulence, such as the case of alpha particles in

electrostatic turbulence.
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4.2 Trace transport

Since a full multiscale transport simulation is already quite expensive, and full-

f simulations are even worse, there is always a market for reduced models for the

turbulence, such as gyrofluid [64,69] or analytic approximations. Here, we present a

model based on the trace approximation of section 3.1, applicable to alpha particles

in electrostatic turbulence.

In the trace approximation, we can write the gyrokinetic equation (2.45)

schematically as:

Lhα = − Zαe
mαv

∂ 〈φ〉R
∂t

∂F0α

∂v
− c

B

∂F0α

∂ψ
b×∇〈φ〉R · ∇ψ, (4.1)

where L is a linear operator that depends on φ and all phase space variables, and

represents the left-hand side of the gyrokinetic equation, including the turbulent

E × B drift term. It does not, however, depend on the equilibrium distribution,

whose dependence in the collisionless gyrokinetic equation is given entirely in the

right hand side of equation (4.1). Note that we have changed variables from E to v

for later convenience, and we will maintain this convention throughout this chapter.

Also, we will treat the electrostatic case in this chapter and the next for simplicity,

but the general method and the T3CORE code itself also works for electromagnetic

fluctuations as long as the trace approximation still holds.

By treating φ(r, t) as given (determined by the dynamics of the other, non-

trace species), equation (4.1) is a linear partial differential equation for hα. It is not
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linear in the sense of quasilinear theory, where the E × B drift is assumed to be

weak, nor does it mean that hα is proportional to φ. But it does mean that hα is a

linear function of ∂F0α/∂v and ∂F0α/∂ψ:

h = −L−1

[
Zαe

mαv

∂ 〈φ〉R
∂t

]
∂F0α

∂v
− L−1

[ c
B

b×∇〈φ〉R · ∇ψ
] ∂F0s

∂ψ
. (4.2)

Here and henceforth, we drop the subscript α on the equilibrium distribution and

particle fluxes, taking it as implicit that we are speaking of alpha particles. The

technique described in this chapter, however, is more general and can be applied to

any trace impurity.

Now, integrate equation (4.2) in a manner prescribed by equation (2.63), fac-

toring out the dependence on F0 to write the radial flux as:

Γψ = −Dψψ
∂F0

∂ψ
−Dψv

∂F0

∂v
, (4.3)

and similarly for the energy flux (2.64):

Γv = −Dvψ
∂F0

∂ψ
−Dvv

∂F0

∂v
. (4.4)

The quantities Dψψ, Dψv, Dvψ, and Dvv are the four diffusion coefficients that

now determine the dynamics of trace alpha particles, and are themselves general

functions of ψ and v. Formally, we can write these coefficients in terms of the
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gyrokinetic operator L as:

Dψψ =

〈∑
σ‖

∫
L−1

[ c
B

b×∇〈φ〉R · ∇ψ
] ( c

B
b×∇〈φ〉R · ∇ψ

)
Jvdλ

〉
t

(4.5)

Dψv =

〈∑
σ‖

∫
L−1

[
∂ 〈φ〉R
∂t

]
Ze

mv

( c
B

b×∇〈φ〉R · ∇ψ
)
Jvdλ

〉
t

(4.6)

Dvψ =

〈∑
σ‖

∫
L−1

[ c
B

b×∇〈φ〉R · ∇ψ
] Ze
mv

(
∂ 〈φ〉R
∂t

)
Jvdλ

〉
t

(4.7)

Dvv =

〈∑
σ‖

∫
L−1

[
∂ 〈φ〉R
∂t

]
Z2e2

m2v2

(
∂ 〈φ〉R
∂t

)
Jvdλ

〉
t

. (4.8)

To obtain these, we plugged equation (4.2) into the definitions for the fluxes in equa-

tions (2.63) and (2.64), factoring out the dependence of F0 according to equations

(4.3) and (4.4).

Equations (4.3) and (4.4) are identical to the 2× 2 system suggested by refer-

ence [41]. Their study, however, was a quasilinear model for alpha particles, whereas

our treatment is rigorous for full turbulence. Both models require the trace approx-

imation for equations (4.3) and (4.4) to be rigorously valid.

This is a generalization of the technique used in chapter 3 to correct the

turbulent flux for a Maxwellian, and we use the example therein as a proof-of-

principle. We are now in a position to use this generality to solve for the global

transport of alpha particles.
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4.3 The T3CORE code

Combined with the transport equation (2.65), equations (4.3) and (4.4) are

sufficient to solve for F0 (ψ, v), provided the diffusion coefficients are known. These

must be found from turbulence simulations, or perhaps a reduced model. There are

two options on how to proceed rigorously:

1. Save φ (r, t) from a turbulence simulation and use this to solve the (linear)

gyrokinetic equation, energy-by-energy, for the alpha particles and construct

the radial and energy fluxes.

2. Use two or more simulations including a trace species to solve for the diffusion

coefficients.

Both techniques have their advantages and disadvantages. The first option involves

more code development, but would be more efficient since the trace species need not

be included in the nonlinear simulation. In this thesis, we use the second option,

taking advantage of additional diagnostics such as the energy-dependent flux (2.63).

Explicitly, assume we have the radial flux for two Maxwellian species (with

the same charge Z and mass m) in a gyrokinetic simulation: Γψ1 and Γψ2. Each

of these species is permitted to have its own density (n1 and n2), temperature (T1

and T2), and radial gradients thereof, and are described by equilibrium distributions

FM1 and FM2, all respectively. From equations (4.3) and (4.4), we can then write

Γψ1/FM1 = Dψψ

[
1

Ln1

+
1

LT1

(
mv2

2T1

− 3

2

)]
+Dψv

mv

T1

, (4.9)
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and

Γψ2/FM2 = Dψψ

[
1

Ln2

+
1

LT2

(
mv2

2T2

− 3

2

)]
+Dψv

mv

T2

. (4.10)

Note that the diffusion coefficients are the same for both of the species. This is

because they respond to the same turbulence and have the same charge and mass,

thus the operator L is the same. We solve for the diffusion coefficients in terms of

these two fluxes (which are found from simulation):

Dψψ =
T1

T2
(Γψ1/FM1)− (Γψ2/FM2)

d
(4.11)

Dψv = − T1

mv

1

d
×
{[

1

Ln2

+
1

LT2

(
mv2

2T2

− 3

2

)]
(Γψ1/FM1)

−
[

1

Ln1

+
1

LT1

(
mv2

2T1

− 3

2

)]
(Γψ2/FM2)

}
, (4.12)

where

d ≡
[

1

Ln1

+
1

LT1

(
mv2

2T1

− 3

2

)]
T1

T2

− 1

Ln2

− 1

LT2

(
mv2

2T2

− 3

2

)
. (4.13)

Note that this 2 × 2 system can be singular under certain conditions. One can

inoculate against this by choosing the two sample species so that 1/LT1 = 1/LT2 = 0.

The diffusion coefficients for the energy flux (Dvψ and Dvv) are calculated the same
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way:

Dvψ =
T1

T2
(Γv1/FM1)− (Γv2/FM2)

d
(4.14)

Dvv = − T1

mv

1

d
×
{[

1

Ln2

+
1

LT2

(
mv2

2T2

− 3

2

)]
(Γv1/FM1)

−
[

1

Ln1

+
1

LT1

(
mv2

2T1

− 3

2

)]
(Γv2/FM2)

}
, (4.15)

Now that we have a prescription for finding these four diffusion coefficients,

valid for any equilibrium distribution, we can use equations (4.3) and (4.4) to find

the radial and energy fluxes. Finally, we assemble all terms of the transport equation

(2.65) including the collision operator and source to obtain:

∂F0

∂t
− 1

V ′
∂

∂ψ

(
V ′Dψψ

∂F0

∂ψ
+ V ′Dψv

∂F0

∂v

)
− 1

v2

∂

∂v

(
v2Dvψ

∂F0

∂ψ
+ v2Dvv

∂F0

∂v

)
= Sα +

1

v2

∂

∂v

[(∑
s

ναss

)
v2F0 +

1

2

(∑
s

ναs‖

)
v4∂F0

∂v

]
, (4.16)

where we used Jv ∝ v2, the alpha particle source Sα (1.4), and the index s is summed

is over the bulk ions and electrons. Equation (4.16) is a linear second-order partial

differential equation for F0α in ψ-v space.

The T3CORE code, written in the Julia programming language [70], solves equa-

tion (4.16) using finite-differences, with the fluxes defined on a staggered grid span-

ning ψmin < ψ < ψmax and 0 < v < vmax. The boundary conditions are defined as

follows:

• Γψ (ψmin, v) is fixed, with a magnitude given by the internal source of alphas,
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and is Maxwellian at the local ion temperature and gradient. In other words,

only cool ash enters the domain from the inner core ψ < ψmin.

• F0 (ψmax, v) fixed to be the analytic slowing-down distribution, plus a popu-

lation of Maxwellian helium at the local ion temperature to bring the total

density to a value input by the user.

• Γv,tot (ψ, v = 0) = 0 for all ψ.

• F0 (ψ, vmax) = 0.

The total flux in energy Γv,tot includes the flux from collisions:

Γv,tot ≡ Γv + vνs +
1

2
v2ν‖, (4.17)

and is included as part of the boundary condition so that no alphas slow down

through v = 0.

To elaborate upon on the first boundary condition above, we consider the

velocity space integral of equation (2.65) (recall that the collision operator conserves

density so
∫
C [F0] d3v = 0):

∂n

∂t
+∇ · Γp = Sp. (4.18)

So, in steady-state, integrate from the magnetic axis (ψ = 0) to ψmin and apply the
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divergence theorem:

∫
Γp · n dS =

ΓpAψmin

|∇ψ|ψmin

=

∫ ψmin

0

SpV ′dψ, (4.19)

where Aψmin
is the physical area of the ψmin flux surface and Γp = Γp·∇ψ. This deter-

mines the velocity-integrated particle flux, but we furthermore impose a Maxwellian

velocity dependence:

Γin (v) ∝ Dψψ

[
1

Lni
+

1

LT i

(
mv2

2Ti
− 3

2

)]
e−mαv

2/2Ti (4.20)

This is equivalent to assuming that the core is sufficiently collisional (or alternatively,

sufficiently quiescient) so that all alpha particles born inside ψmin slow-down before

entering the computational domain of the code, which they do in a way such that

their velocity-dependence mirrors that of the bulk ions.

The recipe for using this algorithm is thus:

1. Determine the radial profiles of density and temperature for the bulk species,

and calculate associated fusion cross sections from equation (1.3).

2. Run the GS2 code with the energy-dependent flux diagnostic turned on, and

with two additional Maxwellian species, each with the same mass and charge

as alpha particles, and whose velocity grid spans the domain up to vmax..

3. Calculate the turbulent diffusion coefficients (4.11) and (4.14) from the GS2

simulations, and interpolate onto a uniform ψ-v grid.
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4. Invert a global matrix representing the finite-difference approximation to the

transport equation (4.16) to determine either the steady-state solution, or

implicitly advance in time as desired.

For the rest of the thesis, we will consider only steady-state solutions to equation

(4.16), so that ∂F0/∂t = 0. The ψ grid is indexed by 1 ≤ i ≤ Nψ, v is indexed by

1 ≤ j ≤ Nv, and both coordinates are discretized on a uniform grid.

Once the diffusion coefficients are known from the turbulence simulations, the

problem is a 2D partial differential equation, which we solve by finite differences.

For a generic interior grid point (ψi, vj), the finite difference equation is:

v2
j

1

∆ψ

(
V ′i+

1
2 Γ

i+
1
2
,j

ψ − V ′i−
1
2 Γ

i−1
2
,j

ψ

)
+ V ′i

1

∆v

(
v2

j+
1
2

Γ
i,j+

1
2

v − v2

j−1
2

Γ
i,j−1

2
v

)
+ V ′i

1

2∆v

[(
νsv

3F0

)i,j+1 −
(
νsv

2F0

)i,j−1
]

+ V ′i
1

2∆v

(ν‖v4∂F0

∂v

)i,j+ 1
2

−
(
ν‖v

4∂F0

∂v

)i,j−1
2

 = v2
jV ′iSi,j (4.21)
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where:

Γ
i+

1
2
,j

ψ =− 1

∆ψ

[
D
i+

1
2
,j

ψψ

(
F i+1,j

0 − F i,j
0

)]
(4.22)

− 1

4∆v

[
D
i+

1
2
,j

ψv

(
F i+1,j+1

0 − F i+1,j−1
0 + F i,j+1

0 − F0i,j−1

)]
Γ
i−1

2
,j

ψ =− 1

∆ψ

[
D
i−1

2
,j

ψψ

(
F i,j

0 − F
i−1,j
0

)]
(4.23)

− 1

4∆v

[
D
i−1

2
,j

ψv

(
F i,j+1

0 − F i,j−1
0 + F i−1,j+1

0 − F i−1,j−1
0

)]
Γ
i,j+

1
2

v =− 1

4∆ψ

[
D
i,j+

1
2

vψ

(
F i+1,j+1

0 − F i−1,j+1
0 + F i+1,j

0 − F i−1,j
0

)]
− 1

∆v

[
D
i,j+

1
2

vv

(
F i,j+1

0 − F i,j
0

)]
(4.24)

Γ
i,j−1

2
v =− 1

4∆ψ

[
D
i,j−1

2
vψ

(
F i+1,j

0 − F i−1,j
0 + F i+1,j−1

0 − F i−1,j−1
0

)]
− 1

∆v

[
D
i,j−1

2
vv

(
F0i, j − F i,j−1

0

)]
(4.25)

For the boundary condition at ψ = ψmin, the “left” flux at ψ1/2 is replaced with the

given quantity

Γ
1
2
,j

ψ = Γjin, (4.26)

and put on the right-hand side as an effective part of the source. The distribution

F
Nψ ,j
0 = F j

0,edge is fixed at the outer boundary. At the upper boundary in speed, we

have F i,Nv+1
0 = 0. The zero-flux condition at v = 0 means that Γi,1v,tot = 0.

Before proceeding, it is useful to characterize equation (4.16). As a two-

dimensional linear PDE, its discriminant is:

∆ ≡ (Dψv +Dvψ)2 − 4

(
Dvv +

1

2
v2
∑
s

ναs‖

)
Dψψ. (4.27)
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If ∆ < 0, then equation (4.16) is elliptic, and if ∆ > 0, it is hyperbolic. We expect a

transport equation of this form to be elliptic, but there is no known reason why this

ought to be so a priori. Whatever symmetry may exist in quasilinear theory is not

obeyed for turbulent transport coefficients [71]. Because of this ambiguity in the

sign of ∆, we ought to proceed with caution because mixed-type equations require

special handling.

4.4 Validation

The algorithm has been tested using a constructed analytic test case. Fixed

forms for F0 and the diffusion coefficients were chosen, and the source that would

satisfy equation (4.16) was calculated. Then the code was run using these diffusion

coefficients and source to solve for F0 numerically, and the error with respect to the

constructed analytic distribution was analyzed. For this test, circular geometry is

used, in which ψ ≡ r, the physical radius, and V ′ = dV/dr ∝ r. We will be making

use of normalizing values a and vref for the r and v coordinates respectively such

that r̂ ≡ r/a and v̂ ≡ v/vref are dimensionless. A reference diffusion coefficient Dref

is also chosen.

The chosen analytic forms of the diffusion coefficients are:

Drr = Dref

(
3− r

a

)
(4.28)

Drv = Dvr = Drefb
vref

a
e−2v/vref

Dvv = Dref
v2

ref

a2
e−v/vref ,
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where b is a dimensionless parameter. For these coefficients, the condition that the

equation be elliptic is provided by:

b < Min
(
e3v̂
√

3− r̂
)

=
√

2 (4.29)

This condition is in the collisionless limit, which is conservative. If we choose the

form of F0 to be:

F0 =
(
2− r̂2

)
e−v̂

2

, (4.30)

then the collision operator vanishes and equation (4.16) is satisfied if the source is

given by:

Stest =
Dref

a2
e−v̂

2 [
6 (2− r̂) + v̂−2

(
2− r̂2

) (
6− 2v̂ − 4v̂2

)
e−v̂

+2be−2v̂r̂

(
2v̂

r̂2
− 5v̂ − 2 +

2

v̂

)]
(4.31)

With this analytic solution, along with the boundary conditions it satisfies, we

can rigorously test the T3CORE code. The comparison of the analytic to numerical

solution is given in figures 4.1 and 4.2, while figure 4.3 shows the absolute error

throughout the domain. The absolute error was chosen in favor of the relative error

because the analytic solution is small but nonzero at v = vmax, while the numerical

solution is forced to vanish. This fact tends to dominate the relative error near

that boundary, but is judged unimportant. Figure 4.4 shows the convergence of

maximum absolute error as a function of resolution.

With this data, and similar behavior occurring with several different choices
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Figure 4.1: Numerical versus analytic solution of F0 (4.30) at various cross-sections of the domain.
The solid lines are the analytic solution, and the dotted lines with crosses of the same color as the
corresponding numerical prediction. The resolution is Nr = 10×Nv = 100, with b = 0.5.

Figure 4.2: Same as the left plot in figure 4.1, but plotted on a logarithmic scale. The good
agreement continues through many orders of magnitude.
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Figure 4.3: A representative example of the absolute errors in T3CORE versus the analytic solution
(4.30). The resolution is Nr = 10×Nv = 100, with vmax = 5vref , b = 0.5, and Dref = 5.

Figure 4.4: The maximum absolute error (which usually occurs at ir=iv=1, see figure 4.3) as a
function of radial resolution at fixed Nv = 200 on the left, and velocity resolution at fixed Nr = 30
on the right.
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of Dref and b, we conclude that the basic T3CORE algorithm works well at recreating

an arbitrary analytic solution to the transport equation (4.16), and we proceed to

apply this tool in the next chapter.
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Chapter 5: Effect of turbulence on alpha particles in an ITER-like

scenario

The tool described in chapter 4 is generally applicable to any isotropic trace

species, with diffusion coefficients provided by turbulence simulations (though, in

principle, they could be obtained by any other diffusion model). In this chapter,

we apply the T3CORE code to the problem of alpha particles in a realistic ITER

scenario. We take advantage of the flexibility of the tool to vary several properties

of the equilibrium, including the overall fluctuation amplitude profile, magnetic

geometry, and the inclusion of a simple dilution model.

5.1 Properties of the background turbulence

We obtain a radial profile from the CCFE public database [59], specifically

case 10010100: a typical ELMy H-mode scenario for ITER as run by Budny using

TRANSP [1]. This is the same case studied in reference [31] and chapter 3. Some

bulk equilibrium properties were given in figure 3.12. In this chapter, however, the

helium ash is not considered part of the bulk, so the deuterium and tritium densities

(taken to be a 50/50 mix) are as radially flat as the electrons. Electrons are a kinetic

species in the simulations of this chapter.
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Figure 5.1: On the left is the normalized turbulent electrostatic amplitude from the four GS2

simulations, and on the right is ion thermal diffusivity defined in equation (5.2). The latter is
presented in both normalized (solid black circles) and SI units (dashed green diamonds). The
markers represent the discrete values from simulation.

The GS2 code was run locally at several flux surfaces throughout this profile to

obtain energy-dependent fluxes for the two helium species in ITG turbulence, from

which we can calculate the diffusion coefficients via equations (4.11) and (4.14).

There are four total GS2 simulations equally spaced between ψmin = 0.5ψa and

ψmax = 0.8ψa. Beyond this latter radius, direct loss of alpha particles and enhanced

ripple transport become important. In this chapter, ψ is taken to be the physical

radius of the flux surface: the half-width in meters at the height of the magnetic

axis, and ψa is the half-width of the last closed flux surface. Unless otherwise stated,

all fluctuating quantities including fluxes are steady-state time-averaged.

The general results from these simulations are plotted in figure 5.1. There,

the ion thermal diffusivity is determined from:

qi ≈ −niχi∇Ti, (5.1)

and we make the usual local approximation that ∇Ti ≈ −Ti/LT i. The normalizing
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gyro-Bohm diffusivity [15] is defined as:

χGB ≡ ρ2
scs/a, (5.2)

where cs =
√
Te/mi is the sound speed, and ρs is gyroradius calculated at the sound

speed. The values we obtain for these ion thermal diffusivities are roughly consistent

with previous computational [2, 15] and experimental [72, 73] results. Throughout

this chapter, we will use χi as a proxy for the amplitude of the turbulence. For

example, when we show results having multiplied χi × 5, what is meant is that

we have multiplied the square-amplitude of the turbulence (and thus the resulting

diffusion coefficients) by the same factor of five.

From these simulations, and interpolating linearly between them and their

velocity space grid points, we can obtain trace diffusion coefficients for a helium

species in the domain defined by 0.5 < ψ/ψa < 0.8 and 0 < v < vα. These

are shown in figure 5.2. The nominal case for turbulent transport will be in this

domain, with alpha particles being produced in the region 0 < ψ < ψmin entering

the domain as a Maxwellian flux at the local ion temperature, and alpha particles

being produced within the domain according to equation (1.4). The edge condition

of F0 (ψmax, v) is the analytic slowing-down distribution (1.20), plus a population

of Maxwellian helium at the local ion temperature to bring the total edge1 density

to a given value. Nominally, 1017/m3 (about 0.1% of the local electron density)

1This “edge” is not to be confused with the pedestal region or the LCFS. Instead, we are
speaking of the outer edge of simulation domain. This is, in a sense, the edge for alpha particles,
since beyond here, it is possible for direct orbit losses to become important.
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Figure 5.2: At top, the four turbulent diffusion coefficients for a trace helium species in the domain
spanned by alpha particles. Numerical values are given with respect to the local (in radius) χGB.
On the bottom is the velocity dependence of the coefficients, also normalized the same values as
the top figure, at fixed ψ = 0.6ψa.
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is chosen as the baseline boundary alpha particle density for reasons discussed in

section 5.2.3. The baseline resolution is 30 radial grid points in ψ and 400 speed

grid points.

Immediately we can make some observations about this case. The dominance

of Dψψ is apparent in figure 5.2, implying the diffusive models2 commonly used in

the literature are sufficient. This is further confirmed in section 5.3. This need not

be the case, but is a statement on the relative phase of hα and φ versus ∂φ/∂t3.

Other types of turbulence or species might require more than just radial diffusion.

Note that, at high energy, the scaling of all the diffusion coefficients with v is similar.

This is because both terms on the right hand side of the gyrokinetic equation (2.45)

have the same basic scaling at high energy (from the gyroaverage 〈φ〉R). Also, with

these values of diffusion coefficients, combined with the collision frequency ν‖, we

can calculate the discriminant from equation (4.27) and find, in this case, that the

PDE is elliptic throughout the domain.

With the diffusion coefficients shown in this section, let us examine the be-

havior of alpha particles applying the low-collisionality transport equation (4.16).

5.2 General properties of the alpha particle distribution

In this section, we describe some of the interesting properties that are observed

when solving for the transport of alpha particles. Particularly, we will be looking

for departures from the slowing-down distribution.

2Note that this does not refer only to particle diffusion, but to the diffusion of F0 as a whole.
3See equations 4.5 to 4.8
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Figure 5.3: Convergence of the solution given by T3CORE by comparing sensitive diagnostics. In all
cases, we compare the nominal resolution to doubling the energy and radial grid resolutions. On
the top left is the alpha-ion heating as a function of radius, and on the top right as a function of
energy: the integrand of equation (5.3). The two top plots are with a higher imposed edge density
than the nominal case to increase the sensitivity (so that in those plots, nα,edge = 1018/m3). The
bottom two are the distribution function itself as a function of energy, summed over all radii. The
bottom left is a logarithmic scale and the bottom right is a linear scale, focused on the tail.
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Figure 5.4: Comparing the obtained alpha-ion heating rate as a function of radius for when cubic
splines are used between the four GS2 simulations, versus linear interpolation.

Throughout this section, we will refer to the heating rate by alpha particles

(either ash or hot alphas) to either ions or electrons. To find such a heating rate, we

use conservation of energy to express this as the cooling rate of alphas against the

same species, so that the rate at which alpha particles heat species s via collisions

is given by:

Hαs = −
∫
Cαs [F0α]

1

2
mαv

2 d3v. (5.3)

To gain the reader’s confidence in the results presented here, the results of a

convergence study are shown in figures 5.3 and 5.4. The latter is used as a proxy

to justify that enough GS2 runs were performed, and that further refinement is not

expected to change the results significantly.

5.2.1 Energy distribution and departure from Fs

It is expected from the results of chapter 3 and references [25] and [31] that

alpha particles at high energy would be relatively well-confined to a flux surface,
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Figure 5.5: On the left: a perspective plot of the logarithm of F0α plotted throughout the domain
(excluding the last radial point which is imposed to be the analytic slowing-down distribution).
On the right: a linear plot focusing on the tail and the inversion from microturbulence. Units are
arbitrary. The beginning of the Maxwellian ash can be seen at the edge of the plotted domain on
the right.

Figure 5.6: The alpha particle distribution compared to the slowing-down distribution at fixed
radius ψ = 0.65ψa. The left plot is on a logarithmic scale, while the right is a linear plot focused
on the high-energy tail.

obeying a slowing-down distribution. However, at moderate energies, we expect a

significant change to F0α, which is reported throughout the domain in figure 5.5, and

at particular radii in figures 5.6 and 5.7. There, we compare against the analytic

slowing-down distribution for the local source and collisional properties. To match

the total density of the calculated distribution, a population of Maxwellian ash was

added to the analytic distribution.

At some radii, for the nominal level of turbulence, we observe an inversion in
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Figure 5.7: The alpha particle distribution compared to the slowing-down distribution at mid-
radius ψ = 0.5ψa. A significant departure from Fs at high energy is observed, compared to the
relatively good agreement figure 5.6 (which was taken at another radius). The lack of agreement
in the low-energy part is due to our convention of adding only enough ash to keep the total density
consistent.

the distribution for a relatively short range of velocity space, roughly between the

Maxwellian ash and the critical speed vc (see figure 5.5). Similar inversions have

been observed in experiments and other simulations. For example, reference [3]

found a critical diffusion coefficient that, if constant throughout the domain, could

cause an inverted distribution. See figure 5.8 for the results of our simulations when

the diffusion coefficient is held constant in radius and energy.

Unfortunately, the “realistic” equilibrium profile used in reference [3] is not

available, but we can rescale our profile so that the local properties at mid-radius

match theirs. Furthermore, other differences include the fact that those authors

make the approximation of a Dirac-delta function source, and they approximate the

collision operator according to equation (1.16). For these reasons, we do not expect

perfect agreement, but we recover the same general trend: a flat or inverted alpha

particle distribution when the diffusion coefficient is above a critical value around 6
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Figure 5.8: Alpha particle distribution at mid-radius for various constant diffusion coefficients.
Our radial profile is rescaled so that ne = 2 × 1020/m3 and Te = Ti = 10keV at mid-radius. Can
be compared to figure 2 of reference [3].

m2/s.

From our turbulence simulations, we find diffusion coefficients which are strong

functions of energy, so we do not expect to see the behavior of figure 5.8 for real

simulations. But the diffusion coefficient is appreciable in the lower energy parts of

the domain, and this is where we do see the inversion.

The JET experimental team also observed an inversion of the alpha particle

distribution, reprinted here in figure 5.9. For our nominal case, we do not see the

inversion go to such high energy. Our peak is around 300 to 400 keV, whereas the

peak in the JET case is around 1.3 MeV. This difference can be attributed to either

different equilibrium parameters (ours is an ITER case), or to Alfvénic activity

which is not captured in these electrostatic simulations. Nor is our inversion as

strong as seen in figure 5.9, which spans nearly an order of magnitude in F0α.

Therefore, we observe energy distributions which can differ significantly from

the slowing-down distribution, with unexpected features that are nevertheless sup-
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Figure 5.9: Figure 6 from reference [4], reprinted. The hollow and solid dots are measures of line-
of-sight integrated distribution function for alpha particles and knock-on deuterons, respectively.

ported by the literature.

5.2.2 Radial profile

Here, we compare some radial properties of the calculated F0α to the analytic

slowing down distribution (1.20), which is calculated given only local parameters.

We see from figure 5.10 that the slowing-down distribution differs by at most

about 50%. Note that this is purely the analytic slowing-down distribution (1.20)

without any ash added. In other sections (e.g., figure 5.6), when we add ash to

the slowing-down distribution, we do so in order to keep the total alpha density

nα = nhot + nash consistent. This allows the most generous possible comparison to

the analytic slowing-down distribution, allowing for the possibility that somehow

one knows the total density of helium.

The heating rate as a function of radius is plotted in figure 5.11. Here we
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Figure 5.10: The density profile of hot alpha particles as compared to the analytic slowing-down
distribution, with an approximately uniform ash for comparison. The solid blue line is the total
density of helium from the simulation, and the ash is separated out as described in section 5.2.3.

Figure 5.11: On the left is the alpha particle heating rate summed over ions and electrons based
on the calculated and slowing-down distributions. On the right is weighted by the area of the flux
surface Aψ

∑
sHs
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see differences approximately in line with the density profiles in figure 5.10. At

some radii, we see a decrease in the alpha heating compared to the slowing-down

distribution, while at others, a small increase.

5.2.3 Effect of the ash

While this dissertation focuses on the non-Maxwellian tail of hot alphas, it is

worthwhile to put this into context by examining the transport of the low-energy

Maxwellians with energies around Ti. Note that T3CORE solves for the entire dis-

tribution self-consistently: any Maxwellianization that arises is due to the natural

solution of the collision operator (1.15).

We run transport simulations of our base case for several edge densities. To

get approximate Maxwellian quantities at low temperature, we perform a linear fit

of logF0α to v2 using all the grid points between 0 < v < vti/
√

2. The goodness

of this fit is illustrated in figure 5.12, and the results from these fits are shown as

radial density and temperature profiles for the ash in figure 5.13.

We observe a relatively flat density profile for the ash, which is consistent with

previous TFTR [74–76] and DIII-D [77] measurements. This latter study provides

further experimental support for our observation that the total amount of helium

present in the plasma is mostly a function of the density at the edge.

In some cases, we see a modest decrease in the ash temperature relative to

the bulk ions. It is because of this decrease in temperature that the amount of ash

present can have a significant effect on the collisional ion heating in the transport
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Figure 5.12: On the left, a typical fit of F0α to a Maxwellian (here, nedge = 1018 at ψ = 0.5ψa).
On the right: the root-mean-square measure of how good this fit is for several radii and edge
conditions.

Figure 5.13: On the left and right are respectively the densities and temperatures of the ash
compared to the equilibrium, as calculated by a fit to F0α. The solid yellow line on the left plot is
the equilibrium electron density divided by 100, and the solid yellow and black lines on the right
are the electron and ion temperature, respectively.

simulation.

To quantify the effect on heating, see figure 5.14, which is broken down into

high- and low-energy alpha contributions, and the effect on ions and electrons. Note

that only this latter distinction is physically meaningful: we don’t know a priori

where the ash ends and the hot alphas begin, and the statistical fit is not perfect.

For these diagnostic purposes, we define the “hot” alpha particle distribution to be
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Figure 5.14: The effect of the edge density on collisional alpha heating rate. Top-left: heating
rate from the ash to the plasma; top-right: heating rate from the hot distribution (F0α − Fash);
bottom-left: heating rate to the ions; bottom-right: heating rate to the electrons.
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the difference between the full distribution and the fitted ash:

Fhot ≡ F0α − Fash. (5.4)

The hot alpha density is then nhot =
∫
Fhot d3v.

We see that the heating of ions is significantly affected by the edge condition,

while the electron heating is largely untouched. Both “hot” and “ash” parts of the

distribution appear to contribute to the effect of reducing the heating of ions.

Recall that our our diffusion coefficients are interpolated linearly from a GS2

velocity grid, which neither uses nor requires as fine of an energy grid as T3CORE.

This could call these results into question (the relative cooling of ions by low-energy

alphas). The results of this section are robust to increasing GS2 velocity resolution.

The reason is because the Legendre grid used in GS2 puts a relatively large number of

points at low energy, so the ash is already fairly well resolved, even when a relatively

few number of grid points span the entire alpha energy range.

It is still likely that this anomalous cooling of ions is unphysical because the

chosen profile is not self-consistent with respect to the turbulence simulations. Per-

haps, due to the same turbulence, the ion temperature profile would also change if a

Trinity simulation were run. In that case, the temperature difference between the

ions and helium ash might be minimal. Indeed, experiments [77] show helium trans-

port to scale closely with that of the ions, and this is confirmed by our nonlinear

simulations. Therefore, the results of this section can be interpreted as highlighting

the limits of the trace approximation, while demonstrating the importance of helium
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transport. The relative transport of the helium ash compared to the main ions is

particularly important.

The results in this section indicate that, if the ash transports unfavorably, it

can undo heating benefits of fusion alpha particles, especially to the ions. To ac-

curately calculate the temperature difference (Tash − Ti), a self-consistent turbulent

transport simulation of the bulk plasma is required. We proceed with the nominal

case with nedge = 1017/m3, chosen to minimize this effect of the ash, and examine

the transport of the non-Maxwellian tail. This density also agrees roughly with the

helium density predicted by Budny [1] at ψ ≈ 0.8ψa.

5.2.4 Partition of heating among the species

An effect which depends strongly on the energy is the preferential heating of

electrons versus ions. At high energy, elastic scattering off of the faster, lighter elec-

trons is dominant, while at lower energies, the energy transfer to slower, heavier ions

becomes important. The critical speed vc marks this transition, so the differences

in F0α we observe at and below vc are expected to have a stronger effect on the ions

than the electrons. This expectation is confirmed in figure 5.15, where the modified

alpha particle distribution has a relatively strong effect on the ion heating.

Figure 5.15 also shows the heating breakdown by energy by plotting the in-

tegrand of equation (5.3). The Maxwellian ash resides primarily below v = 0.2vα.

Since we only add enough ash to the slowing-down distribution to make the total

density consistent, one can observe a significant difference at these low energies due
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Figure 5.15: On the left: the radial profile of alpha particle heating on electrons and ions. On the
right: the collisional heating by alpha particles at ψ = 0.5ψa, broken down by species and energy:(
mαv

2/2
)
Cαs [F0α] 4πv2, the integrand of equation (5.3). The dotted lines represent the heating

by the slowing-down distribution with ash included.

to these different ash densities. At high energy, the slowing-down distribution has

a delta function derivative at v = vα, which integrates to approximately the correct

value.

Throughout the intermediate energy range, we see a meaningful difference

between the slowing down distribution and the numerically calculated one. As

expected, there is a decrease in the ion heating around vc. Interestingly, we also

see an increase in the cooling of electrons at moderately high energy (v ∼ 0.8vα).

However, this effect is typically dominated by the alpha-electron heating around 3.5

MeV (at a rate which is off the scale of figure 5.15), while the ions do not enjoy

such large amounts of heating at that high energy. Therefore, the reduction in

heating at moderate energies due to the transport-modified distribution affects the

ions disproportionally.
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5.3 Effects of turbulence on key alpha diagnostics

In this section, we chronicle the effect of microturbulence on three key alpha

particle diagnostics that are related to the primary effects of alpha particles:

1. Plasma heating. As discussed in chapter 1 and elaborated upon in this

chapter, this is key to achieving burning plasma. It not only depends on the

density of alpha particles, but on the particular form of the distribution.

2. Destabilization of Alfvén eigenmodes. An important effect of alpha par-

ticles is their destabilizing of TAEs, EAEs, etc. These usually depend upon the

alpha particle pressure gradient, which will be affected by microturbulence.

3. Wall and divertor load. The details of the fast alpha particle trajectories

will be important in the edge region in diagnosing how much power will need

to be absorbed by plasma-facing components. This region is outside of our

simulation domain, but we can provide the alpha particle heat flux entering

the pedestal region and beyond.

So the three key diagnostics we will refer to throughout this section are: total alpha

heating rate; the alpha particle pressure gradient, normalized to the core electron

pressure pe0 = ne (ψ = 0)× Te (ψ = 0); and the alpha particle heat flux. We will be

taking into account different scenarios that alter the background microturbulence,

or conditions upon the alpha particles themselves, and examining the sensitivity of

these diagnostics.
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Figure 5.16: Comparing the calculated distribution with microturbulence to that of the local
slowing down distribution with a population of ash.

Figure 5.17: Comparing the effect of scaling turbulent amplitude (and hence all diffusion coeffi-
cients) by a factor.

First, we reiterate that the presence of microturbulence modifies the slowing-

down distribution, which in turn has an effect on the radial profiles in figure 5.16.

While we showed in the previous section that there is an effect on the collisional

heating rate, particularly for the ions, we find more dramatic effects in the other

diagnostics: the alpha pressure gradient nearly halves at 0.55ψa, and there is no way

for the slowing-down distribution to generate any heat flux, since it is by definition

the stationary (in radius) tail.

Having demonstrated that microturbulence has an effect, we elaborate upon

this by scaling the diffusion coefficients by several different factors, and the results of

these simulations are in figure 5.17. For this case, increasing the turbulent amplitude
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Figure 5.18: Comparing the streamlines of alpha particles under different turbulent conditions.
Center is the nominal amplitude, with the left and right scaled up and down by a factor of five,
respectively. The slope of the stream lines at every point is the normalized ratio between the
energy flux and the radial flux: Γv,tot/Γψ.

Figure 5.19: Comparing the radial profiles with all four turbulent diffusion coefficients, ignoring
energy flux Γv, and only retaining the pure radial diffusion coefficient Dψψ.

by a factor of five has a decreasing effect on TAE drive. Also, note the similarity

between the very weak turbulence (the cyan curves, with scaling factors of 1/100)

and the slowing-down results in figure 5.16, as should be expected. The amplitude

of turbulence seems to have a nearly direct relationship with the heat flux into the

pedestal. We can visualize the effect of increasing turbulence by comparing the

stream-plots in figure 5.18.

While microturbulence plays a significant role in the alpha particle profile,

the normalized diffusion coefficients in figure 5.2 imply that radial diffusion is the
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dominant mechanism. This is clearly demonstrated in our simulations, examining

when various combinations of these four coefficients are implemented. The solid

black curves in figure 5.19 are the nominal case with all four diffusion coefficients,

the red dashed curves show case where the energy flux is ignored, and for the blue

dotted curve, Dψv is further ignored. This suggests that, at least for ITG turbulence,

applying all four diffusion coefficients used here and in reference [41] is unnecessary:

only pure radial diffusion plays any significant role.

Note that we are speaking of the radial diffusion of F0α, not just density.

The diffusion coefficient Dψψ contains both the particle and thermal diffusivities as

well as the associated cross-terms. Recall that the particle and heat fluxes can be

written as moments of the radial flux4. Then, what we mean by the diffusive limit

is Γψ = −Dψψ∂F0α/∂ψ, in contrast to applying equations (4.3) and (4.4), which

include all four diffusion coefficients. Any pinch5 of helium due to microturbulence

can come from either: thermodiffusion, which is the part of the particle flux due

to a temperature gradient; or the flux-at-zero-gradient, which must come from the

Dψv term in equation (4.3). It is this latter effect that we are asserting is negligible,

along with turbulent heating of the alphas, whereas thermodiffusion is contained in

the energy dependence of Dψψ.

One could argue that the other diffusion coefficients become more relevant

(though perhaps not dominant) at lower energies by examining figure 5.2. After

running with a higher imposed edge density, in figure 5.20, we can see that, even

4See equations (2.67) and (2.69)
5Defined here as a particle flux against the density gradient
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Figure 5.20: Similarly to figure 5.19, compares pure diffusion to all four coefficients, except with
a larger ash population.

Figure 5.21: Effect of increasing or decreasing the edge density from the nominal case, thereby
changing the ash population.

with an increased ash population, there is still little overall effect of Dψv, Dvψ, and

Dvv, except a modest effect in the heating profile.

It has been established in section 5.2.3 that the ash can play an important

role in the overall heating, depending on their relative transport with respect to the

main ions. In figure 5.21, we include those results alongside the other sensitivity

studies in this section.

Finally, we examine the effect that geometry has on our simulation. This man-

ifests itself in the transport algorithm in the difference between V ′ (ψ) and surface

area Aψ. In figure 5.22, we plot the alpha particle profile versus a situation where

we naively assume a circular geometry. Both cases use the same local Miller [61]
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Figure 5.22: Effect of geometry on the alpha particle profile. Circular model has the same surface
area as the nominal case. Both cases use the same Miller expansion in GS2.

parameters, and the area of each flux surface is held constant. The only difference

between the black and the red curves in figure 5.22 is that the latter takes Aψ ∝ V ′

in equation (4.16).

5.4 Dilution model

As discussed in chapter 1, one reason why the transport of helium is important

is that it dilutes the fusion fuel. With such a flexible tool as T3CORE, we can model

this effect by iteratively adjusting the source according to the local helium density,

assuming the only effect of the helium on the equilibrium is to displace the main ions

(holding the electron density constant and keeping the bulk plasma quasi-neutral).

We can go a step further considering the results of section 3.1. There, we

determined that, linearly and nonlinearly, even when alpha particles have a high-

enough density to not be trace in electrostatic turbulence, their effect is primarily

that of diluting the turbulent drive. Both our nonlinear simulations and those of
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Figure 5.23: Plot of the key diagnostics for the case of nα,edge = 0.5%ne, compared to the case
where fusion fuel is diluted by the presence of helium, and the case where the turbulence is also
diluted.

Tardini [55] are consistent with the following scaling:

χi,dil

χi
≈
(

1− 3
Zfnf
ne

)
(5.5)

where χi is used as a measure of the amplitude of the turbulence and χi,dil is the value

of χi we would expect if there were a significant population of fast ions of charge

Zf and density nf . We can apply this to alpha particles in our transport solution

to determine the coupled effect of dilution on the source and the turbulence. We

stress that this is only an ad hoc model and make no claims to its general validity.

In fact, it was derived for fast ions, and if the bulk of the helium is at low density,

this dilution scaling may not be valid.

With this caveat in mind, let us proceed to examine the key diagnostics of the

previous section taking into account the different forms of dilution and the relative

importance of each. We consider helium edge density fractions (relative to electrons)

of 0.5%, 1%, and 2% in figures 5.23 to 5.25. We hesitate to go beyond this due to

the concerns about the ash concerns raised in section 5.2.3.
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Figure 5.24: Same as figure 5.23, but with nα,edge = 1%ne

Figure 5.25: Same as figure 5.23, but with nα,edge = 2%ne

These results suggest at least the possibility that dilution might not be wholly

undesirable for fusion. On one hand, the fusion source is reduced by displacing

fusing ions with helium. On the other hand, the turbulence is weaker, recovering

some alpha-ion heating. Of course, if the turbulence were weaker than in the nominal

case here, or if our artificial scaling is not valid, this would change our result. The

case where the edge alpha density is 2% in particular started with a negative heating

rate of ions due to the cooling effect of low-energy alphas on ions (which might be

unphysical, see the discussion of section 5.2.3). Neither form of dilution appears to

have a significant effect on the pressure profile or heat flux of alphas, at least up to

nα/ne ∼ 2%.
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5.5 Core ejection model

Sawteeth are periodic oscillations associated with the kink instability in the

central region of a tokamak, named for their characteristic signal in experimental

diagnostics [78, 79]. Their effect on fast ions, such as alpha particles, is to eject

them from the core [80–82]. While we do not model this central region, nor does

T3CORE account for MHD timescales, we can simulate the effect of this ejection to

some extent by adjusting the inner boundary condition. Instead of a Maxwellian

input flux from equation (4.20), let us integrate the source over all radii, keeping

the velocity-dependence as-is:

Γin,ej (v) =
|∇ψ|ψmin

Aψmin

∫ ψmin

0

SpV ′dψ. (5.6)

This represents a worst-case scenario for sawteeth in two ways: a) this is a steady-

state boundary condition, whereas sawteeth are transient phenomena, periodically

ejecting fast ions over a period of about 100 ms, and b) here there is no collisional

slowing-down anywhere between 0 < ψ < 0.5ψa.

That said, let us proceed to analyze the effect of such a steady-state direct

ejection of alpha particles. The general behavior of alpha particles is shown in the

stream plot in figure 5.26. There is clearly a qualitative difference associated with

this high-energy boundary condition at ψ = 0.5ψa, as compared to figure 1.4. The

effect of this steady-state ejection on the key diagnostics is shown in figure 5.27.

As should be expected, this boundary condition results in dramatically differ-
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Figure 5.26: Stream plot for the adjusted direct-ejection high-energy boundary condition in equa-
tion (5.6). Compare to figure 1.4, where the incoming flux at ψ = 0.5ψa is at low energy only.

Figure 5.27: Showing key alpha diagnostics for the steady-state high-energy ejection model, with
different scalings for the turbulent amplitude.
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ent alpha particle profiles. Interestingly, collisions are strong enough to slow down

alpha particles in this domain to the extent that the outgoing heat flux at the “edge”

is only about twice that as the nominal incoming flux. Naturally, the presence of

turbulence (and how strong it is) significantly modifies this edge heat flux, as in

figure 5.17. Since alpha particles are entering the domain with much more energy

than before, there is a very strong effect on the pressure profile, which is further

affected by microturbulence.
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Chapter 6: Conclusion and outlook

In this dissertation, we explored in depth the effect of drift wave electrostatic

turbulence on fusion-produced alpha particles. Even though finite-beta physics is

expected to play an important role in alpha particle transport, it was demonstrated

that even in electrostatic turbulence, the alpha particle distribution departs from the

well-known slowing-down distribution, resulting in many interesting effects which

were chronicled. It is suspected that yet more interesting results have yet to be

discovered.

Based on our results, if the profiles we have started from are to be trusted as

generating a reasonable representation of the turbulence expected in ITER, we can

make the following conclusions:

1. Turbulence, and the details thereof, has a significant effect on the alpha particle

energy distribution.

2. Increasing the amplitude of turbulence has the effect of modifying the alpha

pressure profile favorably with respect to TAE drive, while decreasing the

collisional alpha heating power.

3. For electrostatic ITG turbulence, the effect of turbulence is almost entirely
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radial diffusion of the distribution function, with a diffusion coefficient that is

a strong function of energy.

In order to perform these studies, a code needed to be developed as proof-of-

principle and to generate physics results. This tool was specifically developed to

post-process GS2 output files to solve the coupled radial-energy transport of trace

alpha particles, with or without finite-beta effects modifying the turbulence. It is

not a robust, general-purpose transport solver like Trinity, nor does it aim to be.

That said, there is always room for improvement of the model, and possible future

upgrades include: the inclusion of a collision operator in the fluctuations, which can

have a far more complicated dependence on the equilibrium F0s than the other terms

in the gyrokinetic equation; and generalizing to include pitch-angle dependence of

anisotropic equilibrium distributions.

The novel and efficient technique outlined in this thesis, however, is generally

applicable. It is envisioned that T3CORE or something like it will mature into a

more general-purpose module capable of interfacing between any transport simulator

such as Trinity, TRANSP, TGYRO, and CRONOS, and to interpret the results of any

turbulence simulation. This flexibility, it is hoped, could make way for fruitful

collaborations to perform robust, efficient, and reasonably rigorous modelling of

non-Maxwellian impurities for ITER and beyond.
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Appendix A: Non-Maxwellian effects on TAEs

It sometimes comes as a surprise that a local flux-tube code such as GS2 is

capable of examining TAEs. Cheng, Gorelenkov, and Hsu [83] developed the analytic

theory of TAEs in the high-mode-number limit, based on local gyrokinetics with a

model for trapped electrons. In addition, Bass and Waltz [6] have used similar a

similar code GYRO to study TAEs. In this appendix, we chronicle some results from

linear GS2 simulations with non-Maxwellian fast ions.

A.1 Identification of TAEs

Toroidicity-induced Alfvén eigenmodes are stable MHD waves present in toroidal

plasmas [5]. It was later discovered that fast particles can destabilize these waves [9],

and they have been heavily studied ever since. There are several other Alfvén eigen-

modes which are driven unstable under various conditions and take different physics

under consideration, such as EAEs, KTAEs, EPMs, etc. In this appendix, we use

the term TAE as a shorthand umbrella term for all such Alfvénic modes that are

driven unstable by fast ions.

TAEs are characterized by a toroidal mode number n, and those which are

unstable in present day devices are typically of order unity. But in larger devices
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like ITER, the unstable mode numbers are expected to be around 20-30 [84], making

the large-n expansion of reference [83] more appropriate. This also makes TAEs

approachable with local flux tube codes. To see why, consider the formal definition

of ky in GS2 coordinates [85]:

ky ≡
n

a
Baa

2 dψ

dψp
, (A.1)

where ψ is a generalized dimensional radial coordinate, ψp is the poloidal magnetic

flux, and Ba is the magnitude of the magnetic flux at the center point of the LCFS.

If we happen to choose the toroidal magnetic flux as our coordinate, then ψ =

aψt/Baa
2. Also, normalize ky by the ion Larmor radius ρi so equation (A.2) can be

rewritten as:

kyρi = nqρ∗, (A.2)

where we also used the definition of the safety factor q ≡ dψt/dψp. We can see that,

in order for this to be of order unity with ρ∗ small, n must be comparably large.

Suppose we have a mode locally unstable at kyρi = 0.05 and q = 2. In an ITER-

sized device where ρ∗ ≈ 10−3, this would correspond to a toroidal mode number of

n ≈ 25. So while the flux tube does not know what the toroidal mode number is, it

does know its wavelength in terms of ρi.

Since GS2 is run as a initial-value code, only the most unstable mode can be

studied. Therefore, in recreating the TAEs of reference [5], we must add in a fast-

particle species to destabilize it and make it “visible”. This changes the properties
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Figure A.1: TAE frequency as a function of shear from GS2 for inverse aspect ratio 2r/R = 0.2, to
be compared with figure 2 of reference [5]. The normalizing frequency is defined to be ωA = vA/qR,
where vA is the Alfvén speed.

of the waves somewhat, but we can extrapolate to the case of stable TAEs in figure

A.1. The eigenfunctions produced by such a mode are shown in figure A.2 and

compare favorably to reference [5].

A.2 Effect of non-Maxwellian fast ions

We switch to the parameters of Bass and Waltz [6], in which TAEs and EPMs

are driven unstable by a population of alpha-particle-like Maxwellian fast ions with

Tf = 100Te and nf = 0.025ne. Here, we follow their case as closely as possible,

including taking β′ (ψ) = 0 for the geometry (so that flux surfaces are concentric

and circular).

In figure A.3, we plot the frequency and growth rates for TAEs obtained

from our GS2 simulations. When renormalizing into their units, we see very good

agreement with reference [6], except that we do not capture their decrease in growth
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Figure A.2: The TAE eigenfunction generated by GS2 for a driven version of the case from reference
[5]. On the left is the real and imaginary parts of φ as a function of θ, to be compared with figure
11 of reference [5]. On the right is A‖.

Figure A.3: Frequency (left) and growth rate (right) spectra of the case from reference [6], com-
paring the equivalent Maxwellian with the slowing-down distribution at a/Lnf = 4.

rate at kθρs = 0.03 in the transition from EPM to TAE. The right side of the plots

in figure A.3 is the long-wavelength part of the ITG spectrum.

Also plotted in figure A.3 is the spectrum obtained when the Maxwellian fast

ions are replaced with an analytic slowing-down distribution with the same temper-

ature and vc ≈ 0.4vα. We find that this occurs when Eα ≈ 380Te, corresponding to

a Te = 9.2 keV plasma. In figure A.4, we compare the frequencies and growth rates

at different fast ion density gradients for a fixed mode kyρi ≈ 0.35.

We conclude that the equivalent Maxwellian fails to reproduce the spectrum
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Figure A.4: Frequency (left) and growth rates (right) as a function of fast ion density gradient,
comparing the equivalent Maxwellian with the slowing-down distribution.

and critical gradient for TAEs1 that a slowing-down distribution would predict. This

is unsurprising: if a wave is driven unstable by resonant particles, the shape of the

distribution function F0 would certainly matter.

1Note that the authors of reference [6] later refer to the critical gradient for TAEs in their stiff
transport model [14]. In this context, it is believed that they are referring to the alpha particle
gradient at which TAEs fail to saturate in nonlinear simulations. We make no claims as to whether
or not Maxwellian and slowing-down alphas behave similarly in this regard.
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Appendix B: Numerical instability in the δf -PIC algorithm

In this appendix, we examine the δf particle-in-cell algorithm from an analytic,

applied-mathematics perspective. In doing so, we find an unconditional numerical

instability that has been observed in codes based on this algorithm. We outline

several efforts to seek a fundamental cause of the instability, with limited success.

Particle-in-cell (PIC) methods have been a widely used tool in plasma physics

for decades. In classic “full-f” Vlasov PIC, charged particles are simulated and the

fields are approximated on a grid based on an appropriate interpolant. All particles

of the same species are identical: the concentration of simulation particles represents

the value of the distribution function at a particular location in phase space, just as

it is physically. The full distribution function is solved from the Vlasov equation:

dfs
dt

=
∂fs
∂t

+ v · ∂fs
∂r

+
Zse

ms

(
E +

1

c
v ×B

)
· ∂fs
∂v

= 0, (B.1)

where the distribution function for species s is fs = fs (r,v, t), with mass ms, and

charge number Zs (-1 for electrons). The electric and magnetic fields are E and

B respectively, and are found by solving Maxwell’s equation, using moments of

fs to find the charge and current density. The total time derivative along particle

trajectories is represented by d/dt. The PIC method is Lagrangian in the sense that
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a solution is obtained by the method of characteristics. Full-f PIC is unweighted

precisely because the right hand side of (B.1) is zero. This method has been well-

studied and applied; its limitations are well-known because numerical dispersion

relations are able to be calculated [86–88].

It is typical in plasma theory to expand the distribution function into a rela-

tively constant equilibrium distribution F0s and a small perturbation δfs such that

fs = F0s + δf . Aydemir [89] took advantage of the properties of Monte Carlo inte-

gration to present a solution method which solves only for the perturbation. This

method was later expanded by Parker, Lee [90], Denton, Kotschenreuther [91], and

is now known as the δf -PIC method. It greatly reduces the impact of statistical

noise compared to resolving the full distribution function f . The scheme is weighted

in the sense that the right hand side of the kinetic equation for δf does not vanish,

so each marker caries a weight, which changes with time along characteristics (see

section B.1).

Because much of the dynamics has been replaced by a time-dependent weight

in the δf scheme, a numerical dispersion relation based solely on the marker trajec-

tories is not useful. In fact, for a linear problem, the particle trajectories are entirely

deterministic. Therefore, to analyze the algorithm, the changing weights play the

central role; the particle trajectories only serve to complicate this analysis. This ap-

pendix represents a full analytic treatment of the algorithm to seek an explanation

for a numerical instability that occurs in the simplest of cases, and is converged on

resolution.

For numerical simulations, a variation of the GSP code [92]) was used.
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B.1 The ΩH mode

It will be convenient to express the gyrokinetic equation in terms of

gs ≡ hs −
Zs
Ts
F0s 〈φ〉R = 〈δfs〉R , (B.2)

so that one avoids a numerical instability resulting from multiple time derivatives

in the gyrokinetic equation [93, 94]. In terms of gs, the gyrokinetic equation (2.45)

in the electrostatic limit reads:

∂gs
∂t

+
(
v‖b + vds +

c

B
b×∇〈φ〉R

)
· ∇gs − 〈CGK [gs]〉R (B.3)

= −Zse
Ts

F0sb · ∇ 〈φ〉R −
c

B
(b×∇〈φ〉R) · ∇F0s,

where F0s is Maxwellian in this appendix. Equation (B.3) is is closed by solving for

the leading contribution to Poisson’s equation (quasineutrality):

∑
s

Zse

∫
〈gs〉r d3v +

Z2
s e

2

Ts

∫
F0s

[
〈〈φ〉R〉r − φ

]
d3v = 0, (B.4)

which in Fourier-space can be written as:

φ̃k =

∑
s Zse

∫
J0g̃s d3v∑

s (Z2
s e

2/Ts)
[
1− e−k2

⊥ρ
2
s/2I0 (k2

⊥ρ
2
s/2)

] . (B.5)
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The modified Bessel function I0 enters the analysis through the identity:

Γ0s ≡ 2

∞∫
0

[J0 (av⊥)]2 v⊥dv⊥ = e−a
2/2I0

(
a2

2

)
≈ 1− 1

2
k2
⊥ρ

2
s, (B.6)

where the latter approximation, useful later, is valid for k⊥ρs � 1.

We shall concern ourselves with a simplified system: that of the ΩH mode [95].

It is the simplest possible gyrokinetic system with multiple kinetic species, yet it

exhibits the converged numerical instability presented here. In this regime, we make

the following assumptions, in addition to those made in chapter 2:

• Electrostatic perturbations (β → 0)

• Linear dynamics only (small perturbations)

• Uniform, triply-periodic, shearless slab geometry (∇B = 0)

• Uniform Maxwellian equilibrium (∇F0 = 0)

• Singly-charged ions and kinetic electrons with Te = Ti

• Long-wavelength approximation (k⊥ρi � 1)

Note that, as we shall discuss later, it is possible to stabilize the numerical instability

by relaxing the first of these assumptions. However, the instability is robust to the

latter five assumptions, which are made here solely for simplicity.

Since the v⊥ coordinate only enters the problem through the gyro-averages,

it will be convenient to eliminate it from the problem. To this end, we define the
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µ-averaged distribution ḡs as:

¯̃gs ≡ 2π

∞∫
0

J0

(
k⊥v⊥

Ωs

)
g̃sv⊥dv⊥, (B.7)

where g̃s(k) is the Fourier transform of gs(R). In taking the long-wavelength limit,

let J0 ≈ 1, Γ0e ≈ 1, and Γ0i ≈ 1 − k2
⊥ρ

2
i /2. So the simplified set of equations

becomes:

∂ḡs
∂t

+ v‖
∂ḡs
∂z

= −Zse
T
v‖F0s‖

∂φ

∂z
(B.8)

φ̃ =
2T

niek2
⊥ρ

2
i

∑
s

Zs

∞∫
∞

¯̃gsdv‖ (B.9)

with F0s‖ ≡ (n0s/vts
√
π) e−v

2
‖/v

2
ts . Note that equations (B.8) and (B.9) are directly

analogous to the Langmuir plasma wave in the limit k⊥ � k‖ and T‖ � T⊥, with

an effective Debye length of λD = nie
2ρi/Ti. Therefore, this instability should also

be present in a Vlasov δf -PIC code in the appropriate limit. Note that although

the form of the equations are identical, the physical interpretation of (B.9) is dis-

tinct from Poisson’s equation: it is instead the leading-order finite Larmor radius

correction to the polarization density [96].

We can find the corresponding dispersion relation by Laplace-transforming

equation (B.8) and inserting into (B.9) to obtain:

k2
⊥ρ

2
i = Z ′

(
ω

k‖vti

)
+ Z ′

(
ω

k‖vte

)
. (B.10)

The ΩH mode is found by expanding the plasma dispersion function Z(ζ) for large
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argument in (B.10). Including complex corrections, the frequency is approximated

by:

ω = ω0 − i
√
πvti
2vte

ω3
0

k2
‖v

2
ti

e−ω
2
0/k

2
‖v

2
ti , (B.11)

where:

ω0 ≡
k‖vte
k⊥ρi

. (B.12)

The wave is therefore Landau-damped. Due to its high frequency, one requires

very small time-steps to resolve it, so it is easy to mistake this instability for a

simple violation of the CFL condition [97]. However, the numerical instability under

consideration here is converged on time-step if the ΩH mode is resolved accordingly.

B.2 The δf -PIC algorithm

This section details the δf -PIC method of solving equations (B.8) and (B.9),

taking advantage of two powerful multi-dimensional techniques: the method of char-

acteristics, and Monte-Carlo integration.

With the method of characteristics, we can reduce an n-dimensional partial

differential equation to a set of ordinary differential equations along characteristic

curves that define the proper time derivative. This will give us the solution along

any appropriate characteristic curve, headed by a marker (or “particle”), labelled

in this thesis by Greek indices. The species index will be taken to be implicit in the

marker index, so where convenient we will write, for example, Zα instead of Zs(α).

Define a marker weight, which is just the normalized solution of the gyrokinetic
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equation along its characteristic trajectory:

wα ≡
ḡs(α)

(
Rα, v‖α

)
F0s(α)

=
ḡα
F0α

. (B.13)

As such, (B.8) becomes:

dwα
dt

= −Zαe
Tα

v‖

(
∂φ

∂z

)
r=Rα

, (B.14)

which is the solution of the gyrokinetic equation along characteristic curves defined

by:

dxα
dt

= 0,
dyα
dt

= 0,
dzα
dt

= v‖α. (B.15)

A marker’s position at any time is:

Rα(t) =
(
xα0, yα0, zα0 + v‖αt

)
. (B.16)

Some authors choose to normalize the weight by the full distribution f (such that

w = δf/f). This would introduce a factor of 1/(1 − wα) to the right-hand side of

(B.14). Even so, the numerical instability remains, and when linearized for small

perturbations, (B.14) is recovered.

In order to solve (B.13), it remains to find ∂φ/∂z at the marker location zα.

We will use a spatial grid to aid in this, with a 3D interpolant function S3 (r) =

S(x/∆x)S(y/∆y)S(z/∆z), where S can be one of many possible shape functions

(see reference [86]), and ∆x, ∆y, and ∆z are the grid spacings in the x, y, and z
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directions respectively. Without a loss of generality, we will take S here to be the

linear interpolant function:

S(x) ≡


1− |x|, if |x| < 1

0, otherwise.

(B.17)

Therefore, if we know ∂φ/∂z on grid points labelled by ri, we can find the corre-

sponding value at location of marker α by:

∂φ

∂zα
=

(
∂φ

∂z

)
r=Rα

=
∑
i

S3 (Rα − ri)
∂φ

∂zi
. (B.18)

Define the discrete Fourier transforms:

Qk = FD [Q(ri)] =
∑
i

e−ik·riQ(ri), (B.19)

Qi = F−1
D [Qk)] =

1

Ng

∑
k

eik·riQ̃(k), (B.20)

where Ng = NxNyNz is the total number of grid points and k is discretely-valued.

Now, find ∂φ/∂z on the grid point ri in terms of the Fourier modes of φ:

∂φ

∂zi
=

1

Ng

∑
k

eik·riik‖φk. (B.21)

To proceed, we need a way of estimating the integral in (B.9) on the grid. We

do this by means of Monte-Carlo integration [89], using the same interpolant as in
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(B.18). Monte-Carlo is a method by which one expresses an arbitrary integral (in this

case a one-dimensional integral in v‖) as an expectation value over some probability

distribution p, then estimates this expectation value as a discretely-sampled average.

Formally,
∞∫

−∞

ḡs(v‖)dv‖ =

∞∫
−∞

ḡs(v‖)

p(v‖)
p(v‖)dv‖ =

〈
g

p

〉
p

, (B.22)

where 〈〉p is the expectation value over the probability distribution p, which obeys

the following properties:

p > 0 ∀v‖ (B.23)

∞∫
−∞

p(v‖)dv‖ = 1. (B.24)

If we take p = F0‖s/n0s by distributing markers according to a Maxwellian in v‖,

and have N discrete samples of ḡs, then we can write:

∞∫
−∞

ḡs(v‖)dv‖ =

〈
g

p

〉
p

=
n0s

N

N∑
α=1

wα +O
(
n0svar (w)√

N

)
. (B.25)

The extension to multiple dimensions can be found in reference [89].

To account for the spatial-dependence of (B.25), we use the interpolant func-

tion S3 since the location at which we want the integral (on a grid point ri) is

in general not the same as the marker positions Rα. This is perhaps the only

non-rigorous part of the algorithm and may be what is responsible for unphysical

behavior at large particle number.

Moving forward with this caveat in mind, we can estimate the charge density
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at the spatial grid location rj:

q(rj) ≡
∑
s

Zse

∞∫
−∞

ḡ(rj, v‖)dv‖ ≈
1

Nc

e
∑
β

n0βZβS3 (Rβ − rj)wβ. (B.26)

The average number of particles of each species per grid cell is Nc, so that the total

number of particles per species is Np = NgNc. Finally, we can calculate φk from the

discrete Fourier transform of this quantity using (B.9):

φk =
2Ti

n0ie2k2
⊥ρ

2
i

∑
j

e−ik·rjq(rj) (B.27)

B.3 Matrix form of the algorithm and existence of converged numer-

ical instability

Now, once a suitable time-advancement algorithm is implemented to solve the

ODEs, the entire algorithm is given by equations (B.14, (B.15), (B.18), (B.21),

(B.27), and (B.26). Such a system has been implemented in the simplified dk2d

code in 2D with a 2nd-order Runge-Kutta scheme.

By combining these equations, we find that the ODE for the marker weights

is coupled linearly to the weights of all other markers. That is:

ẇα =
∑
β

Mαβ(t)wβ, (B.28)
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where:

Mαβ(t) =
−2ZαZβvα

Np

∑
k,i,j

S3 (Rα − ri)S3 (Rβ − rj) e
ik·(rj−ri) ik‖

k2
⊥ρ

2
i

(B.29)

≈ −2ZαZβvα
Np

∑
k

|Sk|2eik·(Rβ−Rα) ik‖
k2
⊥ρ

2
i

(B.30)

The last line is only an approximation because one cannot rigorously shift a discrete

Fourier transform continuously. It is our experience, however, that using this ap-

proximation makes little qualitative difference to the behavior of the algorithm, and

this is the analytic form taken in reference [98]. We will, however, be using the exact

form unless stated otherwise. The time-dependence of the matrix elements (B.29)

comes from that of the marker positions, through (B.15). Therefore, the δf -PIC

algorithm is fundamentally a large coupled system of first-order ODEs with variable

coefficients.

One can solve (B.28) semi-analytically only in the case where there is a single-

mode (with a given k⊥ and k‖) present, and the approximation made in (B.29) is

valid. In this case, the solution is:

w(t) = w(t = 0) exp [A(t)] , (B.31)

where here exp is the matrix-exponential and the elements of A are given by:

Aαβ(t) =

t∫
0

Mαβ(t′)dt′ =
−i

k‖
(
v‖β − v‖α

)eik‖(zβ0−zα0)
(
eik‖(v‖β−v‖α)t − 1

)
Mαβ.

(B.32)
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When multiple Fourier-modes are allowed, this solution is not valid because then

the matrix M fails to commute at different times (M(t1)M(t2) 6= M(t2)M(t1)).

In general, for multiple modes, (B.28) offers no immediate analytic solution.

However, at any given moment during a simulation, we can take the matrix to

be approximately constant, and use that to calculate the instantaneous eigenvalue

spectrum. The time-evolution of the most unstable eigenvalue is given in figure B.2.

The system (B.28) can even be solved implicitly:

w(t+ ∆t) = (M(t+ ∆t)∆t− I)−1 w(t), (B.33)

where w is a column-vector of all the particle weights. Figure B.1 compares the

relative difference in the solution obtained by the code dk2d, and solving the linear

system B.28 explicitly and implicitly. Note that the explicit matrix solution is

identical to within machine precision to the δf -PIC algorithm. In fact, it should be

the algorithm, with no approximations made.

Another property of the matrix M is that it is poorly conditioned (see the

evolution of the condition number in figure B.3). This implies that the dynamics

are not reversible without a roundoff-error catastrophe, but it is unclear if this

provides insight to the numerical instability discussed below.

Note that solving this matrix system is much more inefficient than the particle

algorithm itself. In a δf particle-in-cell code, this matrix never needs to be stored,

calculated, or inverted in its entirety. Nevertheless, equation (B.28) is the exact an-

alytic form of the linear algorithm. We find that the numerical instability presented
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Figure B.1: Comparing the δf -PIC algorithm to a direct solve of the matrix system (B.28).
The sum of the squared particle weights is displayed in the upper chart. The relative difference
compared to the results of an actual δf -PIC code: |

[∑
α w

2
α

]
PIC
−
[∑

α w
2
α

]
matrix

|/
[∑

α w
2
α

]
PIC

is shown below. The explicit matrix is accurate to machine precision, while the implicit scheme
suffers from a small amount of numerical dissipation due to the finite-time-step. The explicit and
implicit schemes used here are forward and backward Euler respectively, with δt = 10−6a/vti.
The resolution is Ny = 4, Nz = 4, and 20 particles per species per grid cell. A low resolution is
necessary due to the need to invert a dense matrix of size Np ×Np every time-step.
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Figure B.2: Time-evolution of the largest real eigenvalues of matrix B.29. The horizontal dotted
line marks the approximate average growth rate of the code (γ ≈ 80.6) for the parameters: Ny ×
Nz = 4× 4, Lz = 2πa, Ly = 40πρi, Np = 320.
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Figure B.3: Time-evolution of the condition number of matrix B.29. Same case as figure B.2

in the following section is a property of this matrix system itself.

B.4 Characterization of the numerical instability

Here, we detail the properties of the discovered numerical instability. In what

follows, it will be useful to distinguish between the two separate instabilities ob-

served: a finite-particle instability, which is difficult to characterize, and whose

average growth rate generally decreases with increasing particle number. Indeed,

there is not a clean exponential behavior associated with this numerical instability

(see, e.g., figure B.5). As the number of particles increases, one ultimately finds

a converged numerical instability at some mode numbers, which does, in contrast,

exhibit clear exponential/oscillatory behavior. It is this unconditional instability

that we will chiefly concerns ourselves with in this section.

The standard, minimally-resolved case in which one can observe the converged

numerical instability is: Ly = 20πρi, Lz = πa, Ny = 4, Nz = 4, mi/me = 1849,

Nc = 8000.
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Figure B.4: Demonstrating the convergence of instability growth rate on time-step size and
method. Second-order Runge-Kutta is the default, with a simple predictor-corrector scheme and
fourth-order Runge-Kutta also shown (the latter two have ∆t = 10−4). At high step-size, the
simulation is wildly unstable, which is to be expected from a violation of the CFL condition.

B.4.1 Convergence in time-step

As a basic check, we verify that we are not violating a CFL condition. By

decreasing the growth rate and changing time-integration methods, we converge

upon the same unstable solution. We are confident that we are converging upon the

exact solution of the time-continuous equations (see figure B.4).

B.4.2 Convergence in particle number

In figure B.5, we illustrate the convergence of the unphysical growth rate on

particle number. When initializing with random noise, it is expected that the initial

size of the perturbation decreases with increasing particle number. However, there

is a fixed growth rate one reaches at which we consider the solution converged.

Note also the non-exponential behavior when Nc is below the threshold. This

is the finite-particle instability, which proves troublesome in some circumstances,

requiring a large number of particles per cell to stabilize. While it is expected that
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Figure B.5: Demonstrating the convergence of instability growth rate on particle number. Under-
resolved cases (Nc < 8000) suffer from the poorly-behaved finite-particle instability.
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Figure B.6: Dependence of the unphysical growth rate on parallel wave number. The actual power
law fit is k0.9976

‖ .

under-resolving the number of particles would cause a loss of accuracy, it is not clear

why a numerical instability would result. It is this instability that is observed in

figure B.5 and confirmed with the δf -PIC matrix (B.29) to be a fundamental feature

of the algorithm. It is not clear if the converged numerical instability is another

aspect of this finite-particle effect, or if they are in fact two separate instabilities

arising in independent circumstances.
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B.4.3 Scaling with parallel wave number

When multiple modes are present (particularly a parallel mode and its counter-

propagating partner) there is a clear direct linear relationship between the parallel

wavenumber and the growth rate: see figure B.6. This is not particularly surprising:

the arbitrary parallel length scale a only enters in defining k‖ and the characteristic

time a/vti.

Unlike in the perpendicular direction, when only one parallel mode exists in

the system, the instability vanishes. This indicates that, even in the linear case,

there is coupling between the parallel modes of φ that gives rise to this numerical

instability. This question is studied further in the next section.

B.4.4 Scaling with mass ratio

Two kinetic species are required to observe the numerical instability. Typically,

these are taken to be light electrons and heavy ions. In fact, this was used in the

simplification that Γ0e = 1, and Γ0i = 1 − k2
⊥ρ

2
i /2. As the mass ratio is adjusted
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Figure B.8: Illustrating the dependence of the unphysical growth rate on perpendicular wave
number at several values of k‖.

using the same simplified field equation (B.9), we find that the growth rate scales

linearly with vte/vti =
√
mi/me (see figure B.7).

Note that a positive unphysical growth rate remains even when the mass ratio

is taken to be unity (as in a positronic plasma). In this limit, the approximation

used in (B.9) breaks down and electron Larmor radius effects play as much of a role

as the “ions”. So while the instability still exists with full Larmor radius effects,

the important point here is that the separation of scales between the characteristic

velocities of ions and electrons is not responsible for the instability, although it does

have a scaling effect on the growth rate.

B.4.5 Scaling with perpendicular wave number

It is found that the numerical instability is only converged for a range of

wavenumbers k⊥. In figure B.8 is the relationship of the growth rate with k⊥. A

peak growth rate is clearly visible around k⊥ρi ≈ 0.08. The threshold for stability

does not change with k‖, which is to be expected from the linear scaling. The finite-

particle instability has an even more complicated dependence on k⊥, which is not

143



detailed here.

B.5 Unphysical mode coupling

A key property of the converged numerical instability is that it only occurs

with more than one parallel Fourier mode present. In this section, we examine the

coupling between parallel modes that occurs in the algorithm even when the equation

we are trying to solve is linear. Any such mode coupling is thus unphysical.

To start, consider again the ΩH system with the same assumptions as before

and write the equation for the weight evolution as:

ẇα = − Zαe
NgT

vα
∑
k′‖

eik
′
‖zαS∗k′‖

ik′‖φk′‖ , (B.34)

where we used the approximation of equation (B.29). In this section, we will allow

multiple k‖ modes, but still only one k⊥ mode. As such, k⊥ is just a parameter that

determines the strength of the potential, which from equation (B.26) and equation

(B.27) is:

φk‖ =
2TeSk‖
e2k2
⊥ρ

2
iNc

∑
α

e−ik‖zαZαwα. (B.35)

Now, take the time derivative of equation (B.35), hitting both the position zα and

the weight wα :

φ̇k‖ =
2SkT

ek2
⊥ρ

2
iNc

∑
α

e−ik‖zαZα
(
ẇα − ik‖vαwα

)
. (B.36)
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We have ẇα from equation (B.34), but to proceed, we need a way of expressing wα

in terms of φk‖ . To this end, make the ansatz (borne by observation) that all weights

oscillate and grow at the same frequency and growth rate as the potential. Then

φ ∝ wα ∝ e−iωt. (B.37)

Now using wα = iẇα/ω, we can write equation (B.36) as:

φ̇k‖ =
2SkT

ek2
⊥ρ

2
iNc

∑
α

e−ik‖zαZαẇα

(
1 +

k‖vα
ω

)
(B.38)

−iωφk‖ = − 2Sk
k2
⊥ρ

2
iNp

∑
k′‖

∑
α

S∗k′‖
ik′‖e

i(k′‖−k‖)zαvα

(
1 +

k‖vα
ω

)
φk′‖ , (B.39)

where we substituted equation (B.34) and noted that Z2
α = 1 for both singly-charged

ions and electrons. Equation equation (B.38) has the form

(
ω2I− C

)
φ = 0 (B.40)

where φ is a column vector of all parallel modes φk‖ , and C is a matrix, indexed by

the parallel modes k‖ and k′‖:

Ck‖k′‖ =
2Sk‖S

∗
k′‖
k′‖

k2
⊥ρ

2
iNp

∑
α

ei(k
′
‖−k‖)zαvα

(
ω + k‖vα

)
. (B.41)

Equations equation (B.40) and equation (B.41) constitute a numerical dispersion

relation of the δf -PIC algorithm, in which mode-coupling, while unphysical, is a
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defining feature. We will find, however, that this mode-coupling does not explain the

converged numerical instability. Therefore, there are features missing from equation

(B.41), possibly due to the continuous shift in the discrete Fourier transform.

Consider the case of only one parallel mode. Then, equation (B.40) is:

ω2 =
2
∣∣∣Sk‖∣∣∣2 k‖
k2
⊥ρ

2
iNp

∑
α

vα
(
ω + k‖vα

)

≈
2
∣∣∣Sk‖∣∣∣2 k2

‖

k2
⊥ρ

2
i

∑
α v

2
α

Np

≈ Ω2, (B.42)

which, in the limit of infinite particles (in which
∑

α vα/Np → 0) is just the ΩH

frequency, with finite-particle and finite-grid effects!

Now, in the case of two parallel modes: ±k‖, equation (B.40) becomes a 2× 2

system, whose solution is given by det (ω2I∓ C) = 0. The elements of C are:

C11 =
2
∣∣∣Sk‖∣∣∣2 k‖
k2
⊥ρ

2
iNp

∑
α

vα
(
ω + k‖vα

)
≈ Ω2

C22 = −
2
∣∣∣Sk‖∣∣∣2 k‖
k2
⊥ρ

2
iNp

∑
α

vα
(
ω − k‖vα

)
≈ Ω2 = C11

C12 = −
2
∣∣∣Sk‖∣∣∣2 k‖
k2
⊥ρ

2
iNp

∑
α

e−2ik‖zαvα
(
ω + k‖vα

)

C21 =
2
∣∣∣Sk‖∣∣∣2 k‖
k2
⊥ρ

2
iNp

∑
α

e2ik‖zαvα
(
ω − k‖vα

)
, (B.43)

where the approximations are valid in the limit of infinite particle number. So the
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solution of the matrix equation is given by:

0 =
(
ω2 − C11

)2
+ C12C21 (B.44)

= ω4 + C2
11 − 2ω2C11 + C12C21

= ω4 + Ω4 − 2ω2Ω2 + bωΩ3 + cΩ4 − 2ω2Ω2d,

and we have defined the following dimensionless quantities:

b ≡ 2i
Ω

k‖

Im
[(∑

α e
2ik‖zαv2

α

) (∑
α e
−2ik‖zαvα

)]
(
∑

α v
2
α)2 (B.45)

c ≡
∣∣∑

α e
2ik‖zαv2

α

∣∣2
(
∑

α v
2
α)2 (B.46)

d ≡ 1

4

Ω2

k2
‖

∣∣∑
α e

2ik‖zαvα
∣∣2

(
∑

α v
2
α)2 . (B.47)

The behavior of these quantities are such that 0 < c < 1, d > 0. In the course

of simulation, b oscillates and is not positive-definite, so we will assume it time-

averages to zero. Furthermore, in the limit of infinite particles, d → 0 because of

the single power in vα (which is another reason to neglect b). Therefore, equation

(B.44) can be reduced to:

ω4 − 2ω2Ω2 + Ω4 (1 + c) , (B.48)
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in which Imω > 0 for any c > 0:

γ ≡ Imω =
Ω

2

√√
1 + c2 − 1. (B.49)

In the limit of c� 1, we have γ ≈ cΩ/2. However the quantity c does indeed vanish

in the limit of increasing particle number, albeit slowly. This might be responsible

for the finite-particle instability.

B.6 Mitigation schemes

That such a catastrophic instability is fundamental to the δf -PIC algorithm

is surprising since there are many examples of it reproducing good physics [58, 99].

To get good results, other groups must have either avoided this particular range

in parameter space, or employed one of several mitigation methods that have been

found to stabilize the resolved instability. From most- to least-physically satisfying,

this section presents possible methods of mitigating the numerical instability.

B.6.1 Small, finite-β

Ignoring compressive (δB‖) fluctuations, the more general form of the gyroki-

netic equation reads:

∂gs
∂t

+
(
v‖b + vds +

c

B
b× 〈χ〉R

)
· ∇gs − 〈CGK [gs]〉R (B.50)

=− Zse

Ts
F0sb · ∇ 〈χ〉R −

(
vds +

c

B
b× 〈χ〉R

)
· ∇F0s.
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where χ = φ−A‖v‖/c, and A is the perturbed vector potential such that δB = ∇×A.

Here, the definition of gs is altered to be gs = hs − ZseF0s 〈χ〉R /Ts. The parallel

component of Ampere’s law is:

k2
⊥A‖ =

∑
s Zse

∫
J0gsv‖ d3v

k2
⊥ −

∑
s Z

2
s e

2e−k
2
⊥ρ

2
s/2I0 (k2

⊥ρ
2
s/2) /2

. (B.51)

With these generalized equations, one can solve for the kinetic Alfvén wave, which

becomes the ΩH mode in the limit β � me/mi. As long as one avoids this regime

by running at a small, but finite β, the Alfvén wave is stable, unlike the ΩH mode.

In physics, one rarely encounters plasmas of interest with β < me/mi, so this

is a somewhat physically-satisfying solution. Some authors have discovered modi-

fications to the algorithm, such as a split-weight scheme [93] or by using canonical

momentum coordinates [58], that may make the electromagnetic algorithm more

efficient or accurate.

B.6.2 Piecewise-constant fields

Another way to stabilize the converged instability is to alter the way the

gradient of the potential is calculated at the location of the particle. In (B.18), we

calculated the gradient on the grid, then interpolated that to the particles. Instead,

one can use the local gradient at the particle location given φ on the nearby grid

points. Then, all particles within a grid cell would experience the same electric field.
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For example, if instead of (B.18), we had:

∂φ

∂zα
=

1

∆z

(
φzi′+1

− φzi′
)

(B.52)

i′ ≡ mod
[
floor

( zα
∆z

)
, Nz

]
, (B.53)

then the algorithm appears to be only unstable to the finite-particle instability. The

reason this occurs is unclear.

This method is not without its costs, however. Besides a general loss of ac-

curacy by taking the electric field as piece-wise constant, one introduces a self-force

from a particle experiencing a field from its own charge. This occurs because the

interpolation from the particle to the grid is no longer symmetric with the corre-

sponding interpolation from the grid to the particle [86]. This can be seen by noting

that the elements Aαα in (B.29) vanish. By altering the algorithm with (B.52), this

feature is lost. Though no detailed investigation on the consequences of this scheme

has been performed here, this would surely introduce undesirable effects.

B.6.3 Collision operator / coarse-graining

Until now, we have considered only the collisionless problem. Implement-

ing a physically-rigorous collision operator into δf -PIC is a challenge, and one to

which the community has not yet reached consensus on an acceptable solution. The

implementation of collisions used in ROMA is based on the pitch-angle operator of

Broemstrup [92], which itself is an extension of the Chen-Parker coarse-graining
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method [100].

Based on our simulations, an effective pitch-angle collision frequency of about

ν ∼ 30vti/a is required the stabilize the instability. For this case, the growth rate

is comparable, so our interpretation here is that this strong of a collision frequency

simply introduces strong enough damping to counteract the instability.

B.6.4 Mode filtering

Perhaps the least satisfying way to stabilize the algorithm is to simply ignore

the ones that are unphysically unstable. Doing so involves employing a mask in

Fourier space such that after φk is calculated, one negates a set of modes that suffer

from numerical instability. This works because, as evident from figure B.8, only a

range of k⊥ are unstable. Although it has not been analyzed here, it is possible

that in toroidal geometry with magnetic shear, a smaller range of modes might be

unstable and could make this technique more palpable. Furthermore, if there is a

way to a priori predict when such modes will be unstable, as we have attempted to

find, filtering could be a satisfying solution if it were a function of grid resolution.

B.7 Conclusion

In this work, we presented the analytic form of the δf -PIC algorithm. In

doing so, a fundamental numerical instability is exposed: one that is due to under-

resolution in particle number. While having too few particles certainly leads to

inaccuracy [98], there is no clear reason why a strong numerical instability should
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result. Furthermore, there is an even more troubling instability that is converged on

particle number. There is therefore no way to use the algorithm to distinguish the

instability as unphysical, and it presents itself clearly in the simplest multi-species

gyrokinetic situation: the ΩH mode in a periodic slab.

Responsible computational physics requires a fundamental understanding of

the discrete equations of a proposed algorithm and a clear expression of its limita-

tions. There is much work to be done in this regard with the δf -PIC algorithm. A

statistical analysis of the set of ODEs (B.28) is warranted, though it is not clear

how such an analysis would proceed. Once a fundamental cause for the unphysical

instability is found, work can proceed in mitigating the undesired behavior at a

fundamental level.
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Appendix C: Generalized Gaussian quadrature

A module called genquad has been developed for GS2 and implemented in the

alphas branch1 that generalizes the Gaussian quadrature scheme for isotropic F0 in

the domain 0 < v <∞ or 0 < v < vmax. It is a generalization of the technique that

Landreman and Ernst [101] applied to the Maxwellian distribution.

C.1 Motivation

Throughout the simulation, we wish to perform integrals of the form:

I =

∫ ∞
0

ω(v)g(v)dv, (C.1)

where ω(v) is a suitable weight2 function associated with the quadrature scheme.

In general, it is identical to the orthogonality-weight-function associated with some

set of orthogonal polynomials. For example, the Legendre polynomials (which are

currently used in GS2 in the domain 0 < v < vcut) obey
∫ 1

−1
Pm(x)Pn(x) dx ∝ δm,n.

1as of revision 3602
2Not to be confused with the integration node weights wi.

153



So for this case ω(v) = 1 and

∫ vcut

0

g(v)dv ≈
N∑
i=1

wig (vi) (C.2)

Here, vi are the roots of the Nth Legendre polynomial shifted to the domain (0, vcut),

and wi are the associated integration weights.

The above choice of weight function (and thus quadrature scheme) is somewhat

arbitrary, except for the following important observation. In equation (C.2), we are

making the statement that g is well-approximated by a polynomial for 0 < v < vcut.

In fact, if g is a polynomial of degree 2N − 1 or less, then Gaussian quadrature

provides the exact value of the integral. Otherwise, it exhibits spectral accuracy,

which means that the error decreases exponentially with N .

When g is approximately Maxwellian and vcut ≈ 2vts, this is a reasonable

approximation. However, for fast particles, there is a long tail that is necessary

to resolve, which is very difficult to do so directly with polynomials. Figure C.1

compares the fit of a 10th-order polynomials to the Maxwellian and figure C.2

compares a slowing-down type distribution (1.20) to its own 10th-order polynomial

fit. The inaccuracy of the latter is clear. This same inaccuracy could, in principle,

be replicated for a Maxwellian if vcut is increased, along with a linear increase in

resolution.

Therefore, we desire a more judicious choice of weight function ω. We choose to

use F0 itself, whether Maxwellian or any other form. Then, we are simply making

the assertion that g/F0 is approximately polynomial, which is hopefully a more
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Figure C.1: Showing the fit of a Maxwellian between 0 < x < 2.5 to its 10th-order polynomial fit.

Figure C.2: Fitting a slowing-down-type distribution to its 10th-order polynomial fit.

correct statement. With this module implemented, GS2 should in principle be able

to calculate integrals with an arbitrary F0(v) while retaining spectral accuracy.

C.2 Algorithm

The algorithm we use to calculate these weights and associated abscissae (i.e.,

integration nodes) is a Stieltjes procedure [102], which generates a set of polynomials

that are orthogonal with respect to any positive-definite weight function. The zeroes

and weights for integration can then be found via an eigenvalue decomposition of the
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Jacobi matrix [102]. More naive methods, such as Gram-Schmidt orthogonalization,

or Newton-Raphson root-finding, fail to produce a well-conditioned algorithm.

In this section, we will describe the procedure for an integration domain 0 <

v < ∞, but is trivially generalized to finite or doubly-infinite domains. Let our

target polynomials πn be orthogonal in the sense that

∞∫
0

ω(v)πn(v)πm(v)dv ∝ δnm, (C.3)

where δmn is the Kronecker delta. Also, let these polynomials be defined by a set of

recursion coefficients an and bn such that:

πn+1(v) = (v − an) πn(v)− bnπn−1(v), (C.4)

and let p0 = 1. Our task is to find the coefficients for which C.3 holds for arbitrary

ω(v). We do this inductively: suppose we know the coefficients a0, . . . , an−1 and

b0, . . . , bn−1 (and hence can calculate the values of the polynomials up to πn), then

it is possible to find the next coefficients an and bn. To see how, first multiply

equation (C.4) by πn and integrate, obeying the orthogonality relation equation

(C.3). We find:

an =

∞∫
0

ω(v)vπ2
n(v)dv

∞∫
0

ω(v)π2
n(v)dv

. (C.5)
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Similarly multiplying the same equation by πn−1:

bn =

∞∫
0

ω(v)π2
n(v)dv

∞∫
0

ω(v)π2
n−1(v)dv

, (C.6)

where we used
∫
ω(v)πnπndv =

∫
vπn−1πndv, which can also be obtained from

equation (C.4) by shifting n by one. At this point, the success of the algorithm

rests on accurately computing the integrals in equation (C.5) and equation (C.6).

This is done with the QUADPACK library [103], a robust and widely used adaptive

numerical integration toolset.

Once these coefficients are obtained up through N − 1, construct a diagonal

symmetric matrix whose diagonal elements are an, and the off-diagonal elements

are
√
bn. This is the Jacobi matrix, and its eigenvalues define the zeros of the

polynomials πn (which are also the integration abscissae), and the square of first

element of each eigenvector are the corresponding integration weights [104]. This

completes the algorithm.

C.3 Using the routine

To use the module in Fortran, compile and include the genquad module, and

call the routine accordingly:

call get_quadrature_rule(func,Npts,a,b,abscissae,weights,inf_flag1,inf_flag_2)

The arguments are defined as follows:

• func is a pointer to a function that defines ω from C.1, defined in the code as
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external, and takes only one argument. Function must be declared as ”external”

in the calling routine.

• Npts is the desired number of integration points

• a: lower bound of integration

• b: upper bound of integration

• abscissae (output): the points used to evaluate an integral (the points xi below)

• weights (output): the integration weights so that
b∫
a
f(x)ω(x)dx ≈

∑
i
wif(xi) is

spectrally accurate

• inf flag1 (optional input): If true, lower bound is −∞ instead of a. Default is

false.

• inf flag2 (optional input): If true, upper bound is ∞ instead of b. Default is

false.

C.4 Validation

To verify the accuracy of the integrals performed by this method, several test

cases were set up. Four integration weights, each of which were used to estimate

four integrands, were tested over a range of resolutions. The weight functions are:

• Gaussian: ω1(v) = e−v
2
, for −∞ < v <∞

• Exponential: ω2(v) = e−v, for 0 < v <∞

• “Slowing-down”, shifted domain: ω3 = 1
0.1+10v3 , for −1 < v < 4
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• Lorentzian: ω4 = 1
1+v2 , for 0 < v < 4

These were combined to integrate the functions:

• Polynomial: g1(v) = 5v5 + v4 − 3v3 + 7v2 − 10v + 9

• Trigonometric: g2(v) = cos (4v)

• Hyperbolic: g3(v) = tanh (2v + 1)

• Exponential: g4(v) = 10 exp (−v4 + 2v2)

Giving a total of 16 integrals that were estimated. For example, one such integral is

I4,3 =

∫ 4

0

ω4(v)g3(v)dv =

∫ 4

0

cos (4v) dv

1 + v2
(C.7)

Estimates of the above integrals are compared against high-resolution results from

Mathematica to give an error. The results are shown in Figure C.3. The polynomial

converges to machine precision quickly, as expected, since Gaussian integration is

exact for polynomials of order 2N − 1. The other, more complicated functions,

exhibit error which decays exponentially, indicative of spectral accuracy.

The reader might be concerned that the numerical estimates for integrals such

as I13 are slow to converge. This is to be expected for the same reason as before:

functions like the hyperbolic tangent are not easily approximated by polynomials

from 0 to∞. To ease this concern, table C.1 compares the abscissae and weights for

the ω1 integrals to Gauss-Hermite quadrature, to which they ought to be identical,

and are to within three significant figures of double precision. We conclude that
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Figure C.3: Plotting the relative error | (Iestimate − Iexact) /Iexact| for all sixteen combinations of
weights ωi and test functions gj at increasing resolution.

Gaussian quadrature is at a basic level ill-equipped to calculate these particular

integrals, and that our scheme successfully reproduces established quadrature rules.
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Table C.1: The Gauss-Hermite quadrature rule as predicted by this algorithm, compared to the
actual Gauss-Hermite algorithm, for N = 20. The maximum relative error in the abscissae is
1.89× 10−14, and that of the weights is 2.61× 10−13.

i (vi)est (vi)actual (wi)est (wi)actual

1 -5.3874808900112328 -5.3874808900111999 2.2293936455341707E-013 2.2293936455340001E-013
2 -4.6036824495507460 -4.6036824495506998 4.3993409922731292E-010 4.3993409922730000E-010
3 -3.9447640401156243 -3.9447640401155999 1.0860693707692838E-007 1.0860693707690000E-007
4 -3.3478545673832154 -3.3478545673831999 7.8025564785320700E-006 7.8025564785320006E-006
5 -2.7888060584281291 -2.7888060584280998 2.2833863601635451E-004 2.2833863601630001E-004
6 -2.2549740020892766 -2.2549740020893001 3.2437733422378706E-003 3.2437733422379998E-003
7 -1.7385377121165868 -1.7385377121165999 2.4810520887463609E-002 2.4810520887460000E-002
8 -1.2340762153953226 -1.2340762153953000 0.10901720602002375 0.11090172060200000
9 -0.73747372854539395 -0.73747372854540005 0.28667550536283415 0.28667550536280001
10 -0.24534070830090093 -0.24534070830089999 0.46224366960061003 0.46224366960059998
11 0.24534070830090127 0.24534070830089999 0.46224366960061003 0.46224366960059998
12 0.73747372854539406 0.73747372854540005 0.28667550536283398 0.28667550536280001
13 1.2340762153953233 1.2340762153953000 0.10901720602002343 0.11090172060200000
14 1.7385377121165868 1.7385377121165999 2.4810520887463612E-002 2.4810520887460000E-002
15 2.2549740020892752 2.2549740020893001 3.2437733422378571E-003 3.2437733422379998E-003
16 2.7888060584281309 2.7888060584280998 2.2833863601635237E-004 2.2833863601630001E-004
17 3.3478545673832163 3.3478545673831999 7.8025564785320650E-006 7.8025564785320006E-006
18 3.9447640401156252 3.9447640401155999 1.0860693707692728E-007 1.0860693707690000E-007
19 4.6036824495507442 4.6036824495506998 4.3993409922731096E-010 4.3993409922730000E-010
20 5.3874808900112345 5.3874808900111999 2.2293936455341619E-013 2.2293936455340001E-013
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