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method for combinatorics. This shows that one can avoid a large of set of “bad-events”
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original probabilistic formulation of this principle did not give efficient algorithms.

A breakthrough result of Moser & Tardos led to an framework based on resampling

variables which turns nearly all applications of the LLL into efficient algorithms. We

extend and generalize the algorithm of Moser & Tardos in a variety of ways.

We show tighter bounds on the complexity of the Moser-Tardos algorithm, par-

ticularly its parallel form. We also give a new, faster parallel algorithm for the LLL.

We show that in some cases, the Moser-Tardos algorithm can converge even though

the LLL itself does not apply; we give a new criterion (comparable to the LLL)

for determining when this occurs. This leads to improved bounds for k-SAT and

hypergraph coloring among other applications.
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imating column-sparse covering integer programs, a generalization of set-cover. We
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by

David G. Harris

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2015

Advisory Committee:

Professor Aravind Srinivasan, Chair

Professor William Gasarch

Professor MohammadTaghi HajiAghayi

Professor Joel Spencer

Professor Lawrence Washington



(c) Copyright by
David G. Harris

2015



Dedication

Thanks to my advisor Aravind Srinivasan,

for teaching me so much

and for tirelessly supporting my development as a mathematician

This thesis is dedicated

to my wife Joana and children Tomás and Samuel

(sorry for my vacant stares for the past three years;

this thesis is the reason why)

ii



Acknowledgments

I would first like to thank so many people at University of Maryland for creat-

ing such a positive learning environment. The staff in the Mathematics department

and Applied Mathematics and Statistics and Scientific Computing (AMSC) programs

have, since I applied to the school, have constantly guided me through all the require-

ments of the program, answered all my administrative questions, checked to make

sure I would be able to take all the courses I needed to, and provided feedback and

tips to save time. I especially want to thank Alverda McCoy, the AMSC program

coordinator, for answering innumerable administrative questions.

I also have taken a number of wonderful courses and seminars. I would like to

thank, in particular, Samir Khuller’s introductory algorithms class and scheduling

algorithms seminar, Bill Gasarch’s course on automata theory and complexity semi-

nar, Jonathan Katz’s class on complexity theory, and David Kueker’s classes on logic,

incompleteness, and set theory.

The collaboration with my advisor Aravind Srinivasan has been phenomenal. It

astonishes me how wide his command of mathematics and computer science is, and

how he can suggest some many fruitful avenues to explore. At the same time he is

utterly devoted to his students’ development and finding ways to make their careers

successful. I cannot thank him enough.

This thesis would not be possible without support from my employer, the U.S.

Federal Government, especially for the first two years in which I was given time to

take coursework.

I collaborated with many other researchers on the LLL in general and on the

papers which make up this thesis in particular. These include Dmitris Achlioptas,

Antares Chen, Vance Faber, Bernhard Haeupler, Hsin-Hao Hsu, Dana Moshkovitz,

iii



Joel Spencer, and Jan Vondrak. Chapter 3 is co-authored with Bernhard Haeupler.

Chapter 6 is co-authored with Antares Chen. Many other sections are co-authored

with Aravind Srinivasan. I thank all of them for the many engaging and supportive

discussions.

I also want to thank my committee members, especially Joel Spencer who had to

travel from New York.

My family has been very supportive of all the time and work this thesis has

required. I also thank my parents for traveling from Chicago to my dissertation

defense.

Finally, I received numerous travel support awards for various conferences and

support from NSF Awards CNS 1010789 and CCF 1422569.

iv



Contents

Chapter 0. Overview 1

0.1. Background 2

0.2. Our contributions 5

Chapter 1. The Lovász Local Lemma 10

1.1. Definition of the LLL 10

1.2. The LLL and scale-free structures 12

1.3. The Lopsided Lovász Local Lemma 14

1.4. The Asymmetric LLL and other LLL criteria 18

1.5. Shearer’s criterion 22

1.6. A variable-based LLL criterion 24

1.7. The iterated LLL 26

1.8. An application of the iterated LLL: near-optimal coloring of shift

hypergraphs 27

Chapter 2. The Moser-Tardos algorithm 30

2.1. Basic algorithm 30

2.2. The MT distribution 41

2.3. A parallel algorithm 43

2.4. Lopsidependency 47

2.5. The role of the Witness Tree Lemma 50

Chapter 3. The witness dag: a tool for improved bounds and parallel algorithms

for the Lovász Local Lemma 52

3.1. The witness dag 54

v



3.2. Concentration for the number of resamplings 63

3.3. Mutual consistency of witness dags 69

3.4. A new parallel algorithm for the LLL 73

3.5. A deterministic variant 82

Chapter 4. Lopsidependency in the Moser-Tardos framework: Beyond the

Lopsided Lovász Local Lemma 87

4.1. The variable-assignment LLLL 91

4.2. Parallel algorithm for MT 100

4.3. Applications 111

4.4. MT can be more powerful than the Shearer criterion 121

Chapter 5. The Moser-Tardos framework with partial resampling 129

5.1. The Partial Resampling Algorithm 136

5.2. Enumeration of witness trees by variables 150

5.3. Transversals with omitted subgraphs 154

5.4. Sums of random variables, and column-sparse packing 158

5.5. Packet routing 168

5.A. The fractional hitting-set for packet routing 182

5.B. The Nostradamus Lemma 183

5.C. A probabilistic LLL variant 185

Chapter 6. Partial resampling to approximate covering integer programs 197

6.1. The RELAXATION algorithm 204

6.2. Extension to the case where x̂i is large 210

6.3. Bounds in terms of amin,∆1 215

6.4. Lower bounds on approximation ratios 219

6.5. Multi-criteria Programs 230

6.A. Some technical lemmas 236

Chapter 7. A constructive algorithm for the LLL on permutations 240

vi



7.1. The Swapping Algorithm 244

7.2. Witness trees and witness subdags 246

7.3. The conditions on a permutation πk∗ over time 251

7.4. The probability that the swaps are all successful 259

7.5. The constructive LLL for permutations 265

7.6. A parallel version of the Swapping Algorithm 270

7.7. Algorithmic Applications 278

7.A. Symmetry properties of the swapping subroutine 288

Chapter 8. Algorithmic and enumerative aspects of the MT distribution 293

8.1. The MT distribution for individual variables 294

8.2. Weighted independent transversals 297

8.3. Strong chromatic number revisited 300

8.4. Partially avoiding bad events 302

8.5. Entropy of the MT-distribution 313

Chapter 9. Using the MT distribution to accelerate the search for bad-events 319

9.1. Fast search for bad events 320

9.2. Depth-first-search Moser-Tardos 324

9.3. Latin transversals revisited 330

9.4. Non-repetitive vertex coloring: from exponential to polynomial 333

Bibliography 348

vii



CHAPTER 0

Overview

This thesis examines the Lovász Local Lemma (LLL), an important and widely-

used technique in probabilistic combinatorics. This technique has been used in con-

structions ranging from graph theory to coding to network scheduling. The original

formulation of the LLL was non-constructive — showing the existence of a favorable

combinatorial configuration, but unable to construct it in efficiently.

Building on a long line of research, a breakthrough algorithm recently developed

by Moser & Tardos [87] has turned nearly all of these non-constructive combinatorial

constructions into efficient algorithms. We refer to this simple and remarkable algo-

rithm as the MT algorithm. It has been extended to the parallel and deterministic

settings as well.

The first main goal of this thesis is to intensively analyze the behavior of the

MT algorithm and its variants. We describe many situations in which it can be made

more efficient. For exampe, we reduce the run-time of the parallel MT algorithm from

O(log3 n) to O(log2 n) in many situations, and we develop more efficient algorithms

for problems such as monochromatic hypergraph coloring. We also consider a number

of situations in which the standard form of the MT algorithm fails to give efficient

algorithmic counterparts for the LLL. We show how to modify the MT algorithm so

that it can match the LLL in these cases as well. Examples of this include the efficient

algorithms for non-repetitive vertex coloring and Latin transversals.

The second main goal of this thesis to consider the MT algorithm as a random

process in its own right, which can be more powerful than the LLL. In some cases, we

show that the MT algorithm leads to combinatorial configurations which do not follow

from the probabilistic LLL; for example, we show that the MT algorithm terminates
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even though the LLL criterion is not satisfied. In other cases, we describe variants

of the MT algorithm which do not even correspond to the LLL framework. In many

cases, the only proof for the existence of certain types of combinatorial configurations

(including k-satisfiability thresholds and traversals omitting s-cliques) is that they

are produced by the MT algorithm or one of its extensions. For example, one key

result is the following: suppose we have a k-SAT instance, in which each variable

appears in at most L ≤ 2k+1(1−1/k)k

k−1
− 2

k
clauses; then the instance is satisfiable and

the MT algorithm finds a solution in polynomial time. By contrast, the previous

bound known for this problem was L ≤ 2k+1

e(k+1)
. This can be a signficant improvement

for modest values of k.

0.1. Background

The Lovász Local Lemma (LLL), first introduced by Erdős and Lovász in [34], is

a principle in probability theory which has become a cornerstone of the probabilistic

method in combinatorics. Roughly speaking, this principle states that if one has a

probability space and a set of “bad-events” in that space, then as long as the events

have low probability and are “mostly independent” (more specifically, each bad-event

only affects a small number of others), then there is a positive probability that none

of the bad-events occur. In a sense, the bad-events act as if they truly independent

from each other. Thus, the probability of avoiding all the bad-events is approximately

the product of the probabilities of avoiding each of them individually. In particular,

the probability of avoiding all the bad-events is positive.

For combinatorial applications, the typical proof-strategy is to design a random

experiment which attempts to construct some combinatorial structure. The bad-

events, in this context, are certain configurations of subsets of the variables which

contradict the desirable structure. If one can show that the experiment succeeds with

positive probability, it holds that the desired configuration exists. The key strength of

the LLL in this context is that the conditions it requires are “local” to each bad-event.
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Unlike most other techniques of the probabilistic method, this principle can be used to

show scale-free structures — results which do not depend upon the number of variables

involved or the overall size of the problem instance. This probabilistic principle only

shows an exponentially small probability of producing the desired structures, so does

not lead to efficient algorithms.

A simple example of this principle comes from independent transversals, a combi-

natorial problem introduced by Bollobás, Erdős, Szemerédi in [18]. In this problem,

we are given a graph G and a partition of the vertices into blocks of size b. We wish

to select one vertex from each block (a transversal) without selecting any adjacent

vertices (an independent set). A simple application of the LLL shows that this is

possible when b ≥ 2e∆, where ∆ is the maximum of the graph; a more sophisticated

application improves this to b ≥ 4∆. Note that this result does not depend on the

number of vertices, the number of blocks, or any other global properties of the graph.

Hundreds of applications of this principle have since appeared and in many cases

the LLL (either applied directly or with some refinements), leads to the best combi-

natorial bounds. Some examples of these include solving k-SAT instances, in which

each variable occurs in a limited number of clauses, constructing Latin transversals,

and packet routing.

In Chapter 1, we define and review the LLL, and some of its classical extensions.

Most of this chapter is background material and not original to this thesis. Section 1.8

appeared as “A note on near-optimal coloring of shift hypergraphs”, by David G.

Harris and Aravind Srinivasan, Random Structures and Algorithms (2015).

The intuition for why the LLL works is that the bad-events are approximately

independent. Unfortunately, as a result of this, the probability of avoiding all the bad-

events decreases exponentially with the number of bad-events. This means that the

straightforward procedure to generate good configurations, namely directly simulating

the random experiment, does not give polynomial-time algorithms; this again is in

contrast to other standard techniques of the probabilistic method.
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In Chapter 2, we examine the breakthrough LLL algorithm of Moser & Tardos

[87], which we refer to as the MT algorithm. This algorithm is based on the following

simple idea: whenever we detect that a bad-event is currently true, we “resample”

the variables it affects, that is, we draw their values anew from the original prob-

ability distribution. This process converges in a sense, in that the resamplings die

off exponentially and one has a configuration which avoids all the bad-events. This

turns nearly all applications of the LLL in combinatorics into efficient randomized

algorithms.

This algorithm has a number of nice properties and extensions, beyond the fact

that it finds configurations which avoid the bad-events. First, it has a simple parallel

algorithm. Instead of resampling bad-events one by one, we can select a maximal

independent set (MIS) of bad-events, and resample all of its events in parallel. This

takes approximately O(log2 n) rounds to complete.

Next, there is a nice characterization of the distribution induced on the variables

when the algorithm terminates. Roughly speaking, we can show an upper bound

on the probability that any event holds on the output distribution, and this upper

bound is typically not much higher than the probability of the event originally. This

principle has a variety of uses. It can be used to show, for example, that one can form

structures whose weight is large, and it can be used to show that that the output of

the algorithm has other structural properties that were not explicitly enforced during

the resampling step.

Although none of the results in Chapter 2 are new, we give a new and simplified

proof for the MT algorithm. This proof highlights certain features of the algorithm

that we will extend and explore in later chapters. In particular, we highlight the

role of the “Witness Tree Lemma” in the Moser-Tardos proof; this deceptively simple

result holds the key to many of the advanced variants and properties of the MT

algorithm which we will discuss later in the thesis.
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The first main goal of this thesis is to intensively analyze the behavior of the

MT algorithm and its variants. We describe many situations in which it can be

made more efficient. We also consider a number of situations in which the standard

form of the MT algorithm fails to give efficient algorithmic counterparts for the LLL.

These include situations in which the underlying probability space does not have

independent variables, and cases in which there are exponentially many bad-events.

We show how to modify the MT algorithm so that it can match the LLL in these

cases as well.

It is somewhat of a historical accident that the probabilistic formulation of the

LLL was discovered before the MT algorithm, and that the latter was considered only

as a “constructive counterpart” of the former. The second main goal of this thesis to

consider the MT algorithm as a random process in its own right. In some cases, we

show that the MT algorithm leads to combinatorial configurations which do not follow

from the probabilistic LLL; for example, we show that the MT algorithm terminates

even though the LLL criterion is not satisfied. In other cases, we describe variants of

the MT algorithm which do not correspond to the LLL framework. In many cases, the

only proof for the existence of certain types of combinatorial configurations (including

k-satisfiability thresholds and traversals omitting s-cliques) is that they are produced

by the MT algorithm or one of its extensions.

0.2. Our contributions

In Chapter 3, which is joint work with Bernhard Haeupler, we introduce the

concept of a witness dag, which is an extension of the witness tree method used in

the original proof by Moser & Tardos. This is a tool that can account for some or

all of the resamplings performed, in contrast to the witness tree which accounts for

a single resampling. We give two major technical results which result from this: we

show that the number of resamplings performed by the MT algorithm is concentrated

around its mean, and we give bounds for the run-time of the parallel MT algorithm
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which do not depend on the (somewhat mysterious) weighting function used in the

asymmetric LLL criterion. We also use witness dags as a computational object to give

a new, faster parallel algorithm for the LLL; in most cases, this reduces the runtime

from O(log3 n) to O(log2 n).

In Chapter 4, we show that the MT algorithm can in some cases be shown to

converge even though the LLL does not apply. We do this by giving a new convergence

criterion, which is similar in flavor to the cluster-expansion LLL criterion of [17],

but is usually stronger. This takes advantage of the fact that the MT algorithm

applies to more specialized probability spaces than does the full LLL; nevertheless,

this restricted setting is enough to cover most applications in combinatorics. We use

this to develop new efficient algorithms and results for many problems such as k-SAT

and hypergraph coloring. One key result is the following: suppose we have a k-SAT

instance, in which each variable appears in at most L ≤ 2k+1(1−1/k)k

k−1
− 2

k
clauses; then

the instance is satisfiable and the MT algorithm finds a solution in polynomial time.

By contrast, the previous bound known for this problem was L ≤ 2k+1

e(k+1)
. This can

be a significant improvement for moderate values of k. For example, for k = 5, this

improves the bound from L = 4 to L = 5; for k = 10, it improves it from 68 to 79;

for k = 20, this improves the bound from 36738 to 39568.

We also show a new parallel version of the MT algorithm, which exploits a phe-

nomenon known as lopsidependency in the LLL setting. It was previously known that

the sequential Moser-Tardos algorithm could make use of this property, but not the

parallel algorithm. We develop a variant of the parallel MT algorithm in this setting,

and show that it matches the performance of the sequential MT algorithm (which in

turn is stronger than the LLL itself).

Chapter 4 appeared as “Lopsidependency in the Moser-Tardos framework: Beyond

the Lopsided Lovász Local Lemma”, by David G. Harris, Symposium on Discrete

Algorithms (SODA) 2015.

6



In Chapter 5, we introduce a variant of the MT algorithm known as the Partial Re-

sampling Algorithm. The key difference is that in the MT algorithm all the variables

affecting a bad-event are resampled, while here we only resample a small, random sub-

set of the variables (where the probability distribution used to select which variables

to resample is carefully chosen). This leads to improved bounds and algorithms for a

variety of problems, particularly those in which the bad-events are defined by sums

of independent random variables. One key result concerns the problem of minimizing

makespan for universal packet-routing. A seminal paper of [73] showed that a sched-

ule of makespan O(congestion + dilation) was possible, although the hidden constant

term was very large (note that both congestion and dilation are lower bounds are

the makespan). By the use of partial resampling, as well as other problem-specific

techniques, we are able to reduce this to a bound of 5.70(congestion + dilation).

Other applications include give applications to column-sparse packing problems and

transversals with omitted s-cliques. Many of these results were not known, even non-

constructively, prior to this work. This chapter combines two material from papers:

“Constraint satisfaction, packet routing, and the Lovász Local Lemma”, by David G.

Harris and Aravind Srinivasan, Symposium on Theory of Computing (STOC) 2013;

and “The Moser-Tardos framework with partial resampling”, by David G. Harris and

Aravind Srinivasan, Foundations of Computer Science (FOCS) 2013.

In Chapter 6, we discuss a variant of the Partial Resampling Algorithm applied

to column-sparse covering integer programs, a generalization of set cover. We also

make use here of the improved treatment of lopsidependency found in Chapter 4.

This leads to improved approximation rates compared to previous algorithms. Our

algorithm also generalizes to problems with an upper bound on the multiplicity of

each variable or with multiple objective functions. We show a variety of hardness

results and integrality gaps, which demonstrate that for a large range of parameters

our algorithm has near-optimal approximation rate. In many cases our algorithm has
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approximation ratios which asymptotically optimal (including having the optimal

constant term), the first algorithm to achieve this.

Chapter 6 will appear as “Partial resampling to approximate covering integer

programs,” by Antares Chen, David G. Harris, and Aravind Srinivasan, in the Sym-

posium on Discrete Algorithms (SODA) 2016.

In Chapter 7, we discuss the LLL in the context of random permutations. The

LLL has been used here to construct Latin transversals, hypergraph packings, and

other applications. The Moser-Tardos algorithm does not apply to this setting, and

so this is one of the few areas that had been lacking efficient algorithms. We describe

a variant of the Moser-Tardos algorithm, in which we “resample” a variable (an

entry in the permutation) by swapping it with a randomly chosen element in the

permutation. Although this algorithm is superficially similar to the Moser-Tardos

algorithm, it proof is far more complex. We show that this Swapping Algorithm

succeeds whenever the LLL criterion is satisfied for the space random permutations.

The algorithm we develop for permutations has nearly all the same nice properties

as the original Moser-Tardos algorithm: its output distribution has a nice character-

ization, we develop a parallel algorithm, and we show that this algorithm can be

combined with the partial resampling framework of Chapter 5. These lead to results

which are not obtainable by either the original LLLL or more recent generalized LLL

frameworks, including an asymptotically-optimal result on matrix transversals with

many color occurrences and a parallel algorithm for strong coloring.

Chapter 7 appeared as “A constructive algorithm for the Lovász Local Lemma on

permutations,” by David G. Harris and Aravind Srinivasan, Symposium on Discrete

Algorithms (SODA) 2014.

In Chapter 8, we examine the “MT distribution”, which is the distribution on

the variables when the Moser-Tardos algorithm terminates. We show a variety of

new bounds and applications of this distribution. These include lower bounds on the
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probabilities of certain events (which is not normally possible for the MT distribu-

tion); we use this to construct high-weight independent transversals. Also, we study

when it is possible to partially avoid the bad-events (as opposed to the LLL, which

seeks to completely avoid the bad-events). We are able to give an analog of the asym-

metric LLL criterion and a parallel MT algorithm in this case. Finally, we discuss a

quantitative measure of the randomness present in the MT distribution, namely its

Rényi entropy; this leads to new bounds on MAX k-SAT and other problems. Parts

of Chapter 8 appeared in “The Moser-Tardos framework with partial resampling”, by

David G. Harris and Aravind Srinivasan, Foundations of Computer Science (FOCS)

2013. Other parts will appear as “Algorithmic and enumerative aspects of the Moser-

Tardos Distribution,” by David G. Harris and Aravind Srinivasan, Symposium on

Discrete Algorithms (SODA) 2016.

In Chapter 9, we study the distribution of the intermediate steps of the Moser-

Tardos algorithm (before it terminates). We show that this distribution too has a

random structure, and that this can be used to accelerate a number of algorithmic ap-

plications. This leads to sub-linear algorithms for problems such as Latin transversal.

It also gives a strategy for problems in which the number of bad-events is exponential,

and so the straightforward implementation of the MT algorithm (checking the bad-

events one by one and resampling them if they are true), does not give polynomial

time algorithms. One important problem that falls into this class is non-repetitive

vertex coloring. Previous algorithms, such as [48], required an exponentially inflated

number of colors for this problem, and had a small but positive probability of giving an

invalid coloring. We give an algorithm which requires essentially no additional slack

and is “Las Vegas”: it succeeds with certainty after an expected polynomial runtime.

Chapter 9 will appear as “Algorithmic and enumerative aspects of the Moser-Tardos

Distribution,” by David G. Harris and Aravind Srinivasan, Symposium on Discrete

Algorithms (SODA) 2016.
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CHAPTER 1

The Lovász Local Lemma

1.1. Definition of the LLL

The Lovász Local Lemma (LLL), first introduced in [34], is a powerful tool in

probability theory. We begin with an informal and simplified statement of this prin-

ciple. Suppose we have a probability space Ω and a set B consisting of m events

in the space (“bad-events”) that we are trying to avoid. We denote this set of

bad-events by B = {B1, . . . , Bm}. Now suppose that each B ∈ B has probability

at most p and that each B ∈ B is “dependent” with at most d other bad-events

B′ ∈ B; and if ep(d + 1) ≤ 1 (where e = 2.71... is the base of the natural loga-

rithm), then there is a positive probability that none of the events in B occur, that

is, P (
⋂
B∈B B) > (1− 1

d+1
)m > 0.

This is not a proper theorem at this point, because we have not defined what it

means for two bad-events to be “dependent” with each other. Defining this notion

requires a fair amount of care. One cannot simply examine the probability space Ω to

determine if B and B′ are dependent with each other. Rather, one must pre-specify

a set of independencies, and then verify that Ω obeys them. To formalize this, we

define a dependency graph for B.1

Definition 1.1. Suppose G is an undirected simple graph whose vertex set is B.

We say that G is a dependency graph for B,Ω, if for every B ∈ B and for every

S ⊆ B − NG(B) (where NG(B) denotes the inclusive neighborhood of B, that is, set

1NB: in this definition, we refer to the neighborhood of a vertex in the graph. We will always define
N(B) to be the inclusive neighborhood. This is not the standard convention, so the reader should
be aware of this when comparing our results to other presentations of the LLL.
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of vertices which are equal to B or are neighbors of B), we have

PΩ(B |
⋂
B′∈S

B′) = PΩ(B)

To state this in words: conditioning on avoiding any set of non-neighbors of B,

does not change the probability of B.

We note that we have defined a dependency graph, not the dependency graph.

There is no unique dependency graph for a set of events B. In general, if G is a

dependency graph for B, and G′ is obtained from G by adding edges, then G′ is a

dependency graph for B as well. However, there is not necessarily any unique minimal

dependency graph either.

The variable-assignment LLL setting. Although the definition of a depen-

dency graph may appear to be quite complicated in general, for most applications

of the LLL in combinatorics we use a simple probability space which has a simple

and natural dependency graph. Suppose that the probability space Ω is defined by n

variables X1, . . . , Xn. Each variable Xi independently takes values from some finite

set (which may be identified with the integers), such that Xi = j with probability

pij. We refer to this probability space as the variable-assignment setting for the LLL.

Furthermore, suppose now that each B ∈ B is a Boolean function of a subset SB of

the variables. In this case, we define the graph G by placing an edge from B to B′ iff

SB ∩SB′ 6= ∅; that is, there is a common variable which affects both the events B,B′.

It is not hard to see that this defines a dependency graph for B, which we define as

the canonical dependency graph.

Now that we have defined a dependency graph, we can formalize the LLL. We

begin with the simplest form, referred to as the “symmetric LLL”.2

2This is not the original form of the LLL, which is now mostly of historical interest, but a later
and stronger formulation of it due to Spencer in [104]. Also, in the usual formulation of the LLL,
d is defined to be the size of the exclusive neighborhood of B. Thus the more usual form of this
statement is ep(d+ 1) ≤ 1.
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Theorem 1.2 ([104]). Suppose that Ω is a probability space and B is a set of

events in that space. Suppose that G is a dependency graph for B. And suppose that

each B ∈ B satisfies PΩ(B) ≤ p and |NG(B)| ≤ d. Furthermore suppose that epd ≤ 1.

Then we have

P (
⋂
B∈B

B) > (1− 1/d)m > 0

For the remainder of this thesis, whenever we have fixed Ω,B and some dependency

graph G for B, we will always write B ∼ B′ if B,B′ are neighbors in G or B = B′.

We will not always refer to G explicitly, as we often simply assume that G is the

canonical dependency graph.

1.1.1. Intuition behind the LLL. To gain some intuition for what the sym-

metric LLL criterion means, suppose that the dependency graph G consists of isolated

d-cliques. Now, consider some clique K, and consider the probability that one the

events in K occurs. Each such event has probability ≤ p and there are d such events,

so by the union bound, there is a probability of ≤ pd ≤ 1/e that an event in K occurs.

Next, consider the probability that any bad-event occurs. As the cliques are

isolated, the events in K are independent from events in K ′ for K 6= K ′. Thus, the

probability that no bad-events occur is at least
∏

cliques K(1− 1/e) = (1− 1/e)m/d >

(1− 1/d)m > 0.

1.2. The LLL and scale-free structures

To understand the power of the LLL, let us consider the problem of independent

transversals, which we will come back to many times because of its simplicity. Suppose

we are given some graph G with a partition of the vertex set V = V1 t V2 · · · t Vk. A

transversal is simply a set T ⊆ V , which contains exactly one element from each of

the classes V1, . . . , Vk; that is |T ∩Vi| = 1 for i = 1, . . . , k. An independent transversal

is simply a transversal which is also an independent set, that is, there is no edge

〈u, v〉 ∈ G such that both u, v are elements of T .
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There is a large literature on selecting transversals such that the graph induced

on T omits certain subgraphs. (This problem was introduced in a slightly varying

form by [18]; more recently it has been analyzed in [111, 59, 116, 60, 57]). An

independent transversal is, of course, a transversal which omits the 2-clique K2; this

is the most well-studied case.

Now suppose we are given bounds on the sizes of the classes and on the maximum

degree of the graph; that is we know that |Vi| = b for i = 1, . . . , k and the maximum

degree is ∆. When we can ensure that the graph G has an independent transversal?

Let us consider this problem via the LLL. We define the following natural probability

space: for each block Vi, we select exactly one vertex in Vi to go into T . For each

edge f ∈ G, we have a bad-event that both its end-points are in T . (This is a form of

the variable-assignment LLL, in that the variables X1, . . . , Xn correspond to blocks

V1, . . . , Vk and the value of a variable Xi is the vertex in Vi that is selected.)

Now consider some event corresponding to an edge f = 〈u, v〉. The probability

that both u, v go into T is p = 1/b2. This event is a boolean function of the vertex

selected for the blocks corresponding to u and the block corresponding to v; the other

events which are also affected by these blocks correspond to edges which have an

endpoint in these blocks, and there are at most d = 2b∆ − 2 such edges. Thus, the

LLL criterion is satisfied if

eb−2(2b∆− 2) ≤ 1

which in turn is satisfied if b ≥ 2e∆.

Haxell provides an elegant topological proof that a sufficient condition is b ≥ 2∆

[54]; this bound is existentially optimal, in the sense that b ≥ 2∆ − 1 is not always

admissible [60, 116, 111]. So the LLL has shown a bound which is of the right order

of magnitude, though the constant terms are slightly sub-optimal.

Now, what is remarkable about this result is that the criterion b ≥ 2e∆ does

not depend on the total size of the graph G in any way: it has no dependence on

the number of blocks k, nor on the number of vertices |V |. Thus, we have shown a
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scale-free property of the graph. We contrast this with other methods in the toolkit

of probabilistic combinatorics. Suppose, for example, we want to use a first-moment

method to show the existence of an independent transversal. The typical way to do

this would be to show that there is a negligible probability that a bad-event occurs;

for example, the total probability of all bad-events should sum to < 1. In our case,

this would give a bound of roughly |E|/b2 < 1, which depends on the total size of the

graph.

The basic problem here is that, no matter how rare a bad-event is, when the

problem size becomes sufficiently large there is likely to be some bad-event which

becomes true. In the LLL, the probability of a bad-event B is compared not to the

total number of bad-events, but only to the bad-events B′ affected by B. That is,

there is a dependency only on “local” information.

1.3. The Lopsided Lovász Local Lemma

In our definition of a dependency graph, we require that avoiding non-neighbors

of B does not affect the probability of B. In [35], Erdős and Spencer noted that what

is really needed is that non-neighbors of B does not increase the probability of B.

Thus, if B and B′ are positively correlated, in a certain technical sense, then for the

purposes of the LLL this is as good as pure independence.

To give some intuition why positive correlation is as good as independence: we

are trying to avoid the bad situation in which the bad-events B ∈ B completely “tile”

the full probability space Ω. That is, it is possible to avoid B iff Ω 6= ∪B∈BB. Thus,

the worst case is when the events are disjoint from each other, which is a very strong

type of negative correlation. If the events overlap with each other, then this decreases

the size of ∪B∈BB.

This phenomenon of allowing positive correlation among some bad-events is known

as the Lopsided Lovász Local Lemma, or LLLL. To formalize all of this, we define the

lopsidependency graph for B (also known as a negative association graph) as follows:
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Definition 1.3. Suppose G is an undirected simple graph whose vertex set is B.

We say that G is a lopsidependency graph for B (on the probability space Ω, which

is understood), if for every B ∈ B and for every S ⊆ B −NG(B), we have

PΩ(B |
⋂
B′∈S

B
′
) ≤ PΩ(B)

To state this in words: conditioning on avoiding any set of non-neighbors of B,

does not increase the probability of B.

Theorem 1.4 ([35]). Suppose that Ω is a probability space and B is a set of events

in that space. Suppose that G is a lopsidependency graph for B. And suppose that

each B ∈ B satisfies PΩ(B) ≤ p and |NG(B)| ≤ d. Furthermore suppose that epd ≤ 1.

Then we have P (
⋂
B∈B B) > (1− 1/d)m > 0.

It is immediate that all dependency graphs are lopsidependency graphs so that

the LLLL is always stronger than the LLL. The LLL is merely a slightly special case

of the LLLL, and thus it seems a little strange that one should need to give the

two principles different names. However, the variable assignment LLL is especially

important in combinatorics, and there are many algorithmic complications in dealing

with the types of probability spaces covered by the LLLL. Thus, it will be useful for

us to distinguish between cases in which the LLL applies, and those more exotic cases

in which the the LLLL is needed.

In [76], a rather exhaustive list of probability spaces covered by the LLLL is given;

many of these are very obscure, with few applications in combinatorics. There are

two settings which are somewhat useful: the space of random permutations, and the

variable-assignment setting in which the bad-events are atomic.

The case of random permutations was in fact the original motivation for the LLLL,

and it was introduced in [35] to show the existence of Latin transversals for certain

types of arrays. The Latin transversal is another example which will come back to

frequently, so we briefly describe it here. (See Section 7.0.1 for much more information
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about this problem.) We are given an n× n matrix A, in which the entries of A are

colors. Our goal is to select n cells, one from each row and column, such that no two

cells receive the same color.

Proposition 1.5 ([35]). Suppose each color appears at most ∆ ≤ n/(4e) times

in the matrix A. Then A has a Latin transversal.

Proof. One can view the Latin transversal as equivalent to selecting a permu-

tation π ∈ Sn uniformly at random, and then choosing cell (i, π(i)) from each row.

In this case, a bad-event is the event that there are two selected cells with the same

color, i.e. π(x1) = y1 ∧ π(x2) = y2 where A(x1, y1) = A(x2, y2). Each such event has

probability p = 1
n(n−1)

.

As shown in [35], one can form a lopsidependency graph among such bad-events,

such that events are connected iff they overlap in a row or column; for example, the

event π(x1) = y1 ∧ π(x2) = y2 overlaps with π(x1) = y′1 ∧ π(x′2) = y′2. One can verify

that each bad-event has at most 4n(∆ − 1) neighbors in the lopsidepenency graph.

Now apply the LLLL. �

In [77], this setting was formalized and slightly extended, to allow one to select

multiple permutations π1, . . . , πN on [n1], . . . , [nN ] letters, each permutation chosen

independently and uniformly. Bad-events all have the form B ≡ πi1(x1) = y1 ∧

. . . πik(xk) = yk; that is, they are all a conjunction of conditions on the values of

specific elements of the permutations. We refer to such bad-events as atomic events.

Proposition 1.6 ([35], [77]). Suppose B is a set of a atomic events in π and

the probability space Ω is defined by selecting π1, . . . , πN uniformly at random. Then,

define the following graph G on bad-events; we include an event from B1 to B2 iff

either of the following two conditions holds:

(1) B1 demands πi(x) = y and B2 demands πi(x) = y′, for some i ∈ [N ] and

x, y 6= y′.
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(2) B1 demands πi(x) = y and B2 demands πi(x
′) = y, for some i ∈ [N ] and

x 6= x′, y.

Then G is a lopsidependency graph for B,Ω.

(Note: recall that B ≡ πi1i(x1) = y1 ∧ πiki(xk) = yk; we say that B demands

πi(x) = y if xj = x, yj = y, ij = i for some j ∈ [k].)

To explain the intuition behind Proposition 1.6: supposeB1 demands π(1) = 1 and

B2 demands π(2) = 2. So, there would be no edge from B1 to B2 in G. Furthermore,

B1 and B2 are positively correlated; for initially the probability of the event B1 is

1/n. However, if B2 occurs, then π(2) = 2 and there are only n−1 remaining possible

values for π(1). So, conditional on B2 occurring, the probability of B1 has increased.

We will examine the case of random permutations in much more detail in Chap-

ter 7.

Another useful and much more simple application for the LLLL was introduced

by [83] for a construction involving hypergraph coloring.

Proposition 1.7 ([83]). Suppose B is a set of a atomic events and the probability

space Ω is defined by selecting value for each variable xi independently with probability

distribution pi. Then, define the following graph G on bad-events; we include an edge

from B1 to B2 iff, for some i, we have that B1 demands Xi = j and B2 demands

Xi = j′ and j 6= j′. In this case, we say that B1, B2 disagree on variable xi.

Then G is a lopsidependency graph for B,Ω.

(Note that, without the condition that j 6= j′, we would have precisely the canonical

dependency graph for the LLL.)

We briefly discuss here how to apply this to k-SAT. Suppose we have a k-SAT in-

stance in which variable appears in at most L clauses (either positively or negatively).

How large may L become in order to guarantee that the instance is satisfiable?

Proposition 1.8 ([43]). Suppose that each variable appears at most L = 2k+1e(k + 1)

times. Then the k-SAT instance is satisfiable.
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Proof. We will sketch the proof here; a much more detailed discussion of this

problem, including an improved bound, will be given in Chapters 4 and 8.

Assume that each variable appears in exactly L/2 clauses positively and L/2

clauses negatively. (This is in fact the worst-case distribution, as shown in [43]; the

proof of this fact is somewhat technically involved.) Then, we assign each variable to

be True or False with probability 1/2. A bad event is that a clause is falsified; this

has probability p = 2−k.

Now, consider the dependency of a bad-event B. For of the k variables in B, there

are L/2 clauses which disagree with B on the variable. So, B is dependent with at

most kL/2 + 1 clauses (including itself).

Now apply the symmetric LLL criterion

e(2−k)(kL/2 + 1) ≤ 1

�

In fact, as shown in [43], this bound on L is asymptotically tight; for any c > 1

and k sufficiently large, there exist unsatisfiable k-SAT instances in which variables

appears c 2k+1

e(k+1)
times. Thus, this problem is a simple example where the LLLL

provided asymptotically tight bounds. (Note that, using just the ordinary LLL, one

would have only been able to show the bound for L = 2k

e(k+1)
).

1.4. The Asymmetric LLL and other LLL criteria

The LLL, as we have stated it, depends on only two parameters: the probabilities

of the bad-events PΩ(B); and a dependency graph G for B. The symmetric LLL gives

a very simple criterion, which is boiled down to two scalar parameters: the maximum

probability p = maxPΩ(B) and the maximum dependency d = max |NG(B)|. A

natural question is whether one can give other types of conditions on the probabilities

{PΩ(B)} and the dependency graph G.
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In [104], a criterion referred to as the “Asymmetric LLL” was given which allows

us to take into account the fact that different bad-events may have different proba-

bilities and different neighborhood sizes. We will state this criterion in a somewhat

non-standard form, for reasons which will be important later in this thesis.

Theorem 1.9 ([104]). Suppose there is some lopsidependency graph G for Ω and

suppose there is a weighting function µ : B → [0,∞) which satisfies the following

property: for all B ∈ B we have

µ(B) ≥ PΩ(B)
∏
B′∼B

(1 + µ(B′))

Then the event ∩B∈BB has positive probability.

(Recall our convention that B ∼ B′ means that B,B′ are neighbors in G. Also

recall that B ∼ B.)

The symmetric LLL follows from this as an easy corollary: simply set µ(B) = ep

for all B ∈ B. The power of Theorem 1.9 comes from the fact that bad-events which

have a low value of PΩ(B) may have a large number of neighbors, and vice-versa.

In [17], an even stronger form of the LLL, referred to as the cluster-expansion

criterion, was given. This can be stated as:

Theorem 1.10 ([17]). Suppose there is some lopsidependency graph G for Ω and

suppose there is a weighting function µ : B → [0,∞) which satisfies the following

property: for all B ∈ B we have

µ(B) ≥ PΩ(B)
( ∑

I⊆NG(B)
I independent in G

∏
B′∈I

µ(B′)
)

Then the event ∩B∈BB has positive probability.

Observe in the formulation of Theorem 1.10 that NG(B) is the inclusive neigh-

borhood of B. It is clear that there is exactly one independent set I which contains

B itself, namely I = {B}.
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Since we will be dealing frequently with the cluster-expansion criterion, the fol-

lowing notation is convenient. For any bad-event B ∈ B, we define

θG(B) =
∑

I⊆NG(B)
I independent

∏
B′∈E

µ(B′)

Thus, we can state the cluster-expansion criterion more simply as

µ(B) ≥ PΩ(B)θG(B);

we can think of θG(B) as the “inflation factor” compared to the original probability

distribution. (We will sometimes write θ(B), if G is clear from context.)

We note one strange fact about the cluster-expansion criterion: it is not necessarily

monotone in G. Thus, it may be that G is a lopsidependency graph for Ω, and G

does not satisfy the cluster-expansion criterion, but G′ ⊇ G (which is necessarily a

lopsidependency graph) does.

We will give a brief application of the cluster-expansion criterion to independent

transversals. We include this here because it illustrates a few proof-techniques which

will frequently appear in our analysis.

Proposition 1.11 ([17]). Suppose that G has a partition of the vertices into

blocks of size b, and the average degree of each block is d. Then, if b ≥ 4d, there exists

an independent transversal of G.

Proof. We select each vertex with probability 1/b. We have a bad-event for each

edge, that both end-points are selected. We define the weighting function by setting

µ(B) = α for all B; here α > 0 is a parameter to be specified.

Now, let us fix some bad-event B defined by an edge f = 〈u, v〉. We need to

describe the neighborhood structure of B. Any edge f ′ which is affected by f has one

end-point in the block of u or one end-point in the block of v. However, note that if

f ′, f ′′ both have an end-point in the block of u, then the corresponding bad-events

are connected. Hence, in an independent set of bad-events which neighbor f , there
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may be at most one edge f ′ in the block of u and at most one edge f ′′ in the block

of v.

We want to compute
∑

I⊆NG(B)

∏
B′∈I µ(B′), where the sum is taken over inde-

pendent sets. We set aside the special case of I = {B}. In any other independent

set I, we may select one or zero edges f ′ in the block of u, and we may select one

or zero edges f ′′ in the block of v. If we select an edge f ′, we multiply in a factor of

µ(f ′) = α; if we select zero edges f ′, we multiply in a factor of 1. We do a similar

process for f ′′.

This type of summation will occur frequently in analyzing the LLL: we are given

lists L1, . . . , Ll, and we form a set I by selecting one element each list. For each

resulting set I, we multiply together terms of the form f(i, j), where i is the item

selected from list j ∈ [l]. We then sum this product over all possible choices for I.

Whenever we encounter this type of summation, we use the following useful iden-

tity: ∑
i1∈L1,...,il∈Ll

f(i1, 1)× · · · × f(il, l) =
l∏

j=1

∑
i∈Lj

f(i, j)

In our case, we have two lists corresponding to the two blocks. The items in the

list are the ≤ bd−1 edges (apart from f itself), as well as the null item (corresponding

to selecting no edge from that block). The former terms have value f(i, j) = α; the

latter term has value f(i, j) = 1.

Adding in the case of I = {B}, which contributes µ(B) = α, we thus compute

∑
I⊆NG(B)

I independent in G

∏
B′∈I

µ(B′) ≤ α + (1 + (bd− 1)α)× (1 + (bd− 1)α)

and so the cluster-expansion criterion reduces to

(1) α ≥ (1/b2)(α + (1 + (bd− 1)α)2)

We will frequently encounter inequalities that are similar to (1). While (1) is

simple enough to solve directly via the quadratic formula, in other cases we will
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encounter polynomials of higher degree. We will solve (1) by using a maneuver

which, although overkill in this situation, will be useful later on. First, we arrange

this expression:

(2) α− (1/b2)(α + (1 + (bd− 1)α)2) ≥ 0

We want to show that this has a positive root α > 0. Now, observe that a

necessary and sufficient condition for this is that if we maximize the LHS of (2) over

all α > 0, the resulting maximum value is positive. We thus differentiate with respect

to α and set the resulting expression equal to zero, finding the critical point α0:

α0 =
1 + b2 − 2bd

2(bd− 1)2

A necessary and sufficient condition for (2) to be satisfiable if it is satisfied at

α = α0. Plugging α = α0 into (2) yields

(b2 − 1)(3 + b2 − 4bd)

4b2(bd− 1)2
≥ 0

which is solvable iff b ≥ 2d+
√

4d2 − 3; this holds for b ≥ 4d.

�

1.5. Shearer’s criterion

The cluster-expansion form of the LLL has perhaps the best balance between

strength and ease of calculations. However, it is not the strongest form of the LLL.

In [102], Shearer gave the strongest possible criterion that can be stated in terms

of just G and PΩ(B) alone. This criterion is stated in terms of the independent set

polynomial.
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Definition 1.12. Suppose that G is a given graph on vertex set V and ~p ∈ [0, 1]V .

We define the independent set polynomial with respect to any I ⊆ V as

Q(I,G, p) =
∑

I⊆J⊆B
J independent

(−1)|J |−|I|
∏
v∈J

p(v)

Note that Q(I,G, p) = 0 if I is not an independent set.

Theorem 1.13 ([102]). Suppose that G is a simple undirected graph with vertex

set {1, . . . ,m}, and ~p ∈ [0, 1]m. Then:

(1) Suppose that for all sets I ⊆ [m] which are independent with respect to G, we

have Q(I,G, p) > 0. Then, for any probability space Ω and any set of events

B = {B1, . . . , Bm} satisfying P (Bi) = pi and such that G is a lopsidependency

graph for B, there is a positive probability that none of the events in B occur.

(2) Suppose that there is some independent set I ⊆ [m] such that Q(I,G, p) ≤

0. Then, there exists a probability space Ω and any set of events B =

{B1, . . . , Bm} satisfying P (Bi) = pi such that G is a dependency graph for B

and such that, with probability one, at least one of the events in B occurs.

If G, p satisfy the condition Q(I,G, p) > 0 for all independent I, we say that they

satisfy the Shearer criterion; otherwise we say they violate the Shearer criterion.

We list some useful monotonicity properties of the Shearer criterion:

Proposition 1.14 ([102]). Suppose that p(B) ≤ p′(B) for all B ∈ B. (We write

this more compactly as p ≤ p′.) Then if G, p′ satisfies the Shearer criterion, so does

G, p.

Proposition 1.15 ([102]). Suppose that the edges of G′ are a subset of the edges

of G. Then if G, p satisfies the Shearer criterion, so does G′, p.

Although the Shearer criterion is the most powerful LLL criterion, it is extremely

difficult to work with mathematically. The main reason for this is that the independent-

set polynomials are alternating sums; thus, if we want to show that Q(I, B, PΩ) > 0
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for some I, then individual terms PΩ will appear both negatively and positively. Thus,

if one has an upper bound on PΩ(B) (which is all that is needed for the LLL), then

one cannot directly use this to bound Q(I, B, PΩ)

Even showing very simple properties of the Shearer criterion become technically

challenging. Consider Proposition 1.15, for example. Although it is “merely” an

algebraic property of the independent set polynomials, it is difficult to show directly.

The simplest proof is the following indirect argument: for any B,Ω of which G′ is a

lopsidependency graph, so is G. So by Theorem 1.13, Ω avoids all the bad-events B.

Since this is true for arbitrary B,Ω with lopsidependency graph G′, by Theorem 1.13

G′, p satisfies the Shearer criterion. This convoluted proof uses the very powerful

Theorem 1.13 twice, but it is much easier than trying to compute Q(I,G′, p) in terms

of Q(I,G, p).

Similarly, Theorems 1.9, 1.10 can be derived as consequences of Theorem 1.13; it

would not be correct to call them corollaries (even though the derivation is merely

algebraic) because it is technically much more difficult to prove them this way than

to prove them directly.

For these reasons, one rarely uses the Shearer criterion in combinatorics.

1.6. A variable-based LLL criterion

When using the cluster-expansion criterion, one must specify a value µ(B) for

every bad-event B, and one must enumerate the collection of independent sets of

neighbors for each B. When the bad-events are relatively homogeneous (falling into

just one or a few categories), then this can be relatively easy. However, when the

set of bad-events is more diverse, then this can require specifying an excessively large

number of parameters.

In this section, we reduce the number of parameters dramatically by rephrasing

the LLL criterion to give a constraint in terms of each variable. Suppose that we

are in the variable-assignment LLL setting, and that each bad-event is atomic, i.e.
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it is a conjunction of terms of the form Xi = j. (In the variable-assignment LLL

setting, any bad-event can be written as the disjoint union of a finite number of such

atomic events.) We often identify a bad-event B with the set of atomic conditions

it demands; that is, we write B = {(i1, j1), . . . , (ik, jk)} to mean that B is true iff

Xi1 = j1, . . . , Xik = jk.

Instead of specifying a vector of probabilities pij to define the space Ω and a

weighting function µ for the bad-events, we instead suppose we are given an assign-

ment of non-negative real numbers λi,j, for each variable Xi and each possible value

of the variable j. We also define λi =
∑

j λi,j. The vector λ should be thought

of as an “inflated” version of the probability vector p; roughly speaking, λi,j is the

probability that Xi = j conditional on avoiding the bad-events. We will derive a

probability distribution p and a weighting function µ from this vector to satisfy the

cluster-expansion criterion.

Theorem 1.16. Suppose that for each variable i ∈ [n] we satisfy

λi −
∏

B:i∈SB′

∏
i′,j′)∈B

λi′,j′ ≥ 1

Then there is a vector of probabilities p which satisfies the LLL

Proof. Set pi,j =
λi,j
λi

. Define the weighting function µ : B → [0,∞) by µ(B) =∏
(i,j)∈B λi,j.

Clearly this is a valid probability distribution. We now must show that it satisfies

the LLL criterion. Consider some B ∈ B. To compute θ(B), observe that for any

variable i involved in B, an independent set of neighbors of B contains one or zero

bad-events B′ affected by i. Thus, we have:

PΩ(B)θG(B) ≤ PΩ(B)
∏

(i,j)∈B

(1 +
∑

B′:i∈SB′

µ(B′))

=
∏

(i,j)∈B

λi,j
λi

∏
(i,j)∈B

(1 +
∑

B′:i∈SB′

∏
(i′,j′)∈B′

λi′,j′
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≤
∏

(i,j)∈B

λi,j
λi

∏
(i,j)∈B

λi

by hypothesis

≤
∏

(i,j)∈B

λi,j = µ(B)

�

This type of accounting gives a simplified and slightly weakened form of the

cluster-expansion criterion. We illustrate with independent transversals, for which

we used the cluster-expansion LLL directly in Proposition 1.11.

Proposition 1.17 ([17]). Suppose that G has a partition of the vertices into

blocks of size b, and the average degree of each block is d. Then, if b ≥ 4d, there exists

an independent transversal of G.

Proof. We set λi,j = α, where α is a scalar to be determined. Now, for each

variable (block) i, there are b values for the variable and bd events involving that

variable which are atomic events on exactly two variables hence we have

∑
j

λi,j −
∑

B:i∈SB′

∏
(i′,j′)∈B

λi′,j′ = bα− bdα2

=
b

4d
for α =

1

2d

≥ 1 for b ≥ 4d

Observe that this derivation is much simpler, both conceptually and algebraically,

than the proof given in Proposition 1.11 �

1.7. The iterated LLL

One powerful technique is based on multiple applications of the LLL; this is often

referred to as the iterated LLL or the semi-random method. The basic idea is that in-

stead of completely fixing the combinatorial structure, we determine it only partially.
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For example, if we are selecting an independent transversal, instead of immediately

choosing every vertex to either go into the transversal or not go into the transver-

sal, we might only make this decision for a small random selection of the vertices

— most of the remaining vertices remain undetermined. Every time we make this

partial decision, some of the combinatorial structure can be “frozen” and resulting

dependencies disappear. Thus, at each stage of this process, we are decreasing the

dependency parameter d in the LLL.

One powerful example of this technique appears in the seminal construction of [73]

for universal packet routing; we will encounter this construction in much greater depth

in Section 5.5. That example features multiple (unbounded) number of applications

of the LLL. See [85] for several other applications of this technique. In this section,

we will give a much simpler example of this principle. This is characterized by only

two applications of the LLL.

1.8. An application of the iterated LLL: near-optimal coloring of shift

hypergraphs

One of the first applications of the LLL is in fact an affirmative answer to an

infinitary question of Strauss: for a given k, does there exist a finite m such that for

any set S of m integers, there is a k-coloring of the integers such that every integer

translate of S (i.e., sets of the form S + t, for t ∈ Z) meets every color class? We let

m(k) denote the smallest such value of m, if it exists.

By combining the LLL with a compactness argument, it was shown in [34] that

m(k) ≤ (3 + o(1))k ln k. Following this, the work of [4] showed, among other things,

that m(k) ≥ (1 − o(1))k ln k, and also presented an “efficient” version of the upper

bound, by showing that the required coloring can in fact be made periodic with a

short period. Answering one of the main open questions of [4], we prove in this section

that m(k) ≤ (1 + o(1))k ln k (ours is also an efficiently-computable periodic coloring

as in [4]). Our approach is very similar to that of [38].
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We follow the approach of [4] and reduce the problem to a certain hypergraph-

coloring problem: how small an m = m(k) can we exhibit, so that for every m-

uniform, m-regular hypergraph H there exists a k-coloring of the vertices such that

every edge meets every color class. (Briefly, each vertex corresponds to an integer;

every edge corresponds to a translation of S.) Thus, we use this hypergraph-coloring

terminology from now on. A short calculation using the LLL shows that if m =

(3 + o(1))k ln k, then there is a positive probability that a random coloring causes

every edge to meet every color class [4].

Theorem 1.18. Suppose m ≥ (1 + ε)k ln k, where ε(k) ≥ (4 + ω(1)) ln−1/2 k;

and suppose k is sufficiently large. Then, the vertices of any m-uniform, m-regular

hypergraph can be colored using k colors, such that each edge meets every color class.

Furthermore, such a coloring can be found in randomized polynomial time.

We assume that ε(k) = (4 + v) ln−1/2 k, where v > 0 is some fixed constant. We

assume that k is sufficiently large, which may depend on v. Finally, we ignore all

rounding effects; in this vein, we suppose m = (1 + ε)k ln k exactly.

1.8.1. Phase I. In Phase I, we choose a coloring using k′ = k/ ln k colors; each

vertex receives each color uniformly at random. On average, each edge f receives

each color an average of µ = (1 + ε) ln2 k times.

For each edge f and each color c, we have a bad-event that f receives the color

more than m1 = µ(1 + δ) times or less than m0 = µ(1− δ) times, where δ = 4/
√

ln k.

For k sufficiently large, we have δ < 1 and the probability of this event can be

estimated by the Chernoff bound; it is at most p ≤ 2e−µδ
2/3 ≤ 2k−16/3(1+ε). Similarly,

each bad-event c, f depends on other bad-events c′, f ′ iff the edges f, f ′ intersect;

hence the dependency of a bad-event is at most d ≤ k′×m×m ≤ (1 + ε)2k3 ln k. For

k sufficiently large the LLL criterion is

e× 2k−16/3(1+ε) × (k3 ln k(1 + ε)2) ≤ 1
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Simple calculus now shows that, when k is sufficiently large, this holds for all

ε > 0. Note that in this phase, we are not taking advantage of the ε-slack in our

estimate for m.

1.8.2. Phase II. In the second phase of the construction, we subdivide each of

the initial colorings from Phase I into ln k sub-colors. The total number of colors

thus produced is k′ × ln k = k as desired. The critical property here is that distinct

colorings from Phase I no longer affect each other in any way. This greatly reduces

the dependency when applying the Lovász Local Lemma.

Now consider an edge f and a color c (the color c includes both the coloring

from Phase I and Phase II): a bad event is that f does not see the color c. The

probability of this event can be computed as follows. The edge sees the Phase-I color

corresponding to c at least m0 times. The total probability that none of appearances

is equal to c, is at most p ≤ (1− k′/k)m0 .

Next, consider the dependency of an event. Again, each event c, f affects c′, f ′

iff c, c′ have a common Phase-I color and f, f ′ intersect in some vertex which shares

this Phase-I color. As each Phase-I color appears at most m1 times in f , the total

dependency is thus at most d ≤ (k/k′)m1m.

The LLL criterion is thus satisfied if e(1 − k′/k)m0((k/k′)m1m) ≤ 1. Routine

calculations show that this is satisfied for k sufficiently large if ε ≥ (4 + o(1)) ln−1/2 k.
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CHAPTER 2

The Moser-Tardos algorithm

2.1. Basic algorithm

The Lovász Local Lemma can be used in a variety of situations to show that certain

combinatorial configurations exist. It also gives a simple random process for producing

these configurations: namely, draw a sample from Ω. However, the probability that

Ω has the desired properties, while non-zero, is typically exponentially small. Thus,

while the LLL gives existential proofs, it does not lead directly to efficient algorithms.

For many years since the introduction of the LLL, there was a major gap between

constructive and non-constructive results. A variety of algorithms, some quite compli-

cated and ad-hoc, were introduced to bridge this gap. These algorithms often showed

qualitatively similar results to the LLL (in particular, the probability of a bad-event

would be compared to the number of bad-events), although constant factors were

much worse. This line of research culminated with the work of Moser & Tardos [87],

giving an amazing simple construction to turn nearly all applications of the LLL into

polynomial-time algorithms. We refer to this as the Moser-Tardos Algorithm (or MT

algorithm). It can be summarized as follows:

1. Draw X1, . . . , Xn ∼ Ω.

2. While there is some true bad-event B ∈ B:

3. Select some true B ∈ B arbitrarily.

4. For each variable i ∈ SB, draw Xi independently from its distribution

under Ω.

If this algorithm terminates, then it produces a configuration which necessarily

avoids all bad-events. We refer to step (4), in which all the variables involved in B

are drawn independently from the distribution Ω, as resampling B.
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We note that this algorithm, phrased in terms of variables, is inherently specific to

the variable-assignment LLL setting. It is not clear what it would even mean to give

a constructive algorithm for the full LLL, which is phrased in terms of probability

spaces.

Also, we note that this algorithm is somewhat under-specified, in that if there are

multiple bad-events which are currently true then one is allowed to resample any of

them. This freedom can be useful in a variety of contexts. We refer to the choice of

which bad-event to resample as the resampling rule.

In [87], it is shown that this algorithm terminates under the same conditions as

the asymmetric LLL:

Theorem 2.1 ([87]). Suppose there is a weighting function µ : B → [0,∞) which

satisfies the following property: for all B ∈ B we have

µ(B) ≥ PΩ(B)
∏
B′∼B

(1 + µ(B′))

Here, we write B ∼ B′ to denote that B and B′ are either equal to each other or

are connected in the canonical dependency graph, viz. SB ∩ SB′ 6= ∅.

Then, the MT algorithm terminates with probability one; the expected number of

resamplings it performs is at most
∑

B∈B µ(B).

Aside from the restriction to the canonical dependency graph, this is precisely the

same as Proposition 1.9, which gives conditions for there to exist positive probability

of avoiding B.

In the MT setting, we always work with the canonical dependency graph for the

events, which has an edge between B and B′ if B and B′ depend on common variables.

It is useful to develop notation to this variable-intersection setting. Namely, for any

events E,E ′ which are defined on subsets of the variables, we write E ∼ E ′ if they

share a common variable. In this case, note that B ∼ B. Given a set of bad-events
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B, and any event E (not necessarily a bad-event), we can write

(3) N(E) = {B ∈ B | B ∼ E}

Note that, for a bad-event B, that N(B) in the sense of (3) coincides with the

definition of NG(B) we have given where G is the canonical dependency graph.

Setting µ(B) = ep, we obtain the following simple symmetric criterion:

Proposition 2.2 ([87]). Suppose that for each B ∈ B we have PΩ(B) ≤ p and

|N(B)| ≤ d and suppose that epd ≤ 1. Then the MT algorithm terminates with

probability one; the expected number of resamplings it performs is at most epm.

There are two probability spaces at play when we we are analyzing the MT algo-

rithm. First, there is the space Ω; this is the space in which the variables are drawn

independently. Second, there is the “ambient” probability space in which we draw the

random bits used to drive the MT algorithm itself. In this second probability space,

which does not receive any specific name, the variables Xi are not independent. We

will always refer to probabilities pertaining to the first space as PΩ while the proba-

bilities from the second space are referred to simply as P . Thus, for example, when

we refer to the expected number of resamplings performed by the MT algorithm, this

expectation is taken with respect to the ambient probability space. When we refer to

the probabilities of the bad-events, we refer to their probabilities within the space Ω.

We can think of the MT algorithm as “simulating” Ω.

We have seen that there are stronger criteria than the asymmetric LLL. Later

papers have shown that the MT algorithm meets these as well. First, in [94], Pegden

gave a straightforward proof that the MT algorithm matches the cluster-expansion

criterion:
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Theorem 2.3 ([94]). Suppose there is a weighting function µ : B → [0,∞) which

satisfies the following property: for all B ∈ B we have

µ(B) ≥ PΩ(B)PΩ(B)
( ∑

I⊆NG(B)
I independent

in the canonical G

∏
B′∈I

µ(B′)
)

Then, the MT algorithm terminates with probability one; the expected number of

resamplings it performs is at most
∑

B∈B µ(B).

In [65], Kolipaka & Szegedy extended this to show that the MT algorithm matches,

essentially, the full Shearer criterion:

Definition 2.4 (The measure of a bad-event in the Shearer setting). Let G denote

the canonical dependency graph for Ω,B. Suppose that PΩ, G satisfies the Shearer

criterion. For any bad-event B, define the measure of B to be µ̃(B) = Q(G,{B},PΩ)
Q(G,∅,PΩ)

,

where G is the canonical dependency graph.

Theorem 2.5 ([65]). Let G denote the canonical dependency graph for Ω,B.

Suppose that PΩ, G satisfies the Shearer criterion.

Then the MT algorithm terminates with probability one; the expected number of

resamplings it performs is at most
∑

B∈B µ̃(B).

Harvey & Vondrak also showed the connection between the Shearer criterion and

the cluster-expansion LLL criterion:

Theorem 2.6 ([51]). Suppose that a weighting function µ satisfies the cluster-

expansion LLL criterion for the canonical dependency graph G. Then for all B ∈ B

we have µ̃(B) ≤ µ(B).

2.1.1. Proof of the MT algorithm. Moser & Tardos give a well-written de-

scription for their algorithm; we recommend reading [87] for more details. In this

section, we will give a self-contained proof which has a few key differences from [87].
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We will prove Theorem 2.3 in this section; the stronger Theorem 2.5 is beyond our

scope here.

To begin, suppose we execute the MT algorithm. It may terminate after T steps,

or it may proceed for an infinite time. At each time-step t, we resample some bad-

event Bt. We refer to the listing B1, B2, . . . , as the execution log. The bad-events

B1, B2, . . . are not necessarily distinct.

The basic analytical tool for understanding the MT algorithm is the witness tree.

This is a compact description of “why” each Bt was resampled; more precisely, it

provides a history of all the variables that are relevant to this resampling. There is a

separate witness tree for each time T , which we denote τ̂T .

We form τ̂T recursively, according to the following rule. We begin with τ̂T≥T ,

which has a singleton node labeled by BT . We next go backward in time through

t = T − 1, . . . , 1. For each Bt, we see if there is some node v ∈ τ̂T≥t+1 labeled by some

B′ ∼ Bt. If there is no such node, then we do not update τ̂T , thus τ̂T≥t = τ̂T≥t+1. If

there are such nodes v ∈ τ̂T≥t+1, then we select one vertex v ∈ τ̂T≥t+1 of greatest possible

depth (breaking ties arbitrarily), and we form τ̂T≥t by adding a single node as a child

of v, labeled by Bt. At the end of this process, we set τ̂T = τ̂T≥1.

We distinguish now between two closely related senses of the term “witness tree.”

First, there is the random variable τ̂T , as we have defined it above; it is a random

variable. Second, one might refer to a specific rooted tree, whose nodes are labeled

by bad-events; these are the possible values that the random variables τ̂ can take.

We refer to the latter, which are ordinary (not random) variables, as tree-structures

and denote them by τ . Thus, we might fix some tree-structure and ask whether it is

the case that τ̂T = τ .

In many discussion of witness trees, the precise value of T is irrelevant. Thus,

we will often omit the superscript. When we write τ̂ , then we mean τ̂T for some

unspecified T .
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When discussing these trees, we often say that the root of the tree is at the “top”

and the deep layers of the tree are at the “bottom”. The top of the tree corresponds

to later events, the bottom of the tree to the earliest events.

We note one important property of the witness produced in this fashion:

Proposition 2.7. In any witness tree τ̂T , there cannot be two nodes v, v′ at

the same depth, labeled by B,B′, such that B ∼ B′. In other words, the layers of

τ̂T receive labels which are distinct and independent with respect to the canonical

dependency graph.

Proof. We prove that this holds for τ̂T≥j by induction on j. When j = T this is

clear. Now suppose that when forming τ̂≥j we add a node v labeled by B, and there

is already another node v′ labeled by B′ which is at depth k. In this case, v would

be eligible to be placed as a child of v′. As the rule for forming witness trees always

places nodes at the greatest possible depth, this implies that v is placed at depth

≥ k + 1. In particular, τ̂≥j does not contain B,B′ at the same depth k. �

By convention, we will only be interested in tree-structures which are possible

values of τ̂ . Thus, we may assume that all tree-structures τ have the property that

the nodes in each layer of τ receive distinct labels. (That is, any tree which does

not satisfy this property, will not be considered a “tree-structure.”) We may adopt

this convention at various times: whenever we show that witness trees have a certain

structural property, then we will assume that all tree-structures under consideration

have this property as well.

For a fixed tree-structure τ , we say that τ appears if τ̂T = τ for some T > 0. The

most important structural result concerning the MT algorithm, which will appear in

numerous contexts and variants throughout our work, is the following:
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Lemma 2.8 (Witness Tree Lemma). Suppose τ is a tree-structure whose nodes

are labeled B1, . . . , Bt. Then the probability τ appears is at most

P (τ appears) ≤
t∏

j=1

PΩ(Bj)

We refer to the value
∏t

j=1 PΩ(Bj) as the weight of τ , and we write it w(τ).

Proof. We will prove this using by using a coupling construction introduced in

[87]; this coupling construction has significant limitations, but it is a good starting

point. We will also assume that all of the events B are atomic events. (Every event

in the space Ω is equivalent to a union of atomic events, so this actually does not lose

generality.)

As the bad-events are atomic, each B can be written as Bj ≡ Xi1 = w1∧· · ·∧Xik =

wk and this has probability PΩ(B) = PΩ(Xi1 = w1)× · · · × PΩ(Xik = wk). So we can

factor w(τ) as a product of terms of the form PΩ(Xi = w).

Suppose that, before we run the MT algorithm, we construct a “resampling table”

R. This table contains, for each variable i ∈ [n], an infinite stream of values which

are all drawn from the distribution pi. We denote these by R(i, j) for j ≥ 1. All the

entries in this table are independent. In the initial stage of the MT algorithm, we set

Xi = R(i, 1). The first time that the MT algorithm needs to resample variable i, it sets

Xi = R(i, 2), and in general for the jth resampling of variable i sets Xi = R(i, j+ 1).

It is clear that that resulting algorithm has the probabilistic behavior as the MT

algorithm, so this is a valid coupling.

Now, given the tree-structure τ , we will show certain necessary conditions on the

entries of R. Consider any variable i. All of the events B1, . . . , Bt which contain i

must, by Proposition 2.7, occur on distinct layers of the tree. So, we can sort all of

the occurrences of variable i from deepest to shallowest as Bk1 , . . . , Bkr . Because we

have assumed that the events are atomic, we may assume that these events demand

respectively Xi = v1, . . . , Xi = vr.
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Now we claim that in order for τ to appear, it must be the case that the events

Bk1 , . . . , Bkr are resampled in that order, and that furthermore that these are the first

r events to be resampled which involve the variable i. The reason for this is that all of

the events Bk1 , . . . , Bkr are neighbors in the dependency graph (or are equal to each

other), and in forming witness trees, earlier events are always eligible to be placed as

children of later ones if they are dependent. So, for example, Bkr−1 is eligible to be

placed as a child of Bkr , and so is placed below Bkr in τ̂T . By a similar token, any

event B′ which involves variable i will satisfy B′ ∼ Bkr , so if it occurs before Bkr , it

will be placed somewhere in the tree below Bkr .

So, we have seen that the first bad-event to be resampled involving variable i

involves setting Xi = v1. At that time, variable i still has the variable it was assigned

initially, R(i, 1). Thus, a necessary condition for τ to appear is that R(i, 1) = v1. By

similar reasoning, we see that we must have R(i, j) = vj for j = 1, . . . , r.

As all these entries of R are independent, then the total probability of these events

(for a fixed value of i) is
∏r

j=1 P (R(i, j) = vj) =
∏r

j=1 PΩ(Xi = vj).

But, now consider how variable i appears in the expansion of w(τ). As we have

noted, this can be factored into a product of terms PΩ(Xi′ = w′). For each j =

1, . . . , r, there is a corresponding term in w(τ) PΩ(Xi = vr). Hence, the contribution

of variable i to w(τ), is also equal to
∏r

j=1 PΩ(Xi = vj).

We have given a necessary condition for variable i, in terms of the resampling

table R, and shown an upper bound on the probability of this condition holding. As

the entries of R are independent, we can multiply across all values of i to upper-bound

the probability that τ appears. The resulting upper-bound is equal to w(τ). �

We now discuss the second part of the MT proof, following the Witness Tree

Lemma.

Proposition 2.9. We cannot have τ̂T = τ̂T
′

for T 6= T ′.
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Proof. Suppose that T < T ′, and that τ̂T = τ̂T
′

= τ . Suppose that τ its root

node labeled B and includes r nodes labeled B. Then in order for τ̂T = τ there must

be exactly r − 1 times before T in which B was resampled, and that in addition B

was resampled at time T . Similarly in order for τ̂T
′

= τ there must be exactly r − 1

times before T ′ in which B was resampled. But, we know there are at least r such

times: all the times before T in which B was resampled, plus time T itself. �

Proposition 2.10. We have

E[#resamplings in MT] ≤
∑

tree structures τ

w(τ)

Proof. By Proposition 2.9, every resampling performed by MT produces a dis-

tinct witness tree. This implies that we can write the overall running time of the MT

algorithm as

# resamplings ≤
∑

tree structures τ

[τ appears]

where we use the Iverson notation (here and throughout the paper), i.e. [P ] is equal

to one if predicate P holds and is zero otherwise.

Combining this with Lemma 2.8 gives the key convergence result

E[#resamplings] ≤
∑

tree structures τ

P (τ appears) ≤
∑

tree structures τ

w(τ)

�

Obtaining an upper bound on the sum
∑

tree structures τ w(τ) has certain technical

similarities to computing extinction probabilities for Galton-Watson processes. This

analogy is exploited in the proof appearing in [87]. However, we prefer to avoid this

route, and show an upper bound on
∑

tree structures τ w(τ) directly.

For any h ≥ 0 and any B ∈ B, we define

Th(B) =
∑

tree-structures τ
with height ≤ h

with root node labeled B

w(τ)
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We recursively use the weighting function µ as an upper bound on Th(B) as

follows:

Proposition 2.11. Suppose that µ satisfies Pegden’s criterion (which is identi-

cal to the cluster-expansion criterion), namely that for all B ∈ B we have µ(B) ≥

PΩ(B)θG(B) where G is the canonical dependency graph. Then, for all B ∈ B and

h ≥ 0, we have Th(B) ≤ µ(B).

Proof. We prove this by induction on h. When h = 0, this follows vacuously as

T0(B) = 0 and µ(B) ≥ 0.

We now show the induction step. Let τ be a tree-structure with a root node v

labeled by B. Let v1, . . . , vt be the children of this root node (possibly t = 0), with

labels B1, . . . , Bt. Then τ can be written as the union of its root node v plus tree-

structures τ1, . . . , τt, of height ≤ h−1 rooted in B1, . . . , Bt respectively. Furthermore,

w(τ) = PΩ(B)w(τ1) . . . w(τt).

All of v1, . . . , vt are at depth 1 in τ , and hence by Lemma 2.7 B1, . . . , Bt must

be distinct, form an independent set, and be neighbors of B in the dependency

graph (or equal to B.) For any fixed choice of B1, . . . , Bt, the set of possible val-

ues for w(τ1) . . . w(τt) is at most Th−1(B1) . . . Th−1(Bt); by induction this is at most

µ(B1) . . . µ(Bt). Summing over all valid choices for B1, . . . , Bt, we have

Th(τ) ≤ PΩ(B)
∑

{B1,...,Bt}

µ(B1) . . . µ(Bt)

≤ PΩ(B)
∑

I⊆N(B)
I independent in G

∏
B′∈I

µ(B′)

≤ µ(B)

completing the induction. �
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Proposition 2.12. Suppose that µ satisfies Pegden’s criterion. Then for any

B ∈ B we have ∑
tree-structures τ

with root node labeled B

w(τ) ≤ µ(B)

Proof. Observe that any term w(τ) appears as a summand of Th, for some finite

h. Thus

∑
tree-structures τ

with root node labeled B

w(τ) = T∞(B) = lim
h→∞

Th(B) ≤ lim
h→∞

µ(B) = µ(B)

�

We can define a key parameter to analyze the MT runtime:

Definition 2.13 (Work parameter). Given a weighting function µ, define the

work parameter

W =
∑
B∈B

µ(B)

Theorem 2.14. Suppose that µ satisfies Pegden’s criterion. The expected # re-

samplings of MT is at most W .

Proof. We have already seen that E[#resamplings] ≤
∑

tree-structures τ w(τ). So

∑
tree-structures τ

w(τ) ≤
∑
B∈B

∑
tree-structures τ

with root node labeled B

w(τ) ≤
∑
B∈B

µ(B) = W

�

In particular, this shows that the expected number of resamplings in the MT

algorithm is <∞; so the MT algorithm terminates with probability one.

Corollary 2.15 ([87]). Suppose that the symmetric LLL criterion epd ≤ 1 is

satisfied. Then the MT algorithm terminates with probability one; the expected number

of resamplings it performs is at most epm.
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Proof. Setting µ(B) = ep for all B satisfies the cluster-expansion criterion. Then∑
B µ(B) ≤ epm. �

This concludes the proof of convergence for the MT algorithm. We will next

examine several ways this result can be extended.

2.2. The MT distribution

After running the MT algorithm, we are guaranteed that the bad-events in B

cannot possibly occur. In other words, we know that the configuration produced by

the MT has the property that no B ∈ B is true. For a variety of reasons, we might

want to know more about such configurations other than that they exist. Suppose

for instance that we have some weights on our variables, and we define the objective

function on a solution
∑

iw(Xi); in this case, if we are able to estimate the probability

that a variable Xi takes on value j in the MT algorithm, then we may be able to

show that configurations with a good objective function exist. A second example is

when the number of bad-events becomes too large, perhaps exponentially large. In

this case, the MT algorithm cannot test them all. However, we may still be able to

ignore a subset of the bad events, and argue that the probability that they are true

at the end of the MT algorithm is small even though they were never checked.

Recall that we have defined N(E) for any event which is a boolean function of

a subset SE of the variables, not just for a bad-event. If we are given a weighting

function µ, in the setting of the asymmetric LLL, it will be convenient to extend the

definition of θ to cover arbitrary events (not just bad-events). We also suppress the

dependence on G, which is always assumed to be the canonical dependency graph.

θ(E) =
∑

I⊆NG(E)
I independent

∏
B∈I

µ(B)

In [48], it was shown how to adapt the proof of the MT algorithm to give a bound

on the probability of any event in terms of θ(E):
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Theorem 2.16 ([48]). Suppose that µ satisfies Pegden’s criterion. Then for any

event E we have

P (E is true in output of MT algorithm) ≤ PΩ(E)θ(E)

Proof. We will show a bound on the probability that E is ever true during the

execution of the MT algorithm; this automatically shows the desired result. Suppose

that we monitor the execution of the MT algorithm; consider the first time T that E is

true. We may build a witness tree τ̂ for this occurrence of E, in the usual manner: we

place a root node labeled by E, and we continue adding nodes labeled by BT , . . . , B1

as in the MT algorithm. (One can consider E to be an “extra” bad-event, which is

treated differently during the execution of the MT algorithm: instead of resampling

E when E is true, we instead immediately halt the MT algorithm.)

It is not hard to see that the Witness Tree Lemma continues to hold for such trees

rooted in E. Also, we then have

P (E) ≤
∑

tree-structures τ rooted in E

P (τ appears) ≤
∑

tree-structures τ rooted in E

w(τ)

Now, consider some tree-structure τ rooted in E. Its root node labeled E con-

tributes PΩ(E) to its weight. It has children labeledB1, . . . , Bt with subtrees τ1, . . . , τt,

and w(τ) = PΩ(E)w(τ1) . . . w(τt). B1, . . . , Bt must be distinct and independent by

Proposition 2.7. Note that E never occurs in the subtrees τ1, . . . , τt; these are simply

trees whose nodes are labeled by B. As shown in Proposition 2.11, for a fixed choice

of B1, . . . , Bt, the total weight of all such tree-structures rooted in B1, . . . , Bt respec-

tively is at most µ(B1) . . . µ(Bt). Now, sum over all valid choices of B1, . . . , Bt (i.e.

independent sets of neighbors of E) as in Proposition 2.11. �

The accounting method of Section 1.6 yields a particularly nice form for Theo-

rem 2.16.
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Theorem 2.17. Suppose we are given a vector λ satisfying Theorem 1.16. Then,

for any atomic event E ≡ Xi1 = j1 ∧ · · · ∧Xik = jk we have

P (E is true in output of MT algorithm) ≤
k∏
s=1

λis,js

Proof. Each independent set of neighbors of E contains one or zero bad-events

involving each variable is, so:

PΩ(E)θ(E) ≤ PΩ(E)
∏
s

(1 +
∑

B′:is∈SB′

µ(B′))

≤
∏
s

λis,js
λis

(λis) by (37)

=
∏
s

λis,js

�

Chapters 8,9, we will explore the MT distribution in much more detail. We note

that Theorem 2.16 only provides an upper bound on the probability that E occurs

in the output of MT. In general, it is not possible to show a lower bound on the

probability of an arbitrary event E — if E ∈ B, then necessarily P (E) = 0. There

are some limited circumstances in which lower bounds may be possible, which we

discuss in Chapter 8.

2.3. A parallel algorithm

The MT algorithm as described is sequential. In [87], Moser & Tardos described

a parallel (RNC) variant of it:

1. Draw X1, . . . , Xn ∼ Ω.

2. While there is some true bad-event B ∈ B:

3. Select a maximal independent set V ⊆ B of currently-true bad-events.

4. For each variable i ∈
⋃
B∈V SB, draw Xi independently from its distri-

bution under Ω.
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Step (4) can be thought of as resampling, in parallel, all of the bad-events in V .

Recall that in the MT sequential algorithm, there was complete freedom in deter-

mining the resampling rule. Thus, it would be a valid instantiation of the sequential

MT algorithm to select an MIS of currently true bad-events and then resample then

one by one. In this sense, the parallel algorithm is an instance or a simulation of

the sequential MT algorithm, with a very strange resampling rule. This immediately

shows that the parallel MT algorithm terminates with probability one.

We want to show that this parallel algorithm terminates quickly, say in a loga-

rithmic number of steps. Unfortunately, the LLL criterion by itself is not sufficient

to guarantee this. Rather, we will need a slightly stronger criterion, which we refer

to as an ε-multiplicative slack condition:

Proposition 2.18. Suppose that µ satisfies the following criterion:

µ(B) ≥ (1 + ε)PΩ(B)θG(B)

where G is the canonical dependency graph.

Then, with high probability, the Parallel MT algorithm terminates after O( logW
ε

)

steps.

In particular, this algorithm can be implemented in time O( log2 m logW
ε

).

Proof. We will give a brief sketch of this proof, which can be found in more

detail in [87]. First, observe that if we resample a bad-event B during the rth round

of the parallel MT algorithm, then the witness tree τ̂T will have height r exactly. The

reason for this is that there must be some B′ ∼ B which was resampled during the

r − 1st round; for, if there was not, then {B} ∪ Vr−1 would be an independent set,

contradicting the maximality of Vr.

Next, we can show, along the same lines as Proposition 2.11, that the total weight

of all tree-structures of height h rooted in B is at most µ(B)(1 + ε)−h.
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Thus the probability that there is a resampling at round r is at most the total

probability that any tree-structure of height r appears. This is at most
∑

B µ(B)(1 +

ε)−r = W (1 + ε)−r. So for r = Ω( logW
ε

) this probability is negligible.

The individual steps of the Parallel MT algorithm can typically be performed in

polylogarithmic time. The most costly step is usually finding the MIS itself, which

can cost log2m time using the algorithm of Luby [80]. Thus, the overall algorithm

runs in time O( log2 m logW
ε

).

�

There are many ways to improve this analysis and give better bounds on the

parallel run-time; we discuss these in Chapter 3.

The following heuristic may give intuition as to why we need this extra slack

condition for the Parallel MT algorithm. Suppose that our probability space is defined

by setting Xi = 0 with probability ε, and Xi = 1 with probability 1− δ. And suppose

that B = {Xi = 1 | i = 1, . . . , n}. That is, we have n highly-biased coins and we want

to ensure that all the coins come up heads. It is not hard to see that Proposition 2.18

is satisfied with ε = δ/2 and µ(B) = 4/δ (for small δ).

In this case, the canonical dependency graph G consists of n isolated points, each

with probability 1−δ. In each stage of the parallel MT algorithm, we simply randomly

flip all of variable i which are currently equal to 1. At each stage of this process, the

expected number of variables i satisfying i = 1 decreases by a factor of 1− δ, and it is

not hard to see that this process requires Θ(δ−1 log n) rounds to drive all the variables

equal to 0. We also observe that this is precisely the number of steps predicted by

Proposition 2.18 — here ε−1 logW = Θ(δ−1 log n).

This example of n independent biased coins, although highly simplistic, is a very

useful extremal case in analyzing the MT algorithm, particularly the parallel MT

algorithm. We recommend that the reader always consider this example first in

understanding any estimates of the parallel MT.
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2.3.1. Shearer bounds on the parallel MT algorithm. The weighting func-

tions µ and W plays a somewhat mysterious role in the LLL, and it can be confusing

to have them appear in the complexity bounds for the parallel MT algorithm. To

make this even more confusing, a weighting function which satisfies the criteria for

the Asymmetric LLL will not necessarily satisfy the criterion for the parallel MT

algorithm (which requires an ε slack). Consider the example again of n independent

coins with probability p = (1 + ε)−1. It is fairly simple to see that the resampling

process terminates after O( logn
ε

) rounds with high probability, yet there is no finite

weighting function µ which can satisfy Proposition 2.18.

Indeed, as shown in [65], one can directly compute a criterion for the convergence

of the parallel MT algorithm from the Shearer criterion, without the use of a weighting

function µ. Note that the Shearer criterion states that we have Q(I,G, p) > 0 for

all independent sets I. The ε in the running time for the parallel MT algorithm is

derived essentially from how far Q(I,G, p) is bounded away from zero.

Definition 2.19. We say that the Shearer criterion is satisfied with ε-multiplicative

slack, if the vector of probabilities (1 + ε)PΩ satisfies the Shearer criterion.

Observe that since the Shearer criterion is an open set condition on p, it follows

that if p satisfies the Shearer criterion, it must be satisfied with ε-multiplicative slack

for some ε > 0. In [65], Kolipaka & Szegedy showed that if the Shearer criterion is

satisfied, then the run-time of the Parallel MT algorithm can be bounded in terms of

the slack ε alone (and not the measure µ̃).

Proposition 2.20 ([65]). Whp, the number of rounds executed by the parallel

MT algorithm is at most O(ε−1 log(m/ε)).

For the most part, we will work with the asymmetric LLL criterion and its variants,

as the Shearer criterion is too difficult technically. However, Theorem 2.6 will also

allow us to work with the Shearer criterion when that is more convenient; any result

we show for the Shearer criterion applies also to the MT algorithm.
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2.3.2. Alternative parallel LLL algorithms. The computation of a maximal

independent set is a relatively costly which dominates the runtime of this parallel

algorithm. In [26], Chung et al. gave several alternative algorithms for the symmetric

LLL which either avoid this step or reduce its cost. Although the main focus of [26]

was obtaining distributed algorithms for the LLL, these algorithm have reduced time

complexity as well.

They give one algorithm, based on bad-events choosing random priorities and

resampling a bad-event if it has earlier priority than its neighbors, which runs in

O(ε−1 log n) distributed rounds and O(ε−1 log2 n) time. Unfortunately, this algorithm

of [26] requires a stronger criterion than the LLL: namely, in the symmetric setting,

it requires that epd2 ≤ (1 − ε). In many applications of the LLL, particularly those

based on Chernoff bounds for the sum of independent random variables, satisfying the

stricter criterion epd2 ≤ (1− ε) leads to qualitatively similar results as the symmetric

LLL. In other cases, the criterion of [26] loses much critical precision leading to weaker

results. In particular, their bound essentially corresponds to the state of the art [86]

before the break-through result of Moser and Moser-Tardos [87].

Another algorithm given by Chung et al. requires only the standard symmetric

LLL criterion and runs in O(ε−1 log2 d log n) rounds. Recently, a key subroutine used

by this algorithm was improved by [44], leading to a reduction to O(ε−1 log d log n)

rounds. When d is polynomial in n, however, this does not improve on the MT

algorithm.

Neither of the algorithms given by Chung et al. generalize to the asymmetric LLL

setting.

In Chapter 3, we will give a new parallel algorithm for the LLL.

2.4. Lopsidependency

The MT algorithm and criterion we have given so far, is defined for the canonical

dependency graph. We have already seen instances in which the LLLL is applied
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to more general types of probability spaces. In general, these probability spaces

do not necessarily even have “variables” or are representable in any succinct way.

Thus, it is difficult to see what it would even mean to extend the MT algorithm to

cover the full generality of the LLLL. However, the simplest form of the LLLL is the

variable-assignment LLLL. Moser & Tardos showed that this was already by the MT

algorithm.

Theorem 2.21. Suppose that all the events in B are atomic events, and let G

be the canonical lopsidependency graph among them. Suppose there is a weight-

ing function µ : B → [0,∞) which satisfies the cluster-expansion criterion µ(B) ≥

PΩ(B)θG(B).

Then, the MT algorithm terminates with probability one; the expected number of

resamplings it performs is at most
∑

B∈B µ(B).

In this context, it is useful to redefine our rule for defining ∼ on variable-defined

events. Namely, suppose that E,E ′ are atomic events. Then we say that E ∼ E ′

iff E,E ′ disagree on a variable. By convention, we also define B ∼ B. Thus, again

N(B) is the inclusive neighborhood of a bad-event N(B) = NG(B) ∪ {B}. We note

that, unlike for the standard LLL, the rule that B ∼ B is really a special case: while

B overlaps on variables with itself, it does not disagree on any variables.

We prove Theorem 2.21 via witness trees in a similar manner to the usual MT

algorithm. We form witness trees, we use the same rule as we did for the ordinary MT

algorithm; that is, we add a node labeled by B as a child of B′ if B ∼ B′. However,

in this case, we are using the alternate lopsided definition of ∼. We next show that

the Witness Tree Lemma holds with this modification. The remainder of the proof

of MT, such as Proposition 2.11 and Theorem 2.14, follow immediately,

Lemma 2.22. Suppose τ is a tree-structure, whose nodes are labeled B1, . . . , Bt.

Then the probability that τ appears is at most
∏t

j=1 PΩ(Bj)
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Proof. We first note that the proof of Lemma 2.8 does not hold here. In the

previous proof, we assumed that for any variable i, all of the occurrences of variable

i appear at distinct layers of the tree, so they can be unambiguously sorted by time.

However, one can slightly modify this idea. The layers of the witness tree are still

independent. This means that if there are two bad-events B,B′ at the same layer of

the tree and i ∈ SB ∩ SB′ , then B and B′ agree on variable i, say they both demand

that Xi = j.

Now, suppose we consider some fixed variable i. Looking at the layers of τ from

its greatest depth h to its root, suppose that there are rj occurrences of variable i

at depth j in τ . And furthermore, suppose that all the occurrences of variable i at

depth j demand that Xi = vj. (If rj = 0, then vj can be chosen arbitrarily).

In this case, we observe that the first rh entries of R(i, ·) must be equal to vh;

the next rh−1 entries of R(i, ·) must be equal to vh−1, and so forth. These contribute

a total probability of
∏1

j=h PΩ(Xi = vj)
rj ; this is also precisely the term involving

variable i that appears in the expansion of w(τ). �

While many aspects of the MT algorithm algorithm carry over immediately to the

lopsidependent setting, the parallel algorithm is an exception. The main problem is

that if B,B′ are “independent” (in the sense of the canonical lopsidependency graph),

then they may still share a common variable, and so they cannot be resampled in

parallel (they are not computationally independent). It is somewhat frustrating that

we have a parallel algorithm for the LLL, and we have a sequential algorithm for the

LLLL, but we cannot combine the two.1

In Chapter 4, we will examine the behavior of the MT algorithm in the variable-

assignment LLLL setting much more closely. We will show that in many cases the

MT algorithm converges even though the LLLL criterion is not satisfied.

1In [23], there is a brief discussion about a parallel deterministic algorithm for the variable-
assignment LLLL. However, no algorithm is provided, nor are there any definite claims made for its
performance.
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2.5. The role of the Witness Tree Lemma

Lemma 2.8, the Witness Tree Lemma, plays a central role in the proof of the

MT algorithm. What makes it so powerful is that an individual witness tree τ only

contains information about a small subset of the resamplings performed by the overall

algorithm. In the proof of this lemma, we ignore all these other resamplings and are

able to obtain strong probabilistic bounds on the resamplings represented by τ , despite

the unknown contribution of other resamplings.

The Witness Tree Lemma is fairly straightforward to prove for the MT algorithm.

We will encounter many variants of the MT algorithm later in this work for which we

will need modified forms of this lemma. Some of these will have extremely difficult

and subtle proofs. Once we have proved the corresponding version of the Witness

Tree Lemma, the remainder of the convergence proof (from Proposition 2.9 onward),

as well as the MT distribution, remains almost unchanged. The results on the parallel

algorithm do not always generalize so cleanly, however one important result (that the

height of a witness tree is bounded by O( logW
ε

) with high probability) does generalize

as well.

In analyzing (variants of) the MT algorithm, there is a tension in how much

information to include in a witness tree. What makes the Witness Tree Lemma

potentially difficult to prove in general is the influence of the bad-events we have

ignored. Every time we ignore a bad-event, our probabilistic reasoning must “argue

around” it. Thus, the more information we include in a witness tree, the easier the

Witness Tree Lemma becomes to prove.

However, note that in Proposition 2.10, we are taking a union-bound over all tree-

structures. If we keep track of more information in a witness tree, then the space

of all possible tree-structures grows. This, we will be taking a union-bound over a

large space, and this leads to weaker probabilistic bounds and weaker control over

the behavior of the MT algorithm.
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We have already seen an example of this strategy, in Section 2.4, where we change

the definition of ∼ in terms of variable disagreement instead of just variable overlap.

This means that the witness trees include fewer nodes. The Witness Tree Lemma is

only slightly harder to prove in this case than for the ordinary MT algorithm: we can

still use the same type of coupling argument, based on a resampling table.

One can decide to keep track of all the resamplings performed by the MT al-

gorithm (in which the “witness tree” is really a forest). Achlioptas & Ilioupoulous

[1], Harvey & Vondrak [51], and Kolmogorov [68] have described generalized LLL

algorithms, which uses this technique to prove convergence. Because of the very large

space of “witness forests” which result, these lead to exponentially weaker bounds on

the behavior of their algorithms. These are not able to show the MT distribution,

parallel algorithms, or others. We will discuss this issue much more in detail, in the

context of an algorithm for the LLL on permutations, in Section 7.5.3.

In Chapter 3, we will explore how to generalize the witness tree. This leads to the

concept of a “witness dag”, a much general structure to keep track of some or all of the

resamplings performed by the MT algorithm. These are useful for developing stronger

bounds on the number of resamplings performed by the parallel and sequential MT

algorithms.
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CHAPTER 3

The witness dag: a tool for improved bounds and parallel

algorithms for the Lovász Local Lemma

In this chapter, we introduce a new theoretical structure to analyze the behavior of

the MT algorithm, which we refer to as the witness dag. This provides an explanation

or history for some or all of the resamplings that occur. This generalizes the notion of

a witness tree which only provides the history of a single resampling. We use this tool

to show stronger bounds on the runtime of the sequential and parallel algorithms.

For the remainder of this chapter, we will always assume, unless stated otherwise,

that our probability space satisfies the Shearer criterion with ε-multiplicative slack.

We will occasionally drop this assumption when we are discussing the symmetric LLL

criterion, but this will always be derived as a corollary of results on the full Shearer

criterion.

We we deal exclusively in this chapter with the canonical dependency graph (not

the lopsidependency graph). Thus, we simplify our notation for the Shearer criterion

by writing Q(I, p) to mean Q(G, I, p) where G is the canonical dependency graph.

We will also make extensive use of the coupling construction we have seen for the

proof of the Witness Tree Lemma, based on a resampling table R. Recall that in

this construction, we have a table of values R(i, t), where i ranges over the variables

1, . . . , n and t ranges over the natural numbers 1, 2, . . . . Each cell R(i, t) is drawn

independently from the distribution on the variable i, that R(i, t) = j with probability

pij, independently of all other cells. The intent of this table is that, instead of choosing

new values for the variables in “on-line” fashion, we precompute the future values of

all the variables. The first entry in the table R(i, 1), is the initial value for the variable

Xi; on the tth resampling, we set Xi = R(i, t+ 1).
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3.0.1. Overview. In Section 3.1, we define and analyze the witness dag. We use

this tool to show stronger bounds on Parallel MT algorithm:

Theorem 3.1. With high probability, the Parallel MT algorithm terminates after

O(ε−1 log n) rounds.

Suppose we have an oracle which can determine all the bad-events true on a

given configuration, in time O(log2 n). The total complexity is O(ε−1 log3 n) time

and ε−1nO(1) processors.

These bounds are all independent of the LLL weighting function µ̃(B) and the

number of bad-events m. These significantly improve on qualitatively similar bounds

shown in Kolipaka & Szegedy [65], which show that Parallel MT algorithm terminates,

with constant probability, after 1/ε log(n/ε) rounds.1

In Section 3.2, we show a new, stronger concentration result for the runtime of

the sequential MT algorithm. This bound improves on similar concentration bounds

shown in [65] and [1].

Theorem 3.2. Suppose that the asymmetric LLL criterion is satisfied with ε-

multiplicative slack. With high probability, the total number of resamplings made the

MT algorithm is at most O(
∑

B µ(B) + ε−1 log2 n).

Suppose that the symmetric LLL criterion epd ≤ 1 is satisfied. Then, whp, the

number of resamplings is at most O(n+ d log2 n).

We obtain a similar result for when the Shearer criterion is satisfied as well.

In Section 3.3 and 3.4, we develop a new parallel algorithm for the LLL. The basic

idea of this algorithm is to select a random resampling table and then precompute

all possible resampling-paths compatible with it. Surprisingly, this larger collection,

which in a sense represents all possible choices for the trajectory of the MT algorithm,

can still be computed relatively quickly (in approximately O(ε−1 log2 n) time). Next,

1Note that Kolipaka & Szegedy use m for the number of variables and n for the number of bad-
events, while we do the opposite. We have translated all of their results into our notation. The
reader should be careful to keep this in mind when reading their original paper.
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we find a single MIS of this larger collection, which will allow us to determine the

complete set of resamplings necessary. It is this reduction from ε−1 log n separate MIS

algorithms to just one that is the key to our improved runtime.

It requires some definitions to state this result in its full “asymmetric” form, so

we defer that until later. For the symmetric LLL, we can give a simpler statement of

our new algorithm:

Theorem 3.3. Suppose that we can determine if any bad-event B is true on

a given configuration in time O(log n). Suppose that the symmetric LLL criterion

ep(1 + ε)d ≤ 1 is satisfied for some ε > 0.

Then we find a configuration avoiding B using Õ(ε−1 log(mn) log n) time and

(mn)O(1) processors.

In Section 3.5, we show how this algorithm can be derandomized, to give an NC

algorithm which also requires O(ε−1 log2(mn)) time under a stronger LLL criterion

epd1+ε ≤ 1. This improves on an algorithm of [23] which requires O(ε−1 log3(mn))

time. (These results can be extended to an asymmetric setting, but there are many

more technical conditions on the precise form of B.)

3.1. The witness dag

The witness tree τ̂ only provides an explanation for the single resampling at time

t. It may discard some information about other resamplings that were not relevant to

time t. We now consider a related object, the witness dag, that can record information

about multiple resamplings, or all of the resamplings.

A witness dag is a directed acyclic graph, whose nodes are labeled by bad-events.

For nodes v, v′ ∈ G, we write v ≺ v′ if there is an edge from v to v′. We further

impose two requirements. First, if nodes v, v′ are labeled by B,B′ and B ∼ B′, then

either v ≺ v′ or v′ ≺ v; if B 6∼ B′ then there is no edge between v, v′. We refer to this

as the comparability condition.

We let |G| denote the number of vertices in a witness dag G.
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It is possible that a witness dag can contain multiple nodes with the same label.

However, because of the comparability condition, all such nodes are linearly ordered

by ≺. Thus, for any witness dag G and any B ∈ B, one can unambiguously sort the

nodes of G labeled by B. Thus, we use the notation (B, k) to mean that node v is

the kth node of G labeled by B. For any node v, we refer to this ordered pair (B, k)

as the extended label of v. Every node in a witness dag receives a distinct extended

label. We emphasize that this is a notational convenience, as an extended label of a

node can be recovered from the witness dag G along with its un-extended labels.

Given a full execution of the MT algorithm, one can form a witness dag Ĝ which

we refer to as the full witness dag, as follows. Suppose that we resample bad-events

B1, . . . , Bt. Then Ĝ has vertices v1, . . . , vt which are labeled B1, . . . , Bt. We place

an edge from vi to vj iff i < j and Bi ∼ Bj. It is not hard to see that this graph

is indeed a witness dag as we have defined it. We emphasize that Ĝ is a random

variable, and we distinguish between this notion and that of a witness dag (which

is a non-random variable). The full witness dag (under different terminology) was

analyzed by Kolipaka & Szegedy in [65], and we will use their results in numerous

places. However, we will also consider partial witness dags, which record information

about only a subset of the resamplings. As we will see, these partial witness dags can

be useful even when we wish to analyze the full set of resamplings.

As tree-structures and single-sink witness dags are closely related, we will often

use the notation τ for a single-sink witness dag.

3.1.1. Compatibility conditions for witness dags and resampling tables.

In the Moser-Tardos proof, a method was shown for converting an execution log into

a witness tree, and necessary conditions were given for a witness tree being produced

in this fashion in terms of its consistency with the resampling table. We will instead

use these conditions as a definition of compatibility.

Definition 3.4 (Path of a variable). Let G be a witness dag. For any i ∈ [n],

let G[i] denote the subgraph of G induced on all vertices v labeled by B with i ∈ SB.
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Because of the comparability condition, G[i] is linearly ordered by ≺; thus we refer to

G[i] as the path of variable i.

Definition 3.5 (Configuration of v). Let G be a witness dag and R a resampling

table. Let v ∈ G be labeled by B. For each i ∈ SB, let yv,i denote the number of

vertices w ∈ G such that w ≺ v.

We now define the configuration of v by

Xv
G(i) = R(i, 1 + yv,i)

Definition 3.6 (Compatibility of dag G with resampling table R). For a witness

dag G and a resampling table R, we say that G is compatible with R if, for all nodes

v ∈ G labeled by B ∈ B, it is the case that B is true on the configuration Xv
G.

Note that this is well-defined because because Xv
G assigns values to all the variables

in SB.

We can easily extend key results of Moser & Tardos from tree-structures to witness

dags:

Definition 3.7 (Weight of a dag). Let G be any witness dag, whose nodes are la-

beled by bad-events B1, . . . , Bs. We define the weight of G to be w(G) =
∏s

k=1 PΩ(Bk).

Proposition 3.8. Let G be any witness dag. For a random resampling table R,

G is compatible with R with probability w(G).

Proof. For any node v ∈ G, note that Xv
G follows the law of Ω, and so the

probability that B is true of the configuration Xv
G is PΩ(B). Next, note that each

node v ∈ G imposes conditions on disjoint sets of entries of R, and so these events

are independent. �

The following result shows how witness dags and resampling tables are related to

the MT algorithm:
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Proposition 3.9. Suppose we run the MT algorithm, taking values for the vari-

ables from the resampling table R. Then Ĝ is compatible with R.

Proof. Suppose there is a node v ∈ Ĝ with an extended label (B, k). Thus, B

must be resampled at least k times. Suppose that the kth resampling occurs at time t.

Let Y be the configuration at time t, just before this resampling. We claim that, for

all i ∈ SB, we have Y (i) = Xv
Ĝ

(i). For, the graph Ĝ must contain all the resamplings

involving variable i. All such nodes would be connected to vertex v (as they overlap

in variable i), and those that occur before time t are precisely those that have an edge

to v. So yv,i is exactly the number of bad-events up to time t that involve variable i.

Thus, just before the resampling at time t, variable i was on its 1 + yv,i resampling.

So Y (i) = R(i, 1 + yv,i) = Xv
Ĝ

(i), as claimed.

Now, in order for B to be resampled at time t, it must have been the case that B

was true, i.e. that B held on configuration Y . However, since Y agrees with Xv
Ĝ

on

SB, it must be also be the case that B holds on configuration Xv
Ĝ

. Since this is true

for all v, it follows that G is compatible with R. �

These two results give us immediately the main lemma from Moser & Tardos:

Corollary 3.10. Let G be a witness dag. Then the probability that Ĝ = G is at

most w(G).

3.1.2. Prefixes of a witness dag. A witness dag G records information about

many resamplings. If we are only interested in the history of a subset of its nodes,

then we can form a prefix subgraph which discards irrelevant information.

Definition 3.11 (Prefix graph). For any vertices v1, . . . , vl ∈ V , let G(v1, . . . , vl)

denote the subgraph of G induced on all vertices which have a path to at least one of

v1, . . . , vl.

If H is a subgraph of G with H = G(v1, . . . , vl) for some v1, . . . , vl ∈ G, then we

say that H is a prefix of G.

57



Using definition 3.11, we can give a more compact definition of the configuration

of a node:

Proposition 3.12. For any witness dag G and v ∈ G, we have

Xv
G(i) = R(i, |G(v)[i]|)

Proof. Suppose that v is labeled by B. The graph G(v)[i] contains precisely v

itself and the other nodes w ∈ G with w ≺ v. �

Proposition 3.13. Suppose G is compatible with R and H is a prefix of G. Then

H is compatible with R.

Proof. Suppose H = G(v1, . . . , vl).

Consider w ∈ H labeled by B. We claim that H(w) = G(w). For, consider any

u ∈ H(w). So u has a path to w in H; it also must have a path to w in G. On the

other hand, suppose u ∈ G(w), so u has a path p to w in G. As w has a path to one

of v1, . . . , vl, this implies that every vertex in the path p also has such a path. Thus,

the path p is in H, and hence u has a path in H to w, so u ∈ H(w).

Next, observe that for any i ∈ SB we have

Xw
G(i) = R(i, |G(w)[i]|) = R(i, |H(w)[i]|) = Xw

H(i)

and by hypothesis, B is true on Xw
G . �

3.1.3. Counting tree-structures and witness dags. If we are given a collec-

tion of witness dags G, we define the total weight of G as
∑

G∈G w(G). In this section,

we count the total weight of certain classes of witness dags. In light of Corollary 3.10,

these will upper-bound the expected number of resamplings.
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Proposition 3.14 ([65]). Let B ∈ B. Then the total weight of all witness dags

with a single sink node labeled B, satisfies

∑
τ has single sink node B

w(τ) ≤ µ̃(B)

Proof. For any witness dag G with a single sink node v labeled B, define I ′j for

j = 0, . . . ,∞ inductively as follows. I ′0 = {v}, and I ′j+1 is the set of vertices in G

whose out-neighbors all lie in I ′0 ∪ · · · ∪ I ′j. Let Ij denote the labels of the vertices in

I ′j; so I0 = {B}.

Now observe that by the comparability condition each set Ij is an independent

set, and for each B′ ∈ Ij+1 there is some B′′ ∼ B′, B′′ ∈ Ij. Also, the mapping from G

to I0, . . . , Ij is injective. We thus may sum over all such I1, . . . , I∞ to obtain an upper

bound on the weight of such witness dags. In [65] Theorem 14, this sum is shown to

be Q({B}, PΩ)/Q(∅, PΩ) (although the notation they use is slightly different.) �

We will now take advantage of the ε-multiplicative slack in our probabilities.

Definition 3.15 (Adjusted weight). For any witness dag G, we define the ad-

justed weight with respect to rate factor ρ by

aρ(G) = w(G)(1 + ρ)|G|

Proposition 3.16. Let B be any bad-event. Then for ρ ∈ [0, ε], we have

∑
τ has single sink node B

aρ(τ) ≤ Q({B}, (1 + ρ)PΩ)

Q(∅, (1 + ρ)PΩ)

Proof. The probabilities (1 + ε)PΩ satisfy the LLL criterion, and by Propo-

sition 1.14 so must (1 + ρ)PΩ. Now apply Proposition 3.14 to the probabilities

(1 + ρ)PΩ. �
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Proposition 3.17. For any variable i ∈ [n] and any ρ ∈ [0, ε), we have

∑
B∼i

Q({B}, (1 + ρ)PΩ)

Q(∅, (1 + ρ)PΩ)
≤ 1 + ρ

ε− ρ

Proof. Let V = {B | i ∈ SB}. Now, consider the set of probabilities p given by

p(B) =


(1 + ε)PΩ(B) if i ∈ SB

(1 + ρ)PΩ(B′) if i /∈ SB

Note that p ≤ (1 + ε)PΩ and so by Proposition 1.14 we have Q(∅, p) > 0. But,

now consider that we have

Q(∅, p) =
∑
I⊆B

I independent

(−1)|I|
∏
B′∈I

p(B′)

=
∑

V⊆I⊆B
I independent

(−1)|I|
∏
B∈I

p(B) +
∑

I⊆B−V
I independent

(−1)|I|
∏
B∈I

p(B)

=
∑
B∈V

(1 + ε)PΩ(B)
∑

B∈I⊆B
I independent

(−1)|I|
∏

B′∈I,B′ 6=B

(1 + ρ)PΩ(B′)

+
∑

I⊆B−V
I independent

(−1)|I|
∏
B∈I

(1 + ρ)PΩ(B)

=
∑
B∈V

(ε− ρ)PΩ(B)
∑

B∈I⊆B
I independent

(−1)|I|
∏

B′∈I,B′ 6=B

(1 + ρ)PΩ(B′)

+
∑
I⊆B

I independent

(−1)|I|
∏
B∈I

(1 + ρ)PΩ(B)

=
−(ε− ρ)

1 + ρ

∑
B∈V

Q(G, {B}, (1 + ρ)PΩ) +Q(∅, (1 + ρ)PΩ)

We may now compute the sum over B ∈ V as:

∑
B∈V

Q({B}, (1 + ρ)PΩ)

Q(∅, (1 + ρ)PΩ)
=

∑
B∈V Q({B}, (1 + ρ)PΩ)

Q(∅, p) + (ε−ρ)
1+ρ

∑
B∈V Q({B}, (1 + ρ)PΩ)
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≤
∑

B∈V Q({B}, (1 + ρ)PΩ)
(ε−ρ)
1+ρ

∑
B∈V Q({B}, (1 + ρ)PΩ)

as Q(∅, p) > 0

=
1 + ρ

ε− ρ

�

Corollary 3.18 ([65]). The total weight of all tree-structures satisfies

∑
tree-structures τ

w(τ) ≤ n/ε

Proof. We have

∑
tree-structures τ

w(τ) ≤
∑
i

∑
τ has a single sink node
labeled by some B ∼ i

w(τ)

≤
∑
i

∑
τ has a single sink node
labeled by some B ∼ i

Q({B}, PΩ)

Q(∅, PΩ)
by Proposition 3.16

≤
∑
i

ε−1 by Proposition 3.17

= n/ε

�

Proposition 3.19. For r ≥ 1 + 1/ε, the expected number of single-sink witness

dags compatible with R containing more than r nodes is at most enr(1 + ε)−r

Proof. Summing over such dags:

∑
τ has single sink node

|τ |≥r

P (τ compatible with R)

=
∑

τ has single sink node
|τ |≥r

w(τ)

≤ (1 + ρ)−r
∑

τ has single sink node
|τ |≥r

w(τ)(1 + ρ)|τ |
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for any ρ ∈ [0, ε]

≤ (1 + ρ)−r
∑

τ has single sink node
|τ |≥r

aρ(τ)

≤ (1 + ρ)−r
∑
i∈[n]

∑
B|i∈SB

∑
τ has single sink node B

|τ |≥r

aρ(τ)

≤ (1 + ρ)−rn
1 + ρ

ε− ρ
by Propositions 3.16, 3.17

Now take ρ = ε− (1 + ε)/r. By our condition r ≥ 1 + 1/ε we have ρ ∈ [0, ε] and

so Proposition 3.17 applies. Hence the expected number of such witness dags is at

most n rr

(r−1)r−1(1+ε)r
≤ enr(1 + ε)−r. �

Corollary 3.20. Whp, all single-sink witness dags compatible with R contain

O( log(nε−1)
ε

) nodes. Whp all but 10 logn
ε

single-sink witness dags compatible with R

contain ≤ 10 logn
ε

nodes.

Proof. This follows immediately from Markov’s inequality and Proposition 3.19.

�

Corollary 3.21. Whp, all witness dags compatible with R have height O( logn
ε

).

Proof. Suppose that there is a witness dag G of height T . Then for i = 1, . . . , T

there is a single-sink witness dag of height ≥ i, and all such dags are distinct. (Select

a node v of height i, and set Gi = G(vi). ) In particular, for i = T/2, we have

that there are Ω(T ) single-sink witness dags of height Ω(T ) compatible with R. By

Corollary 3.20, this implies T = O( logn
ε

). �

With this Corollary 3.21, we are able to give a better bound on the complexity

of the Parallel MT algorithm. The following Proposition 3.22 is remarkable in that

the complexity is phrased solely in terms of the number of variables n and the slack

ε, and is otherwise independent of B.
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Proposition 3.22. With high probability, the Parallel MT algorithm terminates

after O(ε−1 log n) rounds.

Suppose we have an oracle which can determine all the bad-events true on a given

configuration, in time O(log2 n). The total complexity of the Parallel MT algorithm

is O(ε−1 log3 n) time and ε−1nO(1) processors.

Proof. An induction on i shows that if the Parallel MT Algorithm runs for i

steps, then Ĝ has depth i, and it is compatible with R. But Corollary 3.21 shows

that, whp, this implies that i = O( logn
ε

). This implies that the total time needed to

identify true bad-events is O(i log2 n) ≤ O( log3 n
ε

).

Now, suppose that at stage i the number of bad-events which are currently true

is vi. Then the total work spent computing the maximal independent sets, over the

full algorithm, is
∑t

i=1O(log2 vi) ≤ O(t log2(
∑
vi/t)). On the other hand, for each

bad-event which is at true at each stage, one can construct a corresponding witness

tree, and all such trees are unique. Hence, E[
∑
vi] ≤ W ≤ n/ε. At t ≤ logn

ε
, we have

E[t log2(
∑
vi/t)] ≤ ε−1 log3 n. This shows the bound on the time complexity of the

algorithm.

Now suppose we can enumerate all the currently true bad-events. The expected

number of bad-events which are ever true is at most the weight of all single-sink

witness dags, which is W ≤ n/ε. By Markov’s inequality, whp the total number of

bad-events which are ever true is bounded by ε−1nO(1). �

We contrast this with a qualitatively similar result in Kolipaka & Szegedy, which

shows that Parallel MT algorithm terminates, with constant probability, after ε−1 log(m/ε)

rounds.

3.2. Concentration for the number of resamplings

Although the main focus of this chapter is to create a parallel algorithm for the

LLL, using our results on witness dags we are able to show a powerful result for the

runtime of the sequential MT algorithm.

63



The expected number of resamplings for the MT algorithm is at most W . Suppose

we wish to ensure that the number of resamplings is bounded with high probability,

not merely in expectation. One simple way to achieve this would be to run log n

instances of the MT algorithm in parallel; this is a generic amplification technique

which ensures that whp the total number of resamplings performed will beO(W log n).

Can we avoid this extraneous factor of log n? In this section, we answer this ques-

tion in the affirmative by giving a concentration result for the number of resamplings.

We show that whp the number of resamplings will not exceed O(W ) (assuming that

W is sufficiently large).

We note the straightforward approach here would be the following: the probability

that there are T resamplings is at most the probability that there is a T -node witness

dag compatible with R; this can be upper-bounded by summing the weights of all

such T -node witness dags. This approach shows only the weaker result that whp the

number of resamplings is at most O(W/ε).

We contrast our result with Kolipaka & Szegedy [65], which shows that the MT

algorithm terminates after O(n2/ε + n/ε log(1/ε)) resamplings with constant proba-

bility. In [1], a similar type of concentration result is shown: they show that in the

symmetric LLL setting, their algorithm (which is a variant/generalization of the MT

algorithm) performs O(n/ε) resamplings whp.

It will be more technically convenient, in this section, to work with the Shearer

criterion. In this case, we use a slightly different parameter than W ; namely we use

W̃ =
∑
B∈B

µ̃(B).

As we have seen in Theorems 2.5, 2.6, W ≤ W̃ and W̃ is an upper bound on the

expected number of resamplings performed by the MT algorithm. So it will suffice

to show concentration around W̃ resamplings.
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Proposition 3.23. Given any distinct bad-events B1, . . . , Bs, the total weight of

all witness dags with s sink nodes labelled B1, . . . , Bs, is at most
∏s

i=1 µ̃(Bi).

Proof. We define a function F which which maps s-tuples (τ1, . . . , τs) of single-

sink witness dags with sink nodes labelled respectively B1, . . . , Bs, to witness dags

G = F (τ1, . . . , τs) whose sink nodes are labeled B1, . . . , Bs. The function is defined

by first forming the disjoint union of the graphs τ1, . . . , τs. We then add an edge from

a node B ∈ τi to B′ ∈ τj iff i < j and B ∼ B′.

Now, consider any witness dagG whose sink nodes v1, . . . , vs are labeledB1, . . . , Bs.

For i = 1, . . . , j, define τi recursively by

τi = G(vi)− τ1 − · · · − τi−1

Note that each τi contains the sink node vi, so it is non-empty. Also, all the nodes in

τi are connected to vi, so τi indeed has a single sink node. Finally, every node of G

has a path to one of v1, . . . , vj, so it must in exactly one τi.

Thus, for each witness dag G with sink nodes labelled B1, . . . , Bs, there exist s

separate single-sink witness dags τ1, . . . , τs such that G = F (τ1, . . . , τs), and further-

more such that the nodes of G are the union of the nodes of τ1, . . . , τs. In particular,

w(G) = w(τ1) · · ·w(τs). So we have:

∑
G has s sink nodes B1, . . . , Bs

w(G) ≤
∑
τ1,...,τs

w(τ1) . . . w(τs)

=
s∏
i=1

∑
τ has single sink node Bi

w(τ)

≤
s∏
i=1

µ̃(Bi) by Proposition 3.14

�

Theorem 3.24. With high probability, the total number of resamplings made the

MT algorithm is at most O(W̃ + ε−1 log2 n)
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Proof. First, consider the expected number of witness dags which are compatible

with R and which contain exactly s sink nodes; here s is a parameter to be specified

later. Each of these s sink nodes must receive distinct labels. We can estimate this

quantity as

∑
G has s sink nodes

P (G compatible with R) ≤
∑

G has s sink nodes

w(G)

≤
∑

B1, . . . , Bs distinct

∑
G has sink nodes

labeled B1, . . . , Bs

w(G)

≤
∑

B1, . . . , Bs distinct

µ̃(B1) . . . µ̃(Bs) by Proposition 3.23

≤ 1

s!
(
∑
B∈B

µ̃(B))s

=
W̃ s

s!

Now, suppose that the MT algorithm runs for t time-steps. Let Ĝ be the full

witness dag of the resulting execution. Each resampling at time i ∈ {1, . . . , t} corre-

sponds to some vertex vi in Ĝ.

By Proposition 3.20, all but 10 logn
ε

single-sink witness dags contain ≤ 10 logn
ε

nodes.

As our goal is to show an event happens whp, we assume for the rest of this proof

that this event has happened. Now, let X denote the set {i | |Ĝ(vi)| ≤ h} where

h = 10logn
ε

. Under our assumption, we must have |X| ≥ t− 10 logn
ε

; as we are seeking

to show that t ≥ log2 n
ε

we may assume that |X| ≥ t/2. For each i = 1, . . . , |X| let

Hi = Ĝ(xi) where xj denotes the ith element of X in order.

Suppose that we now select indices |X| ≥ i1 > i2 > i3 > · · · > is−1 > is ≥ 1,

satisfying ij /∈ Hi1 ∪ · · · ∪Hij−1
for all j = 1, . . . , s.

The subgraph Ĝ(xi1 , . . . , xis) must contain exactly s sink nodes xi1 , . . . , xis (as

each xij cannot have a path to any xij′ .) Furthermore, for any such choice of i1, . . . , ij,
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the resulting witness dags Ĝ(xi1 , . . . , xis) are distinct. Finally, by Proposition 3.13

each such witness dag is compatible with R.

Hence, the number of single-sink witness dags compatible with R must be at least

the number of such s-tuples of indices, which is

∑
1≤i1≤t/2

∑
i2<i1
i2 /∈Hi1

∑
i3<i2

i3 /∈Hi1∪Hi2

· · ·
∑

is<is−1

is /∈Hi1∪Hi2∪···∪His−1

1

By Proposition 3.27 (which we defer to after this proof), under the assumption

that |Hj| ≤ h for all j, this expression is at least
(
t/2−(s−1)h

s

)
≥ (t/2−sh)s

s!
.

Hence, we have shown that the number of witness dags with s sink nodes compat-

ible with R is at least (t/2−sh)s

s!
. Recalling that the expected number of such dags is at

most W s/s!, the latter by Markov’s inequality has probability at most W s/(t/2−sh)s.

Now set s = t
4h

. Then the probability of this can be bounded by

W s

(t/2− sh)s
= (4W/t)s

≤ 2−s for t ≥ 8W

= n−Ω(1) for t ≥ Ω(
log n

ε
)

�

Corollary 3.25. The MT algorithm performs O(n/ε) resamplings whp.

Proof. We have W̃ =
∑

B µ(B) ≤
∑

i

∑
B∼i µ(B) ≤ n/ε. Thus, by Theo-

rem 3.24, with high probability the total number of resamplings made the MT algo-

rithm is at most O(ε−1n+ ε−1 log2 n) = O(n/ε) �

For the symmetric LLL, we can even obtain concentration without the need for

the multiplicative ε-slack.

Corollary 3.26. Suppose the symmetric LLL criterion epd ≤ 1 applies. Then,

whp, the number of resamplings is O(n+ d log2 n).
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Proof. Set µ(B) = 1
d

for all B ∈ B. Now a simple calculation shows that we

satisfy the asymmetric LLL condition for ε = e((d− 1)/d)d−1 − 1 = Ω(1/d).

Also, observe that µ̃(B) ≤ µ(B) = 1/d, and so W̃ ≤ m/d. We also may observe

that m ≤ nd. So, by Theorem 3.24, the total number of resamplings is, with high

probability O(n+ d log2 n). �

To finish this proof, we need to show the following simple combinatorial bound:

Proposition 3.27. Suppose that A is a set of positive integers of cardinality

|A| = t. Suppose that for each j ∈ Z there is a set of positive integers Ij, with

|Ij| ≤ h for all j. Define

f(A, s, I) =
∑
i1∈A

∑
i2<i1

i2∈A−Ii1

∑
i3<i2

i3∈A−Ii1−Ii2

· · ·
∑

is<is−1
is∈A−Ii1−Ii2−···−Iis−1

1

Then we have

f(A, s, I) ≥
(
t− (s− 1)h

s

)

Proof. We prove this by induction on s. When s = 1 we have

f(A, 1, I) =
∑
i1∈A

1 = t =

(
t− (1− 1)h

1

)

as claimed.

So we consider the induction step. Suppose that A = {a1, . . . , at}, and suppose

that we select the value i1 = aj. Then observe that the remaining sum over i2, . . . , is

is equal to f(A′j, s−1, I), where A′j = {a1, . . . , aj−1}− Ii1 which is a set of cardinality

at least j − 1− h.
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Summing over all j = 1, . . . , t gives us:

f(A, s, I) =
t∑

j=1

f(A′j, s− 1, I) ≥
t∑

j=(s−1)h+s

f(A′j, s− 1, I)

≥
t∑

j=(s−1)(h+1)

(
(j − 1− h)− (s− 2)h

s− 1

)
by inductive hypothesis

=

t−1−h(s−1)∑
j=s−1

(
j

s− 1

)
=

(
t− (s− 1)h

s

)

and the induction is proved. �

3.3. Mutual consistency of witness dags

In Section 3.1, we have seen conditions for witness dags to be compatible with

a given resampling table R. In this section, we examine when a set of witness dags

can be mutually consistent, in the sense that they could all be prefixes of some

(unspecified) full witness dag.

Definition 3.28 (Consistency of G,G′). Let G,G′ be witness dags. We say that

G is consistent with G′ is, for all variables i, either G[i] is an initial segment of G′[i]

or G′[i] is an initial segment of G[i], both of these as labeled graphs. (Carefully note

the presence of the quantifier here: If n = 2 and G[1] is an initial segment of G′[1]

and G′[2] is an initial segment of G[2], then G,G′ are compatible.)

Let G be any set of witness dags. We say that G is pairwise consistent if G,G′

are consistent with each other for all G,G′ ∈ G.

Proposition 3.29. Suppose H1, H2 are prefixes of G. Then H1 is consistent with

H2.

Proof. Observe that for any w1 ≺ w2 ∈ Hj, we must have w1 ∈ Hj as well. It

follows that Hj[i] is an initial segment of G[i] for any i ∈ [n]. As both H1[i] and H2[i]

are initial segments of G[i], one of them must be an initial segment of the other. �
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Definition 3.30 (Merge of two consistent dags). Let G,G′ be consistent witness

dags. Then we define the merge G ∨ G′ as follows. If either G or G′ has a node v

with an extended label (B, k), then we create a corresponding node w ∈ G∨G′ labeled

by B. We refer to the corresponding label of w as (B, k).

Now, let v1, v2 ∈ G∨G′ have corresponding label (B1, k1) and (B2, k2). We create

an edge from v1 to v2 if either G or G′ has an edge between vertices with extended

label (B1, k1), (B2, k2) respectively.

Proposition 3.31. Suppose that, when forming G ∨ G′, that v ∈ G ∨ G′ has

corresponding label (B, k). Then v has extended label (B, k).

Proof. Because of our rule for forming edges in G∨G′, the only edges that can

go to v from other nodes labeled B, would have corresponding labels (B, l) for l < k.

Thus, there are at most k − 1 nodes labeled B with an edge to v.

On the other hand, there must be nodes with extended label (B, k) in G or G′; say

without loss of generality the first. Then G must also have nodes with extended labels

(B, 1), . . . , (B, k − 1). These correspond to vertices w1, . . . , wk−1 with corresponding

labels (B, 1), . . . , (B, k−1), all of which have an edge to v. So there are at least k−1

nodes labeled B with an edge to v.

Thus, there are exactly k nodes in G with an edge to v and hence v has extended

label (B, k). �

By Proposition 3.31, for every vertex v ∈ G or v ∈ G′, there is a vertex in G∨G′

with the same extended label. We will abuse notation slightly, so that we refer to

this vertex in H also by the name v.

Proposition 3.32. Let G,G′ be consistent witness dags and let H = G ∨ G′. If

there is a path v1, . . . , vl in H and vl ∈ G, then also v1, . . . , vl ∈ G.

Proof. Suppose that this path has corresponding labels (B1, k1), . . . , (Bl, kl).

Suppose i ≤ l is minimal such that vi, . . . , vl are all in G. (This is well-defined as

vl ∈ G). If i = 1 we are done.
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Otherwise, we have vi ∈ G, vi−1 ∈ G′ − G. Note that Bi−1 ∼ Bi, so let j ∈

SBi−1
∩ SBi . Note that vi ∈ G[j], vi−1 ∈ G′[j]. But observe that in H there is an

edge from vi−1 to vi. As vi−1 /∈ G, this edge must have been present in G′. So G′[j]

contains the vertices vi−1, vi, in that order, while G[j] contains only the vertex vi.

Thus, neither G[j] or G′[j] can be an initial segment of the other. This contradicts

the hypothesis. �

Proposition 3.33. Let G,G′ be consistent witness dags and let H = G ∨ G′.

Then H is a witness dag and both G and G′ are prefixes of it.

Proof. Suppose that H contains a cycle v1, . . . , vl, v1, and suppose v1 ∈ G. Then

by Proposition 3.32 the cycle v1, . . . , vl, v1 is present also inG, which is a contradiction.

Next, we show that the comparability condition holds for H. Suppose that (B1, k1)

and (B2, k2) are the corresponding labels of vertices in H, and B1 ∼ B2. So let

i ∈ SB1 ∩ SB2 . Without loss of generality, suppose that G[i] is an initial segment

of G′[i]. So it must be that (B1, k1) and (B2, k2) appear in G′[i]. Because of the

comparability condition for G′, there is an edge in G′ on these vertices, and hence

there is an edge in H as well.

Finally, we claim that G = H(v1, . . . , vl) where v1, . . . , vl are the vertices of G.

It is clear that G ⊆ H(v1, . . . , vl). Now, suppose w ∈ H(v1, . . . , vl). Then there

is a path w, x1, x2, . . . , xl, v where the vertices x1, . . . , xl lie in H and v ∈ G. By

Proposition 3.32, this implies that w, x1, . . . , xl, v ∈ G. So w ∈ G and we are done. �

Proposition 3.34. The operation ∨ is commutative and associative.

Proof. Commutativity is obvious from the symmetric way in which ∨ was de-

fined. To show associativity, note that we can give the following symmetric charac-

terization of H = (G1 ∨G2)∨G3. If G1, G2 or G3 has a node labeled (B1, k1) then so

does H. We have an edge from (B1, k1) to (B2, k2) if there is such an edge in G1, G2

or G3. �
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Proposition 3.35. Suppose G1, G2 are consistent with each other and with some

witness dag G3. Then G1 ∨G2 is consistent with G3.

Proof. For any variable i ∈ [n], note that either G1[i] is an initial segment of

G2[i] or vice-versa. Also note that (G1 ∨G2)[i] is the longer of G1[i] or G2[i].

Now we claim that for any variable i, eitherG3[i] is an initial segment of (G1∨G2)[i]

or vice-versa. Suppose without loss of generality that G1[i] is an initial segment of

G2[i]. Then (G1 ∨ G2)[i] = G1[i]. By definition of consistency, either G1[i] is an

initial segment of G3[i] or vice-versa. So (G1 ∨G2)[i] is an initial segment of G3[i] or

vice-versa. �

In light of these propositions, we can unambiguously define, for any pairwise

consistent set of witness dags G = {G1, . . . , Gl}, the merge

∨
G = G1 ∨G2 ∨G3 · · · ∨Gl

The notation suggests that this may depend on the ordering G1, . . . , Gl, but because

of associativity and commutativity this can be well-defined in terms of the unordered

set {G1, . . . , Gl}.

We can give another characterization of pairwise consistency, which is more illu-

minating although less explicit:

Proposition 3.36. The witness dags G1, . . . , Gl are pairwise consistent iff there

is some witness dag H such that G1, . . . , Gl are all prefixes of H.

Proof. For the forward direction: let H = G1 ∨ · · · ∨ Gl. By Proposition 3.33,

each Gi is a prefix of H. For the backward direction: by Proposition 3.14, any Gi1 , Gi2

are both prefixes of H, hence consistent. �

Proposition 3.37. Let G1, G2 be consistent witness dags and R a resampling

table. Then G1 ∨G2 is compatible with R iff both G1 and G2 are compatible with R.
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Proof. For the forward direction: let v ∈ G1 labeled by B. By Proposition 3.32,

we have G1(v) = (G1∨G2)(v). Thus for i ∈ SB we have |G1(v)[i]| = |(G1∨G2)(v)[i]|.

This implies that Xv
G1

= Xv
G1∨G2

. By hypothesis, B is true on Xv
G1∨G2

and hence Xv
G1

.

As this is true for all v ∈ G1, it follows that G1 is compatible with R. Similarly, G2

is compatible with R.

For the backward direction: Let v ∈ G1 ∨G2. Suppose without loss of generality

that v ∈ G1. As in the forward direction, we have Xv
G1

= Xv
G1∨G2

; by hypothesis B is

true on the former so it is true on the latter. Since this holds for all v ∈ G1 ∨G2, it

follows that G1 ∨G2 is compatible with R. �

3.4. A new parallel algorithm for the LLL

In this section, we will develop a parallel algorithm to enumerate all the single-

sink witness dags which are compatible with R. This willallow us to enumerate

(implicitly) all witness dags compatible with R. In particular, we are able to simulate

all the possible values for Ĝ, the full witness dag. We are able to do this without

actually running the MT algorithm.

In a sense, both the parallel MT algorithm and our new parallel algorithm are

building up Ĝ. However, the Parallel MT algorithm does this layer by layer, in an

inherently sequential way: we cannot determine layer i+1 until we have fixed a value

for layer i, and resolving each layer requires a separate MIS calculation.

Our algorithm dispenses with this MIS calculation at each stage. As a result, it

is not able to completely resolve layer i before moving on to layer i + 1. There are

multiple possible values for layer i, and our algorithm computes all the possible layer

i + 1-witness dags which they could lead to. Although the number of such witness

dags is exponential, we can still do this efficiently because they can be built out of

single-sink witness dags. These are only polynomial in number, and can be processed

in parallel.
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3.4.1. Collectible witness dags. The goal of our algorithm is to enumerate

the single-sink witness dags (nearly equivalently, the tree-structures.) We will build

them up node-by-node. However, in order to do so, we must keep track of a slightly

more general type of witness dags, namely, those derived by removing the root node

from a single-sink witness dag. Such witness dags have multiple sink nodes, which

are all at distance two in the dependency graph. Although this is a much larger set

than the set of single-sink witness dags, it is still small enough to enumerate. This is

very close to the concept of partial witness trees introduced in [23].

Definition 3.38 (Collectible witness dag). Suppose we are given a witness dag

G, whose sink nodes are labeled B1, . . . , Bs. We say that G is collectible to B if

B ∼ B1, . . . , B ∼ Bs.

We say that G is collectible if it is collectible to some B ∈ B. Note that if G has

a single sink node labeled by B, it is collectible to B.

Proposition 3.39. Define

W ′ =
∑
B

µ̃(B)/PΩ(B)

The expected total number of collectible witness dags compatible with R is at most

W ′.

Proof. Suppose that G is a witness dag collectible to B. Then define G′ by

adding to G a new sink node labeled by B. As all the sink nodes in G are labeled by

B′ ∼ B, now G′ is a single-sink witness dag containing r + 1 nodes.

Now

P (G compatible with R) = w(G) =
w(G′)

PΩ(B)

The total probability that there is some G compatible with R and collectible to

B, is at most the sum over all such G. When we sum over all such witness dags G,

then each witness dag G′ with a single sink node labeled by B appears at most once
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in the sum. Hence, we have

∑
G collectible

w(G) ≤
∑
B∈B

G collectible to B

w(G)

≤
∑
B∈B

G collectible to B

w(G′)

PΩ(B)

≤
∑
B∈B

∑
single-sink witness dags G

rooted in B ∈ B

w(G)

PΩ(B)

≤
∑
B∈B

µ(B)

PΩ(B)

�

The parameter W ′, which dictates the run-time of our parallel algorithm, has a

somewhat complicated behavior. For most applications of the LLL where the bad-

events are “balanced,” then we have W ′ ≈ m. For example, consider the symmetric

LLL setting:

Proposition 3.40. Suppose that each bad-event B has PΩ(B) ≤ p and is depen-

dent with at most d other bad-events. And suppose that the symmetric LLL criterion

epd ≤ 1 is satisfied.

Then W ′ ≤ me.

Proof. Observe that the Asymmetric LLL criterion is satisfied by setting µ(B) =

ePΩ(B) for all B ∈ B. So W ′ ≤
∑ ePΩ(B)

PΩ(B)
≤ me. �

On the other hand, for instances in which there are some bad-events which have

very low probability and very high dependency, then W ′ can become exponentially

large.

3.4.2. Algorithmically enumerating witness dags. In the Moser-Tardos set-

ting, the witness trees were not actually part of the algorithm but were a theoretical

device for analyzing it. In our algorithm, we will operate directly on witness dags.

75



The following algorithm draws a random resampling table and then builds a list of

witness dags compatible with it:

1. Randomly sample the resampling table R.

2. For each bad-event B true in the initial configuration R(·, 0), create a graph

with a single vertex labeled B. We denote this initial set by F1.

3. For k = 1, 2, . . . K:

4. For each consistent pair of witness dags G1, G2 ∈ Fk, form G′ = G1∨G2.

If G′ is collectible, then add it to Fk+1.

5. For each witness dag G ∈ Fk which is collectible to B, create a new

witness dag G′ by adding to G a new sink node labeled by B. If G′ is

compatible with R then add it to Fk+1.

6. Finally, add every G ∈ Fk to G ∈ Fk+1. (So that Fk ⊆ Fk+1).

We will show that for K = O(ε−1 log(ε−1n)), with high probability this algorithm

generates all the single-sink witness dags compatible with R.

Proposition 3.41. Let G ∈ Fk for any integer k ≥ 1. Then G is compatible with

R.

Proof. We show this by induction on k. When k = 1, then G ∈ F1 is a singleton

node v labeled by B. Note that Xv
G(i) = R(i, 0) for all i ∈ SB, and so B is true on

Xv
G. So G is compatible with R.

Now for the induction step. Suppose first G was formed by G = G1 ∨ G2, for

G1, G2 ∈ Fk−1. By induction hypothesis, G1, G2 are compatible with R. So by

Proposition 3.35, G is compatible with R. Second suppose G was formed in step (5),

so by definition it must be compatible with R. �

Proposition 3.42. Suppose that G is a collectible witness dag with k nodes com-

patible with R. Then G ∈ Fk.
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Proof. We show this by induction on k. When k = 1, then G is a singleton node

v labeled by B, and Xv
G(i) = R(i, 0). So B is true on the configuration R(·, 0), and

so we put G into F1.

For the induction step, first suppose G has a single sink node v labeled by B. If

G has only one vertex, then G ∈ F1 ⊆ Fk. So we may suppose G has multiple nodes.

Now consider the witness dag G′ = G− v. This witness dag has at most r− 1 nodes.

Also, all the sink nodes in G′ must be labeled by some B′ ∼ B (as otherwise they

would remain sink nodes in G). So G′ is collectible to B. So, by induction hypothesis,

G′ ∈ Fk−1. Now iteration k − 1 transforms the graph G′ ∈ Fk−1 into G (by adding a

new sink node labeled by B), and so G′ ∈ Fk as desired.

Next, suppose that G is a witness dag with multiple sink nodes v1, . . . , vs labeled

by B1, . . . , Bs, with the property s ≥ 2 and that B ∼ B1, . . . , Bs for some B ∈ B.

Let G′ = G(v1) and let G′′ = G(v2, . . . , vs). Note that G′ is missing the vertex vs and

similarly G′′ is missing the vertex v1. So G′, G′′ have strictly less than k nodes. Also,

note that G′, G′′ are collectible to B.

Finally, observe that G = G′ ∨ G′′. Clearly every vertex in G appears in G′ or

G′′. Also, by Proposition 3.29, G,G′ are both prefixes of G and hence are compatible

with R.

So by induction hypothesis, we have G′, G′′ ∈ Fk−1, and thus G = G′∨G′′ is added

to Fk in step (4).

�

Proposition 3.43. Suppose that one can determine, in O(log n) time, whether

any given bad-event is true on an assignment of its variables.

With high probability, this procedure enumerates all single-sink witness dags com-

patible with R in time Õ(ε−1(log ε−1n)(log(W ′ε−1n)) and using (W ′ε−1n)O(1) proces-

sors.

Proof. We have shown that Fk contains all the collectible witness dags com-

patible with R using at most k nodes. Furthermore, by Corollary 3.20, whp all the
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single-sink witness dags compatible with R contain at most O(ε−1 log(ε−1n)) nodes.

Hence, for K = O(ε−1 log(ε−1n)), we have that with high probability FK contains all

such single-sink witness dags.

Furthermore, the expected total number of such dags is at most W ′. Hence, with

high probability, the total number of such dags is at most W ′nO(1). Each dag could

involve up to nε−1 log n cells from the resampling table. So we can store the entire

collection of such dags using (W ′ε−1n)O(1) processors.

We describe in Section 3.4.5 further details about how these witness dags can be

processed. Given that there are M = (W ′n)O(1) total dags and that bad-events can

be checked in O(log n) time, we can implement individual steps using (Mmε−1n)O(1)

processors and Õ(log(Mε−1mn)) time. Observe thatW ′ ≥ m, so this can be simplified

to (W ′ε−1n)O(1) etc. �

3.4.3. Producing the final configuration. So far, our parallel algorithm has

generated the complete set of single-sink witness dags compatible with R. We can

define a graph G, whose nodes correspond to such single-sink witness dags, with an

edge between dags if they are pairwise inconsistent. Let I be a maximal independent

set of G, and let G =
∨
I. Now define the configuration X∗, which we refer to as the

final configuration, by

X∗(i) = R(i, |G[i]|+ 1)

for all i ∈ [n].

The final stage of our algorithm is to output X∗.

Proposition 3.44. With high probability, no bad-event B ∈ B is true on the

configuration X∗.

Proof. Suppose that B is true on X∗. Now define the witness dag H by adding

to G a new sink node v labeled by B. Observe that G is a prefix of H. By Proposi-

tion 3.29 H,G are consistent.
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We claim that H is compatible with R. By Proposition 3.13, G is compatible with

R so this is clear for all the vertices of H except for its sink node v. For this vertex,

observe that for each i ∈ SB we have Xv
H(i) = R(i, |H[i]|) = R(i, |G[i]|+ 1) = X∗(i).

By Proposition 3.13, this implies that H(v) is compatible with R as well.

So H(v) is a single-sink witness dag compatible with R. By Proposition 3.43,

with high probability H(v) ∈ FK . So H(v) is a node of G. Observe that H(v) and

all the witness dags G′ ∈ I are prefixes of H. By Proposition 3.36, H(v) is pairwise

consistent with all of them. As I was chosen to be a maximal independent set, this

implies that H(v) ∈ I.

By Proposition 3.33, this implies that H(v) is a prefix of G. This implies that

|G[i]| ≥ |H(v)[i]| for any variable i. But for i ∈ SB we have |H(v)[i]| = |H[i]| =

|G[i]|+ 1, a contradiction. �

Putting this all together gives a faster algorithm for the LLL:

Theorem 3.45. Suppose we satisfy the Shearer criterion with multiplicative ε-

slack. Suppose we can check, for any bad-event B and any configuration, if B is

true in time O(log n). Then there is an algorithm to find a configuration avoiding B,

running in time Õ(ε−1(log ε−1n) log(W ′ε−1n)) and using (W ′ε−1n)O(1) processors.

Proof. By Proposition 3.43, we can enumerate all the single-sink witness dags

using Õ(ε−1(log ε−1n)(log(W ′ε−1n)) time and (W ′ε−1n)O(1) processors.

With high probability, the total number of such single-sink witness dags is WnO(1).

Using Luby’s MIS algorithm, one find a maximal independent set of such dags in time

O(log2(Wn)) and using (Wn)O(1) processors. Note that W ≤ n/ε and so this running

time is dominated by the first phase.

Finally, one can form the configuration X∗ as indicated in Proposition 3.44 in

time log(Wε−1n) and using (Wε−1n)O(1) processors. This configuration avoids all

bad-events, as desired. �
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Corollary 3.46. Suppose that we can determine if any bad-event B is true on a

given configuration in time O(log n). Suppose that each bad-event B has PΩ(B) ≤ p

and is dependent with at most d other bad-events. And suppose that the symmetric

LLL criterion ep(1 + ε)d ≤ 1 is satisfied, for some ε > 0.

Then there is an algorithm to find a configuration avoiding B running in time

Õ(ε−1 log(mn) log n) and using (mn)O(1) processors.

Proof. We have W ≤
∑

B∈B ep ≤ O(m/d). By Proposition 3.40, we have W ′ ≤

me. Now note that m ≤ nd, so W ≤ O(n).

Next, note that even if epd = 1, then we can still satisfy the Shearer criterion with

multiplicative ε-slack, for ε = Ω(1/d). Hence, we can assume that ε−1 ≥ Ω(1/m) and

hence the terms log ε−1 can be upper-bounded by logm.

Now apply Theorem 3.45. �

3.4.4. A heuristic lower bound. In this section, we will give some intuition as

to why we believe that the run-time of this algorithm, ε−1 log2 n, is essentially optimal

for LLL algorithms which are based on the resampling paradigm. We are not able to

give a formal proof, because we do not have any fixed model of computation in mind.

Suppose we are given a problem instance on n variables whose distributions are

all Bernoulli-q, where q ∈ [0, 1] is a parameter to be chosen. The space B consists of
√
n bad-events, each of which is a conjunction of

√
n variables, and all these events

are completely disjoint from each other. The probability of each event is p = q
√
n; we

choose q so p = 1− ε.

The number of resamplings of each event is a geometric random variable, and it

is not hard to see that with high probability there will be some bad-event B which

requires Ω(ε−1 log n) resamplings in order to cause B to become false.

Also, note that whenever we perform a resampling of B, we must compute whether

B is currently true. This requires computing a multiplication of
√
n binary variables,

which itself requires time Ω(log n).

Thus, the overall running time of this algorithm must be Ω(ε−1 log2 n).
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The reason we consider this a heuristic lower bound is that, technically, the parallel

algorithm we have given is not based on resampling. That is, there is no current

“state” of the variables which is updated as bad-events are discovered. Rather, all

possible resamplings are precomputed in advance from the table R.

3.4.5. Processing the witness dags. In our algorithm, we have assumed that

if we have M total witness dags under consideration, that we can perform the ba-

sic operations of the parallel algorithm in Õ(log(Mmn)) time and using (Mmn)O(1)

processors on a PRAM.

The main task we must perform is, given two witness dags G1, G2, we must first

determine if G1, G2 are compatible and if so form G = G1 ∨G2. Next, we must check

if G is collectible to some B. A related task is: given a graph G collectible to some

B, create a new graph G′ which has an added sink node labeled B.

If we worked with the full graph structure of the witness dags, then these steps

might appear to require a traversal of the graphs. However, we only need to store

a limited amount of information about these dags. Namely, we must store the list

of all sink nodes, and we must store the association between entries of R and the

corresponding bad-events. That is, for each variable i ∈ [n] and each t ≤ O(ε−1 log n),

we must determine a list of all the nodes v ∈ G and their labels (B, k) such that

G(v)[i] = t. Using this information, we may easily determine if G1, G2 are compatible.

It is also straightforward to compute this association table for G1 ∨ G2, given the

association tables for the individual graphs. (We simply merge the lists; this can be

done using standard parallel sorting algorithms).

We can likewise determine the sink nodes of G1∨G2. Using our association table,

we can determine if any sink node of G1 appears in G2; if so, this node is a sink node

of G1 ∨G2 if is also a sink node of G2. If the sink node of G1 does not appear in G2,

then it becomes a sink node in G1 ∨G2, and so forth.

Next, we enumerate in parallel over all B ∈ B. Suppose we are given a fixed B

and a fixed G; we want to determine if G is collectible to B. We can check, in parallel,
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whether the sink nodes of G overlap the variables in B; this takes time O(log n) and

nO(1) processors. We then check if every sink node of G overlapped in some variable;

this takes another O(log n) time and nO(1) processors.

Finally, we need to determine if we can form a new graph G′ by adding a new sink

node v labeled B to G. In addition to the graph-theoretic structure needed for this,

we need to check if B is true on the configuration Xv. This will be possible under

our assumption that we can check if a bad-event is true in time O(log n).

Other operations used in our algorithm can be handled in similar ways.

3.5. A deterministic variant

In [23], a deterministic parallel (NC) algorithm is given for the LLL. This algo-

rithm requires an additional slack compared to the Parallel MT algorithm (which in

turn requires additional slack compared to the sequential algorithm). Although [23]

gives a general asymmetric criterion, it is quite technical and has many parameters.

We will discuss the simpler symmetric setting. In that case, the algorithm of [23]

requires that

epd1+ε < 1

There are additional constraints on how the bad-events are represented. Again,

these can be fairly technical, so we will focus on the simplest scenario: the set B

contains m bad-events, which are each explicitly represented as atomic events (that

is, they are a conjunction of terms of the form Xi = j). The paradigmatic example of

this setting is the k-SAT problem. We will also suppose that m� n (in fact, typically

m is exponentially larger than n), to simplify the notation. In this simplified setting,

their algorithm requires O(ε−1 log3m) time and mO(1/ε) processors.

In the parallel algorithm as given, we assume that R is drawn from a completely

independent probability distribution. Such probability distributions have exponen-

tially large support. A key result from [23] is that substantially less independence is

required.
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Definition 3.47. We say a probability space Ω′ is k-wise, ε-approximately in-

dependent, if for all subsets of variables Xi1 , . . . , Xik , and all possible valuations

j1, . . . , jk, we have

|PΩ′(Xi1 = j1 ∧ · · · ∧Xik = jk)− PΩ(Xi1 = j1 ∧ · · · ∧Xik = jk)| ≤ ε

Theorem 3.48 ([36]). There are k-wise, ε-approximately independent probability

spaces which have a support of size poly(log n, 2k, ε−1).

Proposition 3.49 ([23]). Suppose that B consists of atomic events.

There are sufficiently large constants c, c′ such that the following holds: Suppose

that R is drawn from a probability distribution which is m−c/ε-approximately, logm-

wise independent. Then, then, with probability > 1/2, there are no single-sink witness

dags compatible with R containing > c′ logm
ε log d

nodes.

Note that this event only depends on the first R(i, x) for x ≤ logm/ log d. Hence,

this event only depends on polynomially many entries in R. By Theorem 3.48, prob-

ability spaces with the required level of independence on this number of elements exist

which are supported on only mO(1/ε) events

We note now one major difference between the RNC algorithm of Section 3.4 and

the NC algorithm in this section. In Section 3.4, we only enumerated witness dags

compatible with R. Potentially, there could be many collectible witness dags not

compatible with R, but we never need to deal with them. For our NC algorithm, we

will enumerate all single-sink witness dags, and then we later check whether they are

compatible with R. The stronger slack condition epd1+ε < 1 is needed to ensure that

this process remains bounded.

We give a deterministic algorithm to enumerate single-sink dags (with no restric-

tion on their compatibility with any resampling table R):

1. Initialize F1 by creating, for each B ∈ B, a single-node dag with a vertex

labeled by B.
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2. For k = 1, . . . , K = c logm
ε log d

:

3. Suppose that G,G′ are witness dags in Fk with sink nodes v, v′ labeled

B,B′ where B ∼ B′. Create a new witness dag G′′ as follows. The nodes

of G′′ are the union of the nodes in G,G′. We add an edge from v′ to v.

Also, for any pair of nodes w ∈ G,w′ ∈ G′ (other than w = v, w′ = v′),

if w and w′ are labeled by dependent bad-events, we add an edge from

w to w′. If G′′ has ≤ k + 1 nodes, add it Fk+1

Proposition 3.50. Suppose that G is a single-sink witness dag containing k

nodes. Then G ∈ Fk.

Proof. For k = 1 this is clear.

Suppose G is a single-sink witness dag containing k > 1 nodes. Let v be the sink

nodes of G and let v′ be the sink node of G − v. Let X be the subset of nodes of

G− v which are disconnected from v in the graph G− v′.

Now let G1 be the subgraph of G induced on the vertices {v′}∪X, and let G2 the

subgraph of G induced on the remaining vertices of G. Note that G1 is a single-sink

witness dag, with sink node v′; the reason is that since every node in G has a path to

v, it follows that every node in X has a path to v through v′ and hence every node

in G′ has a path to v′. Also, G2 is a single-sink witness dag. For, every node outside

X has a path in G to v avoiding v′, and this path remains in G2. Also, the vertices

of G1, G2 clearly partition the vertices of G.

Both G1, G2 are missing at least one vertex from G: G1 is missing v and G2 is

missing v′. Hence, by inductive hypothesis, we have G1, G2 ∈ Fk−1.

Now let G′′ be the result of applying step (3) of the above parallel algorithm with

the graphs G1, G2. We claim that G = G′′. The labeled nodes of G′′ are clearly as in

G. Also, G′′ contains an edge from v′ to v and so does G. Now, consider any pair of

vertices w,w′ ∈ G, other than v, v′.

If w,w′ have no edge in G, then they also have no edge in G′′.

84



If w,w′ both lie in X, or both lie outside X, then they have edges in the induced

subgraphs G1, G2 respectively; hence they have edges in G′′.

So suppose w ∈ X,w′ /∈ X and there is an edge connecting w to w′. Then

w ∈ G1, w
′ ∈ G2. We claim that the edge must go from w′ to w. For, there is a

v′-avoiding path from w′ to v; if there was an edge connecting w to w′, then this

could be extended to a v′-avoiding path from w to v, which would imply that w /∈ X.

But, by definition of G′′, there is an edge from w′ to w in G′′, as desired. �

The number of processors requires is poly(FK , n); we will show that this is poly-

nomial in m,n. Also, critically, we show this enumerates every single-sink witness

dag.

Proposition 3.51. The total number of single-sink witness dags containing k

vertices is at most m(ed)k. In particular, for k ≤ K = c logm
ε log d

this is mO(1/ε).

Proof. Taking advantage of the correspondence between single-sink witness dags

and tree-structures, it suffices to bound the number of tree-structures. There are m

choices for the label and there are at most (ed)k choices for the tree structure (using

the standard formula counting labeled d-ary tree structures with k nodes). �

Thus, we can enumerate all sufficiently large single-sink witness dags. Given a

fixed witness dag G and a fixed resampling table R, we can easily check if G is

compatible with R. Thus, after enumerating FK , we can filter it down to obtain F ′K ,

which is considerably smaller.

Proposition 3.52. Suppose R is drawn from a probability distribution which

is m−c/ε-approximately, logm-wise independent. Then, for c sufficiently large, the

expected total number of single-sink witness dags compatible with R is mO(1).

Proof. The event that a k-node witness dag is compatible withR is a conjunction

of events corresponding to the vertices in G. Each such event depends on at most d

variables, so in total this is an atomic event depends on at most kd ≤ logm terms.
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So, by Definition 3.47, this event also has probability ≤ w(G)+m−c/ε. Now sum over

all single-sink witness dags. The term w(G) sums to O(m) and the term m−c/ε sums

to O(1) for c sufficiently large. �

Theorem 3.53. There is a deterministic algorithm running in time Õ(ε−1 log2m)

and using mO(1/ε) processors to find a configuration avoiding B.

Proof. We can enumerate FK in time O(log2m) and using mO(1/ε) processors.

Next, we form a probability space for drawing R which is m−c/ε-approximately, logm-

wise independent, and is supported on mO(1/ε) elements. Each processor explores a

single event in this space.

For each R, we filter down the set Fk to the smaller set F ′k consisting of witness

dags compatible with R. We proceed as for the randomized algorithm: we define a

graph G, whose nodes correspond to such single-sink witness dags compatible with

R, with an edge between dags if they are pairwise inconsistent. By Propositions 3.49,

3.52, there is a positive probability that the two events jointly occur:

(1) F ′K contains mO(1) nodes

(2) There are no witness dags outside F ′K that are compatible with R.

For a fixed resampling table R, we can find a maximal independent subset I ⊆ G,

using time O(log2m) and using mO(1) processors. Let G =
∨
I. As in Proposi-

tion 3.44, defining X∗(i) = R(i, |G[i]| + 1) gives a configuration avoiding all bad-

events.

It requires O(ε−1 log2m
log d

) time to enumerate F ′K and it require O(log2m) to generate

an MIS of it. Thus the total time is O(ε−1 log2m) and the total processor count is

mO(1/ε). �
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CHAPTER 4

Lopsidependency in the Moser-Tardos framework: Beyond

the Lopsided Lovász Local Lemma

As noted by [65], the MT algorithm applies to a more restrictive model than the

LLL, so Shearer’s LLL criterion is not necessarily tight in this restrictive class. [65]

gave some toy examples of this situation. Notwithstanding this, most researchers have

considered Shearer’s criterion to be the ultimate form of the LLL. Other forms of the

LLL and algorithms such as MT are attempts to match this bound. In this chapter,

we do not change the MT algorithm in any way. However, we give a alternate criterion

for it to converge. In our opinion, the surprising fact is that this new criterion can go

beyond the Shearer criterion. In the LLLL framework, lopsidependency is as good as

pure independence; we show that if bad-events agree on a variable, this gives better

bounds than if they were independent!

We reiterate that the Shearer criterion is the strongest possible criterion that can

be given for the level of generality to which it applies. Our new criterion depends in

a fundamental way on the decomposition of bad-events into variables; it cannot be

stated in the language of probability and dependency graphs.

We recall the interpretation of lopsidependency for the variable assignment setting.

We assume that all events are atomic, that is, each bad-event has the form B ≡ (xi1 =

j1) ∧ · · · ∧ (xik = jk). It will be convenient to identify the bad-event B with the set

of tuples {(i1, j1), . . . , (ik, jk)}; in this case, if we say that (i, j) ∈ B, we mean that B

demands xi = j.

We say that bad events are connected B ∼ B′ if B = B′ or if B,B′ disagree

on some variable; that is, if we have (i, j) ∈ B, (i, j′) ∈ B′ and j 6= j. We use the

notation now (i, j) ∼ (i′, j′) iff i = i′, j 6= j′. Some related notations will be to write
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(i, j) ∼ B iff there is some j′ 6= j with (i, j′) ∈ B, and to write i ∼ B iff there is some

(i, j) ∈ B.

We state our new criterion as follows.

Definition 4.1 (Orderability). Given an event E, we say that a set of bad-events

Y ⊆ N(B) is orderable to E, if either of the conditions hold:

(O1) Y = {E}, or

(O2) there is some ordering Y = {B1, . . . , Bs}, with the following property. For

each i = 1, . . . , s, there is some zi ∈ E such that zi ∼ Bi, zi 6∼ B1, . . . , Bi−1.

Note that ∅ is orderable to E, as indeed it satisfies condition (O2).

Theorem 4.2. In the variable-assignment setting, suppose there is µ : B → [0,∞)

satisfying the following condition:

∀B ∈ B, µ(B) ≥ PΩ(B)
∑

Y orderable
to B

∏
B′∈Y

µ(B′)

then the MT terminates with probability 1. The expected number of resamplings is at

most W =
∑

B µ(B).

The LLLL cannot guarantee under these conditions that a satisfactory configura-

tion even exists; for this reason, we view this criterion as going beyond the LLLL. This

criterion is about as easy to work with as the original MT criterion — in some cases,

in fact, it can yield significantly simpler calculations. In Section 4.1.3, we compare

this to other LLLL criteria.

In Section 4.3, we give some applications of this new criterion. We summarize the

most important ones here:

(1) SAT with bounded variable occurrences Consider the following prob-

lem: we have a SAT instance, in which each clause contains k distinct vari-

ables. We are also guaranteed that each variable occurs in at most L clauses,

88



either positively or negatively. How can large can L be so as to guarantee

the existence of a solution to the SAT instance?

As shown in [43], the LLLL gives an asymptotically tight bound for this

problem, namely L ≤ 2k+1

e(k+1)
. However, there still is room for improvement,

especially when k is small. As L is growing exponentially, it is arguably

the case that large k is not algorithmically relevant anyway. We are able to

improve on [43] to show that when

L ≤ 2k+1(1− 1/k)k

k − 1
− 2

k

then the SAT instance is satisfiable, and the MT algorithm finds a satisfying

occurrence in polynomial time. This is always better than the bound of [43],

and when k is small the improvement can be substantial.

(2) Hypergraph coloring. Suppose we are given a k-uniform hypergraph, in

which each vertex participates in at most L edges. We wish to c-color the

vertices, so that no edge is monochromatic (all vertices receiving the same

color). This problem was in fact the inspiration for the original LLL [34].

There are many types of graphs and parameters for which better bounds

are known, but the LLL gives very simple constructions and also provides

the strongest bounds in some cases (particularly when c, k are fixed small

integers). Strangely, depending on whether c or k is large, one can obtain

better bounds using the standard LLL or the LLLL. Thus one can show the

bounds:

(4) L ≤ ck

k
max(

(1− 1/k)k−1

c
,

1

(c− 1)e
)

Our approach gives the simpler and stronger criterion:

L ≤ ck(1− 1/k)k−1

k(c− 1)
.
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Our new criterion is always better than (4), interpolating smoothly be-

tween the regimes when c or k is large. This illustrates an advantage of our

technique — despite the daunting form of our new LLLL criterion, in practice

it typically gives formulas which are more computationally tractable.

Comparison of Shearer criterion to Moser-Tardos. It is challenging to di-

rectly compare the Shearer criterion with the MT algorithm, because they apply to

such different contexts: generic probability spaces in the former case and variable

configurations in the latter. However, in Section 4.4, we analyze k-SAT satisfiability

using the Shearer criterion. We show that the analysis of [43], which used the asym-

metric LLL, could not be much improved by using a stronger form of the LLL. In

particular, our proof directly based on our new MT criterion is stronger than would

be possible from Shearer’s criterion, let alone the LLL.

A new parallel algorithm. We have discussed in Chapter 2 how the LLL, but

not the LLLL, has a parallel algorithm. We remedy this situation in Section 4.2 by

introducing a new parallel randomized algorithm for the variable-assignment LLLL,

which requires only a multiplicative slack compared to our new criterion for the

sequential algorithm. (Showing that this algorithm is compatible with the new LLLL

criterion requires non-trivial arguments).

Theorem 4.3. Suppose there is µ : B → [0,∞) satisfying the following condition:

∀B ∈ B, µ(B) ≥ (1 + ε)PΩ(B)
∑

Y orderable
to B

∏
B′∈Y

µ(B′)

then our new parallel algorithm algorithm terminates with probability 1. Suppose that

the size of each bad-event is at most M . Then our parallel algorithm terminates in

time ε−1M logW logO(1) n(M + logO(1)m) and (nm)O(1) processors with high probabil-

ity.

We list a few applications of these new parallel algorithms:
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(1) SAT with bounded variable occurrences We have a SAT instance, in

which each clause contains at least k variables. We are also guaranteed that

each variable occurs in at most L clauses, either positively or negatively.

Then, under the condition L ≤ 2k+1(1−1/k)k

(k−1)(1+ε)
− 2

k
the parallel MT algorithms

find a satisfying assignment in time kO(1) logO(1) n
ε

.

(2) Hypergraph coloring. Suppose we are given a k-uniform hypergraph, in

which each vertex participates in at most L edges. We wish to c-color the

vertices, so that no edge is monochromatic (all vertices receiving the same

color). Then, under the condition L ≤ ck(1−1/k)k−1

(1+ε)(c−1)k
then the parallel MT

algorithm finds a good coloring in time kO(1) logO(1) n
ε

.

4.1. The variable-assignment LLLL

4.1.1. Overview of our new analysis. As we have said, we do not change

the MT algorithm in any way. The only change is to the analysis. In particular, we

dispense with the use of the resampling table which played a prominent role in the

proof of [87]. (See Lemma 2.8). Recall that the idea of the resampling table is that,

at the very beginning of the algorithm, you draw an infinite list of all the future values

for each variables. Then resampling table entry R(i, j) gives the jth value for each

variable Xi. Initially, you set Xi = R(i, 1); when you need to resample i, you set Xi =

R(i, 2), and so forth. After drawing R, the remainder of the MT algorithm becomes

deterministic. One can determine, for each tree-structure τ , necessary conditions to

hold on R in order for τ to appear.

In the MT algorithm, the choice of which bad-event to resample can be arbitrary,

and can even be under the control of an adversary. In fact, MT shows something even

stronger than this: even if the choice of which bad-event to resample depends on R,

then the MT algorithm must still converge with high probability. Thus, the LLLL

criterion is strong enough to show convergence even the resampling is determined by

a clairvoyant adversary.
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Our analysis is also based on witness trees, but we assume that variables are

assumed to be resampled in an on-line fashion. The choice of which bad-event to

resample can be arbitrary, but must depend solely on the prior state (not the future

state) of the system.

Because we impose this restriction on the resampling rule, we can use stochasticity

to analyze our witness trees, in a way which is not possible with the MT framework.

The basic idea is that, whenever we resample some bad-event B, the distribution for

the new values for its variables is the same as the law of Ω, even conditional on all

prior state. This is simply not true in the MT framework: the choice of resampling

rule could produce a dependency on the future.

We will eventually take a union-bound over tree-structures, so it is critical to

prune the space of witness trees as much as possible. In other words, we will need

the most succinct possible explanation of each resampling. Let us consider a simple

example of how we can use our stronger stochasticity assumption to analyze more

succinct witness trees. Suppose that we have some bad-event B, including (i, j), and

we want to explain why we eventually resampled Xi = j. Suppose there were two

earlier events B1, B2 which included (i, j′). These events would be placed as children

of B in the standard MT witness tree. This means that we encounter B1, B2 (in an

unspecified order), and when we encounter the second one we select Xi = j.

Now, it is not necessary to describe the earlier of the two events B1, B2 here. It

would be sufficient to only include the latter, because that is when we are making

the key prediction (namely, that Xi is resampled to value j). By only retaining the

latest occurrence of each variable, we still have all the information we need to deduce

the resamplings. We know that, whenever the resample the latter of B1, B2, the new

values for the variables in it must have the same distribution as in Ω. The reason that

this is true is that the choice of whether to resample B1 or B2 first cannot depend on

the new values of the variables. This information is now “compressed” more tightly,

and we will have to work much harder to show that it is sufficient.
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4.1.2. Forming witness trees. The key principle behind our new criterion is

the following: When building witness trees, we will maintain the following key invari-

ant: for any node v in the tree labeled by B, the children of v receive distinct labels

B1, . . . , Bs such that {B1, . . . , Bs} is an orderable set for B.

We now describe how to form a witness tree for a resampling at time T . Suppose

we have listed the execution log consisting of all the bad-events that were resampling

B1, . . . , BT . This is referred to as the execution log. Starting at time T−1, we proceed

backward through the execution log. For each bad-event B encountered, we see if

there is some node v ∈ τ for which B is eligible. If so, we add B to the deepest such

position (breaking ties arbitrarily). We give the following more precise definition of

eligibility:

Definition 4.4 (Eligibility). Suppose we have a tree-structure τ and a node v ∈ τ

labeled by B. Suppose the children of v receive distinct labels B1, . . . , Bs. Then we say

a bad-event B′ is eligible for v if B′ 6= B1, . . . , Bs and if {B1, . . . , Bs, B
′} is orderable

for B.

One simple definition we will use often:

Definition 4.5. Consider any variable i, and consider a tree-structure τ with a

node v. We say that v involves i, if v is labeled by some bad-event B, and (i, j) ∈ B

for some j.

We list some easy properties of the witness trees produced in this manner:

Proposition 4.6. (1) Consider any bad-event B. Consider the leaf nodes

of τ̂ labeled by B; all such nodes must have distinct depths in the tree.

(2) Consider any variable i, and, among all the nodes v ∈ τ̂ involving i, consider

the set of such nodes which are greatest depth in the tree. While it is possible

that there are multiple such nodes v1, . . . , vr, all such nodes must be labeled

by B1, . . . , Br which agree on variable i.

93



Proof. The earlier bad-event would have been eligible to be a child of the later

bad-event, and hence would have been placed either there or deeper in the tree. �

In light of Proposition 4.6, we may define the active value for each variable:

Definition 4.7 (The active value of a variable). Consider any variable i, and,

among the set of nodes v ∈ τ involving i, consider the nodes at greatest depth in the

tree. All such nodes contain (i, j) for some common value j. We denote by Ai(τ),

the active value of variable i, by this common value j.

If variable i does not appear in τ , we define Ai(τ) = >, the sure value. By

convention, we use Xi = > as a shorthand for the sure event (the entire probability

space). For example, PΩ(Xi = >) = 1.

We note that these types of witness trees look very different from the standard

MT construction. For example, the layers in the tree (and even the children of a

common parent) do not necessarily form an independent set; there can be multiple

copies of a single bad-event in a given layer.

Suppose we are given a tree τ and a time t1; we want to estimate the probability

that τ̂ t1 = τ . This is the key to the MT proof strategy. (We will omit the superscript

t1 in the following; it should be understood.) We can imagine running the MT

algorithm and see whether, so far, it appears that it is still possible for τ̂ t1 = τ . This

is a kind of dynamic process, in which we see what conditions are still imposed in

order to achieve this tree. One key point in our rule for forming witness trees is that,

as we run the MT algorithm, we will be able to deduce not just τ̂ t1 but also τ̂ t1≥t0 for

all t0 ≥ 1.

Proposition 4.8. Suppose we are given the partial witness tree τ̂≥t, and we en-

counter a bad-event B at time t. Then τ̂≥t+1 is uniquely determined, according to the

following rule: if there is a leaf node labeled by B, select the deepest such leaf node

v (by Proposition 4.6 it is unique) and we have τ̂≥t+1 = τ̂≥t − v. Otherwise we have

τ̂≥t+1 = τ̂≥t.
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Proof. First, suppose that τ̂≥t did contain such a node v. It must be that

v 6∈ τ̂≥t+1. For, if so, then when forming τ̂≥t from τ̂≥t+1, we would have placed B as a

child of v; that is, τ̂≥t would include an additional copy of B. So τ̂≥t+1 is missing the

node v from τ̂≥t. As each time step can only affect a single node in the witness tree,

it must be that τ̂≥t+1 = τ̂≥t − v.

Second, suppose that τ contained no such node v. When forming τ̂≥t from τ̂≥t+1,

we either make no changes or add a single node labeled by B. In the latter case, τ̂≥t

would contain a leaf node labeled by B, which has not occurred. Hence it must be

that τ̂≥t = τ̂≥t+1 as claimed. �

The other key point is that, from the partial tree τ̂≥t, we can deduce some infor-

mation about the variables:

Proposition 4.9. Consider any variable i. At time t of the MT algorithm, we

must have Xi = Ai(τ̂≥t).

Proof. Suppose B is a node of greatest depth containing variable i, and we have

(i, j) ∈ B, where j = Ai(τ̂≥t). Suppose Xi = j′ 6= j at time t.

In order to include B in the witness tree τ̂ , we must eventually resample B, which

implies that eventually we must have Xi = j. As Xi = j′ at time t, this implies that

we must first encounter some bad-event B′ 3 (i, j′). But then B′ would be eligible

to be placed as a child of B, and so would be placed there or lower. This contradicts

that B is the greatest-depth occurrence of variable i. �

These propositions together allow us to prove the Witness Tree Lemma:

Lemma 4.10 (Witness Tree Lemma). Let τ be a tree-structure with nodes labeled

B1, . . . , Bs. Then the probability of that τ appears is bounded by

P (τ appears) ≤ w(τ)

Proof. The first step of the MT algorithm is to draw all the variables indepen-

dently from Ω. We may consider fixing the variables to some arbitrary (not random)
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values, and allowing the MT algorithm to run from that point onward. We refer to

this as starting at an arbitrary state of the MT algorithm. We prove by induction on

τ the following: for any tree-structure τ , and starting at an arbitrary state of the MT

algorithm, then we have

(5) P (τ appears) ≤
∏

B∈τ PΩ(B)∏
i PΩ(Xi = Ai(τ))

First, the base case when τ = ∅. Then this is vacuously true, as the RHS of (5)

is equal to 1.

Next, for the induction. Suppose that τ̂ t = τ for some t > 0. Then, a necessary

condition of this is that, at some time t′ < t, we must resample some B ∈ B such

that a leaf node of τ is labeled by B. (If not, then τ̂ t could never acquire such a leaf

node.) Suppose that t′ is the earliest such time and that v is a leaf node labeled by

B. We condition now on a specific value for t′ and B.

For each variable i appearing in B, we must resample variable i to take on value

Ai(τ−v) (recall our convention that if A(τ−v) = >, then this is automatically true.)

This has probability PΩ(Xi = Ai(τ − v)). Next, starting at the state of the system at

time t′+1, we must satisfy τ̂ t−1 = τ−v. We need to estimate the probability that this

occurs, conditional on a fixed choice of t′, B. Crucially, the inductive hypothesis gives

an upper bound on this probability conditional on any state of the MT algorithm. In

particular, this upper bound applies even when we condition on t′, B. Thus, we may

multiply the two probabilities to obtain:

P (τ appears) ≤
∏
i∼B

PΩ(Xi = Ai(τ − v))

∏
B′∈τ−v PΩ(B′)∏

i PΩ(Xi = Ai(τ − v))

=

∏
B′∈τ PΩ(B′)

PΩ(B)
∏

i 6∼B PΩ(Xi = Ai(τ − v))

If i 6∼ B then Ai(τ − v) = Ai(τ), while for each i ∼ B we have (i, Ai(τ)) ∈ B. Hence

the denominator is equal to
∏

i PΩ(Xi = Ai(τ)) and the induction holds.
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Next, we claim that the probability τ appears is at most w(τ). (Note that this

differs subtly from the induction; in the induction, we are showing a bound which

applies to any starting state of the system; here, we are claiming that this bound

holds when the MT algorithm begins with a random initialization.) To see this, note

that a necessary condition for τ to appear is that in the initial sampling of all relevant

variables, each variable i must take on value Ai(τ). Conditional on this event, the

probability that τ appears is still given by the inductive hypothesis, so we have

P (τ appears) ≤
∏
i

PΩ(Xi = Ai(τ))×
∏

B∈τ PΩ(B)∏
i PΩ(Xi = Ai(τ))

= w(τ)

�

Finally, we show that each event in the execution log of the MT algorithm has

a distinct witness tree. This is almost a triviality in the standard analysis of the

MT algorithm, but here it is surprisingly subtle. For instance, there may be multiple

resamplings of a bad-event B, and the later occurrences may have smaller witness

trees. Nevertheless, all such trees are unique:

Proposition 4.11. Let t1 < t2; then τ̂ t1 6= τ̂ t2.

Proof. Suppose τ̂ t1 = τ̂ t2 . Proposition 4.8 shows that the sequence of trees τ̂t

is uniquely determined by the original value τ̂ and by the sequence of resamplings

encountered the execution of the MT algorithm. As τ̂ t1 = τ̂ t2 initially, we must have

that τ̂ t1≥t = τ̂ t2≥t for all t ≥ 1. But now substitute t = t2; in this case, τ̂ t1≥t is the null

tree and τ̂ t2≥t consists of a single node. So this is a contradiction. �

Theorem 4.12. Suppose there is µ : B → [0,∞) satisfying the following condition:

∀B ∈ B, µ(B) ≥ PΩ(B)
∑

Y orderable
to B

∏
B′∈Y

µ(B′)

then the MT terminates with probability 1. The expected number of resamplings of a

bad-event B is at most µ(B).
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Proof. First, by induction on tree-height, one can show that the total weight of

all tree-structures rooted in a bad-event B, is at most µ(B). This follows since the

children of the root node form an orderable set for B.

Next, by Proposition 4.11, each resampling of B corresponds to a distinct witness

tree. Hence, by the Lemma 4.10, the expected number of witness trees rooted in B

is at most the sum of the weights of all such trees. Hence the expected number of

resamplings of B is at most µ(B). �

4.1.3. Comparison to other LLL criteria. We have already encountered Peg-

den’s criterion for the MT to converge. This criterion works for both the canonical

dependency graph and the canonical lopsidependency graph. One counter-intuitive

aspect is that sometimes a denser dependency graph gives a stronger criterion. (For

the Shearer criterion, this can never occur). In particular, ignoring lopsidependency

can give better bounds.

Strictly speaking, Pegden’s criterion is incomparable to ours. However, in prac-

tice, the usual method of accounting for independent sets of neighbors comes from

analyzing, for each variable i, the total set of all bad-events in which i could par-

ticipate. An independent set of neighbors of B can contain one or zero bad-events

involving each variable. Any higher-order interaction — such as finding groups of

variables participating jointly in bad-events — is usually too complicated to analyze

and is disregarded.

When we account for the dependency graph solely in terms of variable intersection,

then we can replace the somewhat confusing concept of “orderable set” with a simpler

(albeit slightly weaker) notion.

Definition 4.13. Given an event E, we say that a set of bad-events Y ⊆ N(B)

is assignable to E, if either Y = {E}, or there is an injective function f : Y → E,

such that for all B ∈ Y , we have some B 3 z ∼ f(B) ∈ E
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Proposition 4.14. If Y is orderable to B, then it is assignable to B (but not

necessarily vice-versa)

Proof. Let Y = {B1, . . . , Bs}, so that for each i = 1, . . . , s there is some zi ∈ E

with

zi ∼ Bi zi 6∼ B1, . . . , Bi−1

Now define f(Bi) = zi. We claim that f is injective. For, suppose zi = zj and

i < j. Then zi ∼ Bi, so zj ∼ Bi, which is a contradiction. �

When we sort bad-events by their variables, we obtain the following criteria; these

are respectively the LLLL criterion and Pegden’s LLL criterion:

Proposition 4.15. (1) If for all bad-events B we have

µ(B) ≥ PΩ(B)
(
µ(B) +

∏
(i,j)∈B

∏
j′ 6=j

∏
B′3(i,j′)

(1 + µ(B))
)

then the MT algorithm converges.

(2) If for all bad-events B we have

µ(B) ≥ PΩ(B)
∏

(i,j)∈B

(
1 +

∑
j′

∑
B′3(i,j′)

µ(B′)
)

then the MT algorithm converges.

Our criterion blends these two conditions and is stronger than either of them:

Proposition 4.16. If for all bad-events B we have

µ(B) ≥ PΩ(B)
(
µ(B) +

∏
(i,j)∈B

(1 +
∑
j′ 6=j

∑
B′3(i,j′)

µ(B′))
)

then the MT algorithm terminates with probability 1; the expected number of resam-

plings of B is at most µ(B).
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Proof. For the bad-event B, we have the criterion

µ(B) ≥ PΩ(B)
∑

Y assignable
to B

∏
B′∈Y

µ(B′)

We enumerate the assignable sets Y as follows. First, we may take Y = {B}; this

accounts for the term µ(B) in the RHS of Proposition 4.16. Next, for each vari-

able (i, j) ∈ B, we may select either zero or one bad-event B′ 3 (i, j′) for some

j′ 6= j. These account for respectively the terms 1 and
∑

j′ 6=j
∑

B′3(i,j′) µ(B′) in

Proposition 4.16. �

It is in this sense that we view our criterion as being stronger than the original

MT lopsidependency criterion and stronger than Pegden’s criterion.

4.2. Parallel algorithm for MT

We have seen in Chapter 2 a parallel algorithm for the LLL. This algorithm

depends on the fact that, in the standard MT framework, bad-events which are un-

connected do not share any variables. Hence they do not interact in any way and can

be resampled in parallel. This is no longer the case for the LLLL. MT algorithm; so

in that case, frustratingly, we do not have any corresponding parallel algorithms.

In this section, we introduce a new parallel algorithm corresponding to the lop-

sidependent MT setting, which achieves our new criterion up to a multiplicative slack.

We assume that each bad-event uses at most M ≤ polylog(n) terms. We also suppose

that the number of bad-events is polynomially bounded, although this can be relaxed

quite a bit. Finally, we require a multiplicative slack in the LLLL criterion.

Here is the basic idea. Suppose we have a large number of bad-events which are

currently true. Due to the LLLL criterion, there may be many “unconnected” bad-

events which are simultaneously true, yet they intersect in variables and cannot be

resampled in parallel. However, suppose we resample a given variable; with good

probability, it will change its value, thereby falsifying all of the bad-events which

contain it, even those we did not explicitly resample.
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This argument can break down if we have pij ≈ 1 for any variable i and value j

(this situation is rare; see Section 4.3.5 for an example). In that case, resampling the

variable i a single time is not likely to flip its value; we must resample it multiple

times. Much of the complication of our parallel algorithm comes from dealing with

this somewhat pathological case. We will begin by stating a simple parallel algorithm

which assumes pij < 1−Ω(1) for all i, j; we then modify it to remove this condition.

4.2.1. The parallel algorithm: warm-up exercise. We present the following

Parallel MT Algorithm (Simplified):

1. Draw all variables independently from the distribution Ω.

2. While there is some true bad-event, repeat the following for rounds t =

1, 2, . . . ,:

3. Let Vt,1 be the set of bad-events which are true at the beginning of round

t.

4. Repeat the following for a series of sub-rounds s = 1, 2, . . . , until Vt,s =

∅.

5. Select a maximal disjoint set It,s ⊆ Vt,s. (This can be done using

a parallel MIS algorithm).

6. Resample all B ∈ It,s.

7. Update Vt,s+1 as: Vt,s+1 = Vt,s−It,s−All bad events which are no longer true.

Theorem 4.17. Suppose that we satisfy the condition

∀B ∈ B, µ(B) ≥ PΩ(B)(1 + ε)
∑

Y orderable
to B

∏
B′∈Y

µ(B′)

Suppose further that we satisfy the condition

∀i, j, PΩ(Xi = j) < 1− ψ

Then whp the Parallel MT Algorithm (Simplified) terminates in time ψ−1ε−1 logW logO(1)(nm)

using (nm)O(1) processors.
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Proof. We provide only a sketch, as we will later introduce a more advanced

algorithm. In each round t, s, note that every bad-event B ∈ Vt,s contains some

resampled variable. Such a variable switches to a new value with probability ≥ ψ, in

which case B is removed from Vt,s+1. Hence the expected size of Vt,s is decreasing as

(1− 1/ψ)s. So, for s = Ω(ψ−1 log n), we have Vt,s = ∅ and the round t is done.

Next, suppose that a bad-event is resampled in round t. One can show that the

witness tree for this resampling must have height t exactly. One can also compute

the total weight of all such trees, and show that this is decreasing as (1+ε)−t. Taking

a union-bound over such trees, this implies that the probability of having ≥ t rounds

is at most (1 + ε)−tW .

This implies that, whp, our algorithm requires ψ−1ε−1 logO(1) n logW rounds. In

each round, one must select an MIS of the currently-true bad-events, which takes at

most logO(1)m time and mO(1) processors. �

It will take a lot more work to drop the dependency of the running time on ψ. To

do this, we will need to resample a variable multiple times in the round. Thus, we

must replace the step of selecting a maximal disjoint set of bad-events with a maximal

set in which no variable occurs too many times (which depends on its probabilities

pi). We must also deal with the possibility that we get inconsistent results when we

resample a variable multiple times in a round.

Before we move on to the general case, we will need a subroutine to solve a problem

we refer to as the vertex-capacitated maximal edge packing problem. We believe this

may be a useful building block for other parallel algorithms.

4.2.2. Vertex-capacitated maximal edge packing.

Definition 4.18. Suppose we are given a hypergraph G, with m edges of size

≤ k, on a vertex set V . For each v ∈ V , we are given a capacity Cv in the range

{0, . . . ,m}. We wish to select a subset L ⊆ E of the edges, with the property that

each vertex appears in at most Cv edges of L, and such that L is a maximal subset
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of E with that property. Such a set L is referred to as a vertex-capacitated maximal

edge packing (VCMEP).

Such a set can be found easily by a sequential algorithm. Note that if Cv = 1 for

all v, this is equivalent to finding a maximal independent set of the line graph of G.

Theorem 4.19. There is parallel algorithm to find a VCMEP in time k×logO(1)(m+

n).

Proof. We will repeatedly add edges until we have reached such a maximal set.

At round i, suppose we have selected so far edges Li, and we begin with L0 = ∅.

Now form the residual graph and residual capacities; we abuse notation so that

these are also denoted G,C. One can form an integer program corresponding to the

vertex-capacitated maximum edge packing (i.e. packing of highest cardinality) for the

residual. We let Mi denote the size of the maximum packing which can be obtained

by extending Li. This integer program has variables xf corresponding to each edge

f ∈ G, along with constraints that
∑

v∈f xf ≤ Cv for each vertex v. Now relax the

integer program to a positive linear program. As shown by [79], there is a parallel

algorithm running in time logO(1)(n+m) which can find a solution x′ which is at least

(1 − ε) times the optimum solution, where ε > 0 is some sufficiently small constant.

In turn, this solution is at least (1− ε)(Mi − |Li|).

We now round this fractional solution x′ as follows: each edge is selected with

probability x′f/(2k); if any vertex constraint v is violated, then all edges containing

v are de-selected. We define Li+1 to be Li plus any selected edges.

Define the potential function Φi = Mi − |Li|. Note that if Φi = 0, then Li must

be a maximal set of edges. We claim that, conditional on the state at the beginning

of round i, we have E[Φi+1] ≤ (1− Ω(1/k))Φi.

For, consider some edge f ; it is selected with probability x′f/(2k); suppose we

condition on that event. Consider any vertex v ∈ f . The expected number of times

that other edges incident to v are selected is
∑

f ′3v,f ′ 6=f x
′
f/(2k) ≤ (Cv − x′f )/(2k).
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By Markov’s inequality, the probability that the actual number exceeds Cv, in which

case f is de-selected, is at most
Cv−x′f
2kCv

. Hence the total probability that f is selected

is at least

P (f selected) ≥
x′f
2k

(1−
∑
v∈f

Cv − x′f
2kCv

)

≥
x′f
2k

(1− k × 1

2k
) ≥

x′f
4k

Summing over all such edges, we have that

E[Φi+1] = E[Mi+1]− E[Li+1]

≤Mi − |Li| −
∑
f

x′f
4k

≤Mi − |Li| − (
(1− ε)|Mi| − Li

4k
)

≤ Φi(1− Ω(1/k))

Hence, for i ≥ Ω(k log(m+ n)), we have E[Φi] ≤ n−Ω(1). This implies that Φi = 0

with high probability, which in turn implies that Li is a maximal packing with high

probability. �

4.2.3. The parallel algorithm. We now present our full parallel algorithm. We

will suppose that each bad-event uses at most M terms. We also suppose that the

number of bad-events is polynomially bounded, although this can be relaxed quite a

bit. Finally, we suppose there is a slack in the LLL condition,

∀B ∈ B, µ(B) ≥ PΩ(B)(1 + ε)
∑

Y orderable
to B

∏
B′∈Y

µ(B′)

1. Draw all variables independently from the distribution Ω.

2. While there is some true bad-event, repeat the following for rounds t =

1, 2, . . . ,:
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3. Let Vt,1 be the set of bad-events which are true at the beginning of

round t. Let ai be the value of variable Xi at the beginning round t.

Note that each bad-event in Vt,1 is a conjunction of terms Xi = ai. For

notation throughout the rest of this algorithm, for each variable i let

qi = PΩ(Xi 6= ai).

4. Repeat the following for a series of sub-rounds s = 1, 2, . . . , until Vt,s =

∅.

5. View Vt,s as a hypergraph, whose vertices correspond to variables

and whose hyper-edges correspond to bad-events. For each vari-

able i, define the capacity Ci = d 1
Mqi
e. Find a VCMEP It,s ⊆ Vt,s.

6. For each B ∈ It,s and each variable Xi ∈ B, we draw a resampling

value xB,i, drawn from Ω. This represents that if we decide to

resample B, then we will choose to set variable Xi equal to xB,i.

7. For each B ∈ It,s choose a random ρ(B) independently from the

real interval [0, 1]. We think of ρ(B) as the priority of B; we will

resample the bad-events in the order of increasing ρ. Construct

the undirected graph Gt,s whose vertices correspond to elements

of It,s, and where there is an edge from B1 to B2 if ρ(B1) < ρ(B2)

and B1, B2 both share a variable i and we have xB1,i 6= ai.

8. Find the lexicographically-first MIS (LFMIS) I ′t,s ⊆ It,s of the

graph Gt,s, with respect to the order ρ. (We will say more about

this step later)

9. For each variable Xi, if there is some B ∈ I ′t,s with xB,i 6= ai, set

Xi = xB,i (by the way that Gt,s is constructed, there can be at

most one such B for each variable i); we say such that variable i

is switched ; otherwise leave Xi = ai.

10. Update Vt,s+1 as Vt,s+1 = Vt,s − It,s− all bad events containing a

switched variable
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This algorithm is quite intricate to analyze. The most important aspect of this

algorithm is that it simulates the sequential MT algorithm, with a particular choice

of which bad-event to resample at each time. Because of this fact, one can build

witness trees for each resampling and show that a Witness Tree Lemma still holds:

Proposition 4.20. Suppose that as we execute the Parallel MT algorithm, we

build a sequential execution log as follows: within each round t and sub-round s, we

sort the elements of I ′t,s in increasing order of ρ. We then list, in this order, elements

of I ′t,s.

For this sequential execution log, one can still build witness trees as before. Then

the Witness Tree Lemma, Lemma 2.8, still holds for such trees.

Proof. We can view the Parallel Algorithm as simulating the sequential MT

algorithm as follows. Instead of resampling the bad-events in parallel, we suppose

that as we proceed in increasing order t, s, ρ, we come across various bad-events

B ∈ I ′t,s. We refer to the position of each resampling in the execution log as its

“time”. Each such bad-event is true at the time we encounter it; we then resample

any variable i it involves by setting Xi = xB,i. As the sequential MT algorithm allows

an arbitrary choice of which bad-event to resample, the parallel MT algorithm is thus

a special case of the sequential MT algorithm.

One crucial detail of this algorithm is that when we make our resamplings Xi =

xB,i, the random variables xB,i are independent of any random variables we encoun-

tered in earlier times. This is why we choose the lexicographically-first MIS of It,s; in

this way, one can see that the event “B ∈ I ′t,s” is independent of all events involving

B′ with ρ(B′) > ρ(B) and the values of random variable xB are independent of all

events involving B′ with ρ(B′) < ρ(B).

Thus, the parallel MT algorithm effectively becomes a stochastic process, with

increasing s, t, ρ playing the part of time. Hence Lemma 4.10 still holds. �
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This Proposition 4.20 will serve to bound the number of rounds t for our algorithm.

The analysis of the run-time of each individual round is more complicated. We will

bound this through the following series of Propositions.

Proposition 4.21. The LFMIS I ′t,s can be found whp in time O( logn
log logn

).

Proof. In general, the problem of finding the LFMIS is P-complete [29], hence

we do not expect a generic parallel algorithm for this. However, what saves us it that

the ordering ρ and the graph Gt,s are constructed in a highly random fashion.

This allows us to use the following greedy algorithm to construct I ′s,t:

1. Let H1 be the directed graph obtained by orienting all edges of Gs,t in the

direction of ρs,t. Repeat the following for l = 1, 2, . . . ,:

2. If Hl = ∅ terminate.

3. Find all source nodes of Hl. Add these to I ′s,t.

4. Construct H ′l+1 by removing all source nodes and all successors of source

nodes from H ′l .

The output of this algorithm is the LFMIS I ′s,t. Each step can be implemented in

parallel time O(1). The number of iterations of this algorithm is the length of the

longest directed path in Gt,s. So it suffices it show that, whp, all directed paths in

Gt,s have small length.

Suppose we select B1, . . . , Bl ∈ B uniformly at random. Let us analyze how these

could form a directed path in G.

Next, it must be that B2 is a neighbor of B1. Each variable Xi ∈ B1 appears in at

most Ci− 1 other bad-events. If B1 and B2 intersect in variable i, then that variable

i creates an edge between B1, B2 only if xi,B1 6= ai, which occurs with probability qi.

Thus, for each B1, the expected number of B2 which are connected to that B1 is at

most ∑
Xi∈B1

(Ci − 1) ≤
∑
Xi∈B1

1/(Mqi)× qi ≤ 1
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Continuing this way, that the expected number of B1, . . . , Bl which are connected, is

at most 1.

Finally, it must be the case that ρ(B1) < ρ(B2) < · · · < ρ(Bl). So far, none of the

probabilistic statements have referred to ρ, so the probability this occurs conditional

on all previous events is 1/l!. Thus, for l ≥ Ω( logn
log logn

), this is n−Ω(1) as desired. �

Proposition 4.22. For s = Ω(M log n), we have Vt,s = ∅ whp.

Proof. We will show that Vt,s has an expected size which is decreasing exponen-

tially in s.

First, we show the following fact: given any B ∈ It,s, we have B ∈ I ′t,s with

probability ≥ 1/2. For, a sufficient condition for B ∈ I ′t,s is that there is no variable

Xi ∈ B with B′ ∈ It,s, ρ(B′) < ρ(B) and xB′,i 6= ai. For each variable i, there are

at most Ci − 1 candidate B′ ∈ It,s, and each of them has probability qi of setting

xB′,i 6= ai, so the expected number of such B′ is at most qi × 1/(Mqi) × 1/2 ≤ 1
2M

.

Over all variables Xi ∈ B, this gives a total probability of ≤ 1/2.

Now consider any B ∈ Vt,s. By maximality of It,s, either B ∈ It,s, or B contains

some variable which occurs Ci times in It,s. In the former case, B is necessarily

removed from Vt,s+1.

Now, suppose variable Xi ∈ B occurs exactly Ci times in It,s. For each such

occurrence B′, there is a probability of ≥ 1/2 that B′ ∈ I ′t,s. Note that the event

that that B′ ∈ I ′t,s is independent of xB′,i, so each such B′ has a probability of qi/2

that B′ is selected and xB′,i 6= ai. Hence the total expected number of B′ ∈ I ′t,s with

xB′,i 6= ai, is at least Ci × qi/2 ≥ 1/(2M). Note that there are either zero or one

elements B′ ∈ I ′t,s with this property, hence the probability that Xi switches is at

least 1/(2M). If this occurs, then we have B /∈ Vt,s+1.

In either case, we have shown that a given B ∈ Vt,s is removed with probability

at least 1− 1/(2M). Hence we have

E[|Vt,s+1|] ≤ (1− 1/(2M))|Vt,s|
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which implies that for s ≥ Ω(M log n) we have Vt,s = ∅ with high probability. �

Finally, we show that the number of rounds is small.

Proposition 4.23. Suppose that B is resampled in round t. Then the witness

tree corresponding to this resampling has height t.

Proof. For each t′ ≤ t, let τ̂(t′) denote the tree formed for the resampling of B

from round t′ onward (that is, we only add events in rounds t′, . . . , t inclusive to the

witness tree).

We will prove by induction the stronger claim: Suppose that B is resampled in

round t. Then for each t′ ≤ t, the tree τ̂(t′) has height exactly t− t′ + 1; furthermore,

all the nodes at depth t − t′ + 1 correspond to bad-events resampled at round t′.

(Depth 1 corresponds to the root of the tree).

The base case of this induction is t′ = t. In this case, note that all events resampled

in round t agree on all variables, and each bad-event B ∈ B is resampled at most

once. Hence τ̂(t) consists consists of just a singleton node labeled by B.

We move on to the induction step. We begin with τ̂(t′) and wish to extend it

backward in time to round t′ − 1. By induction hypothesis, τ̂(t′) has height exactly

t − t′ + 1 and the nodes at depth t − t′ + 1 correspond to bad-events resampled at

round t′.

Note first that all bad-events encountered in round t′−1 are true at the beginning

of that round. So they agree on all variables, which implies that they cannot be

children of each other. This implies that the only possible nodes at depth t′− t+ 2 in

τ̂(t′−1) correspond to bad-events resampled in round t′ − 1 which have as their parent

a node of depth t′ − t + 1. Thus, the height of τ̂(t′−1) is either t− t′ + 2 (as we want

to show), or is t− t′ + 1.

Next, we must show that τ̂(t′−1) has indeed height t− t′ + 2. Suppose for contra-

diction that τ̂(t′−1) has height t− t′ + 1.
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By induction hypothesis, the tree τ(t′) contains some node v labeled by B′ at height

t′ − t+ 1 resampled in round t′.

First suppose B′ is true at the beginning of round t′ − 1, so B′ ∈ Vt′−1,1. Then

either B′ is resampled in round t′− 1, or B′ becomes false during round t′− 1. In the

first case, B′ would be eligible to be placed as a child of v, so it is either placed there

or at some other position at the same depth; either way, τ̂(t′−1) would have height

t− t′ + 2. In the second case, it must be that B′ contains a variable which switched

in round t′ − 1. This implies that B′ remains false at the end of round t′ − 1, so

B′ 6∈ Vt′,1; but B′ was resampled in round t′ so this is a contradiction.

Second suppose B′ is false at the beginning of round t′ − 1. It must have become

true due to some variable Xi switching in round t′ − 1 due to resampling some B′′.

But then B′′ disagrees with B′ on variable Xi, so B′′ ∼ B′. As v is a leaf node in,

this implies that B′′ would be eligible to placed as a child of v. Again, such B′′ will

be placed either as a child of v or at some position at the same depth, so that τ̂(t′−1)

would have height t− t′ + 2. �

Proposition 4.24. The parallel algorithm terminates after O( logW
ε

) rounds whp.

Proof. In each round t, there is at least one resampling, which must correspond

to some tree of height t. As shown in [87], due to the slack condition the total weight

of all such trees rooted in a bad-event B is O(µ(B)(1 + ε)−t). Summing over all such

B, this implies that for t = Ω(log(nW )) this weight is n−Ω(1). Hence whp there are

no such trees. �

Putting this all together, we have the following:

Theorem 4.25. Suppose that each B ∈ B has size at most M . Suppose that we

satisfy the condition

∀B ∈ B, µ(B) ≥ PΩ(B)(1 + ε)
∑

Y orderable
to B

∏
B′∈Y

µ(B′)
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Then whp the Parallel MT algorithm terminates in time ε−1M(logW )(logO(1) n)(M+

logO(1)m) using (nm)O(1) processors.

Note that the running time of the Simplified Parallel MT algorithm does not

depend on M . In practice, when M is large, then other aspects parallel aspects of

the MT algorithm can become problematic; for example, we need non-trivial parallel

algorithms to enumerate and check the events of B. It remains an interesting open

problem to find a parallel algorithm which works in the regime in which M is large

and the probabilities of the bad-events become close to 1.

4.3. Applications

4.3.1. SAT with bounded variable occurrences. Consider the following prob-

lem: we have a SAT instance, in which each clause contains at least k variables. We

are also guaranteed that each variable occurs in at most L clauses, either positively

or negatively. How can large can L be so as to guarantee the existence of a solution

to the SAT instance? This problem was first introduced by [69], which showed some

bounds on L. Most recently, it was addressed by [43]; they showed that the criterion

L ≤ 2k+1

e(k+1)
suffices to guarantee that a solution exists (and can be found efficiently).

This criterion is also shown to be asymptotically optimal (up to first-order terms).

The main proof for this is to use the LLLL; they show that the worst-case behavior

comes when each variable appears in a balanced way (half positive and half negative).

Although the criterion of [43] is asymptotically optimal, we can still improve its

second-order terms. We show the following bound:

Theorem 4.26. If each variable appears at most

L ≤ 2k+1(1− 1/k)k

k − 1
− 2

k

times then the SAT instance is satisfiable, and the MT algorithm finds a satisfying

occurrence in polynomial time.
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Furthermore, suppose k = logO(1) n and L ≤ 2k+1(1−1/k)k

(k−1)(1+ε)
− 2

k
. then whp the Parallel

MT algorithm finds a satisfying occurrence in time kO(1) logO(1) n
ε

.

Proof. We will only prove the sequential result; the parallel result is almost

identical.

For each SAT clause, we have a bad-event B that it is violated. We define µ(B) =

α for each bad-event, where α > 0 is a constant to be chosen.

As described by [43], the key problem is to choose a good probability distribution

for each variable. Suppose a variable i occurs in li clauses, of which it occurs δili

positively. In this case, we set variable i to be T with probability 1/2− x(δi − 1/2),

where x ∈ [0, 1] is a parameter to be chosen. This is quite counter-intuitive. One

would think that if a variable occurs positively in many clauses, then one should set

the variable to be T with high probability; in fact we do the opposite.

We now wish to show that our MT criterion is satisfied. let C be a clause, suppose

wlg each variable appears in it negatively. Then the corresponding bad-event is that

all such variables are true. This has probability
∏

i∈C(1/2 − x(δi − 1/2)). Now,

consider the assignable sets for the clause. We may either select the singleton C

itself, or for each of the k variables we may select one or zero other clauses in which

the corresponding variable appears positively. For each such variable i, the total

number of such clauses is at most δiL. Hence we have the criterion:

α ≥
∏
i∈C

(
1/2− x(δi − 1/2)

)(
α +

∏
i∈C

(1 + δiLα)
)

We bound the RHS as follows:

(6)∏
i∈C

(
1/2−x(δi−1/2)

)(
α+

∏
i∈C

(1+δiLα)
)
≤
∏
i∈C

(
1/2−x(δi−1/2)

)(
1+δiLα+α/k

)
Now set x = αkL

2α+2k+αkL
; clearly x ∈ [0, 1]. With this choice, verify that that the

RHS of (6), viewed as a function of δi, achieves its maximum value at δi = 1/2. Thus
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we have

∏
i∈C

(
1/2−x(δi−1/2)

)(
α+
∏
i∈C

(1+δiLα)
)
≤
∏
i∈C

1

2
(1+α/k+αL/2) = 2−k(1+α/k+αL/2)k

We thus need to find α ≥ 0 such that

(7) α− 2−k(1 + α/k + αL/2)k ≥ 0

We differentiate with respect to α to make the LHS of (7) as large as possible.

This yields our optimal choice of α namely:

α =
2k
(

( 2k+1

2+kL
)

1
k−1 − 1

)
2 + kL

When L ≤ 2k+1(1−1/k)k

k−1
− 2

k
, note that ( 2k+1

2+kL
)

1
k−1 ≥ k

k−1
and so α ≥ 0 as desired.

Also, (7) is satisfied. �

4.3.2. Hypergraph coloring. Suppose we have a k-uniform hypergraph, in

which each vertex appears in at most L edges. We wish to c-color this hypergraph,

while avoiding any monochromatic edges. There are many types of graphs and param-

eters for which better bounds are known, but the LLL gives very simple constructions

and also provides the strongest bounds in some cases (particularly when c, k are fixed

small integers)[83].

Let us first examine how the conventional LLL analysis would work. Counter-

intuitively, when c is large it is better to use the standard LLL (defining ∼ in terms

of simple dependency) and when k is large it is better to use the LLLL (defining

∼ in terms of lopsidependency.) In the first case, a bad-event is that an edge is

monochromatic (of an unspecified color). Consider an edge f . The neighbors of f

would be other edges than intersect f . An independent set of neighbors of f consists

of either f itself, or for each vertex v ∈ f we may select one or zero edges (other than
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f). Setting µ(B) = α for all bad-events, this gives us the criterion

α ≥ c1−k(α + (1 + (L− 1)α)k)

Routine calculations show that this can be satisfied if L ≤ ck−1(1−1/k)k−1

k
.

Alternatively, in the LLLL, a bad-event would be that an edge f receives some

color j. The neighbors of this event would be other edges receiving colors other than

j; there are k(L− 1)(c− 1) + c such neighbors. Using the symmetric LLL and some

simplifications, one obtains the bound L ≤ ck

(c−1)ek
.

Applying Pegden’s criterion to this calculation could give some improvements, but

the relevant calculations no longer have a simple closed form.

There seems to be a “basic” form of the bound L ≤ ck−1

ek
; the standard LLL

framework can improve on this using either Pegden’s criterion (replacing 1/e by (1−

1/k)k−1) or by lopsidependency (replacing one factor of c by (c− 1)), but cannot do

both simultaneously.

Our new LLLL criterion We now apply our new LLLL criterion to this problem.

For each edge f ∈ G, we have c bad-events, namely that f is monochromatic of any

given color. We assign µ(B) = α to all bad-events, where α > 0 is a constant to be

determined. We color each vertex independently and uniformly.

Now consider a bad-eventB, say wlg that edge f receives color 1. It has probability

c−k. Now consider the orderable sets for B; we want to sum
∏

B′∈Y over all such sets

Y .

First, Y may consist of B itself; this contributes α. Second, Y may consist of, for

each vertex v ∈ f , zero edges or one edge other than f receiving one color 2, . . . , c.

Finally, we may have one vertex select f and some color for it; some set of other

vertices selects other edges and other colors. Summing all these cases, we have the

criterion for B:

(8)

α ≥ c−k
[
(1+α(c−1)(L−1))k+α(c−1)((1+α(c−1)(L−1))k−(α(c−1)(L−1))k)+α

]
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This has no closed-form solution for general L, k. But, for fixed values of L, k it

is easily solvable. For example, when c = 2, we list the largest values of L which

are obtained by either our improved MT criterion or the original MT criterion (listed

under L′):

k L L′ k L L′

4 2 2 8 13 12

5 3 3 9 23 21

6 5 4 10 40 38

7 8 7 11 72 69

We see that our new criterion indeed gives (slightly) stronger bounds. For the

asymptotic case when L is large, note that the RHS of (8) can be approximated:

RHS ≤ c−k(α + (1 + α(c− 1)(L− 1))k(1 + (c− 1)α))

≤ c−k(1 + α(c− 1)L)k

Thus, setting α =

“
ck

(c−1)kL

” 1
k−1−1

(c−1)L
, we satisfy the LLLL criterion if

L ≤ ck(1− 1/k)k−1

(c− 1)k
.

which is slightly better than the bounds from the conventional LLLL.

4.3.3. Second Hamiltonian cycle. Consider a k-regular graphG, with a Hamil-

tonian cycle C. Under what conditions is there a second Hamiltonian cycle C ′ (that

is, the cycle C is not unique)? In [112], Thomassen showed that a necessary condition

for the existence of the second cycle followed from the existence of a set of vertices

S ⊆ V satisfying the following properties:

(1) If v and w are adjacent on the cycle C, then v and w are not both in S.

(2) For any vertex v ∈ G, either v is in S, or it is connected to a vertex w ∈ S

via some edge e /∈ C.

In other words, S is a dominating set for G− C, and an independent set for C.
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Using the LLL, Thomassen then showed that this condition can always be satisfied

as long as k ≥ 73. This was based on a simple random process, in which each vertex

was put into S independently with probability p. Using the Lovász Local Lemma

with a much more sophisticated random process, Haxell showed that this condition

can be satisfied as long as k ≥ 23 [58]. It was conjectured that this condition could

be satisfied as long as k ≥ 5.

Haxell’s proof is quite involved, and our LLLL criterion would offer little benefit

for it (as all the bad-events involve many vertices). In [45], there was a simple proof

using the LLLL that this condition can be satisfied as long as k ≥ 48. Our LLLL

criterion can be used to give another very simple proof under the condition k ≥ 43.

While not as good as Haxell’s construction, the proof is far simpler.

Theorem 4.27. If G is a k-regular graph for k ≥ 43 and C is a Hamiltonian

cycle of G, then there is a G− C-dominating, C-independent set S ⊆ V .

Proof. Each vertex enters into S independently with probability p. There are

two types of bad-events: for each edge of C, there is an event of type A, that the

endpoints are both in S; for each vertex of G − C, there is an event of type B, that

v nor its k − 2 neighbors outside of C are in S. We assign µ(B) = a for all events

of the first type, and µ(B) = b for all events of the second type. Note that events of

type A are lopsidependent only with events of type B, and vice versa.

Now consider an event of type A. It has probability p2. There are two vertices in

this edge, each of which participates in k − 2 events of type B. Similarly, an event of

type B has probability (1− p)k−1, and each of the k − 1 vertices participates in two

events of type A. Hence our LLLL criteria can be stated as

a ≥ p2(1 + (k − 2)b)2, b ≥ (1− p)k−1(1 + 2a)k−1

Routine calculations show that this is solvable for k ≥ 43. �
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4.3.4. Independent transversals. We have seen in Chapter 1 how the cluster-

expansion criterion can show the existence of an independent transversal when b ≥

4∆. This can be easily translated, via Pegden’s criterion, to give an algorithm which

finds an independent transversal when b ≥ 4∆. Although it is known that inde-

pendent transversals exist under more stringent conditions, this remains, to the best

of our knowledge, the strongest criterion known for any polynomial-time algorithm

to find an independent transversal. Using our new LLLL criterion we slightly can

improve this, obtaining the best constructive bound known so far:

Proposition 4.28. Suppose b ≥ 4∆−1. Then the MT algorithm finds an indepen-

dent transversal in polynomial expected time. Furthermore, under these conditions,

the Parallel MT algorithm runs in time

logO(1) n×min(1,
4(b− 1)∆

b2 − 4(b− 1)∆
)

Proof. We prove the first statement only; the second is similar.

Each edge corresponds to a bad-event; it has probability 1/b2. For an assignable

set of neighbors to an edge f = 〈u, v〉, we may choose f , or we may choose 〈u′, x〉

where u′ 6= u is in the class of u, or we may choose 〈v′, x〉 where v′ 6= v is in the class

of v; or we may choose both of the latter choices. This gives us the criterion

α ≥ b−2(α + (1 + (b− 1)∆α)2)

which is satisfied by some α ≥ 0 whenever b ≥ 4∆− 1. �

Note that the second condition gives an RNC algorithm either if b ≥ 4∆(1 + ε)

for some constant ε > 0, or if b ≥ 4∆− 1 and ∆ = logO(1) n.

4.3.5. Off-diagonal Ramsey numbers. In this section, we consider the clas-

sical off-diagonal Ramsey problem on graphs. Suppose we wish to two-color – with

colors red and blue – the edges of Kn, the complete graph on n vertices. We wish to

avoid any red s-cliques or blue t-cliques in the resulting graph. The largest value n for
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which it is possible to avoid such cliques is known as the off-diagonal Ramsey number

R(s, t). There are many aspects and generalizations studied for Ramsey numbers.

One frequently studied scenario is when s is held constant while t→∞.

It was shown in [104], using the LLL, that when n ≤ c(t/ log t)
s+1

2 and c is a

constant (depending on s) that such a coloring is possible. In other words, R(s, t) ≥

Ωs

(
(t/ log t)

s+1
2

)
. For specific values of s, better bounds are known (e.g., R(3, t) =

Θ(t2/ log t)), but this is the best bound known for general s. The algorithmic challenge

is to efficiently find colorings of the edges of Kn that avoid red Ks and blue Kt.

Such algorithms should operate when n is as large as possible, ideally up to R(s, t).

Unfortunately, the LLL construction of [104] does not lead to efficient serial or parallel

algorithms. The main roadblock is that there is a bad-event for each t-clique, so that

finding a bad event requires exponential time. For specific values of s, again, there are

known polynomial-time algorithms for finding good colorings. But in general there is

no algorithm that corresponds to the best bounds.

In [48], an algorithm based on MT was proposed for finding such colorings. The

basic idea of [48] is to find and resample red Ks, while ignoring blue Kt. One then

shows that with high probability, none of the Kt became blue, even though we did not

explicitly check or resample them. The serial running time of this would be Ωs(n
s),

to search for the red Ks; no parallel algorithm was given.

These results depend on the MT-distribution. Though we did not show this

explicitly in Section 4.1, an easy adaptation of Lemma 4.10 gives us the following:

Theorem 4.29. Suppose we have a set of bad-events B which satisfies our LLLL

criterion which weights µ. Suppose E is any atomic event (which is not itself in B).

Then the probability that E is true at the end of the MT algorithm is given by

P (E is true at end of MT) ≤ PΩ(E)
∑

Y orderable to E

∏
B′∈Y

µ(B′)

Proof. This is nearly identical to the proof of Theorem 2.16. �
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Using this result,we will give a serial algorithm for off-diagonal Ramsey coloring

with a much better run-time, and we will also give a parallel algorithm based on our

Parallel MT algorithm.

Theorem 4.30. We want to find a red-blue coloring of the edges of Kn avoiding

red Ks and blue Kt. Define

cs =

(
2

s
− 2

s− 1
+ 1

) s+1
2

(
2(s− 2)!

s(s− 1)(
s
2)

)
1
s−2 .

(1) Suppose n ≤ ( t
log t

)
s+1

2 (cs − o(1)). There is a serial randomized algorithm

which runs in time ns/4+O(1) and produces a correct solution when it halts,

except with a failure probability of n−Ω(1).

(2) Suppose s is constant and n ≤ ( t
log t

)
s+1

2 (cs − o(1)). There is a parallel ran-

domized algorithm which runs in time sO(1) logO(1) n time using ns/4+O(1) pro-

cessors, and produces a correct solution when it halts, except with a failure

probability of n−Ω(1).

Proof. The proofs of both parts are very similar; to simplify the discussion, we

will focus mostly on the serial algorithm, noting any difference between that and the

parallel algorithm.

The probability space Ω is defined by coloring each edge red with probability

p =

(
2(s− 2)!

(s− 1)s

) 2
s2−s−2

n
−2
s+1

and blue otherwise. We ignore the blue Kt and so our only bad-events are the red Ks.

Each bad-event has probability q = p(
s
2). Observe that each bad-event is lopsidepen-

dent with only a single bad-event, namely itself. So the LLLL criterion is satisfied,

setting µ(B) = q
1−q for all bad-events B.

Now consider an arbitrary Kt, and let E be the event that it is red at the end of

the MT. We have PΩ(E) = (1− p)(
t
2). The orderable sets for this event can be found

as follows: for each of the
(
t
2

)
edges, we may select zero or one blue Ks. Thus, by
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Theorem 4.29, the probability that E holds at the end of MT is given by

P (Kt is blue) ≤
(

(1− p)(1 +

(
n− 2

s− 2

)
µ)
)(t2)

≤
(

1−
(
s(s− 1)

2(s− 2)!

) 2
−s2+s+2

(
1 +

2

s− s2

)
n
−2
s+1

)(t2)

≤ exp
(
−
(
t

2

)
c′sn

−2
s+1

)
where c′s =

(2(s− 2)!

s(s− 1)

) 2
s2−s−2

(
1 +

2

s− s2

)
Hence, the expected number of blue Kt is at most

E[Blue Kt] ≤
nt

t!
exp(−t2c′sn

−2
s+1/2)

In order to avoid all blue Kt with high probability, say with probability n−φ for

φ > 0 some arbitrary constant, we must take

n ≤

 c′st
2

(s+ 1)(φ+ t) log

(
c′st

2(t!)
− 2

(s+1)(φ+t)

(s+1)(φ+t)

)


s+1
2

=
(
t/ log t

) s+1
2 (cs − os(1))

So far, we have shown that when we run the MT algorithm with the given pa-

rameters, then indeed we avoid Kt with high probability. The next thing we must

examine is how to run the MT algorithm. In this problem, in which the bad-events are

defined to be red Ks, the MT algorithm is somewhat degenerate. The critical thing

to note is that when we resample a bad-event, we can never create new bad-events.

Thus, the most potentially time-consuming step of MT — repeatedly searching for

any bad-events which are currently true — can be much simplified. At the beginning

of the process, after we make the initial random color assignment but before we do

any resamplings, we can enumerate all red Ks. For each such red Ks, we repeatedly

sample the edges until the Ks is no longer red. The process of finding the red Ks can
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be aided by the fact that we are searching for them in a random graph — namely,

the edges are red independently with probability p.

The simplest way to search for such red Ks seems to be through a branching pro-

cess: we gradually build up red Kl, for l ≤ s. In this branching process, the expected

number of red Kl is p(
l
2)
(
n
l

)
. Thus, the total time complexity of this branching process

will be

Time to find red Ks ≤ nO(1)

s∑
l=0

(
n

l

)
p(

l
2)

≤ nO(1) exp(max
l∈[0,s]

l log n+
(l − 1)2

2
log p− l log l + l)

≤ ns/4+O(1) (by routine calculus)

This concludes part (1) of the theorem. As the parallel MT algorithm simulates

the serial algorithm, all the results about the MT distribution still remain true in the

parallel setting; in particular we avoid the blue Kt with high probability. Also, one

can enumerate the red Ks in parallel, using ns/4+O(1) processors and s stages, via the

same type of branching process.

One can see easily that we satisfy the parallel LLLL criterion for n sufficiently

large, setting µ(B) = 1 for all B and ε = 1/2. All the bad events then use
(
s
2

)
elements,

and the total number of bad-events is nOs(1), and we have log
∑

B∈B µ(B) = Os(log n).

Hence by Theorem 4.25, the Parallel MT terminates in time sO(1) logO(1) n whp. �

4.4. MT can be more powerful than the Shearer criterion

In [43], the asymmetric LLL was applied to k-SAT satisfiability. We show that

this type of analysis was close to best possible application of the LLL, in the sense

that stronger forms of the LLL would not have been able to improve the bounds

significantly. Suppose we are given a formula Φ in each variable appears at most

L times. Suppose each variable appears at most L/2 times positively and at most

L/2 times negatively in Φ. Suppose we define the natural probability space in which
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each variable is set to true with probability 1/2 and false with probability 1/2, all

independently of each other, and we define a separate bad-event for each clause in Φ

becoming false. In this case, each bad-event has probability pi = p = 2−k.

Then, as shown in [43], for L ≤ L0 = 2k+1

e(k+1)
, the LLLL can applied to this

probability space to show that, with positive probability, none of the bad-events

occur: i.e. none of the clauses are falsified, and so Φ is satisfiable. As we have shown

in Section 4.3.1, for L ≤ L1 = 2k+1(1−1/k)k

k−1
− 2

k
, the Moser-Tardos “simulation” of this

probability space terminates with a satisfying assignment.

In order to show that the MT algorithm, and our criterion for it, can be stronger

than the Shearer criterion, we will create a formula Φ, in which each variable ap-

pears at most L/2 times positively and L/2 times negatively, for some L ∈ (L0, L1).

However, for the natural probability space Ω, the Shearer criterion is violated. That

means that the LLL, applied to the natural probability space, cannot be used to

show that this formula is satisfiable, even though the MT algorithm for it converges.

In other words, information about the probability and dependency structure of the

clauses is not sufficient to show that Φ is satisfiable: we must also take account of its

decomposition into variables.

4.4.1. Constructing the extremal formula Φ. We will construct a family of

formulas ΦT , for T ∈ N, as follows. Suppose L is a fixed even integer. Initially, Φ0

contains no clauses. At stage i of the process, we create L − 2 clauses containing

variable i; exactly L/2− 1 clauses in which i appears positively and exactly L/2− 1

clauses in which i appears negatively. All the other variables in these clauses are

completely new, not appearing in any clause of Φ; they all appear positively in the

L− 2 new clauses. When we form Φi, each of the new variables (other than variable

i) appears in exactly one new clause. We refer to the process of adding L− 2 clauses

containing variable i as expanding variable i.

Proposition 4.31. For any T ∈ N and every i ∈ [n], variable i appears at most

L/2 times positively and at most L/2− 1 times negatively in ΦT
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Proof. One positive occurrence of variable i may occur in expanding i′ for i′ < 1.

Otherwise, the only occurrences of variable i appear when expanding variable i; this

adds L/2− 1 positive occurrences of i and L/2− 1 negative occurrences of i. �

There is a natural tree structure T on the variables of ΦT : we say that variable i

is a parent of variable j if variable j was first introduced into ΦT during the expansion

of variable i.

We define the lopsidependency graph corresponding to ΦT in the usual way: for

each clause of ΦT , we have a separate vertex and we have an edge between two

vertices if the corresponding clauses disagree on a variable. We let GT denote the

lopsidependency graph corresponding to the formula ΦT .

Although the graph GT is complicated, we will show that it contains a relatively

simple and regular type of subgraph. We will actually show that Shearer’s criterion

is violated for this subgraph; as shown in [102], this suffices to show that Shearer’s

criterion is violated for the overall graph GT .

The graph family Hj will consist of many copies of KL/2−1,L/2−1, the complete

bipartite graph with L/2− 1 vertices on each side. Each graph Hj has a special copy

of this KL/2−1,L/2−1, which is labeled as the root of Hj. We define the graph family

Hj recursively. First, H0 is the null graph (the graph on 0 vertices). To form Hj+1,

we do the following: we take a new copy of KL/2−1,L/2−1, which we will designate as

the root of Hj+1. Then, for each vertex v in this root, we add k − 1 separate new

copies of Hj, along with an edge connecting v to all the vertices in the right-half of

the root of the corresponding Hj.

Proposition 4.32. Let j > 0 be any fixed integer. Then, there is some T suffi-

ciently large (which may depend on j) such that GT contains a copy of Hj.

Proof. Recall that T defines a tree structure on the variables of ΦT . For any

variable i, let T [i] denote the subtree of T rooted at i.
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We will prove by induction on j a stronger claim: for any variable i, there is some

T = T (i, j) sufficiently large such that the subgraph of GT induced on the vertex set

T [i] contains a copy of Hj, and the root of this copy of Hj corresponds to the new

clauses introduced during the expansion of i.

When j = 0 this is vacuously true. To show the inductive step, note that for

T sufficiently large, then variable i is expanded in ΦT . Thus, in ΦT , variable i has

(L− 1)(k− 1) children in T (the variables introduced during the expansion of i); we

denote these by C and we denote the clauses introduced during the expansion of i by

A. By inductive hypothesis, for T sufficiently large, the subgraphs of GT induced on

these children all contain copies of Hj. Because T is a tree structure, these subgraphs

do not intersect in any vertices.

Now consider the clauses introduced during the expansion of i. All the clauses in

which i appears positively are lopsidependent with all of the clauses in which i appears

negatively. In addition, consider each variable x ∈ C. By inductive hypothesis,

the root of the corresponding Hj corresponds to the clauses introduced during the

expansion of x. In the clauses corresponding to the expansion of variable i, this

variable x appears in exactly one clause; in this root node, it appears negatively in

L/2− 1 clauses. Hence, GT also contains k− 1 edges from each vertex in A to all the

vertices in the right-half of the new copy of Hj. �

4.4.2. Computing the Shearer criterion for Hj. We now discuss how to

compute the Shearer criterion for the family of graphs Hj. We will show that, for j

sufficiently large, S(Hj, ∅) < 0.

We will make use of two computational tricks for independent set polynomials.

Proposition 4.33. Suppose G has connected-components G1, G2. Then we have

Q(G, ∅, p) = Q(G1, ∅, p)Q(G2, ∅, p)
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Proposition 4.34. Suppose X ⊆ V is any set of vertices. Then we have

Q(G, ∅, p) =
∑
U⊆X

U independent

Q(G− U −N(U), ∅, p)
∏
i∈U

(−pi)

where G−U −N(U) is the residual graph; we remove U and all their neighbors from

G.

For the probability space corresponding to the formula Φ, all the probabilities pi

are equal to the common value p = 2−k.

We will need to work also with slight variant of the graphs Hj. We define the

graph family H ′j as follows: the root node consists of a singleton vertex. To this we

attach k−1 new copies of Hj−1, along with an edge from the singleton root to all the

vertices in the right-half of the roots of Hj−1.

Proposition 4.35. Suppose we define

sj = Q(Hj, ∅, ~p) rj = Q(H ′j, ∅, ~p)

where ~p is the probability distribution assigning probability 2−k to each event. Then

s, r satisfy the mutual recurrence relations

rj = sk−1
j−1 − pr

(k−1)(L/2−1)
j−1 s

(k−1)2(L/2−1)
j−2

sj = 2r
(L/2−1)
j s

(k−1)(L/2−1)
j−1 − s(k−1)(L−2)

j−1

s0 = 1, r0 = 1

Proof. We will first deal with H ′j as it is much simpler. We apply Proposi-

tion 4.34, taking X as the singleton root node. In this case, U is either the empty

set, or U is the root node. In the former case, the residual graph consists of k − 1

independent copies of Hj−1.

In the latter case, suppose we remove the root node v of H ′j and its neighbors; let

us consider one of the copies of Hj−1 to which v was connected. In this copy of Hj−1,
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all the vertices in the left half of the root are now disconnected and isolated, thus we

have L/2− 1 copies of H ′j−1. In addition, all the vertices in the right-half of the root

are removed; each of those was connected to k− 1 copies of Hj−2, which now become

isolated copies. In total, when we remove v, then we are left with (k − 1)(L/2 − 1)

isolated copies of H ′j−1 and (k − 1)2(L/2− 1) isolated copies of Hj−2.

Summing the contributions of these two terms according to Proposition 4.34 gives

rj = Q(H ′j, ∅, ~p) = sk−1
j−1 − pr

(k−1)(L/2−1)
j−1 s

(k−1)2(L/2−1)
j−2

We next deal with Hj. In any independent set U of Hj, either U contains zero

vertices from the left half of the root of Hj, or zero vertices from the right-half of the

root of Hj, or both. In the first two cases cases, when we remove the vertices in the

left (respectively right) half of Hj, then we are left with L/2 − 1 copies of H ′j and

(k − 1)(L/2 − 1) copies of Hj−1. In the third case, we are left with (k − 1)(L − 2)

copies of Hj−1. We can sum the first two contributions and subtract the third, as it

is double-counted: this gives

sj = 2r
(L/2−1)
j s

(k−1)(L/2−1)
j−1 − s(k−1)(L−2)

j−1

�

Proposition 4.36. Define the function f : [0, 1]→ R by

f(a) = 1− p

(2− a−(L/2−1))k−1

Suppose that the Shearer condition is satisfied for all GT , T ≥ 0. Then there is

some a ∈ (2
−2
L−2 , 1] satisfying f(a) = a.

Proof. Define

aj =
rj

sk−1
j−1

, bj =
sj

s
(k−1)(L−2)
j−1
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Then we have:

bj =
2r

(L/2−1)
j s

(k−1)(L/2−1)
j−1 − s(k−1)(L−2)

j−1

s
(k−1)(L−2)
j−1

=
2r

(L/2−1)
j

s
(k−1)(L/2−1)
j−1

− 1 = 2a
(L/2−1)
j − 1

and we can obtain a pure first-order recurrence on the sequence aj:

aj =
sk−1
j−1 − pr

(k−1)(L/2−1)
j−1 s

(k−1)2(L/2−1)
j−2

sk−1
j−1

= 1− p
r

(k−1)(L/2−1)
j−1

s
(k−1)2(L/2−1)
j−2

×
s

(k−1)2(L−2)
j−2

sk−1
j−1

= 1−
pa

(k−1)(L/2−1)
j−1

bk−1
j−1

= 1−
pa

(k−1)(L/2−1)
j−1

(2a
(L/2−1)
j−1 − 1)k−1

= f(aj−1)

One may verify also that a0 = 1.

Now suppose that for some j ≥ 1 we have aj ≤ 2
−2
L−2 . In this case, we have

bj ≤ 0 and hence
sj

s
(k−1)(L−2)
j−1

≤ 0. This implies that either sj ≤ 0 or sj−1 ≤ 0, so the

Shearer condition is violated for Hj or Hj−1. This implies that the Shearer condition

is violated for GT for T sufficiently large.

Next, suppose that it holds that f(a) < a for all a ∈ (2−
−2
L−2 , 1]. This implies that

the sequence aj is decreasing for j ∈ N. As the sequence aj also satisfies aj ≥ 2
−2
L−2 ,

it must converge to some limit point a. But, by continuity, this limit point must be

a fixed point of the functional iteration, i.e. f(a) = a, which is a contradiction

So we know that f(a) ≥ a for some a ∈ (2−
−2
L−2 , 1]. But also note that f(1) =

1− p < 1. Hence, the function f(a)− a changes sign on the interval (2−
−2
L−2 , 1]. This

implies there must be a fixed point f(a) = a on this interval. �

Proposition 4.37. Suppose L ≥ 2k+1

ek
(1 + φk−2), for some small constant φ > 0.

Then the Shearer condition is violated on some GT , for T sufficiently large.
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Proof. Suppose the Shearer condition is satisfied for allGT . By Proposition 4.36,

the function f has a fixed point a ∈ (2−
−2
L−2 , 1]. Thus L must satisfy the condition

L = 2−
2 ln

(
2− 2

k
1−k (1− a)

1
1−k

)
ln a

Reparametrizing with t = 2k/(1−k)(1− a)1/(1−k), we obtain the simpler expression

L = 2− 2 ln(2−t)
ln(1−2−kt1−k)

, for some t ∈ [0, 2]. Thus we have:

(9) L ≤ 2 + tk−12k+1 ln(2− t)

Let t0 = 1− (k + 1/2)−1. A simple computation shows that the derivative of the

RHS of (9) with respect to t is negative for t ≥ t0. So the maximum value occurs at

t ≤ t0, and for such t we have

ln(2− t) ≤ ln(2− t0)− (t− t0)
1

1
k+ 1

2

+ 1

Thus we have

L ≤ 2−
2k+1tk−1

(
2k(t− 1)− (2k + 3) log

(
1

k+ 1
2

+ 1
)

+ t+ 1
)

2k + 3

≤ 2 +
2k+1

(
k−1
k

)k
(2k + 1)1−k

(
2k + (2k + 3) log

(
1

k+ 1
2

+ 1
)
− 1
)k

2k2 + k − 3
+ 2 by simple calculus

≤ 2k+1

ek
(1 +O(k−2))

�

We contrast this with our result in Section 4.3.1; there, we showed that the MT

algorithm converges when L ≤ L1 and L1 is on the order 2k+1

ek
(1 + Θ(k−1)). This

means that there is a gap of size Θ(2k/k2) between the bounds provable from Shearer’s

criterion and the bounds provable from our new LLLL criterion.
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CHAPTER 5

The Moser-Tardos framework with partial resampling

In the standard MT algorithm, we resample all the variables which affect a true

bad-event. In this chapter, we develop a new algorithm based on partial resampling,

in which only a subset of the variables are resampled. We refer to this as the Partial

Resampling Algorithm (PRA); the idea is to carefully choose a distribution Di over

subsets of {j ∈ Si : Xj} for each i, and then, every time we need to resample, to

first draw a subset from Di, and then only resample the Xj’s that are contained in

this subset. This partial-resampling approach leads to algorithmic results for many

applications that are not captured by the LLL.

In order to motivate our applications, we start with two classical problems: sched-

uling on unrelated parallel machines [74], and low-congestion routing [96]. In the

former, we have n jobs and K machines (we interchange the standard use of the in-

dices i and j here, and use K in place of the usual “m”, in order to conform to the

rest of our notation), and each job i needs to be scheduled on any element of a given

subset Mi of the machines. If job i is scheduled on machine j, then j incurs a given

load of pi,j. The goal is to minimize the makespan, the maximum total load on any

machine. The standard way to approach this is to introduce an auxiliary parameter

T , and ask if we can schedule with makespan T [74, 106]. Letting [k] denote the

set {1, 2, . . . , k}, a moment’s reflection leads to the following integer-programming
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formulation:

∀i ∈ [n],
∑
j∈Mi

xi,j = 1;(10)

∀j ∈ [K],
∑
i

pi,jxi,j ≤ T ;(11)

∀(i, j), pi,j > T =⇒ xi,j = 0;(12)

∀(i, j), xi,j ∈ {0, 1}.(13)

(Although (12) is redundant for the IP, it will be critical for the natural LP relaxation

[74].) In low-congestion routing, we are given a collection of (source, destination)

pairs {(si, ti) : i ∈ [n]} in a V -vertex, K-edge directed or undirected graph G with

edge-set E; each edge f ∈ E has a capacity cf , and we are also given a collection

Pi = {Pi,j} of possible routing paths for each (si, ti)-pair, with each such path indexed

by i and an auxiliary index j. We aim to choose one path from Pi for each i, in order

to minimize the relative congestion: the minimal T such that the maximum load on

any edge f is at most T · cf . We get a similar IP formulation:

minimize T subject to

∀i, ∑
j

xi,j = 1; ∀f ∈ E,
∑

(i,j): f∈Pi,j

xi,j ≤ T · cf ; xi,j ∈ {0, 1}.



Our class of problems. Given the above two examples, we are ready to define the

class of problems that we will study. As above, we have n variables X1, X2, . . . , Xn;

we need to choose one value for each variable, which is modeled by “assignment

constraints” (10) on the underlying indicator variables xi,j. In addition, we have

a set B of (undesirable) events; these are all conjunctions of the elementary events

Xi = j; we aim to choose the variables Xi, . . . , Xn, and such that all the B ∈ B are

falsified. It is easily seen that our two applications above, have the undesirable events

are defined by linear threshold functions of the form “
∑

i,j ak,i,jxi,j > bk”; we will

also consider bad-events which are non-linear, some of which will be crucial in our

packet-routing application. We develop a partial resampling approach to our basic
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problem in Section 5.1; Theorem 5.6 presents some general conditions under which

our algorithm quickly computes a feasible solution X1, . . . , Xn.

A key technical tool in our analysis is a new formula for counting the tree-

structures which appear in the proof of the MT algorithm. This greatly simplifies

the analysis of the Asymmetric LLL. It is critical to obtaining usable formulas for

complicated applications of the Partial Resampling framework, but it is also very

useful for analyzing the standard Moser-Tardos framework.

Let us next motivate our result by describing three families of applications.

5.0.3. The case of non-negative linear threshold functions. The sched-

uling and routing applications had each Bk being a non-negative linear threshold

function: our constraints (i.e., the complements of the Bk) were of the form

(14) ∀k ∈ [K],
∑
i,j

ak,i,jxi,j ≤ bk.

(The matrix A of coefficients ak,i,j here, has K rows indexed by k, and some N

columns that are indexed by pairs (i, j).) Recall that all our problems will have the

assignment constraints (10) as well. There are two broad types of approaches for such

problems, both starting with the natural LP relaxation of the problem, wherein we

allow each xi,j to lie in [0, 1]. Suppose the LP relaxation has a solution {yi,j} such

that for all k, “
∑

i,j ak,i,jyi,j ≤ b′k”, where b′k < bk for all k; by scaling, we will assume

throughout that ak,i,j ∈ [0, 1]. The natural question is:

“What conditions on the matrix A and vectors b′ and b ensure that

there is an integer solution that satisfies (10) and (14), which, fur-

thermore, can be found efficiently?”

The first of the two major approaches to this is polyhedral. Letting D denote the

maximum column sum of A, i.e., D = maxi,j
∑

k ak,i,j, the rounding theorem of [63]

shows constructively that for all k,

(15) bk = b′k +D
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suffices. The reader is asked to verify that given a solution to the LP-relaxation of

makespan minimization that satisfies (10), (11) and (12), bound (15) implies that

we can find a schedule with makespan at most 2T efficiently. This 2-approximation

is the currently best-known bound for this fundamental problem, and what we have

seen here is known to be an alternative to the other polyhedral proofs of [74, 106].

The second approach to our problem is randomized rounding [96]: given an LP-

solution {yi,j}, choose exactly one j independently for each i, with the probability

of yi,j of setting variable i equal to j. The standard “Chernoff bound followed by a

union bound over all K rows” approach [96] shows that Chernoff(b′k, bk) ≤ 1/(2K)

suffices, for our goal to be achieved with probability at least 1/2. That is, there is

some constant c0 > 0 such that

(16) bk ≥ c0 ·
logK

log(2 logK/b′k)
if b′k ≤ logK; bk ≥ b′k + c0 ·

√
b′k · logK if b′k > logK

suffices. In particular, the low-congestion routing problem can be approximated to

within O(logK/ log logK) in the worst case, where K denotes the number of edges.

Let us compare these known bounds (15) and (16). The former is good when

all the b′k are “large” (say, much bigger than, or comparable to, D – as in the 2-

approximation above for scheduling); the latter is better when D is too large, but

unfortunately does not exploit the sparsity inherent in D – also note that K ≥ D

always since the entries ak,i,j of A lie in [0, 1]. A natural question is whether we can

interpolate between these two: especially consider the case (of which we will see an

example shortly) where, say, all the values b′k are Θ(1). Here, (15) gives an O(D)-

approximation, and (16) yields an O(logK/ log logK)-approximation. Can we do

better? We answer this in the affirmative in Theorem 5.19 – we are able to essentially

replace K by D in (16), by showing constructively that if we have b′k ≤ R for all k,

for some R ≥ 1, then we achieve

bk = C0
log(D + 1)

1 + log log(D+1)
R

if R ≤ log(D + 1); bk = R+C0

√
R log(D + 1) if R ≥ log(D + 1)
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suffices.

Application to multi-dimensional scheduling. Consider the following D-dimensional

generalization of scheduling to minimize makespan, studied by Azar & Epstein [14].

Their (D + 1)-approximation here also holds for the following generalization, and

again follows quickly from (15). Here, when job i gets assigned to machine j, there

are D dimensions to the load on j (say runtime, energy, heat consumption, etc.): in

dimension `, this assignment leads to a load of pi,j,` on j (instead of values such as pi,j

in [74]), where the numbers pi,j,` are given. Analogously to (10), (11) and (12), we

ask here: given a vector (T1, T2, . . . , TD), is there an assignment that has a makespan

of at most T` in each dimension `? The framework of [14] and (15) gives a (D + 1)-

approximation1 while our bound (5.0.3) yields an O(logD/ log logD)-approximation;

since D � K typically in this application, this is also a significant improvement over

the O(logK/ log logK)-approximation that follows from (16).

Comparison with other known bounds. As described above, our bound (5.0.3) im-

proves over the two major approaches here. However, two related results deserve

mention. First, a bound similar to (5.0.3) is shown in [72], but with D∗, the max-

imum number of nonzeroes in any column of A, playing the role of D. Note that

D∗ ≥ D always, and that D∗ � D is possible. Moreover, the bound of [72] primarily

works when all the b′k are within an O(1) factor of each other, and rapidly degrades

when these values can be disparate. Finally, our bound is better when R� log(D+1);

other works give the bound in this case of bk = R + C0

√
R logR.

5.0.4. Transversals with omitted subgraphs. Given a partition of the ver-

tices of an undirected graph G = (V,E) into blocks (or classes), a transversal is a

subset of the vertices, one chosen from each block. An independent transversal, or

independent system of representatives, is a transversal that is also an independent

set in G. The study of independent transversals was initiated by Bollobás, Erdős

1As usual in this setting, an “approximation” here is an algorithm that either proves that the
answer to this question is negative (by showing that the LP is infeasible), or presents the desired
approximation simultaneously for each T`.
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& Szemerédi [18], and has received a considerable amount of attention (see, e.g.,

[2, 5, 7, 54, 59, 60, 75, 111, 116]). Furthermore, such transversals serve as build-

ing blocks for other graph-theoretic parameters such as the linear arboricity and the

strong chromatic number [5, 7]. We improve (algorithmically) a variety of known suf-

ficient conditions for the existence of good transversals, in Section 5.3. In particular,

Szabó & Tardos present a conjecture on how large the blocks should be, to guarantee

the existence of transversals that avoid Ks [111]; we show that this conjecture is

true asymptotically for large s. We also study weighted transversals, as considered

by Aharoni, Berger & Ziv [2], and show that near-optimal (low- or high-) weight

transversals exist, and can be found efficiently.

5.0.5. Packet routing with low latency. A well-known packet-routing prob-

lem is as follows. We are given an undirected graph G with N packets, in which

we need to route each packet i from vertex si to vertex ti along a given simple path

Pi. The constraints are that each edge can carry only one packet at a time, and

each edge traversal takes unit time for a packet; edges are allowed to queue packets.

The goal is to conduct feasible routings along the paths Pi, in order to minimize the

makespan T , the relative of the scheduling notion above that refers to the time by

which all packets are delivered. Two natural lower-bounds on T are the congestion C

(the maximum number of the Pi that contain any given edge of G) and the dilation

D (the length of the longest Pi); thus, (C + D)/2 is a universal lower-bound, and

there exist families of instances with T ≥ (1 + Ω(1)) · (C +D) [97]. A seminal result

of [73] is that T ≤ O(C + D) for all input instances, using constant-sized queues at

the edges; the big-Oh notation hides a rather large constant. Further work [99, 93]

improved this constant term substantially, leading to the bound 23.4(C + D) given

in [93]. We improve these further to a constructive 5.70(C +D) here.

Informal discussion of the Partial Resampling Algorithm. To understand the

intuition behind our Partial Resampling Algorithm, consider the situation in which
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we have bad events of the form Z1 + · · · + Zv ≥ µ + t, where the expected value

of Z1 + · · · + Zv is µ. There are two basic ways to set this up for the standard

LLL. The most straightforward way would be to construct a single bad-event for

Z1 + · · · + Zv ≥ µ + t. In this case, the single event would depend on v variables,

which might be very large. Alternatively, one could form
(
v
µ+t

)
separate bad-events,

corresponding to every possible set of µ + t variables. Each of these bad-events

individually would have a very low probability, and the overall dependency would

also be low. The problem with this approach is that the collective probability of the

bad-events has become very large. In effect, one is approximating the probability of

the bad-event Z1 + · · ·+Zv ≥ µ+ t by a union-bound over all
(
v
µ+t

)
subsets. When t

is small, this union bound is very inaccurate.

In fact, both of these approaches are over-counting the dependence of the bad-

event. In a sense, a variable Zi is causing the bad-event only if it is “the straw

that breaks the camel’s back,” that is, if it is the key variable which brings the sum

Z1 + · · · + Zv over the threshold µ + t. Really, only about t of the variables are

“guilty” of causing the bad-event. The first µ variables were expected to happen

anyway; after reaching a total µ+ t variables, any remaining variables are redundant.

Any individual variable Zi only has a small chance of being a guilty variable.

This is a situation in which there are many variables which have have some effect

on the bad event, but this effect is typically very small. The standard LLL, which

is based on a binary classification of whether a variable affects a bad-event, cannot

see this. We will give a new criterion which quantifies how likely a variable is to

be responsible for the bad-event. This will in turn greatly lower the dependency be-

tween bad events, while still keeping an essentially accurate bound on the probability.

Further specific comparisons with the standard LLL are made in Sections 5.3 and 5.4.

In general, the Partial Resampling Algorithm tends to work well when there are

common configurations, which are not actually forbidden, but are nonetheless “bad”

in the sense that they are leading to a forbidden configuration. So, in the case of a
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sum of random variables, if a large group of these variables is simultaneously one, then

this is bad but, by itself, still legal. We will see other examples of more complicated

types of bad-but-legal configurations.

Organization of the chapter. The Partial Resampling Algorithm is discussed

in detail in Section 5.1. We give a criterion, similar to the asymmetric LLL, for

showing that this algorithm terminates in expected polynomial time.

Section 1.6 describes an alternative, more succinct formulation of the “weighting

function” necessary to analyze the PRA. This method is very useful for the standard

MT algorithm as well, but it is particularly important for the PRA, because the

criterion we develop in Section 5.1 has a huge number of parameters and is difficult

to work with directly.

A related but non-constructive framework, which is able to apply to similar types

of combinatorial configurations with qualitatively similar result, is presented in the

appendix in Section 5.C.

Applications are discussed in the following three sections: transversals with omit-

ted subgraphs, improved integrality gaps for column-sparse packing problems, and

packet routing in Sections 5.3, 5.4, and 5.5 respectively. The appendix contains nu-

merical results and a useful probabilistic lemma.

5.1. The Partial Resampling Algorithm

5.1.1. Notation. We begin by discussing some basic definitions that will apply

throughout.

We have n variables; each variable has a set of possible assignments, which may

be countably infinite or finite, and which we identify with (a subset of) the integers.

We define the probability space Ω, in which the variables are assigned independently:

for each variable i we set Xi = j with probability pi,j, where where j ranges over the

set of valid assignment to variable i. Henceforth we will not be explicit about the set

of possible assignments, so we write simply
∑

j pi,j = 1.
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We refer to any ordered pair (i, j) where j is an assignment of variable i, as an

element. We let X denote the set of all element. Given any vector ~λ = (λi,j) indexed

by elements (i, j) ∈ X , we define, for any set Y ⊆ X ,

(17) λY =
∏

(i,j)∈Y

λi,j.

Atomic events as sets of elements. We are also given a collection B of bad-events.

For our purposes, we may suppose that all the events in B are atomic events ; that is,

each bad-event is defined by

B ≡ Xi1 = j1 ∧ · · · ∧Xil = jl

We slightly abuse notation so this atomic event would be represented by the set

{(i1, j1), . . . , (il, jl)}. Thus, when we write (i, j) ∈ B, we mean that a necessary

condition for bad-event B to be true is that Xi = j.

In many applications of the LLL, the bad-events may be more complex. However,

we can always write a complex bad event as a union of a (possible large) number of

atomic bad-events. For example, if a bad-event is that Z1 + · · · + Zv ≥ µ + t, then

this can be represented as
(
v
µ+t

)
separate atomic events.

Labeling bad-events. For technical reasons, which we will discuss more in

Section 5.1.5, we may sometimes need to attach labels in the range {1, . . . , K} to

each atomic bad-event. Thus, we suppose there is a la belling map L : B → [K]. We

will use the notation

Bk = {B ∈ B | L(B) = k}

To provide a very brief explanation of the role played by labels: in many applica-

tions of the LLL, there are multiple complex bad-events. We often want to analyze

each complex bad-event separately. By adding labels to each complex bad-event, we

will be able to limit their interactions with each other. In reading the following

sections, the reader is advised to keep in mind the case when K = 1 (so
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that essentially the la belling map does not play a part). Almost all of the

intuition and results apply in that setting, and many of our applications

will use it as well. We refer to the case when K = 1 as the trivial la belling.

5.1.2. Fractional hitting-sets. In order to use our algorithm, we will need to

specify an additional parameter. For each k = 1, . . . , K we must specify a fractional

hitting-set Qk, which essentially tells us how to resample the variables in that bad

event.

Definition 5.1. Suppose C : 2X → [0, 1] is some weight function on the subsets

of X .

Let B be an atomic bad-event, which we view as a set of elements B = {(i1, j1), . . . , (ir, jr)}.

We say that C is a fractional hitting set for B if we have that

(18)
∑
Y⊆B

C(Y ) ≥ 1

Suppose B is a set of atomic bad-events. We say that C is a fractional hitting set

for B if C is a fractional hitting set for all B ∈ B.

Remark regarding Definition 5.1. We may assume, without loss of generality,

that if Y contains more than one value for a variable (that is, if it contains (i, j) and

(i, j′)) then C(Y ) = 0.

If there are K possible labels, we will select K fractional hitting sets Q1, . . . , QK ;

for each k = 1, . . . , K we require that Qk is a fractional hitting set for Bk.

One possible choice for the fractional hitting set is the bad-event itself, which is

easily verified to be a valid fractional hitting-set:

138



Definition 5.2. Let B be a set of bad-events. We define the trivial hitting-set

for B by

C(Y ) =


1 if Y ∈ B

0 otherwise

If the trivial hitting-set is used, then our analysis essentially reduces to the or-

dinary MT algorithm (but we will still show improvements in that case). We will

discuss later how to construct such fractional hitting-sets, but for now we suppose

that we are provided some specified Q1, . . . , QK .

Definition 5.3 (A supported event). Given any Y ⊆ X and k ∈ [K], we say

that (Y, k) is supported if Qk(Y ) > 0.

5.1.3. Partial Resampling Algorithm and the Main Theorem. We present

our partial resampling algorithm, and main theorem related to it.

Consider the following relative of the MT algorithm. We refer to this as the Partial

Resampling Algorithm or abbreviate as PRA.

1. Draw X1, . . . , Xn ∼ Ω

2. Repeat the following, as long as there is some true bad-event B ∈ B:

3. Select, arbitrarily, some true bad-event B ∈ B. We refer to this set B

as the violated set.

4. Select exactly one subset Y ⊆ A. The probability of selecting a given Y

is given by

P (select Y ) =
Qk(Y )∑

Y ′⊆B Qk(Y ′)

where k = L(B). We refer to Y as the resampled set.

5. Resample all the variables involved in Y independently from Ω.

This differs from the MT algorithm in that if there is a bad event that is currently

true, then MT would resample all the variables which it depends upon. Here, we

only resample a (carefully-chosen, random) subset of these variables.
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We will need to keep track of the dependency graph corresponding to our fractional

hitting set. This is more complicated than the usual Moser-Tardos setting, because

we will need to distinguish two ways that subsets of elements Y, Y ′ could affect each

other: they could share a variable, or they could both be potential resampling targets

for some bad-event. In the usual Moser-Tardos analysis, we only need to keep track

of the first type of dependency. The following symmetric relation ≈ (and its two

supporting relations ∼ and ./) will account for this:

Definition 5.4. (Symmetric relations ∼, ./k, and ≈) Let Y, Y ′ ⊆ X .

We say Y ∼ Y ′ iff there exists a triple (i, j, j′) such that (i, j) ∈ Y and (i, j′) ∈ Y ′:

i.e., iff Y and Y ′ overlap in a variable. We also write i ∼ Y (or Y ∼ i) to mean that

Y involves variable i (i.e., (i, j) ∈ Y for some j.)

For each k, we say Y ./k Y
′ iff Y 6∼ Y ′ and there is some event B ∈ Bk with

Y, Y ′ ⊆ B.

Relation ≈ is defined between pairs (Y, k): We define (Y, k) ≈ (Y ′, k′) iff Y ∼ Y ′

or Y ./k Y
′. Note that, by definition, it is impossible for both to occur simultaneously.

We say that the ./ relations are null if for all Y, Y ′ with Qk(Y ) > 0, Qk(Y
′) > 0

we have Y 6./k Y ′.

We give three conditions for the PRA to terminate. These conditions are anal-

ogous to, respectively, the cluster-expansion criterion, the asymmetric LLL, and the

symmetric LLL. In order to state the conditions, we introduce some definitions:

Definition 5.5. (A neighbor-set for (Y, k)) Given any Y ⊆ X and k ∈ [K]

and a set T ⊆ 2X × [K], we say that T is a neighbor-set for (Y, k) if the following

conditions hold:

(1) For all (Z, l) ∈ T we have Z ≈ Y .

(2) There do not exist (Z, l), (Z ′, l′) ∈ T with Z ∼ Z ′

(3) There is at most one element (Z, k) ∈ T satisfying Z ./k Y
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Theorem 5.6. (Main PRA Theorem) Suppose we are given fractional hitting

sets Q1, . . . , QK for B1, . . . ,BK respectively.

In each of the following three cases, the PRA terminates in a feasible configuration

avoiding all bad events with probability one.

(a) Suppose there exists µ : 2X × [K]→ [0,∞) which satisfies, for all Y ⊆ X and all

k ∈ [K],

µ(Y, k) ≥ pYQk(Y )
∑

T a neighbor-set for Y

∏
(Y,k′)∈T

µ(Y ′, k′)

Then, the expected number of resamplings is at most
∑

(Y,k) µ(Y, k).

(b) Suppose there exists µ : 2X × [K]→ [0,∞) which satisfies, for all Y ⊆ X and all

k ∈ [K],

µ(Y, k) ≥ pYQk(Y )
( ∏
Y ′∼Y

(1 +
∑
k′∈[K]

µ(Y ′, k′))
)(

1 +
∑

Y ′′./kY

µ(Y ′′, k)
)

Then, the expected number of resamplings is at most
∑

(Y,k) µ(Y, k).

(c) Suppose that for all Y ∈ 2X , k ∈ [K] we have pYQk(Y ) ≤ P ; and suppose that

for all supported (Y, k), there are at most D supported (Y ′, k′) with (Y ′, k′) ≈ (Y, k)

(note that we allow here (Y ′, k′) = (Y, k).) And suppose finally that we satisfy the

criterion

ePD ≤ 1

Then, the expected number of resamplings is at most e
∑

(Y,k) p
YQk(Y ).

5.1.4. Proof ingredient: Witness Trees. A key component of our proofs will

be the notion of witness trees as we have introduced in Chapter 2, but with a small

but critical difference. Suppose we run the PRA and encounter bad-events B1, . . . , Bt;

for each of these we resample the set Y1, . . . , Yt. We define the execution log of this

algorithm to be the listing (Y1,L(B1)), . . . , (Yt,L(Bt)). It is crucial to note that we

do not list the violated sets B themselves (only their labels). Not listing the violated
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sets themselves, is one of our critical ideas, and helps prune the space of possible

witness trees substantially.

So the execution log is a series of pairs (Y1, k1), . . . , (Yt, kt). We form the witness

tree in in a manner similar to that given in Chapter 2, driven by the relation ≈, but

there is a key difference. Each node (Y, k) is only allowed to have a single child due to

the relation ./k, and has no children due to the relation ./k′ for k′ 6= k. As we will see,

a single ./-child provides all the information needed. A much simpler proof for the

critical Witness Tree Lemma could be obtained if we allow for multiple ./k-children,

but having this stronger form of the Witness Tree Lemma pays off later with simpler

and stronger results.

Here is how we build a witness tree for an entry in execution log (Y ∗, k∗) (for

example, the final resampling). The event (Y ∗, k∗) goes at the root of the tree. This,

and all nodes of the tree, will be labeled by the corresponding pair (Y, k). Stepping

backward in time, suppose the current event being processed is labeled (Y, k). Suppose

that either there is a node (Y ′, k′) in the current tree with Y ′ ∼ Y , or there is an node

(Y ′, k) and Y ./k Y
′ and the node (Y ′, k) does not currently have a child (Y ′′, k) with

Y ′′ ./k Y . In this case, we find the node v of lowest level (i.e. highest depth) which

satisfies either of these conditions, and make the new node labeled (Y, k) a child of

the node v. If there are no nodes satisfying either condition, we skip (Y, k). Continue

this process going backward in time to complete the construction of the witness tree.

Because this will come up repeatedly in our discussion, given a node v labeled by

(Y, k), we refer to a child (Y ′, k) with Y ./k Y
′ as a ./-child. If a node v has a ./-child

v′ we say it v is saturated by v′ otherwise we say v is unsaturated. Evidently in this

construction each node may have one or zero ./-children.

As in [94], note that all nodes in any level of the witness tree must form an

independent set under ∼; this will be useful in our analysis.
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We next introduce our main Lemma 5.7, connecting the witness trees to the

execution logs. However, as pointed out after the proof of the lemma, its proof is

much more involved than Lemma 2.8.

Lemma 5.7 (Witness Tree Lemma). Let τ be any tree-structure, with nodes labeled

by (Y1, k1), (Y2, k2) . . . , (Yt, kt). Then the probability that the witness tree τ appears is

at most

P (τ appears) ≤
t∏

s=1

pYsQks(Ys).

Remark. Recall the notation (17) in parsing the value “pYs” above.

Proof. We will construct a necessary conditions for the tree τ to appear. These

conditions all have the following form: they contain some conditions on the past

history of the PRA; as soon as these conditions are triggered, we demand that the

random variable which is about to be sampled takes on a specific value. We refer to

the preconditions of each of these checks as triggers and the demanded event to be the

target. The target will be either that some variable i we are about to resample takes

on a specific value j; or that when we detect a bad-event B, we select some specified

Y ⊆ B to resample. For the tree τ to appear, it must be the case that each trigger is

detected exactly once in the execution log and no two triggers occur simultaneously.

In this case, Lemma 5.32 from Appendix 5.B can be used to show that the probability

of this event is at most the product of the individual target probabilities, namely pi,j

and QL(B)(Y ) respectively.

Recall that we do an initial sampling of all categories (which we can consider the

zeroth resampling), followed by a sequence of resamplings. Now, consider a node s

of τ labeled by (Y, k). Suppose (i, j) ∈ Y . Because any node – labeled (Y ′, k′), say

– in which i is sampled would satisfy (Y, k) ∼ (Y ′, k′), it must be that any earlier

resamplings of the variable i must occur at a lower level of the witness tree. So if we

let r denote the number of times that variable i has appeared in lower levels of τ , then

we are demanding that the rth resampling of variable i selects j. Such a condition
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has the form we mentioned earlier; the trigger is that we have come to resample i for

the rth time, and the target is that we select value j. The probability of this is pi,j.

We next consider the probability of selecting set Y . Consider all the nodes

(Y1, k1), . . . , (Yl, kl) ≈ (Y, k) of the witness tree which are at a lower level than Y .

To simplify the discussion, we will suppose that Yi are distinct; if not, we would

simply have to count events with their appropriate multiplicities.

We divide these nodes into four mutually exclusive categories:

(1) Yi ∼ Y

(2) ki = k and Yi ./k Y and (Yi, k) is unsaturated

(3) ki = k and Yi ./k Y and (Yi, k) is saturated by Y ′i and (Yi, k) is the ./k-child

of (Y, k).

(4) ki = k and Yi ./k Y and (Yi, k) is saturated by Y ′i and (Yi, k) is not the

./k-child of (Y, k).

Define a potential time for (Y, k) as some time in the execution of the PRA such

that:

• For all Yi in cases (1), (2), (3), then Yi has been resampled.

• For all Yi in case (4), then either Y ′i has not been resampled or Yi and Y ′i

have been resampled.

Note that the potential times are not necessarily contiguous in time — these condi-

tions can flip multiple times between satisfied and unsatisfied.

Given a bad-event B, we say that Y is eligible for B if L(B) = k and Y ⊆ B.

If we are a state in the PRA at which we have selected some bad-event B ⊇ Y , but

not yet chosen the resampled set, then we say that Y is eligible (omitting the implied

dependency on B).

We begin by claiming that Y must have been selected during a potential time.

For, suppose that there is a node Yi of type (1), but Y occurred before Yi. Then,

forming the witness tree in the backward manner, by the time Y is added to the

witness tree, Yi is already present. So Y would be placed below Yi, contradicting the
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way we have defined the enumeration. A similar argument is seen to apply to nodes of

type (2). For nodes of type (3), the reasoning is simpler: the ./k child always occurs

earlier in time than its parent. For a node of type (4), we suppose for contradiction

that we encounter Y after Y ′i but before Yi. So the sequence of resamplings must be

Y ′i , Y, Yi. So when Y is added to the tree, node Yi is present but lacks its ./k-child.

So Y would be placed beneath Yi (or lower in the tree).

We now claim that in the first situation during a potential time in which Y is

eligible we must resample Y . For, suppose not. In order for τ to appear we must

eventually resample Y ; so there must be multiple situations during the execution of

the PRA which are potential times in which Y is eligible, and in one of those times

(but not the first) we must resample Y . Suppose that we resample the set Y during

the rth such situation; let Y ′′ be the set that was resampled in the r − 1st such

situation (this is well-defined as r 6= 1). As Y is eligible at this time, Y ′′ must occur

with label k.

We will show that (Y ′′, k′′) must be placed below (Y, k) in the witness tree. This

is obvious if Y ′′ ∼ Y so suppose Y ′′ ./k Y . First suppose that (Y, k) has no ./k child.

In this case, (Y ′′, k) could be placed as a ./k child of Y (or deeper in the tree).

Next, suppose that Y has a ./k-child Y ′ in τ . So Y ′ is a node of type (3) for Y .

As Y ′′ is resampled during a potential time, it must be that Y ′ is resampled before

Y ′′. So the sequence of resamplings must be Y ′, Y ′′, Y . In that case, going backward

to form the witness tree, at the time Y is created its ./k-child Y ′ has not been added.

So again (Y ′′, k) could be placed in the tree under (Y, k).

In any of these cases, the node (Y ′′, k) appears below Y in the witness tree. Also,

(Y ′′, k) ≈ (Y, k). So Y ′′ appears in the listing (Y1, k1), . . . , (Yl, kl); i.e. Y ′′ = Ys for

some s ∈ [l].

Suppose that Y ′′ ∼ Y . Then node (Y ′′, k) is of type (1) in the above listing.

This implies that in any potential time for Y , it must be that Y ′′ has already been
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resampled. But node Y ′′ is resampled during a potential time, i.e. node Y ′′ is selected

after node Y ′′ is resampled which is a contradiction.

This same argument applies for type (2) or type (3) in the above listing. The

only complicated case is type (4): that is, Y ′′ ./k Y and Y ′′ is saturated by some

by Y ′′′ and Y ′′ is not the ./k child of (Y, k). We are assuming that Y ′′ is resampled

during a potential time for Y . By definition, this implies that either Y ′′′ has not been

resampled or both Y ′′, Y ′′′ have been resampled. These are both contradictions.

In summary, we have shown that the first potential time in which Y is eligible for

some B ∈ Bk, then we in fact resample Y . Critically, the target of this condition has

a probability of at most Qk(Y ) due to (18), for any bad-event B.

It is clear that each condition of the first kind, refers to a distinct target. The

second type of event must also — for if (Y, k) and (Y ′, k′) are selected in the same

event, then k = k′ and Y = Y ′ and one of these nodes would have placed above the

other in the witness tree. Observe that if two identical nodes appear in the witness

tree, then our conditions state that one must be selected before the other.

By Lemma 5.32, taking the product over all such conditions, the total probability

is at most
∏
pYsQks(Ys). The key point in this proof is that, based on the execution

of the PRA and the information in the tree τ , we can determine exactly when each

Ys, ks should have been selected and what these should be resampled to. �

The PRA and its proof are very similar to the MT algorithm, and it is tempting to

view this as a special case of that algorithm. However, the proof Lemma 2.8, which is

the analog of Lemma 5.7 for the MT algorithm uses a quite different argument based

on coupling. The tree-structure τ imposes necessary conditions on these samplings,

whose probability distribution can be computed easily. While this coupling argument

works for the value selected in each variable, it does not appear to work for bounding

the probability of selecting a given Y . For this, we appear to need the “Nostradamus

Lemma”: Lemma 5.32 from Appendix 5.B.
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For any tree τ , we define its weight

w(τ) =
∏
s

pYsQks(Ys).

In order to show that the PRA terminates, we bound the total weight of all tree-

structures. This is very similar to the calculation in Moser & Tardos, so we give a

sketch here:

Proposition 5.8. Suppose we are given a weighting function satisfying Theo-

rem 5.6(a). Then the total weight of all tree-structures with root labeled (Y, k) is at

most µ(Y, k).

Proof. For any Y ⊆ X, k ∈ [K] let Th(Y, k) be the total weight of all tree-

structures with root node labeled (Y, k) of height at most h. One can show by

induction on h that Th(Y, k) ≤ µ(Y, k). To show this, note that the children of the root

node must receive distinct labels (Z1, l1), . . . , (Zr, lr), and that {(Z1, l1), . . . , (Zr, lr)}

must be a neighbor-set for (Y, k). �

Next, note that for any distinct times t < t′, the witness trees τ̂ t, τ̂ t
′

are distinct.

Thus, the expected number of resamplings is at most the expected number of witness

trees which appear, which is at most the sum of the weights of all witness trees, which

is at most
∑

(Y,k) µ(Y, k). This immediately shows Theorem 5.6(a).

We can derive Theorem 5.6(b), by using the following method to enumerate

neighbor-sets T . First, we put into T either one element (Y ′′, k) with Y ′′ ./k Y ,

or no such elements; this contributes a factor
(

1 +
∑

Y ′′./kY
µ(Y ′′, k)

)
. Next, for any

Y ′ ∼ Y , we place (Y ′, k′) into T , for at most one choice of k. (Observe that T cannot

contain both (Y ′, k′1) and (Y ′, k′2) by definition of a neighbor-set). For any Y ′ ∼ Y ,

this contributes the term 1 +
∑

k′∈[K] µ(Y ′, k′). This produces every neighbor-set

T , but some of the sets produced in this way are not neighbor-sets; thus this is an

147



over-estimate. So we have

∑
T a neighbor-set for Y

∏
(Y,k′)∈T

µ(Y ′, k′) ≤
( ∏
Y ′∼Y

(1 +
∑
k′∈[K]

µ(Y ′, k′))
)(

1 +
∑

Y ′′./kY

µ(Y ′′, k)
)

Finally, we can derive Theorem 5.6(c) by setting µ(Y, k) = epYQk(Y ) for all Y, k.

5.1.5. Complex bad-events and the role of labels. Now that we have de-

veloped our PRA framework, we can clarify the role played by the labeling function

L : B → [K].

Suppose, as is often the case in applying the LLL, that we have multiple complex

bad-events. We say a bad-event is complex if it is not an atomic event (a conjunction

of elements). For example, a bad-event might be defined in terms of a linear threshold

Z1 + · · · + Zv ≥ µ + t. Any complex bad-event can be expressed as a disjoint union

(possibly exponentially sized) of atomic bad-events. For example, the linear threshold

is definable as
(
v
µ+t

)
separate atomic bad-events. This decomposition is not necessarily

unique, but we suppose we have fixed one particular choice for this decomposition.

So, we may write our family of bad events B as B = B1∪B2∪ · · · ∪BK ; here, each

Bk is a complex bad-event, which is a set of atomic bad-events.

At this point, we might want to analyze each Bk separately, deriving an appro-

priate fractional hitting set Qk and computing some measure of “badness” which we

can aggregate over all B. When we are applying Theorem 5.6, the linkages due to

∼ are relatively easy to handle in this way — it is very similar to the situation for

the usual asymmetric LLL. But the linkages due to ./ may become hard to handle.

In particular, we may have some B ∈ Bk with Y, Y ′ ⊆ B; in this case, the sets Y, Y ′

become dependent with each other in a complicated, non-linear way.

As is suggested by the notation, we can decouple the events Bk by defining an

appropriate labeling:

∀B ∈ B L(B) = min
B∈Bk

k
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We can now state a version of the Theorem 5.6(a) which involves no non-linear

interactions between the separate bad-events. These results are almost identical to

Theorem 5.6(a); the only difference is than in Theorem 5.6, we assume that the sets

B1, . . . , BK are disjoint while here they may overlap in arbitrary ways. However, in

fact the overlap between bad-events B1, . . . , BK can only help us.

Theorem 5.9. Suppose we are given complex bad-events B′1, . . . , B′K (which are

not necessarily disjoint), along with fractional hitting sets Q1, . . . , QK for B′1, . . . ,B′K
respectively. Suppose there exists µ : 2X × [K]→ [0,∞) which satisfies, for all Y ⊆ X

and all k ∈ [K],

µ(Y, k) ≥ pYQk(Y )
∑

T a neighbor-set for Y

∏
(Y,k′)∈T

µ(Y ′, k′)

Then, the expected number of resamplings is at most
∑

(Y,k) µ(Y, k).

Proof. It is easy to verify that Bk ⊆ B′k for each k ∈ [K]. Thus, µ still satisfies

Theorem 5.6(a). �

There is one further complication, which is really a quite minor technical point.

Suppose that Bk1 ,Bk2 both contain some atomic event B. To apply Theorem 5.9, we

must assign the label of B to min(k1, k2). This means that when we encounter bad-

event B, we must use the fractional hitting set Qmin(k1,k2). This can actually present

some computational difficulties. For example, suppose that during the execution of

the PRA, we know that B ∈ Bk is currently true. We would like to resample Y ⊆ B

according to the fractional hitting set Qk; but it may in fact be the case that B ∈ Bk′

for some k′ < k. Furthermore, if K is large, it may take exponential time to decide

if B ∈ Bk′ for k′ < k.

In fact, everything works if when we encounter a bad event B ∈ B1 ∪ · · · ∪ BK ,

we select some arbitrary k with B ∈ Bk and resample B according to Qk. To prove

this, we must generalize the labeling function so that, for all bad-events B ∈ B, we
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have that L(B) is a non-empty subset of [K]. But this substantially complicates the

notation and proofs.

5.2. Enumeration of witness trees by variables

For many applications of the PRA, in which the fractional hitting-sets are rela-

tively simple, Theorem 5.6, in one of its three forms, is sufficient. However, it can be

awkward to use because it requires us to analyze the very large space 2X × [K], and

check a constraint for every Y, k. We contrast this with the LLL (in its symmetric and

asymmetric forms) which requires us only to check a constraint for each bad-event.

For these reasons, the variable-based accounting method developed in Section 1.6 can

be particularly useful for the PRA. However, there are a few slight changes that must

be made to take into account the ./ relations.

Suppose that are given an assignment of non-negative real numbers λi,j to each

element (i, j) ∈ X . For any variable i, define λi =
∑

j λi,j. We will derive a probability

distribution p and a weighting function µ from this vector, and show corresponding

conditions of the vector λ to ensure that the PRA terminates.

Definition 5.10. (Values Gi,j, Gi, G that depend on a function Q and a

vector λ) Suppose we are given an assignment of non-negative real numbers λ = λi,j

to each element (i, j) ∈ X . For Q : 2X → [0, 1], recalling the notation (17), we define

Gi,j(Q, λ) =
∑
Y 3(i,j)

Q(Y )λY

along with “summation notations”

Gi(Q, λ) =
∑
j

Gi,j(Q, λ) and G(Q, λ) =
∑
i,j

Gi,j(Q, λ).

Roughly speaking, if Q is a fractional hitting set for B, then Gi,j(Q, p) is the

probability that variable i takes on value j, and causes some bad-event in B to occur,

and is selected for resampling.
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In many settings, the linkages due to ./ are relatively insignificant compared to

the linkages due to ∼. One possible reason for this is that the ./ linkage becomes

null; this always occurs in the usual MT algorithm (without partial resampling). One

of the main assumptions we make in this section is that the ./ relations are relatively

negligible. Thus, instead of carefully tracking them, we use a relatively crude estimate

as follows:

Definition 5.11. (Value Sk that depends on a vector λ) Suppose that we

are given an assignment of non-negative real numbers λi,j to each element (i, j). For

each k and Y , suppose ∑
Y ′./kY

Qk(Y
′)λY

′
< 1

We define, for each k, the parameter Sk(λ) > 0 to be

(19) Sk(λ) = max
Y : Qk(Y )>0

1

1−
∑

Y ′./kY
Qk(Y ′)λY

′

Our main theorem is now as follows:

Theorem 5.12. (Main PRA Theorem in terms of λ) Suppose we are given

fractional hitting sets Q1, . . . , QK for B1, . . . ,BK respectively and a vector λ. Suppose

that we set the probability distribution for the variables by pij =
λij
λi

.

(a) Suppose that

∀i, λi ≥ 1 +
∑
k

Sk(λ)Gi(Qk, λ)

Then the PRA terminates, and the expected number of resamplings is most
∑

i λi.

(b) Suppose that for all k ∈ [K], G(Qk, λ) < 1; suppose further that

∀i, λi ≥ 1 +
∑
k

Gi(Qk, λ)

1−G(Qk, λ)
.

Then the PRA terminates, and the expected number of resamplings is most
∑

i λi.
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(c) Suppose the ./k relations are null (i.e. for supported Y1, Y2 we have Y1 6./k Y2).

Suppose further that

∀i, λi ≥ 1 +
∑
k

Gi(Qk, λ)

Then the PRA terminates, and the expected number of resamplings is at most
∑

i λi.

Proof. We prove only (a). To show part (b), observe that we have Sk(λ) ≤
1

1−G(Qk,λ)
. To show part (c), observe that if ./k is null then we have Sk(λ) = 1.

We define the probability vector by pij =
λij
λi

. We define the weighting function µ

by

µ(Y, k) = λYQk(Y )Sk(λ)

We now wish to show that this satisfies Theorem 5.6(a). Consider some Y =

{(i1, j1), . . . , (ir, jr)} and some k ∈ [K]; we may assume that i1, . . . , ir are distinct (as

otherwise Qk(Y ) = 0.) We will show an upper bound on the expression

(20) pYQk(Y )
∑

T a neighbor-set for Y

∏
(Y,k′)∈T

µ(Y ′, k′)

First, T may contain at most one choice (Y ′, k) with Y ′ ./k Y ; this contributes at

most 1 +
∑

Y ′./kY
µ(Y ′, k) which we estimate as:

1 +
∑
Y ′./kY

µ(Y ′, k) = 1 +
∑
Y ′./kY

λY
′
Qk(Y

′)Sk(λ)

= 1 + Sk(λ)
∑
Y ′./kY

λY
′
Qk(Y

′)

= 1 + Sk(λ)(1− 1/v) where v =
1

1−
∑

Y ′./kY
λY ′Qk(Y ′)

≤ 1 + Sk(λ)(1− 1/Sk(λ))

= Sk(λ)

Next, for each (i, j) ∈ Y , then T may contain at most one choice (Y ′, k′) with

(i, j′) ∈ Y ′. This is because if there are multiple such sets (Y ′, k′), (Y ′′, k′′) then we
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would have Y ′ ∼ Y ′′ which violates the definition of a neighbor-set. For any fixed

(i, j) in Y ′, this contributes at most 1+
∑

Y ′3(i,j′)

∑
k′ µ(Y ′, k′) which we may estimate

as:

1 +
∑

Y ′3(i,j′)

∑
k′

µ(Y ′, k′) = 1 +
∑

Y ′3(i,j′),k′

λY
′
Qk(Y

′)Sk′(λ)

= 1 +
∑
k′

Gi(Qk′ , λ)Sk′(λ)

≤ λi by the hypothesis of Theorem 5.12(a).

Putting these two estimates together, we may estimate (20) by:

pYQk(Y )
∑

T a neighbor-set for Y

∏
(Y,k′)∈T

µ(Y ′, k′) ≤ pYQk(Y )Sk(λ)
∏

(i,j)∈Y

λi

= Qk(Y )Sk(λ)
∏

(i,j)∈Y

pijλi

= Qk(Y )Sk(λ)
∏

(i,j)∈Y

λij
λi
λi

= Qk(Y )Sk(λ)λY

= µ(Y, k)

Thus, Theorem 5.6(a) holds. The expected number of resamplings is

E[# resamplings] ≤
∑
Y,k

µ(Y, k)

≤
∑
i∈[n]

∑
j

∑
Y 3(i,j),k

λYQk(Y )Sk(λ)

=
∑
i∈[n]

∑
k

Gi(Qk, λ)Sk(λ)

≤
∑
i∈[n]

(λi − 1) ≤
∑
i∈[n]

λi

�
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It is instructive to compare these formulas to those conditions of Theorem 5.34.

5.3. Transversals with omitted subgraphs

Suppose we are given a graph G = (V,E) with a partition of its vertices into sets

V = V1tV2t· · ·tVl, each of size b. We refer to these sets as blocks or classes. We wish

to select exactly one vertex from each block. Such a set of vertices A ⊆ V is known as

a transversal. There is a large literature on selecting transversals such that the graph

induced on A omits certain subgraphs. (This problem was introduced in a slightly

varying form by [18]; more recently it has been analyzed in [111, 59, 116, 60, 57]).

For example, when A is an independent set of G (omits the 2-clique K2), this is

referred to as an independent transversal.

It is well-known that a graph G with n vertices and average degree d has an

independent set of size at least n/(d + 1). For an independent transversal, a similar

criterion exists. Alon gives a short LLL-based proof that a sufficient condition for such

an independent transversal to exist is to require b ≥ 2e∆ [5], where ∆ is the maximum

degree of any vertex in the graph. Haxell provides an elegant topological proof that

a sufficient condition is b ≥ 2∆ [54]. The condition of [54] is existentially optimal,

in the sense that b ≥ 2∆ − 1 is not always admissible [60, 116, 111]. The work

of [59] gives a similar criterion of b ≥ ∆ + b∆/rc for the existence of a transversal

which induces no connected component of size > r. (Here r = 1 corresponds to

independent transversals.) Finally, the work of [75] gives a criterion of b ≥ ∆ for the

existence of a transversal omitting K3; this is the optimal constant but the result is

non-constructive.

These bounds are all given in terms of the maximum degree ∆, which can be a

crude statistic. The proof of [54] adds vertices one-by-one to partial transversals,

which depends very heavily on bounding the maximum degree of any vertex. It is

also highly non-constructive. Suppose we let d denote the maximum average degree

of any class Vi (that is, we take the average of the degree (in G) of all vertices in
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Vi, and then maximize this over all i). This is a more flexible statistic than ∆. We

present our first result here in parts (R1), (R2), and (R3) of Theorem 5.13. As shown

in [60, 116, 111], the result of (R1) cannot be improved to b ≥ 2∆− 1 (and hence,

in particular, to b ≥ 2d−1). As shown in [75], the result of (R3) cannot be improved

to b ≥ cd for any constant c < 1. The result (R1) for independent transversals can

also be obtained using the LLL variant of [94], but (R2) and (R3) appear new to our

knowledge.

Theorem 5.13. Suppose we have a graph G whose vertex set is partitioned into

blocks of size at least b. Suppose that the average degree of the vertices in each block

is at most d. Then:

(R1): If b ≥ 4d, then G has an independent transversal;

(R2): If b ≥ 2d, then G has a transversal which induces no connected compo-

nent of size > 2;

(R3): If b ≥ (4/3)d, then G has a transversal which induces no 3-clique K3.

Furthermore, these transversals can be constructed in expected polynomial time.

Proof. We define l separate variables X1, . . . , Xl; variable Xl selects which of

the b vertices in block l go into the transversal. For each forbidden subgraph which

appears in G, we associate an atomic bad event. (Note that the atomic bad events

for (R2) are all the path of length two in G; for (R3) they are the triangles of G.)

We use the trivial labeling K = 1. Each forbidden subgraph corresponds to an

atomic bad-event. We define a fractional hitting set Q as follows. For each edge

f = 〈u, v〉 ∈ E we assign weight B′({u, v}) = 1/r, where r is a parameter depending

on the structure we are avoiding. For case (R1), we assign r = 1. For case (R2), we

assign r = 2; for case (R3) we assign r = 3. (B′ is zero everywhere else.) Now, note

that in any of the three cases, the atomic bad events all involve exactly r edges, so

the fractional hitting set is valid. Furthermore, any pair of such edges overlap in at

least one vertex, so the ./ relation is null in this case.

155



Note that the precondition of Theorem 5.12(c) holds here. We apply Theo-

rem 5.12(c) with all entries of λ being α, for some scalar α to be determined. Let

dv denote the degree of vertex v. Then, in order to prove λi ≥ 1 +
∑

kGi(Qk, λ), we

need to show

bα−
∑
v∈Vi

dvα
2/r ≥ 1, i.e., bα− bdα2/r ≥ 1 suffices.

This has a solution α > 0 iff b ≥ 4d
r

, which gives us the three claimed results. �

5.3.1. Avoiding large cliques. For avoiding cliques of size s > 3, the above

approach based on the maximum average degree d no longer works; we instead give

a bound in terms of the maximum degree ∆. We will be interested in the case

when both s and ∆ is large. That is, we will seek to show a bound of the form

b ≥ γs∆ + o(∆), where γs is a term depending on s and s is large. Clearly we must

have γs ≥ 1/(s − 1); e.g., for the graph G = Ks, we need b ≥ 1 = ∆/(s − 1). An

argument of [111] shows the slightly stronger lower bound γs ≥ s
(s−1)2 ; intriguingly,

this is conjectured in [111] to be exactly tight. On the other hand, a construction in

[75] shows that γs ≤ 2/(s− 1). This is non-constructive, even for fixed s; this is the

best upper-bound on γs previously known.

We show that the lower-bound of [111] gives the correct asymptotic rate of growth,

up to lower-order terms; i.e., we show in Theorem 5.14 that γs ≤ 1/s + o(1/s). In

fact, we will show that when b ≥ ∆/s+ o(∆), we can find a transversal which avoids

any s-star; that is, all vertices have degree < s. This implies that the transversal

avoids Ks. Furthermore, such transversals can be found in polynomial time.

Comparison with the standard LLL: Before we give our construction based on

the PRA, we discuss how one might approach this problem using the standard LLL,

and why this approach falls short. As in [5], we make the natural random choice for

a transversal: choose a vertex randomly and independently from each Vi. Suppose

we define, for each s-clique H of the graph, a separate bad event. Each bad event has
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probability (1/b)s. We calculate the dependency of an s-clique as follows: for each

vertex v ∈ H, we choose another v′ in the block of v, and v′ may be involved in up

to ∆s−1/(s− 1)! other s-cliques. This gives us the LLL criterion

e× (1/b)s × sb∆s−1/(s− 1)! ≤ 1

which gives us the criterion

b/∆ ≥
( es

(s− 1)!

) 1
s−1

= e/s+ o(1/s)

In implementing the PRA, it is simpler to enforce the stronger condition that the

traversal omits s-stars. (That is, in the traversal T , no vertex may have induced

degree ≥ s). We will resample the central vertex as well as r ≤ s of the exterior

vertices in an s-star, chosen uniformly. We thus obtain our result:

Theorem 5.14. There is a constant c > 0 such that, whenever

b ≥ ∆/s+ cs−3/2 log s

then there is a transversal which omits any s-stars. Furthermore, such a transversal

can be found in polynomial time.

Proof. We will use Theorem 5.12(c), assigning the constant vector ~λ = α where

α is a constant to be chosen. We use the trivial labeling. We use the following

fractional hitting set: for each H consisting of a single vertex and r neighbors, we

assign weight
(
s
r

)−1
; for all other sets we assign weight zero. In this case, ./ is null:

for any two r-stars H,H ′ which both correspond to the same s-star, will overlap in

their central vertex.

Then the condition of Theorem 5.12(c) becomes

bα− b
((

∆
r

)
+ ∆

(
∆−1
r−1

))(s
r

)−1

αr+1 ≥ 1
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Routine algebra shows that this is satisfied when b ≥ ∆/s+ cs−3/2 log s, for some

sufficiently large constant c.

To implement a step of the PRA, one must search the graph for any s-star in the

current candidate transversal; this can be done easily in polynomial time. �

We note that this result improves on [75] in three distinct ways: it gives a better

asymptotic bound; it is fully constructive; it finds a transversal omitting not only

s-cliques but also s-stars.

5.4. Sums of random variables, and column-sparse packing

Different types of bad events call for different hitting-sets, and the best choice

may depend on “global” information about the variables it contains, in addition to

local parameters. However, there is a natural and powerful option for upper-tail bad

events of the form
∑

` Z` ≥ k, which is what we discuss next. In the discussion below,

elements will often be referred to as x, xr etc.; note that an element is always some

pair of the form (i, j).

Theorem 5.15. Suppose we are given an assignment of non-negative real numbers

λi,j to each element (i, j) ∈ X . Let Y ⊆ X be a set of elements. Define µ =
∑

t λxt,

and for each variable i let

µi =
∑

j:(i,j)∈Y

λi,j

Suppose that there is a bad event B defined by

B ≡
∑
x∈Y

Zx ≥ µ(1 + δ),

where δ > 0 and µ(1 + δ) is an integer. Let d ≤ µ(1 + δ) be a positive integer. Then,

recalling Definition 5.10, there is a fractional hitting-set Q with the property

G(Q, λ) ≤ µd

d!
(

(1+δ)µ
d

) ; Gi(Q, λ) ≤ (µi/µ) · d · (1− (µi/µ))d−1 · µd

d!
(

(1+δ)µ
d

) .
Also, we refer to the parameter d as the width of this hitting-set.
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Proof. Assign the following fractional hitting-set: for each subset Y ′ = {xr1 , . . . , xrd} ⊆

Y of cardinality d in which all the elements xr1 , . . . , xrd come from distinct variables,

assign weight Q(Y ′) = 1

((1+δ)µ
d )

. One can easily see that Q is a valid fractional hitting-

set.

We now have

G(Q, λ) =

∑
xr1<···<xrd

from distinct categories

λr1 . . . λrd(
(1+δ)µ

d

)
=

∑
1≤i1<···<id≤n µi1 . . . µid(

(1+δ)µ
d

)
≤
(
n
d

)
(µ/n)d(

(1+δ)µ
d

) ≤ µd

d!
(

(1+δ)µ
d

) .

For i ∈ [n], we have

Gi(Q, λ) ≤
∑

i1,...,id−1 6=i µi1 . . . µid−1
µi(

(1+δ)µ
d

)
≤
µi
(
n−1
d−1

)
(µ−µi
n−1

)d−1(
(1+δ)µ

d

)
≤ µi(µ− µi)d−1

(d− 1)!
(

(1+δ)µ
d

)
≤ (µi/µ)d(1− (µi/µ))d−1 µd

d!
(

(1+δ)µ
d

) .
�

Note that by setting d = dµδe, one can achieve the Chernoff bounds [100]:

µd

d!
(

(1+δ)µ
d

) ≤ ( eδ

(1 + δ)1+δ

)µ
.

5.4.1. LP rounding for column-sparse packing problems: background.

In light of Theorem 5.15, consider the family of CSPs where we have a series of linear

packing constraints of the form “
∑

x ak,xZx ≤ bk”, with non-negative coefficients a, b
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and where Z ∈ {0, 1}N . (Here and in what follows, x will often refer to some element

(i, j).) In addition, there is the usual assignment constraint, namely a series of disjoint

blocks X1, . . . ,Xn with the constraint that
∑

j∈Xl Zi,j = 1. When does such an integer

linear program have a feasible solution?

Suppose we wish to solve this via LP relaxation. One technique is to solve the

simpler linear program where the integrality constraints on Z ∈ {0, 1}N are relaxed to

Z ′ ∈ [0, 1]N , and in addition the packing constraints are tightened to
∑

x ak,xyx ≤ b′k

for some b′k ≤ bk. We assume that each ak,x ∈ [0, 1] and that for each x ∈ X we have∑
k ak,x ≤ D.

We note that there are constructions using the standard LLL and standard MT

algorithm that can yield results qualitatively similar to the ones in this section. The

simplest case for these discrepancy results is when all the packing coefficients b′k have

similar magnitudes; so suppose that for all k we have bk ≤ R; we compare our result

with those of [52] and [72] in this regime.

The analysis of [52] shows that one may select bk = R + O(
√
R log(RD)), but it

applies only to situations in which the fractional solution is given by Z ′i,1 = Z ′i,2 = 1/2.

This is useful for problems based on hypergraph discrepancy and its generalizations,

and in the regime in which R � D it can lead to stronger results than we are able

to show. However, it does not apply to the general case, and in particular it is not

useful if the fractional solution Z ′ comes from some problem-specific LP relaxation.

Our analysis is more general than [51]; in addition, in the regime R � D, we are

able to show the stronger bound bk = R +O(
√
R logD).

The analysis of [72] is phrased in terms of the total number of constraints each

variable participates in (as opposed to the `1 sum of the corresponding coefficients).

It is quite difficult for the standard LLL to deal with fractional coefficients in the

constraint matrix; the reason is that variable yi,j affects constraint k if ak,i,j > 0, and

it is possible that every variable affects every constraint.
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The case in which b′k have differing magnitudes appears to be beyond the scope

of either of these analyses. In addition, these papers are quite difficult technically; in

[52], there is a quantization argument, in which one must handle separately coeffi-

cients of different magnitudes. In [72], there is an iterated application of the LLL, in

which one must track quite carefully the sizes of the relevant parameters as they are

reduced from the original system. The PRA provides however, a simple and compre-

hensive framework to obtain an integral solution. A single application of the PRA

directly produces our desired solution, and fractional coefficients are handled almost

automatically.

Our condition on the separation between bk and b′k is based on the Chernoff bound.

To state this theorem in the simplest and broadest form, we will need the following

form of the standard Chernoff upper-tail bound:

Definition 5.16. (The Chernoff upper-tail separation function) For 0 <

µ ≤ t, letting δ = δ(µ, t) = t/µ− 1 ≥ 0, we define

Chernoff-U(µ, t) =
( eδ

(1 + δ)1+δ

)µ
;

i.e., Chernoff-U(µ, t) is the Chernoff bound that a sum of [0, 1]-bounded and indepen-

dent random variables with mean µ will exceed t. If t < µ we define Chernoff-U(µ, t) =

1.

We state two simple propositions about the behavior of this function:

Proposition 5.17. For any t ≥ µ ≥ 0, and any real number z ≥ 0, we have

Chernoff-U(µ+ z, t+ z) ≥ Chernoff-U(µ, t)

Proof. We prove this in Proposition 6.31. �

Proposition 5.18. For any v ≥ 0, and any real numbers 0 ≤ z1 ≤ z2 we have

Chernoff-U(z1, z1 + v
√
z1) ≥ Chernoff-U(z2, z2 + v

√
z2) ≥ e−v

2/2
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Proof. Differentiating ln Chernoff-U(z, z + v
√
z) with respect to z yields

2v − (v + 2
√
z) log(1 + v/

√
z)

2
√
z

Suppose v ≥
√
z. Then the numerator is at most 2v − (v + 2v) log(1 + 1) ≤

−0.7v ≤ 0.

Suppose v ≤
√
z. Then, taking a power series of the logarithm function around

v = 0, the denominator is ≤ −v + v3/(2z) − 2
√
z. Simple analysis shows that for

v ≤
√
z we have −v + v3/(2z) ≤ 0.

In either case, the derivative is negative and so Chernoff-U(z, z + v
√
z) is a de-

creasing function of z. Simple calculus shows that as v →∞ it approaches the limit

e−v
2/2.

�

5.4.2. LP rounding for column-sparse packing problems: the PRA. We

can now state our main theorem for column-sparse packing problems:

Theorem 5.19. There is some universal constant C > 0 with the following prop-

erty. Suppose that we have an LP parametrized by ak,x, b
′
k, where D = maxx

∑
k,x ak,x ≥

1.

Now let ε ∈ [0, 1], bk, φ ∈ [0, 1] be given such that:

(C1): For all k we have ( bk+1
b′k(1+ε)

− 1)Chernoff-U(b′k(1 + ε), bk) ≤ Cε
D

(C2): For all k we have bk ≥ 1

(C3): For all k we have Chernoff-U(b′k(1 + ε), bk) ≤ 1/2

Then if the linear program

∑
j∈Xl

Zi,j ≥ 1,
∑
x

ak,xyx ≤ b′k, yx ∈ [0, 1]

is satisfiable, then so is the integer program

∑
j∈Xl

Zi,j ≥ 1,
∑
x

ak,xyx ≤ bk, yx ∈ {0, 1}.
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Furthermore, suppose we have a separation oracle for the LP and the IP. (That

is, given a variable assignment, we can either find a violated linear constraint, or

determine that all constraints are satisfied). Then such a satisfying assignment can

be found in time which is polynomial in the number n of blocks.

Proof. Using the separation oracle, solve the LP in polynomial time. Suppose

we have a feasible solution Z to the relaxed linear program. Then we set λ = (1+ε)Z.

We associate a distinct label to each packing constraint being violated. We will use

the framework of Theorem 5.9, in which each packing constraint will correspond to

its complex bad-event.

Let us analyze a constraint k. Define µ = b′k(1 + ε), define t = bk, and define

δ = t/µ− 1. Then the kth packing constraint corresponds to the complex bad-event∑
x ak,xyx > bk. We use the fractional hitting set Qk which assigns, to each set of d

elements x1, . . . , xd from distinct categories, the weight

Qk({x1, . . . , xl}) =
ak,x1 . . . ak,xl(

bk
l

)
where d = dµδe.

We first claim that this is a valid hitting set. For, suppose we have a set of d′

elements such that ak,x1 + · · · + ak,xd′ > bk. As a ∈ [0, 1] we must have d′ > bk ≥ d.

Furthermore, summing over all d-subsets of {x1, . . . , xd′} we have

∑
s1<s2<···<sl

Qk({xs1 , . . . , xsd}) =
∑

s1<s2<···<sd

ak,xs1 . . . ak,xsd(
bk
d

)
This can be regarded as a polynomial in the weights a. Subject to the constraint

ak,x1 + · · · + ak,xd ≥ bk and a ∈ [0, 1], the numerator achieves its minimum value

when there are are bbkc elements of weight a = 1 and one further element of weight

a = bk − bbkc. In particular, the numerator is at least
(
bk
d

)
, and this sum is at least 1

as desired.
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We will next bound the contribution of each bad event. For a constraint k, we

have

G(Qk, λ) =
∑

x1<···<xd

λx1 . . . λxdB
′
k{x1, . . . , xd}

=

∑
x1<···<xd λx1ak,x1 . . . λxdak,xl(

bk
d

)
Now, note that

∑
x λxak,x =

∑
t ak,xyk,x(1 + ε) ≤ b′k(1 + ε). By concavity, the nu-

merator is maximized when all |X | terms λtak,t are equal to b′k(1 + ε)/|X |. (Recall

that X is the set of all possible ordered pairs (i, j).) Using a similar argument to

Theorem 5.15, we have

G(Qk, λ) ≤

(|X |
d

)( b′k(1+ε)

|X |

)d
(
bk
l

) ≤ µd

d!
(
µ(1+δ)

d

)
For d = dµδe, this expression is bounded by the Chernoff bound

G(Qk, λ) ≤ Chernoff-U(b′k(1 + ε), bk)

≤ 1/2 by (C3)

Similarly, along the lines of Theorem 5.15, for variable i, set µi =
∑

j ak,i,jλi,j so

that we have

Gi(Qk, λ) ≤ µid

µ

µd

d!
(

(1+δ)µ
d

)
≤ µi(δ + 1/µ)Chernoff-U(µ, t)

≤ µi

( bk + 1

b′k(1 + ε)
− 1
)

Chernoff-U(µ, t)

= O(Cµi
ε

D
) by (C1)
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Now, by Theorem 5.12(b), we sum over all j obtaining

∑
j

λi,j −
∑
k

Gi(Qk, λ)

1−G(Qk, λ)
≥ (1 + ε)−

∑
k

µk,iO(Cε/D)

1/2

= (1 + ε)−
∑
j

∑
k

O(ak,i,jλi,jC
ε

D
)

≥ (1 + ε)− CεO(
∑
j

λi,j)

≥ 1 + ε−O(Cε(1 + ε))

≥ 1 + ε−O(Cε) as ε ∈ [0, 1]

for C sufficiently small, this is ≥ 1 as desired.

Furthermore, we have
∑

j λi,j ≤ 1 + ε ≤ 2, so the expected number of iterations

before the PRA terminates is O(n). Although the number of constraints may be

exponential, it is not hard to see that one can efficiently implement a single step of

the PRA using the separation oracle. So this gives a polynomial-time algorithm.

�

Theorem 5.19 is given in a very generic setting, which is intended to handle a wide

range of sizes for the parameters bk, b
′
k, D. One can obtain simplify it substantially

when b′k is constant.

Proposition 5.20. Suppose we are given an LP satisfying the requirement of

Theorem 5.19 and suppose that b′k ≤ R for some R ≥ 1.

Then, for ψ some sufficiently large constant, setting

bk =


ψ ln(D+1)

1+ln(
ln(D+1)

R
)

if R ≤ ln(D + 1)

R + ψ
√
R(1 + lnD) if R > ln(D + 1)

suffices to satisfy Theorem 5.19.

Proof. First, note that we may assume b′k = R exactly; for if b′k ≤ R, then we

simply set b′k = R, and this results in a relaxed linear program.
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Case I: R ≥ ln(D + 1)

Let v =
√
R ln(D + 1) and set ε = v/R. Note that v ≤ R and so ε ≤ 1. Then to

show (C3):

Chernoff-U(b′k(1 + ε), bk) = Chernoff-U(R + v,R + ψv)

≤ Chernoff-U(2R, 2R + (ψ − 1)v) by Proposition 5.17

≤ Chernoff-U(2R, 2R +
ψ − 1√

2

√
2R)

≤ Chernoff-U(2, 2 + (ψ − 1)/
√

2)by Proposition 5.18

≤ 1/2 for ψ sufficiently large

Now for (C1), we have

( bk + 1

b′k(1 + ε)
− 1
)

Chernoff-U(b′k(1 + ε), bk) = O(
ψv

R
Chernoff-U(R + v,R + ψv))

We want to show that this is ≤ Cε
D

= Cv
DR

. Thus, it suffices to show that

DψChernoff-U(R + v,R + ψv) ≤ C ′

where C ′ is a sufficiently small constant.

To show this:

DψChernoff-U(R + v,R + ψv)

= DψChernoff-U(R + v, (R + v) + (ψ − 1)v)

≤ DψChernoff-U(2R, 2R +
(ψ − 1)

√
ln(D + 1)√
2

√
2R) by Proposition 5.17

≤ DψChernoff-U(2 ln(D + 1), 2 ln(D + 1)

+
(ψ − 1)

√
ln(D + 1)√
2

√
2 ln(D + 1) by Proposition 5.18, as R ≥ ln(D + 1)

≤ (D + 1)ψChernoff-U(2 ln(D + 1), 2 ln(D + 1)) + (ψ − 1) ln(D + 1))
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= ψ(D + 1)ψ+ψ ln 2−(ψ+1) ln(ψ+1)+ln 2

Simple analysis shows that this is ≤ C ′ for D ≥ 1 and ψ sufficiently large.

Case II: R ≤ ln(D + 1)

Let v = ln(D+1)

1+ln(
ln(D+1)

R
)

and set ε = 1. Note that v ≥ R. Then we have Chernoff-U(b′k(1+

ε), bk) = Chernoff-U(2R,ψv) ≤ Chernoff-U(2v, ψv) ≤ Chernoff-U(2, ψ). For ψ suffi-

ciently large this is ≤ 1/2, so (C3) is satisfied.

Now for (C1), we have

(
bk + 1

b′k(1 + ε)
− 1)Chernoff-U(b′k(1 + ε), bk) = O(ψvChernoff-U(2R,ψv))

We want to show that this is ≤ Cε
D

= C
D

. As v ≤ ln(D + 1) ≤ D, it suffices to show

(21) ψD2Chernoff-U(2R,ψv) ≤ C ′

To show this, we have:

Chernoff-U(2R,ψv) = (2e)ψve−2R(ψv/R)−ψv

≤ (2e)ψv(ψv/R)−ψv

≤ (ev/R)−ψv for ψ sufficiently large

= exp
[
ψ ln(D + 1)

(
−1 +

ln
(
1 + ln ln(D+1)

R

)
1 + ln ln(D+1)

R

)]
Now, differentiating this expression with respect to R, one sees that it achieves

a maximum value at R = e1−e ln(D + 1). Thus, plugging this value in, we have the

bound

D2ψChernoff-U(2T, ψv) ≤ ψ(D + 1)2−0.632ψ

Simple analysis shows that this is ≤ C ′ for D ≥ 1 and ψ sufficiently large.

�

167



The multi-dimensional scheduling application from the introduction follows as an

easy application of Proposition 5.20. First, given (T1, T2, . . . , TD), we can, motivated

by (12), set xi,j := 0 if there exists some ` for which pi,j,` > T`. After this filtering, we

solve the LP relaxation. If it gives a feasible solution, we scale the LP so that all the

b′k values equal 1; our filtering ensures that the coefficient matrix has entries in [0, 1]

now, as required. By Proposition 5.20, we can now set bk = O
(

log(D+1)
1+log log(D+1)

)
. This

result is not new to this thesis, but it is obtained in a particularly straightforward

way.

Theorem 5.19 can also apply when the RHS have different magnitudes.

Proposition 5.21. Suppose we are given an LP satisfying the requirement of

Theorem 5.19; let c > 0 be any desired constant. Then we can set bk as follows so as

to satisfy Theorem 5.19:

(1) For each k with b′k ≤ ln(D + 1), we set bk = O
(

log(D+1)

1+log
log(D+1)

b′
k

)
;

(2) For each k with b′k ≥ ln(D + 1)), there is some constant c′ > 0 such that we

may set bk = b′k(1 +D−c) + c′
√
b′k log(D + 1).

Proof. Set ε = D−c. The remainder of the proof is similar to Proposition 5.20.

�

5.5. Packet routing

5.5.1. Review of background and known approaches. We begin by review-

ing the basic strategy of [73], and its improvements by [99] and [93]. We recommend

consulting [99], which is a very readable presentation of this problem as well as many

more details and variants than we cover here. We note that [93] studied a more

general version of the packet-routing problem, so their choice of parameters was not

(and could not be) optimized.

We are given a graph G with N packets. Each packet has a simple path, of

length at most D, to reach its endpoint vertex (we refer to D as the dilation). In any

timestep, a packet may wait at its current position, or move along the next edge on
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its path. Our goal is to find a schedule of smallest makespan in which, in any given

timestep, an edge carries at most a single packet.

We define the congestion C to be the maximum, over all edges, of the number

of packets scheduled to traverse that edge. It is clear that D and C are both lower

bounds for the makespan, and [73] has shown that in fact a schedule of makespan

O(C +D) is possible. [99] provided an explicit constant bound of 39(C +D), as well

as describing an algorithm to find such a schedule. This was improved to 23.4(C+D)

in [93] as will be described below.

While the final schedule only allows one packet to cross an edge at a time, we will

relax this constraint during our construction. We consider “infeasible” schedules, in

which arbitrarily many packets pass through each edge at each timestep. We define

an interval to be a consecutive set of times in our schedule, and the congestion of

an edge in a given interval to be the number of packets crossing that edge. If we are

referring to intervals of length i, then we define a frame to be an interval which starts

at an integer multiple of i.

From our original graph, one can easily form an (infeasible) schedule with delay

D and overall congestion C. Initially, this congestion may “bunch up” in time, that

is, certain edges may have very high congestion in some timesteps and very low

congestion in others. So the congestion is not bounded on any smaller interval than

the trivial interval of length D. During our construction, we will “even out” the

schedule, bounding the congestion on successively smaller intervals.

Ideally, one would eventually finish by showing that on each each individual

timestep (i.e. interval of length 1), the congestion is roughly C/D. In this case,

one could turn such an infeasible schedule into a feasible schedule, by simply expand-

ing each timestep into C/D separate timesteps.

As [93] showed, it suffices to control the congestion on intervals of length 2.

Given our infeasible schedule, we can view each interval of length 2 as defining a

new subproblem. In this subproblem, our packets start at a given vertex and have
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paths of length 2. The congestion of this subproblem is exactly the congestion of the

schedule. Hence, if we can schedule problems of length 2, then we can also schedule

the 2-intervals of our expanded schedule.

We quote the following result from [93].

Proposition 5.22 ([93]). Suppose there is an instance with delay D = 2 and

congestion C. Then there is a schedule of makespan C + 1, which can be found in

polynomial time.

This was used by [93] to improve the bound on the overall makespan to 23.4(C +

D). [93] speculated that by examining the scheduling for longer, but still small,

delays, one could further improve the general packet routing. Unfortunately, we are

not able to show a general result for small delays such as D = 3. However, as we will

see, the schedules that are produced in the larger construction of [99] are far from

generic, but instead have relatively balanced congestion across time. We will see how

to take advantage of this balanced structure to improve the scheduling.

We begin by first reviewing the general construction of [99].

5.5.2. Using the LLL to find a schedule. The general strategy for this con-

struction is to add random delays to each packet, and then allowing the packet to

move through each of its edges in turn without hesitation. This effectively homoge-

nizes the congestion across time. We have the following lemma:

Lemma 5.23. Let i′ < i, let m,C ′ be non-negative integers. Suppose there is a

schedule S of length L such that every interval of length i has congestion at most C.

Suppose that we have

e× P (Binomial(C,
i′

i− i′
) > C ′)× (Cmi2 + 1) < 1

Then there is a schedule S ′ of length L′ = L(1 + 1/m) + i, in which every interval

of length i′ has congestion ≤ C ′. Furthermore, this schedule can be constructed in

expected polynomial time.
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Proof. We break the schedule S into frames of length F = mi, and refine each

separately. Within each frame, we add a random delay of length i− i′ to each packet

separately.

Let us fix an F -frame for the moment. Associate a bad event to each edge f and

i′-interval I, that the congestion in that interval and edge exceeds C ′.

For each I, e, there are at most C possible packets that could cross, and each does

so with probability p = i′

i−i′ . Hence the probability of the bad event is at most the

probability that a Binomial random variable with C trials and probability p exceeds

C ′.

Next consider the dependency. Given an edge f and i′-interval I, there are at

most C packets crossing it, each of which may pass through up to mi other edges

in the frame. We refer to the combination of a specific packet passing through a

specific edge as a transit. Now, for each transit, there are (depending on the delay

assigned to that packet) at most i other i′-intervals in which this transit could have

been scheduled. Hence the dependency is at most Cmi2.

By the LLL, the condition in the hypothesis guarantees that there is a positive

probability that the delays avoid all bad events. In this case, we refine each frame of

S to obtain a new schedule S ′ as desired. We can use the algorithmic LLL to actually

find such schedules S ′ in polynomial time.

So far, this ensures that within each frame, the congestion within any interval of

length i′ is at most C ′. In the refined schedule S ′ there may be intervals that cross

frames. To ensure that these do not pose any problems, we insert a delay of length

i′ between successive frames, during which no packets move at all. This step means

that the schedule S ′ may have length up to L(1 + 1/m) + i. �

Using this Lemma 5.23, we can transform the original problem instance (in which

C,D may be unbounded), into one in which C,D are small finite values. In order to

carry out this analysis properly, one would need to develop a series of separate bounds

depending on the sizes of C,D. To simplify the exposition, we will assume that C,D
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are very large, in which case certain rounding effects can be disregarded. When C,D

are smaller, we can show stronger bounds but doing this completely requires extensive

case analysis of the parameters.

Lemma 5.24. Assume C + D ≥ 2896. There is a schedule of length at most

1.004(C + D) and in which the congestion on any interval of length 224 is at most

17040600. Furthermore, this schedule can be produced in polynomial time.

Proof. Define the sequence ak recursively as follows.

a0 = 256 ak+1 = 2ak

There is a unique k such that a3.5
k ≤ (C + D) < a3.5

k+1. By a slight variant on

Lemma 5.23, one can add delays to obtain a schedule of length C +D, in which the

congestion on any interval of length i′ = a3
k is at most C ′ = i′(1 + 4/ak).

At this point, we use Lemma 5.23 repeatedly to ensure to control the congestion

intervals of length a3
j , for j = k − 1, . . . 0. At each step, this increases the length of

the resulting schedule from Lj to Lj(1 + 1/aj+1) + aj, and increases the congestion

on the relevant interval from i(1 + 4/ak) to

i(1 + 4/ak)
k−1∏
j=0

(1 + 4/aj)(
1

1− (aj/aj+1)3
)

(We use the Chernoff bound to estimate the binomial tail in Lemma 5.23.)

For C + D ≥ a3.5
k , it is a simple calculation to see that the increase in length is

from C +D (after the original refinement) to at most 1.004(C +D). In the final step

of this analysis, we are bounding the congestion of intervals of length a3
0 = 224, and

the congestion on such an interval is at most 17040600.

Furthermore, since all of these steps use the LLL, one can form all such schedules

in polynomial time.

See [99] for a much more thorough explanation of this process. �
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Now that we have reduced to constant-sized intervals, we are no longer interested

in asymptotic arguments, and come down to specific numbers.

Lemma 5.25. There is a feasible schedule of length at most 10.92(C +D), which

can be constructed in polynomial time.

Proof. For simplicity, we assume C +D ≥ 2896.

By Lemma 5.24, we form a schedule S1, of length L1 ≤ 1.004(C + D), in which

each interval of length 224 has congestion at most 17040600.

Now apply Lemma 5.23 to S1, with m = 64, i′ = 1024, C ′ = 1385 to obtain a

schedule S2, of length L2 ≤ 1.0157L1 + 224, in which each interval of length 1024 has

congestion at most 1385.

Now apply Lemma 5.23 to S2 with m = 64, i′ = 2, C ′ = 20, to obtain a schedule

S3 of length L3 ≤ 1.0157L2 + 1024, in which each frame of length 2 has congestion at

most 20.

Now apply Proposition 5.22 to S3, expanding each 2-frame to a feasible schedule

of length 21. The total length of the resulting schedule is at most 21
2
L3 ≤ 10.92(C +

D). �

5.5.3. The PRA applied to packet routing. So far, all of the improvements

we have made to the packet routing problem used nothing more than the conventional

LLL. We now show how to modify this construction to use the PRA in the appropriate

places.

Let us examine more closely the process used to refine a schedule in which each

interval of length C has congestion at most i. We break the schedule S into frames

of length F = mi, and refine each separately. Within each frame, we add a random

delay of length b = i − i′ to each packet separately. Let us fix an F -frame for the

moment.
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This is an assignment problem, in which we must assign a delay to each packet.

Our bad events here correspond to an edge receiving an excessive congestion in some

time interval.

We can modify Lemma 5.24 and 5.25 to use Theorem 5.12 instead of the LLL.

Proposition 5.26. Let i′ < i, let m,C ′, k be non-negative integers. Suppose there

is a schedule S of length L such that every interval of length i has congestion at most

C.

For a given choice of d ≤ C ′, λ ∈ [0, 1] define

µ = Ci′λ

and

p =
µd

d!
(
C′+1
d

)
Suppose we have p < 1 and

(i− i′)λ−mi2i′λ(d/µ)
p

1− p
≥ 1

Then there is a schedule S ′ of length L′ = L(1 + 1/m) + i, in which every interval

of length i′ has congestion ≤ C ′. Furthermore, such a schedule can be found in

polynomial time.

Proof. Suppose we add delays in the range b = i − i′ uniformly to each packet

within each frame of length F = mi. In this case, the categories correspond to each

packet x, and for each delay t we assign λx,t = λ. For each edge f and i′-interval I,

we introduce a bad event Bf,I that the congestion in the interval exceeds C ′. For this

bad event we use a fractional hitting-set of width d as described in Theorem 5.15.

Fix a bad event Bf,I . This is an upper-tail event. There are at most C packets

which could be scheduled to pass through the given edge, and there are i′ possible

delays which would contribute to the congestion of the given edge-interval. So, in all,
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the mean number of packets passing through the edge-interval is µ = Ci′λ. The bad

event is that this exceeds C ′, so we have here δ = C′+1
Ci′λ
− 1. This gives Gf,I ≤ µd

d!(C
′+1
d )

Now consider a fixed packet x. This packet x may pass through up to mi edges

in the F -frame, and each of these can affect at most i intervals. Hence the packet

x affects at most mi2 of these bad events. For each such bad event f, I, there are

at most i′ possible delays that could be assigned to the given packet x to contribute

to congestion of f, I. Hence, for each bad event Bf,I , we have µx = i′λ and hence

Gf,I
x ≤ i′λd/µ( µd

d!(C
′+1
d )

).

By Theorem 5.12, this suffices to show a good configuration exists. �

We can use this to improve various steps in the construction.

Proposition 5.27. Suppose C + D ≥ 2896. Then there is a schedule of length

≤ 1.0157(C+D), in which every interval of length 1024 has congestion at most 1312.

Proof. By Lemma 5.24, we form a schedule S1, of length L1 ≤ 1.004(C +D), in

which each interval of length 224 has congestion at most 17040600. Apply Proposi-

tion 5.26 with λ = 5.985× 10−8, C ′ = 1312, d = 247,m = 64 to obtain a schedule S2

of length L2 ≤ 1.0157L1 + 224, in which each interval of length 1024 has congestion

at most 1312. �

Theorem 5.28. Suppose C+D ≥ 2896. Then there is a schedule of length at most

8.77(C +D) which can be constructed in polynomial time.

Proof. By Proposition 5.27, there is a schedule S1 of length at most 1.0157(C+

D) in which each interval of length 1024 has congestion at most 1312.

Now apply Lemma 5.24 with i = 1024, C = 1312, i′ = 2,m = 64, C ′ = 16, d =

12, λ = 0.0011306 to obtain a schedule S2 of length L2 ≤ 1.0157L1 + 1024, in which

each interval of length 2 has congestion at most 16.

Now apply Proposition 5.22 to S2, expanding each 2-frame to a feasible schedule

of length 17. The total length of the resulting schedule is at most 17
2
L2 ≤ 8.77(C +

D). �
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5.5.4. Better scheduling of the final 2-frame. Let us examine the last stage

in the construction more closely. In this phase, we are dividing the schedule into

intervals of length 2, and we want to control the congestion of each edge in each

2-frame.

For a given edge f and time t, we let ct(f) denote the number of packets scheduled

to cross that edge in the four time steps of the original (infeasible) schedule.

Suppose we have two consecutive 2-frames starting at time t. The reason for the

high value of C ′ in the final step of the above construction is that it is quite likely

that ct + ct+1 or ct+2 + ct+3 are much larger than their mean. However, it would be

quite rare for both these bad events to happen simultaneously. We will construct a

schedule in which we insert an “overflow” time between the 2-frames. This overflow

handles cases in which either ct + ct+1 is too large or ct+2 + ct+3 is too large.

Our goal will be to modify either of the 2-frames so as to ensure that the congestion

is at most T . In order to describe our modification strategy, we first fix, for every

packet and frame, a “first edge” and “second edge” in this frame. Some packets may

only transit a single edge, which we will arbitrarily label as first or second. As we

modify the schedule, some packets that initially had two transits scheduled will be

left with only one; in this case, we retain the label for that edge. So, we may assume

that every edge is marked as first or second and this label does not change.

We do this by shifting transits into the overflow time. For each 2-frame, there

are two overflow times, respectively earlier and later. If we want to shift an edge to

the later overflow time, we choose any packet that uses that edge as a second edge

(if any), and reschedule the second transit to the later overflow time; similarly if we

shift an edge to the earlier overflow time. See Figure 5.5.4.
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S 1    2      3     4     5     6     7      8  

S'   1    2             3     4            5      6           7     8 

Figure 1. The packets in the original schedule S are shifted into over-
flow times in the schedule S ′.

Note that in the analysis of [93], the only thing that matters is the total congestion

of an edge in each 2-frame. In deciding how to shift packets into the overflow times,

we need to be careful to account for how often the edge appears as the first or second

transit. If an edge appears exclusively as a “first edge”, we will only be able to shift

it into the earlier overflow, and similarly if an edge appears exclusively as a “second

edge”.

Keeping this constraint in mind, our goal is to equalize as far as possible the

distribution of edges into earlier and later overflows. We do this by the following

scheme:

1. For each edge f and every odd integer t = 1, 3, 5, . . . , L, repeat while ct(f) +

ct+1(f) > T :

2. If ct(f) = 0, ct+1(f) > T , then shift one packet into the later overflow

time.

3. Else if ct(f) > T, ct+1(f) = 0, then shift one packet into the earlier

overflow time.

4 Else if ct(f) + ct+1(f) > T, ct(f) > 0, ct+1(f) > 0, ct(f) + ct+1(f) = odd,

then shift one packet into the earlier overflow time.

5. Else if ct(f)+ ct+1(f) > T, ct(f) > 0, ct+1(f) > 0, ct(f)+ ct+1(f) = even,

then shift one packet into the later overflow time.

Suppose we fix t to be some odd integer. If we let c′ denote the congestions at

the end of this overflow-shifting process, then we have c′t(f) + c′t+1(f) ≤ T , and the

number of packets shifted into the earlier (respectively later) overflow time can be

viewed as a function of the original values of the congestions ct, ct+1. We denote these

“overflow” functions by OF−(ct, ct+1;T ) and OF+(ct, ct+1;T ) respectively.
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Specifically we get the following condition:

Proposition 5.29. Suppose that we have a schedule of even length L, and let

ct(f) for t = 1, . . . , L denote the number of times f is scheduled as the tth edge of

a packet. Suppose that for all edges f ∈ E and all t = 1, 3, 5, . . . we satisfy the

constraint

OF+(ct(f), ct+1(f);T ) + OF−(ct+2(f), ct+3(f);T ) ≤ T ′

as well as the boundary constraints

OF−(c1(f), c2(f);T ) ≤ T ′ OF+(cL−1(f), cL(f);T ) ≤ T ′

Then there is a schedule of makespan L × T+T ′+2
2

+ T ′, which can be constructed in

polynomial time.

Proof. After the modification, each 2-frame has congestion at most T , while

each overflow time has congestion at T ′. Each overflow time has delay at most 2,

since for any packet x, there may be at most two edges scheduled into that overflow

time, namely the edge that had been originally marked as the second edge of the

earlier 2-frame, and the edge that had been originally marked as the first edge of the

latter 2-frame. Hence each 2-frame can be scheduled in time T + 1 and each overflow

can be scheduled in time T ′ + 1. As there are L/2 2-frames in the original schedule,

there are L/2 + 1 overflow periods. Hence the total cost is at most LT+T ′+2
2

+T ′. �

Note that the conditions required by this Proposition 5.29 are local, in the sense

that any violation is any event which affects an individual edge and a 4-interval which

starts at an odd time t. We refer to such an interval for simplicity as an aligned 4-

interval. We refer to the conditions required by this Proposition as the 4-conditions ;

these conditions can be viewed as either pertaining to an entire schedule, or to an

individual aligned 4-interval. We also note that the 4-conditions are monotone, in

the sense that if a configuration violates them, then it will continue to do so if the

congestion of any edge at any time is increased.
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We will show how to use the PRA to find a schedule satisfying the conditions of

Proposition 5.29.

Proposition 5.30. Let m = 64, C = 1312, i = 1024, T = 5, T ′ = 4 be given.

Suppose there is a schedule S of length L such that every interval of length i has

congestion at most C. There is a schedule of length L′ ≤ (1+1/m)L+i, which satisfies

the 4-conditions with respect to T, T ′. This schedule can be produced in polynomial

time.

Proof. For each edge f , and each aligned 4-interval I starting at time t, we

introduce a complex bad event Bf,I that

OF+(ct, ct+1;T ) + OF−(ct+2, ct+3;T ) > T ′

For this edge f, I, and any packet x with delay t, we say that 〈x, t〉 has type j,

if that packet-delay assignment would cause the given packet x to land at position

t + j within the bad event, for j = 0, ..3. If that assignment x, t does not contribute

to Bf,I , then 〈x, t〉 has no type. For each bad event, there are at most C variables of

each type.

For a bad event Bf,I and a fractional hitting-set Q, we define the score sj(f, I),

for j = 0, 1, 2, 3 to be the maximum over all delays x, t of type j, of the quantity

∑
Y⊆B∈B,〈x,t〉∈Y

Q(Y )λY

Similarly, we define the overall-score to be s(f, I) = gf,I =
∑

Y⊆B B
′(Y )λY . For a

collection of all bad events Bf,I , we define the score sj to be the maximum sj(f, I)

over all f, I.

By Theorem 5.12, if we satisfy the condition

(i− 4)λ− mi

2

s0 + s1 + s2 + s3

1− s
≥ 1
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then there is a schedule of length L′ ≤ (1+1/m)L+ i, which satisfies the 4-conditions

with T, T ′.

Hence it suffices to produce a series of hitting-sets, for each of the bad events Bf,I ,

with a sufficiently small score.

Now let us fix a bad event f, I, and suppose that we have fixed λ = 1.23× 10−3.

We will describe how to produce a good hitting-set. Although we have stated the

proposition for a particular choice of parameters, we will walk through the algorithm

we use to construct and find such a hitting-set.

The bad event depends solely on the number of assigned variables of each type,

of which there are at most C. To simplify the notation, we suppose there are exactly

C. Our hitting-set assigns weights to any subset of the 4C variables involved in the

bad event. We will also select a symmetric hitting-set, in the sense that the weight

assigned to any Y ⊆ [C]× [4] depends solely on the number of variables of each type

in Y . So, for any y0, y1, y2, y3 ≤ C, we will assign B′(Y ) = b(y0, y1, y2, y3) for any

Y ⊆ [C] × [4] which has |Y ∩ [C] × {j}| = yj, that is, for any subset Y which has

exactly yj variables of each type. In this case, we will have

s0 =
∑

y0,y1,y2,y3

(
C − 1

y0 − 1

)(
C

y1

)(
C

y2

)(
C

y3

)
b(y0, y1, y2, y3)λy0+y1+y2+y3

and similarly for s1, s2, s3, s.

In order to be valid, we must have
∑

Y⊆AQ(Y ) ≥ 1 for any atomic bad event

A ∈ Bf,I . By symmetry, this means that if we have k0, k1, k2, k3 minimal such that

OF+(k0, k1;T ) + OF−(k2, k3;T ) > T ′,

then we require

∑
y0,y1,y2,y3

(
k0

y0

)(
k1

y1

)(
k2

y2

)(
k3

y3

)
b(y0, y1, y2, y3) ≥ 1
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We are trying to satisfy (s0 +s1 +s2 +s3)/(1−s) ≤ t, where t is some target value;

here t = 2.803×10−6. For a fixed value of t, this is equivalently to minimizing s0+s1+

s2 + s3 + ts. If we view the collection of all values b(y0, y1, y2, y3) as linear unknowns,

then we can view both the objective function and the constraints as linear. Hence

this defines a linear program, which we can solve using standard linear programming

algorithms.

For any y0, y1, y2, y3, we will set b(y0, y1, y2, y3) = 0 unless there is some such

minimal bad k0, k1, k2, k3 ≥ y0, y1, y2, y3. This greatly reduces the number of variables

we need to consider, to something which is very large but tractable. For T = 5, T ′ = 4,

for instance, the linear program has 5990 variables and 156 constraints. This is too

large to write explicitly, but we wrote computer code which generates this system

and solves it.

The resulting hitting-set achieves a bound of

s0 + s1 + s2 + s3

1− s
≤ 2.81× 10−6

which satisfies the conditions of Theorem 5.12(b). We have listed this hitting-set in

full in Appendix 5.A. Note that this hitting-set gives a compact witness for Proposi-

tion 5.30; using it, one could verify the proposition directly without any need to use

the algorithm we have just described. �

We now apply this construction to replace the two final steps in the construction

of Section 5.5.4.

Theorem 5.31. There is a feasible schedule of makespan at most 5.70(C + D),

which can be constructed in expected polynomial time.

Proof. For simplicity, we assume C +D ≥ 2896. By Proposition 5.27, we obtain

a schedule S1 of length L1 ≤ 1.0157(C + D), in which each interval of length 1024

has congestion at most 1312.
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Apply Proposition 5.30. This gives a schedule S2 of length L2 ≤ 1.0158L1 + 1024

satisfying the 4-conditions with T = 5, T ′ = 4. By Proposition 5.29, this yields a

schedule whose makespan is 5.5L2 + 5 ≤ 5.70(C +D). �

5.A. The fractional hitting-set for packet routing

The following table lists the fractional hitting-set used in Proposition 5.30. All

sets which do not appear in this list have b(y1, y2, y3, y4) = 0.

y0, y1, y2, y3 b(y0, y1, y2, y3) y0, y1, y2, y3 b(y0, y1, y2, y3) y0, y1, y2, y3 b(y0, y1, y2, y3)
0 0 4 7 5.099206e-03 0 0 5 6 9.778912e-04 0 0 6 5 3.996599e-03
0 0 7 4 2.579365e-03 0 0 8 0 2.222222e-02 0 5 2 5 4.385269e-04
0 5 3 4 1.359760e-04 0 5 4 3 3.833186e-04 0 5 5 2 9.740495e-05
0 5 6 0 1.539957e-03 0 6 3 2 4.658320e-05 0 6 3 3 9.241610e-07
0 6 5 0 1.893794e-04 0 7 0 4 4.585073e-04 0 7 1 3 1.992969e-03
0 7 2 2 1.199898e-03 0 7 3 0 2.093047e-05 0 7 3 1 1.698355e-03
0 7 4 0 9.174968e-04 0 8 0 0 2.222222e-02 1 3 7 0 3.316187e-04
2 2 7 0 3.883201e-04 2 3 2 6 1.818870e-04 2 3 3 5 6.708826e-05
2 3 4 4 1.277478e-04 2 3 5 3 1.369389e-04 2 3 7 0 8.113415e-04
2 4 2 5 5.158908e-05 2 4 3 4 8.499152e-05 2 4 4 3 4.975736e-06
2 4 5 2 1.133274e-04 3 1 7 0 2.672980e-04 3 2 2 6 4.410280e-05
3 2 3 5 7.970540e-05 3 2 4 4 4.896451e-05 3 2 5 3 7.392384e-05
3 2 6 2 5.816254e-06 3 2 7 0 1.742220e-04 3 3 2 5 6.943956e-06
3 3 5 2 3.800255e-05 3 5 1 4 1.369777e-04 3 5 2 3 9.535644e-05
3 5 3 2 1.282475e-04 3 5 4 0 8.297563e-05 3 5 4 1 5.296674e-05
3 6 2 2 9.002473e-06 4 1 2 6 1.767087e-04 4 1 3 5 5.212549e-05
4 1 4 4 1.093016e-04 4 1 5 3 9.464293e-05 4 1 6 2 3.789534e-05
4 1 7 0 1.125084e-03 4 2 2 5 7.353027e-05 4 2 3 4 1.587323e-05
4 2 4 3 1.237762e-05 4 2 5 2 8.670195e-05 4 3 2 4 5.232234e-05
4 3 3 3 8.595063e-05 4 3 4 2 2.209769e-05 4 3 5 0 1.041270e-04
4 4 1 4 1.052873e-04 4 4 2 3 1.437882e-05 4 4 3 2 4.431716e-05
4 4 4 0 7.896302e-05 4 4 4 1 4.184396e-05 4 5 1 3 5.225282e-05
4 5 2 2 5.006599e-05 4 5 3 1 3.748908e-05 5 1 2 5 2.980766e-05
5 1 3 4 8.802145e-05 5 1 4 3 4.768986e-05 5 1 5 2 7.014272e-05
5 3 1 4 6.990688e-05 5 3 2 3 1.155525e-05 5 3 3 2 3.894932e-05
5 3 4 1 3.980330e-05 5 4 1 3 3.277361e-05 5 4 2 2 7.791839e-05
5 4 3 1 2.503639e-05 5 6 0 0 1.549509e-03 6 2 1 4 1.448414e-04
6 2 2 3 6.887231e-05 6 2 3 2 1.145665e-04 6 2 4 0 1.365900e-04
6 2 4 1 4.324878e-05 6 2 5 0 4.360905e-05 6 3 1 3 7.156338e-05
6 3 2 2 3.895600e-05 6 3 3 1 5.915442e-05 6 6 0 0 2.267574e-04
7 2 1 3 3.562315e-05 7 2 2 2 7.950298e-05 7 2 3 1 1.473170e-05
7 5 0 0 1.289683e-03 8 4 0 0 3.756614e-03
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5.B. The Nostradamus Lemma

In the proof of Lemma 5.7, we use the following general “Nostradamus Lemma.”

To justify this somewhat cryptic name, consider the following analogy. In a dusty

book of prophecy, one reads that “sometime in the future, you will meet a man named

John Doe. The first time you meet such a man, he will flip a coin a hundred times,

all of which come up heads. Also, you will eventually meet a woman Jane Doe; the

first such woman whom you meet will also flip a hundred coins, all of which come up

heads.” Now, you do not know when these meetings will come or which will come first,

if ever, but you can confidently say that the probability that this prophecy comes true

is at most 2−200.

This probabilistic principle seems fairly intuitive, but we note that there are two

ways it can go wrong. Suppose that we predict that John Doe will flip a hundred

heads and also a red-haired man will flip a hundred heads. This probability could

be just 2−100, because the two men may be the same person. Another possibility:

suppose we predict that “sometime in the future you will meet a man named John

Doe who flips a hundred heads.” The probability of this event could be one, if we

encounter an infinite series of men with the same name.

Lemma 5.32 (Nostradamus Lemma). Suppose one has a stochastic process indexed

〈Xt | t ∈ N〉. Let S denote the countably infinite set of possible histories for this

process; for notational simplicity we suppose that the states Xt themselves lie in S

(i.e., that the state also includes the history thus far). The process begins in state

s0 ∈ S, which represents the null history. There are ` Boolean functions Ai, Bi : S →

{0, 1}, for some finite `. Suppose that, for all t ∈ N and all s ∈ S, we have that

P (Bi(Xt+1) = 1 | Xt = st) ≤ pi.

Now define the event E that the following conditions are all satisfied:

(1) For each i ∈ [l], there is exactly one time ti such that Ai(Xti) = 1;
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(2) For all i 6= i′ we have ti 6= ti′;

(3) For all i ∈ [l] we have Bi(Xti+1) = 1.

Then the event E is measurable, and its probability is at most P (E) ≤ p1p2 . . . p`.

Proof. Define the event ET , which is that event E holds and also that t1, . . . , t` ≤

T . We will prove that P (ET ) ≤ p1 . . . p` by induction on T . For a given value of T ,

the induction will apply across all possible stochastic systems and all possible values

of `.

First, suppose T = 0. If ` > 0, then the event ET is impossible; if ` = 0, then

event ET is certain. Either way the inequality holds.

Next, suppose T > 0. Count how many values of i are there such that Ai(s0) = 1.

If there is more than one such value, then event ET is impossible, and the statement

holds.

Suppose first that for all i we have Ai(s0) = 0. Then the event ET is equivalent

to the event E ′T−1, where E ′ is an event similar to E except that it is defined on the

stochastic process which starts at state X1. By induction hypothesis, the event E ′T−1

has probability at most p1 . . . p` for any X1. Integrating over X1, we have the ET has

at most this probability as well.

Finally, suppose that there is exactly one value of i such that Ai(s0) = 1; without

loss of generality say it is i = `. Then the event ET is equivalent to the event that

B`(X1) = 1 and that the event E ′T−1 occurs, where E ′ is an event similar to E except

that it is defined on the stochastic process which starts at state X1 and only includes

Boolean functions A1, B1, . . . , A`−1, B`−1. The probability of B`(X1) = 1 is at most

p`. By induction hypothesis, for any such X1, the probability of the event E ′ is at

most p1 . . . p`−1. Hence, integrating over all X1, the probability of this event is at

most p1 . . . p`.

So we have shown that P (ET ) ≤ p1 . . . p` for all T ∈ N. Now note that E0 ⊆

E1 ⊆ E2 ⊆ . . . and E = ∪T∈NET . Each set ET is cylindrical (it is determined by
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the first T coordinates), hence measurable. This implies that E is measurable as well

with P (E) ≤ p1 . . . p`. �

5.C. A probabilistic LLL variant

The standard LLL has two faces: the efficient MT algorithm, which finds a valid

configuration by resampling bad-events, and the original probabilistic formulation

discussed in Chapter 1. In the latter formulation, one selects the variables according

to the indicated distribution, without any resamplings. One then has a positive,

exponentially small, probability of avoiding all bad-events. This typically gives an

existence proof without a corresponding polynomial-time algorithm.

These two interpretations of the LLL lend themselves to different generalizations

and there are many useful interconnections between them. Historically, many im-

provements and specializations of the LLL were first developed in the probabilis-

tic framework (including the original LLL itself), and then were translated into the

Moser-Tardos framework. The Partial Resampling Algorithm we have given follows

the opposite path: it is a generalization of the Moser-Tardos framework, without any

probabilistic interpretation.

In this section, we will describe a probabilistic variant of the LLL which closely

parallels the PRA. This process does not exactly match the bounds of the PRA; it is

sometimes stronger but usually weaker. We will discuss the connections between the

interpretations in Section 5.C.3.

We begin by setting and recalling some notations. We let [n] index the variables,

and let Zi,j be the indicator for selecting Xi = j. The set of bad-events B is, as

before, a union of atomic bad-events. As before, we refer to an ordered pair (i, j)

as an element. Recall that we let X denote the set of all elements; we let |X | = N .

(This differs from the PRA, in which we never explicitly required that X was finite).

We will not make use of a labeling function here.
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5.C.1. The assignment LLL. Unlike in the usual LLL, we cannot simply define

a probability distribution and compute the probability of the bad event occurring.

We will only have partial control over this probability distribution, and the following

definition will be important:

Definition 5.33. (UNC) Given a probability distribution Ω on the underlying

indicator variables Z, we say that Ω satisfies upper negative correlation with respect

to probability vector p or simply “UNC(p)” if all entries of p lie in [0, 1] and if for

all elements x1, . . . , xk, we have

PΩ(Zx1 = · · · = Zxk = 1) ≤ px1 . . . pxk .

For an event E and a probability vector p, we define P ∗p (E) to be the minimum,

over all Ω satisfying UNC(p), of PΩ(E). (As the number of variables is finite, this

minimum is achieved.)

Essentially, when computing P ∗(E), we are not allowing the random variables Z

to be positively correlated. For some types of events, such as large-deviation events,

this allows us to control the probability very strongly; for other events, such as a

union of many events, this is no better than the union bound.

Our main theorem is:

Theorem 5.34 (Assignment LLL). Suppose we are given a CSP for which there

exists λ ∈ [0, 1]N such that when we sample all the Zx independently with Pr[Zx =

1] = λx, we have

∀i ∈ [n],
∑
j

λi,j · P ∗λ [
⋂

B∈Bi,j

B
∣∣ Zi,j = 1] > 1.

Then, if no bad-event B ∈ B is a tautology, the CSP is feasible.

To prove the theorem, we will study the following probabilistic process. We are

given a vector p ∈ [0, 1]N of probabilities, one for each indicator Zx. Each Zx is
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drawn independently as Bernoulli-p, i.e. P (Zx = 1) = px. (If for some event x we

have px > 1, then by an abuse of notation, we take this to mean that Zx = 1 with

certainty). Our goal is to satisfy all the assignment constraints and avoid all the

events in B. If C ⊆ B, we use the notation ∃C to denote the event that some B ∈ C

occurs. So in this case, we want to avoid the event ∃B. For an element x we define

Bx to index the set of all bad events B ∈ B which are (explicitly) affected by Zx.

We recall a basic lemma concerning increasing and decreasing events, which follows

from the FKG inequality [42]:

Lemma 5.35. Let X0,X1 ⊆ X be two disjoint subsets of the elements. Let E1 be

some event depending solely on variables in X1. Let E− be a decreasing event. Then,

P (∀x ∈ X0 Zx = 1 | E1, E
−) ≤ pX0

Similarly, if E+ is increasing, then P (∀x ∈ X0 Zx = 1 | E1, E
+) ≥

∏
x∈X0

pX0.

Recall that we are using the power notation so that pX0 means simply
∏

x∈X0
px.

Proof. We will only prove the first part of this lemma; the second is analogous.

We average over all assignments to the variables Zx, for x ∈ X1. For any such

assignment-vector ~z, the event
∧
x∈X0

Zx = 1 is an increasing function, while E− is

a decreasing function in the remaining variables. Hence, by FKG, the probability of

this event conditional on (ZX1 = ~z ∧ E−) is at most its value conditional on ZX1 = ~z

alone. But, the events
∧
x∈X0

ZX0 = 1 and ZX1 = ~z involve disjoint sets of variables, so

they are independent. Hence this probability is at most the unconditional probability

of
∧
x∈X0

Zx = ~1, namely pX0 . �

If A ⊆ [n] is any subset of the variables, we define the event Assigned(A) to be

the event that, for all i ∈ A, there is at least one value of j for which Zi,j = 1. In

the PRA, this is automatic because of the way we are defining the probability space.

Here, however, we are thinking of the variables Zx as independent Bernoulli, and so

the number of assignments to each variable may be zero or may be more than one.
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Our goal is to satisfy the constraint Assigned([n]). If i ∈ [n] we write Assigned(i) as

short-hand for Assigned({i}). Because all the bad events are atomic, if we can find a

configuration in which each block has at least one value assigned, we can easily alter

it to a feasible configuration in which each block has exactly one value assigned.

We are now ready to state the first lemma concerning this probabilistic process.

We want to show that the there is a positive probability of satisfying all the assignment

constraints and avoiding all bad events. We will show the following by induction, with

stochastic domination playing a key role:

Lemma 5.36. Let ε < 1. Suppose p ∈ [0, ε]N is a probability vector such that for

all blocks i, ∑
j

pi,j(P
∗
p/ε(¬∃Bi,j | Zi,j = 1))−

∑
j,j′

pi,jpi,j′ ≥ ε.

Then for any block i, any C ⊆ B a set of bad events, and any A ⊆ [n], we have

P (Assigned(i) | ¬∃B′,Assigned(A)) ≥ ε.

Proof. We show this by induction on |C| + |A|. We may assume that i /∈

A, as otherwise this is vacuous. First, suppose |C| = 0. Then, P (Assigned(i) |

¬∃C,Assigned(A)) equals P (Assigned(i)) as these events are independent. By Inclusion-

Exclusion, the latter probability is at least

P (Assigned(i)) ≥
∑
j

pi,j −
∑
j,j′

pi,jpi,j′

and it is easy to see that the lemma’s hypothesized constraint implies that this is at

least ε.

Next suppose |C| > 0. We use Inclusion-Exclusion to estimate P (Assigned(i) |

¬∃C,Assigned(A)). First, consider the probability that a distinct pair j, j′ in block i

are jointly chosen, conditional on all these events. For this, by Lemma 5.35 we have

(22) P (Zi,j = Zi,j′ = 1 | Assigned(A),¬∃C) ≤ pi,jpi,j′
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as i 6∈ A and ¬∃C is decreasing.

Let us fix j. We next need to show a lower bound on P (Zi,j = 1 | Assigned(A),¬∃C).

This is easily seen to equal P (Zi,j = 1) if Bi,j ∩ C = ∅, so we can assume Bi,j ∩ C 6= ∅.

We see by Bayes’ Theorem that P (Zi,j = 1 | Assigned(A),¬∃C) equals

P (¬∃(C ∩ Bi,j) | Zi,j = 1,Assigned(A),¬∃(C − Bi,j))
P (¬∃(C ∩ Bi,j) | Assigned(A),¬∃(C − Bi,j))

× P (Zi,j = 1 | Assigned(A),¬∃(C − Bi,j))

since the denominator is a probability, Lemma 5.35 yields

P (Zi,j = 1 | Assigned(A),¬∃C) ≥ pi,j ·P (¬∃Bi,j | Zi,j = 1,Assigned(A),¬∃(C−Bi,j)).

(This approach to handling a conditioning was inspired by [19].)

Consider the random variables Z conditioned on the events Assigned(A),¬∃(B−

Bi,j), Zi,j = 1. Our key claim now is that these conditional random variables Z (apart

from Zi,j itself) satisfy UNC(p/ε): note that p/ε is a valid probability vector since

p ∈ [0, ε]N . To show this, we need to upper-bound P (E1 | E2), where

E1 ≡ (Zi′1,j′1 = · · · = Zi′k,j′k = 1) and

E2 ≡ (Assigned(A),¬∃(Y − Bi,j), Zi,j = 1),

and where k and i′1, j
′
1, . . . , i

′
k, j
′
k are arbitrary. Letting I ′ = {i′1, . . . , i′k}, we also define

E3 ≡ (Zi,j = 1,Assigned(A− I ′),¬∃(B − Bi,j)).

By simple manipulations, we see that P (E1 | E2) is at most

(23) P (E1 | E3)/P (Assigned(i′1, . . . , i
′
k) | E3).

Note that E1 does not share any variables with (Zi,j = 1,Assigned(A− i′1− · · ·− i′k)),

and that ¬∃(B − Bi,j) is a decreasing event. Hence by Lemma 5.35 the numerator is

at most pi′1,j′1 . . . pi′k,j′k . Now let us examine the denominator. The variable Zi,j does

not affect any of the events mentioned in the denominator, so we may remove it from
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the conditioning:

P (Assigned(I ′) | E3) = P (Assigned(I ′) | Assigned(A− I ′),¬∃(B − Bi,j)),

which in turn is at least ε|I
′|, by iterated application of the induction hypothesis (recall

that Bi,j ∩ C 6= ∅).

Putting this all together, we have that the probability of the event Zi′1 = · · · = Zi′k

is at most pk/ε|I
′| ≤ (p/ε)k. So the random variables Z satisfy UNC(p/ε) and we have

P (¬∃Bi,j | Zi,j = 1,Assigned(A),¬∃(C − Bi,j)) ≥ P ∗p/ε(¬∃Bi,j | Zi,j = 1)

The right-hand side is substantially simpler, as there is no conditioning to link the

variables. Substituting this into (22) and (5.C.1), we get

P (Assigned(i) | Assigned(A),¬∃C) ≥
∑
j

pi,jP
∗
p/ε(¬∃Bi,j | Zi,j = 1)−

∑
j,j′

pi,jpi,j′

and by our hypothesis the right-hand side is at least ε. �

We can now allow all entries of p to tend to 0 at the same rate, which simplifies

our formulae:

Theorem 5.34 (Assignment LLL – restated). For any element x ∈ X and any

vector of probability λ ∈ [0, 1]N define

hx(λ) = P ∗λ (¬∃Bx | Zx = 1)

For any block i define

Hi(λ) =
∑
j

λi,jhi,j(λ)

Suppose that for all blocks i ∈ [n] we satisfy the constraint Hi(λ) > 1. Then the

corresponding CSP has a feasible solution.
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Proof. Let p = αλ and let ε = α for some α > 0. In order to use Lemma 5.36,

it suffices to satisfy the constraint for all i

(24)
∑
j

pi,jhi,j(p/ε)−
∑
j,j′

pi,jpi,j′ ≥ ε.

Let us fix a block i. Suppose we allow α → 0. In this case, (24) will be satisfied for

some α > 0 sufficiently small if we have

∑
j

λi,j · P ∗λ (¬∃Bi,j | Zi,j = 1) > 1

As there are only finitely many blocks, there is α > 0 sufficiently small which

satisfies all constraints simultaneously.

In this case, we claim that there is a positive probability of satisfying Assigned(i), B

for all blocks i and all bad events B ∈ B, when we assign variables Z independently

Bernoulli-p. First, P (¬∃B) ≥
∏

x∈X P (Zx = 0), since no B ∈ B is a tautology; the

latter product is clearly positive for small-enough α. Next, by Lemma 5.36 and Bayes’

Theorem,

P (Assigned(1) ∧ · · · ∧ Assigned(n) | ¬∃Y ) ≥
n∏
i=1

ε > 0.

In particular, there is a configuration of the Zx which satisfies all the constraints

simultaneously. �

5.C.2. Computing P ∗. In the usual LLL, one can fully specify the underlying

random process, so one can compute the probability of a bad event fairly readily.

In the assignment LLL, we know that the random variables must satisfy their UNC

constraints, but we do not know the full distribution of these variables. This can

make it much harder to bound the probability of a bad event.

Roughly speaking, the UNC constraints force the underlying variables to be neg-

atively correlated (or independent). For some types of bad events, this is enough to

give strong bounds:
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Lemma 5.38. For random variables Zx1 , . . . , Zxk , let µ = λx1 + · · ·+ λxk . Then

P ∗λ (Zx1 + · · ·+ Zxk ≤ µ(1 + δ)) ≥ 1−
( eδ

(1 + δ)1+δ

)µ
Proof. The Chernoff upper-tail bound applies to negatively correlated random

variables [92]. �

Suppose we have a set of bad-events B which depends on Zx1 , . . . , Zxk . We are

given λ ∈ [0, 1]N . Note that Ω is a probability distribution on Z1, . . . , ZN , but we

abuse notation to view it as a distribution on Zx1 , . . . , Zxk as well. We describe a

generic algorithm to compute P ∗λ (B) (we sometimes just denote P ∗λ (·) as P ∗(·)).

By definition, B can be written B = {A1, . . . , Am} where each Ai is an atomic

event. We may suppose that we are given a minimal such description, that is, we

cannot replace any Ai with A′i where A′i ( Ai. We assume ∅ /∈ B, as otherwise B is

a tautology and P ∗(B) = 1.

We say that a probability distribution Ω on the variables Zx1 , . . . , Zxk is worst-

case if P ∗λ (B) = PΩ(B). By finiteness, such Ω exists. The basic idea of our algorithm

is to view each PΩ(ω) as an unknown quantity, where ω ∈ Ω is an atomic event. We

write qω = PΩ(ω) for simplicity. In this case, PΩ(B) is the sum

PΩ(B) =
∑
ω∈B

qω

Furthermore, the UNC constraints can also be viewed as linear constraints in the

variable qω. For each x′1, . . . , x
′
k′ , we have the constraint

∑
ωx′1

=···=ωx′
k′

=1

qω ≤ λx′1 . . . λx′k′

This defines a linear program, in which we maximize the objective function P ∗(B) =∑
ω∈B qω subject to the UNC constraints. The size of this linear program may be

enormous, potentially including 2k variables and 2k constraints. However, in many
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applications k is a parameter of the problem which can be regarded as constant, so

such a program may still be tractable.

In general, we can reduce the number of variables and constraints of this linear

program with the following observations:

Proposition 5.39. There is a distribution Ω such that PΩ(B) = P ∗(B) and such

that Ω is only supported on the atomic events {0, A1, . . . , Am}.

Proof. Suppose Ω satisfies the UNC constraints. Then define Ω′ as follows. For

each atomic event ω, if B is not true under ω, then shift the probability mass of ω to

0; otherwise, shift the probability mass of ω to any minimal event Ai underneath it.

This preserves all UNC constraints as well as the objective function. �

For some types of bad events, there are certain symmetries among classes of

variables. In this case, one can assume that the distribution Ω is symmetric in these

variables; hence the probabilities of all such events can be collapsed into a single term.

Proposition 5.40. Given a group G ⊆ Sk, where Sk is the symmetric group on

k letters, define the group action of G on a probability distribution Ω by permutation

of the indices and on λ by permutation of the coordinates. Suppose B, λ are closed

under the action of G. Then there is a worst-case probability distribution Ω which is

closed under G. For this probability distribution Ω, we only need to keep track of a

single unknown quantity q′ for each orbit of G.

Proof. Given a worst-case distribution Ω, let Ω′ = 1
|G|
∑

g∈G gΩ. As B is closed

under G, each of the distributions gΩ has the same probability of the bad event B.

As λ is closed under G, all the UNC constraints are preserved in each gΩ. �

5.C.3. Comparing the Assignment LLL and PRA. Although it is not ob-

vious in the form we have stated it, there are connections between the PRA, and in

particular Theorem 5.12, with the Assignment LLL as given in Theorem 5.34. Of

course, the latter is nonconstructive, while the former is usually a polynomial-time
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algorithm. Moreover, for all the applications in this chapter, the PRA leads to ef-

ficient algorithms, and in most cases, to bounds which are (significantly) improved

compared to the Assignment LLL.

However, we have not been able to prove a general theorem to the effect that the

PRA is a constructive form of the Assignment LLL or is always better. Indeed, there

appear to be some parameter regimes of Theorem 5.19 in which Theorem 5.34 can

give slightly better bounds. In order to explain some links between the Assignment

LLL and our resampling approach, we next give some intuitive connections between

the two.

Note that in Theorem 5.12, the values of p is not significant in itself, only the

“inflated” probability distribution λ. A way to interpret this result is that we are

“oversampling” each element x. We imagine that there is a process in which individual

indicator variable Zx is Bernoulli-λx, and the Zx variables are negatively correlated,

but we relax the restriction that exactly one element is selected from each variable.

A fractional hitting-set Q provides an upper bound on the probability of the bad

event B. Furthermore, this upper bound depends only on the negative correlation of

these variables:

Proposition 5.41. For each element x = (i, j) ∈ X , we define the indicator

variable Zx which is 1 is x is selected and 0 otherwise. Suppose that the indicator

variables Zx are each individually Bernoulli-λ and are negatively correlated. (We are

provided no other information on their distribution). Suppose that Q is a fractional

hitting-set for Q.

Then the probability of any bad event B is at most P (B) ≤
∑

Y⊆B Q(Y )λY .

Furthermore, let p∗ denote the maximum possible value of P (B), over all distribu-

tions Ω on the indicator variables which satisfy these two properties, namely that the

indicator variables are individually Bernoulli-λ and are negatively correlated. Then

there is a fractional hitting-set Q with p∗ =
∑

Y⊆B Q(Y )λY .
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Proof. Consider the following process: we draw the variables Z as indicated.

If the bad event B occurs, we select some violated subset Y ⊆ B with probability

proportional to Q(Y ). Otherwise we do not draw. The probability of selecting a

subset is P (B). But, we can also count it as

P (B) =
∑
Y⊆B

P (Y | B)

≤
∑
Y

P (∀y ∈ Y Zy = 1)P (select Y )

≤
∑
Y

λYQ(Y )

We prove that there is a fractional hitting-set Q achieving p∗ =
∑

Y⊆B Q(Y )λY

by LP duality. We can view the probability of each atomic event ω ∈ Ω as a linear

unknown. Then the constraint that the variables are negatively correlated is a linear

constraint, and the objective function P (B) is linear. It is not hard to see that a

feasible dual corresponds to a fractional hitting-set. �

We can imagine that we are drawing the variables Zx, not by selecting exactly one

element from each variable, but according to some more complicated distribution of

which we know two things: the marginal distribution of each element is λx; and the

elements are negatively correlated.

In this case, the term G(Q, λ) is measuring the probability of a bad event. The

term Gx(Q, λ) is measuring how much of this probability is “due to” the variable x. If

the variable x does not affect the bad event at all, then Gx(Q, λ) = 0. If the bad event

is equivalent to x being selected (i.e. B = {x}), then Gx(Q, λ) = λx. The standard

LLL would not distinguish between a variable affecting the bad event by “a little” or

“a lot”, but the Partial Resampling Algorithm interpolates smoothly between these

extremes.

One important difference between the Assignment LLL and the Partial Resam-

pling Algorithm is that for the Assignment LLL, we compute P ∗ based on the structure

195



of the bad-events. For the PRA, we choose the fractional hitting-set Q. For a given

bad-event B, there is not necessarily a “best” choice of Q; a choice of Q can affect

the whole dependency structure of the bad-events, and this can have complicated

interactions with other bad-events. In general, the optimal choice for the Assignment

LLL is not necessarily optimal for the PRA.

Furthermore, when we are analyzing the assignment LLL, we do not ask for bounds

on the full set of bad-events B, but rather we use bounds on the set Bx which are

affected by some x. In effect, we are able to choose a separate fractional hitting-set for

each such x; while in the PRA, we are forced to select one fixed fractional hitting-set.

Although the PRA is generally stronger, in this one regard it can be slightly weaker

than the assignment LLL.
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CHAPTER 6

Partial resampling to approximate covering integer programs

In this section, we consider positive covering integer programs – or simply covering

integer programs (CIPs) – defined as follows (with Z+ denoting the set of non-negative

integers). We have solution variables x1, . . . , xn ∈ Z+, and for k = 1, . . . ,m, a system

of m covering constraints of the form:

∑
i

Akixi ≥ ak

Here Ak is an n-long non-negative vector; by scaling, we can assume that Aki ∈ [0, 1]

and ak ≥ 1. We can write this more compactly as Ak · x ≥ ak. We may optionally

have constraints on the size of the solution variables, namely, that we require xi ∈

{0, 1, . . . , di}; these are referred to as the multiplicity constraints. Finally, we have

some linear objective function, represented by a vector C ∈ [0,∞)n. Our goal is to

minimize C · x, subject to the multiplicity and covering constraints.

This generalize the set cover problem, which can be viewed as a special case in

which ak = 1, Aki ∈ {0, 1}. Solving set cover or integer programs exactly is NP-hard

[61], so a common strategy is to obtain a solution which is approximately optimal.

There are at least three ways one may obtain an approximate solution, where OPT

denotes the optimal solution-value for the given instance:

(1) the solution x may violate the optimality constraint, that is, C · x > OPT;

(2) x may violate the multiplicity constraint: i.e., xi > di for some i;

(3) x may violate the covering constraints: i.e., Ak · x < ak for some k.

These three criteria are in competition. For our purposes, we will demand that

our solution x completely satisfies the covering constraints. We will seek to satisfy the

multiplicity constraints and optimality constraint as closely as possible. Our emphasis
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will be on the optimality constraints that is, we seek to ensure that

C · x ≤ β ×OPT

where β ≥ 1 is “small”. The parameter β, in this context, is referred to as the

approximation ratio. More precisely, we will derive a randomized algorithm with

the goal of satisfying E[C · x] ≤ β × OPT, where the expectation is taken over our

algorithm’s randomness.

Many approximation algorithms for set cover and its extensions give approxima-

tion ratios as a function of m, the total number of constraints: e.g., it is known that

the greedy algorithm has approximation ratio (1− o(1) lnm [107]. We often prefer a

scale-free approximation ratio, that does not depend on the problem size but only on

its structural properties. Two cases that are of particular interest are when the ma-

trix A is row-sparse (a bounded number of variables per constraint) or column-sparse

(each variable appears in a bounded number of constraints). We will be concerned

solely with the column-sparse setting here. The row-sparse setting, which generalizes

problems such as vertex cover, typically leads to very different types of algorithms

than the column-sparse setting.

Two common parameters used to measure the column sparsity of such systems

are the maximum l0 and l1 norms of the columns; that is,

∆0 = max
i

#k : Aki > 0, ∆1 = max
i

∑
k

Aki

Since the entries of A are in [0, 1], we have ∆1 ≤ ∆0; it is also possible that ∆1 � ∆0.

Approximation algorithms for column-sparse CIP typically yield approximation

ratios which are a function of ∆0 or ∆1, and possibly other problem parameters as

well. These algorithms fall into two main classes. First, there are greedy algorithms:

they start by setting x = 0, and then increment xi where i is chosen in some way which

“looks best” in a myopic way for the residual problem. These were first developed

by [27] for set cover, and later analysis (see [37]) showed that they give essentially
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optimal approximation ratios for set cover. These were extended to CIP in [40]

and [31], showing an approximation ratio of 1 + ln ∆0. These greedy algorithms are

often powerful, but they are somewhat rigid. For instance, it is difficult to adapt

these algorithms to take multiplicity constraints into account, or to deal with several

objective functions.

A more flexible type of approximation algorithm is based on linear relaxation.

This replaces the constraint xi ∈ {0, 1, . . . , di} with the weaker constraint xi ∈ [0, di].

The set of feasible points to this linear relaxation is a polytope, and one can find the

exact optimal fractional solution x̂. As this is a relaxation, we have C · x̂ ≤ OPT.

It thus suffices to turn the solution x̂ into a random integral solution x satisfying

E[C · x] ≤ β(C · x̂). Randomized rounding is often employed to transform solutions

to the linear relaxation back to feasible integral solutions. The simplest scheme, first

applied to this context by [90], is to simply draw xi as independent Bernoulli(αx̂i),

for some α > 1. When this is used, simple analysis using Chernoff bounds shows

that Ak · x ≥ ak simultaneously for all k when α ≥ 1 + c0( logm
ak

+
√

logm
ak

), where

c0 > 0 is some absolute constant. Thus, the overall solution C · x is within a factor

of 1 +O( logm
amin

+
√

logm
amin

) from the optimum, where amin = mink ak ≥ 1.

In [108], Srinivasan gave a scale-free method of randomized rounding (ignoring

multiplicity constraints), based on the FKG inequality and some proof ideas behind

the Lovász Local Lemma. This gave an approximation ratio of 1 + O
( log(∆0+1)

amin
+√

log amin

amin
+ log(∆0+1)

amin

)
. The rounding scheme, by itself, only gave a positive (expo-

nentially small) probability of achieving the desired approximation ratio. Srinivasan

also gave a polynomial-time derandomization using the method of conditional ex-

pectations. The algorithm of Srinivasan can potentially cause a large violation in

the multiplicity constraint. In [67], Kolliopoulos & Young modified the algorithm of

[108] to trade off between the approximation ratio and the violation of the multi-

plicity constraints. For a given parameter ε ∈ (0, 1], they gave an algorithm which

violates each multiplicity constraint “xi ≤ di” to at most “xi ≤ d(1 + ε)die”, with an
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approximation ratio of O(1 + log(∆0+1)
amin·ε2 ). Kolliopoulos & Young also gave a second al-

gorithm which exactly meets the multiplicity constraints and achieves approximation

ratio O(log(∆0)).

There has been prior work applying the LLL and the MT algorithm to packing

integer programs, such as [72]. One technical problem with the LLL is that it only

depends on whether bad-events affect each other, not the degree to which they do so.

Bad-events which are only slightly correlated are still considered as dependent by the

LLL. Thus, a weakness of the LLL for integer programs with arbitrary coefficients (i.e.

allowing Aki ∈ [0, 1]), is that potentially all the entries of Aki could be extremely small

yet non-zero, causing every constraint to affect each other by a tiny amount. For this

reason, typical applications of the LLL to column-sparse integer programs have been

phrased in terms of the l0 column norm ∆0. We have already seen in Section 5.4 how

to apply the Partial Resampling Algorithm (PRA) to assignment-packing” integer

programs. The resulting bounds depend on ∆1.

6.0.4. Our contributions. In this chapter, we give a new randomized rounding

scheme for CIP. This combines techniques developed in Chapter 5 and Chapter 4.

We show the following result:

Theorem 6.1. Suppose we are given a covering system with a fractional solution

x̂. Let γ = ln(∆1+1)
amin

. Then our randomized algorithm yields a solution x ∈ Zn
+

satisfying the covering constraints with probability one, and with

E[xi] ≤ x̂i
(
1 + γ + 4

√
γ
)

The expected running time of this rounding algorithm is O(mn).

Note that this automatically implies that E[C · x] ≤ βC · x̂ ≤ β × OPT for

β = 1 + γ + 4
√
γ.

Our algorithm has several advantages over previous techniques.
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(1) We are able to give approximation ratios in terms of ∆1, the maximum l1-

norm of the columns of A. Such bounds are always stronger than those

phrased in terms of the corresponding l0-norm.

(2) When ∆1 is small, our approximation ratios is asymptotically smaller than

that of [108]. In particular, we avoid the
√

log amin

amin
term in our approximation

ratio.

(3) When ∆1 is large, then our approximation ratio is roughly γ; this is asymp-

totically optimal (including having the correct coefficient), and improves on

[108].

(4) This algorithm is quite efficient, essentially as fast as reading in the matrix

A.

We view it as interesting that one can “boil down” the parameters ∆1, amin into

a single parameter γ, which seems to completely determine the behavior of our algo-

rithm.

Our partial resampling algorithm in its simplest form could significantly violate the

multiplicity constraints. By choosing slightly different parameters for our algorithm

(but making no changes otherwise), we can ensure that the multiplicity constraints

are nearly satisfied, at the cost of a worsened approximation ratio:

Theorem 6.2. Suppose we are given a covering system with a fractional solution

x̂. Let γ = ln(∆1+1)
amin

. For any given ε ∈ (0, 1], our algorithm yields a solution x ∈ Zn
+

satisfying the covering constraints with probability one, and with

xi ≤ dx̂i(1 + ε)e, E[xi] ≤ x̂i(1 + 4
√
γ + 4γ/ε)

This is an asymptotic improvement over the approximation ratio of [67], in three

different ways:

(1) It depends on the `1-norm of the columns, not the `0 norm;

(2) When γ is large, it is smaller by a full factor of 1/ε;
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(3) When γ is small, it gives an approximation ratio which approaches 1, at a

rate independent of ε.

We also give matching lower bounds on the achievable approximation ratios. The

formal statements of these results contain numerous qualifiers and technical condi-

tions.

(1) When γ is large, then assuming the Exponential-Time Hypothesis, any polynomial-

time algorithm to solve the CIP (ignoring multiplicity constraints) must have

approximation ratio γ −O(log γ).

(2) When γ is large, then assuming P 6= NP , any polynomial-time algorithm

to solve the CIP while respecting the multiplicity constraints within a 1 + ε

multiplicative factor, must have approximation ratio Ω(γ/ε).

(3) When γ is small, then the integrality gap of the CIP is 1 + Ω(γ).

Finally, we give an extension to covering programs with multiple linear criteria.

Our extension is much simpler than the algorithm of [108]; we show that even con-

ditional on our solution x satisfying all the covering constraints, not only do we have

E[Cl · x] ≤ βCl · x̂ but that in fact the values of Cl · x are concentrated, roughly

equivalent to the xi being independently distributed as Bernoulli with probability

βx̂i. Thus, for each l there is a very high probability that we have Cl · x ≈ Cl · x̂ and

in particular there is a good probability that we have Cl · x ≈ Cl · x̂ simultaneously

for all l.

Theorem 6.3 (Informal). Suppose we are given a covering system with a frac-

tional solution x̂ and with r objective functions C1, . . . , Cr, whose entries are in [0, 1].

Let γ = ln(∆1+1)
amin

. Then our solution x satisfies the covering constraints with probability

one; with probability at least 1/2,

∀l Cl · x ≤ β(Cl · x̂) +O(
√
β(Cl · x̂) ln r)
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where β = 1 + γ + 4
√
γ. (A similar result is possible, if we also want to ensure that

xi ≤ dx̂i(1 + ε)e; then the approximation ratio is 1 + 4
√
γ + 4γ/ε.)

This significantly improves on [108], in terms of both the approximation ratio

as well as the running time. Roughly speaking, the algorithm of [108] gave an ap-

proximation ratio of O(1 + log(1+∆0)
amin

) (worse than the approximation ratio in the

single-criterion setting) and a running time of nO(log r) (polynomial time only when r,

the number of objective functions, is constant).

6.0.5. Outline. In Section 6.1, we develop a randomized rounding algorithm

when the fractional solution satisfies x̂ ∈ [0, 1/α]n; here α ≥ 1 is a key parameter

which we will discuss how to select in later sections. This randomized rounding

produces produces a binary solution vector x ∈ {0, 1}n, for which E[xi] ≈ αx̂i.

This algorithm is the Partial Resampling variant of the MT algorithm of Chapter 5

combined with the analysis of lopsidependency in Chapter 4. However, it is not

possible to combine results in a truly “black-box” way from these chapters. So we

will give a self-contained and unified presentation of these algorithms here. Many of

their technical complications can be dramatically simplified for the CIP setting.

In Section 6.2, we will develop a deterministic quantization scheme to handle

fractional solutions of arbitrary size, using the algorithm of Section 6.1 as a subroutine.

We will show an upper bound on the sizes of the variables xi in terms of the fractional

x̂i. We will also show an upper bound on E[xi], which we state in a generalized form

without making reference to column-sparsity or other properties of the matrix A.

In Section 6.3, we consider the case in which we have a lower bound amin on

the RHS constraint vectors ak, as well as an upper bound ∆1 on the `1-norm of

the columns of A. Based on these values, we set key parameters of the rounding

algorithm, to obtain good approximation ratios as a function of amin,∆1. We give

approximation ratios for both the case in which the the multiplicity constraints are

ignored, and the case in which they are violated by a multiplicative factor of 1 + ε.
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In Section 6.4, we construct a variety of lower bounds on achievable approximation

ratios. These are based on integrality gaps as well as hardness results. These show

that the approximation ratios developed in Section 6.3 are essentially optimal for

most values of ∆1, amin, ε, particularly when ∆1 is large.

In Section 6.5, we show that our randomized rounding scheme obeys a negative

correlation property, allowing us to show concentration bounds on the sizes of the

objective functions Cl · x. This significantly improves on the algorithm of [108]; we

show asymptotically better approximation ratios in many regimes, and we also give

a polynomial-time algorithm regardless of the number of objective functions.

6.1. The RELAXATION algorithm

We first consider the case when all the values of x̂ are small. In this case, we present

an algorithm which we label RELAXATION. Initially, this algorithm draws each xi as

an independent Bernoulli trials with probability pi = αx̂i, for some parameter α > 1.

This will satisfy many of the covering constraints, but there will still be some left

unsatisfied. We loop over all such constraint; whenever a constraint k is unsatisfied,

we modify the solution as follows: for each variable i which has xi = 0, we set xi to

be an independent Bernoulli random variable with probability pi = σAkiαx̂i. Here

σ ∈ [0, 1] is another parameter which we will also discuss how to select.

Algorithm 1 pseudocode for the algorithm RELAXATION

function relaxation(x̂, A, a, σ, α) . Approximates 0-1 ILPs
for i from 1, . . . , n do . Initialization

xi ∼ Bernoulli(αx̂i)

for k from 1, . . . ,m do . Partial resampling scheme
while Ak · x < ak do

for i from 1, . . . , n do
if xi = 0 then

xi ∼ Bernoulli(σAkiαx̂i)

return x
Whenever we encounter an unsatisfied constraint k, and we draw new values for

the variables, we refer to this as resampling the constraint k. There is an alternative

way of looking at the resampling procedure. Instead of setting each variable xi =
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1 with probability σAkiαx̂i, we instead suppose that we first select a subset Y ⊆

[n] of the variables, where each variable i currently satisfying xi = 0 goes into Y

independently with probability σAki. Then, for each variable i ∈ Y , we draw xi ∼

Bernoulli(αx̂i). It is clear that this two-part sampling procedure is equivalent to the

one-step procedure described in Algorithm 1. We now let Ykj denote the jth chosen

resampled set for constraint k (if this exists). We say that variable i is resampled if

i ∈ Ykj.

The witness trees are particularly simple, in our context: they are just linear trees.

(We will later generalize the notion of witness tree to handle multi-criteria programs.)

More formally, a witness tree will be one of the following:

(1) The empty list, which we denote ·;

(2) A single index k ∈ [m], with a list of resampled sets 〈Yk1, . . . , Ykj〉 for j ≥ 1.

We do not claim in the second case, that Ykj is the last resampled set for constraint

k. Indeed, it is possible that this resampling procedure does not terminate and some

constraint has an infinite number of resampled sets.1

Fundamental to the correctness of our analysis is the following Witness Tree

Lemma:

Lemma 6.4 (Witness Tree Lemma). Let Z1, . . . , Zj be subsets of [n]. The proba-

bility of encountering the witness tree 〈Zk1, . . . , Zkj〉 for a constraint k is at most

P (〈Z1, . . . , Zj〉 is a witness tree for constraint k) ≤
j∏
l=1

fk(Zl)

where we define

fk(Z) = (1− σ)−ak
∏
i

(1− Akiσ)
∏
i∈Z

(1− pi)Akiσ
1− Akiσ

1The standard method of generating witness trees for the MT algorithm may need to list the re-
sampled sets for multiple constraints. Restricting to these single-constraint witness trees is the main
contribution of Chapter 4 which in this context allows us to show simpler and stronger bounds on
the behavior of our algorithm.
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Proof. If there are fewer than j resamplings of constraint k, then this witness

tree cannot occur. So suppose that there are (at least) j resamplings of constraint k.

First, consider some variable i that appears r times among the sets Z1, . . . , Zl. We

only resample variables which are currently equal to zero, so it must be that during

the first r resamplings of the variable xi (where the first resampling is taken to be the

initial sampling stage), that we set xi = 0. Note that some or all of these resamplings

may have taken place for earlier constraints k′ < k. Regardless of which constraint

causes these resamplings, every resampled variable is set equal to one independently

of all past events with probability pi. Thus, the probability that variable i is set equal

to zero for its first r resamplings is (1− pi)r. The total probability of such events is

(25)
∏
i

(1− pi)# l s.t. i ∈ Zl =

j∏
l=1

∏
i∈Zl

(1− pi)

which accounts for the term
∏

i∈Z(1− pi) in fk(Z).

Now consider the probability that each set Z is chosen to be Ykl, conditional on

having chosen all the previous sets Yk1, . . . , Yk(l−1) and on any choice of resampled

values for the variables. Let us denote x′ by the value of the variables x at the time

this lth resampling of constraint k occurs. As we put each i ∈ Ykl with probability

Akiσ independently, the probability that all i ∈ Z go into Ykl is
∏

i∈Z Akiσ. By the

same token, if x′i = 0, then i avoids going into Ykl with probability 1−Akiσ. Therefore,

the overall probability of selecting Ykl = Z is given by

P (Ykl = Z) ≤
∏
i∈Z

Akiσ
∏

i/∈Z,x′i=0

(1− Akiσ)

=
(∏
i∈Z

Akiσ
)(∏

i/∈Z

(1− Akiσ)
)(∏

x′i=1

(1− Akiσ)−1
)

only variables with x′i = 0 exist in Ykl

=
∏
i

(1− Akiσ)
∏
i∈Z

Akiσ

1− Akiσ
∏
x′i=1

(1− Akiσ)−1
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We now observe that constraint k can only be resampled if and only if it is

currently unsatisfied, so it must be that Akx
′ ≤ ak. By Proposition 6.28, we thus

have: ∏
x′i=1

(1− Akiσ)−1 ≤ (1− σ)−ak

further implying:

(26) P (Ykl = Z) ≤ (1− σ)−ak
∏
i

(1− Akiσ)
∏
i∈Z

Akiσ

1− Akiσ

The total probability of observing the witness tree 〈Z1, . . . , Zj〉 is the product of

(25) and (26), over all l = 1, . . . , j. This gives us the claimed result. �

Proposition 6.5. For any constraint k define

sk = (1− σ)−ake−σαAk·x̂.

.

Then we have
∑

Z⊆[n] fk(Z) ≤ sk.

Proof. We have

∑
Z⊆[n]

fk(Z) =
∑
Z⊆[n]

(1− σ)−ak
∏
i

(1− Akiσ)
∏
i∈Z

(1− pi)Akiσ
1− Akiσ

= (1− σ)−ak
∏
i

(1− Akiσ)
∑
Z⊆[n]

∏
i∈Z

(1− pi)Akiσ
1− Akiσ

= (1− σ)−ak
∏
i

(1− Akiσ)
n∏
i=1

(
1 +

(1− pi)Akiσ
1− Akiσ

)
= (1− σ)−ak

∏
i

(1− Akipiσ)

≤ (1− σ)−ake−σ
P
i Akipi

= (1− σ)−ake−σαAk·x̂

�
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To gain some intuition about this expression, note that if we set σ = 1 − 1/α

(which is not necessarily the optimal choice for the overall algorithm), then we have

sk = αake−Ak·x̂(α−1)

and this can be recognized as the Chernoff lower-tail bound. Namely, this is an upper

bound on the probability that a sum of independent [0, 1]-random variables, with

mean αAk · x̂, will become as small as ak. This makes sense: for example at the

very first step of the algorithm (before any resamplings are performed), then Ak · x

is precisely a sum of independent Bernoulli variables with mean αAk · x̂. The event

we are measuring (the probability that a constraint k is resampled) is precisely the

event that this sum is smaller than ak.

Proposition 6.6 gives a bound on what is effectively the running time of the algo-

rithm:

Proposition 6.6. The expected number of resamplings steps made by the algo-

rithm RELAXATION is at most
∑

k
1

eσαAk·x̂(1−σ)ak−1
.

Proof. Consider the probability that there are l resamplings of constraint k. For

this to occur, then a necessary condition is that there are sets Z1, . . . , Zl such that

〈Z1, . . . , Zl〉 is a witness tree for k. This has probability fk(Z1) . . . fk(Zl). Taking a

union-bound on l, we have:

P (There are ≥ l resamplings of constraint k) ≤
∑

Z1,...,Zl

fk(Z1) . . . fk(Zl) = slk

Thus, the expected number of resamplings of constraint k is at most
∑∞

l=1 s
l
k =

sk/(1− sk). �

We can also give a bound, crucially, on the distribution of the variables xi at the

end of the resampling process.
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Theorem 6.7. For any i ∈ [n], the probability this algorithm sets xi = 1 is at

most

P (xi = 1) ≤ αx̂i

(
1 + σ

∑
k

Aki
eσαAk·x̂(1− σ)ak − 1

)

Proof. For xi = 1, the necessary conditions are either xi was set to one during

the initial sampling stage, or it was caused on the jth resampling of some constraint

k. In the latter case, we must have i ∈ Ykj. The probability of the first event is pi.

Now, let us consider the probability of the second event. There must be sets

Z1, . . . , Zj with i ∈ Zj, such that 〈Z1, . . . , Zj〉 is the witness tree for the jth resampling

of constraint k. By Lemma 6.4, this has probability fk(Z1) . . . fk(Zj). Suppose that

variable i appears r times among the sets Z1, . . . , Zj. The probability calculated in

Lemma 6.4 is based on the fact that for the first r resamplings of variable i we must

choose xi = 0. However, another necessary condition is that we select xi = 1 during

the jth resampling of constraint k. This event has probability pi, conditional on all

the events discussed in Lemma 6.4. Hence, the overall probability of setting xi = 1

at the jth resampling of constraint k is at most pifk(Z1) . . . fk(Zj).

Thus, summing over k, j, we have:

P (xi = 1)

≤ pi +
∑
k

∑
j

∑
Z1,...,Zj
i∈Zj

pifk(Z1) . . . fk(Zj)

≤ pi

(
1 +

∑
k

∞∑
j=0

sjk
∑
Z3i

fk(Z)
)

≤ pi

(
1 +

∑
k

1

1− sk

∑
Z3i

(1− σ)−ak
∏
i′

(1− Aki′σ)
∏
i′∈Z

(1− pi′)Aki′σ
1− Aki′σ

)

≤ pi

(
1 +

∑
k

1

1− sk
(1− σ)−ak

((1− pi)Akiσ
1− Akiσ

)∏
i′

(1− Aki′σ)
∏
i′ 6=i

(
1 +

(1− pi′)Aki′σ
1− Aki′σ

))

≤ pi

(
1 +

∑
k

1

1− sk
(1− σ)−akσAki(1− pi)e−σ(αAk·x̂−Akipi)

)
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= pi

(
1 +

∑
k

σAkisk(1− pi)eσAkipi
1− sk

)

We now note that Aki ≤ 1, σ ≤ 1 and so by Proposition 6.29 we have (1 −

pi)e
σAkipi ≤ 1 giving:

P (xi = 1) ≤ pi

(
1 +

∑
k

sk
1− sk

Akiσ
)
≤ αx̂i

(
1 + σ

∑
k

Aki
eσαAk·x̂(1− σ)ak − 1

)
�

6.2. Extension to the case where x̂i is large

6.2.1. Overview. In the previous section, we described the RELAXATION al-

gorithm under the assumption that x̂i ≤ 1/α. This assumption was necessary because

each variable i is chosen to be drawn as a Bernoulli random variable with probability

pi = αx̂i. In this section, we give a rounding scheme to cover fractional solutions x̂

of unbounded size. We first give an overview of this process.

Our goal is to extend the approximation ratio ρi = α
(

1 + σ
∑

k
Aki

eσαAk·x̂(1−σ)ak−1

)
of Section 6.1. First, note that if we have a variable i, and a solution to the LP with

fractional value x̂i, we can sub-divide it into two new variables y1, y2 with fractional

values ŷ1, ŷ2 such that ŷ1 + ŷ2 = x̂i. Now, whenever the variable xi appears in the

covering system, we replace it y1 +y2. This process of sub-dividing variables can force

all the entries in the fractional solution to be arbitrarily small. We can round the

RELAXATION algorithm of this subdivided fractional solution, obtaining an integral

solution y1, y2 and hence xi = y1 + y2. Observe that the approximation ratios for the

two new variables both equal to ρi itself. Thus E[xi] = E[y1 +y2] ≤ ρiy1 +ρiy2 ≤ ρix̂i.

By subdividing the fractional solution, we can always ensure that we obtain the

same approximation for the general case (in which x̂ is unbounded) as in the case in

which x̂ is restricted to entries of size at most 1 − 1/α. However, this may violate
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the multiplicity constraints: in general, if we subdivide a fractional solution x̂i into

ŷ1, . . . , ŷl, and then set xi = y1 + · · ·+ yl, then xi could become as large as l.

There is another, simpler way to deal with large values x̂i: for any variable with

x̂i ≥ 1/α, simply set xi = 1. Then, we certainly are guaranteed that E[xi] ≤ αx̂i ≤

ρix̂i. Let us see what problems this procedure might cause. Consider some variable i

with x̂i = r ≥ 1/α.2 Because we have fixed xi = 1, we may remove this variable from

the covering system. When we do so, we obtain a residual problem A′, a′, in which

the ith column of A is replaced by zero and all the RHS vectors ak are replaced by

a′k = ak − Aki.

Suppose that variable i appears in constraint k with another variable i′ with

Aki = 1. We want to bound E[x′i] in terms of βi′ ; to do so, we want to show that

constraint k contributes
Aki′

eσαAk·x̂(1−σ)ak−1
to E[x′i]. Now, in the residual problem, we

replace ak with ak − 1 and we replace Ak · x̂ with Ak · x̂ − r. Thus, constraint k

contributes the following to β′i′ :

Aki′

eσα(Ak·x̂−r)(1− σ)ak−1 − 1
=

Aki′

eσα(Ak·x̂)(1− σ)ake−σαr(1− σ)−1 − 1

Observe that if r > − ln(1−σ)
ασ

, then this is larger than the original contribution term

we wanted to show, namely ρi =
Aki′

eσαAk·x̂(1−σ)ak
. Thus, there is a critical cut-off value

θ = − ln(1−σ)
ασ

; when x̂i > θ, then forcing xi = 1 gives a good approximation ratio

for variable i but may have a worse approximation ratio for other variables which

interact with it.

We can now combine these two methods for handling large entries of x̂i. For

any variable i, we first subdivide variable i into multiple variables ŷ1, . . . ŷl with

fractional value θ, along with one further entry ŷl+1 ∈ [0, θ]. We immediately set

y1, . . . , yl = 1. If ŷl+1 > 1/α, we set yl+1 = 1 as well, otherwise we will apply

the RELAXATION algorithm for it. At the end of this procedure, we know that

xi = y1+· · ·+yl+1 ≤ (l+1) = d x̂i
θ
e. We also know that E[xi] ≤ α(ŷ1+· · ·+ŷl)+ρiŷl+1 ≤

2To gain intuition, the reader may consider the case in which r > 1. In this case, it is obvious that
this is a bad rounding procedure. It is instructive to trace through exactly why it fails badly.
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ρi(ŷ1 + · · ·+ ŷl+1) = ρix̂i. Thus, we get a good approximation ratio and a good bound

on the multiplicity of xi.

6.2.2. The ROUNDING algorithm. For each variable i, let vi = bx̂i/θc,

where we define

θ =
− ln(1− σ)

ασ

We define Fi = x̂i − viθ which we can write as Fi = x̂i mod θ. We also define:

Gi =


0 if Fi < 1/α

1 if Fi ≥ 1/α

, x̂′i =


Fi if Fi < 1/α

0 if Fi ≥ 1/α

We form the residual problem a′k = ak −
∑

iAki(Gi + vi). We then run the

RELAXATION algorithm on the residual problem, which satisfies the condition that

x′i ∈ [0, 1/α]n. This is summarized in Algorithm 2.

Algorithm 2 pseudocode for the algorithm ROUNDING

function ROUNDING(x̂, A, σ, α) . Approximates arbitrary ILPs

Set θ = − ln(1−σ)
ασ

.
for i from 1, . . . , n do

vi = bx̂i/θc
Fi = x̂i mod θ.
Gi = 1 if Fi ≥ 1/α, Gi = 0 otherwise.
x̂′i = 0 if Fi ≥ 1/α, x̂′i = Fi otherwise.

for k from 1, . . . ,m do
Set a′k = ak −

∑
iAki(Gi + vi)

Compute x′ = RELAXATION(x̂′, A, a′, σ, α)
Return x = G+ v + x′

We begin by showing a variety of simple bounds on the variables before and after

the quantization steps.

Proposition 6.8. Suppose that x′ ∈ {0, 1}n satisfies the residual covering con-

straints, that is, Ak · x′ ≥ a′k for all k = 1, . . . ,m.

Then the solution vector returned by the ROUNDING algorithm, defined by x =

G + v + x′, satisfies the original covering constraints. Namely, Ak · x ≥ ak for all

k = 1, . . . ,m.

212



Proof. For each k we have:

Ak · x = Ak · (x′ +G+ v) = Ak · x′ +
∑
i

Aki(Gi + vi) ≥ a′k +
∑
i

Aki(Gi + vi) = ak

�

Proposition 6.9. For any i we have

x̂i − viθ −Giθ ≤ x̂′i ≤ x̂i − viθ −Gi/α

Proof. If Gi = 0, then both of the bounds hold with equality. So suppose Gi = 1.

In this case, we have 1/α ≤ x̂i − viθ ≤ θ. So xi − viθ −Gi/α ≥ θ − 1/α ≥ 0 and

xi − viθ −Giθ ≤ θ − θ = 0 as required. �

Proposition 6.10. For any i, at the end of the procedure ROUNDING, we have

xi ≤
⌈
x̂i

ασ

− ln(1− σ)

⌉
Proof. First, suppose x̂i is not a multiple of θ. Then xi = x′i+Gi+bxi/θc. Note

that if Gi = 1, then x̂′i = 0 which implies that x′i = 0. So Gi + vi ≤ 1 and hence

xi ≤ 1 + bxi/θc = dxi/θe.

Next, suppose x̂i is a multiple of θ. Then Gi = x̂′i = 0 and so x′i = 0 and we have

xi = bxi/θc = dxi/θe. �

The next result shows that the quantization steps can only decrease the inflation

factor for the RELAXATION algorithm. Proposition 6.11 is the reason for our choice

of θ.

Proposition 6.11. For any constraint k, we have

(1− σ)a
′
keσαAk·x̂

′ ≥ (1− σ)akeσαAk·x̂
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Proof. Let r =
∑

iAki(Gi + vi). By definition, we have a′k = ak − r. We also

have:

Ak · x̂′ =
∑
i

Akix̂
′
i

≥
∑
i

Aki(x̂i − viθ −Giθ) by Proposition 6.9

= ak − rθ

Then

(1− σ)a
′
keσαAk·x̂

′
= (1− σ)ak−reσαAk·x̂

′

≥ (1− σ)ak−reσα(ak−rθ)

= (1− σ)−ake−σαak × ((1− σ)eθσα)−r

= (1− σ)−ake−σαak

�

We can now show an overall bound on the behavior of the ROUNDING algorithm

Theorem 6.12. At the end of the ROUNDING algorithm, we have for each vari-

able i

E[xi] ≤ αx̂i

(
1 + σ

∑
k

Aki
eσαak(1− σ)ak − 1

)
The expected number of resamplings for the RELAXATION algorithm is at most∑
k

1
eσαak (1−σ)ak−1

.

Proof. By Theorem 6.7, the probability that x′i = 1 is at most

P (x′i = 1) ≤ αx̂′i

(
1 + σ

∑
k

Aki

(1− σ)a
′
keσαAk·x̂′ − 1

)
≤ αx̂′i

(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
by Proposition 6.11
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Hence we estimate E[xi] by:

E[xi] = vi +Gi + E[x′i]

≤ vi +Gi + αx̂′i

(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
≤ vi +Gi + α(x̂i − θvi −Gi/α)

(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
by Proposition 6.9

≤ vi(1− αθ) + αx̂i

(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
≤ αx̂i

(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
as αθ ≥ 1

This shows the bound on E[xi]. The bound on the expected number of resamplings

is similar. �

6.3. Bounds in terms of amin,∆1

So far, we have given bounds on the behavior of ROUNDING algorithm which

are as general as possible. Theorem 6.12 can be applied to systems, in which there

may be multiple types of variables and constraints. However, we can obtain a simpler

bound by reducing these to two simple parameters, namely ∆1, the maximum l1-norm

of any column of A, and amin = mink ak. We will first assume that amin ≥ 1,∆1 ≥ 1.

Later, Theorem 6.15 will show that we can always ensure that this holds with a simple

pre-processing step.

Theorem 6.13. Suppose we are given a covering system with ∆1 ≥ 1, amin ≥ 1

and with a fractional solution x̂. Let γ = ln(∆1+1)
amin

.

Then with appropriate choices of σ, α we may run the ROUNDING algorithm on

this system to obtain a solution x ∈ Zn
+ satisfying

E[xi] ≤ x̂i
(
1 + γ + 4

√
γ
)
, xi ≤

⌈
x̂i

1
2
γ +
√
γ

ln(1 +
√
γ)

⌉
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The expected running time of this algorithm is O(mn).

Proof. We set σ = 1− 1/α and apply Theorem 6.12. We have for each variable

i:

E[xi] ≤ x̂iα
(

1 + σ
∑
k

Aki
(1− σ)akeσαak − 1

)
= x̂iα

(
1 + (1− 1/α)

∑
k

Aki
eak(α−1)α−ak − 1

)
≤ x̂iα

(
1 + (1− 1/α)

∑
k

Aki
eamin(α−1)α−amin − 1

)
≤ x̂i

(
α + (α− 1)

∆1

eamin(α−1)α−amin − 1

)
Now substituting α = 1 + γ + 2

√
γ and amin = ln(∆1 + 1)/γ gives

E[xi] ≤ x̂i

(
1 + γ + 2

√
γ + (2

√
γ + γ)

∆1

(∆1 + 1)
2
√
γ+γ−2 ln(1+

√
γ)

γ − 1

)
Proposition 6.30 shows that this is decreasing function of ∆1. We are assuming

amin ≥ 1, which implies that ∆1 ≥ eγ − 1. We can thus obtain an upper bound by

substituting ∆1 = eγ − 1, yielding

(27) E[xi] ≤ x̂i

(
1 + γ + 2

√
γ +

(eγ − 1)
(
γ + 2

√
γ
)

eγ+2
√
γ

(√γ+1)
2 − 1

)

Some simple analysis of the RHS of (27) shows that we have

E[xi] ≤ x̂i(1 + γ + 4
√
γ)

To show the bound on the size of xi, we apply Proposition 6.10, giving us

xi ≤
⌈
x̂i

ασ

− ln(1− σ)

⌉
=

⌈
x̂i

1
2
γ +
√
γ

ln(1 +
√
γ)

⌉
Next, we will analyze the runtime of this procedure. The initial steps of rounding

and forming the residual can be done in time O(mn). By Theorem 6.12, the expected
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number of resampling steps made by the RELAXATION algorithm is at most

E[Resampling Steps] ≤
∑
k

1

eak(α−1)α−ak − 1

≤ m

eamin(α−1)α−amin − 1

≤ m

(∆1 + 1)
γ+2
√
γ−2 ln(1+

√
γ)

γ − 1

≤ m

∆1

≤ m

In each resampling step, we must draw a new random value for all the variables;

this can be easily done in time O(n). The algorithm in its entirety is bounded by

O(mn) as required. �

In Theorem 6.13, we may violate the multiplicity constraints considerably. By

adjusting our parameters, we may have better control of the multiplicity constraints.

Theorem 6.14. Suppose we are given a covering system with ∆1 ≥ 1, amin ≥ 1,

as well as a fractional solution x̂. Let γ = ln(∆1+1)
amin

.

Let ε ∈ [0, 1] be given. Then, with an appropriate choice of σ, α we may run the

ROUNDING algorithm on this system to obtain a solution x ∈ Zn
+ satisfying

xi ≤ dx̂i(1 + ε)e, E[xi] ≤ x̂i(1 + 4
√
γ + 4γ/ε)

The expected run-time is O(mn).

Proof. First, suppose γ ≤ ε2/2. In this case, we apply Theorem 6.13. We are

guaranteed that xi ≤ dx̂i γ/2+
√
γ

ln(1+
√
γ)
e and some simple analysis shows that this is at most

dx̂i(1 + ε)e. We then have E[xi] ≤ 1 + 4
√
γ + γ ≤ 1 + 4

√
γ + 4γ/ε as desired.

Next, suppose γ ≥ ε2/2. We set α = −(1+ε) ln(1−σ)
σ

, where σ ∈ (0, 1) is a parameter

to be determined. Then by Proposition 6.10, we have xi ≤ dx̂i(1 + ε)e at the end of

the ROUNDING algorithm.
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We apply Theorem 6.12 to estimate E[xi]:

E[xi] ≤ α̂xi

(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
= α̂xi

(
1 + σ

∑
k

Aki
(1− σ)−akε − 1

)
≤ α̂xi

(
1 + σ

∑
k

Aki
(1− σ)−aε − 1

)
≤ α̂xi

(
1 + σ

∆1

(1− σ)−aε − 1

)
Now set σ = 1−e−γ/ε; observe that this is indeed in the range (0, 1). This ensures

that (1− σ)−aε = ∆1 + 1 and hence we have

E[xi] ≤ x̂iα(1 + σ) = x̂i

(
ε−1(2 +

1

eγ/ε − 1
)(1 + ε)γ

)
Some simple calculus shows that this coefficient ε−1(2 + 1

eγ/ε−1
)(1 + ε)γ is at most

1+ε+(2+2/ε)γ. By our assumption that ε ∈ [0, 1] and our assumption that ε2/2 ≤ γ,

this is at most 1 +
√

2γ + 4γ/ε as desired.

The bound on the running time follows the same lines as Theorem 6.13. �

We now show how to ensure that amin ≥ ∆1 ≥ 1:

Theorem 6.15. Suppose we are given a covering system A, a with γ = ln(∆1 +

1)/amin. Then, in time O(mn), one can produce a modified system A′, a′ which satis-

fies the following properties:

(1) The integral solutions of A, a are precisely the same as the integral solutions

of A′, a′;

(2) a′min ≥ 1 and ∆′1 ≥ 1;

(3) We have γ′ ≤ γ, where γ′ = ln(∆′1 + 1)/a′min.

Proof. First, suppose that there is some entry Aki with Aki > ak. In this case,

set A′ki = ak. Observe that any integral solution to the constraint Ak · x ≥ ak also

satisfies A′k ·x ≥ ak, and vice-versa. This step can only decrease ∆1 and hence γ′ ≤ γ.
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After this step, one can assume that Aki ≤ ak for all k, i. Now suppose there are

some constraints with ak ≤ 1. In this case, replace row Ak with A′k = Ak/ak and

replace ak with a′k = 1. Because of our assumption that Aki ≤ ak for all k, i, the new

row of the matrix still satisfies A′k ∈ [0, 1]n. This step ensures that a′k ≥ 1 for all k.

Also, every column in the matrix is scaled up by at most 1/ak ≤ 1/amin, so we have

∆′1 ≤ ∆1/amin and a′min = 1. We then have

γ′ = ln(∆′ + 1)/a′min = ln(∆1/amin + 1) ≤ ln(∆1 + 1)

amin

= γ.

Finally, suppose that ∆1 ≤ 1. In this case, observe that we must have Aki ≤ ∆1

for all k, i. Thus, we can scale up both A, a by 1/∆1 to obtain A′ = A/∆1, a
′ = a/∆1.

This gives ∆′ = 1, a′min = amin/∆1

γ′ =
ln(1 + 1)

amin/∆1

≤ ln(∆1 + 1)

amin

= γ

�

6.4. Lower bounds on approximation ratios

In this section, we provide lower bounds on the performance of algorithms to

solve covering integer programs. These bounds fall into two categories. First, we

show hardness results, namely that there is no polynomial-time algorithm which can

achieve significantly better approximation ratios than we do. These are based on

Feige’s celebrated result on the inapproximability of set cover [37], which was later

improved by Moshkovitz [88]. Next, we show integrality gap constructions. Our

rounding algorithm transforms a solution to the LP relaxation to an integral solution;

we show that there are some CIP instances for which the optimal integral solution

has an objective-function value that is close to our approximation bound times the

objective-function value of any optimal fractional solution. This implies that any

algorithm which is based on the LP relaxation cannot have an improved approximation

ratio.
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The formal statements of these results contain numerous qualifiers and technical

conditions. So, we will summarize our results informally here:

(1) Under the Exponential Time Hypothesis (ETH), when γ is large any polynomial-

time algorithm to solve the CIP (ignoring multiplicity constraints) must have

approximation ratio γ− ln γ+ Ω(1). Furthermore, there is an integrality gap

of γ − O(log γ) (no intractability assumptions needed). By contrast, the

algorithm of Theorem 6.13 achieves approximation ratio γ +O(
√
γ).

(2) Under the assumption that P 6= NP , when γ is large any polynomial-time al-

gorithm to solve the CIP while respecting the multiplicity constraints within

a 1 + ε multiplicative factor, must have approximation ratio Ω(γ/ε). By con-

trast, the algorithm of Theorem 6.14 achieves approximation ratio O(γ/ε).

(3) When γ is small, the integrality gap of the CIP is 1 + Ω(γ); by contrast, the

algorithm of Theorem 6.13 achieves approximation ratio 1 +O(
√
γ).

We note that the parameter γ depends on two parameters ∆1, amin. Thus, in order

to show these results, we must show hardness across a wide range of the parameters

∆1, amin. By contrast, typical hardness results for set cover only depend on a single

parameter (such as ∆1 or n).

6.4.1. Hardness results. Our hardness results are all reductions from the con-

struction of Feige [37], which was later tightened by Moshkovitz [88]. They gave the

following nearly-tight hardness results for approximating set cover:

Theorem 6.16 ([88]). Suppose we are given set cover instances on a ground set

[n] with optimum solution of value T . Then: 3

(A) Under the assumption P 6= NP , there is no polynomial-time algorithm which

can find a solution of value ≤ T × c lnn, for any constant c < 1.

3These results do not follow from the original, conference version of [88]. They follow immediately
from a result stated in the full journal version (unpublished), although they are not stated explicitly.
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(B) Under the exponential time hypothesis (i.e., that any algorithm for SAT

requires time at least 2Ω(n)), there is some constant c > 0, such that no

polynomial-time algorithm can find a solution of value ≤ T×(lnn−c ln lnn).

Note that, as shown by [107], the greedy algorithm for set cover achieves approx-

imation ratio lnn− ln lnn+Θ(1). Thus, the approximation ratio of Theorem 6.16(B)

is nearly tight (up to a coefficient of ln lnn).

We will show that other variants of the covering integer program can be reduced

to set cover. This will show hardness results for CIP, which closely match the bounds

achieved by our algorithms.

Proposition 6.17. There is some constant c > 0 for which the following holds.

Let a ≥ 1 be any fixed integer. Assuming the exponential time hypothesis, there is no

polynomial-time algorithm A with the following behavior: given a CIP with amin ≥ a

and optimum solution of value T , then A finds a solution x ∈ Zn
+, of value ≤ βT ,

where we have

β =
ln(∆1 + 1)− c ln ln(∆1 + 1)

a
.

Observe that β ≥ (1−o(1))γ, hence CIP cannot be approximated within (1−o(1))γ,

even with an arbitrary violation of the multiplicity constraints.

Proof. Suppose for contradiction that for every c > 0 there exists such an A.

Now suppose we are given some set cover instance, with optimum solution v, on some

ground set [n]. Let S = {S1, . . . , Sm} ⊆ 2[n]. Now, for each element k ∈ [n] in the

ground set, we have a constraint

∑
i:k∈Si

xi ≥ a

and we have an objective function C ·x =
∑
xi; that is, each variable has weight one.
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The resulting CIP instance contains n constraints.4 Furthermore, we may assume

that none of the sets Si are the full set [n], as otherwise this would have a trivial

solution of weight 1. So we may assume ∆1 ≤ n − 1, as well as amin ≥ a. Observe

that if we are given a solution S0 to this set cover instance, of weight v, then the

corresponding CIP has a solution defined by

xi =


a if Si ∈ S0

0 otherwise

which has weight T = av.

Now, we run A on this resulting system, and we obtain a solution x′ of weight

≤ βT . Now construct the solution S ′0 to the original set cover instance:

S ′0 = {Si | x′i ≥ 1}

It is not hard to see that S ′0 is a valid solution to the original set cover instance

and |S ′0| ≤
∑

i x
′
i. So our algorithm has overall approximation ratio

|S ′0|
|S0|
≤
∑

i x
′
i

v
≤ βT

v
≤ βav

v
≤ βa

≤ ln(∆1 + 1)− c ln ln(∆1 + 1)

a
a

≤ lnn− c ln lnn

Thus, we have constructed an approximation algorithm for set cover with approx-

imation ratio lnn− c ln lnn for every c > 0. This contradicts Theorem 6.16(B). �

A slight modification of this argument, taking advantage of a construction of [67],

can give approximation hardness when the multiplicity constraints are violated by at

most a factor of (1 + ε).

4It is somewhat confusing that for set cover, the standard terminology uses m for the number of sets,
which correspond to variables, and n for the size of the ground set, which corresponds to constraints.
For CIP, one uses the opposite terminology: there are m constraints on n variables.
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Proposition 6.18. Let a ≥ 1 and ε ∈ (0, 1) be any fixed real numbers. Assuming

P 6= NP there is no polynomial-time algorithm A with the following behavior: given

a CIP with amin ≥ a and optimum solution of value T satisfying xi ∈ {0, . . . , di},

then A finds a solution x satisfying xi ∈ {0, . . . , ddi(1 + ε)e} of value ≤ βT , where

β =
ln(∆1 + 1)

2aε

Hence CIP cannot be approximated within o(γ
ε
) as long as the multiplicity con-

straints are respected within a multiplicative factor of (1 + ε).

Proof. Suppose there exists such anA. Now suppose we are given some set cover

instance, with optimum solution v, on some ground set [n]. Let S = {S1, . . . , Sm} ⊆

2[n]. Now, for each element k ∈ [n] in the ground set, we have a constraint

a

K(1 + ε) + 1
xm+k +

∑
i:k∈Si

xi ≥ a

and we have an objective function C · x =
∑m

i=1 xi; that is, each variable x1, . . . , xm

has weight one, and each variable xm+1, . . . , xm+n has weight zero. We set di = ∞

for i = 1, . . . ,m and we set di = K for i = m+ 1, . . . ,m+n; here K is a large integer

parameter, which we will specify shortly. (In particular, for K sufficiently large, all

the coefficients in this constraint are in the range [0, 1].)

The resulting CIP instance contains n constraints and we may assume ∆1 ≤ n−1,

as well as amin ≥ a. Observe that if we are given a solution S0 to this set cover instance,

of weight v, then the corresponding CIP has a solution defined by

xi =


a− aK

K(1+ε)+1
if Si ∈ S0 and i ≤ m

K if m+ 1 ≤ i ≤ m+ n

0 otherwise

which has weight T = (a− aK
K(1+ε)+1

)v.
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We run A on this resulting system, and we obtain a solution x′ of weight ≤ βT .

Now construct the following solution S ′0 to the original set cover instance:

S ′0 = {Si | x′i ≥ 1}

which has weight |S ′0| ≤
∑m

i=1 x
′
i.

We claim that this satisfies the set cover instance; for any k ∈ [n], there is some

i ∈ [n] with Si ∈ S ′0, Si 3 k iff
∑

i:k∈Si x
′
i ≥ 1; we can estimate the latter in

∑
i:k∈Si

x′i ≥ a− aK

K(1 + ε) + 1
x′m+k

≥ a− a dK(1 + ε)e
K(1 + ε) + 1

> a− aK(1 + ε) + 1

K(1 + ε) + 1
= 0

Thus, we have that
∑

i:k∈Si x
′
i > 0. Since x′ is an integral vector, it follows that∑

i:k∈Si x
′
i ≥ 1 and the covering constraint is satisfied.

So our algorithm has overall approximation ratio

|S ′0|
|S0|
≤
∑m

i=1 x
′
i

v
≤ βT

v
≤
β(a− aK

K(1+ε)+1
)v

v
≤ βa(1− K

K(1 + ε) + 1
)

≤ ln(∆1 + 1)

2aε
a(1− K

K(1 + ε) + 1
)

≤ 1
2

lnn(
1

ε
− K

εK(1 + ε)
)

Now suppose we take K ≥ 1−ε
ε2

. Then, one can verify that (1
ε
− K

εK(1+ε)
) ≤ 1 and hence

we have

|S ′0|
|S0|
≤ 1

2
lnn

Thus, we have constructed an approximation algorithm for set cover with approxi-

mation ratio 1
2

lnn, which is forbidden by Theorem 6.16(A). �

6.4.2. Integrality gaps. We next show a variety of integrality gaps for the CIP.

These constructions work as follows: we give a CIP instance, as well as an upper
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bound on the weight of the fractional solution T̂ and a lower bound on the weight of

any integral solution T . This automatically implies that any algorithm which convert

a fractional solution into an integral solution, as our algorithm does, must cause the

weight to increase by at least T/T̂ .

These methods show only a limited type of hardness — namely, they only restrict

the approximation ratio of LP-based algorithms. However, they are unconditional

and self-contained results, which do not require strong complexity assumptions such

as ETH.

We show an integrality gap which matches Proposition 6.17 when γ is large. We

are also able to show an integrality gap for the regime in which γ → 0.

Proposition 6.19. Let a ≥ 1, D ≥ 1 be given. There is a covering program, with

amin = a,∆1 ≤ D, and which satisfies the following property. Let T̂ be the optimal

value of this covering program, subject to the constraints x ∈ Rn
+ and let T be the

optimal value of the covering program, subject to the constraints x ∈ Zn
+. Then we

have

T/T̂ ≥ ln(D + 1)

a
−O(

log log(D + 1)

a
) ≥ γ −O(log γ)

Proof. First, we claim that we can assume that D is larger than any desired

constant. For, suppose D ≤ D0. Then, for some constant c > 0, we have ln(D +

1) − c log log(D + 1) ≤ 1 for all D ≤ D0. We certainly have T/T̂ ≥ 1, so we have

T/T̂ ≥ ln(D + 1) − c log log(D + 1) ≥ ln(D+1)−c log log(D+1)
a

. Likewise, we can assume

that ln(D + 1) ≥ a. We will make both of these simplifications for the remainder of

the proof.

There are m = bDc constraints, which we will form randomly as follows: we select

exactly s positions i1, . . . , is uniformly at random in s without replacement, where

s = dpne; here n→∞ and p→ 0 as functions of D. We then set Aki1 = · · · = Akis =

1; all other entries of Ak are set to zero. The RHS vector is always equal to a. The
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objective function C is defined by C · x =
∑
xi; that is, each variable is assigned

weight one.

We can form a fractional solution x̂ by setting x̂i = a
s
. As each constraint contains

exactly s entries with coefficient one, this satisfies all the covering constraints. Thus,

the optimal fractional solution has value T̂ ≤ na/s = a/p.

Now suppose we fix some integral solution of weight
∑
xi = t. Let I ⊆ [n] denote

the support of x, that is, the values i ∈ [n] such that xi > 0; we have |I| = r ≤ t. In

each constraint k, there is a probability of
(
n−r
s

)
/
(
n
s

)
that Aki = 0 for all i ∈ I. If this

occurs, then certaintly A · x = 0 and the covering constraint is violated. Thus, the

probability that x satisfies constraint k is at most 1 − (n−rs )
(ns)

. As all the constraints

are independent, the total probability that x satisfies all m constraints is at most:

P (x satisfies all constraints and has weight t) ≤ (1−
(
n−r
s

)(
n
s

) )m

≤ exp(−m
(
n−t
s

)(
n
s

) )

≤ exp(−m(
n− s− (t− 1)

n
)t)

≤ exp(−m(1− p− t/n)t) as s ≤ pn+ 1

We want to ensure that there are no good integral solutions. To upper-bound the

probability that there exists such a good x, we take a union-bound over all integral

x. In fact, our estimate only depended on specifying the support of x, not the values

it takes on there, so we only need to take a union bound over all subsets of [n] of

cardinality ≤ t. There are at most
∑t

r=0

(
n
r

)
≤ nt such sets, and thus we have

P (Some x satisfies all constraints) ≤ nt exp(−m(1− p− t/n)t)

≤ exp(t lnn−m(1− p)t +mt2/n)
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We now set n = mt, and obtain

P (Some x satisfies all constraints) ≤ exp(t(1 + ln(mt))−m(1− p)t)

≤ exp(t2 lnm−m exp(−pt− p2t))

for m, p, t sufficiently small

If this expression is < 1, then that implies that there is a positive probability that

no integral solution exists. Hence, we can ensure that all integral solutions satisfy

T > t. Now, some simple analysis shows that this expression is < 1 when p = 1/ lnm

and t = p−1(lnm− 10 ln lnm) and m sufficiently large. Thus we have

T/T̂ ≥ p−1(lnm− 10 ln lnm)

a/p

≥ lnm−O(log logm)

a

≥ ln(D + 1)

a
−O(log(

log(D + 1)

a
))

as we have claimed.

�

Proposition 6.19 does not give a useful bound when a > ln(D + 1). Proposi-

tion 6.20, which is based on a construction of [115], covers that case:

Proposition 6.20. For any g ∈ (0, 1) and D ≥ 214/g, there is a covering program

which satisfies ∆1 ≤ D, ln(D+1)
amin

≤ g, and which satisfies also the following integrality

gap property: Let T̂ be the optimal value of this covering program, subject to the

constraints x ∈ Rn
+ and let T be the optimal value of the covering program, subject to

the constraints x ∈ Zn
+. Then we have

T/T̂ ≥ 1 + g/8 ≥ 1 + Ω(γ)
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In particular, it is not possible to show an approximation ratio for LP rounding

of the form 1 + o( log(∆+1)
amin

).

Proof. We set n = 2q − 1 where q = b1 + log2Dc. We will view the integers

from 1, . . . , n as corresponding to the non-zero binary strings of length q. Thus, if

i, i′ ∈ {1, . . . , s}, then we write i · i′ to denote the binary dot-product. Namely if we

have i = i0 + 2i1 + 4i2 + . . . and i′ = i′0 + 2i′1 + 4i′2 + . . . where ij, i
′
j ∈ {0, 1}, then we

define i · i′ = ⊕q−1
l=0 ili

′
l.

The covering system is defined as follows: For each k ∈ {1, . . . , n} we have a

constraint ∑
i:(k·i)=0

xi ≥ a,

The objective function is C · x =
∑n

i=1 xi.

For each i = 1, . . . , n, we have
∑

k(k · i) = 2q−1 ≤ D. Thus ∆1 ≤ D as desired.

Also, we have ln(D+1)
amin

= g ln(D+1)
b1+log2Dc−1

< g. Thus, the covering program satisfies the

stated bounds on amin, D.

We form the fractional solution x̂ by setting x̂i = a
2q−1 for i = 1, . . . , n. This shows

that the optimal fractional solution has value T̂ ≤ (2q−1)a
2q−1 ≤ 2a.

Now consider some integral solution x ∈ Zn
+ with

∑
i xi = T . We can write x as a

sum of basis vectors, ~x = ey1 + · · ·+ eyT , where y1, . . . , yT are not necessarily distinct.

Consider the quantity

V =
∑
k

∑
1≤i1<···<iq−1≤T

I((k · yi1) = . . . (k · yiq−1) = 0)

We count V in two different ways. First, for any i1, . . . , iq−1, by linear algebra over

GF (2) there must exist at least one k 6= 0 which is orthogonal to all yi1 , . . . , yiq−1 .

Hence we have V ≥
(
T
q−1

)
.

Second, for any k, there are at most T − a choices of yi which are orthogonal to

k. Thus we have V ≤ (2q − 1)
(
T−a
q−1

)
. We have shown a lower bound on V and an

upper bound on V . The lower bound on V must be smaller than the upper bound
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on V , or otherwise we would have a contradiction. Thus, a necessary condition for x

to satisfy the covering constraints is that

(28)

(
T
q−1

)(
T−a
q−1

)
(2q − 1)

≤ 1

We claim that we must have T ≥ (q − 1)(2/g + 1/4). As the LHS of (29) is a

decreasing function of T , it suffices to show that (29) is violated for T = (q−1)(2/g+

1/4). Rearranging some terms and recalling that a = (q−1)/g, we see that it suffices

to show that

(29)

(
(q−1)(2/g+1/4)

q−1

)(
(q−1)(1/g+1/4)

q−1

)
(2q − 1)

> 1

We use the bounds 2q − 1 ≤ 2q and the bound on the factorial
√

2πr!rr+
1
2 e−r ≤

r! ≤ er!rr+
1
2 e−r, to obtain the following condition, which implies (29):

(30) 2−q(4− 3g)
−3gq+5g+4q−4

4g (8− 3g)
3gq−5g−8q+8

4g (g + 4)−
(g+4)q+g−4

4g (g + 8)
(g+8)q+g−8

4g >
e2

2π

We can increase the RHS of (30) slightly to e to simplify the calculations, and

take the logarithm to solve for q. This gives us the following condition, which implies

(30):

(31) q > 1 +
2g

`
−2 + ln(4− 3g)− ln(8− 3g)− ln(g + 4) + ln(g + 8)− 2 ln 2

´
4g ln 2− (4− 3g) ln(4− 3g) + (8− 3g) ln(8− 3g) + (4 + g) ln(4 + g)− (8 + g) ln(8 + g)

The RHS of (31) is a function of g alone. Simple but tedious analysis (see Proposi-

tion 6.33) shows that it is at most 14/g.

But note that q = b1 + log2Dc ≥ log2D; thus, our bound on the size of D

guarantees that indeed q > 14/g. So (31)⇒ (30)⇒ (29)⇒ T ≥ (q − 1)(2/g + 1/4).

The integrality gap is then given by

T/T̂ ≥ (q − 1)(2/g + 1/4)

2a
=

2a+ ag/4

2a
= 1 + g/8

�

229



6.5. Multi-criteria Programs

One extension of the covering integer program framework is the presence of mul-

tiple linear objectives. Suppose now that instead of a single linear objective, we have

multiple objectives C1 ·x, . . . , Cr ·x. We also may have some over-all objective function

D defined by the following:

D(x1, . . . , xn) = D(C1 · x, . . . , Cr · x)

For example, we might have D = maxl Cl · x or we might have D =
∑

l(Cl · x)2.

We note that the greedy algorithm, which is powerful for set cover, is not obviously

useful in this case. However, depending on the precise form of the function D, it

may be possible to solve the fractional relaxation to optimality. For example, if

D = maxl Cl · x, then this amounts to a linear program of the form min t subject to

Cl · x ≤ t.

For our purposes, the exact algorithm used for this fractional relaxation is not

relevant. Suppose we are given some solution x̂. We now want to find a solution x

such that we have simultaneously Cl ·x ≈ Cl · x̂. Showing bounds on the expectations

alone is not sufficient — it might be the case that E[Cl ·x] ≤ βCl · x̂, but the random

variables C1 · x, . . . , Cr · x are negatively correlated.

In [108], Srinivasan gave a construction which provided this type of simultaneous

approximation guarantee. This algorithm was based on randomized rounding, which

succeeded only with an exponentially small probability. Srinivasan also gave a deran-

domization of this process, leading to a somewhat efficient algorithm. Some technical

difficulties with this algorithm lead to worsened approximation ratios compared to

the single-criterion setting, roughly of the order O(1 + log(∆0+1)
amin

), and running times

of the order O(nlog r). In particular, this was only polynomial if r was constant.

In this section, we will show that at the end of the ROUNDING algorithm, the

values of Cl · x are concentrated around their means. This will establish that there is

a good probability that we have Cl · x ≈ E[Cl · x], simultaneously for all l. Thus, our
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algorithm automatically gives good approximation ratios for multi-criteria problems;

the ratios are essentially the same as for the single-criterion setting, and there is no

extra computational burden.

We begin by showing that the values of x produced by the RELAXATION algo-

rithm we obtain are negatively correlated. We will show how to form witness trees

that explain not just why we have xi = 1 (as we have seen in Lemma 6.4), but that

explain simultaneously why we have xi1 = · · · = xis = 1.

Proposition 6.21. Let R ⊆ [n]. Suppose that at some point in the RELAX-

ATION algorithm we have xi = 1 for all i ∈ R.

Then there is set S ⊆ [m], with |S| ≤ |R|, and a collection of sets Z = {Zs,j | s ∈

S, j = 1, . . . , ws}, which which satisfy the following properties:

(A1) There is some R′ ⊆ R and a bijective function f : R′ → S, such r ∈

Zf(r),wf(r)
for all r ∈ R.

(A2) We have Ys,j = Zs,j for all s ∈ S and j ≤ ws.

(A3) For each i ∈ R, suppose that i /∈ Zs,j for all s, j. Then the initial sampling

stage of the RELAXATION algorithm sets xi = 1.

(A4) Suppose that i ∈ R ∩ Zs,j but i /∈ Z(s′,j′) for any (s′, j′) >lex (s, j). Then the

jth resampling for the constraint s during the RELAXATION algorithm sets

xi = 1.

We say that the listing S,w,Z collectively form a witness tree for the events∧
i∈R xi = 1.5

Proof. Let R0 ⊆ R denote the variables in R that were not set to one at the

initial sampling stage of the RELAXATION algorithm. Each such element r ∈ R0

5Property (A4) is the only place in our paper where we are making essential use of the fact that the
RELAXATION algorithm resamples the constraints in order, and only moves on to constraint k+ 1
when constraint k has become satisfied. In fact, everything still works if the RELAXATION algo-
rithm resamples constraints in an arbitrary order. It is even allowed to begin resampling constraint
k, move on to constraint k′, and then go back to constraint k. We can show this using techniques
in Chapter 4 to analyze the dynamic evolution of witness trees. We omit these complications from
this chapter for simplicity.
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must have become true during the jrth resampling of some constraint kr. Set S =

{kr | r ∈ R0} and set ws to be the maximum value of jr, over all r with kr = s. We

define Z by Zs,j = Ys,j for s ∈ S, j = 1, . . . , ws.

To show property (A1): We define R′ by selecting, for each s ∈ S, exactly one

element r ∈ R0 with jr = ws, kr = s. (There is always at least one such element r;

if there are multiple, we select one arbitrarily.) Define the function f : R′ → S by

mapping each such kr to the corresponding s ∈ S.

Property (A2) is clear from the way we have chosen Z.

To see Property (A3), suppose at the initial sampling stage, we had xi = 0 for

some i ∈ R. Then a necessary condition for xi = 1 is that it is set during during

the j′th resampling of some constraint k′. Then necessarily k′ ∈ S and so there must

exist some r ∈ R′ with kr = k′, jr ≥ j′ (possibly r = i). So the set Yk′,j′ will placed

into Z and i ∈ Yk′,j′ , which contradicts the hypotheses of (A3). A similar argument

applies to show Property (A4). �

Proposition 6.22. Suppose we are given some R ⊆ [n], and a list S,w,Z sat-

isfying property (A1) of Proposition 6.21. Then the the probability that the RELAX-

ATION algorithm satisfies Properties (A2) — (A4) is at most
∏

i∈R pi
∏

s∈S
∏ws

j=1 fs(Zs,j).

Proof. This is a generalization of Lemma 6.4. Properties (A3), (A4) specify,

for each i ∈ R, exactly one specific time during the execution of the RELAXATION

algorithm at which we set xi = 1. These have probabilities exactly
∏

i∈R pi. Also,

Property (A2) specifies for each s ∈ S the first ws sets which are resampled for

constraint s; these contribute probabilities
∏ws

j=1 fs(Zs,j). �

We can use this result to show a type of negative-correlation property for the

variables at the end of the RELAXATION algorithm:
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Theorem 6.23. If we have x̂i ≤ 1/α for all i ∈ [n], then for any subset R ⊆ [n],

the output of the RELAXATION algorithm satisfies

P (
∧
i∈R

xi = 1) ≤
∏
i∈R

ρi

where, for each i ∈ [n], we define

ρi = αx̂i

(
1 + σ

∑
k

Aki
(1− σ)akeσαAk·x̂ − 1

)
Proof. If the event

∧
i∈R xi = 1 occurs, then by Proposition 6.21, there must

exist S,w,Z satisfying (A1) – (A4). To bound the probability of this event, we take

a union bound over all S,w,Z satisfying (A1). The probability that any such S,w,Z

satisfies (A2) – (A4) is at most F (S,w,Z) =
∏

i∈R pi
∏

s∈S
∏vs

j=1 fs(Zs,j). Thus we

can write

P (
∧
i∈R

xi = 1) ≤
∑
S,w,Z

satisfying (A1)

Q(S,w,Z)

We enumerate S,w,Z satisfying (A1) as follows. We begin by setting S = ∅. For

each i ∈ R, we may either choose to do nothing, or we may place i into R′ and we

may select some integer ki ∈ [m]− S to place into S, along with some integer wi > 0

and some choice of sets Zi,1, . . . , Zi,wi with i ∈ Zi,wi .

If we place ki into [m]− S, then it multiplies the value of F by pi
∏wi

j=1 fki(Wi,j);

if we do not choose any such ki, it multiplies the value of F by pi.
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Let Si denote the value of S after stages 1, . . . , i− 1, that is, S = {k1, . . . , ki−1}.

Enumerating the possible values for ki and wi gives:

∑
S,w,Z

satisfying (A1)

Q(S,w,Z) ≤
∏
i∈R

pi

(
1 +

∑
ki∈[m]−Si

∑
wi>0

∑
Zi,1,...,Zi,wi
i∈Zi,wi

wi∏
j=1

fki(Zi,j)
)

≤
∏
i∈R

pi

(
1 +

∑
ki∈[m]

∑
wi>0

∑
Zi,1,...,Zi,wi
i∈Zi,wi

wi∏
j=1

fki(Zi,j)
)

=
∏
i∈R

(
pi(1 +

∑
k

∑
j>0

∑
Z1,...,Zj
i∈Zj

fk(Z1) . . . fk(Zj))
)

We have already seen the term pi
(
1 +

∑
k

∑
j>0

∑
Z1,...,Zj
i∈Zj

fk(Z1) . . . fk(Zj)
)
: in The-

orem 6.7 it was shown that it is at most ρi. Thus we have
∑
Q ≤

∏
i∈R ρi and the

theorem is proved. �

We can now show a concentration phenomenon for C · x. In order to obtain the

simplest such bounds, we can make an assumption that the entries of C are in the

range [0, 1]. In this case, we can use the Chernoff upper-tail function to give estimates

for the concentration of C · x. We recall the definition of the Chernoff function:

Definition 6.24 (The Chernoff separation function for upper-tail bounds). For

t ≥ µ with δ = δ(µ, t) = t/µ− 1 ≥ 0, the Chernoff upper-tail bound is defined as

(32) Chernoff-U(µ, t) =
( eδ

(1 + δ)1+δ

)µ
That is to say Chernoff-U(µ, t) is the Chernoff bound that a sum of [0, 1]-bounded and

independent random variables with mean µ will be above t.

Corollary 6.25. Suppose that all entries of Cl are in the interval [0, 1] and that

all entries x̂ satisfy x̂i ≤ 1/α. Then, after running the RELAXATION algorithm, the

probability of the event Cl · x > t is at most Chernoff-U(Cl · ρ, t).

Proof. The value of Cl · x is a sum of random variables Clixi which are in the

range [0, 1]. These random variables obey a negative-correlation property as shown in
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Theorem 6.23. This implies that they obey the same upper-tail Chernoff bounds as

would a sum of random variablesXi which are independent and satisfy E[Xi] = ρi. �

We next need to show concentration for the ROUNDING algorithm.

Theorem 6.26. Suppose that all entries of Cl are in [0, 1]. Then, after the

ROUNDING algorithm, the probability of the event Cl·x > t is at most Chernoff-U(Cl·

ρ, t).

Proof. Let vi, Gi, x̂
′
i, a
′
k, x

′ be the variables which occur during the ROUNDING

algorithm. We have

P (Cl · x > t) = P (Cl · (vθ +G+ x′) > t)

= P (Cl · x′ > t− Cl · (vθ +G))

≤ Chernoff-U(Cl · ρ′, t− Cl · (vθ +G))

= Chernoff-U
(
α
∑
i

Clix̂
′
i

(
1 + σ

∑
k

Aki

(1− σ)a
′
keσαAk·x̂′ − 1

)
, t− Cl · (vθ +G)

)
(33)

By Proposition 6.31, Chernoff-U(µ, t) is always an increasing function of µ. So

we can show an upper bound for this expression by giving an upper bound for the µ

term in the (33). We first apply Propositions 6.9, 6.11 which give:

x̂′i

(
1+σ

∑
k

Aki

(1− σ)a
′
keσαAk·x̂′ − 1

)
≤ (x̂i−viθ−Gi/α)

(
1+σ

∑
k

Aki
(1− σ)akeσαak − 1

)
Substituting this upper bound into (33) yields:

P (Cl · x > t) ≤ Chernoff-U
(
α
∑
i

Cli(x̂i − viθ −Gi/α)
(
1 + σ

∑
k

Aki
(1− σ)akeσαak − 1

)
,

t− Cl · (vθ +G)
)

≤ Chernoff-U
(∑

i

Cli(ρi − (viαθ +Gi)), t− Cl · (vθ +G)
)

≤ Chernoff-U
(

(Cl · ρ)− (Cl · (vθ +G)), t− (Cl · (vθ +G))
)

≤ Chernoff-U(Cl · ρ, t) by Proposition 6.32
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In the column-sparsity setting, we obtain the following result which extends The-

orem 6.14:

Corollary 6.27. Suppose we are given a covering system as well as a fractional

solution x̂. Let γ = log(∆1+1)
amin

. Suppose that the entries of Cl are in [0, 1]. Then, with

an appropriate choice of σ, α we may run the ROUNDING algorithm in expected time

O(mn) to obtain a solution x ∈ Zn
+ such that

P (Cl · x > t) ≤ Chernoff-U(βCl · x̂, t)

for β = 1 + γ + 4
√
γ.

If one wishes to ensure also that xi ≤ dx̂i(1 + ε)e for ε ∈ (0, 1), then one can

obtain a similar result with an approximation factor β = 1 + 4
√
γ + 4γ/ε.

6.A. Some technical lemmas

Proposition 6.28. Given set S, xi ∈ [0, 1], and a ∈ (0, 1), we have

∏
i∈S

(1− axi)−1 ≤ (1− a)−
P
i∈S xi

Proof. By compactness,
∏

i∈S(1− axi)−1 attains a maximum on the hyperplane

defined by
∑

i∈S xi = s. We claim that this maximum occurs when at most one xi

is fractional. To show this, suppose that for contradiction there two variables with

fractional values. Without loss of generality, say 0 < x1 ≤ x2 < 1. Suppose we

decrease x1 by δ and increase x2 by δ, for δ > 0 sufficiently small. We then have∏
i∈S(1− ax′i)−1∏
i∈S(1− axi)−1

=
(1− ax1)(1− ax2)

(1− a(x1 − δ))(1− a(x2 + δ))

=
(1− ax1)(1− ax2)

(1− ax1)(1− ax2)− a2δ(δ − x1 + x2)

As x2 ≤ x1, the term a2δ(δ − x1 + x2) is positive, and hence this is > 1, which

contradicts the maximality of x.
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Thus, giving a fixed value for
∑

i∈S xi = s, the maximum value of
∏

i∈S(1−axi)−1

occurs when one variable is fractional and the rest are equal to one. So suppose

s = z + r where z ∈ Z+ and r ∈ (0, 1). Substituting this into the product and an

application of Bernoulli’s inequality, gives:

∏
i∈S

(1− axi)−1 = (1− a)−z(1− ra)−1 ≤ (1− a)−z(1− a)−r = (1− a)−
P
i∈S xi

�

Proposition 6.29. Suppose x ∈ [0, 1], y ∈ [0, 1]. Then we have (1− x)eyx ≤ 1.

Proof. We note that the expression (1− x)eyx is monotonically increasing with

respect to y on the domain y ∈ [0, 1]. Thus we have (1−x)eyx ≤ (1−x)ex. This then

reduces to the well-known inequality 1− x ≤ e−x. �

Proposition 6.30. For any γ > 0, define

f(x) =
x

(x+ 1)
2
√
γ+γ−2 ln(1+

√
γ)

γ − 1

Then f(x) is a decreasing function of x for x > 0.

Proof. At x = 0, both numerator and denominator are equal to zero. So it

suffices to show that the denominator grows faster than the numerator, that is, that

the derivative of the denominator is always ≥ 1. We compute the derivative of the

denominator:

R =

(
γ + 2

√
γ − 2 ln

(√
γ + 1

))
(x+ 1)

2
√
γ−2 ln(1+

√
γ)

γ

γ

≥ (γ + 0)(x+ 1)
0
γ

γ
as y ≥ ln(1 + y) for y > 0

= 1

as desired.

�
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Proposition 6.31. For any 0 ≤ µ ≤ µ′ ≤ t we have Chernoff-U(µ, t) ≤ Chernoff-U(µ′, t).

Proof. Note that the Chernoff separation function for upper-tailed bounds is

monotonically increasing on the range [0, t) with respect to µ thus our assumption

0 ≤ µ ≤ µ′ ≤ t necessarily implies Chernoff-U(µ, t) ≤ Chernoff-U(µ′, t). �

Proposition 6.32. For any 0 ≤ µ ≤ t and any r ≤ µ, we have Chernoff-U(µ, t) ≤

Chernoff-U(µ− r, t− r).

Proof. The directional derivative of Chernoff-U(µ, t) along the unit vector û =

(1, 1) is

et−µµt−1t−t(t− µ+ µ(log
µ

t
))

Setting t = µ(1 + δ), this is equal to et−µµtt−t(δ − log(1 + δ)), which is positive

for δ ≥ 0. Thus, Chernoff-U(µ, t) is decreasing along the direction (−1,−1), i.e.

Chernoff-U(µ− r, t− r) ≤ Chernoff-U(µ, t). �

Proposition 6.33. For any g ∈ (0, 1) we have

(34)

1 +
2g
(
−2 + ln(4− 3g)− ln(8− 3g)− ln(g + 4) + ln(g + 8)− 2 ln 2

)
4g ln 2− (4− 3g) ln(4− 3g) + (8− 3g) ln(8− 3g) + (4 + g) ln(4 + g)− (8 + g) ln(8 + g)

< 14/g

Proof. Let us first consider the denominator in this expression, f(g) = 4g ln 2−

(4− 3g) ln(4− 3g) + (8− 3g) ln(8− 3g) + (4 + g) ln(4 + g)− (8 + g) ln(8 + g). Note

that f ′′(g) is a rational function, and simple algebra shows that its only root is at

g = −16/9. As f ′′(0) = −1, this implies that f ′′(g) < 0 for all g ∈ (0, 1). Thus, f ′(g)

is decreasing in this range. As f ′(0) = 0, this implies that f ′(g) < 0 for g ∈ (0, 1).

As f(0) = 0, this further implies that f(g) < 0 for g ∈ (0, 1).

We may thus cross-multiply (34), taking into account the fact that the denom-

inator is negative. Thus to show (34) is suffices to show that h(g) < 0, where we

define

h(g) = (−5g2 + 46g − 56) ln(4− 3g) + (5g2 − 50g + 112) ln(8− 3g)

+ (g2 + 10g + 56) ln(g + 4) + (−g2 − 6g − 112) ln(g + 8) + 4g2 + 56g ln 2
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Simple calculus shows that h′′′(g) is a rational function of g, and it has no roots

in the range (0, 1). As h′′′(0) = −75/8, this implies that h′′′(g) < 0 for all g ∈ (0, 1).

As h′′(0) = −0.454, this implies that h′′(g) < 0 for all g ∈ (0, 1). As h′(0) = 0, this

implies that h′(g) < 0 for all g ∈ (0, 1). As h(0) = 0, this implies that h(g) < 0 for

all g ∈ (0, 1). �
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CHAPTER 7

A constructive algorithm for the LLL on permutations

One major relative of the LLL that has eluded constructive versions, is the “lop-

sided” version of the LLL (with the single exception of the varible-assignment set-

ting). A natural setting for the lopsided LLL is the probability space defined by

random permutations, which has been used for for Latin transversals [17, 35, 110],

hypergraph packing [77], certain types of graph coloring [20], and in proving the

existence of certain error-correcting codes [64]. However, the MT framework does

not give constructive algorithms in these cases. In this chapter, develop a random-

ized polynomial-time algorithm to construct such permutation(s) whose existence is

guaranteed by the lopsided LLL, leading to several algorithmic applications in com-

binatorics.

Suppose we define a probability space Ω by selecting the permutations π1, . . . , πN

uniformly at random where each πk is a permutation on the set [nk] = {1, . . . , nk}. We

have seen in Proposition 1.6 that a dependency graph can be defined among atomic

events on permutations.

Thus, we suppose that that the set of bad events B consists of atomic bad-events.

We identify each B ∈ B with a set of tuples B = {(k1, x1, y1), . . . , (kr, xr, yr)}; B is

true iff we have (πk1(x1) = y1)∧· · ·∧(πkr(xr) = yr). (Complex bad-events can usually

be decomposed into atomic bad-events, so this does not lose much generality).

We recall from Proposition 1.6 how the LLL applies to such events. We define

the dependency graph among such events, by B ∼ B′ if B,B′ overlap in one slice

of the domain or range of a permutation; namely, that there are some k, x, y1, y2

with (k, x, y1) ∈ B, (k, x, y2) ∈ B′ or there are some k, x1, x2, y with (k, x1, y) ∈

B, (k, x2, y) ∈ B′. Note that B ∼ B in this definition.

240



The following notation will be useful: for pairs (x1, y1), (x2, y2), we write (x1, y1) ∼

(x2, y2) if x1 = x2 or y1 = y2 (or both). Another way to write B ∼ B′ is that “there

are (k, x, y) ∈ B, (k, x′, y′) ∈ B′ with (x, y) ∼ (x′, y′)”.

We will use the following notation at various points: we write (k, x, ∗) to mean any

(or all) triples of the form (k, x, y), and similarly for (k, ∗, y), or (x, ∗) etc. Another

way to write the condition B ∼ B′ is that there are (k, x, ∗) ∈ B, (k, x, ∗) ∈ B′ or

(k, ∗, y) ∈ B, (k, ∗, y) ∈ B′.

Now, as discussed in Chapter 1, the LLLL applies to the resulting probability

space Ω. As is standard for the LLLL, this only results in an exponentially small

probability of selecting the desired permutations.

As mentioned above, a variety of papers have used this framework for proving the

existence of various combinatorial structures. Unfortunately, the MT algorithm does

not apply in this setting. The problem is that such algorithms have a more restrictive

notion of when two bad-events are dependent; namely, that they share variables. So

we do not have an algorithm to generate such permutations, we can merely show that

they exist.

We develop an algorithmic analog of the LLL for permutations. The necessary

conditions for our Swapping Algorithm are the same as for the probabilistic LLLL;

however, we will construct such permutations in randomized polynomial (typically

linear or near-linear) time. Our setting is far more complex than in similar contexts

and requires many intermediate results first. The main complication is that when we

encounter a bad event involving “πk(x) = y”, and we perform our algorithm’s random

swap associated with it, we could potentially be changing any entry of πk. This is in

marked contrast to the standard MT setting. We also develop RNC versions of our

algorithms. Going from serial to parallel is fairly direct in [87]; our main bottleneck

here is that when we resample an “independent” set of bad events, they could still

influence each other.
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7.0.1. Applications. We present algorithmic applications for four classical com-

binatorial problems: Latin transversals, rainbow Hamiltonian cycles, strong chro-

matic number, and edge-disjoint hypergraph packing. In addition to the improved

bounds, we wish to highlight that our algorithmic approach can go beyond the LLLL:

as we will see shortly, one of our (asymptotically-optimal) algorithmic results on Latin

transversals, could not even have been shown nonconstructively using the lopsided

LLL prior to this work.

The study of Latin squares and the closely-related Latin transversals is a classical

area of combinatorics, going back to Euler and earlier [30]. Given an m×n matrix A

with m ≤ n, a transversal of A is a choice of m elements from A, one from each row

and at most one from any column. Perhaps the major open problem here is: given an

integer s, under what conditions will A have an s-transversal : a transversal in which

no value appears more than s times [17, 33, 35, 103, 109, 110]? The usual type of

sufficient condition sought here is an upper bound ∆ on the number of occurrences of

any given value in A. That is, we ask: what is the maximum ∆ = ∆(s;m,n) such that

any m× n matrix A in which each value appears at most ∆ times, is guaranteed to

have an s-transversal? The case s = 1 is perhaps most studied, and 1-transversals are

also called Latin transversals. The case m = n is also commonly studied (and includes

Latin squares as a special case), and we will also focus on these. It is well-known

that L(1;n, n) ≤ n− 1 [109]. In perhaps the first application of the lopsided LLL to

random permutations, Erdős & Spencer showed that L(1;n, n) ≥ n/(4e) [35]. (Their

paper shows that L(1;n, n) ≥ n/16; the n/(4e) lower-bound follows easily from their

technique.) To our knowledge, this is the first Ω(n) lower-bound on L(1;n, n). Alon

asked if there is a constructive version of this result [6]. Building on [35] and using

the connections to the LLL from [101, 102], Bissacot et al. showed nonconstructively

that L(1;n, n) ≥ (27/256)n [17]. Our result makes this constructive.

The lopsided LLL has also been used to study the case s > 1 [110]. Here, we prove

a result that is asymptotically optimal for large s, except for the lower-order O(
√
s)
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term: we show (algorithmically) that L(s;n, n) ≥ (s−O(
√
s)) ·n. An interesting fact

is that this was not known even nonconstructively before: the LLLL roughly gives

L(s;n, n) ≥ (s/e) ·n. We also give faster serial and perhaps the first RNC algorithms

with good bounds, for the strong chromatic number. Strong coloring is quite well-

studied [7, 13, 39, 55, 56], and is in turn useful in covering a matrix with Latin

transversals [12].

7.0.2. Comparison with other LLLL algorithms. Building on an earlier

version of this work, there have been two papers which have developed generic frame-

works for variations of the MT algorithm applied to other probability spaces. In [1],

Achlioptas & Iliopoulos gave an algorithm which is based on a compression analysis

for a random walk; this was improved for permutations and matchings by Kolmogorov

[68]. In [51], Harvey & Vondrak gave a probabilistic analysis similar to the parallel

MT algorithm. These frameworks both include the permutation LLL as well as some

other combinatorial applications.

These papers both follow a proof strategy which analyzes the full permutation as it

evolves over time, giving a far simpler proof that the Swapping Algorithm terminates

quickly. However, this appears unable to prove the Witness Tree Lemma, Lemma 7.1,

which provides far more precise estimates on the behavior of parts of the permutations.

The Witness Tree Lemma is at the heart of the analysis of the algorithm of

Moser & Tardos, and it is this lemma which appears to be necessary for many of

its extensions. These do not appear possible to derive from either [1] or [51]. See

Section 7.5.3 for more details.

7.0.3. Outline. In Section 7.1 we introduce our Swapping Algorithm, a variant

of the MT algorithm. In it, we randomly select our initial permutations; as long as

some bad-event is currently true, we perform certain random swaps to randomize (or

resample) them.

In Section 7.2, we introduce the key analytic tools to understand the behavior

of the Swapping Algorithm, namely the witness tree and the witness subdag. The
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witness subdag is a related concept, which is new here; it provides a history not for

each resampling, but for each individual swapping operation performed during the

resamplings. (It is more “granular” than the witness dags introduced in Chapter 3.)

In Section 7.3, we show how these witness subdags may be used to deduce partial

information about the permutations. As the Swapping Algorithm proceeds in time,

the witness subdags can also be considered to evolve over time. At each stage of

this process, the current value of the witness subdags provides information about the

current values of the permutations.

In Section 7.4, we use this process to make probabilistic predictions for certain

swaps made by the Swapping Algorithm: namely, whenever the witness subdags

change, the swaps must be highly constrained so that the permutations still conform

to them. We calculate the probability that the swaps satisfy these constraints.

In Section 7.5, we put the analyses of Sections 7.2, 7.3, 7.4 together, to prove that

our Swapping Algorithm terminates in polynomial time under the same conditions as

the probabilistic LLL for permutations.

In Section 7.6, we introduce a parallel (RNC) algorithm corresponding to the

Swapping Algorithm. This is similar in spirit to the Parallel MT algorithm. In the

latter algorithm, one repeatedly selects a maximal independent set (MIS) of bad-

events which are currently true, and resamples them in parallel. In our setting, bad-

events which are “independent” in the LLL sense (that is, they are not connected via

∼), may still influence each other; a great deal of care must be taken to avoid these

conflicts.

In Section 7.7, we describe a variety of combinatorial problems to which our

Swapping Algorithm can be applied.

7.1. The Swapping Algorithm

We will analyze the following Swapping Algorithm algorithm to find a satisfactory

π1, . . . , πN :
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(1) Generate the permutations π1, . . . , πN uniformly at random and indepen-

dently.

(2) While there is some true bad-event:

(3) Choose some true bad-event B ∈ B arbitrarily. For each permutation

that is involved in B, we perform a swapping of all the relevant entries.

(We will describe the swapping subroutine “Swap” shortly.) We refer to

this step as a resampling of the bad-event B.

Each permutation involved in B is swapped independently, but if B

involves multiple entries from a single permutation, then all such en-

tries are swapped simultaneously. For example, if B consisted of triples

(k1, x1, y1), (k2, x2, y2), (k2, x3, y3), then we would perform Swap(π1;x1)

and Swap(π2;x2, x3), where the “Swap” procedure is given next.

The swapping subroutine Swap(π;x1, . . . , xr) for a permutation π : [t]→ [t] as follows:

Repeat the following for i = 1, . . . , r:

• Select x′i uniformly at random among [t]− {x1, . . . , xi−1}.

• Swap entries xi and x′i of π.

Note that at every stage of this algorithm all the πk are permutations, and if this

algorithm terminates, then the πk must avoid all the bad-events. So our task will

be to show that the algorithm terminates in polynomial time. We measure time in

terms of a single iteration of the main loop of the Swapping Algorithm: each time

we run one such iteration, we increment the time by one. We will use the notation

πTk to denote the value of permutation πk after time T . The initial sampling of the

permutation (after Step (1)) generates π0
k.

The swapping subroutine seems strange; it would appear more natural to al-

low x′i to be uniformly selected among [t]. However, the swapping subroutine is

nothing more than than the Fisher-Yates Shuffle for generating uniformly-random
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permutations. If we alloved x′i to be chosen from [t] then the resulting permuta-

tion would be biased. The goal is to change πk in the minimal way to ensure that

πk(x1), . . . , πk(xr), π
−1
k (y1), . . . , π−1

k (yr) are adequately randomized.

There are alternative methods for generating random permutations, and many

of these can replace the Swapping subroutine without changing our analysis. We

discuss a variety of such equivalencies in Appendix 7.A; these will be used in various

parts of our proofs. We note that one class of algorithms that has a very different

behavior is the commonly used method to generate random reals ri ∈ [0, 1], and then

form the permutation by sorting these reals. When encountering a bad-event, one

would resample the affected reals ri. In our setting, where the bad-events are defined

in terms of specific values of the permutation, this is not a good swapping method

because a single swap can drastically change the permutation. When bad-events are

defined in terms of the relative rankings of the permutation (e.g. a bad event is

π(x1) < π(x2) < π(x3)), then this is a better method and can be analyzed in the

framework of the ordinary MT algorithm.

7.2. Witness trees and witness subdags

We analyze the Swapping Algorithm following the MT approach [87] of execution

logs and witness trees. These witness trees are produced in the same manner as for

the ordinary MT algorithm. For the remainder of this section, the dependence on

the “justified” bad-event at time t at the root of the tree will be understood; we will

omit it from the notation.

The critical lemma that allows us to analyze the behavior of this algorithm is the

Witness Tree Lemma:

Lemma 7.1 (Witness Tree Lemma). Let τ be a tree-structure, with nodes labeled

B1, . . . , Bs. The probability that τ appears, is at most

P (τ appears) ≤ PΩ(B1) · · ·PΩ(Bs)
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Note that the probability of the event B within the space Ω can be computed as

follows: if B contains r1, . . . , rN elements from each of the permutations 1, . . . , N ,

then we have

PΩ(B) =
(n1 − r1)!

n1!
. . .

(nN − rN)!

nN !

This lemma is superficially similar to the corresponding Lemma 2.8. However, the

proof will be far more complex, and we will require many intermediate results first.

The main complication is that when we encounter a bad-event involving πk(x) = y,

and we perform the random swap associated with it, then we could potentially be

changing any entry of πk. By contrast, in the usual MT algorithm, when we resample

a variable, all the changes are confined to that variable. However, as we will see, the

witness tree will leave us with enough clues about which swap was actually performed

that we will be able to narrow down the possible impact of the swap.

The analysis in the next sections can be very complicated. We have two recom-

mendations to make these proofs easier. First, the basic idea behind how to form and

analyze these trees comes from [87]; the reader should consult that paper for results

and examples which we omit here. Second, one can get most of the intuition behind

these proofs by considering the situation in which there is a single permutation, and

the bad-events all involve just a single element; that is, every bad-event has the form

π(xi) = yi. In this case, the witness subdags (defined later) are more or less equivalent

to the witness tree. (The main point of the witness subdag concept is, in effect, to

reduce bad-events to their individual elements.) When reading the following proofs,

it is a good idea to keep this special case in mind. In several places, we will discuss

how certain results simplify in that setting.

The following proposition is the main reason the witness tree encodes sufficient

information about the sequence of swaps:

Proposition 7.2. Suppose that at some time t0 we have πt0k (X) 6= Y , and at

some later time t2 > t0 we have πt2k (X) = Y . Then there must have occured at some

intermediate time t1 some bad-event including (k,X, ∗) or (k, ∗, Y ).
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Proof. Let t1 ∈ [t0, t2− 1]′ denote the earliest time at which we had πt1+1(X) =

Y ; this must be due to resampling some bad-event which includes (k, x1, y1), . . . , (k, xr, yr)

(and possibly other elements from other permutations). Suppose that the swap which

first caused π(X) = Y was at swapping entry xi, which at that time had πk(xi) = y′i,

with some x′′.

After this swap, we have πk(xi) = y′′ and πk(x
′′) = y′i. Evidently x′′ = X or

xi = X. In the second case, the bad event at time t1 included (k,X, ∗) as desired and

we are done.

So suppose x′′ = X and y′i = Y . So at the time of the swap, we had πk(xi) = Y .

The only earlier swaps in this resampling were with x1, . . . , xi−1; so at the beginning

of time t1, we must have had πt1k (xj) = Y for some j ≤ i. This implies that yj = Y ,

so that the bad-event at time t1 included (k, ∗, Y ) as desired. �

To explain some of the intuition behind why Proposition 7.2 implies Lemma 7.1,

consider the case of a singleton witness tree.

Corollary 7.3. Suppose that τ is a singleton node labeled by B. Then P (τ appears) ≤

PΩ(B).

Proof. Suppose τ̂T = τ . We claim that B must have been true of the initial

configuration. For suppose that (k, x, y) ∈ B but in the initial configuration we have

πk(x) 6= y. At some later point in time t ≤ T , the event B must become true. By

Proposition 7.2, then there is some time t′ < t at which we encounter a bad-event B′

including (k, x, ∗) or (k, ∗, y). This bad-event B′ occurs earlier than B, and B′ ∼ B.

Hence, we would have placed B′ below B in the witness tree τ̂T . �

In proving Lemma 7.1, we will not need to analyze the interactions between the

separate permutations, but rather we will be able to handle each permutation in a

completely independent way. For a permutation πk, we define the witness subdag for

permutation πk; this is a relative of the witness tree, but which only includes the

information for a single permutation at a time.
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Definition 7.4 (witness subdags). For a permutation πk, a witness subdag for

πk is defined to be a directed acyclic simple graph, whose nodes are labeled with pairs

of the form (x, y). If a node v is labeled by (x, y), we write v ≈ (x, y). This graph

must in addition satisfy the following properties:

(1) If any pair of nodes overlaps in a coordinate, that is, we have v ≈ (x, y) ∼

(x′, y′) ≈ v′, then nodes v, v′ must be comparable (that is, either there is a

path from v to v′ or vice-versa).

(2) Every node of G has in-degree at most two and out-degree at most two.

We also may label the nodes with some auxiliary information, for example we

will record that the nodes of a witness subdag correspond to bad-events or nodes in a

witness tree τ .

We will use the same terminology as for witness trees: vertices on the “bottom”

are close to the source nodes of G (appearing earliest in time), and vertices on the

“top” are close to the sink nodes of G (appear latest in time).

The witness subdags that we will be interested in are derived from witness trees

in the following manner.

Definition 7.5 (Projection of a witness tree). For a tree-structure τ , we define

the projection of τ onto permutation πk which we denote Projk(τ), as follows.

Suppose we have a node v ∈ τ which is labeled by some bad-event defined by

(k1, x1, y1), . . . , (kr, xr, yr). For each i with ki = k, we create a corresponding node

v′i ≈ (xi, yi) in the graph Projk(τ). We also include some auxiliary information

indicating that these nodes came from v, and in particular that all such nodes are

part of the same bad-event.

We add edges to Projk(τ) as follows. For each node v′ ∈ Projk(τ), labeled by (x, y)

and corresponding to v ∈ τ , we examine all occurrences of nodes labeled (k, x, ∗). All

such occurrences are comparable; we find the node u′ corresponding to u ∈ τ which

is closest to the source. In other words, we find the occurrence u′ which appears
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“next-highest” in the dag. We create an edge from v′ to u′. Similarly, we find the

next-highest occurrence w ∈ τ of a bad-event labeled by (k, ∗, y); we create an edge

from v′ to w′.

Note that u,w must appear strictly higher in τ , because of the way new bad-events

are added to witness trees. This implies that Projk(τ) is acyclic. Also, note that it is

possible that u = w; in this case we only add a single edge to Projk(τ).

Expository Remark: In the special case when each bad-event contains a single

element, the witness subdag is a “flattening” of the tree structure. Each node in the

tree corresponds to a node in the witness subdag, and each node in the witness subdag

points to the next highest occurrence of the domain and range variables.

Basically, the projection of τ onto k tells us all of the swaps of πk that occur. It

also gives us some of the temporal information about these swaps that would have

been available from τ . If there is a path from v to v′ in Projk(τ), then we know

that the swap corresponding to v must come before the swap corresponding to v′.

It is possible that there are a pair of nodes in Projk(τ) which are incomparable, yet

in τ there was enough information to deduce which event came first (because the

nodes would have been connected through some other permutation). So Projk(τ)

does discard some information from τ , but it turns out that we will not need this

information.

To prove Lemma 7.1, we will prove (almost) the following claim: Let G be a

witness subdag for permutation πk; suppose the nodes of G are labeled with bad-

events B1, . . . , Bs. Then the probability that there is some T > 0 such that G =

Projk(τ̂
T ), is at most

(35) P (G = Projk(τ̂
T ) for some T > 0) ≤ Pk(B1) · · ·Pk(Bs)

where, for a bad-event B we define Pk(B) in a similar manner to PΩ(B); namely

that if the bad-event B contains rk elements from permutation k, then we define

Pk(B) = (nk−rk)!
nk!

.
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Unfortunately, proving this directly runs into technical complications regarding

the order of conditioning. It is simpler to just sidestep these issues. However, the

reader should bear in mind (35) as the informal motivation for the analysis in Sec-

tion 7.3.

7.3. The conditions on a permutation πk∗ over time

In Section 7.3, we will fix a value k∗, and we will describe conditions that πtk∗

must satisfy at various times t during the execution of the Swapping Algorithm. In

this section, we are only analyzing a single permutation k∗. To simplify notation, the

dependence on k∗ will be hidden henceforth; we will discuss simply π,Proj(τ), and so

forth.

This analysis can be divided into three phases.

(1) We define the future-subgraph at time t, denoted Gt. This is a kind of graph

which encodes necessary conditions on πt, in order for τ to appear, that is,

for τ̂T = τ for some T > 0. Importantly, these conditions, and Gt itself, are

independent of the precise value of T . We define and describe some structural

properties of these graphs.

(2) We analyze how a future-subgraph Gt imposes conditions on the correspond-

ing permutation πt, and how these conditions change over time.

(3) We compute the probability that the swapping satisfies these conditions.

We will prove (1) and (2) in Section 7.3. In Section 7.4 we will put this together

to prove (3) for all the permutations.

7.3.1. The future-subgraph. Suppose we have fixed a target graph G, which

could hypothetically have been produced as the projection of τ̂T onto k∗. We begin

the execution of the Swapping Algorithm and see if, so far, it is still possible that

G = Projk∗(τ̂
T ), or if G has been disqualified somehow. Suppose we are at time t

of this process; we will show that certain swaps must have already occurred at past

times t′ < t, and certain other swaps must occur at future times t′ > t.
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We define the future-subgraph of G at time t, denoted Gt, which tells us all the

future swaps that must occur.

Definition 7.6 (The future-subgraph). We define the future-subgraphs Gt induc-

tively. Initially G0 = G. When we run the Swapping Algorithm, as we encounter a

bad-event (k1, x1, y1), . . . , (kr, xr, yr) at time t, we form Gt+1 from Gt as follows:

(1) Suppose that ki = k∗, and Gt contains a source node v labeled (xi, yi). Then

Gt+1 = Gt − v.

(2) Suppose that ki = k∗, and Gt has a source labeled (xi, y
′′) where y′′ 6= yi or

(x′′, yi) where x′′ 6= xi. Then, as will be shown in shown in Proposition 7.7,

we can immediately conclude G is impossible; we set Gt+1 = ⊥, and we can

abort the execution of the Swapping Algorithm.

(3) Otherwise, we set Gt+1 = Gt.

Proposition 7.7. For any time t ≥ 0, let τ̂T≥t denote the witness tree built for

the event at time T , but only using the execution log from time t onwards. Then if

Proj(τ̂T ) = G we also have Proj(τ̂T≥t) = Gt.

Note that if Gt = ⊥, the latter condition is obviously impossible; in this case, we

are asserting that whenever Gt = ⊥, it is impossible to have Proj(τ̂T ) = G.

Proof. We omit T from the notation, as usual. We prove this by induction on

t. When t = 0, this is obviously true as τ̂≥0 = τ̂ and G0 = G.

Suppose we have Proj(τ̂) = G; at time t we encounter a bad-event B defined by

(k1, x1, y1), . . . , (kr, xr, yr). By inductive hypothesis, Proj(τ̂≥t) = Gt.

Suppose first that τ̂≥t+1 does not contain any bad-events B′ ∼ B. Then, by

our rule for building the witness tree, we have τ̂≥t = τ̂≥t+1. Hence we have Gt =

Proj(τ̂≥t+1). When we project this graph onto permutation k, there cannot be any

source node labeled (k, x, y) with (x, y) ∼ (xi, yi) as such node would be labeled with

B′ ∼ B. Hence, according to our rules for updating Gt, we have Gt+1 = Gt. So in
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this case we have τ̂≥t = τ̂≥t+1 and Gt = Gt+1 and Proj(τ̂≥t) = Gt; it follows that

Proj(τ̂≥t+1) = Gt+1 as desired.

Next, suppose τ̂≥t+1 does contain B′ ∼ B. Then bad-event B will be added to τ̂≥t,

placed below any such B′. When we project τ̂≥t, then for each i with ki = k∗ we add a

node (xi, yi) to Proj(τ̂≥t). Each such node is necessarily a source node; if such a node

(xi, yi) had a predecessor (x′′, y′′) ∼ (xi, yi), then the node (x′′, y′′) would correspond

to an event B′′ ∼ B placed below B. Hence we see that Proj(τ̂≥t) is obtained from

Proj(τ̂≥t) by adding source nodes (xi, yi) for each (k∗, xi, yi) ∈ B.

So Proj(τ̂≥t) = Proj(τ̂≥t+1) plus the addition of source nodes for each (k∗, xi, yi).

By inductive hypothesis, Gt = Proj(τ̂≥t), so that Gt = Proj(τ̂≥t+1) plus source nodes

for each (k∗, xi, yi). Now our rule for updating Gt+1 from Gt is to remove all such

source nodes, so it is clear that Gt+1 = Proj(τ̂≥t+1), as desired.

Note that in this proof, we assumed that Proj(τ̂) = G, and we never encountered

the case in which Gt+1 = ⊥. This confirms our claim that whenever Gt+1 = ⊥ it is

impossible to have Proj(τ̂) = G. �

By Proposition 7.7, the witness subdag G and the future-subgraphs Gt have a

similar shape; they are all produced by projecting witness trees of (possibly truncated)

execution logs. Note that if G = Proj(τ) for some tree τ , then for any bad-event

B ∈ τ , either B is not represented in G, or all the pairs of the form (k∗, x, y) ∈ B are

represented in G and are incomparable there.

The following structural decomposition of a witness subdag G will be critical.

Definition 7.8 (Alternating paths). Given a witness subdag G, we define an

alternating path in G to be a simple path which alternately proceeds forward and

backward along the directed edges of G. For a vertex v ∈ G, the forward (respectively

backward) path of v in G, is the maximal alternating path which includes v and all

the forward (respectively backward) edges emanating from v. Because G has in-degree

and out-degree at most two, every vertex v has a unique forward and backward path
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(up to reflection); this justifies our reference to “the” forward and backward path.

These paths may be even-length cycles.

Note that if v is a source node, then its backward path contains just v itself. This

is an important type of alternating path which should always be taken into account in

our definitions.

One type of alternating path, which is referred to as the W-configuration, plays a

particularly important role.

Definition 7.9 (The W-configuration). Suppose v ≈ (x, y) has in-degree at most

one, and the backward path contain an even number of edges, terminating at vertex

v′ ≈ (x′, y′). We refer to this alternating path as a W-configuration. (See Fig-

ure 7.3.1.)

Any W-configuration can be written (in one of its two orientations) as a path of

vertices labeled

(x0, y1), (x1, y1), (x2, y1), . . . , (xs, ys), (xs, ys+1);

here the vertices (x1, y1), . . . , (xs, ys) are at the “base” of the W-configuration. Note

here that we have written the path so that the x-coordinate changes, then the y-

coordinate, then x, and so on. When written this way, we refer to (x0, ys+1) as the

endpoints of the W-configuration.

If v ≈ (x, y) is a source node, then it defines a W-configuration with endpoints

(x, y). This should not be considered a triviality or degeneracy, rather it will be the

most important type of W-configuration.

(x0, y1) (x4,y5)

Figure 2. A W-configuration of length 9, with endpoints (x0, y5).
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7.3.2. The conditions on πtk∗ encoded by Gt. At any t, the future-subgraph

Gt gives certain necessary conditions on π in order for some putative τ to appear.

Proposition 7.10 describes a certain set of conditions that plays a key role in the

analysis.

Proposition 7.10. Suppose we have a witness subdag G for permutation π. Let

πt denote the value of permutation π at time t and Gt be the future-subgraph at time

t. The following condition is necessary to have G = Proj(τ̂T ) for some T > 0:

For every W-configuration in Gt with endpoints (x0, ys+1), we must have πt(x0) =

ys+1.

For example, if v ≈ (x, y) is a source node of Gt, then πt(x) = y.

Proof. We prove this by induction on s. The base case is s = 0; in this case we

have a source node (x, y). Suppose πt(x) 6= y. In order for τ̂T to contain some bad-

event containing (k∗, x, y), we must at some point t′ > t have πt
′
(x) = y; let t′ be the

minimal such time. By Proposition 7.2, we must encounter a bad-event containing

(k∗, x, ∗) or (k∗, ∗, y) at some intervening time t′′ < t′. If this bad-event contains

(k∗, x, y) then necessarily πt
′′
(x) = y contradicting minimality of t′. So there is a

bad-event (k∗, x, 6= y) or (k∗, 6= x, y) earlier than the earliest occurrence of π(x) = y.

This event (k∗, x, 6= y) or (k∗, 6= x, y) projects to a source node (x, 6= y) or (6= x, y) in

Gt. But then (x, y) cannot also be a source node of Gt.

We now prove the induction step. Suppose we have a W-configuration with base

(x1, y1), . . . , (xs, ys). At some future time t′ ≥ t we must encounter a bad-event involv-

ing some subset of the source nodes, say the bad event includes (xi1 , yi1), . . . , (xir , yir)

for 1 ≤ r ≤ s. As these were necessarily source nodes, we had πt
′
(xi1) = yi1 , . . . , π

t′(xir) =

yir for l = 1, . . . , r. After the swaps, the updated Gt+1 has r+1 new W-configurations

which are all strictly smaller than s. By inductive hypothesis, the updated permuta-

tion πt
′+1 must then satisfy πt

′+1(x0) = yi1 , π
t′+1(xi1) = yi2 , . . . , π

t′+1(xir) = ys+1.

By Proposition 7.29, we may suppose without loss of generality that the resam-

pling of the bad event first swaps xi1 , . . . , xir in that order. Let π′ denote the result
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of these swaps; there may be additional swaps to other elements of the permutation,

but we must have πt+1(xil) = π′(xil) for l = 1, . . . , r.

In this case, we see that evidently xi1 swapped with xi2 , then xi2 swapped with

xi3 , and so on, until eventually xir was swapped with x′′ = (πt
′
)−1ys+1. At this point,

we have π′(x′′) = yi1 . At the end of this process, we must have πt
′+1(x0) = yi1 . We

claim that we must have x′′ = xi0 . For, if x′′ is subsequently swapped, then we would

have πt
′+1(x) = yi1 where x is one of the source nodes in the current bad-event; but

x0 is at the top of the W-configuration and is not a source node.

This implies that we must have (πt
′
)−1ys = x′′ = x0; that is, that πt

′
(x0) = ys.

This in turn implies that πt(x0) = ys+1. For, by Proposition 7.2, otherwise we would

have encountered a bad-event involving (x0, ∗) or (∗, ys+1); in either case, we would

have a predecessor node (x0, ∗) or (∗, ys+1) in Gt, which contradicts that we have a

W-configuration. �

Proposition 7.10 can be viewed equally as a definition:

Definition 7.11 (Active conditions of a future-subgraph). We refer to the con-

ditions implied by Proposition 7.10 as the active conditions of the graph Gt. More

formally, we define

Active(G) = {(x, y) | (x, y) are the end-points of a W -configuration of G}

We also define Atk to be the cardinality of Active(Gt), that is, the number of active

conditions of permutation πk at time t. (The subscript k may be omitted in context,

as usual.)

When we remove source nodes (x1, y1), . . . , (xr, yr) from Gt, the new active con-

ditions of Gt+1 are related to (x1, y1), . . . , (xr, yr) in a particular way.

Lemma 7.12. Suppose G is a future-subgraph with source nodes v1 ≈ (x1, y1), . . . , vr ≈

(xr, yr). Let H = G − v1 − · · · − vr denote the graph obtained from G by removing
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these source nodes. Then there is a set Z ⊆ {(x1, y1), . . . , (xr, yr)} with the following

properties:

(1) There is an injective function f : Z → Active(H), with the property that

(x, y) ∼ f((x, y)) for all (x, y) ∈ Z

(2) |Active(H)| = |Active(G)| − (r − |Z|)

Expository remark: We have recommended bearing in mind the special case

when each bad-event consists of a single element. In this case, we would have r = 1;

and the stated theorem would be that either |Active(H)| = |Active(G)| − 1; OR we

have |Active(H)| = |Active(G)| and (x1, y1) ∼ (x′1, y
′
1) ∈ Active(H).

Intuitively, we are saying that every node (x, y) we are removing is either explicitly

constrained in an “independent way” by some new condition in the graph H (corre-

sponding to Z), or it is almost totally unconstrained. We will never have the bad

situation in which a node (x, y) is constrained, but in some implicit way depending

on the previous swaps.

Proof. Let Hi denote the graph G−v1−· · ·−vi. We will recursively build up the

sets Zi, f i, where Zi ⊆ {(x1, y1), . . . , (xi, yi)}, and which satisfy the given conditions

up to stage i.

Now, suppose we remove the source node vi from Hi−1. Observe that (xi, yi) ∈

Active(Hi−1), but (unless there is some other vertex with the same label in G),

(xi, yi) 6∈ Active(Hi). Thus, the most obvious change when we remove vi is that

we destroy the active condition (xi, yi). This may add or subtract other active con-

ditions as well.

We will need to update Zi−1, f i−1. Most importantly, f i−1 may have mapped

(xj, yj) for j < i, to an active condition of Hi−1 which is destroyed when vi is removed.

In this case, we must re-map this to a new active condition.

Note that we cannot have f i−1(xj, yj) = (xi, yi) for j < i, as xi 6= xj and yi 6= yj.

So, the fact that (xi, yi) has been removed from the list of active conditions does not,

so far, invalidate f i−1 remains a valid mapping from Zi−1.
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There are now a variety of cases depending on the forward-path of vi in Hi−1.

(1) This forward path consists of a cycle, or the forward path terminates on

both sides in forward-edges. This is the easiest case. Then no more active

conditions of Hi−1 are created or destroyed. We update Zi = Zi−1, f i = f i−1.

One active condition is removed, in net, from Hi−1; hence |Active(Hi)| =

|Active(Hi−1)| − 1.

(2) This forward path contains a forward edge on one side and a backward edge

on the other. For example, suppose the path has the form

(X1, Y1), (X1, Y2), (X2, Y2), . . . , (Xs, Ys+1),

where the vertices (X1, Y1), . . . , (Xs, Ys) are at the base, and the node (X1, Y1)

has out-degree 1, and the node (Xs, Ys+1) has in-degree 1. Suppose that we

remove the source node (xi, yi) = (Xj, Yj) for 1 ≤ j ≤ s. (See Figure 3.)

In this case, we do not destroy any W-configurations, but we create a new

W-configuration with endpoints (Xj, Ys+1) = (xi, Ys+1).

We now update Zi = Zi−1 ∪ {(xi, yi)}. We define f i = f i−1 plus we map

(xi, yi) to the new active condition (xi, Ys+1). In net, no active conditions

were added or removed, and |Active(Hi)| = |Active(Hi−1)|.

(X4, Y5)

(X2, Y2)

(X2, Y3)

Figure 3. When we remove (X2, Y2), we create a new W-configuration
with endpoints (X2, Y5).

(3) This forward path was a W-configuration (X0, Y1), (X1, Y1), . . . , (Xs, Ys), (Xs, Ys+1)

with (X1, Y1), . . . , (Xs, Ys) on the base, and we had (xi, yi) = (Xj, Yj). This

is the most complicated situation; in this case, we destroy the original W-

configuration with endpoints (X0, Ys+1) but create two new W-configurations
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with endpoints (X0, Yj) and (Xj, Ys+1). We update Zi = Zi−1 ∪ {(xi, yi)}.

We will set f i = f i−1, except for a few small changes as follows.

Now, suppose f i−1(xl, yl) = (X0, Ys+1) for some l < i; so either xl = X0

or yl = Ys+1. If it is the former, we set f i(xl, yl) = (X0, Yj), f
i(xi, yi) =

(Xj, Ys+1). If it is the latter, we set f i(xl, yl) = (Xj, Ys+1), f i(xi, yi) =

(X0, Yj).. If (f i−1)−1(X0, Ys+1) = ∅ then we simply set f i(xi, yi) = (X0, Yj).

In any case, f i is updated appropriately, and in the net no active condi-

tions are added or removed, so we have |Active(Hi)| = |Active(Hi−1)|.

�

7.4. The probability that the swaps are all successful

In the previous sections, we determined necessary conditions for the permutations

πt, depending on the graphsGt. In this section, we finish by computing the probability

that the swapping subroutine causes the permutations to, in fact, satisfy all such

conditions.

Proposition 7.13 states the key randomness condition satisfied by the swapping

subroutine. The basic intutition behind this is as follows: suppose π : [n] → [n] is a

fixed permutation with π(x) = y, and we call π′ = Swap(π;x1, . . . , xr). Then π′(x1)

has a uniform distribution over [n]. Similarly, π′−1(y1) has a uniform distribution

over [n]. However, the joint distribution is not uniform — there is essentially only

one degree of freedom for the two values. In general, any subset of the variables

π′(x1), . . . , π′(xr), π
′−1(y1), . . . , π−1(yr) will have the uniform distribution, as long as

the subset does not simultaneously contain π′(xi), π
′−1(yi) for some i ∈ [r].

Proposition 7.13. Suppose n, r, s, q are non-negative integers obeying the follow-

ing constraints:

(1) 0 ≤ s ≤ min(q, r)

(2) q + (r − s) ≤ n
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Let π be a fixed permutation of [n], and let x1, . . . , xr ∈ [n] be distinct, and let

yi = π(xi) for i = 1, . . . , r. Let (x′1, y
′
1), . . . , (x′q, y

′
q) be a given list with the following

properties:

(3) All x′ are distinct; all y′ are distinct

(4) For i = 1, . . . , s we have xi = x′i or yi = y′i.

Let π′ = Swap(π;x1, . . . , xr). Then the probability that π′ satisfies all the con-

straints (x′, y′) is at most

P (π′(x′1) = y′1 ∧ · · · ∧ π′(x′q) = y′q) ≤
(n− r)!(n− q)!
n!(n− q − r + s)!

Expository remark: Consider the special case when each bad-event contains a

single element. In that case, we have r = 1. There are two possibilities for s; either

s = 0 in which case this probability on the right is 1 − q/n (i.e. the probability that

π′(x1) 6= y′1, . . . , y
′
q); or s = 1 in which case this probability is 1/n (i.e. the probability

that π′(x1) = y′1).

Proof. Define the function g(n, r, s, q) = (n−r)!(n−q)!
n!(n−q−r+s)! . We will prove this propo-

sition by induction on s, r. There are a few cases we handle separately:

(1) Suppose s > 0 and x1 = x′1. Then, in order to satisfy the desired conditions,

we must swap x1 to x′′ = π−1(y′1); this occurs with probability 1/n. The

subsequent r − 1 swaps starting with the permutation π(x1 x
′′) must now

satisfy the conditions π′(x′2) = y′2, . . . , π
′(xq) = y′q. We claim that we have

(xi, π(x1 x
′′)xi) ∼ (x′i, y

′
i) for i = 2, . . . , s. If x′′ 6= x2, . . . , xs, this is immedi-

ately clear. Otherwise, suppose x′′ = xj. If xj = x′j, then we again still have

(xj, π(x1 x
′′)xj) ∼ (x′j, y

′
j). If yj = y′j, then this implies that y′1 = yj = y′j,

which contradicts that the y′j 6= y′1 .
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So we apply the induction hypothesis to π(x1 x
′′); in the induction, we

subtract one from n, q, r, s. This gives

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) ≤ 1
n
g(n− 1, r − 1, s− 1, q − 1) = g(n, r, s, q)

as desired.

(2) Similarly, suppose s > 0 and suppose y1 = y′1. By Proposition 7.30, we would

obtain the same distribution if we executed (π′)−1 = Swap(π−1; y1, . . . , yr).

Hence we have

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) = P ((π′)−1(y′1) = x′1 ∧ · · · ∧ (π′)−1(y′q) = x′q)

Now, the right-hand side has swapped the roles of x1/y1; in particular, it

now falls under the previous case (1) already proved, and so the right-hand

side is at most g(n, r, s, q) as desired.

(3) Suppose s = 0 and that there is some i ∈ [r], j ∈ [q] with (xi, yi) ∼ (x′j, y
′
j).

By Proposition 7.29, we can assume without loss of generality that (x1, y1) ∼

(x′1, y
′
1). So, in this case, we are really in the case with s = 1; by apply the

induction hypothesis so that

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) ≤ g(n, r, 1, q) =
g(n, r, 0, q)

n− q − r + 1
≤ g(n, r, s, q)

Here, we are using our hypothesis that n ≥ q + (r − s) = q + r.

(4) Finally, suppose s = 0 and x1, . . . , xr are distinct from x′1, . . . , x
′
q and y1, . . . , yq

are distinct from y′1, . . . , y
′
q. In this case, a necessary (although not suffi-

cient) condition to have π′(x′1) = y′1, . . . , π(x′q) = y′q is that there are some

y′′1 , . . . , y
′′
r , distinct from each other and distinct from y′1, . . . , y

′
q, with the

property that π′(xi) = y′′i for j = 1, . . . , r. By the union bound, we have

P (π′(x′1) = y′1 ∧ · · · ∧ π(x′q) = y′q) ≤
∑

y′′1 ,...,y
′′
r

P (π′(x1) = y′′1 ∧ · · · ∧ π(xr) = y′′r )
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For each individual summand, we apply the induction hypothesis; the sum-

mand has probability at most g(n, r, r, q). As there are (n− q)!/(n− q − r)!

possible values for y′′1 , . . . , y
′′
r , the total probability is at most (n − q)!/(n −

q − r)!× g(n, r, r, q) = g(n, r, s, q).

�

We apply Proposition 7.13 to upper-bound the probability that the Swapping

Algorithm successfully swaps when it encounters a bad event.

Proposition 7.14. Suppose we encounter a bad-event B at time t containing

elements (k, x1, y1), . . . , (k, xr, yr) from permutation k (and perhaps other elements

from other permutations). Then the probability that πt+1
k satisfies all the active con-

ditions of its future-subgraph, conditional on all past events and all other swappings

at time t, is at most

P (πt+1
k satisfies Active(Gk,t+1)) ≤ Pk(B)

(nk − At+1
k )!

(nk − Atk)!
.

Recall that we have defined Atk to be the number of active conditions in the future-

subgraph corresponding to permutation πk at time t, and we have defined Pk(B) =

(nk−r)!
nk!

.

Expository remark: Consider the special case when each bad-event consists of

a single element. In this case, we would have Pk(B) = 1/n. The stated theorem is

now: either At+1 = At, in which case the probability that π satisfies its swapping

condition is 1/n; or At+1 = At − 1; in which case the probability that π satisfies its

swapping condition is 1− At+1/n.

Proof. Let H denote the future-subgraph Gk,t+1 after removing the source nodes

corresponding to (x1, y1), . . . , (xr, yr). Using the notation of Lemma 7.12, we set

s = |Z| and q = At+1
k . We have Active(H) = {(x′1, y′1), . . . , (x′q, y

′
q)}.

For each (x, y) ∈ Z, we have y = πt(x), and there is an injective function f : Z →

Active(H) and (x, y) ∼ f((x, y)). By Proposition 7.29, we can assume without loss of
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generality Z = {(x1, y1), . . . , (xs, ys)} and f(xi, yi) = (x′i, y
′
i). In order to satisfy the

active conditions on Gk,t+1, the swapping must cause πt+1(x′i) = y′i for i = 1, . . . , q.

By Lemma 7.12, we have Atk = At+1
k + (r− s) = q+ (r− s). Note that Atk ≤ n. So

all the conditions of Proposition 7.13 are satisfied. Thus this probability is at most

(nk−r)!
nk!

× (nk−q)!
(nk−q−r+s)!

=
(nk−r)!(nk−At+1

k )!

nk!(nk−Atk)!
. �

We have finally all the pieces necessary to prove Lemma 7.1.

Lemma 7.1. Let τ be a tree-structure, with nodes labeled B1, . . . , Bs. The proba-

bility that τ appears is at most

P (τ appears) ≤ PΩ(B1) · · ·PΩ(Bs)

Proof. The Swapping Algorithm, as we have defined it, begins by selecting the

permutations uniformly at random. One may also consider fixing the permutations to

some arbitrary (not random) value, and allowing the Swapping Algorithm to execute

from that point onward. We refer to this as starting at an arbitrary state of the

Swapping Algorithm. We will prove the following by induction on τ ′: The probability,

starting at an arbitrary state of the Swapping Algorithm, that the subsequent swaps

would produce the subtree τ ′, is at most

(36) P (τ̂T = τ ′ for some T ≥ 0) ≤
∏
B∈τ ′

PΩ(B)×
N∏
k=1

nk!

(nk − |Active(Projk(τ
′))|)!

.

When τ ′ = ∅, the RHS of (36) is equal to one so this is vacuously true.

To show the induction step, note that in order for τ ′ to be produced as the witness

tree for some T ≥ 0, it must be that some B is resampled, where some node v ∈ τ ′

is labeled by B. Suppose we condition on that v is the first such node, resampled at

time t. A necessary condition to have τ̂T = τ ′ for some T ≥ t is that πt+1 satisfies all

the active conditions on Gt+1. By Proposition 7.14, the probability that πt+1 satisfies

these conditions is at most
∏

k Pk(B)
(nk−At+1

k )!

(nk−Atk)!
.
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Next, if this event occurs, then subsequent resamplings must cause τ̂T≥t+1 = τ ′−v.

To bound the probabilit of this, we use the induction hypothesis. Note that the

induction hypothesis gives a bound conditional on any starting configuration of the

Swapping Algorithm, so we may multiply these probabilities. Thus

P (τ̂T = τ ′ for some T > 0) ≤
∏
k

Pk(B)
(nk − At+1

k )!

(nk − Atk)!

×
∏

B∈τ ′−v

PΩ(B)×
N∏
k=1

nk!

(nk − |Active(Projk(τ
′ − v))|)!

=
∏
B∈τ ′

PΩ(B)
∏
k

(nk − At+1
k )!

(nk − Atk)!
nk!

(nk − |Active(Projk(τ
′ − v))|)!

=
∏
B∈τ ′

PΩ(B)
∏
k

nk!

(nk − Atk)!
as At+1

k = |Active(Projk(τ
′ − v))|

completing the induction argument.

We now consider the necessary conditions to produce the entire tree-structure τ ,

and not just fragments of it. First, the original permutations π0
k must satisfy the active

conditions of the respective witness subdags Projk(τ). For each permutation k, this

occurs with probability
(nk−A0

k)!

nk!
. Next, the subsequent sampling must be compatible

with τ ; by (36) this has probability at most
∏

B∈τ PΩ(B) ×
∏N

k=1
nk!

(nk−A0
k)!

. Again,

note that the bound in (36) is conditional on any starting position of the Swapping

Algorithm, hence we may multiply these probabilities. In total we have

P (τ̂T = τ for some T ≥ 0) ≤
∏
k

(nk − A0
k)!

nk!
×
∏
B∈τ

PΩ(B)×
N∏
k=1

nk!

(nk − A0
k)!

=
∏
B∈τ

PΩ(B).

We note one counter-intuitive aspect to this proof. The natural way of proving this

lemma would be to identify, for each bad-event B ∈ τ , some necessary event occuring

with probability at most PΩ(B). This is the general strategy used in Chapter 2 and

related constructive LLL variants such as [1], [51]. This is not the proof we employ

here; there is an additional factor of (nk − A0
k)!/n! which is present for the original
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permutation and is gradually “discharged” as active conditions disappear from the

future-subgraphs. �

7.5. The constructive LLL for permutations

Now that we have proved the Witness Tree Lemma, the remainder of the analysis

is essentially the same as for the MT algorithm [87]. Using arguments and proofs

from Chapter 2, with our key lemma, we can now easily show our key theorem:

Theorem 7.15. Suppose there is some assignment of weights µ : B → [0,∞)

which satisfies, for every B ∈ B the condition

µ(B) ≥ PΩ(B)θ(B)

Then the Swapping Algorithm terminates with probability one. The expected num-

ber of iterations in which we resample B is at most µ(B). (Recall the definition of

θ(B) for an event E from Section 2.2; here θ(B) is shorthand for θG(B), where G is

the canonical dependency graph on permutations.)

In the “symmetric” case, this gives us the well-known LLL criterion:

Corollary 7.16. Suppose each bad-event B ∈ B has probability at most p, and is

dependent with at most d bad-events (including itself). Then if epd ≤ 1, the Swapping

Algorithm terminates with probability one; the expected number of resamplings of each

bad-event is O(1).

Some extensions of the LLL, such as the Moser-Tardos distribution bounds or

the Partial Resampling Algorithm, follow almost immediately here. There are a few

extensions which require slightly more discussion:

7.5.1. Lopsidependency. It is possible to slightly restrict the notion of lopside-

pendency for permutations. We can re-define the relation ∼ on bad-events as follows:

for B,B′ ∈ B, we have B ∼ B′ iff
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(1) B = B′, or

(2) there is some (k, x, y) ∈ B, (k, x′, y′) ∈ B′ with either x = x′, y 6= y′ or

x 6= x′, y = y′.

In particular, bad-events which share the same triple (k, x, y), are not caused to be

dependent.

Proving that the Swapping Algorithm still works in this setting requires only

a slight change in our definition of Projk(τ). Now, the tree τ may have multiple

copies of any given triple (k, x, y) on a single level. When this occurs, we create the

corresponding nodes v ≈ (x, y) ∈ Projk(τ); edges are added between such nodes in

an arbitrary (but consistent) way. The remainder of the proof remains as before.

This change is not compatible with the parallel algorithm we develop in Sec-

tion 7.6, however.

7.5.2. LLL for injective functions. The analysis of [77] considers a slightly

more general setting for the LLL, in which we select random injections fk : [mk] →

[nk], where mk ≤ nk. In fact, our Swapping Algorithm can be extended to this case.

We simply define a permutation πk on [nk], where the entries πk(mk + 1), . . . , πk(nk)

are “dummies” which do not participate in any bad-events. The LLL criterion for the

extended permutation πk is exactly the same as the corresponding LLL criterion for

the injection fk. Because all of the dummy entries have the same behavior, it is not

necessary for the Swapping Algorithm to keep track of the dummy entries exactly;

they are needed only for the analysis.

7.5.3. Comparison with the approach of Achlioptas & Iliopoulos, Har-

vey & Vondrak, and Kolmogorov. Achlioptas & Iliopoulos [1], Harvey & Von-

drak [51], and Kolmogorov [68] gave generic frameworks for analyzing variants of the

MT algorithm, applicable to different types of combinatorial configurations. These

frameworks can include vertex-colorings, permutations, Hamiltonian cycles of graphs,

spanning trees, matchings, and other settings. For the case of permutations, both of
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these frameworks give the same algorithm as our Swapping Algorithm and show that

it terminates under the same conditions as we do, which in turn are the same condi-

tions as the probabilistic LLL.

The key difference between the our approach and the other frameworks is that

the latter enumerate the entire history of all resamplings to the permutations. By

contrast, our proof is based on the Witness Tree Lemma; this is a much more succint

structure, which ignores most of the resamplings, and only enumerates the few re-

samplings that are necessary to justify a single item in the execution log. The other

papers are simpler than ours; a huge part of the complexity of our proof lies in the

need to argue that the bad-events which were ignored by the witness tree do not affect

the stochastic probabilities. (The ignored bad-events do interact with the variables

we need to track for the witness tree, but do so in a “neutral” way.)

If our only goal is to prove that the Swapping Algorithm terminates in polynomial

time, then the other frameworks give a better and simpler approach.

However, the Witness Tree Lemma allows much more precise estimate for many

types of events. The main reason for this precision is the following: suppose we want

to show that some event E has a low probability of occuring during or after the

execution of the Swapping Algorithm. The proof strategy of Moser & Tardos is to

take a union-bound over all tree-structures that correspond to this event. In this case,

we are able to show a probability bound which is proportional to the total weight of

all such tree-structures. This can be a relatively small number as only the witness

trees connected to E are relevant. Our analysis, which is also based on witness trees,

is able to show similar types of bounds.

However, the analyses of Achlioptas & Iliopoulos, Harvey & Vondrak, and Kol-

mogorov (herafter the “alternate analyses”) are not based on witness trees, but the

much larger set of full execution logs. The number of possible execution logs can be

exponentially larger than the number of witness trees. It is very inefficient to take a
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union bound over all such logs. Hence, the alternate analyses give bounds which are

exponentially weaker than the ones we provide.

Many properties of the Swapping Algorithm depend on the fine degree of control

provided by the Witness Tree Lemma, and it seems difficult to obtain them from the

alternate LLLL approaches. We list a few of these properties here.

The LLL criterion without slack. As a simple example of the problems caused

by taking a union bound over execution logs, suppose that we satisfy the LLL criterion

without slack, say epd = 1. In this case, we show that the expected time for our

Swapping Algorithm to terminate is O(m). By contrast, the alternate analyses require

satisfying the LLL criterion with slack ep(1+ ε)d = 1, and achieve a termination time

of O(m/ε). They require this slack term in order to damp the exponential growth in

the number of execution logs.1

Arbitrary choice of which bad-event to resample. The Swapping Algorithm

as we have stated it is actually under-determined, in that the choice of which bad-

event to resample is arbitrary. By contrast, in both Achlioptas & Iliopoulos and

Harvey & Vondrak, there is a fixed priority on the bad-events. (The work of [68]

removes this restriction in certain special cases of the Achlioptas & Iliopoulous setting,

including for random permutations and matchings.) This freedom can be quite useful.

For example, in Section 7.6 we consider a parallel implementation of our Swapping

Algorithm. We will select which bad-events to resample in a very complicated and

randomized way. However, the correctness of the parallel algorithm will follow from

the fact that it simulates some serial implementation of the Swapping Algorithm.

The Moser-Tardos distribution. The Witness Tree Lemma allows us to an-

alyze the so-called “Moser-Tardos (MT) distribution,” first discussed by [48]. The

LLL and its algorithms ensure that bad-events B cannot possibly occur. In other

words, we know that the configuration produced by the LLL has the property that

1Harvey & Vondrak show that if the symmetric LLL criterion is satisfied without slack, then the
Shearer criterion is satisfied with slack ε = O(1/m). Thus, they would achieve a running time of
O(m2) without slack. This extra slack, which our analysis does not need, is not present in all settings
of the LLL.
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no B ∈ B is true. In many applications of the LLL, we may wish to know more about

such configurations, other than they exist.

There are a variety of reasons we might want this; we give two examples for the

ordinary, variable-based LLL. Suppose that we have some weights for the values of

our variables, and we define the objective function on a solution
∑

iw(Xi); in this

case, if we are able to estimate the probability that a variable Xi takes on value

j in the output of the LLL (or MT algorithm), then we may be able to show that

configurations with a good objective function exist. A second example is when the

number of bad-events becomes too large, perhaps exponentially large. In this case,

the MT algorithm cannot test them all. However, we may still be able to ignore a

subset of the bad events, and argue that the probability that they are true at the end

of the MT algorithm is small even though they were never checked. Thus, by proving

the Witness Tree Lemma, we automatically show that Theorem 2.16 holds for the

Swapping Algorithm as well.

As one concrete example of this, we will show in Section 9.3 how to accelerate the

Swapping Algorithm in some applications by efficiently searching for true bad-events.

These results are almost immediate from our Witness Tree Lemma, but would not be

possible to show using the other approaches.

Bounds on the depth of the resampling process. One key requirement for

parallel variants of the MT algorithm appears to be that the resampling process has

logarithmic depth. This is equivalent to showing that there are no deep witness trees.

This follows easily from the Witness Tree Lemma but appears to be very difficult in

the other LLLL frameworks.

Partial resampling. We have developed in Chapter 5 a partial resampling

variant of the MT algorithm. To analyze this variant, we developed an alternate

type of witness tree, which only records the variables which were actually resampled.

Ignoring the other variables can drastically prunes the space of witness trees. Again,

this does not seem to be possible in other LLLL frameworks in which the full execution
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log must be recorded. We will see an example of this in Theorem 7.24; we do not

know of any way to show Theorem 7.24 using the alternate analyses.

7.6. A parallel version of the Swapping Algorithm

In this section, we will describe a parallel algorithm for the Swapping Algorithm,

which runs along the same lines as the parallel MT algorithm. However, everything is

more complicated than in the case of the ordinary LLL. In the MT algorithm, events

which are not connected to each other cannot affect each other in any way. For the

permutation LLL, such events can interfere with each other, but do so rarely.

Consider the following example. Suppose that at some point we have two active

bad-events, “πk(1) = 1” and “πk(2) = 2” respectively, and so we decide to resample

them simultaneously (since they are not connected to each other, and hence constitute

an independent set). When we are resampling the bad-event πk(1) = 1, we may swap

1 with 2; in this case, we are automatically fixing the second bad-event as well. The

sequential algorithm, in this case, would only swap a single element. The parallel

algorithm should likewise not perform a second swap for the second bad-event, or

else it would be over-sampling. Avoiding this type of conflict is quite tricky.

Let n = n1 + · · · + nN ; since the output of the algorithm will be the contents of

the permutations π1, . . . , πN , this algorithm should be measured in terms of n, and

we must show that this algorithm runs in logO(1) n time. We will make the following

assumptions in this section. First, we assume that |B|, the total number of potential

bad-events, is polynomial in n. This assumption can be relaxed if we have the proper

kind of “separation oracle” for B. Next, we assume that every element B ∈ B has

size |B| ≤M = logO(1) n; this holds in many cases.

We describe the following Parallel Swapping Algorithm:

(1) In parallel, generate the permutations π1, . . . , πN uniformly at random.

(2) We proceed through a series of rounds while there is some true bad-event.

In round i (i = 1, 2, . . . ,) do the following:
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(3) Let Vi,1 ⊆ B denote the set of bad-events which are currently true at

the beginning of round i. We will attempt to fix the bad-events in Vi,1

through a series of sub-rounds. This may introduce new bad-events, but

we will not fix any newly created bad-events until round i+ 1.

We repeat the following for j = 1, 2, . . . as long as Vi,j 6= ∅:

(4) Let Ii,j be a maximal independent set (MIS) of bad-events in Vi,j.

(5) For each true bad-event B ∈ Ii,j, choose the swaps corresponding

to B. Namely, if we have some bad-event B involving triples

(k1, x1, y1), . . . , (kr, xr, yr), then we select each zl ∈ [nkl ], which is

the element to be swapped with πkl(xl) according to procedure

Swap. Do not perform the indicated swaps at this time though!

We refer to (k1, x1), . . . , (kr, xr) as the swap-sources of B and the

(k1, z1), . . . , (kr, zr) as the swap-mates of B.

(6) Select a random ordering ρi,j of the elements of Ii,j. Consider the

graph Gi,j whose vertices correspond to elements of Ii,j: add an

edge connecting B with B′ if ρi,j(B) < ρi,j(B
′) and one of the

swap-mates of B is a swap-source of B′. Generate I ′i,j ⊆ Ii,j as the

lexicographically-first MIS (LFMIS) of the resulting graph Gi,j,

with respect to the vertex-ordering ρi,j.

(7) For each permutation πk, enumerate all the transpositions (x z)

corresponding to elements of I ′i,j, arranged in order of ρi,j. Say

these transpositions are, in order (x1, z1), . . . (xl, zl), where l ≤ n.

Compute, in parallel for all πk, the composition π′k = πk(xl zl) . . . (x1 z1).

(8) Update Vi,j+1 from Vi,j by removing all elements which are either

no longer true for the current permutation, or are connected via

∼ to some element of I ′i,j.

Most of the steps of this algorithm can be implemented using standard parallel

algorithms. For example, step (1) can be performed simply by having each element
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of [nk] choose a random real and then executing a parallel sort. The independent set

Ii,j can be found in time in polylogarithmic time using [8, 80].

The difficult step to parallelize is in selecting the LFMIS I ′i,j. In general, the

problem of finding the LFMIS is P-complete [29], hence we do not expect a generic

parallel algorithm for this. However, what saves us it that the ordering ρi,j and the

graph Gi,j are constructed in a highly random fashion.

This allows us to use the following greedy algorithm to construct I ′i,j, the LFMIS

of Gi,j:

(1) Let H1 be the directed graph obtained by orienting all edges of Gi,j in the

direction of ρi,j. Repeat the following for s = 1, 2, . . . ,:

(2) If Hs = ∅ terminate.

(3) Find all source nodes of Hs. Add these to I ′i,j.

(4) Construct H ′s+1 by removing all source nodes and all successors of source

nodes from H ′s.

The output of this algorithm is the LFMIS I ′i,j. Each step can be implemented in

parallel time O(1). The number of iterations of this algorithm is the length of the

longest directed path in G′i,j. So it suffices it show that, whp, all directed paths in

G′i,j have length at most polylogarithmic in n.

Proposition 7.17. Let I ⊆ B be an an arbitrary independent set of true bad-

events, and suppose all elements of B have size ≤ M . Let G = Gi,j be the graph

constructed in Step (6) of the Parallel Swapping Algorithm.

Then whp, every directed path in G has length O(M + log n).

Proof. One of the main ideas below is to show that for the typical B1, . . . , Bl ∈ I,

where l = 5(M + log n), the probability that B1, . . . , Bl form a directed path is small.

Suppose we select B1, . . . , Bl ∈ I uniformly at random without replacement. Let

us analyze how these could form a directed path in G. (We may assume |I| > l or

otherwise the result holds trivially.)
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First, it must be the case that ρ(B1) < ρ(B2) < · · · < ρ(Bl). This occurs with

probability 1/l!.

Next, it must be that the swap-mates of Bs overlap the swap-sources of Bs+1, for

s = 1, . . . , l − 1. Now, Bs has O(M) swap-mates; each such swap-mate can overlap

with at most one element of I, since I is an independent set. Conditional on having

chosen B1, . . . , Bs, there are a remaining |I| − s choices for Bs+1. This gives that the

probability of having Bs with an edge to Bs+1, conditional on the previous events,

is at most M
|I|−s . (The fact that swap-mates are chosen randomly does not give too

much of an advantage here.)

Putting this all together, the total probability that there is a directed path on

B1, . . . , Bl is

P (directed path B1, . . . , Bl) ≤
M l−1(|I| − l)!

(|I| − 1)!l!

Since the above was for a random B1, . . . , Bl, the probability that there is some

such path (of length l) is at most

P (some directed path) ≤ |I|!
(|I| − l)!

× M l−1(|I| − l)!
(|I| − 1)!l!

= |I| × M l−1

l!
≤ n× M l−1

(l/e)l
≤ n−Ω(1),

since l = 5(M + log n). �

So far, we have shown that each sub-round of the Parallel Swapping Algorithm

can be executed in parallel time logO(1) n. Next, we show that whp that number of

sub-rounds corresponding to any round is bounded by logO(1) n.

Proposition 7.18. Suppose |B| = nO(1) and all elements B ∈ B have size |B| ≤

M . Then whp, we have Vi,j = ∅ for some j = O(M log2 n).

Proof. We will first show the following: Let B ∈ I, where I is an arbitrary

independent set of B. Then with probability at least 1 − 1
2M lnn

we have B ∈ I ′ as

well, where I ′ is the LFMIS associated with I.

273



Observe that if there is no B′ ∈ I such that ρ(B′) < ρ(B) and such that a swap-

mate of B′ overlaps with a swap-source of B, then B ∈ I ′ (this is not a necessary

condition). We will analyze the ordering ρ using the standard trick, in which each

element B ∈ I chooses a rank W (B) ∼ Uniform[0, 1], independently and identically.

The ordering ρ is then formed by sorting in increasing ordering of W . In this way, we

are able to avoid the dependencies induced by the rankings. For the moment, let us

suppose that the rank W (B) is fixed at some real value w. We will then count how

many B′ ∈ I satisfy W (B′) < w and a swap-mate of B′ overlaps a swap-source of B.

So, let us consider some swap-source s of B in permutation k, and consider some

B′j ∈ I which has r′j other elements in permutation k. For l = 1, . . . , r′j, there are

nk−l+1 possible choices for the lth swap-mate from B′j, and hence the total expected

number of swap-mates of B′ which overlap s is at most

E[ # swap-mates of B′j overlapping s] ≤
r′j∑
l=1

1

nk − l + 1

≤
∫ r′j+1

l=1

1

nk − l + 1
dl

= ln(
nk

nk − r′j
)

Next, sum over all B′j ∈ I. Observe that since I is an independent set, we must

have
∑
r′j ≤ nk − 1. Thus,

E[ # swap-mates of some B′j overlapping s] ≤
∑
j

ln(
nk

nk − r′j
)

≤ ln(
nk

nk −
∑

j r
′
j

) by concavity

≤ lnnk ≤ lnn

Thus, summing over all swap-sources of B, the total probability that there is some

B′ with ρ(B′) ≤ B and for which a swap-mate overlaps a swap-source of B, is at most
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w|B| lnn ≤ wM lnn. By Markov’s inequality, we have

P (B′ ∈ I ′ | W (B) = w) ≥ 1− wM lnn

Integrating over w, we have that B′ ∈ I ′ with probability at least

P (B′ ∈ I ′) ≥ 1− 1

2M lnn

Now, using this fact, we show that Vi,j is decreasing quickly in size. For, suppose

B ∈ Vi,j. So B ∼ B′ for some B′ ∈ Ii,j, as Ii,j is a maximal independent set

(possibly B = B′). We will remove B from Vi,j+1 if B′ ∈ I ′i,j, which occurs with

probability at least 1− 1
2M lnn

. As B was an arbitrary element of Vi,j, this shows that

E
[
|Vi,j+1| | Vi,j

]
≤ (1− 1

2M lnn
)|Vi,j|.

For j = Ω(M log2 n), this implies that

E
[
|Vi,j|

]
≤ (1− 1

2M lnn
)Ω(M log2 n)|Vi,1| ≤ n−Ω(1)

This in turn implies that Vi,j = ∅ with high probability, for j = Ω(M log2 n). �

To finish the proof, we must show that the number of rounds is itself bounded

whp. We begin by showing that Witness Tree Lemma remains valid in the parallel

setting.

Proposition 7.19. When we execute this parallel swapping algorithm, we may

generate an “execution log” according to the following rule: suppose that we resample

B in round i, j and B′ in round i′, j′. Then we place B before B′ iff:

(1) i < i′; OR

(2) i = i′ AND j < j′; OR

(3) i = i′ and j = j′ and ρi,j(B) < ρi′,j′(B
′)

that is, we order the resampled bad-events lexicographically by round, sub-round, and

then rank ρ.
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Given such an execution log, we may also generate witness trees in the same

manner as the sequential algorithm.

Now let τ be any tree-structure; we have

P (τ appears) ≤
∏
B∈τ

PΩ(B)

Proof. Observe that the choice of swaps for a bad-event B at round i, subround

j, and rank ρi,j(B), is only affected by the events in earlier rounds / subrounds as

well as other B′ ∈ Ii,j with ρi,j(B
′) < ρi,j(B).

Thus, we can view this parallel algorithm as simulating the sequential algorithm,

with a particular rule for selecting the bad-event to resample. Namely, we keep track

of the sets Vi and Ii,j as we do for the parallel algorithm, and within each sub-round

we resample the bad-event in Ii,j with the minimum value of ρi,j(B).

This is why it is critical in step (6) that we select I ′i,j to be the lexicographically-

first MIS; this means that the presence of B ∈ I ′i,j cannot be affected with B′ with

ρ(B′) > ρ(B). �

Proposition 7.20. Let B be any resampling performed at the ith round of the

Parallel Swapping Algorithm (that is, B ∈ I ′i,j for some integer j > 0.) Then the

witness tree corresponding to the resampling of B has height exactly i.

Proof. First, note that if we have B ∼ B′ in the execution log, where B occurs

earlier in time, and the witness tree corresponding to B has height i, then the witness

tree corresponding to B′ must have height i + 1. So it will suffice to show that if

B ∈ I ′i,j, then we must have B ∼ B′ for some B′ ∈ I ′i−1,j′ .

At the beginning of round i, it must be the case that πi makes the bad-event B

true. By Proposition 7.2, either the bad-event B was already true at the beginning

of round i− 1, or some bad-event B′ ∼ B was resampled at round i− 1. If it is the

latter, we are done.

276



So suppose B was true at the beginning of round i − 1. So B was an element of

Vi−1,1. In order for B to have been removed from Vi−1, then either we had B ∼ B′ ∈

I ′i−1,j′ , in which case we are also done, or after some sub-round j′ the event B was

no longer true. But again by Proposition 7.2, in order for B to become true again at

the beginning of round i, there must have been some bad-event B′ ∼ B encountered

later in round i− 1. �

This gives us the key bound on the running time of the Parallel Swapping Algo-

rithm.

Proposition 7.21. Suppose that ε > 0 and that there is some assignment of

weights µ : B → [0,∞) which satisfies, for every B ∈ B, the condition

µ(B) ≥ (1 + ε)PΩ(B)θ(B)

Then, whp, the Parallel Swapping Algorithm terminates after logn
ε

rounds.

Proof. Consider the event that for some B ∈ B, that B is resampled after i

rounds of the Parallel Swapping Algorithm. In this case, τ̂ has height i.

In Corollary 3.20, we showed that for the ordinary LLL then whp the witness trees

had height O( log s
ε

) whp, where s is the number of variables. This proof depended

on the fact that the dependency graph could be written as a union of s cliques (one

for eac variable). Here, too, the dependency graph can be written as the union of

2(n1 + · · · + nN) = 2n cliques: one for each domain variable and one for each range

variable. Thus, one can similarly show the witness trees for the parallel swapping

algorithm have height O( logn
ε

).

�

We can put this analysis all together to show:

Theorem 7.22. Suppose |B| = nO(1) and that for all B ∈ B′ we have |B| ≤

logO(1) n. Suppose also that ε > 0 and that there is some assignment of weights
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µ : B → [0,∞) which satisfies, for every B ∈ B, the condition

µ(B) ≥ (1 + ε)PΩ(B)θ(B)

Then, whp, the Parallel Swapping Algorithm terminates after logO(1) n
ε

time.

Proof. The number of rounds, the number of sub-rounds per round, and the

running time of each sub-round, are all polylogarithmic in n whp. �

7.7. Algorithmic Applications

The LLL for permutations plays a role in diverse combinatorial constructions. Us-

ing our algorithm, nearly all of these constructions become algorithmic. We examine

a few selected applications now.

7.7.1. Latin transversals. Suppose we have an n× n matrix A. The entries of

this matrix come from a set C which are referred to as colors. A Latin transversal

of this matrix is a permutation π ∈ Sn, such that no color appears twice among

the entries A(i, π(i)); that is, there are no i 6= j with A(i, π(i)) = A(i′, π(i′)). A

typical question in this area is the following: suppose each color c appears at most ∆

times in the matrix. How large can ∆ be so as to guarantee the existence of a Latin

transversal?

In [35], a proof using the probabilistic form of the Lovász Local Lemma for per-

mutations was given, showing that ∆ ≤ n/(4e) suffices. This was the first application

of the LLL to permutations. This bound was subsequently improved by [17] to the

criterion ∆ ≤ (27/256)n; this uses a variant of the probabilistic Local Lemma which

is essentially equivalent to Pegden’s variant on the constructive Local Lemma. Using

our algorithmic LLL, we can almost immediately transform the existential proof of

[17] into a constructive algorithm. To our knowledge, this is the first polynomial-time

algorithm for constructing such a transversal.
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Theorem 7.23. Suppose ∆ ≤ (27/256)n. Then there is a Latin transversal of the

matrix. Furthermore, the Swapping Algorithm selects such a transversal in polynomial

time.

Proof. For any quadruples i, j, i′, j′ with A(i, j) = A(i′, j′), we have a bad-event

(i, j), (i′, j′). Such an event has probability 1
n(n−1)

. We give weight µ(B) = α to every

bad event B, where α is a scalar to be determined.

This bad-event can have up to four types of neighbors (i1, j1, i
′
1, j
′
1), which overlap

on one of the four coordinates i, j, i′, j′; as discussed in [17], all the neighbors of any

type are themselves neighbors in the dependency graph. Since these are all the same,

we will analyze just the first type of neighbor, one which shares the same value of i,

that is i1 = i. We now may choose any value for j1 (n choices). At this point, the

color A(i1, j1) is determined, so there are ∆− 1 remaining choices for i′1, j
′
1.

By Lemma 7.1 and Pegden’s criterion [94], a sufficient condition for the conver-

gence of the Swapping Algorithm is that

α ≥ 1

n(n− 1)
(1 + n(∆− 1)α)4

Routine algebra shows that this has a positive real root α when ∆ ≤ (27/256)n.

�

We will encounter this problem again in Chapter 9, where we show that this Swap-

ping Algorithm can be implemented in O(n) time — this is significantly sublinear,

note that the input matrix A has size n2.

In [110], Szabó considered a generalization of this question: suppose that we seek

a transversal, such that no color appears more than s times. When s = 1, this is

asking for a Latin transversal. Szabó gave similar criteria “∆ ≤ γsn” for s a small

constant. Such bounds can be easily obtained constructively using the permutation

LLL as well.
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By combining the permutation LLL with the partial resampling approach of Chap-

ter 5, we can provide asymptotically optimal bounds for large s:

Theorem 7.24. Suppose ∆ ≤ (s− c
√
s)n, where c is a sufficiently large constant.

Then there is a transversal of the matrix, in which each color appears no more than

s times. This transversal can be constructed in polynomial time.

Proof. For each set of s appearances of any color, we have a bad event. We use

the partial resampling framework, to associate the fractional hitting set which assigns

weight
(
s
r

)−1
to any r appearances of a color, where r = d

√
se.

We first compute the probability of selecting a given r-set X. From the fractional

hitting set, this has probability
(
s
r

)−1
. In addition, the probability of selecting the

indicated cells is (n−r)!
n!

. So we have p ≤
(
s
r

)−1 (n−r)!
n!

.

Next, we compute the dependency of the set X. First, we may select another

X ′ which overlaps with X in a row or column; the number of such sets is 2rn
(

∆
r−1

)
.

Next, we may select any other r-set with the same color as X (this is the dependency

due to ./ in the partial resampling framework; see Chapter 5 for more details). The

number of such sets is
(

∆
r

)
.

So the LLL criterion is satisfied if

e×
(
s

r

)−1
(n− r)!
n!

×
(

2rn

(
∆

r − 1

)
+

(
∆

r

))
≤ 1

Simple calculus now shows that this can be satisfied when ∆ ≤ (s − O(
√
s))n.

Also, it is easy to detect a true bad-event and resample it in polynomial time, so this

gives a polynomial-time algorithm. �

Our result depends on the Swapping Algorithm in a fundamental way — it does

not follow from the LLLL itself (which would roughly require ∆ ≤ (s/e)n). Hence,

prior to this work, we would not have been able to even show the existence of such

transversals; here we provide an efficient algorithm as well. To see that our bound is

asymptotically optimal, consider a matrix in which the first s + 1 rows all contain a
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given color, a total multiplicity of ∆ = (s + 1)n. Then the transversal must contain

that color at least s+ 1 times.

7.7.2. Rainbow Hamiltonian cycles and related structures. The problem

of finding Hamiltonian cycles in the complete graph Kn, with edges of distinct colors,

was first studied in [49]. This problem is typically phrased in the language of graphs

and edges, but we can rephrase it in the language of Latin transversals, with the

additional property that the permutation π has full cycle. How often can a color

appear in the matrix A, for this to be possible? In [3], it was shown that such

a transversal exists if each color appears at most ∆ = n/16 times.2 This proof

is based on applying the non-constructive Lovász Local Lemma to the probability

space induced by a random choice of full-cycle permutation. This result was later

generalized in [41], to show the following result: if each color appears at most ∆ ≤ c0n

times for a certain constant c0 > 0, then not only is there a full-cycle Latin transversal,

but there are also cycles of each length 3 ≤ k ≤ n. The constant c0 was somewhat

small, and this result was also non-constructive. Theorem 7.25 uses the Swapping

Algorithm to construct Latin transversals with essentially arbitrary cycle structures;

this generalizes [41] and [3] quite a bit.

Theorem 7.25. Suppose that each color appears at most ∆ ≤ 0.027n times in

the matrix A, and n is sufficiently large. Let τ be any permutation on n letters,

whose cycle structure contains no fixed points nor swaps (2-cycles). Then there is

a Latin transversal π which is conjugate to τ (i.e., has the same cycle structure);

furthermore the Swapping Algorithm finds it in polynomial time. Also, the Parallel

Swapping Algorithm finds it in time logO(1) n.

2The terminology used for rainbow Hamilton cycles is slightly different from that of Latin transver-
sals. In the context of Hamilton cycles, one often assumes that the matrix A is symmetric. Fur-
thermore, since A(x, y) and A(y, x) always have the same color, one only counts this as a single
occurrence of that color. Thus, for example, in [3], the stated criterion is that the matrix A is
symmetric and a color appears at most ∆/32 times.
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Proof. We cannot apply the Swapping Algorithm directly to the permutation

π, because we will not be able to control its cycle structure. Rather, we will set

π = σ−1τσ, and apply the Swapping Algorithm to σ.

A bad-event is that A(x, π(x)) = A(x′, π(x′)) for some x 6= x′. Using the fact

that τ has no fixed points or 2-cycles, we can see that this is equivalent to one of the

following two situations: (A) There are i, i′, x, y, x′, y′ such that σ(x) = i, σ(y) =

τ(i), σ(x′) = i′, σ(y′) = τ(i′), and x, y, x′, y′ are distinct, and i, i′, τ(i), τ(i′) are

distinct, and A(x, y) = A(x′, y′) or (B) There are i, x, y, z with σ(x) = i, σ(y) =

τ(i), σ(z) = τ 2(i), and all of x, y, z are distinct, and A(x, y) = A(y, z). We will refer

to the first type of bad-event as an event of type A led by i (such an event is also led

by i′); we will refer to the second type of bad-event as type B led by i.

Note that in an A-event, the color is repeated in distinct column and rows, and in

a B-event the column of one coordinate is the row of another. So, to an extent, these

events are mutually exclusive. Much of the complexity of the proof lies in balancing

the two configurations. To a first approximation, the worst case occurs when A-events

are maximized and B-events are impossible. This intuition should be kept in mind

during the following proof.

We will define the function µ as follows. Each event of type A is assigned the

same weight µA, and each event of type B is assigned weight µB. The event of type

A has probability (n − 4)!/n! and each event of type B has probability (n − 3)!/n!.

In the following proof, we shall need to compare the relative magnitude of µA, µB. In

order to make this concrete, we set

µA = 2.83036n−4, µB = 1.96163n−3

(In deriving this proof, we left these constant coefficients undetermined until the end

of the computation, and we then verified that all desired inequalities held.)

Now, to apply Pegden’s criterion [94] for the convergence of the Swapping Al-

gorithm, we will need to analyze the independent sets of neighbors each bad-event
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can have in the dependency graph. In order to keep track of all the neighborhood

structure ssible neighbors, it will be convenient to define the following sums. We let

t denote the sum of µ(X) over all bad-events X involving some fixed term σ(x). Let

s denote the sum of µ(X) over all bad-events X (of type either A or B) led by some

fixed value i, and let b denote the sum of µ(X) over B-events X alone. Recall that

each bad-event of type A is led by i and also by i′.

We now examine how to compute the term t. Consider a fixed value x; we will

enumerate all the bad-events that involve σ(x). These correspond to color-repetitions

involving either row or column x in the matrix A. Let ci (respectively ri) denote

the number of occurrences of color i in column (respectively row) x of the matrix,

excluding A(x, y) itself.

We can have a color repetition of the form A(y, x) = A(x, y′) where y 6= y′; or

we can have repetitions of the form A(x, y) = A(x′, y′) or A(y, x) = A(y′, x′), where

x 6= x′, y 6= y′ (but possibly x′ = y). The total number of repetitions of the first

type is v1 ≤
∑

i ciri. The total number of repetitions of the second type is at most

v2 ≤
∑

i ci(∆− ci − ri). The total number of repetitions of the third type is at most

v3 ≤
∑

i ri(∆− ci − ri).

For a repetition of the first type, this must correspond to an B-event, in which

σ(y) = i, σ(x) = τ(i), σ(y′) = τ 2(i) for some i. For a repetition of the second type,

if x′ 6= y this correspond to an A-event in which σ(x) = i, σ(y) = τ(i), σ(x′) =

i′, σ(y′) = τ(i′) for some i, i′ or alternatively if x′ = y it correspond to a B-event in

which σ(x) = i, σ(y) = τ(i), σ(y′) = τ 2(i) for some i. A similar argument holds for

the third type of repetition.

Summing all these cases, we have

t ≤ v1nµB + v2(max(n2µA + nµB)) + v3(max(n3µA + nµB))

≤ v1nµB + v2n
2µA + v3n

2µA

≤
∑
j

(cjrjnµB + cj(∆− cj − rj)n2µA + rj(∆− cj − rj)n2µA)
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Observe that the the RHS is maximized when there are n distinct colors with

cj = 1 and n distinct colors with rj = 1. For, suppose that a color has (say) cj > 1.

If we decrement cj by 1 while adding a new color with cj′ = 1, this changes the RHS

by (−1 + 2(cj + rj)−∆)n2µA + (−1 + ∆− rj)nµB ≥ 0.

This gives us

t ≤ 2n3∆µA

Similarly, let us consider s. Given i, we choose some y with σ(y) = τ(i). Now, we

again list all color repetitions A(x, y) = A(x′, y′) or A(x, y) = A(y, z). The number

of the former is at most
∑

j cj(∆ − cj − rj) and the number of the latter is at most∑
j cjrj. As before, this is maximized when each color appears once in the column,

leading to

s ≤ n3∆µA

For term b, the worst case is when each color appears ∆/2 times in the row and

column of y; this yields

b ≤ n2(∆/2)µB

Now consider a fixed bad-event A, with parameters i, i′, x, y, x′, y′, and let us count

the sum over all independent sets of neighbors, of µ. This could have one or zero

children involving σ(x) and similarly for σ(y), σ(x′), σ(y′); this gives a total contribu-

tion of (1 + t)4. The children could also overlap on i; the total set of possibilities is

either zero children, a B-child led by i− 2, a B-child led by i− 2 and a child led by

i, a child led by i− 1, a child led by i− 1 and a child led by i+ 1, a child led by i, a

child led by i+ 1. There is an identical factor for the contributions of bad-events led

by i′ − 2, . . . , i′ + 1. In total, the criterion for A is that we must have

µA ≥
(n− 4)!

n!
(1 + t)4(1 + b+ sb+ s+ s2 + s+ s)2
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Applying the same type of analysis to an event of type B gives us the criterion:

µB ≥
(n− 3)!

n!
(1 + t)3(1 + b+ sb+ sb+ s+ s2 + s2 + s+ s2 + s)

Putting all these constraints together gives a complicated system of polynomial

equations, which can be solved using a symbolic algebra package. Indeed, the stated

values of µA, µB satisfy these conditions when ∆ ≤ 0.027n and n is sufficiently large.

Hence the Swapping Algorithm terminates, resulting in the desired permutation

π = σ−1τσ. It is easy to see that the Parallel Swapping Algorithm works as well. �

We note that for certain cycle structures, namely the full cycle σ = (123 . . . n−1 n)

and n/2 transpositions σ = (12)(34) . . . (n−1 n), one can apply the LLLL directly to

the permutation π. This gives a qualitatively similar condition, of the form ∆ ≤ cn,

but the constant term is slightly better than ours. For some of these settings, one

can also apply a variant of the MT algorithm to find such permutations [1]. However,

these results do not apply to general cycle structures, and they do not give parallel

algorithms.

7.7.3. Strong chromatic number of graphs. Suppose we have a graph G,

with a given partition of the vertices into k blocks each of size b, i.e., V = V1t· · ·tVk.

We would like to b-color the vertices, such that every block has exactly b colors, and

such that no edge has both endpoints with the same color (i.e., it is a proper vertex-

coloring). This is referred to as a strong coloring of the graph. If this is possible for

any such partition of the vertices into blocks of size b, then we say that the graph G

has strong chromatic number b.

A series of papers [7, 13, 39, 55] have provided bounds on the strong chromatic

number of graphs, typically in terms of their maximum degree ∆. In [56], it is shown

that when b ≥ (11/4)∆+Ω(1), such a coloring exists; this is the best bound currently

known. Furthermore, the constant 11/4 cannot be improved to any number strictly
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less than 2. The methods used in most of these papers are highly non-constructive,

and do not provide algorithms for generating such colorings.

In this section, we use the permutation LLL to build the strong coloring when

b ≥ 256/27∆. This appears to give the first RNC algorithm with a reasonable bound

on b. Later, in Section 8.3, we develop new bounds on the MT distribution and

use these build the strong coloring using independent transversals. While the latter

approach requires the weaker condition b ≥ 5∆, it does not give a parallel algorithm.

Theorem 7.26. Suppose we have a given graph G of maximum degree ∆, whose

vertices are partitioned into blocks of size b. Then if b ≥ 256
27

∆, it is possible to strongly

color graph G in expected time O(n∆). If b ≥ (256
27

+ ε)∆ for some constant ε > 0,

there is an RNC algorithm to construct such a strong coloring.

Proof. We will use the permutation LLL. For each block, we assume the ver-

tices and colors are identified with the set [b]. Then any proper coloring of a block

corresponds to a permutation of Sb. When we discuss the color of a vertex v, we refer

to πk(v) where k is the block containing vertex v.

For each edge f = 〈u, v〉 ∈ G and any color c ∈ [1, . . . b], we have a bad-event that

both u and v have color c. (Note that we cannot specify simply that u and v have

the same color ; because we have restricted ourselves to atomic bad-events, we must

list every possible color c with a separate bad event.)

Each bad-event has probability 1/b2. We give weight µ(B) = α to every bad

event, where α is a scalar to be determined.

Now, each such event (u, v, c) is dependent with four other types of bad-events:

(1) An event u, v′, c′ where v′ is connected to vertex u;

(2) An event u′, v, c′ where u′ is connected to vertex v;

(3) An event u′, v′, c where u′ is in the block of u and v′ is connected to u′;

(4) An event u′, v′, c where v′ is in the block of v and u′ is connected to v′
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There are b∆ neighbors of each type. For any of these four types, all the neighbors

are themselves connected to each other. Hence an independent set of neighbors of the

bad-event (u, v, c) can contain one or zero of each of the four types of bad-events.

Using Lemma 7.1 and Pegden’s criterion [94], a sufficient condition for the con-

vergence of the Swapping Algorithm is that

α ≥ (1/b2) · (1 + b∆α)4

When b ≥ 256
27

∆, this has a real positive root α∗ (which is a complicated algebraic

expression). Furthermore, in this case the expected number of swaps of each permu-

tation is ≤ b2∆α∗ ≤ 256
81

∆. So the Swapping Algorithm terminates in expected time

O(n∆). A similar argument applies to the parallel Swapping Algorithm. �

7.7.4. Hypergraph packing. In [77], the following packing problem was con-

sidered. Suppose we are given two r-uniform hypergraphs H1, H2 and an integer n.

Is it possible to find two injections φi : V (Hi) → [n] with the property that φ1(H1)

is edge-disjoint to φ2(H2)? (That is, there are no edges e1 ∈ H1, e2 ∈ H2 with

{φ1(v) | v ∈ e1} = {φ2(v) | v ∈ e2}. ). A sufficient condition on H1, H2, n was given

using the LLLL. We achieve this algorithmically as well:

Theorem 7.27. Suppose that H1, H2 have m1,m2 edges respectively. Suppose that

each edge of Hi intersects with at most di other edges of Hi, and suppose that

(d1 + 1)m2 + (d2 + 1)m1 <

(
n
r

)
e

Then the Swapping Algorithm finds injections φi : V (Hi) → [n] such that φ1(H1)

is edge-disjoint to φ2(H2).

Suppose further that r ≤ logO(1) n and

(d1 + 1)m2 + (d2 + 1)m1 <
(1− ε)

(
n
r

)
e
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Then the Parallel Swapping Algorithm finds such injections with high probability

in logO(1) n
ε

time and using poly(m1,m2, n) processors.

Proof. [77] proves this fact using the LLLL, and the proof immediately applies

to the Swapping Algorithm as well. We review the proof briefly: we may assume

without loss of generality that the vertex set of H1 is [n] and the vertex set of H2

has cardinality n and that φ1 is the identity permutation; then we only need to

select the bijection φ2 : H2 → [n]. For each pair of edges e1 = {u1, . . . , ur} ∈

H1, e2 = {v1, . . . , vr} ∈ H2, and each ordering σ ∈ Sr, there is a separate bad-event

φ2(v1) = uσ1 ∧ · · · ∧ φ2(vr) = uσr. Now observe that the LLL criterion is satisfied for

these bad-events, under the stated hypothesis.

The proof for the Parallel Swapping Algorithm is almost immediate. There is one

slight complication: the total number of atomic bad-events is m1m2r!, which could be

super-polynomial for r = Θ(log n). However, it is easy to see that the total number of

bad-events which are true at any one time is at most m1m2; namely, for each pair of

edges e1, e2, there may be at most one σ such that φ2(v1) = uσ1 ∧ · · · ∧ φ2(vr) = uσr.

It is not hard to see that Theorem 7.22 still holds under this condition. �

7.A. Symmetry properties of the swapping subroutine

In the following series of propositions, we show a variety of symmetry properties

of the swapping subroutine. This analysis will use simple results and notations of

group theory. We let Sl denote the symmetric group on l letters, which we identify

with the set of permutations of [l]. We let (a b) denote the permutation (of whatever

dimension is appropriate) that swaps a/b and is the identity otherwise. We write

multiplications on the right, so that στ denotes the permutation which maps x to

σ(τ(x)). Finally, we will sometimes write σx instead of the more cumbersome σ(x).
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Proposition 7.28. The swapping subroutine is invariant under permutations of

the domain or range, namely that for any permutations τ, σ we have

P (Swap(π;x1, . . . , xr) = σ) = P (Swap(πτ ; τ−1x1, . . . , τ
−1xr) = στ)

and

P (Swap(π;x1, . . . , xr) = σ) = P (Swap(τπ;x1, . . . , xr = τσ)

Proof. We prove this by induction on r. The following equivalence will be useful.

We can view a single call to Swap as follows: we select a random x′1 and swap x1

with x′1; let π′ = π · (x1 x
′
1) denote the permutation after this swap. Now consider

the permutation on n− 1 letters obtained by removing x1 from the range and π′(x1)

from the range of π′; we use the notation π′ − (x1, ∗) to denote this restriction of

range/domain. We then recursively call Swap(π′ − (x1, ∗), x2, . . . , xr).

Now, in order to have Swap(πτ ; τ−1x1, . . . , τ
−1xr) = στ we must first swap τ−1x1

with x′1 = τ−1π−1στx1; this occurs with probability 1/n. Then we would have

P (Swap(πτ ; τ−1x1, . . . , τ
−1xr) = στ)

= 1
n
P (Swap(πτ(τ−1x1 τ−1π−1σx1)− (τ−1x1, ∗); τ−1x2, . . . , τ

−1xr) = στ − (τ−1x1, ∗))

= 1
n
P (Swap(πτ(τ−1x1 τ−1π−1σx1)τ−1 − (x1, ∗); τ−1τx2, . . . , τ

−1τxr) = σττ−1 − (x1, ∗))

by inductive hypothesis

= 1
n
P (Swap(π(x1 π

−1σx1)τ−1 − (x1, ∗);x2, . . . , xr) = σ − (x1, ∗))

= P (Swap(π;x1, x2, . . . , xr) = σ)

A similar argument applies for permutation of the range (i.e., post-composition

by τ). �

Also, the order in which we perform the swaps is irrelevant:

Proposition 7.29. Let π ∈ Sn be fixed, and let x1, . . . , xr ∈ [n] be fixed as well.

Let ρ : [r] → [r] be a permutation on r letters; then for any permutation σ ∈ Sn we
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have

P (Swap(π;x1, . . . , xr) = σ) = P (Swap(π;xρ(1), . . . , xρ(r) = σ)

Proof. We will prove this by induction on r. We assume ρ(1) 6= 1 or else this

follows immediately from induction.

Let t denote the swap (xρ(1) π−1σxρ(1)), which is the first swap that must occur

in Swap(π;xρ(1), . . . , xρ(r)). Then we have:

P (Swap(π;xρ(1), . . . , xρ(r)) = σ)

= 1
n
P (Swap(πt;xρ(2), . . . , xρ(r)) = σ)

= 1
n
P (Swap(πt;x1, x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ) by I.H.

= 1
n(n−1)

P (Swap(πt(x1 (πt)−1σx1);x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

= 1
n(n−1)

P (Swap(πt(x1 tπ−1σx1);x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

At this point, consider the following simple fact about permutations: for any

a1, a2, b1, b2 ∈ [l] with a1 6= a2, b1 6= b2, we have

(a2 b2)(a1 (a2 b2)b1) = (a1 b1)(a2 (a1 b1)b2)

This fact is simple to prove by case analysis considering which of the letters a1, a2, b1, b2

are equal to each other.

We now apply this fact using a1 = x1, a2 = xρ(1), b1 = π−1σx1, b2 = π−1σxρ(1); this

gives us t(x1 tπ−1σx1) = (x1 π−1σx1)(xρ(1) (x1 π
−1σx1)π−1σxρ(1)), and so

P (Swap(π;xρ(1), . . . , xρ(r)) = σ)

= 1
n(n−1)

P (Swap(π(x1 π−1σx1)(xρ(1) (x1 π
−1σx1)π−1σxρ(1));x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

= 1
n
P (Swap(π(x1 π

−1σx1);xρ(1), x2, . . . , xρ(1)−1, xρ(1)+1, . . . , xr) = σ)

= 1
n
P (Swap(π(x1 π

−1σx1);x2, . . . , xr) = σ) by I.H.
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= P (Swap(π;x1, . . . , xr) = σ)

�

In our analysis and algorithm, we will seek to maintain the symmetry between the

“domain” and “range” of the permutation. The swapping subroutine seems to break

this symmetry, inasmuch as the swaps are all based on the domain of the permutation.

However, this symmetry-breaking is only superficial as shown in Proposition 7.30.

Proposition 7.30. Define the alternate swapping subroutine, which we denote

Swap2(π; y1, . . . , yr) as follows:

(1) Suppose π is a permutation of [n]. Repeat the following for i = 1, . . . , r:

(2) Select y′i uniformly at random among [n]− {y1, . . . , yi−1}.

(3) Swap entries π−1(yi) and π−1(y′i) of the permutation π.

More compactly:

Swap2(π; y1, . . . , yr) = Swap(π−1, y1, . . . , yr)
−1

Then the algorithms Swap and Swap2 induce the same distribution, namely that

if π(x1) = y1, . . . , π(xr) = yr, then for any permutation σ we have

P (Swap(π;x1, . . . , xr) = σ) = P (Swap2(π; y1, . . . , yr) = σ)

Proof. A similar recursive definition applies to Swap2 as for Swap: we select x′1

uniformly at random, swap x1/x
′
1, and then call Swap2(π(x1 x

′
1)− (∗, y1); y2, . . . , yr).

The main difference is that we remove the image point (∗, y1) instead of the domain

point (x1, ∗).

Now, in order to have Swap2(π; y1, . . . , yr) = σ we must first swap x1 with x′1 =

π−1σx1; this occurs with probability 1/n. Next, we recursively call Swap2 on the
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permutation π(x1x
′
1)− (∗, y1) yielding:

P (Swap2(π; y1, . . . , yr) = σ)

= 1
n
P (Swap2(π(x1x

′
1)− (∗, y1); y2, . . . , yr) = σ − (∗, y1))

= 1
n
P (Swap(π(x1 x

′
1)− (∗, y1); (x1 x

′
1)π−1y2, . . . , (x1 x

′
1)π−1yr) = σ − (∗, y1))

by inductive hypothesis

= 1
n
P (Swap(π − (x1, y1);x2, . . . , xr) = σ(x1 x

′
1)− (x1, y1))

by Proposition 7.28, when we pre-compose with (x1 x
′
1)

= 1
n
P (Swap((σx1 σx

′
1)π − (x1, ∗);x2, . . . , xr) = (σx1 σx

′
1)σ(x1 x

′
1)− (x1, ∗)

by Proposition 7.28; when we post-compose with (σx1 σx
′
1)

= 1
n
P (Swap(π(x1 x

′
1)− (x1, ∗);x2, . . . , xr) = σ − (x1, ∗)

= P (Swap(π;x1, . . . , xr) = σ)

�
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CHAPTER 8

Algorithmic and enumerative aspects of the MT distribution

Recall that our definition of the MT distribution as the distribution on variables at

the termination of the MT algorithm. A key randomness property of this distribution

has been demonstrated in [48], namely the critical Theorem 2.16 which we have

discussed briefly in Chapter 2. We develop this study further here, showing that the

MT distribution has a number of other nice features.

In Section 8.1, we examine the MT distribution for events determined by a single

variable, that is, events of the form Xi ∈ J . For such events, one can give better

bounds than Theorem 2.16; one can even show lower-bounds on the probabilities of

such events. We apply this in Section 8.2, to show upper and lower bounds on the

weights of independent transversals.

In Section 8.4, we address the problem of partially avoiding bad events, in cases

where the LLL criterion is not satisfied. We tighten the bounds of [48], giving a

symmetric criterion in the case when epd = α, for α ∈ [1, e], as well as, for the first

time, an asymmetric criterion. Furthermore, we give a faster parallel algorithm in

this case; while applying the parallel MT algorithm directly would give a running

time of O( log3m
(1−α)2 ), we improve this to O( log2 m

1−α ).

Finally in Section 8.5 we estimate the entropy of the MT-distribution, and show

that it is close to the original distribution. This automatically implies that there

are many more solutions than known before for various problems such as k-SAT,

non-repetitive coloring, and independent transversals – and especially the maximum-

satisfiability variants of these problems.
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Theorem 8.1. Suppose we are given a vector λ satisfying Theorem 1.16. Then,

for any atomic event E ≡ Xi1 = j1 ∧Xik = jk we have

P (E is true in output of MT algorithm) ≤
k∏
s=1

λis,js

Proof. Each independent set of neighbors of E contains one or zero bad-events

involving each variable is, so:

PΩ(E)θ(E) ≤ PΩ(E)
∏
s

(1 +
∑

B′:is∈SB′

µ(B′))

≤
∏
s

λis,js
λis

(λis) by (37)

=
∏
s

λis,js

�

8.1. The MT distribution for individual variables

Theorem 2.16 only provides an upper bound on the probability that E occurs

in the output of MT. In general, it is not possible to show a lower bound on the

probability of an arbitrary event E — if E ∈ B, then necessarily P (E) = 0. There is

one limited circumstance for which one can show a useful lower bound — if the event

E has the form Xi = j. That is, we can show a useful lower bound on the probability

that a variable takes on a particular value. We can also show upper bounds for such

events, which are stronger than Theorem 2.16.

In developing such a bound, it is very useful to use the accounting method of

Section 1.6, instead of trying to specify a weighting function µ : B → [0,∞). So, we

suppose we are given some vector λ which satisfies Theorem 1.16. Namely, there is a

vector λ such that for each i ∈ [n] we satisfy

(37) λi −
∏

B:i∈SB′

∏
i′,j′)∈B

λi′,j′ ≥ 1
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where λi =
∑

j λi,j.

For any variable i and value j, we define

Hi,j =
∑
B3(i,j)

∏
(i′,j′)∈B

λi′,j′

Observe that, with this definition, we can rewrite (37) as:

(38) λi −
∑
j

Hi,j ≥ 1

Theorem 8.2. Suppose that λ satisfies (37). Let J be a set of assignments to

variable i. The probability that the MT algorithm ever selects (i, j) for j ∈ J is

bounded by

P (MT selects Xi ∈ J) ≤
∑

j∈J λi,j

λi −
∑

j /∈J Hi,j

Proof. We consider the first time in which Xi ∈ J during the execution of the

MT algorithm. There are two cases for this occurrence; we may either select Xi ∈ J

initially, or we resample some atomic bad-event B which includes (i, k) amongs its

conditions, where k ∈ J̄ . Abusing notation somewhat, we write (i, J̄) ∈ B to denote

this condition. We may build a witness tree for this event (although it is not itself a

bad-event). This tree contains a root node labeled Xi = k. It has either no children,

or it has a single child node labeled by such B. Below the root node, this tree cannot

contain any instances of Xi = j for j ∈ J .

Let R denote the total weight of all tree-structures rooted in some B 3 (i, J̄),

below which never occurs any instances of Xi ∈ J . To enumerate such trees: root

node may have children corresponding to any other variables involved in B (other

than i itself); or it may have another child also rooted in such a B′ 3 (i, J̄). The total

weight of all tree-structures rooted in any B′ is at most µ(B′) =
∏

(i,j)∈B λi,j. Thus,

a simple induction on tree-height shows that if r > 0 satisfies the condition

(39) r ≥
∑

B3(i,J̄)

PΩ(B)(1 + r)
∏

i′∈SB−{i}

(1 +
∑

B′:i′∈SB′

µ(B′))
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then it must be that R ≤ r.

For any B 3 (i, j), the main term of (39) can be rewritten as

∑
B3(i,J̄)

PΩ(B)(1 + r)
∏

i′∈SB−{i}

(1 +
∑

B′:i′∈SB′

µ(B′))

=
∑

B3(i,J̄)

(1 + r)
∏

(i′,j′)∈B

λi′,j′

λi′
×

∏
i′∈SB−{i}

(1 +
∑

B′:i′∈SB′

µ(B′))

=
∑

B3(i,J̄)

1 + r

λi

∏
(i′,j′)∈B

λi′,j′

=
∑

B3(i,J̄)

1 + r

λi

∏
(i′,j′)∈B

λi′,j′

=
1 + r

λi

∑
j /∈J

Hi,j

Thus, a sufficient condition to satisfy (39) is given by

r ≥ 1 + r

λi

∑
j /∈J

Hi,j

which implies that R ≤
P
j /∈J Hi,j

λi−
P
j /∈J Hi,j

. Then:

P (MT selects Xi ∈ J) ≤ PΩ(Xi ∈ J)(1 +R)

=
∑
j∈J

λi,j
λi

(1 +

∑
j /∈J Hi,j

λi −
∑

j /∈J Hi,j

)

=

∑
j∈J λi,j

λi −
∑

j /∈J Hi,j

�

A simple corollary of Theorem 8.2 shows a lower bound on the probability that

the MT terminates with Xi ∈ J :
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Corollary 8.3. Suppose that λ satisfies (37). Let J be a set of possible assign-

ments to variable i. Then:

P (MT terminates with Xi ∈ J) ≥
∑

j∈J λi,j −
∑

j∈J Hi,j

λi −
∑

j∈J Hi,j

Proof. Apply Theorem 8.2 to bound from above the probability of ever selecting

Xi ∈ J̄ :

1− P (Xi ∈ J̄) ≥ 1−
∑

j∈J̄ λi,j

λi −
∑

j /∈J̄ Hi,j

= 1−
∑

j /∈J λi,j

λi −
∑

j∈J Hi,j

=

∑
j∈J λi,j −

∑
j∈J Hi,j

λi −
∑

j∈J Hi,j

�

8.2. Weighted independent transversals

As an illustration of the Theorem 8.2 and Corollary 8.3, we next study weighted

transversals, as considered by [2]. We give lower- and upper- bounds on the weights

of independent transversals, which is not possible using [54] or [94].

Suppose that we are given weights w(v) ≥ 0 for each vertex of G. There is a simple

argument that G = (V,E) has an independent set of weight at least w(V )
∆+1

and that G

has a transversal (not necessarily independent) of weight at least w(V )
b

. Likewise, G

has independent sets or transversals with weight at most w(V )/(∆ + 1) or w(V )/b,

respectively. Note also that we cannot always expect independent transversals of

weight more (or less) than w(V )/b: e.g., consider the case of all weights being equal.

Theorem 8.4. Suppose 4∆ ≤ b ≤ 4.5∆. Then there is an independent transversal

I ⊆ V with weight

w(I) ≥ w(V )
( √

b+
√
b− 4∆√

b(2b− 1) +
√
b− 4∆

)
≥ w(V )

8∆− 1
.
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Suppose b ≥ 4.5∆. Then there is an independent transversal I ⊆ V with weight

w(I) ≥ w(V ) ·min(
1

b
,

4

27∆− 2
).

Furthermore, independent transversals with weight at least (1−n−Θ(1)) times these

lower-bounds, can be found in polynomial time with high probability.

Proof. The first result follows in a straightforward manner from Theorem 8.2

when we set each entry of λ to the scalar constant α = b−
√
b
√
b−4∆

2b∆
. Now for each

vertex v ∈ Vi we have Hi,v ≤ α2∆; so the probability of selecting this vertex in the

LLL distribution is

P (select v) ≥ λi,j −Hi,v

λi −Hi,v

≥ α− α2∆

bα− α2∆
=

√
b+
√
b− 4∆√

b(2b− 1) +
√
b− 4∆

To obtain the second result, in each block Vi, we discard all but the b′ = b9/2∆c

highest-weight vertices. To simplify the proof, consider only the case when ∆ is even

(the odd ∆ is similar).

In this case, we assign λ = α = 1
3∆

for each of the b′ highest-weight vertices, and

λ = 0 for the remaining. Let us fix a block Vi, consisting of vertices v1, . . . , vb sorted

by weight so that w(v1) ≥ w(v2) ≥ · · · ≥ w(vb). By Theorem 8.3, each of the high-

weight vertices is selected with probability ≥ α−∆α2

b′α−∆α2 = 4
27∆−2

. Hence the expected

weight of the independent transversal selected is at least (w(v1) + · · ·+w(vb′))
4

27∆−2
.

By concavity, subject to a fixed value of w(Vi), the choices of weights w(v1), . . . , w(vb)

which minimizes this assigns constant weight x to all vertices, except for an additional

vertex which receives an additional weight of w(Vi)−xb. The expected weight of this

block then becomes

E[w(Vi ∩ I)] = x+ (w(Vi)− bx)
4

27∆− 2

This achieves its minimum at either x = 0 or x = 1/b, yielding

E[w(I)] ≥ w(V ) ·min(
1

b
,

4

27∆− 2
).
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Finally, the high-probability bound follows by repetition of the MT algorithm. �

We show a matching upper bound on weights:

Theorem 8.5. Suppose 4∆ ≤ b ≤ 8∆. Then there is an independent transversal

I ⊆ V with weight

w(I) ≤ w(V )
2

4
√

∆
√
b− 4∆ + b

Suppose b ≥ 8∆. Then there is an independent transversal I ⊆ V with weight

w(I) ≤ w(V )

b

Furthermore, independent transversals with weight at most (1+n−Θ(1)) times these

upper-bounds, can be found in polynomial time with high probability.

Proof. Suppose we discard all but the lowest-ranking b′ vertices in each block,

where b′ = 4∆. For these vertices v, we set λv = α = 1
2∆

, and we set λv = 0 for the

remaining vertices. This satisfies Theorem 1.16.

Fix a block Vi, in which the vertices are sorted in increasing order of their weight

w(v1) ≤ w(v2) ≤ · · · ≤ w(vb). Then we can write the expected weight of the resulting

block as

E[w(Vi ∩ I)] = w(v1) + (w(v2)− w(v1))(1− P (v1 selected))

+ (w(v3)− w(v2))(1− P (v1 or v2 selected))

+ · · ·+ (w(vb′)− w(vb′−1)P (vb′ selected)

≤ w(v1) + (w(v2)− w(v1))(1− α−∆α2

b′α−∆α2
)

+ (w(v3)− w(v2))(1− 2(α−∆α2)

b′α− 2∆α2
) + . . .

Subject to the constraints that w(v1) ≤ w(v2) ≤ . . . and w(v1) + · · · + w(vb) =

w(Vi), the choice of w(v1), . . . , w(vb) which maximizes this is the following: for some

2 ≤ k ≤ b′, all the vertices vk, . . . , vb have weight x, while vertex vk−1 has weight
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y ≤ x, and (b− k + 1)x+ y = w(Vi). In this case, we have

E[w(Vi ∩ I)] ≤ max
x≥y∈R,k∈{2,...,b′}

yP (vk−1, . . . , vb′ selected) + (x− y)P (vk, . . . vb′ selected)

≤ max
x≥y∈R,k∈{2,...,b′}

y
(b′ − k + 2)α

b′α− (k − 2)α∆2
+ (x− y)

(b′ − k + 1)α

b′α− (k − 1)α∆2

We now relax the restriction that k is an integer in the range {2, . . . , b′} to allow k

to be a real number in the interval [1, b′]. When k is relaxed in this way, the maximum

of the above expression occurs at y = 0 and x = w(Vi)
b−k+1

; we thus have

E[w(Vi ∩ I)] ≤ max
k∈[1,b′]

w(Vi)

b− k + 1

(b′ − k + 1)α

b′α− (k − 1)α∆2

When b ≥ 8∆, this is decreasing function of k on the interval [1, b′], hence achieves

its maximum value at k = 1, yielding E[w(Vi ∩ I)] ≤ 1
b
. When 4∆ < b ≤ 8∆, this

achieves its maximum at the critical point k = b′ + 1 − (
√
b′−4∆+

√
b′)
√
b′(b−b′)

2
√

∆
; this

yields E[w(Vi ∩ I)] ≤ 2
4
√

∆
√
b−4∆+b

. Finally, at b = 4∆, then we again restrict k to

range over the integers; in this case it achieves a maximum value at k = b yielding

E[w(Vi ∩ I)] ≤ 2
1+4∆

.

Putting all these cases together gives us the claimed result. �

Note that such bound cannot be specified in terms of the average degree, because

we might add vertices of small degree and weight.

8.3. Strong chromatic number revisited

We have seen in Section 7.7.3 how to construct strong colorings using the Swap-

ping Algorithm. In this section, we take an alternate route based on independent

transversals. This proof is almost identical to the proof of Theorem 5.3 of [2]; the

main difference is that we have replaced their nonconstructive application of the LLL

with the MT algorithm. This translation requires a non-tivial bound on the MT

distribution.
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Theorem 8.6. Suppose b ≥ 5∆. Then G has a strong coloring, which can be

found in expected time O(n2∆2).

Proof. We maintain a partial coloring of the graph G, in which some vertices

are colored with {1, . . . , b} and some vertices are uncolored. Initially all vertices

are uncolored. We require that in a block, no vertices have the same color, and no

adjacent vertices have the same color.

Now, suppose some color is partially missing from the strong coloring; say without

loss of generality there is a vertex w missing color 1. In each block i = 1, . . . , k, we

will select some vertex vi to have color 1. If the block does not have such a vertex

already, we will simply assign vi to have color 1. If the block i already had some vertex

ui with color 1, we will swap the colors of vi and ui (if vi was previously uncolored,

then ui will become uncolored).

We need to ensure three things. First, the vertices v1, . . . , vk must form an in-

dependent transversal of G. Second, if we select vertex vi and swap its color with

ui, this cannot cause ui to have any conflicts with its neighbors. Third, we insist of

selecting w itself for the independent traversal.

A vertex ui will have conflicts with its neighbors if vi currently has the same color

as one of the neighbors of ui. In each block, there are at least b−∆ possible choices

of vi that avoid that; we must select an independent transversal among these vertices,

which also includes the designated vertex w.

Now suppose we define a weighting function which assigns weight 1 to vertex w

and weight 0 to the remaining vertices. By Theorem 8.4, the MT algorithm produces

an independent transversals of expected weight Ω(1/b). In particular, one can select

an independent transversal containing w by repeating the MT algorithm for O(b)

expected times. The total expected cost is O(n2∆).

Whenever we select the independent transversal v1, . . . , vk, the total number of

colored vertices increases by at least one: for, the vertex w becomes colored while it

was not initially, and in every other block the number of colored vertices does not

301



decrease. So, after n iterations, the entire graph has a strong coloring; the total time

is O(n2∆2). �

8.4. Partially avoiding bad events

When the LLL condition is satisfied, then it is possible to select the variables so

that no bad events occur. Alternatively, if one simply selects the underlying variables

from Ω directly, then each bad event B occurs with probability PΩ(B). However, there

can be a middle ground. As described in [48] even when the LLL condition is violated,

one can use the MT-distribution to select the variables so that many fewer bad events

occur than one would expect from Ω. For example, if we have epd = α, for α ∈ [1, e],

then one can show that it is possible to cause at most (1+o(1))×mpe ln(α)/α events

to occur; here o(1) is parameter which decreases with the dependency d [48].

The result of [48] is based on the following idea: select each event to be a “core

event” independently with probability q. These core events will not be allowed to

occur; the non-core events are ignored. Each core event has on average dq core

neighbors. For d sufficiently large, one can apply Chernoff bounds and the LLL, and

show that the number of core neighbors is bounded close to dq in actuality. Now,

apply the LLL a second time to avoid the core events, and apply the MT-distribution

to show that the non-core events are mostly avoided simply by chance.

While the method of [48] is intriguing, it suffers from a few shortcomings. First,

the result is asymptotic; there is a second-order term, which is difficult to compute

explicitly, and only goes away as d → ∞. Second, this algorithm may be computa-

tionally expensive; the first application of the LLL, in particular, may dominate the

second, “real” application, and may even be exponential time. Third, one obtains

only gross bounds on the total number of true bad events; one cannot easily get more

detailed information on the average behavior of a particular bad event.

In this section, we give new bounds and algorithms for partially avoiding bad

events, which avoid these problems. In many cases, these algorithms are faster than
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the MT algorithm itself. The basic idea parallels [48], in that we mark each bad

event B as core with probability q(B). However, instead of using two separate LLL

phases, we combine them into a single one.

Theorem 8.7. Suppose we are given a mapping µ : B → [0,∞). Then there is

an algorithm, which we refer to as the Truncated MT Algorithm, which produces a

distribution Ω′ on the underlying variables X1, . . . , Xn, with the property

(40) ∀B ∈ B, PΩ′(B) ≤ max(0,−µ(B) + PΩ(B)θ(B))

This algorithm has the same running-time behavior as other Moser-Tardos applica-

tions. In particular, the expected number of resamplings of a bad event is µ(B). (Note

that the LLL criterion is simply that the RHS of (40) is equal to zero.)

Proof. Given our original set of bad events B, we define a new binary variable

Y (B) for each bad event, which is Bernoulli-q(B) and which represents that B is

“core”. We introduce a new set of bad events B′, defined as follows: for each bad

event B ∈ B, we define B′ ∈ B′ to be the event that B is true and Y (B) = 1, where we

define q(B) = min(1, µ(B)
PΩ(B)θ(B)

). The truncated MT algorithm for B is then defined

by running the MT algorithm for B′.

It is not hard to see that the set of bad events B′ satisfies the asymmetric LLL

criterion with the weighting function µ.

Now, consider a bad event B. In order for B to occur in the output, it must be

the case that Y (B) = 0. Hence, the probability that B occurs is the probability of

the event (Y (B) = 0) ∧B; namely we have

PΩ′(B) = PΩ′(B ∧ (Y (B) = 0)) ≤ (1− q(B))PΩ(B)θ(B) = −µ(B) + PΩ(B)θ(B)

as desired. �

This specializes easily to the symmetric setting by setting µ(B) = (e/α)1/d−1 for

all B:
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Corollary 8.8. Suppose each bad event B has PΩ(B) ≤ p, |N(B)| ≤ d; and

suppose that epd = α for α ∈ [1, e]. Then one can efficiently find values for the

underlying variables so that each bad event B occurs with probability ≤ pe ln(α)/α.

The total number of expected resamplings is O(m/d).

As an example of the asymmetric form of this criterion, consider k-SAT, in which

each variable may appear in up to L clauses in total (positively or negatively). Ap-

plying the Lopsided LLL, it is shown in [43] that L ≤ 2k+1

e(k+1)
implies that the instance

is satisfiable. We prove that this can be relaxed so that the instance is partially

satisfiable:

Theorem 8.9. Suppose we have a k-SAT instance with m clauses, in which each

variable appears in up to L ≤ α2k+1

ek
− 2/k clauses (in total, either positively or neg-

atively), for α ∈ [1, e]. Then we can construct in expected time m logO(1) m a truth

assignment whose expected number of satisfied clauses is at least m(1−2−ke ln(α)/α).

Proof. We assume that m ≥ 2k−1 as otherwise a randomly chosen solution will

satisfy all the clauses.

Suppose a variable xi appears in li clauses; of these occurrences, it appears δili

positively and (1 − δi)li negatively. Then, as described in [43], we set variable i to

be T with probability 1/2− x(δi − 1/2), where x ∈ [0, 1] is a well-chosen parameter.

This is quite counter-intuitive. One would think that if a variable occurs positively

in many clauses, then one should set the variable to be T with high probability; in

fact we do the opposite.

Now, set µ(B) = z for all bad events B, where z is a parameter to be chosen. In

this case, it suffices to show that

(41) ∀B ∈ B,−z + PΩ(B) exp(
∑
B′∼B

z) ≤ 2−ke lnα/α

It is not hard to show, following [43], that for x = Lz/2 the LHS here is maximized

when variables corresponding to the bad event B each occur in exactly L/2 clauses
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positively or negatively; and that in this case, we have PΩ(B) = 2−k, and there are

1 + Lk/2 neighbors of B in the dependency graph. (The factor of L/2 here comes

from the Lopsided LLL; namely, clauses that intersect on a variable and agree on it,

are not counted as dependent for the purposes of the Lopsided LLL.)

Thus, we set z =
2 ln
“

2k+1

2+kL

”
2+kL

and then we have the bound

−z + PΩ(B) exp(
∑
B′∼B

z) ≤ −z + 2−k exp(z(1 + Lk/2))

=
2 ln(1 + kL/2) + 2− k ln 4

2 + kL

= 2−ke ln(α)/α

Now, the expected number of resamplings is at most mz ≤ m logO(1)m/L. For

each resampling, we must scan all the affected clauses to see if they have become

falsified, which takes time kO(1)L ≤ L logO(1)m. Hence the total expected runtime is

m logO(1)m. �

We can also apply this criterion for partial Latin transversals.1

Definition 8.10. Given an n × n matrix A, a partial Latin transversal is a

selection of k ≤ n cells, at most one in each row and column, with the property that

there are no two selected cells with the same color.

Partial Latin transversals have been most studied in the case when A is a Latin

square. In [109], Stein analyzes the case of partial Latin transversals for arbitrary

matrices. Using techniques from that paper, one can show the existence of partial

Latin transversals, whose length is a function of ∆, the maximum number of occur-

rences of any color. This generalizes [35], which showed that if ∆ is sufficiently small,

then a full Latin transversal exists.

1Note that the Witness Tree Lemma holds for the Swapping Algorithm, and so that algorithm
produces distribution which is essentially the same as for the ordinary MT algorithm. All our
results work equally for the Swapping Algorithm.
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Theorem 8.11. Suppose each color appears at most ∆ = βn times in the matrix

A for β ∈ [0, 1]. Then one can construct a partial Latin transversal of length at least

n× 1−e−β
β

.

Proof. Suppose that we select a random permutation π; whenever a color ap-

pears more than once in π, we will remove all but one of those cells from π to turn it

into a partial Latin transversal.

Suppose that a color appears d ≤ n times in the matrix. As shown in [109], the

probability that π meets the color at least once is minimized when all d occurrences of

the color are in distinct rows and columns; in this case the probability is (by negative

correlation) at least 1− (1− 1/n)d.

Thus, summing over all colors i, the total expected number of colors appearing in

π is at least

(42) E[# distinct colors appearing in π] ≥
∑
i

1− (1− 1/n)di

The expression 1− (1/n)d is increasing and concave-down as a function of d, thus

1− (1− 1/n)d ≥ d
∆

(1− (1/n)∆, and so

E[# distinct colors appearing in π] ≥
∑
i

di
∆

(1− (1− 1/n)∆)

=
n2

βn
(1− (1− 1/n)βn)

≥ n2

βn
(1− e−β)

Thus, the resulting partial Latin transversal has an expected length of at least

n(1−e−β
β

) as we claimed. �

We can improve on Theorem 8.11 for β ≤ 0.19 by using the MT-distribution.

(Note that for β ≤ 0.105, the LLL constructs a full Latin transversal.)

Theorem 8.12. Suppose each color appears at most ∆ = βn times in the matrix

A, for β ∈ [0, 1/4]. Then the truncated MT algorithm runs in expected time O(n) and
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produces a partial Latin transversal whose expected length is at least

n ·min
(

1,
1

2
+ 3

√
27

2048β

)
Proof. For every pair of cells (i, j), (i′, j′) such that A(i, j) = A(i′, j′), we have

a bad event π(i) = j ∧ π(i′) = j′.

We apply the criterion of Theorem 8.7, setting µ(B) = α for each such bad-event,

where α ≥ 0 is a scalar to be chosen. This gives us a probability space Ω′ with the

property that, for each B, we have

PΩ′(B) ≤ max(0,−µ(B) + PΩ(B)θ(B))

≤ max(0,−α +
1

n(n− 1)
(1 + n(∆− 1)α)4

Now set

α =
1

n(∆− 1)

(
3

√
n− 1

4(∆− 1)
− 1
)

Note that the condition ∆ ≤ n/4 implies that α ≥ 0. We then have

PΩ′(B) ≤ max
(

0,
1− 3 3√2 3√n−1

8(∆−1)1/3

n(∆− 1)

)
Now consider the following experiment: we draw the permutation π from the

space Ω′. For each bad-event that occurs, we de-activate one of the two cells (chosen

arbitrarily). Let Q denote the number of active cells at the end of this process; then

EΩ′ [Q] ≥ n−
∑
B

PΩ′(B)

The total number of bad-events can be computed as follows. First, there are n2

choices for i, j. Next, there are ∆−1 choices for i′, j′. This double-counts the number

of bad-events, so we have

#bad-events ≤ n2(∆− 1)/2

307



Thus

EΩ′ [Q] ≥ n− n2(∆− 1)

2
×max

(
0,

1− 3 3√2 3√n−1
8(∆−1)1/3

n(∆− 1)

)
= nmin

(
1,

1

2
+ 3

√
27(n− 1)

2048(∆− 1)

)
≥ nmin

(
1,

1

2
+ 3

√
27

2048β

)
For the analysis of the run-time, see Theorem 9.7 (which describes some optimiza-

tions to the Swapping Algorithm for Latin transversals). �

8.4.1. A faster parallel (RNC) algorithm. Suppose we wish to use the par-

allel MT algorithm to draw from the sample space Ω′ such that:

∀B ∈ B, PΩ′(B) ≤ max(0,−µ(B) + PΩ(B)θ(B))

In the symmetric setting (with epd = α), and using the choice of µ from Corol-

lary 8.8, one can easily verify that the parallel MT algorithm, as described in [87],

will terminate with high probability after O( logm
(α−1)2 ) rounds. (The approach of [48],

based on two applications of LLL, will give the same result.) The running time of the

parallel MT algorithm is dominated by selecting a maximal independent set (MIS) of

true bad events (in this case, with the additional property that Y (B) = 1). As finding

an MIS requires requires O(log2m) parallel time (using Luby’s MIS algorithm), the

total runtime of parallel MT would be O( log3 m
(α−1)2 ).

We can improve this running time by only running the parallel MT algorithm

for a constant number of rounds, using a slightly higher resampling probability than

indicated in Theorem 8.7. Unfortunately, we are not able to show a simple condi-

tion analogous to the asymmetric LLL for this algorithm to work. Unlike the MT

algorithm, which “converges” to a good solution, we give an algorithm which “over-

converges” to the desired solution. It reaches a good distribution faster than the MT

algorithm, but then it moves away from the good distribution. This algorithm seems
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to require a “uniformity” among the bad events, which is by definition true for the

Symmetric LLL but seems harder to formalize in general.

We may now define a parallel algorithm corresponding to the Truncated MT

Algorithm. It differs from the usual parallel MT algorithm in two key ways. First, we

maintain for each bad event B a resampling variable Y (B) which is Bernoulli-q(B),

and we only resample bad events (including Y (B) itself) when Y (B) = 1. Second,

instead of running the algorithm until there are no more true bad events, we run it

for some fixed number t of iterations.

Theorem 8.13. Suppose we are given a family of weighting functions σi : B →

[0,∞) for i = 1, . . . , t + 1 as well as probabilities q : B → [0, 1], satisfying the

recurrence:

σ1(B) ≥ q(B)PΩ(B)

σi+1(B) ≥ σi(B) + q(B)PΩ(B)
∑

I⊆N(B)
I independent

[∏
B′∈I

σi(B
′)−

∏
B′∈I

σi−1(B′)
]

for i = 1, . . . , t

Then, if the Parallel Truncated MT Algorithm is terminated after t iterations,

then each B is true at that point with probability

P (B true after t iterations) ≤ σt+1(B)

q(B)
− σt(B)

Proof. For notational convenience, define σ0(B) = 0 for each B ∈ B.

For each tree-structure τ whose nodes are labeled B1, . . . , Bs, define the weight

w(τ) =
s∏
i=1

q(Bi)PΩ(Bi)

Let Ti(B) denote the total weight of all tree-structures of height i rooted in B,

and let T≤i(B) =
∑

j≤i Tj(B). We claim that

Ti(B) ≤ σi(B)− σi−1(B)
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for i = 1, . . . , t. To show this, we develop a recursive formula for Ti(B), based on

decomposing the children into two categories, those of height i− 1 exactly and those

of height ≤ i− 2:

Ti(B) ≤ q(B)PΩ(B)
∑

A1,A2⊆N(B)
A1 6=∅,A1∩A2=∅
A1 ∪ A2 independent

∏
B1∈A1

Ti−1(B1)
∏

B2∈A2

T≤i−2(B2)

≤ q(B)PΩ(B)
∑

A1,A2⊆N(B)
A1 6=∅,A1∩A2=∅
A1 ∪ A2 independent

∏
B1∈A1

(σi−1(B1)− σi−2(B1))
∏

B2∈A2

σi−2(B2) by induction

= q(B)PΩ(B)
∑

I⊆N(B)
I independent

(
∏
B′∈I

σi−1(B′))− (
∏
B′∈I

σi−2(B′))

≤ σi(B)− σi−1(B)

Now consider the event that bad event B is true after t rounds of the parallel

algorithm. We may construct a witness tree for this event; it has height ≤ t + 1. If

Y (B) = 1 after t rounds, then it must be the case that this tree has height exactly

t + 1; for, either B or a neighbor would have been resampled at round t. Hence the

probability that B remains true after t rounds can be described by either a witness tree

of height t+1, rooted in B; or a witness tree of height ≤ t, rooted in (Y (B) = 0)∧B.

Furthermore, for every event in the witness tree, other than the root node B, we

require that Y (B′) = 1 at the appropriate time. Thus, in total, we have

P (B true after t rounds) ≤ Tt+1(B) + T≤t(B)(1− q(B))

q(B)

≤ σt+1(B)− σt(B) + σt(B)(1− q(B))

q(B)

=
σt+1(B)

q(B)
− σt(B)

as desired. �

And this specializes to the symmetric setting:
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Theorem 8.14. Suppose epd = α. Then let Ω′ be the distribution induced on the

variables after running the Parallel Truncated MT Algorithm for t = O((α − 1)−1)

steps. In the space Ω′, bad events have probability

PΩ′(B) ≤ pe ln(α)/α.

The total running time for this procedure is O( log2m
α−1

).

Proof. We will first show how to select q. For all B ∈ B, define q(B) = β, for

some parameter β to be chosen. Define σi(B) = γi where γi is defined recursively as

follows:

γ0 = 0

γi+1 = pβ(1 + γi)
d

A simple induction shows that γi is increasing in i:

γi+1 = pβ(1 + γi)
d ≥ pβ(1 + γi−1)d = γi

We claim that this definition of q, σ satisfies the conditions of Theorem 8.13. For,

we have:

σi(B) + q(B)PΩ(B)
∑

I⊆N(B)
I independent

∏
B′∈I

σi(B
′)−

∏
B′∈I

σi−1(B′)

≤ γi + pβ
(

(1 + γi)
d − (1 + γi−1)d

)
as |N(B)| ≤ d and γi+1 ≥ γi

= γi+1 = σi+1(B)

Next we claim that for t sufficiently large, there is some β ∈ [0, 1] with

(43) γt = (e/α)1/d − 1
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We will show this by continuity. When β = 0, then the LHS is equal to zero for all

t ≥ 1. As β increases, γt increases for all t. Furthermore, when β = 1, an induction

on t shows that

γt ≥ p((α/e)(1 + 1/d)d)t−1

Hence, if p((α/e)(1 + 1/d)d)t−1 ≥ (e/α)1/d− 1, then it follows that there is indeed

some β ∈ [0, 1] satisfying (43). By simple algebraic manipulations, one can verify

that this is satisfiable by

t =

⌈
ln((e/α)1/d − 1)− lnα + ln d+ 1

lnα + d ln(1 + 1/d)− 1

⌉
≤ 1 +

1− lnα + ln(1− ln(α))

lnα
≤ O(

1

α− 1
)

Now, the conclusion of Theorem 8.13 applies:

P (B true after t rounds) ≤ σt+1(B)

q(B)
− σt(B)

= p(1 + γt)
d − γt

= p(1− α−1/de1/d +
ep

α
)

≤ pe ln(α)/α taking the limit as p→ 0

So far, we have shown by continuity that there is some choice of β, for which the

parallel MT algorithm would induce PΩ′(B) ≤ pe ln(α)/α. To give a full algorithm,

we need to show that it is possible to determine such β efficiently.

Recall that β is the root of γt − (e/α)1/d + 1 in the range β ∈ [0, 1]. We can

determine this root via numerical bisection: for a putative β̂, one can recursively

compute γt in time O(t). As each bisection iteration gives one additional bit of

precision, we can determine β accurately in expected time O(t logm) = O( logm
1−α ). �
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8.5. Entropy of the MT-distribution

One of the main themes of this paper has been that the MT-distribution has a high

degree of randomness, comparable to the randomness of the original distribution Ω.

One more quantitative measure of this is the Rényi entropy of the MT-distribution.

Definition 8.15 ([25]). Let V be a distribution on a finite set S. We define the

Rényi entropy with parameter ρ of V to be

Hρ(V) =
1

1− ρ
ln
∑
v∈S

PV(v)ρ

The entropy of any distribution is at most ln |S|, which is achieved by the uniform

distribution, and so Hρ measures how close a distribution is to uniform. The min-

entropy H∞ is a special case, see, e.g., [28, 24, 91, 114] for the centrality of this

notion.

It is possible to use the LLL directly for combinatorial enumeration: if one can

show that, when drawing from Ω, there is a certain small probability p of avoiding

all the bad-events, then it follows that the number of solutions is at least p|S|. This

principle was used in [78], which counted certain types of permutations and matchings

in this way. The entropy can also be used as a tool for enumerative combinatorics;

namely, if Ω′ is the distribution at the end of the MT algorithm, we know that the

total number of solutions (i.e. combinatorial structures avoiding the bad-events) is

at least exp(Hρ(Ω
′)) (for any choice of ρ). By analyzing the entropy of the MT-

distribution, we achieve “constructively” the “non-constructive” enumerative bounds

of the LLL (since each promised solution is output with nonzero probability by MT),

and improve upon these bounds as well.

Our main result on the entropy of the MT-distribution is given by:

313



Theorem 8.16. Let Ω′ be the MT-distribution; then for ρ > 1 we have

Hρ(Ω
′) ≥ Hρ(Ω)− ρ

ρ− 1
ln

∑
I⊆B

I independent

∏
B∈I

µ(B)

Proof. Consider some event E defined by X1 = v1 ∧ · · · ∧ Xn = vn. By The-

orem 2.16, the probability that E occurs at the end of MT is at most PΩ(E)θ(E).

Now observe that θ(E) ≤
∑

I⊆B
I independent

∏
B∈I µ(B).

Letting x =
∑

I⊆B
I independent

∏
B∈I µ(B), we have: Thus, we have

Hρ(V) =
1

1− ρ
ln
∑
v

PΩ′(v)ρ

≥ 1

1− ρ
ln
∑
v

(xPΩ(v))ρ

≥ ρ

1− ρ
lnx+

1

1− ρ
∑
v

PΩ(v)ρ

�

We can think of the term
∑

I⊆B
I independent

∏
B∈I µ(B) as a distortion factor between

Ω and Ω′. The following is a crude but simple estimate of this factor:

Proposition 8.17. We have

ln
∑
I⊆B

I independent

∏
B∈I

µ(B) ≤
∑
B∈B

µ(B)

Proof. We have

∑
I⊆B

I independent

∏
B∈I

µ(B) ≤
∑
I⊆B

∏
B∈I

µ(B) =
∏
B∈B

(1 + µ(B)) ≤ exp(
∑
B∈B

µ(B))

and the claim follows. �

In most applications of the LLL, we keep track of independent sets of bad-events

in terms of their variables: namely, for each variable i, I can contain at most one
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bad-event including i. The following result shows how this accounting method yields

a better estimate for the entropy:

Theorem 8.18. For any bad-event B, define

y(B) = (1 + µ(B))
1

|var(B)| − 1

Then we have

∑
I⊆B

I independent

∏
B∈I

µ(B) ≤
∏
i∈[n]

(
1 +

∑
B∈B

B involves variable i

y(B)
)

Proof. We can expand the RHS as a polynomial in the values y. Given an

independent set I, we say that a monomial in the terms y is supported on I if, for

each B, the exponent of y(B) is positive iff B ∈ I. For any independent set I, define

q(I) to be the sum of all monomials supported on I. Thus, for example if I = {B}

then q(I) is the sum over all terms in RHS of the form y(B)j, for j > 1.

The RHS is a positive sum over sets J ⊆ B of q(J). (J here is not necessarily an

independent set.) So, it suffices to show that for any independent I we have

∏
B∈I

µ(B) ≤ q(I)

Now, observe that if I, I ′ are mutually independent sets of bad-events, then q(I ∪

I ′) = q(I)q(I ′). The reason for this is any monomial in q(I) corresponds to selecting

events Bi1 , . . . , Bik for variables i1, . . . , ik and a monomial in q(I ′) corresponds to

events Bi′1
, . . . , Bi′

k′
, then it must be that i, i′ are all mutually distinct (as otherwise

I, I ′ would involve a shared variable), and so the term i1, . . . , ik, i
′
1, . . . , i

′
k′ gives the

corresponding term in q(I)q(I ′). Note that this equality does not hold unless I, I ′, I∪

I ′ are all independent.

Thus, for any independent set I, we have q(I) =
∏

B∈I q({B}).

So, let us consider some bad-event B. To form a monomial involving the term

y(B), we must select B as the summand for at least one of the variables involved in
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B. Each time we select B as a summand, we contribute a factor of y(B), otherwise

we contribute a factor of 1. Thus, the total contribution of all such terms is (1 +

y(B))|var(B)|− 1 = µ(B). (The factor of −1 comes from enforcing that we select B at

least one time.)

So, we have shown that

q(I) =
∏
B∈I

q({B}) =
∏
B∈I

µ(B)

and the claim follows.

�

We give an example for independent transversals:

Proposition 8.19. Suppose we have a graph G of maximum degree ∆, with its

vertex set partitioned into k blocks containing b vertices, such that b ≥ 4∆. Suppose

we run the MT algorithm to find an independent transversal, using the natural proba-

bility distribution (selecting one vertex independently from each block). Then the MT

algorithm terminates and the resulting probability space has min-entropy at least

H∞(Ω′) ≥ k ln
4b

2 + b/∆−
√
b2/∆2 − 4b/∆

Proof. The min-entropy of Ω is − ln b−k = k ln b.

It is any easy exercise to see that the asymmetric LLL criterion is satisfied by

setting µ(B) = α = (b−
√
b2−4b∆)2

4b2∆2 for all B ∈ B. Thus, we have y(B) = (1 + α)1/2 − 1.

So the contribution for each variable i is given by

1 +
∑

B involves variable i

y(B) ≤ b∆

(√
2

b3/2
√
b− 4∆ + b2 − 2b∆

+ 1− 1

)
+ 1

Simple analysis shows that this expression is at most

2 + b/∆−
√
b2/∆2 − 4b/∆

4
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Thus, we have

H∞(Ω′) ≥ k ln b− k ln
(2 + b/∆−

√
b2/∆2 − 4b/∆

4

)
= k ln

4b

2 + b/∆−
√
b2/∆2 − 4b/∆

�

We see that the distortion of Ω′ is relatively mild. When b = 4∆, then the min-

entropy is ≤ k(ln b − ln 3/2). When b � ∆, the min-entropy is (up to first order)

k(ln b − ∆
2b
− 7∆2

8b2
− O((∆/b)5/2). By comparison, the cruder Proposition 8.17 would

give estimates in these two regimes of, respectively, k(ln b − 1/2) and k(ln b − ∆
2b
−

∆2

b2
−O((∆/b)3).

Finally, we give an example for partially satisfying k-SAT. This is, to our knowl-

edge, the first result to show that not only is the k-SAT problem partially satisfiable,

but that it has many partial solutions (indeed, exponentially many solutions).

Proposition 8.20. Suppose we have a k-SAT instance with m clauses, in which

each variable participates in up to L ≤ α2k+1

ek
− 2/k clauses (either positively or nega-

tively), for α ∈ [1, e]. Then there are at least

2n

exp( 9n
2k2 )poly(m)

assignments which satisfy at least m(1− 2−ke ln(α)/α)− 1 clauses.

Proof. Suppose we run the MT algorithm as in Theorem 8.9, however using a

parameter α′ < α instead of α, and then compute Hρ of the resulting distribution;

we will now use notation from the proof of Theorem 8.9. We have
∑

B∈B µ(B) ≤ mz.

Observe that, by double-counting m ≤ nL/k and so we have
∑

B∈B µ(B) ≤ 2n/k2.

Next, we compute Hρ of the original distribution. Each variable is Bernoulli with

probability 1/2 + x(1/2− δ) ≤ k+1
2k

, so we have

Hρ(Ω) ≥ n
(ρ ln 2− log

((
1 + 1

k

)ρ
+
(
1− 1

k

)ρ)
ρ− 1

)
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Thus, we have

Hρ(Ω
′) ≥ n

(ρ ln 2− ln
((

1 + 1
k

)ρ
+
(
1− 1

k

)ρ)
ρ− 1

)
− ρ

ρ− 1

2n

k2

Now, setting ρ = 3, we obtain an entropy of Hρ(Ω
′) ≥ n(ln 2− 9

2k2 ) ≥ n(ln 2− 9
2k2 ).

In the resulting probability distribution, the expected number of failed constraints

is m2−ke ln(α)/α. Hence, by Markov’s inequality we fail at most ≤ m2−ke ln(α)/α+1

constraints with probability at least poly(1/m). Thus, the entropy of Ω′ conditioned

on this event is at least n(ln 2− 9
2k2 )−O(logm). The result follows.

�
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CHAPTER 9

Using the MT distribution to accelerate the search for

bad-events

Recall that our definition of the MT distribution as the distribution on variables at

the termination of the MT algorithm. A key randomness property of this distribution

has been demonstrated in [48], which we have discussed in Chapter 2. We develop this

study further here, showing that the intermediate structures arising in the execution

of MT have some very useful “random-like” properties. This internal distribution is

quite close to the original sampling distribution Ω, which is just a product distribution.

We will use this observation to speed up one of the key bottlenecks in implementing

the MT algorithm. This bottleneck is that, in each iteration of the MT algorithm, one

must find some bad event which is currently true (or else certify that there are none.)

Implemented directly, this step can be fairly slow, although it is usually polynomial

time. We show that this kep step is quite similar to a search problem over a random

configuration. Random configurations are often easy to search: for example, while

deciding k-colorability is NP-hard in general, a simple algorithm of [71] solves it for

Erdős-Rényi random graphs in expected polynomial time. Thus, he key step of the

MT algorithm thus often boils down to detecting a type of configuration in a (nearly)

random configuration. This can often be accomplished by branching algorithms, in

which one gradually builds up a putative true bad event by “guessing” successively

more of its state. At every step, one can check whether the partial bad event is

extendable to a full bad event, and abort the search if not. Using the randomness of

the configuration, one can show that there is a good probability of aborting early.

Sections 9.1 and 9.2 describe the basic algorithms and data structures to imple-

ment this idea. Two examples are given, for Ramsey numbers and for hypergraph
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2-coloring. They are good representatives of “typical” applications in combinatorics

and algorithms. These examples show how these techniques can lead to faster al-

gorithms for nearly all existing applications of the LLL, even those which already

have good polynomial-time algorithms. Section 9.3 analyzes how to apply this idea

to the permutation LLL setting, and shows that one can obtain the first sub-linear

(square-root of input size) algorithms for Latin transversals, a problem of fundamen-

tal combinatorial interest. Section 9.4 addresses non-repetitive vertex coloring – one

of the few remaining cases where polynomial-time versions of the LLL were not known

– and develops such polynomial-time versions.

9.1. Fast search for bad events

To implement the MT algorithm, we must search for any bad-events which are

currently true (or certify there are none). The simplest way to do this would be

to check the entire set B in each iteration. This will cost Ω(m) time per iteration

(at least). If the bad-events are provided to us an arbitrary list, this is optimal.

However, most applications of the LLL have more bad events than variables, and

these bad events are much more structured.

Consider the very first step of the MT algorithm, searching for currently-true

bad-events. In this case, the variables X are distributed according to Ω, a product

distribution. For many problems, one can search random configurations faster (in

expectation) than arbitrary configurations. Thus, one should be able to perform the

first search step much faster than O(m) time. As the MT algorithm proceeds, the

distribution becomes distorted. However, we prove that it does not stray too far

from its original distribution. Thus, one can still hope to find bad-events significantly

faster on these intermediate distributions than on arbitrary distributions.

A key ingredient: a search algorithm S. One main ingredient of our algorithms

is a problem-specific search algorithm S which given a configuration X, determines

all the bad-events currently true on X. This search procedure may be randomized,
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consuming a random source R (which is independent of the random source used to

drive the MT algorithm itself). We refer to this as S(X,R).

In many settings, finding a search algorithm which gives good worst-case bounds

can be difficult or impossible. However, we will seek to parametrize the run-time of

S so that we can analyze its behavior on distributions drawn from the intermediate

stages of MT. We thus define an event-decomposition for S to be a set of events Ai

(not necessarily bad events) and constant terms ci, where i ranges over the integers,

with the property that

(44) ER[Time(S(X,R))] ≤
∑
i

ci[Ai(X)].

It is important to note in this definition that the expectation is taken only over

the random source R consumed by S, not on the randomness of the MT process itself.

We can now measure the running time of MT as follows:

Theorem 9.1. Given an event-decomposition for S as in (44), define

T =
∑
i

ciPΩ(Ai)θ(Ai).

Then, E[run-time of MT] ≤ (1 +
∑

B∈B µ(B))T .

(Recall the definition of θ(E) for an event E from Section 2.2.)

Proof. Consider a set Ai; we wish to estimate the total contribution of the term

ci[Ai(X)] over the total execution of the MT algorithm. This term contributes ci

for each configuration X we encounter in which Ai(X) is true. Every configuration

we encounter either corresponds to the original configuration, or the configuration

produced after resampling some bad-event B.

We can construct a type of witness tree for the latter occurrences. We place a

node labeled by Ai at the root and place a child node labeled by B below it. (Note

that we do not necessarily have Ai ∼ B, and so the B would not necessarily have been

placed as a child of Ai in the standard method for generating witness trees). We then
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go backward in time through the execution log of the MT, placing any resampled bad

events in the tree (as children of Ai or B or lower nodes). We may similarly construct

a witness tree for the initial configuration; this is a singleton tree containing only the

root node labeled Ai.

Observe that each resampling produces a distinct witness tree. Hence the total

contribution of Ai can be upper bounded by summing over all such tree-structures.

To enumerate such trees, one may join any tree-structure rooted in B with any tree-

structure rooted in any Ai. (This over-counts the weight of all such trees.) By

Proposition 2.12, the contribution from B is at most µ(B) and the contribution from

Ai is at most PΩ(Ai)θ(Ai). So the total weight of all such tree-structures is at most

µ(B)PΩ(Ai)θ(Ai). Similarly, the total contribution from the trees corresponding to

original configurations is PΩ(Ai) ≤ PΩ(Ai)θ(Ai). Summing over all (B, i) yields the

stated bound. �

9.1.1. Example: Faster algorithms to construct Ramsey graphs. A clas-

sical result in combinatorics is a lower bound on the diagonal Ramsey numberR(k, k) >
√

2
e
k2k/2 via the LLL [11]. This can be viewed also as an algorithmic challenge: given

k, two-color the edges of the complete graph Kn for n = d
√

2
e
k2k/2e, such that no

k-clique has all
(
k
2

)
edges of the same color.

Proposition 9.2 (Follows easily from MT). For n = d
√

2
e
k2k/2e, there is an

algorithm to construct a two-coloring of Kn avoiding monochromatic k-cliques, in

expected 2k
2/2+o(k2) time.

Proof. For each k-clique, there is a bad-event that it is monochromatic; this has

probability p = 21−(k2). There are m =
(
n
k

)
≤ nk/k! cliques, and so the expected

number of resamplings is at most mep. For each resampling, we check each k-clique

taking km time. Thus, the total expected time in O(epkm2) ≤ 2k
2/2+o(k2). �

Although there are exponentially many bad-events in this case, they have a com-

binatorial structure and it is not necessary to search each bad-event individually.
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Rather, we can use a branching to enumerate the cliques, as we did in Section 4.3.5.

However note that in Section 4.3.5 it was only necessary to analyze the initial con-

figuration, not the intermediate ones.

Proposition 9.3. There is a deterministic search algorithm S for monochromatic

k-cliques with an event decomposition

Time(S(X)) = nO(1)

k∑
i=2

∑
i-cliques I

[I is monochromatic on X]

Proof. We recursively enumerate all i-cliques, for i = 2, . . . , k. Initially, every

edge is a monochromatic 2-clique. Next, for each monochromatic i-clique I, we test

all possible vertices v and check if I∪{v} is also monochromatic. The term nO(1) here

accounts for searching over the vertex v as well as any operations involving testing

whether I ∪ {v} is monochromatic. �

Proposition 9.4. For n = d
√

2
e
k2k/2e, there is an algorithm to construct a two-

coloring of Kn avoiding monochromatic k-cliques, in expected 2k
2/8+o(k2) time.

Proof. We apply Theorem 9.1 to the event-decomposition of Proposition 9.3.

We have:

T ≤ nO(1)

k∑
i=2

∑
i-cliques I

PΩ(I is monochromatic on X)θ(I is monochromatic on X)

≤ nO(1)

k∑
i=2

∑
i-cliques I

21−(i2) exp(epN(I))

≤ nO(1)

k∑
i=2

ni2−(i2) exp(epi2nk−2/(k − 2)!)

≤ nO(1) max
i∈[2,k]

ni2−(i2) exp(epi2nk−2/(k − 2)!)

≤ 2k
2/8+o(k2)

Now,
∑

B µ(B) ≤ mep = 2O(k). Hence by Proposition 9.1 the overall run-time of

MT is 2k
2/8+o(k2). �
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This is a polynomial improvement over Proposition 9.2, roughly reducing the time

to the fourth root.

9.2. Depth-first-search Moser-Tardos

As we have seen, the main cost in the MT algorithm is to search for any bad-

events which are currently true (or certify there are none). The simple way to do

this, as we have discussed in Section 9.1, is to check the entire set B in each iteration.

This is rather wasteful; a small optimization, suggested by [105], is to maintain a

stack which records all the currently-true bad-events. At the very beginning of the

MT algorithm, we scan the entire set B to find all the true bad-events. Whenever we

resample a bad-event B, we only need to check its neighbors to determine whether

they became true (and if so, we add them to the stack); we do not need to search

the entire space. This can potentially improve the runtime of MT by a factor of n.

We refer to this as a “depth-first-search” MT. Using this method, we must expend

O(d) work after each each resampling (assuming that it requires unit time to check

a bad-event). As the expected number of resamplings overall is O(m/d), this gives a

total expected running time O(m). If the bad-events are simply provided to us as an

arbitrary list, this is already optimal.

For applications with complex bad-events, we can speed up the depth-first search

strategy by taking advantage of the random nature of the MT-distribution. We can

hope to design a search algorithm which takes as input a configuration of variables,

and a bad-event B , and lists all of the bad events B′ ∼ B which hold in it.

A key ingredient: data structure D. One main ingredient of our algorithms is

a problem-specific data-structure D which, given a bad event B and configurations

X ′, X before and after a resampling of B, can determine all the bad events B′ ∼ B

which are true in X; we refer to this as D(B,X ′, X). This data-structure also requires

an initialization step, in which given a configuration X we find all bad events currently

true in it; we refer to this as D(∅, X). (Initialization is typically much cheaper and
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simpler than the updating step, and is only performed once, so we mostly ignore it

in our analyses.)

Informally speaking, we would like define an event-decomposition for D to be a

set of events AB,i (not necessarily bad events) and constant terms cB,i, where B ∈ B

and i ranges over the integers, with the property that

Time(D(B,X ′, X)) ≤
∑
i

cB,i[AB,i(X)].

However, we will want to allow amortized run-time bounds and randomized data

structures. We suppose that D uses a random source R (which is independent of the

randomness used to drive the MT algorithm itself). We also suppose that we have

an amortized expected-run-time guarantee. This leads to the following (somewhat

intimidating looking) Theorem 9.5:

Theorem 9.5. Suppose that we are given an event-decomposition {cB,i, AB,i |

B ∈ B}, which satisfies the following condition: “for all sequences of configurations

X1, . . . , Xt+1, and any resampled bad events B1, . . . , Bt which are true in configura-

tions X1, . . . , Xt respectively, we have

ER

[ t∑
j=1

Time(D(Bj, Xj, Xj+1))
]
≤

t∑
j=1

∑
i

cBj ,i([ABj ,i(Xj)] + [ABj ,i(Xj+1)]).”

For each event B, define TB =
∑

i cB,iPΩ(AB,i)θ(AB,i).

Then, the expected run-time of the MT algorithm, exclusive of the initialization

of the data-structure D itself, is at most
∑

B∈B µ(B)TB.

Proof. This is almost identical to Theorem 9.1 and is omitted. �

9.2.1. Example: hypergraph two-coloring. We consider a more technically

involved example. Suppose we are given a k-uniform hypergraph with m hyper-edges,

and we wish to find a two-coloring of the vertices so that no edge is monochromatic.

Suppose each edge intersects with ≤ L others. When L ≤ 0.17
√

k
ln k

2k, MT can be

applied to the approach of [95] to find a good coloring. Straightforward analysis of
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this algorithm would indicate a running time mL · poly(k); potentially, a quadratic-

time algorithm. We reduce this to m logO(1)m time:

Theorem 9.6. Suppose, in a k-uniform hypergraph, there are m edges and each

edge intersects at most L ≤ 0.17
√

k
ln k

2k other edges, and k is sufficiently large. Then

a non-monochromatic two-coloring can be found in expected time m logO(1)m.

Proof. We present a version of the algorithm of [95] to find such a coloring: first,

each vertex chooses a color at random. Next, we choose a random ordering of the

vertices (equivalently, each vertex independently chooses a random rank ρv ∈ [0, 1]).

For each vertex v in this order, we look for any monochromatic edges of which v is

the lowest-ranking vertex. If we find any such edge, we flip the color of v.

It is easy to implement this procedure in timeO(m), but the probability it succeeds

can be very low when m� L. We we will assume that m ≥ Ω(
√

k
log k

2k); otherwise,

as shown in [95], then this algorithm produces a good coloring with probability Ω(1).

This procedure fails to produce a valid coloring only if the following occurs. There

is some edge f , originally colored blue (w.l.o.g.), and vertex v ∈ f is the lowest-

ranking vertex of f . There is another edge f ′, which intersects f in exactly v, with

the property that all other vertices in f ′ are either red or have rank lower than v. In

that case, it is possible that all the originally blue vertices in f ′ are flipped, becoming

red. This type of monochromatic edge will remain in the final coloring.

Each vertex has two variables associated with it: its (original) color and its rank

ρv. We use the MT algorithm to select both values.

We will translate this into the LLL framework in a somewhat unusual way. We de-

fine a bad event Bblue(f, f ′) to mean that the above event occurred and the minimum-

ranking vertex in f had rank ≤ R, where R = ln k
2k

. We define a bad event Bblue(f)

to mean that edge f was originally blue and all vertices in it had rank > R. We

similarly define Bred(f) and Bred(f, f ′). Note that the algorithm fails iff one of the

four types of bad events occurs. The reason we are distinguishing the two cases of
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the minimum-ranking vertex in f , is that when this rank is large, then fixing f will

typically break many f ′; so it is not beneficial to take a union-bound over all such f ′.

We now use the asymmetric LLL. For an event B(f), we assign µ(B(f)) =
√
ep1

and for an event B(f, f ′) we assign µ(B(f, f ′)) = ep2, where p1 = PΩ(B(f)), p2 =

PΩ(B(f, f ′)).

Let us first compute p1. For an event Bblue(f), it must occur that all the vertices

in f are blue and have rank > R; this occurs with probability p1 = 2−k(1−R)k.

Next, let us compute p2. Suppose f, f ′ intersect in v. For an event Bblue(f, f ′),

it must occur that all vertices in f are blue; this occurs with probability 2−k. All

the vertices in f , other than v, must have rank exceeding that of v; this occurs with

probability (1−ρv)k−1. All the vertices in f ′, other than v, must be either red or have

rank less than v; this occurs with probability (1/2 + 1/2ρv)
k−1. Hence, integrating

over ρv ∈ [0, R], we have

p2 ≤
∫ R

ρv=0

dρv 2−k(1− ρv)k−1(1/2 + 1/2ρv)
k−1

= 21−2k

∫ R

ρv=0

dρv (1− ρv)k−1(1 + ρv)
k−1

≤ 21−2kR

Finally, we need to analyze the dependency. Consider an edge f ; we want to

compute t =
∏

B(1 + µ(B)) where B ranges over all bad events touching f . One can

verify there are at most 2L events of type B(f ′) (one for each color) and at most 4L2

events of B(f ′, f ′′) (either f ′ or f ′′ could touch f , and there are two possible colors).

Hence we have

t ≤ (1 +
√
ep1)2L(1 + ep2)4L2 ≤ exp(2L

√
ep1 + 4L2ep2)

The LLL criterion is now

p1

√
e ≥ p1t p2e ≥ p2t

2
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which can be seen to be satisfied for L ≤ 0.17
√

k
ln k

2k and k sufficiently large. Fur-

thermore, for any edge f , we have t ≤ O(1).

We now discuss how to find bad events efficiently. For this, we will need the

data-structure D to track the following information: for each vertex v, we list all

monochromatic edges which contain v. When an edge was originally monochromatic

and was resampled, we delete it from the k corresponding lists; that takes time O(k).

When an edge becomes monochromatic, we add it to the k corresponding lists, again

in time O(k).

Now supposing we have this list of monochromatic edges; we show how to find

the bad events when we resample some edge f . To find an event of type B(f ′)

affected by f , we simply loop over all the monochromatic edges f ′ intersecting f , and

check if they also satisfy the property that ρ(w) ≥ R for all w ∈ f ′; this takes time∑
f ′ touches f k

O(1).

Next, we search for events B(f ′, f ′′), where f ′ touches f : we begin by looping

over all edges f ′ touching f . For each monochromatic f ′, we then loop over all edges

f ′′ touching f ′. The total work for this is

∑
f ′ touches f

kO(1) +
∑

f ′ touches f

[f ′ is monochromatic]
∑

f ′′ touches f ′

kO(1)

Finally, consider how to find an event B(f ′, f ′′), where now f ′′ touches f . We

begin by looping over edges f ′′. Next, we use our data-structure to efficiently list all

monochromatic f ′ touching f ′′. The work for this is

kO(1) +
∑

f ′′ touching f

[f ′′ is monochromatic]
∑

f ′ touches f ′′

kO(1)

Putting all these terms together, we can write the work factor for the data-

structure in terms of an event decomposition. Namely, if we resample a bad event of
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type B(f), then the work expended searching for neighbors of f is

Time ≤ kO(1)
( ∑
f ′ touches f

1 +
∑

f ′ touches f

[f ′ is monochromatic]
∑

f ′′ touches f ′

1
)

≤ LkO(1)
(

1 +
∑

f ′ touches f

[f ′ is monochromatic]
)

This is precisely the form required for the event-decomposition in Theorem 9.5.

Thus, we have

TB(f) ≤ LkO(1)
(

1 +
∑

f ′ touches f

PΩ(f ′ is monochromatic)θ({B′ | B′ touches f})
)

≤ LkO(1)
(

1 +
∑

f ′ touches f

2−k
∏

B′ touches f

(1 + µ(B′))
)

≤ LkO(1)(1 + L2−kt) ≤ LkO(1)

and hence the total expected work for this bad event B(f), over the entire execution

of MT, is at most µ(B(f))TB ≤ p1

√
eLkO(1) ≤ kO(1); summing over all edges f gives

a total time of mkO(1).

Similarly, one can easily see that the work to find bad events B′ ∼ B(f, f ′), is

almost TB(f,f ′) ≤ LkO(1). Hence the total expected work for such events, over the

execution of MT, is at most

Work for events B(f, f ′) ≤
∑
f,f ′

µ(B(f, f ′))TB(f,f ′)

≤
∑

f touches f ′

ep2Lk
O(1)

≤ mLep2 × LkO(1) ≤ mkO(1)

It is easy to see that one can initialize in the same time, namely mkO(1). Recalling

that k = logO(1)m, this proves the theorem. �
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9.3. Latin transversals revisited

Recall the problem of finding a Latin transversal of an n × n matrix A. We

discussed in Section 7.7.1 how the Swapping Algorithm could be applied as long as

each color appears at most ∆ ≤ (27/256)n times in the matrix. We can apply our

analysis of the MT distribution in order to accelerate that algorithm, reducing the

running time to O(n).1

Theorem 9.7. Suppose each color appears at most ∆ ≤ (27/256)n times in the

matrix A. Then there is an algorithm to find a Latin transversal in expected time

O(n) assuming that we have fast read access to the matrix, namely:

(A1) The entries of A allow random-access reads.

(A2) The colors of A can be represented as bit-strings of length O(log n).

(A3) Our algorithm can perform elementary arithmetic operations on words of size

O(log n) in time O(1).

Note that the input size to the problem is Θ(n2).

Proof. Each bad-event B has probability p = 1
n(n−1)

. We have seen in Sec-

tion 7.7.1 that the asymmetric LLL criterion holds with these parameters with µ(B) =

O(p). For any x, y ∈ [n] define

θ(x, y) = θ
(
{B ∈ B|B involves x or y}

)
Thus θ(x, y) =

∏
B(1 + µ(B)), where the product is taken over all bad events

involving x or y. There are O(n2) such bad events, and for each such bad event B we

have µ(B) = O(n−2), so in total θ(x, y) = O(1).

Now consider the following data-structure D. We first randomly choose some

2-independent hash function H, uniformly mapping the labels of colors to the set

1We note that Sections 9.1 and 9.2 were stated in terms of the ordinary MT algorithm. However,
it is not hard to see that all this analysis dependend solely on the Witness Tree Lemma, which we
have seen holds for the Swapping Algorithm as well. Thus, all the results of those two sections hold
equally for the Swapping Algorithm.
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[n]. We will maintain a list, for each t ∈ [n], of all pairs (x, y) with π(x) = y and

H(A(x, y)) = t. These can be maintained with a doubly-linked-list for each element

t ∈ [n] in the range of H. We will update this structure during the execution of the

MT algorithm; for example, if π(x) = y and we resample so that π(x) = y′, we would

remove the pair (x, y) from the list corresponding to H(A(x, y)) and add the pair

(x, y′) to the list corresponding to H(A(x, y′)). It is not hard to see how to add and

remove pairs from their appropriate list in constant time.

Now consider the work required in a single step of D(B,X ′, X). The opera-

tion of adding and removing pairs from their corresponding linked-lists takes O(1)

time. The costly operation is that, for each affected entry x in the permutation, we

must loop over all pairs x, x′ with H(A(x, π(x))) = H(A(x′, π(x′))) and test whether

A(x, π(x)) = A(x′, π(x′)). If the latter holds, then we have detected a new bad event.

Thus, suppose we resample B = (π(x1) = y1) ∧ (π(x2) = y2), obtaining the new

permutation π′. There are four positions in the permutation π′ that differ from π,

and we must test each of these to see if there are new bad events. We thus have:

Time for D updating B =∑
y′1∈[n]

∑
x3 6=x1

y3 6=y′1

[
π′(x1) = y′1 ∧ π′(x3) = y3 ∧H(A(x1, y

′
1)) = H(A(x3, y3))

]
+ . . .

(Here, we have only written one of the four summands, corresponding to new bad

events involving the π(x1) = y′1. The other three summands are analogous, and will

have the same cost.)
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By 2-independence of H, we have:

Expected Time for D(B,X ′, X) =

1/n
∑
y′1∈[n]

∑
x3 6=x1

y3 6=y′1

[
π′(x1) = y′1 ∧ π′(x3) = y3

]

+
∑
y′1∈[n]

∑
x3 6=x1

y3 6=y′1

[
π′(x1) = y1 ∧ π′(x3) = y3 ∧ A(x1, y

′
1) = A(x3, y3)

]
+ . . .

(This expectation is taken over the hash function H, not on any of the random

choices during the MT algorithm. Thus, the permutations π, π′, should be viewed as

fixed values and not random variables.)

We can now apply Theorem 9.5 to calculate:

TB = 1/n
∑

y′1,x3 6=x1,y3 6=y′1

PΩ[π′(x1) = y′1 ∧ π′(x3) = y3]θ(x1, y
′
1)θ(x3, y3)

+
∑

y′1,x3 6=x1,y3 6=y′1
A(x1,y′1)=A(x3,y3)

PΩ[π′(x1) = y′1 ∧ π′(x3) = y3]θ(x1, y
′
1)θ(x3, y3) + . . .

= n3 × 1/n× 1

n(n− 1)
×O(1) + n2 × 1

n(n− 1)
×O(1) + . . .

= O(1)

We can perform a similar calculation that shows O(n) time to initialize D. So,

by Theorem 9.5, the expected running time of MT is

O(n) +
∑
B

µ(B)TB ≤ O(n) +O(1)
∑

x,y,x′,y′

A(x,y)=A(x′,y′)

µ(x, y, x′, y′) = O(n).

as desired. �
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9.4. Non-repetitive vertex coloring: from exponential to polynomial

So far, we have examined problems in which good data structures can lead to poly-

nomial improvements in the MT runtime. However, Theorems 9.1, 9.5 can be much

more powerful, and can indeed transform exponential-time algorithms to polynomial-

time ones. We will consider a series of related problems based on non-repetitive vertex

coloring of graphs. These represent one of the few remaining cases in which the Lovász

Local Lemma provides a proof of existence without a corresponding polynomial-time

algorithm. We will remedy this for these problems.

Given a graph G, we seek to color its vertices so that no color sequence appears

repeated in any vertex-simple path; i.e., there is no simple path colored xx, where

x can denote any nonempty sequence of colors. How many colors are needed in

order to ensure such a coloring exists? This is known as the Thue number π(G) of

G, motivated by Thue’s classical result that π is at most 3 for paths of any length

[113].2

The problem of determining non-repetitive colorings and Thue numbers have been

studied extensively in a variety of contexts. In [10], it was shown via the LLL that for

any graph G with maximum degree ∆, π(G) = O(∆2). The original constant term in

that paper was not tight; a variety of further papers such as [46, 47, 50] have brought

it down further. The best currently-known bound is that π(G) ≤ (1 + o(1))∆2 [32].

The analysis of [32] does not use the LLL; it uses a non-constructive Kolmogorov-

complexity argument which is somewhat complicated and specialized to the graph-

coloring problem.

While the MT resampling framework applies to this problem, the key bottleneck

is to either find a bad event (a path with repeated colors), or to certify that none such

exists. In this case, the number of bad events is exponentially large; more seriously,

2There are a few variants on this definition such as whether the edges or vertices are colored, and
whether each has its own palette of colors or whether there is a common palette. For concreteness,
we color vertices from a common palette; all of our bounds would apply to the other scenarios as
well. We assume that the graph G is simple with 2 ≤ ∆ ≤ n− 1.
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it is NP-hard to even detect whether a given coloring has a repeated color sequence

[82]. So, in fact this is a situation in which it is intractable to find a data-structure

with good worst-case run-time bounds.

In [48], a constructive algorithm was introduced using C = ∆2+ε colors (i.e., if

a slack ∆ε is allowed). The basic idea of [48] is to apply the MT algorithm, but to

ignore the long paths. This algorithm succeeds in finding a good coloring with high

probability, and the running time is nO(1/ε) – polynomial time for fixed ε. This cannot

be amplified to succeed with probability 1, as it is not clear how to test whether the

output of the algorithm is valid. Thus, it is a Monte Carlo, but not a Las Vegas,

algorithm.

9.4.1. New results. We present the first polynomial-time coloring that shows

π(G) ≤ (1 + o(1))∆2; furthermore, our algorithm is Las Vegas. Until this work, no

Las Vegas algorithms were known for this problem where the number of colors C is

any function of ∆, and no Monte Carlo algorithms were known where C = φ∆2 for

φ any fixed constant. We also develop the first-known ZNC (parallel Las Vegas)

versions of such results.

As another application, Section 9.4.4 considers a generalization of non-repetitive

colorings, introduced in [9], to avoid k-repetitions. That is, given an integer parameter

k ≥ 2, we aim to color the vertices to avoid the event that a sequence of colors xx . . . x

appears on a vertex-simple path, with the string x occurring k times. (Standard

non-repetitive coloring corresponds to k = 2.) The best type of result achievable in

polynomial time using [48] is a coloring using O(∆1+ε) colors, for any desired constant

ε > 0. Theorem 9.11 shows that a coloring using ∆1+ 1+ε
k−1 + O(∆2/3+ 1+ε

k−1 ) colors and

which avoids any k-repetitions, can be found in nO(1/ε) (i.e., polynomial) time.

A second type of generalization of non-repetive colorings comes from work of [70],

which considered when it is possible to avoid nearly-repeated color sequences; that is,

a sequence of colors xy where the Hamming distance of x and y is small. The work of

[70] considered the problem for color sequences alone, while we extend this to graph
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coloring. This presents new algorithm challenges as well. We develop new bounds

and algorithms in Section 9.4.5.

9.4.2. Non-repetitive vertex coloring.

Theorem 9.8. There is some constant φ > 0, such that any graph G of maximum

degree ∆ can be C-colored to avoid repetitive vertex-colorings as long as C ≥ ∆2 +

φ∆5/3. Furthermore, such a coloring can be found in expected time O(n2∆−2/3).

Proof. A bad-event in this context is some vertex-simple path with a repeated

color sequence, of length 2l. We define µ(B) = α2l for all such events, where α is a

parameter to be determined. Our convention is that each color sequence gives rise to

a distinct bad-event; thus, all bad-events are atomic and have probability C−2l.

Now consider a fixed vertex v, and let us enumerate all bad events affecting it.

These have the following form: There is a path of length 2l, of which v is the tth

vertex for some t = 0, . . . , l−1 (by reversing the path, one can assume without loss of

generality v comes in the initial half); the first l vertices have some pattern of colors,

and the final l vertices have also this pattern. Summing over all possible values of t, l,

all ∆2l−1 paths, and all possible C l color patterns, we have that the total contribution

of all bad events involving the vertex v is at most

∞∑
l=1

l∑
r=1

C l∆2l−1α2l =
α2C∆

(1− α2C∆2)2
for α2C∆2 < 1.

To show that the asymmetric LLL criterion holds, consider some bad-event B of

length 2l. Its probability is C−2l. Its independent sets of neighbors can be determined

by, for each of the 2l vertices, selecting zero or one bad-events involving that vertex.

Thus, the total weight of all independent sets of neighbors is at most (1+ α2C∆
(1−α2C∆2)2 )2l.

Thus, the LLL criterion becomes

α2l ≥ C−2l(1 +
α2C∆

(1− α2C∆2)2
)2l
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which is satisfied for all l ≥ 1 iff

(45) αC ≥ 1 +
α2C∆

(1− α2C∆2)2

Set α = (
√
C(∆+∆2/3))−1; routine algebra shows that (45) holds for φ sufficiently

large.

The key bottleneck is to search for some true bad event. Suppose we are given

a configuration and a fixed vertex v, and we wish to determine if v participates in

any paths with repeated colors. As we have said before, this is difficult because there

are exponentially many potential bad events. However, we will take advantage of the

random nature of the typical coloring; we will be able to rule out certain bad events

prematurely, pruning our search in those cases.

Say that v participates in a repeated path v0, . . . , v2l−1 of length 2l, and occurs in

position t < l. For the moment, let us suppose that t = 0 and l is fixed. To emphasize

the position of v in the list, we write vt = v = v0.

We begin by looping over the vertex in position l. If this vertex vl has the same

color as v0, we continue the search, otherwise we abort. Next, we loop over all

neighbors v1, vl+1 of v0, vl respectively. Again, if they have the same color (and also

v1 6= vl+1), then we continue the search otherwise we abort. We continue this process,

looping over pairs of vertices v2, . . . , vl−1, vl+2, . . . , v2l−1. At each stage of this branch-

ing process, we insist that the colors in the path are repeated up to that point, and

all vertices are distinct. At the end, we examine if the resulting path corresponds to

a bad event. We can do a similar procedure if t 6= 0; we begin by guessing vertices

vt+1, . . . , vl−1, vt+l, . . . , v2l−1 and then branch backward on vt−1, . . . , v0, vl+t−1, . . . , vl.

Let us examine how to write the work factor of this type of branching process.

Suppose again that vt is a fixed vertex with a color c. For position vt+l, we can loop

over any vertex v′ with the same color as vt. The total work for this looping is the

number of vertices with color c; i.e. it is
∑

v′ [χ(v′) = c], where χ denotes the coloring

map. (Our data structure D will maintain the vertices sorted by color; this is easy
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to do in linear time.) This term has the form required for Theorem 9.5; i.e., it is the

sum of indicator functions of events.

The next stage of the branching process requires extending the stories by enumer-

ating vt+1, vt+l+1 with the same color, distinct and neighbors of vt, vt+l respectively.

By sorting the neighborhoods of these vertices, one can enumerate all such pairs in

time ∆ plus the number of such pairs. That is, the next stage of the branching process

has cost

∑
v′

[χ(v′) = c]∆ +
∑
v′,c

w∈N(v),w′∈N ′(v)

[χ(v′) = c ∧ χ(w) = c′ ∧ χ(w′) = c′],

where here the terms w,w′ indicate potential candidates for v1, vt+1. Again, this has

the form required for Theorem 9.5.

When we are applying Theorem 9.5 to compute TB, for any boolean predicate

X(E), a term of the form [X(E)] will contribute PΩ(E)θ(E). If the event E is

defined by E = (χ(u1) = c1)∧ · · · ∧ (χ(uk) = ck) for u1, . . . , uk distinct, then a simple

calculation shows that PΩ(E)θ(E) ≤ αk. Hence, by Theorem 9.5, the total cost of

the branching process to find vt+l is nα and the total cost to enumerate vt+1, vt+l+1 is

nα∆ + nα3C∆2. For the remainder of this analysis, we will not specifically write the

running time of our data-structure in term of Theorem 9.5, but we will go immediately

to writing down the final contribution in terms of polynomials of n, α,∆.

Assuming that t, l are fixed and known, the total contribution of the branching

process, across all l stages, is at most
∑l

r=0 nC
r(α∆)2r+1. With a little thought, one

can see that it is not necessary to specify a fixed value of l, t for this branching. Once

one specifies the initial vertex vt (without necessarily knowing t) and the correspond-

ing vertex vt+l (again, without necessarily knowing l), one merely has to decide how

many steps to branch forward/backward from these two vertices. If at some point

during this branching process one detects a repeated color sequence, one can then

infer the corresponding t, l.
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If one branches r1 forward steps and r2 backward steps, then again the work

expended is n(α∆)2(r1+r2)+1. Summing over r1, r2, one has the total work of branching

at most

n
∞∑
r1=0

∞∑
r2=0

Cr(α∆)2(r1+r2)+1 ≤ n

∞∑
r=0

(r + 1)Cr(α∆)2r+1 ≤ O(n∆−1/3).

So far, we have computed the total work for finding bad events B′ which contain

a given vertex. Now, suppose we have a bad event B, we need to find bad events

B′ ∼ B which are created after resampling B. If the bad event B has length 2l, then

by the same token, the work expended will be TB ≤ 2l × O(n∆−3). Summing over

all such bad events, we have

∑
B

µ(B)TB ≤
∞∑
l=1

n∆2l−1clα2l × 2l ×O(n∆−1/3) ≤ O(n2∆−2/3)

We want to emphasize the intuition here, which is that searching for a repetitive

coloring in the intermediate configurations of the MT algorithm is very similar for

searching for a repetitive coloring in a completely random configuration. For, sup-

pose we were simply choosing a random vertex coloring and checking if there was a

repetitive coloring. In this case, one could similarly compute the expected running

time of the branching algorithm. One would obtain identical formulas, with the only

difference being that all instances of α in the above proof would be replaced by the

slightly smaller value C−1, the probability that a given vertex has a given color. �

9.4.3. Parallel algorithm for the Thue number. When we seek to turn the

above into a parallel (say, ZNC) algorithm, there are three aspects of the MT al-

gorithm which can give us trouble. The first two are standard issues with this algo-

rithm: First, we need the MT algorithm to terminate after a polylogarithmic number

of iterations. Second, we need to find a maximal independent set of bad events in
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polylogarithmic time. The third roadblock is the most subtle — it can be very diffi-

cult to deal with “large” bad events — paths consisting of more than polylogarithmic

vertices.

Proposition 9.9. There is a constant φ > 0 such that any graph G of maximum

degree ∆ can be C-colored to avoid repetitive vertex-colorings as long as C ≥ ∆2 +

φ∆2/ log ∆. Furthermore, such a coloring can be found in ZNC (Las Vegas NC):

the algorithm terminates successfully with probability 1 after expected time O(log6 n)

using nO(1) processors.

Proof. In order to get a Las Vegas NC algorithm, we will only need to bound the

expected size of the branching process involved. We will have a polynomial number

of processors, sufficiently large to handle (say) n times the expected size of the total

branching work. If the branching work ever exceeds this bound, we abort the entire

algorithm and start from scratch. This will only multiply the total expected time by

a constant factor.

The main difficulty in turning our sequential algorithm into a parallel one is that

our branching process seems to require l steps to check a path of length l — extending

partial paths vertex by vertex. This means that we will not be able to check long

paths in polylogarithmic time.

To handle this, we require a stronger condition on the coloring. Let T = x log3 n,

for x a sufficiently large constant (to be specified later). We disallow any repeated

path of length 2l, for l ≤ T ; this is the usual condition for non-repetitive coloring. In

addition, we require that there are no vertex-simple paths L1, L2 of length ≥ T , which

share no vertices, which have the same color sequence. Although this condition only

involves O(log3 n) vertices (and hence gives rise to “small” bad events), it is not hard

to see that if this condition if satisfied there can be no repeated paths of length ≥ T .

Thus, these two conditions jointly guarantee that we have a non-repetitive coloring.

In addition to the repeated color paths, each vertex now participates in nT∆2T

of this second type of bad event. Along the same lines as Theorem 9.8, a sufficient
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condition for the parallel MT algorithm with ε slack is

(46) Cα− α2C∆

(1− α2C∆2)2
− nTCT∆2Tα2T ≥ 1 + ε

and this is satisfied for α = (∆2 + φ∆2

2 log ∆
)−1.

For φ, x sufficiently large, the LHS of (46) is a decreasing function of ∆, hence

reaches its minimum value at ∆ = n. At this point, one can observe that (46)

is satisfied for ε = Ω(1/ log n). This implies that MT terminates after O(log2 n)

iterations, with high probability.

We next claim that the bad events can be enumerated in polylogarithmic time

in an expected polynomial number of processors. This means we can use Luby’s

algorithm to choose an MIS in time O(log2 n). To prove this claim, it suffices to

employ a branching process, which proceeds through O(log n) stages, and show that

the expected stack size remains polynomial. This is very similar to Theorem 9.8, and

is omitted. Note that to find bad events of the second type, we will employ the exact

same kind of branching we use to find the short repeated color sequences.

So the MT algorithm takes O(log2 n) iterations to converge. Each iteration can

be executed in parallel time log4 n (with a polynomial number of processors), giving

a total time of O(log6 n). �

9.4.4. Higher-order Thue numbers. Recall the notion of k-repetitions intro-

duced in [9]. That is, given a parameter k, we want to avoid the event that a sequence

of colors xx . . . x appears on a vertex-simple path, with the string x occurring k times.

It is not hard to extend the analysis of Theorem 9.8 to obtain an algorithm for

k-Thue number as follows:

Theorem 9.10. For some constant φ > 0, there is an algorithm which takes as

input a graph G and parameter k, and produces a vertex coloring with C = ∆1+ 1
k−1 +

φ∆2/3+ 1
k−1 colors which avoids k-repetitions. This algorithm runs in time nk+O(1).
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For any fixed value of k, this is a polynomial-time algorithm. But developing

an algorithm whose running time scales with k, presents new algorithmic challenges.

Note that the approach of [48], which is based on finding a “core” set of bad events

which can be checked quickly, will not work here — for, the work required to check

even the color sequences of length 1 (the simplest class of bad event), is already n∆k,

which can be super-polynomial time.

Our main result here is:

Theorem 9.11. For some constant φ > 0, there is an algorithm with the following

properties. It takes as input a graph G, a parameter k, and a parameter ε. It runs in

expected time nO(1/ε), and whp produces a vertex coloring with C = ∆1+ 1+ε
k−1 +φ∆2/3+ 1+ε

k−1

colors, which avoids any k-repetitions. That is, there is no vertex-simple path in which

a color sequence is repeated k times. Note that this is not a Las-Vegas algorithm.

Proof. Suppose we are given a fixed ε > 0. As in Theorem 9.8, for any bad-event

B of length kl, we set µ(B) = αkl, where

α =
(

∆1+ 1+ε
k−1 +

φ

2
∆2/3+ 1+ε

k−1

)−1

Now observe that for φ > 0, we have αkC∆k < 1, so the LLL criterion reduces to

(47) Cα ≥ 1 +
kαkC∆k−1

(1− αkC∆k)2

The LHS of (47) can be written as a function of ∆, k, φ, and a parameter v =

∆ε/(k−1). By routine calculus, we see that this is indeed satisfied, for all k,∆, for φ

sufficiently large. (The worse case comes when k is small, v = 1, and ∆→∞.)

The remaining task is to find any bad events which are true in a current configu-

ration. To begin, we will simply ignore any color-sequences whose length l is greater

than Ω( logn
ε log ∆

). We claim that, even though we do not check these events explicitly,

the probability that any such bad event ever becomes true, is negligible. For, by the
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union-bound, the probability of such a long path is

P [some bad event occurs with l ≥ x
log n

ε log ∆
] ≤ n

∞∑
l=x logn

log ∆

C l∆klαkl

To show that this is negligible, for x a sufficiently large constant, it suffices to show

that

(C∆kαk)ε
−1 log−1 ∆

is bounded below 1. Again, using routine analysis, we have that (C∆kαk)ε
−1 log−1 ∆ ≤

1/e.

Hence, by the union bound, with high probability no bad events with color se-

quences longer than Ω( logn
ε log ∆

) will ever become true. So we only need to check the

shorter sequences.

Now, suppose we wish to check for a k-repetition involving a color sequence of

length l. As we are not attempting to determine exactly the exponent of n, we will

simplify our task by simply searching for any bad event at all. We will also simply

enumerate over the exact value of the length l of the path, rather than attempting

to handle all values of l simultaneously. This is wasting work but only by a factor of

nO(1).

We first guess the initial vertex v and the color sequence. We next start exploring

vertices, starting from v, which match the given color sequence. We have a stack

of partial paths, beginning at the vertex v, which match the color sequence for t ≤

l edges. This is a similar type of branching process to the one we considered in

Theorem 9.8.

The stack of the branching process begins with size nC l. At each stage, the

expected size of the stack is multiplied by a factor of ∆α; the term ∆ represents

that we can extend each partial path in ∆ ways; the term α represents that any given

vertex matches the color sequence with probability at most α. So the size of the stack
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after j steps is nCL(∆α)j. Some simple analysis shows that ∆α ≤ 1− Ω(∆−1/3), so

the expected work for this branching process is nO(1)C l.

As we are only examining color sequences of length l ≤ O( logn
ε log ∆

), the expected

work is at most nO(1/ε).

It is notable in this proof that we need to combine the method of [48], which

is based on identifying a core subset of bad events, with the fast-search method of

Theorem 9.1. In this application, the large bad events cannot be searched efficiently;

searching the small “easy” bad events efficiently takes exponential time in general but

is polynomial time on the random configurations presented during the MT algorithm.

�

9.4.5. Approximately-repeated color sequences. In [70], the idea of non-

repeated color sequences was generalized to avoiding ρ-similar color sequences, for

some parameter 0 < ρ ≤ 1. If x, y are two color-sequences of length l, we say that

x, y are ρ-similar if x, y agree in at least dρle positions. When ρ = 1, of course, this

simply means that x = y. Hence the problem of coloring the graph to avoid ρ-similar

color sequences generalizes the problem of non-repetitive coloring. Although the work

of [70] considered the problem for color sequences alone, this generalization has not

been studied in the context of graph coloring. It presents new algorithmic challenges

as well. We present the following result:

Theorem 9.12. There is some constant φ > 0 with the following property. For

all ρ ∈ (0, 1] and any graph G with maximum degree ∆, there is a coloring that avoids

ρ-similar sequences, with

C = ρ−1(1− ρ)1−1/ρ(∆2 + φ∆11/6)1/ρ

colors. Furthermore, such a coloring can be found in expected time nO(1).

Proof. Define the usual entropy function h = −(1− ρ) ln(1− ρ)− ρ ln ρ.
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We can enumerate the bad events as follows. If we have an sequence s of 2l vertices,

and a l-dimensional binary vector w which has Hamming weight H(w) = dρle, we

define the bad event Bw,s which is that vertices si, si+l have the same color for all

indices i which wi = 1. It is not hard to see that there is an ρ-similar vertex sequence

iff there is some w, s where the bad event Bw,s occurs. (We can further insist that

the vector w has w1 = 1; this gives slightly better bounds but does not change the

asymptotics).

Set µ(B) = α2l for a bad-event of length 2l, where α = e−h/ρ(∆2 + φ/2∆11/6)−1/ρ

Let us count the bad events involving an vertex v. We enumerate this as follows.

There are (2l)∆2l−1 paths involving vertex v. We must check a vector w ∈ {0, 1}l

which has a 1 in the position corresponding to vertex f ; this gives us
(

l−1
dρle−1

)
further

choices. Then there are Cdρle choices for the color sequence shared by x, y. Any such

event has probability α2dρle. Summing over all l gives us a total contribution of

∑
B involving v

µ(B) ≤
∞∑
l=1

(2l)∆2l−1

(
l − 1

dρle − 1

)
α2dρleCdρle

=
∞∑
k=1

(α2C)k
d(k+1)/ρe−1∑
l=dk/ρe

(2l)∆2l−1

(
l − 1

k − 1

)

≤
∞∑
k=1

(α2C)k
∞∑
q=0

(2(k + 1)/ρ)∆2l−q−1

(
(k + 1)/ρ− 1

k − 1

)

≤
∞∑
l=1

(2l)∆2l−1ehlCρlα2ρl

≤ 2α2ρ∆eh

(1− α2ρCρ∆2eh)2

Hence the asymmetric LLL criterion for avoiding such ρ-similar edge colors reduces

to

Cα ≥ 1 +
2α2ρCρ∆eh

(1− α2ρCρ∆2eh)2

Routine calculus shows that the LHS is decreasing in ρ. So the worst case is when

ρ = 1; then simple calculus shows that this is satisfied for φ sufficiently large.

344



We now come to the main algorithmic challenge: finding a bad event (if any

are currently true). One might naively expect to apply the branching process of

Theorem 9.8: first choose the first and middle vertex in the path. Then branch

on the vertices, aborting the search early if the color sequence so far has too many

disagreements. To see why this naive branching process does not give a polynomial-

time algorithm, observe that we will not be able to remove any stories in the early

stages of the branching, because we might have a color sequence xy in which the

agreeing positions all come at the end. Thus, the stack will increase exponentially

before collapsing exponentially. Although the final stack size is relatively small, the

maximum stack size can become large. We want the agreeing positions to come fast

enough so that the stack size is controlled.

We will branch on the color sequence starting not from the vertices at positions

0, l (the first and middle vertex in the path), but rather starting at positions i, l + i

for some well-chosen i = 0, . . . , l−1. At the tth stage of the branching process, we will

branch on the vertices at positions i+ t, l+ i+ t modulo 2l. Here, t = 0 corresponds

to the initial choice of vertices, and t = 1 corresponds to choosing the first edge

emanating from them. At stage t of the branching, we insist that the number of

agreeing positions seen so far, is at least dtρe; otherwise we remove that possibility

from the branching process. (We refer to an element of this branching process as a

story ; it records information about a subset of the vertices)

To summarize, we use the following algorithm to find bad color sequenes of length

2l:

1. For a = 0, . . . , l − 1 repeat the following:

2. Initialize the stack with a single, null story.

3. For t = 0, . . . , l − 1 do the following:

4. For each story in the stack, count the number of positions at which

the color sequences agree so far. If this number is smaller than

dρte, remove the story from the stack.
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5. For each story remaining in the stack, choose the vertex at posi-

tions (a+ t) modulo 2l and (l+ a+ t) modulo 2l. Typically there

are ∆2 possibilities for these two vertices; except when t = 0 there

are n2 possibilities and at t = l − a there are n∆ possibilities.

Extend each story in the stack in all valid ways.

We will first show that the running time for this algorithm is polynomially bounded.

Let us fix some value of a, t, and consider the expected stack size. This must corre-

spond to a color sequences x, y of length t which agree on at least dρte positions, and

there are ∆2tnO(1) choices for the vertices. For a fixed sequence of vertices, we can

bound the probability that they agree on dρte positions as:

P (vertex sequence agrees on ≥ dρte positions) ≤
(

t

dρte

)
cdρteα2dρte

≤ nO(1)ehtcρtα2ρt

≤ nO(1)
( ∆2 + φ∆11/6

(∆2 + φ/2∆11/6)2

)t
Hence, the total expected stack size is at most

E[Stack size at a, t] ≤ nO(1)∆2t−1
( ∆2 + φ∆11/6

(∆2 + φ/2∆11/6)2

)t
≤ nO(1)

Next, we must show that any bad event will indeed be discovered by this branching

process. For, suppose x, y are color sequence of length l which agree on ρ′l ≥ dρle

positions. For i = 1, . . . , l define si to be the total number of agreements in positions

1, .., i; for i outside this range, define si := si mod l. We also define the parameter

ri = si − ρ′i. Because x, y agree on exactly ρ′l positions, the sequence r is periodic

with period l.

We claim that for the value of a in the range 1, . . . , l which minimizes ra, then the

color sequence xy will survive the corresponding branching process. For, suppose at

stage t, we lose xy. This implies that the total number of agreements between stages
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a, a + t is strictly less than dρte ≤ ρ′t. This implies that st+a < sa + ρ′t and hence

rt+a < rt, contradicting minimality of a. �
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