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Optical mapping and nanocoding are single molecule restriction mapping sys-

tems for interrogating genomic structure at a scale that cannot currently be achieved

using DNA sequencing methods. In these mapping experiments, large DNA molecules

≈ 500 kb are stretched, immobilized or confined, and then digested with a restric-

tion endonuclease that cuts or nicks the DNA at its cognate sequence. The cut/nick

sites are then observed through fluorescent microscopy and machine vision is used to

estimate the length of the DNA fragments between consecutive sites. This produces,

for each molecule, a barcode-like pattern comprising the ordered list of restriction

fragment lengths

Despite the promise of the optical mapping and nanocoding systems, there

are few open source tools for working with the data generated by these platforms.

Most analyses rely on custom in-house software pipelines using proprietary software.

In this dissertation we present open source software tools for the alignment and

vizualization of restriction mapping data.



In this work we first present a review of the optical mapping and nanocoding

systems and provide an overview of the current methods for aligning and assembling

consensus restriction maps and their related applications.

Next, we present the Maligner software for the alignment of a query restric-

tion pattern to a reference pattern. Alignment is a fundamental problem which is

the first step in many downstream analyses, such as consensus map assembly or

structural variant calling. The Maligner software features both a sensitive dynamic

programming implementation and a faster but less sensitive index based mode of

alignment. We compare the Maligner software to other available tools for the task

of aligning a sequence contig assembly to a reference optical map and for aligning

single molecule maps to a reference.

Next, we present a portable data visualization web application for visualizing

pairwise alignments of restriction maps.

Finally, we present updates to the Maligner software to support partial align-

ments of single molecule maps, allowing for the clustering of compatible split map

alignments to identify structural variants.



ALGORITHMS FOR THE ALIGNMENT AND VISUALIZATION
OF GENOME MAPPING DATA WITH APPLICATIONS TO

STRUCTURAL VARIANT DETECTION

by

Lee M. Mendelowitz

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Mihai Pop, Chair
Professor David C. Schwartz
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Preface

Of the six chapters in this dissertation, Chapter 1 has been published as a

review paper and Chapter 2 has been prepared for publication. Both chapters have

been slightly modified for this dissertation. Chapter 5 presents additional work on

improving sequency assembly contiguity using paired reads which was submitted to

the 2013 WABI conference.

Chapter 1

Mendelowitz, L., and M. Pop. “Computational methods for optical mapping.”

GigaScience 3.1 (2014): 33.

Chapter 2

Mendelowitz, L., Schwartz, D.C., and M. Pop. “Maligner: A fast ordered restriction

map aligner.” Submitted to Bioinformatics.

All of the source code for the methods described in this dissertation are avail-

able online on GitHub under the GNU General Public License.

The Maligner software presented in Chapter 2 and Chapter 4 is avail-

able at https://github.com/LeeMendelowitz/maligner. The MalignViz soft-

ware for visualizing pairwise alignments is available at https://github.com/

LeeMendelowitz/malign_viz. The SGA close-path software for removing false

overlap edges from the string graph is available at https://github.com/

LeeMendelowitz/sga-close-path.
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Chapter 1: Introduction

1.1 Introduction

Prior to the advent of cheap high-throughput sequencing technologies and

corresponding analytical tools, such as genome assemblers, genomic mapping ap-

proaches provided scientists with a first glimpse at the large-scale structure of the

chromosomes of organisms. Among the many competing technologies for mapping

(e.g., see [1] for a review of other approaches), the optical mapping technology [2]

provided for the first time, the ability to identify the location and order of restric-

tion sites along single DNA molecules ≈ 500 kb in length, thereby enabling the

efficient construction of accurate genome-scale restriction maps. Since the initial

demonstration of this system in the yeast Saccharomyces cervisiae, optical mapping

has been used to validate and assist the reconstruction of multiple genomes ranging

from bacteria [3] to the human genome [4]. This technology has also shown been

demonstrated to be a powerful tool for comparative genomics allowing the detection

of structural variants within genomes [4, 5]. Recently, an evolution of the optical

mapping technology nanocoding was developed [6], promising higher accuracy and

throughput than the original optical mapping system.

Before describing the computational approaches for analyzing optical (or nanocod-
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ing) mapping data, we will briefly describe the key characteristics of these data. The

mapping experiment begins with large DNA molecules (hundreds of thousands of

base-pairs) which are immobilized on a surface, digested with one or more restric-

tion enzymes, and stained with a fluorescent dye (Figure 1.1. The series of cuts or

nicks produced by the restriction enzyme are detected by imaging the immobilized

DNA, and the length between consecutive cut sites is estimated by integrating the

fluorescence intensity. The resulting data is an ordered series of fragment lengths,

corresponding to the estimation by machine imaging of the distances between nicks

or cuts. These data commonly contain a number of errors, such as inaccurate esti-

mates of restriction fragment size (due to non-uniform fluorescent staining), missing

or extra restriction sites, or missing small restriction fragments (due to limitations

of the experimental and/or imaging components of the system). Furthermore, these

data only span individual DNA molecules. Information from multiple overlapping

DNA molecules that originate from the same genomic location needs to be com-

bined/assembled in order to construct chromosome-wide maps. The map assembly

process can also correct many of the above-mentioned errors. Throughout the fol-

lowing we will refer to single DNA molecule optical maps (the restriction fragments

sized and ordered) as Rmaps and to the consensus maps of the assembled Rmap

contigs as consensus optical maps.

It should be obvious from this brief description that computational analysis

software must be an integral part of the generation and use of the optical mapping

data. After the machine vision software necessary to generate the initial raw data,

computational tools are necessary to align to each other and assemble together in-

2



Figure 1.1: Optical Mapping Experiment Overview In an optical mapping
experiment, stretched DNA molecules are deposited on a charged glass surface using
an array of microfluidic channels (a) and digested with a methylation-insensitive
restriction enzyme that cuts the DNA at specific sequence based recognition sites (b).
The stretched DNA relaxes around the cut sites, but in the process, small restriction
fragments can be lost through desorption. The DNA molecules are then stained with
fluorescent dye and imaged. Restriction fragments are identified with machine vision
and the fragment lengths are estimated by integrating fluorescent intensity (c). For
each molecule this produces an ordered listing of restriction fragment lengths known
as an Rmap (d).
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dividual Rmaps, as well as to align the assembled maps to each other (e.g., when

identifying structural variants), or to genomic sequences (e.g., to validate or as-

sist the genome assembly process). Below we review the key principles underlying

these operations as well as published software tools for using and analyzing optical

mapping data.

One fundamental problem in using genome maps is the task of aligning restric-

tion maps, either to each other, or to a genome sequence. The alignment scoring

functions must take into account the error characteristics of the mapping experiment,

including fragment sizing error, missing and false restriction sites, false restriction

sites, and as well as missing fragments (Figure 1.2). Dynamic programming al-

gorithms for alignment can accommodate missing restriction sites, false restriction

sites, and missing fragments by allowing for different alignment extensions (Fig-

ure 1.3). Alignments methods must accommodate some sizing error since an ex-

perimental Rmap fragment size will rarely be an exact match to the corresponding

fragment in another Rmap or in the reference genome. For this reason, alignment

scoring functions allow for small differences, but penalize large differences in restric-

tion fragment size. There are several different flavors of the alignment problem: (i)

The alignment of individual Rmaps to detect overlaps a critical step for the de

novo assembly of an optical consensus map, (ii) the alignment of individual Rmaps

to an optical consensus map to call structural variants, or (iii) the alignment of in

silico restriction maps derived from contigs or scaffolds from sequence assembly to a

consensus optical map. Here we review several of the published alignment methods,

as well as a method for determining alignment significance.

4



Figure 1.2: Optical Mapping Experimental Errors Experimental errors in the
optical mapping of individual molecules include (a) missing enzyme cut sites due
to incomplete digestion, (b) extra enzyme cut sites due to random breakage of the
DNA molecule, (c) missing small fragments due to desorption, and (d) sizing error
due to noise in measurements of fluorescence intensity. The ideal, error-free map is
shown in black, and the experimentally observed map is shown in blue.
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Figure 1.3: Alignment Dynamic Programming Optical map aligners, such as
the aligner by Valouev [7] and SOMA [8] use dynamic programming to compute
the optimal scoring alignment. Let cell (i, j) in the dynamic programming matrix,
colored in green, represent the optimal partial alignment of the query map of m frag-
ments through the ith restriction site to the reference map of n fragments through
the jth restriction site such that site i is matched to site j. To allow for unmatched
restriction sites in the alignment, the score for cell (i, j) is determined by attempting
to extend previously computed alignments in an adjacent δ2region of the matrix,
colored in blue. This allows for up to δ− 1 consecutive unmatched sites in both the
query and the reference. The alignment method is then O(δ2mn).

6



1.2 Alignment Methods

Valouev et al. [7] have developed an alignment algorithm for both finding over-

laps between two optical maps and for aligning an optical map to a reference map.

The scoring function is defined as a log likelihood ratio test for a model that makes

the following assumptions: the size of genomic restriction fragments are distributed

exponentially; the observations of each restriction site in an optical map are inde-

pendent Bernoulli processes; the number of false cuts in a given genomic length is

a Poisson process; and fragment sizing error is distributed normally with mean zero

and variance that scales linearly with the true fragment size. A separate normal

sizing error model is used for fragment sizing error for small restriction fragments

below a specified threshold. Lastly, the authors put a bound on the number of

restriction fragments allowed between consecutively matched restriction sites, lead-

ing to a dynamic programming algorithm which runs in time proportional to mn

where m and n are the number of restriction sites in the aligned maps (Figure 1.3).

This alignment tool has successfully used for overlapping Rmaps as part of de novo

optical map assembly [9].

SOMA [8] is another alignment tool designed specifically for aligning sequence

contigs from a genome assembly to a consensus optical map. First, the contigs are

converted into an in silico restriction map by noting the location of the enzymes

recognition sites within the contig sequence. Next, the software finds good place-

ments of contigs to the optical map using dynamic programming algorithm. Lastly,

SOMA uses this set of good alignments to select a layout of non-overlapping align-
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ments to the consensus map, in effect constructing a genome-wide scaffold of contigs.

The dynamic programming algorithm for alignment uses a chi-squared scoring func-

tion to penalize restriction fragment sizing error and a fixed cost penalizing each

unaligned site in both the reference map and contig in silico map. The statistical

significance of alignments is determined by performing a permutation test for each

contig with sufficient restriction sites. For contigs with multiple significant align-

ments, an F-test is used to further filter out secondary alignments by comparing the

ratio of the best alignments chi-square score to that of each the secondary alignment.

Finally, SOMA uses a scheduling algorithm to find non-overlapping placements of

the contigs to the optical map. The goal is to find the maximum weight layout,

where each contig placement is weighted by the match significance, given as the

p-value from either the permutation test or the F-test. Several different scheduling

algorithms are considered, including a greedy algorithm which prioritizes the place-

ment of contigs with the highest match significance, provided it does not overlap

the best scoring scheduling of the remaining fragments (GREEDY); an expensive

algorithm which enumerates all possible layouts using depth-first search with prun-

ing of low scoring layouts (ASTAR); and a simple, heuristic approach which places

contigs in descending order of match significance such that there are no overlaps

(match filtering).

TWIN [10] is a recently developed tool for aligning in silico contigs to a con-

sensus optical map using an FM-Index. TWIN converts contigs into a restriction

pattern by performing an in silico of the contig sequence. An FM-Index is con-

structed on the ordered integer sequence of restriction fragment lengths given by

8



the consensus optical map, which allows for the efficient search for exact matches of

patterns of n consecutive fragments. Once the FM-index is constructed, the run time

is proportional to the number of fragments in the contig. To account for fragment

sizing error, TWIN modifies the FM-Index backward search algorithm to backtrack

along possible alignment choices that are consistent with the current fragment in

the query. To reduce computational effort during the backtrack procedure, TWIN

relies on an integer wavelet tree auxiliary data structure which allows the algorithm

to focus on just those optical fragments within the current FM-index interval, that

are consistent with the current query fragment. A drawback of this algorithm is

its inability to handle unmatched restriction sites such as those caused by missed

fragments or restriction sites.

1.2.1 Significance of Alignments

All alignment algorithms face the challenge that under any alignment scoring

scheme, a given query restriction pattern may have multiple good quality alignments

to the reference or consensus map. In cases when the alignment score depends on

the number of restriction fragments and length of the query sequences, as in [7], a

simple alignment score threshold is not sufficient to distinguish between ambiguous

alignments. Sarkar et al. [11] observe that the optimal alignment scores of a query

restriction pattern to permuted versions of the true reference map are highly corre-

lated. In other words, the best alignment scores for spurious alignments depend on

properties of the query map itself. The authors model the distribution of alignment

9



scores for spurious alignments so they can use a map specific cutoff for determining

alignment significance. In particular, the authors model the optical alignment score

under the null hypothesis that the alignment is spurious using multiple linear regres-

sion on the number of query map fragments N , the map length L, and their product

NL. The standard deviation of the optimal alignment score against a random spu-

rious reference is modeled as a linear function of the mean optimal alignment score.

The regression model is fit by aligning a set of query maps to a single permuted

reference map, avoiding the computational bottleneck of performing a permutation

test for each aligned query map against a set of permuted reference maps. Sarkar

et al. also use logistic regression to predict the probability that a query map will

have an alignment to a reference genome given the query map’s information content.

This logistic model can be used to filter out query maps that are unlikely to align,

saving computational resources. The authors demonstrate how an iterative optical

map assembly algorithm performs better when using optical map alignments that

are deemed significant using query-specific thresholds.

1.3 Algorithms for Optical Map Assembly

An optical mapping experiment produces a restriction map (Rmap) for a col-

lection of DNA molecules on the order of 500 kb in length. As in shotgun sequencing,

these molecules are produced by randomly shearing the DNA from the organism of

interest. It is therefore necessary to assemble the Rmaps in order to produce a more

contiguous, higher quality consensus optical map. A consensus map is formed by

10



computing a consensus restriction pattern for Rmaps that share compatible pat-

terns and are therefore are highly likely to have originated from the same place in

the genome. Each assembled consensus restriction pattern is known as an optical

map contig. Each optical map contig is characterized by both its consensus restric-

tion pattern and a layout that provides the position and orientation of each Rmap

used in its construction.

The Gentig algorithm [12] is the first published method for the assembly of

consensus optical maps for shotgun optical mapping experiments. The method uses

a Bayesian formulation which seeks to maximize the a posteriori estimate of the

consensus map assembled from the Rmaps. A prior probability distribution H on the

consensus map is selected as a decreasing function of contig length, giving a prior bias

for shorter (i.e., more assembled) contigs. This prior helps select assemblies that do a

better job of overlapping and incorporating the experimental optical maps. Contigs

are built by greedily merging the two best overlapping Rmaps or contigs, where

overlaps are computed using dynamic programming. Overlaps are only considered

if the match scores better than a specified threshold that controls for false overlaps

between two unrelated restriction maps. Gentig constructs its prior and overlap

scores using a probabilistic model which accounts for the errors inherent in optical

mapping, including sizing errors, missing cut sites due to partial enzyme digestion,

and false cut sites due to imaging artifacts.

While Gentig has successfully been used to assemble bacterial genomes, it

does not scale well to larger genomes where the number of input Rmaps is large.

Procedures have been developed to use Gentig in an iterative fashion for de novo
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optical map assembly of larger genomes by first randomly partitioning the input

Rmaps into separate groups, and then running Gentig independently on the groups

to produce a set of contigs. Since there may be duplicate or overlapping contigs

between the independent assemblies, Gentig is used to assemble all of the contigs

together to remove any redundancy, yielding a set of seed contigs. The input Rmaps

are then aligned to the seed contigs as a means to cluster the Rmaps based on

similarity, and then these piles of Rmaps are independently assembled using Gentig

to produce a new set of contigs. This process is repeated for several iterations,

producing a final set of contigs. Variations of this method have been used to build

de novo optical map assemblies for Leishmania major Friedlin (34.7 Mb) [13], Oryza

sativa (rice, 382 Mb) [14], Zea mays L. (maize, 2.5 Gb) [15], and Melopsittacus

undulatus, (budgerigar parakeet, 1.2 Gb) [16].

Valoeuev et al. [9] have implemented an optical map assembler based on the

overlap - layout - consensus (OLC) paradigm of sequence assembly. The overlap

graph consists of Rmaps, represented as nodes, and significant overlaps, represented

as edges between the Rmaps. First, pairwise overlaps are constructed between all

of the Rmaps. This is the most computationally intensive step and is performed

on a computing cluster. High scoring overlaps are selected to construct the overlap

graph. The graph is cleaned up by removing potential false overlaps by identifying

paths through the overlap graph that are weakly supported. The set of edges is fur-

ther refined by removing any edges which disagree with higher scoring information.

Additional false edges are removed from the graph by considering edges that form

a path between two nodes for which there is no alternative path with a consistent
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distance. Lastly, chimeric maps are identified as local articulation nodes. Valouev

et al. demonstrate their optical map assembler by producing consensus maps for

Yersinia pestis KIM, Escherichia coli K12, Thalassiosira pseudonana, Oryza sativa

ssp japonica (rice), and Homo sapiens.

1.4 Applications for Structural Variation Detection

A promising application of optical mapping technology is the characterization

of structural variation within genomes. Optical mapping data span much longer

genomic ranges than commonly achievable mate-pair sizes, and thus have the ability

to detect large-scale variants that cannot be detected using paired end reads.

Teague et al. [4] have successfully used optical maps to detect structural vari-

ants in four normal human samples compared to the human reference genome, de-

tecting both small variants, such as missing or extra enzyme cut sites, and as well

as large-scale insertions, deletions, and inversions, ranging from thousands to mil-

lions of base -pairs in size. Variants were detected by first constructing an optical

consensus map for each sample using an iterative assembly strategy initially guided

by an in silico map of the human reference. First, the Rmaps were aligned to the

reference in silico map as a means to cluster the Rmaps with similar restriction

patterns. Next, each cluster of maps was assembled using the Gentig software to

produce a contig (i.e., consensus restriction pattern) for the cluster. The assembled

contigs from all of the clusters were used in place of the reference in the second

iteration, and the Rmaps were again aligned and assembled to produce a new set

13



of Rmap contigs. This process was repeated for eight iterations, yielding a high

quality consensus optical map for that sample. Structural variants between each

assembled sample and the human reference were called by looking at the depth of

Rmap coverage supporting each variant. A p-value was assigned to each variant call

for missing cuts and extra cuts through a Binomial test and for indel calls using a

Z-test derived from the sizing error model. The paper demonstrates that each of

the four samples has hundreds of unique structural variants that are neither present

in the other samples nor the human reference.

Optical mapping has also been used to characterize structural variants in oligo-

dendroglioma [17], a type of brain cancer. A similar iterative assembly strategy was

used to assemble a consensus optical map for two different tumor samples, HF087

and HF1551. Over 1,000 structural variants were called between each sample and

human reference. In addition, a hidden Markov model (HMM) was trained on

normalized Rmap coverage to determine the copy number at each chromosomal lo-

cation. Loss of heterozygosity (LOH) events in which one copy of the chromosome

is lost were observed in chromosomes 1, 14, 19, and 21. In addition, coverage analy-

sis of Rmaps obtained from two adjacent slices of sample HF1551 revealed distinct

LOH events for each slice, suggesting that these adjacent slices of the same tumor

actually evolved from different cancer cell clones.
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1.5 Genome Assembly

Consensus optical maps provide long-range information over the length of a

genome that can be used to aid in genome sequence assembly and validation. Assem-

bly algorithms are graph based, where sequences are represented as nodes and over-

laps between sequences are represented as edges. Each path through the assembly

graph generates a sequence, and each possible path gives a possible reconstruction

of the genome. Genomic repeats introduce nodes that must be traversed multiple

times, thereby tangling the assembly graph. AGORA [18] presents a method for

guiding genome assembly to resolve repeats using optical maps by selecting the cor-

rect path among exponentially many paths consistent with the set of reads. AGORA

works by first aligning long sequence contigs extracted from de Bruijn graph edges

to the consensus optical map. All contigs with a unique placement give a genome

wide scaffold (i.e., layout). Gaps in the scaffold are filled by greedily selecting a path

in the de Bruijn graph between consecutively aligned contigs that is consistent with

the restriction pattern of the optical map, thereby resolving repeats. The path is

selected using a bounded depth-first search. Simulations with AGORA on error-free

de Brujin graphs for bacterial genomes and simulated optical maps suggest that

high quality consensus optical maps can accurately improve assembly contiguity.

Xavier et al. [19] have demonstrated how optical consensus maps can be used

to assess assembly accuracy when selecting from a set of candidate assemblies con-

structed under different assembly parameter settings. In a de Bruijn graph assembly,

a critical parameter is the k-mer length, which controls the length of the overlap used.
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Generally, a larger k-mer setting results in a more aggressive assembly that improves

assembly contiguity at the expense of accuracy, while a smaller k-mer setting gives

a conservative but accurate assembly at the expense of contiguity, as the de Bruijn

graph has branches for genomic repeats of length k. Xavier et al. built multiple

de novo assemblies for Methicillin-resistant Staphylococcus aureus (MRSA) using

different assemblers and a wide range of k-mer settings. Mis-assemblies wereThe

authors detected mis-assemblies by finding contigs that have a split alignment to

the optical consensus map,. The authors then selected the assemblies with high-

est contiguity (i.e., with the most resolved repeats), but which did not exhibit any

mis-assemblies with respect to the optical map. Furthermore, Optical maps have

also proven useful for validating existing genome assemblies and characterizing mis-

assemblies. In the case of the Oryza sativa (rice) genome [14], an optical consensus

map was used to compare the quality of two independently constructed assemblies,

one by TIGR and the other by the International Rice Genome Sequencing Project.

Consensus optical maps have also been used as part of the Assemblathon 2 competi-

tion [20] to assess the quality of de novo assemblies for a budgerigar (Melopsittacus

undulatus) a Lake Malawi cichlid (Maylandia zebra), and boa constrictor (Boa con-

strictor constrictor). The consensus optical maps were iteratively assembled using

Gentig. Assembly quality was assessed by aligning sequence scaffolds constructed

from paired-end reads to the optical consensus map under different levels of align-

ment stringency. Scaffolds that globally align to the optical map under the most

restrictive setting are considered correct, while scaffolds that only have local align-

ments are considered to have mis-assemblies.
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1.6 Conclusions

In this chapter we have reviewed algorithms and tools for processing optical

mapping data (alignment and assembly) and for using these data to identify struc-

tural variants, and to guide or validate genome assemblies. Due to the long range

information provided by optical mapping data (potentially spanning hundreds of

kilo-base-pairs or more) and the relatively complex and error-prone approaches for

constructing long mate-pair libraries in the context of modern sequencing technolo-

gies, optical mapping data hold tremendous promise in supplementing and or even

replacing sequencing data in the study of chromosomal rearrangements.

Despite this promise, relatively few methods exist for analyzing and using

optical mapping data, and even fewer are available in effective publicly-available

software packages. While Gentig has successfully been used to assemble consensus

optical maps for bacterial genomes, it does not scale well to large genomes and the

software is not freely available. Beyond AGORA, which is a proof of concept im-

plementation, no genome assemblers can make use of optical mapping information.

Furthermore, there are virtually no tools available for using optical maps to charac-

terize structural variants. The alignment tools reviewed above could and have been

used for this purpose, but only through the manual curation of the raw alignment

output rather than through the use of specialized structural variant discovery tools.

There is, thus, a critical need for the continued development and public release of

software tools for processing optical mapping data, mirroring the tremendous ad-

vances made in analytical methods for second and third generation sequencing data.
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The methods presented in the following chapters of this dissertation address the gap

in available tools for working with genomic mapping data.
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Chapter 2: Efficient Alignment of Molecular Maps using Maligner

2.1 Introduction

Optical mapping [2] and newer nanocoding technologies [6] capture long range

genomic information over the length of hundreds of kilobases by observing the lo-

cation of restriction sites. By providing long range, coarse information about the

genomic structure, optical mapping data provides complementary information to

that of DNA sequencing, which in comparison provides short range information

with base pair resolution. Optical mapping data has been used to correct sequence

mis-assemblies [14], assess the quality of sequence assemblies [20], and detect large

structure variants in normal [4] and cancer [17] genomes that can not be reliably

detected using current paired end sequencing protocols, due to short reads and the

repetitive nature of the human genome [21].

Despite such promise, very few software tools are freely available for work-

ing with genomic mapping data for large genomes. SOMA [8] is an open-source

software tool for aligning assembled sequence contigs to an optical map but does

not scale to large genomes and often gives incorrect contig placements due to the

greedy nature of its alignment algorithm. TWIN [10] is a recently developed tool for

efficiently aligning sequence contigs to an optical map, but as we show, it does not
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allow for alignments which have unmatched sites, limiting its applicability towards

experimental datasets.

Here we present Maligner, an open-source software package for aligning single

molecule restriction maps (Rmaps) and in silico of contigs from a sequence assem-

bly to a reference restriction map at speeds that are comparable or faster than

currently available tools. Maligner has two modes of alignment, one which uses

traditional dynamic programming (malignerDP) and an index based mode of align-

ment) that runs orders of magnitude faster but is more stringent in the alignments

that it accepts (malignerIX). In addition, we present a novel method for normal-

izing the alignment scores across queries based on computing the MAD across the

best random alignments, which allows for the selection of an alignment score cutoff

that is applicable across queries, thereby obviating the need for a computationally

expensive permutation test for determining alignment significance.

2.2 Background

The optical mapping system uses methylation insensitive restriction enzymes

to digest single molecules, which are then stained with fluorescent dye and imaged.

The images are processed using machine vision to identify the individual molecules

and estimate the fragment lengths. For a full description of the optical mapping

system, see Section 1.1.

Consider a DNA molecular of length L bp which is digested with a restriction

enzyme which cuts (or nicks) the DNA at at n integral positions p0, p1, . . ., pn−1
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where pi represents the zero-based base pair location of the ith cut site. We can

represent this restriction pattern by an ordered listing of n + 1 fragment lengths:

f0, f1, . . . , fn where f0 = p0, fi = pi − pi−1 for 0 < i ≤ n − 1 and fn = L − pi.

Since the DNA molecule is produced by random shearing of chromosomal DNA,

the fragments f0 and fn which appear at the start and end of the molecule are not

bounded by restriction sites at both ends. We refer to these fragments as boundary

fragments. On the other hand, f1, f2, . . . , fn−1 are interior fragments, as they are

bounded on both ends by restriction sites.

A restriction mapM is given by its ordered listing of fragments [m0,m1, . . . ,mn].

The number of restriction fragments in the map is given by |M|. In this case,

|M| = n+ 1.

A chunk is an ordered listing of consecutive restriction fragments from a single

map M. For example: [m1,m2,m3] is a chunk of three consecutive fragments from

restriction mapM. We represent a chunk more concisely by the triple c = (M, s, e)

which corresponds to the consecutive fragments mi from M where i ∈ [s, e). For

example, c = (M, 1, 4) corresponds to the consecutive fragments [m1,m2,m3]. A

chunk (M, s, e) is a boundary chunk if s = 0 or e = |M |.

Two chunks c1 = (M1, s1, e1) and c2 = (M2, s2, e2) are adjacent if M1 =

M2, and e1 = s2 or e2 = s1. The number of fragments in a chunk is denoted as

n(c) = e − s, and the number of interior sites in a chunk is e − s − 1. The length

of a chunk is given by the sum of the lengths of the restriction fragments in the

chunk: l(c) =
∑

mi∈cmi. A chunk is empty if e = s, meaning the chunk contains

zero fragments and has zero length.
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A matched chunk is an ordered pair of chunks. We refer to the first chunk as

the query chunk and the second chunk as the reference chunk. Given query chunk

cq = (Mq, sq, eq) and reference chunk cr = (Mr, srer), the matched chunk is the

ordered pair mc = (cq, cr). A matched chunk is a boundary chunk if either cq or cr

are boundary chunks. Two matched chunks mc1 = (cq1 , cr1) and mc2 = (cq2 , cr2) are

adjacent if both cq1 and cq2 are adjacent and cr1 and cr2 are adjacent.

An alignment of a query map Q to a reference map R is given by an ordered

listing of matched chunks A = [mc1,mc2, . . . ,mck] where:

1. All of the query chunks are from map Q and the reference chunks are from

map R

2. The matched chunks are adjacent

3. The starting indices of the reference chunks are monotonically increasing

4. The starting indices of the query chunks are monotonically increasing (for

forward alignments) or monotonically decreasing (for reverse alignments).

We say that restriction site i in the query is aligned to restriction site j in

the reference if the alignment has a non-boundary matched chunk (Cq, Cr) with

Cq = (Mq, sq, eq) and Cr = (Mr, sr, er) where: (i) sq = i and sr = j or eq = i and

er = j for forward alignments or (ii) sq = i and er = j or eq = i and sr = j for

reverse alignments. In the context of an alignment, we refer to the interior sites of

a query chunk or reference chunk as unmatched sites. An example of an alignment

using this notation is shown in Figure 2.1.

22



2.3 Results

In this section we present results demonstrating the utility of the M-Score

statistic in discerning correct alignments from spurious alignments. Next, we com-

pare the Maligner software to other available software tools by aligning in silico

digested contigs from an E. coli K12 sequence assembly to both an in silico digest

of the reference sequence and an optical map. We also align E. coli K12 Rmaps

to the in silico reference map. Lastly, we demonstrate our methods on a large

genome by aligning both sequence contigs and Rmaps to a budgerigar optical map

(Melopsittacus undulatus), an Australian parakeet.

2.3.1 M-Score for Alignment Significance

Maligner scores alignments using an additive scoring function on each matched

chunk given by Equation 2.1, with fixed costs for interior unmatched sites in the

query chunk and reference chunk and cost for sizing difference between the query

and reference chunk. The score for an alignment is given by the sum of the scores

of the matched chunks of the alignment. This scoring function represents an “edit

distance” between the query and the reference, with lower scores corresponding to

alignments with greater similarity between the query and reference.

Since the scoring function is additive, the score of a query’s best alignment

depends on the number of fragments, its length, and quality of the query (i.e., the

sizing error, site cut rate, and desorption of small fragments). Therefore, one cannot

select a simple cutoff that applies to all queries for selecting significant alignments.

23



The M-Score, discussed in more detail in section 2.5.1.1, seeks to normalize

the scores for each query based on the distribution of alignment scores for its best

non-overlapping alignments. This allows for the selection of a common cutoff that

applies across queries.

We assessed the performance of M-Score for selecting correct alignments on a

simulated dataset under three different error settings. We simulated Rmaps from

the human reference using enzyme BamHI by selecting map length uniformly at

random from [100, 500] kb, selecting a genomic location and orientation at random,

simulating a cutting pattern as a Bernoulli process with enzyme efficiency p, applying

an Rmap scaling factor ∼ 1+N (0, σ2) to model variability in molecular stretch, and

finally adding fragment sizing measurement error q ∼ N (r, (αr)2) with parameters

p = 0.85, σ = 0.02, α = 0.02 under the low error setting, p = 0.75, σ = 0.05,

α = 0.05 under the medium error setting, and p = 0.65, σ = 0.05, α = 0.10 under

the high error setting. We simulated 1000 Rmaps under each error setting from

both the human reference and a permuted version of the human reference, requiring

a minimum of 10 restriction fragments.

We aligned these simulated Rmaps with malignerDP and selected the best

scoring alignment for each query against the human reference. From this set of

alignments we consider an alignment of a query map sampled from the human

reference aligned to its true location to be a true alignment, and all other alignments

to be false alignments. We assessed how well the score, score per number of matched

chunks, and M-score statistics performed at discriminating true alignments from

false alignments. The ROC curves are shown in Figure 2.2 and AUC statistics
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in Table 2.1, indicating that the M-Score statistic does better than the alignment

score and score per matched chunk statistics. It is worth noting that the score per

matched chunk statistics attempts to normalize an alignment score by the number

of fragments in each query but this does not perform as well as the M-Score, which

indirectly takes into account the “alignability” of a query based on the distribution

of its best alignment scores.

2.3.2 Escherichia coli K-12

2.3.2.1 Contig Alignment

One practical use of optical mapping is to aid in the scaffolding and finishing

of sequence assemblies. By placing contigs on an optical map, one is able to arrange

and orient assembled sequence contigs onto a chromosome wide scaffold. To test

our software for this purpose we produced a sequence assembly of E. coli K-12

using short reads (SRA accession SRX298884) trimmed with PRINSEQ [22] and

assembled with SPAdes [23] using default parameters, giving an assembly of 149

contigs 4.58 Mb in length (N50 112 kb).

We ran SOMA, TWIN [10], malignerIX and malignerDP and evaluated the

alignment accuracy and runtime performance on a set of 31 contigs (2.81 Mb) that

had five or more restriction fragments (including boundary fragments) and a unique

nucmer placement. For our evaluation we ignored contigs with 4 or less restriction

fragments as these are difficult to uniquely align to the optical map.

We aligned the contigs to an experimentally produced optical consensus map

25



Figure 2.1: Alignment Notation The forward alignment of query map Q =
[q0, q1, q2, q3] against a referenceR illustrated above can be represented as the follow-
ing ordered listing of matched chunks: A = [((Q, 0, 1), (R, i, i+1)), ((Q, 1, 2), (R, i+
1, i+ 2)), ((Q, 2, 3), (R, i+ 2, i+ 4)), ((Q, 3, 4), (R, i+ 4, i+ 5))]. Since the starting
indices of the query chunks are monotonically increasing, the query is aligned in the
forward direction.

Figure 2.2: ROC for Alignment Significance True Positive Rate vs. False
Positive Rate for discriminating correct alignments from random alignments on a
set of simulated BamHI Rmaps from the human reference.
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(425 restriction fragments, 4.17 Mb), assembled from individual molecular maps

(Rmaps) produced using enzyme BamHI (with recognition sequence GGATCC).

For comparison, we also produced an error free optical map from the E. coli K-

12 MG1655 reference sequence by performing an in silico digest (448 restriction

fragments, 4.64 Mb). We note that while the restriction pattern of the experimental

optical map is faithful to the reference, it exhibits an overall fragment undersizing

bias and is missing small fragments and sites due to desorption (Figure 2.3). Before

alignment we smoothed out small restriction fragments less than 1 kb by merging

them with neighboring restriction fragments.

We used nucmer [24] to determine the true placement of the contigs on the

reference sequence. We took a contig placement to be correct if 90% or more of the

contig aligned to a unique location with 95% identity or better.

Alignment to error-free optical map Results for alignment to the error free optical

map are shown in Table 2.2. We consider a contig to be placed correctly if its starting

location is within 50 kb if the location reported by nucmer. TWIN, malignerIX,

and malignerDP all perform similarly, finding correct alignments for all 31 contigs.

SOMA does not perform as well, only finding correct alignments for 11 of the 28

contigs. TWIN has a bug that results in reported alignment locations that have

several kb in error, as shown in Figure 2.4. This issue prevented us from using a

more strict criteria for alignment correctness for this comparison. We have e-mailed

the authors of TWIN to inform them of this issue.
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Error Setting Score Score per
Matched Chunk

M-Score

Low 0.982 0.997 0.995
Medium 0.918 0.994 0.991
High 0.664 0.881 0.965

Table 2.1: AUC for alignment score, alignment score per matched chunk,
and M-Score The AUC for discriminating true alignments from false alignments
using the alignment score, alignment score per matched chunk, and M-score statistics
for simulated Rmaps from the human reference under low, medium and high error
settings. M-Score outperforms the other methods, especially under noisy conditions.

Figure 2.3: Comparison of E. coli K12 experimental optical map with ref-
erence A) Overall, the consensus optical map (gold) assembled from experimental
molecular maps shows great concordance with the in silico digest of the reference
sequence (blue). B) A close view of the left end of the same alignment shown in
A. C) An example of a matched chunk containing two fragments in reference (light
blue) aligned to one fragment in the optical map (green). This indicates that a small
restriction fragment is missing from the optical map. D) Illustration of the overall
undersizing bias of the optical map. Fragment sizes are given in kilobases.
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Figure 2.4: TWIN and malignerDP Contig Location Errors. Errors in
the placement of the contig by malignerDP and TWIN, as compared to the true
placement given by nucmer. TWIN and malignerDP place all 31 contigs correctly,
but TWIN reports contig alignment locations with several kb of error that cannot
be explained by the sizes of the contig boundary restriction fragments.

Software Total
Alignments

Contigs with
Alignment

Contigs with
Correct

Alignment

Contigs with
Unique

Alignment

Contigs with
Unique &
Correct

Alignment

Runtime

TWIN
37 31 31 28 28

0.47s
(2.99 Mb) (2.81 Mb) (2.81 Mb) (2.71 Mb) (2.71 Mb)

SOMA
28 28 11 28 11

14.22s
(2.66 Mb) (2.66 Mb) (1.48 Mb) (2.66 Mb) (1.48 Mb)

malignerIX
36 31 31 29 29

0.03s
(2.93 Mb) (2.81 Mb) (2.81 Mb) (2.75Mb) (2.75 Mb)

malignerDP
39 31 31 27 27

0.40s
(3.01 Mb) (2.81 Mb) (2.81 Mb) (2.68 Mb) (2.68 Mb)

Table 2.2: Alignment results to error free E. coli optical map. Number of
contigs (and bp) aligned to the error free E. coli optical map. A contig is considered
to be placed correctly if its location is within 50kb of the location reported by
nucmer.
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Alignment to experimental optical map We aligned the set of contigs to an optical

consensus map assembled from experimental molecular restriction maps (Rmaps)

using Gentig [12]. The smoothed consensus optical map is 4.17 Mb with 425 restric-

tion fragments. The optical map has more noise compared to the the error free map,

as there is an undersizing bias in the size of the fragments and some cut sites and

small fragments are missing. We see from Table 2.3 that malignerDP is able to find

correct alignments for 26 of the 31 contigs, outperforming the index based methods

malignerIX (13 contigs) and TWIN (7 contigs) as well as SOMA (0 contigs).

2.3.2.2 Rmap Alignment

We used malignerDP, malignerIX, and TWIN to align a high coverage set

(1,159X) of 14,734 Rmaps (average 364 kb, 20 fragments) to the error-free in silico

digest of the E. coli K12 reference sequence.

malignerDP We ran malignerDP on the Rmap set and selected the subset of align-

ments with at most 40% unmatched sites in the reference, 15% unmatched sites in

the Rmap, and an M-Score of 5 or better. 2,831 (19.2%) of the Rmaps had a unique

alignment with this criteria, resulting in an overall alignment coverage of 245X. The

low mapping rate is due to the fact that we used raw instrument output rather

than carefully filtered Rmap datasets, for which alignment rates are much higher

(D.C. Schwartz, personal communication). We chose to use raw data to demon-

strate the potential of using Maligner as a component in a Q/C pipeline for optical

or nanocoding mapping data. No Rmaps had duplicate alignments matching this
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criteria. We visualized the alignments in GnomSpace (Figure 2.5), showing that the

Rmaps align to the reference with good fidelity. malignerDP completed in 169.86

seconds (11.5ms/Rmap).

malignerIX We ran malignerIX with a maximum allowed relative fragment sizing

error of 15% and absolute error of 5 kb per fragment (whichever is greater), at most

40% unmatched sites in the reference, and at most an edit score per interior chunk

of 5.0. 553 (3.8%) of the Rmaps had a unique alignment with this criteria, resulting

in an overall alignment coverage of 39.7X. No Rmaps had duplicate alignments

matching this criteria. malignerIX completed in 5.72 seconds (0.39ms/Rmap).

TWIN We ran TWIN on the Rmap dataset. Note that this comparison is unfair,

as TWIN was designed as an aligner for in silico restriction maps and as such it

does not handle unmatched sites in the query or the reference. Running TWIN with

lenient alignment settings (search radius of 5 kb, fval 1000) only produced alignments

for 14 Rmaps. We could not determine the alignment locations or coverage due to

runtime error’s encountered in TWIN’s post processing scripts. TWIN completed

in 20.35 seconds.

2.3.3 Budgerigar

To show that our methods scale to larger genomes, we aligned both contigs

and SwaI Rmaps to an assembled budgerigar parakeet optical map comprising 93

contigs (889 Mb).
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Software Total
Alignments

Contigs with
Alignment

Contigs with
Correct

Alignment

Contigs with
Unique

Alignment

Contigs with
Unique &
Correct

Alignment

Runtime

TWIN
101 11 7 4 0

0.76s
(3.44 Mb) (0.49 Mb) (0.26 Mb) (0.23 Mb) (0.00 Mb)

SOMA
6 6 0 6 0

14.45s
(0.25 Mb) (0.25 Mb) (0.00 Mb) (0.25 Mb) (0.00 Mb)

malignerIX
81 15 13 7 5

0.15s
(3.23 Mb) (0.99 Mb) (0.87 Mb) (0.65 Mb) (0.53 Mb)

malignerDP
208 28 26 13 13

0.31s
(8.35 Mb) (2.37 Mb) (2.24 Mb) (1.60 Mb) (1.60 Mb)

Table 2.3: Alignment results to experimental E. coli optical map. Number
of contigs (and bp) aligned to the experimental E. coli consensus optical map. A
contig is considered to be placed correctly if its location given as percentage of
optical map length is within 5% of the location reported by nucmer. Among these
software, the only alignment method which is able to handle the experimental error
characteristics of real data is malignerDP. Index based methods, being less flexible,
are not able to find the same number of correct placements.

Figure 2.5: Alignment of E. coli K12 Rmaps to reference sequence A
pileup of Rmap alignments (gold) to the in silico digest of the E. coli K12 MG1655
reference (blue) produced using the malignerDP software.
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2.3.3.1 Contig Alignment

We aligned the budgerigar v6.3 assembly contigs to the budgerigar optical map,

both published in [16]. Before aligning, we filtered the total assembly (70,863 contigs,

1.09Gb, 55.6kb N50) down to those contigs with 5 or more restriction fragments

(6,008 contigs, 406 Mb). We aligned these contigs using TWIN, malignerDP, and

malignerIX to evaluate the number of alignments and run time performance. We

chose not to run SOMA since SOMA does not scale to genomes of this size, as

documented in [10]. The alignment results are summarized in Table 2.4. We find

that malignerIX runs in comparable time to TWIN, but aligns more contigs and

places more contigs uniquely, as it is able to handle more unmatched sites in the

reference. MalignerDP runs much slower than the index based methods, but finds

more unique alignments.

2.3.3.2 Rmap Alignment

We aligned a set of 671,896 Rmaps (352 kb avg, 18.3 fragments avg, 236.6 Gb

total) to the Parrot optical map using malignerDP, filtering our alignment set to

those with a query unmatched site rate ≤ 15%, a reference unmatched site rate ≤

40%, and an M-Score ≤ 20. 69,537 (10.3%, 30.9 Gb) of the Rmaps had at least

one alignment fitting this criteria, 69,130 (30.5 Gb) of which were aligned uniquely.

Total alignment took 334h 33m of CPU time (1.8 sec/Rmap).
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2.4 Discussion and Conclusions

We have presented the malignerDP and malignerIX software for restriction

map alignment and evaluated their performance on experimental datasets for E.

coli and budgerigar parakeet. We have shown that on E. coli, malignerDP finds

more correct alignments than other available methods. We have also demonstrated

that malignerDP can align a high coverage Rmap set for a large genome within a

couple hours on a moderately sized cluster.

We have also introduced the M-Score, which provides a method for normalizing

alignment scores found through dynamic programming by adjusting the scores for

each query based on the distribution of the best scoring but random alignments for

that query. The normalization allows one to apply a score threshold across queries

to for accepting or rejecting alignments, and thereby avoid a permutation test for

determining alignment significance.

Finally, we have shown that while the index based methods malignerIX and

TWIN run significantly faster than malignerDP, these methods are less sensitive

than full dynamic programming, finding less alignments (for Rmap alignment) and

less correct alignments (for contig alignment) against experimental datasets.

2.5 Methods

The maligner software has two modes of alignment: (i) a dynamic program-

ming implementation malignerDP that allows for unmatched sites in both the query
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and reference and a faster mode malignerIX which builds an index on the reference

which is queried through binary search but does not allow unmatched sites in the

query.

2.5.1 Dynamic Programming Based Alignment

We extend the work of Nagarajan et al. [8] to build a map aligner which can

scale to large eukaryotic genomes. Given a matched chunk with query length q bp,

reference length r bp, m interior unmatched query sites, and n interior unmatched

reference sites, we use scoring function which represents an edit distance between a

query chunk and a reference chunk:

Score(q, r,m, n) = S(q, r) + Cqm+ Crn (2.1)

S(q, r) =

(
q − r
σ(r)

)2

if not boundary chunk else 0 (2.2)

σ(r) = max(αr, σmin) (2.3)

where Cq is the fixed cost for an unmatched query site, Cr is the fixed cost for

an unmatched site in the reference, and S(q, r) is the cost of the sizing difference

between the query chunk and the reference chunk. Note that we make an adjustment

for small reference fragments, which can exhibit higher relative error rates [7], by

putting a lower bound σmin on the sizing error scaling parameter.

Given a query map Q and a reference map R, we seek an alignment which

minimizes the sum of the cost of the matched chunks. Since each chunk is scored

independently, this permits a dynamic programming solution given by Algorithm
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1. We bound the number of consecutive unmatched sites in the query by δq and

reference by δr, giving an algorithm that is O(δqδrmn)

Algorithm 1 maligner dynamic programming

1: procedure malignDP(Q,R, δq, δr)
2: . Initialize score matrix.
3: for j ← 0, n+ 1 do
4: SM(0, j)← 0
5: end for
6: . Fill the score matrix.
7: for i← 1,m+ 1 do
8: for j ← 1, n+ 1 do
9: SM(i, j)←∞

10: BackPointer(i, j)← nullptr
11: for k ← max(i− δq − 1, 0), i− 1 do
12: for l← max(j − δr − 1, 0), j − 1 do
13: if SM(k, l) <∞ then
14: q ←

∑i−1
i′=k qi′ . query chunk size

15: r ←
∑j−1

i′=l ri′ . ref chunk size
16: . Compute score of this alignment extension
17: Score← SM(k, l) + S(q, r) + Cq[i− k − 1] + Cr[l − j − 1]
18: if Score < SM(i, j) then
19: SM(i, j)← Score
20: BackPointer(i, j)← (k, l)
21: end if
22: end if
23: end for
24: end for
25: end for
26: end for
27: return (SM,BackPointer)
28: end procedure

2.5.1.1 Alignment Significance

The dynamic programming method used by malignerDP will find one align-

ment for each position in the reference. However, it is not clear whether the best

scoring alignment is significantly better than random. One method for determin-
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ing whether an alignment is significant is to perform a permutation test whereby

a given query is aligned to a population of permuted references. Each alignment

is assigned a p-value under the null hypothesis H0 that the query is not related to

the reference by determining the fraction of permuted references that have a bet-

ter scoring alignment for that query. We do not consider the permutation test for

this problem because it is computationally expensive and infeasible for alignment

to large genomes.

Since our scoring function is a measure of edit distance, we cannot simply

choose a single score cutoff for accepting or rejecting alignments that will apply to

all queries, as the score for a quality alignment varies with the number of fragments

and the size of the fragments in each query [11]. Instead, we propose computing a

cutoff score for each query map based upon the distribution of alignment scores of

the best non-overlapping alignments. If a query has a single acceptable alignment

to the reference, we expect that the best scoring alignment will be correct and the

rest of the alignments to be random. Using this intuition, we formulate the M-Score

as follows:

mA = median
A∈A

{Score(A)} (2.4)

MADA = median
A∈A

{|Score(A)−mA|} (2.5)

M-ScoreA(A) =
Score(A)−mA

MADA
(2.6)

where we take A to be the top 100 alignments for the given query against the

reference. The M-Score normalizes all alignment scores across queries by shifting
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each query’s scores to the median and scaling by the median absolute deviation

(MAD) of the top ranking alignments for that query. This allows us to select

an M-Score cutoff for selecting significant alignments that can be applied across

queries. We note that using dynamic programming as the method of alignment (as

compared to index based methods) gives us the distribution of alignment scores at

no additional cost since the best alignment score at each position of the reference is

computed when the score matrix is populated in Algorithm 1. The M-score method

essentially uses the top 100 alignments in place of the null distribution of alignment

scores one could obtain through a computationally expensive permutation test.

We typically select an M-Score cutoff which maximizes the fraction of queries

with a unique alignment below the cutoff. The M-Score cutoff can vary dataset

from dataset based on enzyme digestion rate, uniformity of molecular stretch, and

the number of restriction fragments per Rmap. Higher quality datasets will have

higher quality alignments and therefore allow for a the selection of stricter M-Score

cutoff. Note that more negative M-Scores correspond to better quality alignments

(since lower alignment scores are better).

2.5.2 Index Based Alignment

If we do not allow for unmatched sites in the query map, we can leverage an

indexed based method of alignment that avoids O(δqδrmn) dynamic programming

and instead uses an index built on the reference map. The reference can be indexed

by extracting all possible chunks with at most δr interior missed restriction sites.
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Specifically, we consider the set of all chunks N = {(R, s, e) | e− s ≤ δr} from the

reference R.

The adjacencies of the reference chunks N can be represented as a directed

acyclic graph (DAG), where we include an edge ra → rb between chunks ra =

(R, sa, ea) and rb = (R, sb, eb) if sb = ea. We build an index on the graph by

storing all nodes N (i.e., chunks) in an array sorted by chunk length. For a

given query chunk cq and a lower bound function L(C) and upper bound func-

tion U(C) we can find all reference chunks that are compatible with cq in length

{C ∈ N | L(cq) ≤ l(C) ≤ U(cq)} from the index in O(n log n) time by binary search.

Our implementation uses lower and upper bound functions L(c) = c − max(αc, δ)

and U(c) = c + max(αc, δ) where 0 < α < 1 specifies the relative error and δ > 0

specifies the minimum absolute error tolerance.

We can leverage the reference chunk index and the DAG to find alignments

for a query map Q with k fragments if we restrict our search space to the set of

alignments with no unmatched sites in Q. Specifically, we search for one more

paths of adjacent reference chunks r1 → r2 → . . . → rk where: (i) each chunk ci is

compatible with the ith fragment in qi = (Q, i, i + 1) for i ∈ [1, k] and (ii) the rate

of unmatched sites in the reference is less than a user selected threshold.

We find such alignments by first seeding on the largest interior restriction

fragment in the query. Since genomic restriction fragment lengths are approximately

exponentially distributed, the largest fragment in the query will have the fewest

number of compatible fragments. For each reference chunk compatible with the seed

fragments we perform bounded DFS to find all possible compatible right extensions
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and left extensions with respect to the reference which compatibly align all remaining

fragments in the query. With each step in the DFS, we only consider taking an edge

to a reference chunk if that reference chunk is compatible with the next fragment

in the query. Of all extensions found (if any), we take the left and right extension

which has the smallest number of unmatched sites in the reference. We concatenate

the best left extension in the reference with the seed chunk and the best right

extension to produce the best forward alignment for each seed hit. We align in the

reverse direction by considering aligning to the DAG corresponding to the reverse

of the reference, reusing the seed hits found for forward alignment. In a final post-

processing step, we apply the same score function given by Equation 2.1 to rank all

alignments found and output a set of non-overlapping alignments selected in order

of alignment score.

While this index based method of alignment is not as flexible as full dynamic

programming because it does not allow for unmatched sites in the query, it runs

orders of magnitude faster.

2.5.3 Implementation

The Maligner software is written in C++ and is available at https://github.

com/LeeMendelowitz/maligner under the GNU General Public License.
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Software Contigs Aligned Contigs Aligned Uniquely Runtime
TWIN 3,889 (267.0 Mb) 1,340 (130.8 Mb) 51.01 s

malignerDP 5,093 (427.7 Mb) 2,635 (299.7 Mb) 46m 16.0s
malignerIX 5,142 (422.8 Mb) 2,148 (249.7 Mb) 51.53 s

Table 2.4: Contig alignment to budgerigar optical map Number of contigs
(and bp) aligned to the parrot optical map.
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Chapter 3: Visualization of Pairwise Restriction Map Alignments

with MalignViz

3.1 Introduction

In aligning a query restriction map to a reference restriction map, alignments

are selected by minimizing some objective scoring criterion. In the case of malign-

erDP, the scoring function given by Equation 2.1 comprises terms which penalize

for unmatched restriction sites in the query and the reference as well as sizing er-

ror between aligned query and reference chunks. However, there are some practical

challenges when using such an objective scoring function for selecting the best align-

ments. For example, there is a trade-off between the number of unaligned sites and

the sizing error in the selected alignments. One run of malignerDP with one set

of alignment parameters may favor reducing the number of unaligned sites with

greater tolerance for sizing error, while another alignment run with different param-

eters may accept more unaligned sites while reducing sizing error. These trade-offs

are controlled by the constants Cq, Cr, and α in Equation 2.1. The relative ranking

of alignments can change as these parameters are adjusted. This raises a practical

issue: how can the end user be sure that the scoring functions parameters are set
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to the appropriate values such that the best scoring alignments are of reasonable

quality?

A second issue that arises is properly selecting a set of unique high quality

set of alignments for downstream processing. Given a query map, malignerDP will

output a ranked list of non-overlapping alignments. How can one be confident that

the best ranked alignment is correct and the secondary alignments are no better

than random? The M-Score tries to address this by assigning a normalized score

to the best ranking alignments for each query. However, one must still choose an

M-Score cutoff for selecting significant alignments.

To better understand how multiple alignment candidates for a single query

against a reference differ in quality, it is helpful to make use of interactive visual-

ization tools. Visualization is an important tool as it aids in the interpretability of

alignment scores and validates that the alignment tools are working correctly for

the dataset at hand. Unlike the sequence alignment problem, for which pairwise

sequence alignments can be visualized using plain text outputs (such as those pro-

vided by BLAST [25] and MUMmer’s [24] show-aligns), pairwise restriction map

alignments cannot be easily visualized and compared using a plain text format.

Few tools exist for visualizing optical map alignments. The GnomeSpace

Viewer [4] developed by David Schwartz’s Lab is useful for viewing a pileup of

alignments against a reference. While GnomeSpace provides a reference centric

visualization, is not useful for visualizing multiple pairwise alignment candidates

for a single query since it does not offer features for selecting, sorting, or filtering

alignments for a single query. The MapSolverTM software by OpGen is not freely
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available and is only available to customers who pay for OpGen’s services (Clayton

Collier, personal communication, June, 10 2015). From the limited available online

documentation [26], MapSolverTM does not appear to be useful for visualizing mul-

tiple pairwise alignment candidates. gEVAL [27] is an online genome browser which

includes a simple visualization of optical mapping data against a reference, but, like

GnomeSpace, it is not useful for considering different candidate alignments for a

single query.

MalignViz has been created to fill this need. MalignViz is a portable web ap-

plication for visualizing pairwise restriction map alignments. MalignViz has proven

to be an invaluable tool while developing MalignerDP, suggesting new features such

as query rescaling and realignment for improving alignment quality.

3.2 Tour of MalignViz

In this section we present a brief tour of the MalignViz application from the

perspective of an end user. MalignViz organizes its datasets into separate experi-

ments. Each experiment consists of a set of query maps, a set of reference maps to

which the query maps were aligned, and a set of alignments generated by Malign-

erDP or MalignerIX. From the experiment dashboard page (Figure 3.1) the user is

presented with a list of all available experiments, which they can edit, delete, and

open. From this page new experiments can be also be created.

New experiments are created through the create experiment modal (Figure 3.2).

Each experiment is given a name, and optionally a description. When creating an
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Figure 3.1: MalignViz Experiment Dashboard The experiment dashboard
where users can create, edit, delete, and open experiments.

experiment, the user must provide a JSON file with the query maps, reference maps,

and alignments. Maligner map files and alignment files can be converted from their

tab delimited format to the MalignViz JSON format using the scripts distributed

with the Maligner software.

The landing page for an experiment, shown in Figure 3.3, displays the exper-

iment description and a summary indicating how many query maps, reference, and

alignments are associated with the experiment. A sortable, paged table of query

maps is displayed, along with a count of the number of alignments per query. Each

query links to its own page.

The landing page for a query map includes information about the query map

such as the number of restriction fragments and its total length and also includes
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Figure 3.2: MalignViz Create Experiment Modal Experiments can be created
through the MalignViz web interface through the create experiment modal. Users
can provide an experiment name, description, and JSON files with the query maps,
reference maps, and alignments.

a visualization of the map’s restriction pattern (Figure 3.4). A paged, sortable

table with all candidate alignments for the query map is displayed below along with

alignment summary statistics, including the number of matched sites, the alignment

score, the M-Score, the different components of the scoring object function, and the

rate of unmatched sites in the query and reference. Each alignment entry in the

table includes a button for displaying that alignment.

Below the table of alignments is an interactive visualization displaying the
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pairwise alignment candidates (Figure 3.5). A tooltip is shown summarizing the

components of the scoring function for each matched chunk of the alignment. The

visualization shows restriction fragments scaled by their length, with the reference

along the top and the aligned query map below. Errors in the alignment are clearly

shown, with unmatched restriction sites colored in red and sizing differences be-

tween query chunks and reference chunks represented by white space between. The

matched chunks are displayed in alternating colors of blue and black to clearly show

which group of query fragments are aligned to which group of reference fragments.

As a user navigates the MalignViz application, the state of the application is

maintained by deep linking. This means that URL’s pointing to specific experiments,

queries, or alignments can be bookmarked and revisited at a later time.
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Figure 3.3: MalignViz Experiment Landing Page The MalignViz experiment
landing page, which shows the experiment name, description, a summary of the ex-
periment with counts for the number of alignments, number of query maps, number
of query maps with alignments, and number of reference maps. Lastly, a table shows
a listing of query maps with the number of alignments.
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Figure 3.4: MalignViz Query Landing Page
The MalignViz query landing page, which shows the query map’s name, the number
of fragments, the total map length, and an interactive visualization of the query
map. A sortable table listing all alignments along with their summary statistics is
also displayed, along with controls for displaying the pairwise alignments.
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Figure 3.5: MalignViz Pairwise Alignment This is a screenshot of the Malign-
Viz alignment visualization which appears on the landing page for a query. Malign-
Viz summarizes each alignment with a table that shows the reference map, reference
location, alignment score, the components of the alignment score, and other align-
ment summary statistics. Below the table is a tooltip which shows details for each
matched chunk, including the fragment sizes and score components. Finally, at bot-
tom is the interactive pairwise alignment visualization, with the reference along the
top and the query below. Unmatched sites are shown in red, and matched chunks
appear in alternating colors of blue and black.
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3.3 Results

MalignViz has proven to be a useful tool for better understanding the exper-

imental errors inherent in optical mapping. MalignViz has helped inform decisions

in how to appropriately set alignment scoring function parameters and incorporate

new features into the MalignerDP software, such as query rescaling and realignment.

One experimental error inherent in optical mapping is the underrepresentation

of small restriction fragments due to desorption, where small fragments may float

away after digestion. As a result, when aligning and placing contigs from a sequence

assembly onto an optical map, there can be restriction sites in the in silico digest

of the sequence contig that are unmatched in pairwise alignments. This effect is

illustrated in Figure 3.6, which shows two unmatched sites in the sequence contig

corresponding to small restriction fragments which are not represented in the con-

sensus optical map. This visualization suggests that instead of using a fixed costs

for unmatched sites, the scoring function could be modified so that unmatched sites

are penalized as a function of their distance from the closest matched site.

Optical maps may also exhibit an overall oversizing or undersizing bias, where

restriction fragments lengths are either overestimated or underestimated. In the case

of the E. coli K12 consensus optical map, there is a undersizing bias. To account

for this bias, MalignerDP implements a query rescaling feature, where query chunks

of each candidate alignment are rescaled post-alignment so that the total length of

the interior query fragments matches that of the reference. This rescaling reduces

the sizing error observed for high quality alignments and helps control for the effect
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of sizing bias. An alignment before and after query rescaling is shown in Figure 3.7

where a 205kb contig is aligned to a 186 kb portion of the optical map.

While query rescaling helps to control for the sizing bias, the dynamic pro-

gramming may still select a sub-optimal alignment pattern with extra unmatched

sites. In selecting the alignment pattern, MalignerDP first minimizes the objective

function which in this case produces an alignment pattern with unmatched sites.

However, after rescaling the query fragments in this alignment, it is clear that this

selected alignment pattern is suboptimal, as the unmatched sites could be matched

to further minimize the scoring objective function. This suggests an improvement to

MalignerDP where pairwise alignments are updated after query rescaling to optimize

the selected alignment pattern and further minimize the objective function.
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Figure 3.6:
Alignment of E. coli contig to optical map with missing small fragments
Small fragments are underreprepresented in optical maps due to desorption of small
restriction fragments. This alignment of a in silico digest of an E. coli K12 contig
from a sequence contig (at bottom) to the E. coli K12 optical map (at top) demon-
strates this effect. The two leftmost unmatched sites in the sequence contig bound
two small restriction fragments 1.2 kb and 1.3kb in length. These small fragments
are not represented in the optical map.
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Figure 3.7:
Alignment of E. coli contig to optical map with sub-optimal alignment
pattern
There can be an overall sizing bias in optical mapping, which results undersized
or oversized restriction fragments in both Rmaps and assembled consensus optical
maps. A) The alignment above shows a sequence contig 205 kb in length (bottom
track) aligned to a 186 kb portion of the optical map (top track). In this pairwise
alignment, the optical map is undersized compared to the sequence contig, as can
be seen from the white space. B) The same alignment, after rescaling the query.
While MalignerDP places the contig correctly, the alignment pattern selected by
dynamic program is not optimal, as there are more unmatched sites than necessary.
The unmatched sites in red in both the query and reference could be matched to
produce a better overall alignment.
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3.4 MalignViz Architecture

3.4.1 Back end architecture

MalignViz has been implemented as a portable web application, using freely

available open source tools. The MalignViz back end stack includes an API for

retrieving experiments and alignments, a database layer, and an Nginx server for

serving static resources and routing requests to the API. The API has been imple-

mented using Flask (a Python web application framework) and is served with Gu-

nicorn (a WSGI HTTP server). The database layer uses MongoDB [28], a NoSQL

document database, for storing documents representing experiments, query maps,

reference maps, and alignments.

MalignViz is typical of most web applications in that it comprises several dif-

ferent components, each with its own dependencies and configuration files. Since the

underlying software stack of Python/MongoDB/Nginx is portable, MalignViz could

be configured to run natively on Linux, Mac OS X, and Windows. However, with

so many components, it is cumbersome to install and configure these dependencies

by hand. Due to platform specific issues that may arise, it is hard to guarantee a

smooth installation for all users.

Instead, the MalignViz application has been configured to be built and de-

ployed using Docker, a platform for running applications in isolated containers.

This means that MalignViz can run in any environment that supports Docker. This

includes Linux, which runs Docker natively, and Windows and Mac OS X through
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the boot2docker VirtualBox virtual machine. Docker is a lightweight virtualization

system which uses Linux kernel features (namespaces and control groups) for safely

isolating groups of processes while allowing them to share host system resources [29].

Docker containers are lightweight thanks in part to a union filesystem which allows

multiple containers to share the same base filesystem. Docker containers differ from

traditional virtual machines such as VirtualBox in that the virtual machines are

isolated from each other and share nothing, running separate isolated operating

systems on virtualized hardware components. Containers, meanwhile, share the

same running instance of the Linux kernel and can share the read only parts of the

filesystem that they have in common with other containers, thanks to the union

filesystem.

Docker containerization makes it simple to install and deploy the MalignViz

application. MalignViz comes with a Dockerfile which installs and configures Mon-

goDB, Nginx, Python, Flask, Gunicorn, and other required python packages on top

of the base Ubuntu 14.04 Docker image. Installing and configuring MalignViz is as

simple as issuing a docker build command. MalignViz can be run using docker

start, which will start each application component in the appropriate order in an

isolated container and expose the Nginx HTTP server so that is accessible by a web

browser running on the host machine. The application can easily be shut down with

docker stop.
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3.4.2 Front end architecture

The front end of the MalignViz is a single page website implemented using

the AngularJS framework [30], with visualizations implemented using the D3.js [31]

library. The web page uses the Bootstrap framework [32] for responsive layout

and styling. The application was developed using the Yeoman workflow [33], using

yo with the angular generator for scaffolding the web application and the build

configuration, grunt [34] for building the website, and bower [35] for installing

JavaScript library dependencies (including jQuery, AngularJS, and D3.js).

AngularJS is popular JavaScript application framework which promotes mod-

ular web development by enabling the construction of a complicated application

using re-usable components. AngularJS follows the Model View Controller (MVC)

application structure for logically separating code for storing data, modifying data,

and presenting data. In AngularJS, the controller is a JavaScript function respon-

sible for initializing, modifying, and validating data values. Controllers make use

of services, which are singletons that provide common functionality across the ap-

plication. Controllers assign data to JavaScript objects (i.e. the model) which are

published on the view via Angular’s $scope service. In AngularJS, the view is spec-

ified in HTML via the document object model (DOM). Interactions with elements

in the view such as buttons, links, inputs, and form elements can change model

values via functions published by the controller.
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3.4.2.1 Services

Services are singleton objects that provide functionality that can be used across

an Angular application. Services are instantiated and provided to controllers via

dependency injection by simply specifying the service as an input parameter to the

controller function.

MalignViz implements an API service and a data storage service. The API

service is used throughout the front end application for making requests from the

Flask API. These requests include retrieving a list of experiments; creating a new

experiment; and requesting query maps, reference maps, and alignments associated

with an experiment. The data storage service is used for caching map data and

alignment data in the browser’s session storage so that the API does not have be

queried with each page change, providing for a faster and smoother user experience.

3.4.2.2 Visualization Directives

Directives are the most powerful feature unique to the AngularJS framework.

Directives are JavaScript functions that instruct AngularJS how to wire components

together and make a web page come alive. For example, directives can be used to

bind elements in a view to data provided in a model, to attach a controller to

an HTML element, to attach a click handler to an element, or to arbitrarily add,

remove, or manipulate elements in the document in response to changes to a model.

Directives are defined via a JavaScript function which implements the activities

of the directive, and directives are included in the HTML view via non-standard
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HTML elements or attributes or via class names. This makes it easy for a developer

to understand how an AngularJS application works: by simply looking at the HTML

template for directives, one can see where controllers and callbacks are attached to

the page and how data is bound to elements.

MalignViz makes use of directives for implementing its visualizations. Malign-

Viz provides two simple visualizations: one for displaying a restriction map, and one

for displaying a pairwise alignment between a query and reference restriction map.

The restriction map visualization displays a single restriction map as a fixed

width SVG graphic. The restriction fragments are represented as an array of integers

specifying the fragment lengths in base pair units. D3 is used to bind this data to an

ordered display of SVG rectangles, drawn with width corresponding to the restriction

fragment length. Restriction sites are shown as small gaps between fragments. D3

linear scales are used to convert base pair units to pixels. Since the visualization

is fixed width at 800 pixels, D3 scales take care of automatically stretching the

restriction map visualization to occupy this full width. This means that the base pair

to pixel conversion factor used to display the visualization depends on the restriction

map’s total length. For this reason a tooltip is provided so that when a user hovers

over a restriction fragment, the fragment length is displayed. The restriction map

visualization is shown as part of the query landing page in Figure 3.4.

The pairwise alignment directive displays an alignment as an ordered listing

of matched chunks, as shown in Figures 3.6 and 3.7. The alignment visualization

always displays reference fragments in the forward orientation (i.e., in the same

order as given by the reference restriction map, from left to right). If the query is
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aligned to the forward strand of the reference, the query fragments appear in the

same order as given by the query restriction map. Otherwise, if the query is aligned

to the reverse strand the query fragments are displayed in reverse order.

A matched chunk comprises one or more consecutive reference restriction frag-

ments aligned to one or more consecutive query restriction fragments. Each matched

chunk is displayed with the reference restriction fragments above with the matched

query fragments below. The matched chunk is displayed with both the query chunk

and reference chunk left aligned, and the matched chunk is given enough space to

accommodate both the query chunk and reference chunk, which causes white space

to appear where there are sizing differences. Interior unmatched restriction sites

appear as red lines. The fragments of the matched chunks are displayed in alternat-

ing colors to aid the eye in identifying which query fragments are aligned to which

reference fragments. Below each matched chunk the sizes are displayed in kilobase

pair units.

For each alignment, a table is displayed with alignment summary statistics,

including the M-Score, query scaling factor, alignment score, query unmatched site

rate, and reference unmatched site rate. A tooltip is used to display information

about each matched chunk, including the components of the Maligner scoring func-

tion (the query unmatched site cost, reference unmatched site cost, and sizing error

cost). The user can hover over each matched chunk with the mouse to update the

information displayed in the tooltip.

Data is bound to the pairwise alignment directive by the query page’s con-

troller, and the D3 library is used to draw, size, and color the lines, rectangles, and
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text corresponding the matched chunk visualization.

3.5 Conclusions

MalignViz has proven to be a useful visualization tool for viewing pairwise

alignment candidates generated by Maligner. These visualizations are helpful for

understanding how experimental errors in optical mapping such as the underrepre-

sentation of small fragments due to desorption or sizing bias can impact alignment.

Such visualizations have aided the conception of new alignment features, such as

query rescaling and query realignment. These features have been incorporated into

the Maligner software.

3.5.1 Availability

MalignViz is available on GitHub under a GNU GPL license at https://

github.com/LeeMendelowitz/malign_viz.
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Chapter 4: Structural Variation Detection using Restriction Map Align-

ment

4.1 Introduction

Genetic variation comes in many different forms, from single nucleotide vari-

ants (SNV’s) to larger events such as deletions, insertions, inversions, and translo-

cations [36–38]. Structural variants, which are defined to be a genetic variation that

affects greater than 50 basepairs of DNA [39], have been implicated in many hu-

man diseases [40] including Down’s syndrome [41], autism [42], Crohn’s disease [43],

and schizophrenia [44], among many others. Genomic instability is widely appreci-

ated to be a hallmark of cancer [45, 46] leading to the acquisition of variants which

include translocations [47, 48], copy number variation [49], and chromosome shat-

tering [50,51].

Current methods for detecting genetic variation include microarrays for de-

tecting single nucleotide variants (SNV’s) or discordant paired read alignment [52]

for detecting small events. Short reads, while useful for identifying small inser-

tions/deletions (indels), often lack the power to call insertions or complex struc-

tural variants in repetitive regions [39]. Short reads can easily be confused by

63



repetitive DNA sequences [53], which are estimated to cover approximately half of

the human genome. Approximately half of the human genome comprises repetitive

sequences [53], further confounding the ability to make structural variant calls.

Single molecule restriction maps provide low resolution but long range infor-

mation about genomic structure in the form of ordered restriction fragment lengths.

Such restriction patterns can be compared to a target reference genome to detect

large scale structural variants and copy number variation.

In this chapter we will review the state of the art methods used for calling

large scale structural variants using ordered restriction maps and present a new

methodology for calling structural variants using both global alignments and partial

alignments of single molecule maps.

4.2 Calling Structural Variants From Consensus Restriction Maps

Two recent works have used optical mapping and nanocoding mapping data to

call structural variants between the genomes of individual humans and the human

reference. In both works, variants were called by first assembling a consensus map

and then comparing the consensus map to the in silico digest of the human reference.

4.2.1 Optical Map Assembly for Multiple Myeloma

In recently published work, Gupta et al. [54] assembled optical maps for sam-

ples from a multiple myeloma patient. Optical maps were assembled for a normal

(non-cancerous) tissue sample and multiple myeloma plasma samples at two time
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points, both before (MM-S sample) and after (MM-R sample) drug resistance was

acquired. Optical maps for both the MM-S and MM-R samples were constructed

through iterative assembly [4] by first clustering Rmaps via alignment to the human

reference, then assembling Rmaps using Gentig software, and iterating using the

assembled optical map contigs as the reference in each subsequent iteration. Copy

number analysis was performed by aligning Rmaps to the reference and observing

genomic coverage by position. Copy number for both the normal, MM-R, and MM-S

samples were inferred using a hidden Markov model . Differences in copy number

between MM-R and normal and MM-S and normal cover approximately one third

of the genome, especially at chromosome ends. The drug resistant MM-R sample

was observed to have additional copy number variation changes over the MM-S sam-

ple, acquired as the disease progressed. Optical map assembly elucidated dozens of

large scale chromosomal rearrangements, including the truncation of chromosome

5, both balanced and unbalanced translocations between other chromosomes, and

interstitial deletions.

4.2.2 Hybrid Genome Map Assembly using Long Reads

In recently published work, Pendleton et al. [55] have successfully combined se-

quence assembly and nanocoding map assembly to build a comprehensive analysis of

a single human genome (NA12878). First, error corrected PacBio reads were assem-

bled using the Celera assembler to produce a contig NG50 908kb. Independently,

BioNano single molecule nanocoding maps were assembled to produce a genome
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map contig NG50 of 4.5 Mb. The genome map contigs were then used to place and

orient the sequence assembly contigs via restriction pattern alignment. The aligned

sequence contigs were then used to join adjacent genome map contigs, thereby im-

proving the hybrid scaffold contiguity. After two iterations of hybrid assembly, a

hybrid sequence assembly with 28.8 Mb NG50.

The authors note that independent mechanisms appear to affect the contiguity

of sequence assemblies and map assemblies. Sequence assemblies tend to break in

repetitive regions at the sequence level. Nanocoding map assemblies tend to break

in regions with low restriction site density or in regions where nick sites on opposite

strands cause a double stranded break (termed “fragile sites”). As a result of these

independent fragmentation mechanisms, iterative hybrid assembly is employed to

improve assembly contiguity for both the sequence assembly and the map assembly.

The assembled genome map was used to call large scale structural variants

that could not be called with sequencing. The paper highlights that the genome

map was used to identify a 206kb insertion in chromosome 5 due to a tandem repeat

expansion and a 577 kb inversion in chromosome 1.

4.3 Calling Structural Variants using Partial Alignments

Consensus map assembly has proven useful for calling structural variants, as

detailed in the previous section. However, there may be variants present in a sample

for which consensus map assembly does not give a complete picture. Cancer is a

highly heterogeneous population of cells which often carry many different structural
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variants [56]. As a result, there is not a single conensus map that characterizes the

variation present in a population of cancer cells. For example, in [17] it is shown

that optical mapping data from two adjacent slices of oligodendroglioma tumor show

differences in copy number variation. In that study, the depth of coverage was not

high enough to produce a consensus assembly independently for each slice, so the

Rmaps were pooled to produce a single consensus map for the entire sample. For a

heterogeneous population such as cancer, our hypothesis is that split alignments of

single molecule maps to the human reference can help elucidate structural changes

that would be difficult to capture assembly of consensus maps alone.

4.4 Methods

We have re-engineered the Maligner software to support both global align-

ments of the query restriction pattern and partial prefix and suffix alignments of

a query restriction map to a target reference genome in both the forward and re-

verse directions. We have called this mode of alignment MalignerVD, for variant

detection.

Alignments selected from the ith row correspond to alignments that termi-

nate with the matching of the ith restriction site in the query. Whereas in the

global alignment problem we can extract alignment scores from the last row of the

dynamic programming table, prefix/suffix alignments correspond to selecting align-

ments which end at an interior row of the table.

To account for both prefix and suffix alignments in both the forward and
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reverse direction, we must align the query to the reference with four different possible

orientations: prefix forward, prefix reverse, suffix forward, and suffix reverse, as

shown in Figure 4.1. Since our dynamic programming algorithm (Algorithm 1)

fills in the dynamic programming table top to bottom, left to right with the query

fragments along the rows and the reference fragments across the columns, we must

present the query fragments and reference fragments to the alignment functions

with the orientations shown in Figure 4.2 for each alignment type. When outputting

alignments, care has been taken to output chunk indices relative to the original (i.e.,

forward) orientations of both the query and the reference restriction maps.

Before selecting the best alignments, we normalize total alignment score us-

ing the M-Score method across each row, independently for prefix alignments and

suffix alignments. MalignVD outputs the best non-overlapping full alignments, non-

overlapping prefix alignments, and non-overlapping suffix alignments to three sepa-

rate output files, where the alignments are ranked by M-Score.

4.5 Results

We have applied our methods to a nanocoding dataset from a sample of ma-

lignant plasma cells extracted from the bone marrow of a patient with multiple

myeloma. The dataset of single molecule nanocoding maps using nicking enzyme

Nt.BspQI provide high genomic coverage (93.8X) is summarized in Table 4.1.

We aligned the Nmaps to an in silico digest of the human reference using

MalignerVD and looked for evidence of copy number variation from coverage of
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Figure 4.1: Partial Alignment Types MalignerVD allows for four different types
of partial alignments for query restriction map (green/purple) against a reference
restriction map (black). The solid segment of the query represents the aligned
portion, and the dashed segment represents the unaligned portion. A) The prefix of
the query is aligned in the forward direction with respect to the reference. B) The
prefix of the query is aligned in the reverse direction with respect to the reference.
C) The suffix of the query is aligned in the forward direction with respect to the
reference. D) The suffix of the query is aligned in the reverse direction with respect
to the reference.
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fully aligned Nmaps with M-Score cutoff ≥ 15, query unmatched site rate ≤ 20%,

and reference unmatched site rate ≤ 40%. Overall 161,226 of the Nmaps aligned

uniquely, producing an overall coverage of 12.76X.

We see widespread evidence of copy number variation. Figure 4.3 shows align-

ment coverage by chromosome across the genome. Signatures of gains in appear in

chromosomes 1, 6, 10, 11, 16, 17, 18, 21, and 22 and losses in chromosomes 1, 5,

7, 8, 9, 10, 13, 17, 19, and 21. There appears to be only one copy of chromosome

13. These variations in copy number have also been observed from global alignment

coverage of optical mapping data from the same sample [54].

For maps that did not align uniquely, we looked for unique partial alignments of

the query prefix or suffix. We only considered partial alignments that were trimmed

by at least 10 fragments from the query end and by at least 25% of the number

of fragments in the query, with an M-Score cutoff ≥ 15, query unmatched site rate

≤ 20%, and reference unmatched site rate ≤ 40%. For each query we selected unique

prefix and suffix alignments, giving 7052 queries with unique prefix alignments and

6797 queries with unique suffix alignments. 403 queries had both a unique prefix

and suffix alignment matching this criteria.

For each partial alignment, we considered whether the alignment is on the

left side (i.e., prefix forward or suffix reverse alignments) or the right side (i.e.,

prefix reverse or suffix forward) of the implied breakpoint. We plotted the left side

coverage and the right side coverage in Figure 4.4. We see evidence of breakpoints

with partial coverage on both sides, suggesting the breakpoints are associated with

insertions, inversions, or translocations. In addition, there are loci with partial
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alignment coverage on just one side, which suggests a deletion from the reference.

4.6 Conclusions

We have modified the Maligner software to support partial alignments of query

restriction maps against a reference. We’ve applied our methods to a nanocoding

dataset of plasma cells obtained from the bone marrow of a male patient with

multiple myeloma. From the global alignment coverage we see evidence of copy

number variation which has been previously observed using optical mapping data

for the same sample [54]. From the coverage of partial alignments, we have identified

candidate breakpoints for insertion, translocation, deletion, and inversion events.

4.7 Availability

MalignerVD is available with the Maligner software suite. The code is avail-

able at https://github.com/LeeMendelowitz/maligner under the GNU General

Public License.
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Figure 4.2: Partial alignment types for dynamic programming Same align-
ment types as shown in 4.1 with orientations displayed as required by the dynamic
programming implementation. The dynamic programming proceeds by filling out
the score table from top to bottom, left to right as described in Algorithm 1, and
partial alignments are selected by backtracking from an interior row. The requires
aligning to the reverse of the reference for the prefix reverse (B) and suffix forward
(C) alignment types.

Number of Maps 1,168,842
Total Map Length 281.4 Gb
Avg. Map Length 240.8 kb
Avg. Fragments per map 20.8
Avg. Fragment Length 11.3 kb
Avg. Fragment Length (5% trimmed mean) 9.5 kb

Table 4.1: Multiple Myeloma Nmap Summary Summary of the Nmap data set
from the Multiple Myeloma patient.
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Figure 4.3: Multiple Myeloma, Full Alignment Coverage Full alignment
coverage of multiple myeloma nanocoding dataset in 50kb bins. The vertical lines
delineate the chromosomes, which are arranged in order left to right. The horizontal
line represents the average global coverage (12.76X). There are clear signatures of
gains in copy number in chromosomes 1, 6, 10, 11, 16, 17, 18, 21, and 22. Losses in
copy number appear in chromosomes 1, 5, 7, 8, 9, 10, 13, 17, 19, and 21. There is
only one copy of chromosome 13.
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Figure 4.4: Multiple Myeloma, Partial Alignment Coverage Partial align-
ment coverage of multiple myeloma nanocoding dataset in 50kb bins. The vertical
lines delineate the chromosomes, which are arranged in order left to right. Bins are
marked with colored vertical bars if the partial alignment coverage on the left or
right side of the implied breakpoint is above 3, where the bars indicate the depth of
coverage.
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Chapter 5: Additional Work: Improving String Graph Assembly Con-

tiguity Using Paired Reads

5.1 Introduction

Genome assembly is the computational task of reconstructing the DNA se-

quence of an organism from a set of sequence reads obtained in a sequencing experi-

ment. As the reads generated in a sequencing experiment are much shorter than the

genome itself, assembly is often a vital first step in many genomic analyses, such as

identifying genes or characterizing structural variants between genomes. The goal

of de novo genome assembly is to reconstruct an organism’s genome as contigu-

ously and accurately as possible from a set of sequence reads, without any a priori

assumptions as to the genomic content.

Sequencing experiments can generate a pair of reads from opposite ends of the

same DNA fragment, producing a left read and right read with known relative ori-

entation and approximately known separation. However, assemblers initially ignore

read pair information, instead relying on sequence overlaps alone to piece together

reads into contigs. Read pair information is generally only used after contig assem-

bly, where read pairs that link different contigs are used to place contigs in linear
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arrangements known as scaffolds.

Here, we explore incorporating read pair information in the string graph assem-

bly paradigm. First, we provide an overview de Bruijn graph assembly and discuss

some recent work for incorporating read pair information in this framework. Next,

we discuss string graph assembly and demonstrate the effect that false overlap edges

have on assembly contiguity. Finally, we present a method to use short-insert read

pairs to remove false edges from the string graph to improve assembly contiguity.

5.2 de Bruijn Graph Assembly

5.2.1 Overview

Most genome assemblers designed to work with high-throughput sequencing

reads rely on the de Brujin graph paradigm, including Velvet [57], Abyss [58],

SOAPDenovo [59], ALLPATHS-LG [60, 61], and SPAdes [62]. A de Bruijn graph

DBGk = (VDBGk
, EDBGk

) is constructed from a read set R by creating a vertex for

each length k substring (k-mer) that appears in R, and a directed edge v1 → v2 if a

read has a (k+1) length substring x such that x[0, k] = v1 and x[1, k+ 1] = v2. The

de Bruijn graph is then compressed by merging branch free paths into a single uni-

path edge, labeled with the path sequence. The de Bruijn graph approach elegantly

avoids the cost of computing pairwise overlaps between sequence reads, which is the

computational bottleneck in overlap based assemblers.

However, the apparent simplicity of the de Bruijn graph paradigm comes at

a cost in assembly contiguity. Useful contiguity information provided by each read
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sequence is lost when each read is transformed into a read path of k-mers. Each

k-mer that appears at the boundary of a genomic repeat of at least k bp results in

a branch vertex v ∈ VDBGk
, with indegree deg−(v) > 1 or outdegree deg+(v) > 1.

Therefore, by its construction, the de Bruijn graph is fragmented by repeats that are

shorter than the read length. While increasing k can reduce the number of repeat

vertices, this comes at the risk of disconnecting the graph in regions of low coverage

or high sequencing error for graphs constructed on experimental read sets.

Those reads that span multiple unipath edges in the compressed de Bruijn

provide potentially useful information in resolving repeats, but applying this infor-

mation is difficult. The Eulerian Superpath Problem [63] is the task of identifying

a path through DBGk that visits each edge once (i.e. an Eulerian tour) such that

it contains each read path as a subpath. This problem is NP-Hard [64, 65]. In [63]

Pevzner et al. define several graph simplification operations which preserve solu-

tions to the Eulerian Superpath Problem, but these operations are not applicable

in complex regions of the graph. Similarly, the initial version of SOAPdenovo re-

stricts the use of read paths to situations where there is a repeat r ∈ VDBGk
with

deg−(r) = deg+(r) = N such that each incoming edge can be matched to an outgo-

ing edge without conflict [59].

5.2.2 Paired Read Assembly

Paired read information is typically used only after contig assembly to make

distance estimates between contigs, which are used to create linear arrangements
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of contigs known as scaffolds. For example, ALLPATHS [60] performs de Bruijn

graph assembly, followed by local assembly in scaffold gaps by using a subset of

overlapping reads that have been localized to each gap. ALLPATHS-LG [61] also

uses paired reads in a “read doubling” preprocessing step, where overlapping left

and right reads of the same read pair are merged into a single longer read. However,

paired reads are not explicitly used in contig construction.

Some recent work has explored the incorporation paired read information into

de Bruijn graph contig assembly. Medvedev et al. [66] introduce a method to perform

contig assembly and scaffolding simultaneously with a paired de Bruijn graph. In

this approach, a vertex is created for each pair of k-mers with approximately known

separation. Two k-mer pairs where the left k-mers are identical in sequence and the

right k-mers are separated by a short path in the de Bruijn graph are collapsed into

a single vertex, indicating that the k-mer pairs may belong to the same genomic

region. However, this heuristic may be overly aggressive in joining k-mer pairs that

originate from separate genomic regions.

Pham et al. [67] extend this idea by using paired k-mers to make distance

estimates between unipath edges. For each distance estimate, a set of compatible

paths is found. These pathsets are refined by filtering out paths that likely do not

correspond to true genomic paths. An overlap graph is then constructed on the

selected paths, which are assembled into contigs.

The success of such path-finding methods crucially depends on the contiguity

of the underlying assembly graph, as complex graph regions can result in too many

compatible paths. In the next section, we review the string graph, whose main
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advantage over the de Bruijn graph is that it maintains the full contiguity of each

read and therefore is less prone to the problem of too many paths.

5.3 String Graph Assembly

5.3.1 Definitions

The string graph, introduced by Myers in [68], is constructed from pairwise

overlaps between non-contained reads. To simplify the discussion, we only consider

perfect overlaps (i.e. with identity ε = 1.0) between the reads.

Denote R as the set of all reads obtained in a sequencing experiment. A

read r ∈ R is given by a string of characters r[1]r[2] . . . r [|r|] over the alphabet

Σ = {A,C,G,T}. The positions between characters are indexed starting at 0, so

that the substring r[a, b] with a < b is the substring of r given by r[a + 1] . . . r[b].

The reverse-complement of a string s is given by rc(s). A read r is contained if

∃w 6= r ∈ R such that r or rc(r) is a substring of w. As contained reads and

duplicate reads can be removed in a preprocessing step, we take R to be a set of

non-contained reads.

A read interval I = [s, e] specifies the coordinates of a substring for a read

r, where 0 ≤ I.s < I.e ≤ |r|. A read interval I is left-extreme if I.s = 0 and

right-extreme if I.e = |r|. We define r[I] = r[I.s, I.e] to be the substring of length

|I| = I.e− I.s described by the interval.

An overlap o = {(rj, Ij), (rk, Ik)} with length |o| = max {|Ij| , |Ik|} between

reads rj and rk ∈ R is specified by a pair of extreme read intervals Ij and Ik. Note
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that because R is free of contained reads, the overlap intervals Ij, Ik must be either

left-extreme or right-extreme, but cannot be both. In other words, Ij and Ik specify

an overlapping prefix or suffix of the reads rj and rk.

Let ρo(rj) specify the end of of read rj participating in overlap o, where ρo(rj) =

B if Ij is left-extreme and ρo(rj) = E if Ij is right-extreme. There are four type

of overlaps, depending on the values of ρo(rj) and ρo(rk), which are summarized in

Table 5.1.

Given a read set R and the set of all non-contained perfect overlaps O, we take

the set of overlaps Ok = {o ∈ O | |o| ≥ k} The overlap graph GOLk
= (VOL, EOLk

) is

constructed with VOL = R. The graph is bidirected, so that EOLk
⊆ (V ×Ω)×(V ×Ω)

where Ω = {B,E} is the set of two possible vertex ends. For each overlap o ∈ Ok

there exists a bidirected edge e(o) = {(rj, ρo(rj)), (rk, ρo(rk))} ∈ EOL.

An overlap graph path is given by an ordered listing of edges such that each pair

of consecutive edges enters a vertex on one end and exits at the opposite end. For

example, the path p = ({(w,B) , (x,B)} , {(x,E) , (y, E)} , {(y,B) , (z, E)}) is a valid

overlap graph path. Such a path is read-coherent, as it establishes an orientation

for each read occurrence. A read r is oriented forward if the path enters r at end B

or leaves r at end E. In this example path p, vertex x is forwards, and w, y, and

z are reverse. Furthermore, each path p gives a tiling of the reads which spells a

sequence, where we use the reverse-complement of a read if has a reverse orientation

on the path.

An edge e(o) = {(x, ρo(x)) , (z, ρo(z))} is a transitive edge if the overlap o be-

tween x and z is implied by some read-coherent path
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p =
{(
x, ρo′(x)

)
,
(
y, ρo′(y)

)} {
(y, ρo′′(y)) ,

(
z, ρo′′(z)

)}
where ρo(x) = ρo′(x) and ρo(z) = ρo′′(z). If such overlaps o′ and o′′ exist, then the

edge e(o) is redundant and can be removed from the graph without changing the

set of sequences which could be generated by paths in GOLk
.

A path p is branch-free if deg(x, ρx) = deg(y, ρy) = 1 for each edge

{(x, ρx)) , (y, ρy)} ∈ p. The string graph SGk = (VSGk
, ESGk

) is obtained from

GOLk
by removing all transitive edges and then compressing all branch free paths

into a single vertex.

5.3.2 False Edges

Let G be the DNA sequence of a genome, and RG be a set of non-contained

error free sequence reads sampled from G or rc (G). Denote the string graph built

from RG using minimum overlap k as SGk(RG) = (VSGk
, ESGk

). An edge e =

{(x, ρx)) , (y, ρy)} ∈ ESGk
is called a false edge if the sequence of the single-edge

path p = (e) is not a substring of G. Such an edge is false because it links two

nonadjacent substrings of G which happen to have a perfect overlap of at least k bp.

Consider the case of error-free readsRG of length L sampled from each position

of a genome G. In the ideal de Bruijn Graph DBGk(RG), each edge represents a

k+1 bp substring of G. Therefore, the ideal de Bruijn graph has no false edges.

In the ideal string graph SGk(RG), not all edges represent a substring of G as

some edges will be false. While false edges are detrimental to assembly contiguity,

81



removing such edges provides an opportunity to further improve assembly contiguity.

This same opportunity does not exist in the de Bruijn graph paradigm, as all edges

are true edges.

If it were possible to remove all false edges from SGk(RG), then any remain-

ing branch is due to a vertex r with multiple true overlaps at the same end. As

these overlap edges are true edges, each edge generates a different substring of G.

Therefore, r is a repeat substring of G. From the construction of the string graph,

we know that r is a sequence of a least L bp. This proves that, after removing all

false edges, the string graph only has a branch for a repeat of length L or greater.

To illustrate the prevalence of false overlap edges, we sampled perfect error-free

reads of length L = 100 from every possible point of origin in the finished E. coli K-

12 MG1655 reference genome. We constructed the ideal string graph on this read set

using the String Graph Assembler (SGA) [69], requiring perfect overlaps of length

>= k for several different values of k. We note that true non-transitive overlaps

must have length 99 bp, as we sampled reads from each genomic position. The

characteristics of the assembly graphs are summarized in Table 5.2. As the table

shows, there are many false overlaps for commonly used values of the minimum

overlap k. For example, for k = 50 bp, we see that 26.6% of the overlaps in the

graph are false.

Removal of all false edges from each of these string graphs —regardless of the

initial value of k —yields a string graph with 444 vertices, 598 edges, and an NG50

of 125,651 bp. In this simulation, we are able to identify false edges because we know

the genomic sequence from which the reads were sampled. In the next section, we
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describe a method for identifying false overlap edges from the string graph using

paired reads.

5.4 Methods

In de novo genome assembly, G is not known, and so false edges cannot be

identified by their defining property that they connect sequences which are not

adjacent in G.

Here we propose a simple method for using paired read information to identify

false edges from the string graph. Our objective is to remove edges which are not

consistent with paired reads and retain overlaps which are supported by paired

reads. Given a set of pairwise distance estimates between string graph vertices, we

eliminate untrusted overlaps as follows: (i) find the set of all possible closure paths

consistent with each distance estimate, (ii) use closure paths to assign a read pair

score to each edge, and (iii) remove string graph edges with a read pair score less

than a specified threshold T .

5.4.1 Distance Estimates

Pairwise distance estimates between vertices are made by aligning reads to

the set of string graph contigs given by VSG. We assume that the lengths of the

fragments sampled from G are independent and identically distributed (i.i.d.), where

the length of the ith sequence fragment is a random variable Fi ∼ N (µ, σ2). In

this discussion we assume that the left and right reads have forward and reverse
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description ρo(rj) ρo(rk) relation
prefix - prefix B B rj[Ij] = rc(rk[Ik])
prefix - suffix B E rj[Ij] = rk[Ik]
suffix - prefix E B rj[Ij] = rk[Ik]
suffix - suffix E E rj[Ij] = rc(rk[Ik])

Table 5.1: Types of overlaps Description of four possible perfect overlaps o =
{(rj, Ij), (rk, Ik)} between reads rj and rk, and the corresponding sequence relation.
The reverse-complement of s is denoted rc(s).

k (bp) |V | |E| |EF | |EF | / |E| |E| / |V | NG50 (bp)
20 12,277 39,077 26,646 0.682 3.183 8,081
30 4,815 13,075 8,106 0.620 2.715 21,805
40 2,172 3,515 1,189 0.338 1.618 37,630
50 1,321 2,010 535 0.266 1.522 58,833
60 1,025 1,538 359 0.233 1.500 63,676
70 888 1,328 286 0.215 1.495 78,692
80 702 1,011 155 0.153 1.440 78,692
90 540 756 62 0.082 1.400 107,887
without false edges 444 598 0 0.000 1.347 125,651

Table 5.2: Ideal string graph characteristics Characteristics of the ideal string
graph for error-free 100 bp reads from E. Coli K12 MG1655, as a function of the
minimum overlap length k. V is the set of string graph vertices, E is the set of
string graph edges (overlaps), EF ⊂ E is the set of false overlaps.
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orientation respectively, but distance estimates can be made using any fixed relative

orientation between read pairs.

Read pairs which align to the same vertex with the correct relative orientation

are used to compute the sample mean µ̂ and the sample variance σ̂2. Concordant

alignments to the same contig are used to build the empirical distribution of insert

sizes as a histogram. Outliers can distort the sample mean for the insert size dis-

tribution, so insert sizes fi /∈ [µ̂− 3σ̂, µ̂+ 3σ̂] are iteratively removed until µ̂ and σ̂

converge.

Read pairs where the left read and right read align to different contigs are

used to make distance estimates between contigs. Consider the case where the left

read of the ith read pair is aligned di,1 bases from and oriented towards end ρi,1 of

vertex vi,1, and the right read is aligned di,2 bases from and oriented towards end

ρi,2 of vertex vi,2. Each such read pair defines a link li between end ρi,1 of vertex vi,1

and end ρi,2 of vertex vi,2, with an estimated gap of ĝi = µ̂− (di,1 + di,2). If ĝi < 0,

then the gap is estimated to be an overlap.

Links between between the same ends of the same contig pair are clustered

to form a single distance estimate. Potentially erroneous links are filtered out by

identifying the maximum subset B of mutually compatible links, where two links

li and lj are compatible if |gi − gj| < 6σ̂. If necessary, we break ties by selecting

the subset with the smallest variance in distance estimates. The distance estimate

computed on the filtered set of links B is given by D(B) = (ĝ, sĝ), where:

ĝ =
1

|B|
∑
li∈B

ĝi sĝ =
1√
|B|

σ̂ (5.1)
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It can be shown that ĝ is the maximum likelihood estimate (MLE) for the gap be-

tween contigs, under the assumption that the fragment lengths are i.i.d and normally

distributed.

5.4.2 Finding paths

For each distance estimate, we seek the set of all closure paths from vi exiting

at end ρi to vj entering at end ρj with path length dpath ∈ [dmin, dmax] where dmin =

ĝ− 3sĝ, dmax = ĝ+ 3sĝ. We first attempt to find the set of all closure paths using a

bounded breadth first search (BFS).

For complex graph regions where the BFS fails due to too many candidate

paths, we use a bounded depth-first search (DFS) on a subgraph of edges that are

guaranteed to belong to a compatible path. First, we collect the set of edges reach-

able from vi out of end ρi on a path of distance ≤ dmax

2
and the set of edges reachable

from vj out of end ρj on a path of distance ≤ dmax

2
using Dijkstra’s algorithm. Taking

the subgraph formed by the union of these edge sets, we use Dijkstra’s algorithm to

compute the shortest distance from both vi out of end ρi and vj out of end ρj to each

subgraph edge and remove any edges that cannot be on a path with dpath ≤ dmax.

This is repeated until the subgraph edge set converges, such that all remaining edges

are guaranteed to be on a compatible path. Lastly, we use a bounded DFS to iden-

tify all compatible paths. If there are too many paths, or if the DFS takes too many

steps, we terminate the search and return no closure paths.
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5.4.3 Identifying False Edges

A read pair score s(e) is assigned to each string graph edge e to measure the

number of read pairs which support the edge. All edges are initialized with a read

pair score of zero. For a distance estimate supported by n read pairs with m ≥ 1

closure paths, we add a weight of n
m

for each instance that an edge appears in a

closure path. Even if there are multiple closure paths for a distance estimate, a

string graph edge can receive the full read pair score of n if it appears in each of the

m closure paths.

Each string graph edge with a read pair score less than T is classified as a false

edge and is removed from the string graph. Lastly, the string graph is simplified by

compressing unipaths using the remaining trusted edges.

5.5 Results

We have implemented these methods as a new module within SGA called sga

close-path. We have tested our methods on a dataset of 20.9 million paired, 101

bp reads with insert size 180 bp sequenced from E. Coli K-12 MG1655 with Illumina

HiSeq 2000 (SRR447664).

We use SGA v.0.10.0 to build the string graph SGk on the read set. We

first preprocess the reads by soft-clipping based on quality scores, followed by error

correction and filtering of duplicate reads. We overlapped the reads using perfect

overlaps of minimum length 20, and then assembled the reads using different mini-

mum overlaps of length k = 20, 30, . . . , 90. The recipe to produce the string graph
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sga preprocess -p 1 -q 30

sga correct -k 31 --discard --learn

sga filter -k 27 -x 3 --homopolymer-check --low-complexity-check

sga overlap -m 20

sga assemble -m k

Table 5.3:
SGA assembly parameters for E. Coli K-12 MG1655 dataset. Values
k = 20, 30, . . . , 90 were used for the minimum overlap in sga assemble

is provided in Table 5.3.

The most contiguous SGA assembly on this dataset was obtained using mini-

mum overlap of k = 60 bp (NG50: 52.6 kb). However, we applied sga close-path

to the string graph assembled with minimum overlap of k = 40 bp (NG50: 30.9 kb)

as previous experience has shown that sequencing errors and variation in coverage

results in short edges appearing in true genomic paths, and these shorter edges must

be retained in order to preserve assembly contiguity.

We used bwa-mem [70] to align the trimmed reads from sga pre-process to the

sga k = 40 string graph. 98.2% of read pairs had a unique alignment of 98% identity

or higher for both the left and right read. Read pairs with multiple alignments were

ignored in downstream analysis. The insert size distribution was computed using

reads that aligned concordantly to the same contig, giving µ̂ = 180.1, and σ̂ = 24.9

bp. Read pairs that aligned to different contigs provided 98,590 links, which were

clustered into 5,452 distance estimates.

We ran sga close-path using the 3,607 distance estimates supported by at

least two or more links. A path closure was found for 98.5% of the links, and 97.4%

of the links had a unique path closure. The closure paths were used to assign a score

to each edge. The cumulative distribution of edge scores is shown in Figure 5.5. We
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Figure 5.1:
Cumulative distribution of edge scores The cumulative distribution of edge
scores s(e) for all edges e in the sga k = 40 string graph. 41.1% of the edges have
a score of 0.0, indicating that they are not covered by any closure paths.

classified 1,510 out of 3,648 edges as untrusted by requiring a minimum edge score

of T = 5, and these untrusted edges were removed from the graph. We used sga

assemble to compress any newly formed unipaths, yielding a simplified graph with

287 vertices, 350 edges, and NG50 78.7 kb.

We evaluated our ability to correctly identify false edges by aligning contigs to

the reference genome using nucmer [71] to determine their true point of origin. Using

only alignments with minimum identity 99% covering 99% of the contig sequence,

we label each string graph edge as a false edge if the contigs connected by the edge
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do not have compatible overlapping alignments to the reference. This identified

1044 out of 3648 edges (28.6%) as false edges, which matches our expectations from

the simulation results reported in Table 5.2.

Figure 5.5 shows the true positive rate vs. false positive rate for predicting

false edges for all thresholds T > 0. These empirical results show that our method

is effective at filtering out nearly all false edges, but some true edges are filtered out

as well. For our choice of T = 5, 98.1% of all false edges and 19.2% of all true edges

were removed from the graph. The removal of true edges might be attributed to

missing distance estimates (and therefore missing closure paths) due to the policy

of ignoring reads with multiple alignments, but this needs to be explored further.

We evaluated the correctness of the sga close-path k = 40 assembly by

aligning contigs to the reference genome using nucmer, which found alignments of

identity 98% or better allowing for indels of at most 5 bp. dnadiff was used to

generate a one-to-one tiling of contig alignments against the reference. Alignment

records for a contig with a split alignment were merged into a single record if the

alignments appeared consecutively in the tiling and did not imply an assembly error

larger than 100 bp. Corrected NG50 was computed on this post-processed set of

alignment records.

The sga close-path k = 40 assembly produced two contigs that had split

alignments to the reference. Manual inspection revealed that these split alignments

were due to small scale indels of 8 bp and 91 bp due to different copy numbers of

tandem repeat sequences. These small assembly errors were not penalized in our

computation of corrected NG50.
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Figure 5.2: String Graph False Edge ROC Curve True positive rate vs. false
positive rate for prediction of false edges in the sga k = 40 string graph for all
choices of threshold T > 0. An edge is predicted to be false if s(e) < T .
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We compare the sga close-path assembly to a SOAPdenovo2 assembly of the

same error corrected reads. As sga close-path does not use paired reads to build

scaffolds, we compared our assembly to contig assemblies produced by SOAPdenovo2

contig. We tried assembling with k = 31, 41, 51, and 61, and report the most

contiguous contig assembly here.

5.5.1 Implementation

The contig distance estimation code has been implemented in Python. The

closure path algorithms have been implemented in C++ as part of the String Graph

Assembler. The source code is available at https://github.com/LeeMendelowitz/

sga-close-path.

5.6 Conclusions

In this work, we have discussed the relative strengths and weaknesses of both

de Bruijn graph and string graph assembly paradigms. We have demonstrated that

a significant fraction of overlap edges in the string graphs computed on 100 bp reads

are typically false overlaps induced by short repeats. We have presented a simple

method for detecting and removing these edges using paired reads, and demonstrate

its effectiveness on a bacterial dataset. For this dataset sga close-path produced a

more contiguous contig assembly than sga or

SOAPdenovo2 without introducing additional assembly errors.

While sga close-path has been demonstrated on a dataset with insert size
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180 bp, improvements can be made to adopt this method to longer insert libraries,

where there are likely to be many more closure paths for each distance estimate.

For instance, it would be useful to pool together information from multiple distance

estimates to constrain the search for closure paths in repetitive graph regions.
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Assembly Size (bp) | V | | E | NG50 (kb) Corr. NG50 (kb) Errors
sga k = 40 4,799,648 2,312 3,648 30.9 30.9 0
sga k = 60 4,670,902 1,055 1,540 52.6 52.6 0
sga close-path k = 40 4,593,022 287 350 78.7 78.7 0
SOAPdenovo2 k = 51 4,597,804 750 1,500 33.0 33.0 0

Table 5.4: Contig assembly results for the E. Coli K-12 MG1655 Contig
assembly results for the E. Coli K-12 MG1655 dataset (SRR447664). Assembly
errors count the number of relocation events greater then 100 bp, as determined
by nucmer alignments to the reference genome. Corrected N50 was computed by
breaking contigs for each such error, none of which were observed in these contig
assemblies. The reference genome size G = 4,639,675 bp.
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Chapter 6: Conclusions

In this dissertation I have presented algorithms developed for the alignment

and visualization of restriction mapping data.

Maligner is open-source software for the alignment of both in silico digests of

sequence assembly contigs and single molecule restriction maps to a reference restric-

tion map. Maligner provides two modes of alignment: both a bounded, dynamic

programming implementation and a faster but less sensitive index based method

which does not allow for unmatched sites in the query. We have compared both

implementations to other available software tools and demonstrate that Maligner

finds more correct alignments in comparable run time. We also show that the

dynamic programming implementation of Maligner is the most appropriate choice

when working with noisy experimental restriction mapping data. In addition, we

have introduced the concept of M-Score for the normalization of alignment scores

across queries to assist with selecting significant alignments, thereby avoiding a com-

putationally expensive permutation test. Finally, we show that our methods scale

to larger genomes by aligning a high-coverage optical mapping set for budgerigar.

We have also provided an overview of MalignViz, which is a portable web

application for visualizing pairwise alignments of restriction maps generated by the
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Maligner software. MalignViz has proven to be a useful tool for suggesting features

that have been incorporated back into the Maligner software, such as query rescaling

and query re-alignment for correcting matched sites.

We have presented MalignerVD, which is a re-engineering of the Maligner

dynamic programming implementation to allow for partial alignments of a prefix

or suffix of the query restriction pattern to a reference, with the application of

calling breakpoints for structural variants. We have applied these methods to a

multiple myeloma nanocoding dataset and observed widespread changes in copy

number variation.

Lastly, we have presented work for improving the contiguity of sequence assem-

bly by removing false edges from string graphs using paired reads. Such a method

could be integrated with restriction mapping data, as in AGORA [18], to further

resolve repeats and improve sequence assembly contiguity.
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