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This work examines the use of high-lift, low drag vehicles which perform or-

bital transfers within a planet’s atmosphere to reduce propulsive requirements. For

the foreseeable future, spacecraft mission design will include the objective of limiting

the mass of fuel required. One means of accomplishing this is using aerodynamics

as a supplemental force, with what is termed an aero-assist maneuver. Further,

the use of a lifting body enables a mission designer to explore candidate trajectory

types wholly unavailable to non-lifting analogs. Examples include missions to outer

planets by way of an aero-gravity assist, aero-assisted plane change, aero-capture,

and steady atmospheric periapsis probing missions. Engineering level models are

created in order to simulate both atmospheric and extra-atmospheric space flight.

Each mission is parameterized using discrete variables which control multiple ar-

eas of design. This work combines the areas of hypersonic aerodynamics, re-entry



aerothermodynamics, spacecraft orbital mechanics, and vehicle shape optimization.

In particular, emphasis is given to the parametric design of vehicles known as “wa-

veriders” which are inversely designed from known shock flowfields. An entirely

novel means of generating a class of waveriders known as “starbodies” is presented.

A complete analysis is performed of asymmetric starbody forms and compared to

a better understood parameterization, “osculating cone” waveriders. This analysis

includes characterization of stability behavior, a critical discipline within hypersonic

flight. It is shown that asymmetric starbodies have significant stability improvement

with only a 10% reduction in the lift-to-drag ratio. By combining the optimization

of both the shape of the vehicle and the trajectory it flies, much is learned about the

benefit that can be expected from lifting aero-assist missions. While previous studies

have conceptually proven the viability, this work provides thorough quantification

of the optimized outcome. In examining an aero-capture of Mars, it was found that

with a lifting body, the increased maneuverability can allow completion of multiple

mission objectives along with the aero-capture, such as atmospheric profiling or up

to 80◦ of orbital plane change. Completing a combined orbital plane change and

aero-capture might save as much as 4.5 km/s of velocity increment while increasing

the feasible entry corridor by an order of magnitude. Analyzing a higher energy

mission type, a database of maximum aero-gravity assist performance is developed

at Mars, Earth and Venus. Finally, a methodology is presented for designing end-to-

end interplanetary missions using aero-gravity assists. As a means of demonstrating

the method, promising trajectories are propagated which reduce the time of flight

of an interstellar probe mission by up to 50%.
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Chapter 1

Introduction

1.1 Motivation

In 2010, NASA released a set of grand challenges addressing roadblocks to

mankind’s long term exploration and operation in space. Among these was a need

for more efficient space transportation, as maneuvering is limited by the performance

of current day propulsion systems.1 This work seeks to address that important

technology area without the need for an improved propellant system. Payload mass

fractions on interplanetary missions are often less than 1%, and can be even worse

for deep space missions. For example, the New Horizons spacecraft, currently en

route to Pluto, had a payload fraction of only .14% at launch.2 This leaves precious

little mass budget for the scientific equipment which drives the mission.

Whereas a spacecraft must expel rocket propellant when maneuvering in the

vacuum of space, flight in an atmosphere introduces the ability to use aerodynamic

forces to modify an orbit. Orbital transfers conducted within a planetary atmo-

sphere, known as aero-assist, can reduce the propellant requirements of a space-

craft mission and therefore increase the payload mass delivered. The benefits of

aero-assist could go beyond reduced propellant requirements as well. For example,

aero-assist can be used to increase heliocentric flight velocity. If the time required

to reach the fly-by aero-assist planet is not too great, then the overall mission time
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to the final destination can be reduced. In other cases, aero-assist can introduce

completely new mission objectives, addressing different technical challenges, such as

atmospheric profiling or probe deployment.

Favorable aero-assisted maneuvering force does not come free, as a candidate

mission would require flight in some of the most extreme environments imaginable.

For example. the fastest man-made entry into the Martian atmosphere to date was

the Pathfinder spacecraft. On it’s trajectory, it entered at 7.470 km/s and within 3

minutes decelerated to .37 km/s.3 On the other hand, an aero-assist fly-by of Mars

might require up to 5 minutes of flight in excess of 30 km/s. Atmospheric entry

and sustained flight at hypersonic speeds would likely challenge the performance

limits of thermal protection, control system, and possibly even structural technology.

These performance metrics and the design of hypersonic vehicles are highly coupled.

Generating design methodologies which are capable of multi-disciplinary analysis is

necessary to encapsulate the linked design environment.

1.2 Objective

The primary objective of this work is to use optimization methodology to char-

acterize and improve the design of spacecraft missions using hypersonic vehicles in

planetary atmospheres. Specifically, the methodology that has been developed will

be used to answer questions about: 1) the trade-offs between different performance

metrics of vehicles designed for orbital flight speeds, 2) the potential delta-v sav-

ings for various orbital transfers using planetary atmospheres, and 3) the trends in

trajectory design for interplanetary missions using aero-gravity assist.

This work uses mathematical models to describe the shape of hypersonic ve-

hicles, calculate their performance, and propagate their trajectory. The models

will encompass the geometry of the vehicle, aerodynamics, aerothermodynamics,

stability behavior, atmospheric properties, and trajectory dynamics. The resulting
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simulations are then put into an optimization routine in order to determine the

trade-offs and trends in optimal aero-assist vehicles and trajectories.

Genetic algorithms are used in order to parse a wide set of non-continuous

design variables with many non-linearities. In some cases, multi-objective genetic

algorithms allow comparisons of different pareto optimal solutions. In other cases,

a gradient based optimizer ensures that the genetic algorithm results reach a local

optima satisfying necessary and sufficient conditions.

This research also attempts to design trajectories through and out of the solar

system, using aero-assisted fly-bys. A phase-free method first selects a route in the

form of a planetary fly-by sequence, and subsequently an iterative lambert solver is

employed along with real ephemeris data to find launch opportunities. Finally, the

entire trajectory is optimized using a so-called n-body simulator. Importantly, this

work will demonstrate the major differences in aero-assisted trajectories with those

that use more conventional gravity assists alone. As a means of demonstrating the

method and the examining the wider design space, an example mission design is

performed of an interstellar probe.

In specific, this work will include the following:

• A method of generating asymmetric starbody waveriders will be described and

a thorough analysis of their forms will be performed.

• This work will consider the stability of waveriders.

• This work will present the first conceptual study of a combined aero-capture

and orbital plane change maneuver, quantifying the potential delta-v savings.

• Analytical aero-gravity assist performance will be compared with simulated

maneuver performance.

• Optimal aero-gravity assist departure geometry will be determined.
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• A method for conceptual and preliminary design of interplanetary missions

using optimized simulation data will be described.

• An optimization and simulation framework capable of propagating interplane-

tary trajectories from launch to destination using both gravity and aero-gravity

assists will be detailed.

• This work will be the first to complete a detailed analysis of the benefit of

using an aero-gravity assist maneuver for an interstellar probe.
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Chapter 2

Background

This chapter presents the context in which the subsequent chapters exist.

Summaries will be provided of the important concept areas, discussing relevant,

previously published work. Topics include hypersonic waveriders, aero-assisted ma-

neuver design, and interstellar missions.

2.1 Waveriders

2.1.1 Concept Development

A promising class of vehicle for hypersonic flight is the waverider. These

vehicles are designed to have leading edges attached to a forebody shock, hence

they can be thought of as riding a shockwave. The concept was first presented in

1959 by Nonweiler4 as a means of studying the heat load on a manned re-entry

vehicle. At the time, it was understood that a gliding vehicle could use lift to

decelerate from orbital speeds at a slower rate than blunt bodies in exchange for

worsening the heat rate at the leading edges. Nonweiler was looking into means of

reducing both the high g-forces as well as the high heat rates. He theorized that if

the leading edges were attached to a planar shock, then the heating problem would

be simpler to study. His first paper in 1959 suggested multiple vehicle configurations,

including a caret-wing waverider (see Fig. 2.1). Caret-wings are designed from a
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two dimensional planar shock emanating from a wedge. Nonweiler later published

a paper looking exclusively at caret-wings.5

Figure 2.1: Nonweiler Caret-Wing. From Ref. [5]

Waverider design is not limited to 2-D planar shocks, as they can be designed

from any known shock structure. In the immediate years following Nonweiler’s

first publication, additional research in the United Kingdom extended the waverider

concept to other inviscid flowfields. Townend6 looked into using isentropic compres-

sion, while Jones examined non-lifting conical7 and general axisymmetric flows.8 If

a caret-wing section is replicated and multiple are attached leading edge-to-leading

edge, then a symmetric starbody waverider is formed. The first study of starbody

waveriders was by Gonor et al.9 in the Soviet Union (see Figure 2.2).

Figure 2.2: Schlieren image of a starbody waverider in Mach 5.95 flow and a front
view schematic. From Ref. [9]

With the waverider gaining notoriety, studies validated and advanced the the-

oretical work done in concept development. Pennelegion and Cash,10 Pike,11 and

Kipke12 used hypersonic wind tunnels to demonstrate that the flowfields around wa-

veriders were as predicted. These experimental studies were also useful for analyzing
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the flowfield as the angle-of-attack or the flight Mach number varies (see Figure 2.3).

This is known as the off-design performance of the waverider. Using experimental

data for comparison, Squire13 used an analytic method to model off-design waverider

aerodynamics.

Figure 2.3: Schlieren image of a caret-wing in Mach 8.8 flow at α = 0◦ and α = 16◦.
The shock on the underside of the vehicle has detached from the leading edges at
the higher angle-of-attack. From Ref. [10]

Research picked up considerably in the 1980s, particularly in the United States,

where interest in hypersonics was stimulated by the National Aerospace Plane

(NASP). The remainder of Section 2.1 will provide a sampling of the extensive

advances made in waverider study since the early 1980s, but is certainly not ex-

haustive.

2.1.2 Advanced Designs

As computational power has advanced, so has the complexity of the methods

applied to designing waveriders. Rasmussen used analytic small disturbance theory

to develop waveriders from inclined cones,14 cones with elliptic cross-sections,14 and

ogive bodies.15 Sobieczky et al.16 conceived of an approach which uses a proscribed

3d shock shape described by a power law equation (see Figure 2.4). Their so-called

“osculating cone” design methodology will be used extensively in the present work.
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Figure 2.4: Modeling of an osculating cone waverider and the resulting waverider
stream surface. From Ref. [16]

The waverider methods described thus far are all inverse design, as a vehicle

is “carved” from a known or assumed flow field. Starkey and Lewis17 developed a

means of generating shapes in the forward direction, named the “variable-wedge-

angle” method. Using power law equations to define the upper and lower surfaces of

the waverider, the resulting shock shape and flowfield is calculated. Their method

allowed a much simpler means of parameterizing the waverider shape, allowing opti-

mization, while maintaining less than 2% error from higher-order methods. Starkey

and Lewis18 also used the forward design method to analyze off design effects.

Starbody waveriders have seen advances since their inception as well. Sabean

et al.19 conducted tests on starbodies with non-linear leading edges. They found

roughly 20% drag reduction at M = 6.4 over cones with identical volumes and

lengths. Corda20 determined that each caret wing section of the starbody could

be given its own design conditions, allowing starbodies to generate lift, even at

zero angle-of-attack. It was shown that even with the additional lift generation,

starbodies have favorable drag profiles as compared to equivalent cones. Asymmetric

and non-linear starbodies will be heavily considered in this work, furthering the

concepts presented by Corda and Sabean et al.
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2.1.3 Optimization

The study of waveriders has often been concerned with finding vehicles with

the greatest possible value of L/D. Naturally, many different optimization methods

have been used in the waverider design process.

While Kim et al.21 looked into the viscous effects on waveriders, Bowcutt22

and Bowcutt et al.23 published the first studies including skin friction drag in ve-

hicle shape optimization (see Figure 2.5). The development of viscous optimized

waveriders was a vital step in demonstrating the viability of producing high lift-to-

drag ratios at hypersonic flight speeds. Many inverse design methods and optimiza-

tion codes were compiled into a software program developed at the University of

Maryland called MAXWARP24 (Maryland AXisymmetric WAveRider Program).

Figure 2.5: Data for viscous optimized waverider derived from right cones at Mach
= 6 and three-view of the waverider. From Ref. [23]

The present work will use non-gradient and gradient based optimization meth-

ods to generate vehicle geometries, both of which have heritage in waverider design.

Mangin et al.25 used a simplex, gradient scheme to form waveriders from blunt

blody flows. They found they could increase the volume of the waverider with-
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out decreasing L/D. Foster et al.26 demonstrated that evolutionary algorithms have

comparable convergence to differential algorithms while avoiding local minima when

optimizing aerospace vehicle shapes. Starkey et al.27 and Armellin et al.28 used an

evolutionary algorithm to design optimal waverider shape and hypersonic trajectory

pairs. Burt et al.29 used simulated annealing of 3d direct simulation Monte Carlo

(DSMC) calculations. Ryan30 developed robust optimization techniques and ap-

plied them to hypersonic waveriders. He showed that this allows post-optimization

analysis and insight which could be lost by more traditional schemes. Neville and

Candler31 incorporated CFD results inside of the optimization loop.

2.1.4 Validation

Experimental and advanced computational studies have been conducted to

validate the expected performance of waveriders. Takashima and Lewis32 used a

Navier-Stokes solver to analyze off-design and skin friction effects of viscous op-

timized waveriders. The Naval Surface Warfare Center used their Hypervelocity

Wind Tunnel 9 to experimentally test a waverider33,34 developed in MAXWARP

by Burnett and Lewis.35 The study by Sabean et al.,19 referenced earlier, used

wind tunnel testing to validate an analytic waverider design method. A joint study

between the Hypervelocity Wind Tunnel 9 (now part of the Arnold Engineering De-

velopment Center) and the University of Minnesota demonstrated the performance

of a waverider test article (see Figure 2.6). Drayna et al.36 published the computa-

tional results using a CFD code, US3D. Norris37 presented the Mach 8 experimental

data. Chauffour and Lewis38 used CFD to determine the accuracy of the flowfield

around osculating cone waveriders. Numerous other pure experimental39–42 and pure

CFD43,44 studies also help to validate waverider performance.
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Figure 2.6: A Mach 14 Waverider installed in the Wind Tunnel 9 Test Cell. From
Ref. [37]

2.1.5 Hypersonic Dynamics and Stability

An important aspect of the present work is the quantification of the stability

of waverider vehicles. Stability analysis dates as far back as 1969, when Hui45

derived closed form solutions for the pitch stability derivative of a caret wing using

perturbation theory. He found that the derivative is a function of Mach number and

leading edge incidence angle, but is independent of the wing’s aspect ratio. More

recently, Rasumussen46 used Newtonian theory to determine stability derivatives for

conically derived waveriders.

Piston theory was proposed for use at hypersonic speeds by Lighthill.47 This

method assumes that for high Mach number flows, the pressure of a disturbance is

proportional to the normal surface velocity. This greatly simplifies the calculations

of off-design waverider conditions, as analytic expressions are possible. Tarpley and

Lewis48 used piston theory to derive a complete set of lateral and longitudinal stabil-

ity derivatives for caret-wings. Good agreement is shown between piston theory and
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experimental data presented by Kipke.12 Rudd and Pines49 calculated propulsion re-

lated longitudinal stability derivatives on an engine integrated waverider using both

piston theory and finite differencing. They found the effects of velocity changes on

the flow through a scramjet combuster were too strong to be accurately modeled

by piston theory. Finite differencing was much more accurate when portions of the

flow reach lower Mach numbers.

With the end goal of developing control algorithms, linearized dynamics mod-

els have been presented for generic hypersonic vehicles.50,51 With a linear dynamics

model, eigenvalues can be calculated to analyze characteristic motion.52,53 Mooij52

studied characteristic motion of a blunted capsule and a lifting re-entry body and

found that coupling of lateral and longitudinal motion can be of extreme importance

in the hypersonic regime. This was observed less for his lifting shapes, but he was

looking at vehicles with wings rather than waveriders.

2.1.6 Leading Edge Bluntness

From the very first days of the waverider, there have been concerns over the

heating associated with sharp leading edges.4 As the leading edge radius of a vehicle

increases, the heating rate drops precipitously.54 Van Mol and Anderson55 performed

the first complete analysis of waverider heating using a geometry with leading edge

bluntness. Blosser et al.56 performed a thorough trade study to create conceptual

leading edge designs considering structural materials and thermal loads.

Mason and Lee57 used Newtonian theory and CFD to develop a distinction

between aerodynamic and geometric sharpness. They defined a waverider leading

edge with a power law curve, and then measured the pressure coefficient. It was

found that there was a considerable difference between leading edges with a power

law exponent less than or greater than 2/3. The increased leading edge radius might

have favorable impact on heating, but aerodynamically, it still behaved “sharp” (see
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Figure 2.7). O’Brien and Lewis58 confirmed this result in a numerical study in which

they quantified the relationship between shock standoff and the leading edge power

law exponent (see Figure 2.8). They concluded however, that for comparable heat

loads and drag reduction, circular leading edges performed as well or better than

power law leading edges. Santos and Lewis59 showed a similar result for heating on

waverider leading edges.

Figure 2.7: Variation of pressure coef-
ficient for various leading edge power
law coefficients, n. Note the change in
inflection for n < 2/3. From Ref. [57]

Figure 2.8: Variation of drag co-
efficient with power law exponent.
Note the power-law Newtonian solu-
tion matches a comparable wedge an-
gle for n ≈ 2/3. From Ref. [58]

Gillum and Lewis33 presented data from a Mach 14 test in the Hypervelocity

Wind Tunnel 9 (referenced previously in Section 2.1.4) on a waverider with blunted

leading edges. While they showed favorable off-design behavior, a .25 inch leading

edge radius resulted in flow spillage and increased wave drag. The sharp leading edge

vehicle was predicted to have an L/D = 4.61. Leading edge bluntness decreased this

value by 20% to L/D = 3.7. Silvester and Morgan60 ran CFD and wind tunnel tests

to compare a sharp and blunted caret-wing waverider. They found roughly 25%

reduction in lift-to-drag ratio, which was attributed to flow spillage and viscous

interaction. The greater pressure on the upper and lower surfaces of the caret-wing

caused the boundary layer to grow faster and increase skin friction.
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2.2 Aero-Assisted Spacecraft Missions

2.2.1 Aero-Assisted Orbital Transfers

The use of aerodynamic forces to alter the orbit of a spacecraft was first pre-

sented by London61 with a paper examining orbital plane change. He noted that us-

ing an extra-atmospheric propellant burn to change the inclination of a spacecraft’s

orbit by 60◦ would require almost as much velocity change as the initial launch. He

hypothesized that if aerodynamic lift could instead be used to complete the change

of plane, then the propellant required to de-orbit and once again re-orbit might be

minimal by comparison. He reduced the problem to an analytical form and found

that for L/D = 2, propellant savings would be achieved for turns between 10◦ and

70◦ and up to orbital altitudes of 400 miles. Roessler62 updated the method allowing

for additional impulsive maneuvers during the atmospheric turn. He showed that

the rotation and oblateness of the Earth had a considerable effect as an inclination

change of +15◦ and -15◦ required different propellant velocity increments (turning

towards Earth’s ecliptic plane was less costly).

Figure 2.9: Schematic of aero-assisted plane change. Third image shows additional
impulsive rocket burns inside of the atmosphere. From Ref. [62]

Early conceptual studies made simplifying assumptions about the atmospheric

trajectory flown during an aero-assisted orbital transfer. Algorithms had not yet

been developed to govern the flight profile by way of manipulation of the vehicle’s

lift vector. In the 1980s, research turned to developing control schemes which would
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vary angle-of-attack and bank angle in order to use aerodynamics as efficiently as

possible. This is important, as there will be losses due to varying lift and flying at

some L/D < L/Dmax. These guidance laws were created with different objectives:

minimizing energy loss,63,64 minimizing fuel consumption,65,66 or minimizing the

heating rate.67–69 A thorough summary of the relative merits of those algorithms

published before 1996 is provided in a lecture by Miele.70 While the specifics vary,

the conclusion reached by all of these studies is that a well designed guidance law

can result in aero-assisted orbital transfers which deliver fuel savings over entirely

extra-atmospheric maneuvers and between 80%-99% of the expected savings from a

simplified analytical model “optimum.”

2.2.2 Aero-Gravity Assist

An aero-assist planet fly-by in which aerodynamic lift is used to supplement

gravitational acceleration is named an aero-gravity assist. As the hyperbolic ap-

proach speed of a spacecraft increases, the achievable gravity assisted turning angle

decreases. If the spacecraft enters the atmosphere during the maneuver, however, it

can use aerodynamic forces to remain in the gravity well of the planet for a longer

period of time. Aero-gravity assist (see Figure 2.10) was first proposed as a means of

reducing propellant requirements for a solar probe by Randolph71 at the Jet Propul-

sion Lab (JPL) in 1982. This initial investigation found promise for the maneuver

itself, but skepticism for the vehicle requirements. He estimated a lift-to-drag ratio

on the order of 10 would be needed. It was not until the introduction of viscous

optimized waveriders by researchers at the University of Maryland22 (UMD) in the

late 1980’s, that it was thought that the required lift-to-drag ratios would be at-

tainable. This section attempts to summarize the flood of published studies that

directly followed collaboration between JPL and UMD and the advancement of the

combined concept in more recent years.
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Figure 2.10: A general sketch of the aero-gravity assist concept. From Ref. [71]

Many of the studies mentioned in Section 2.1 were created with terrestrial

applications in mind. One important aspect of extending waveriders for aero-gravity

assist was to quantify their shapes for high altitude applications. Although the

cruise for an AGA would be much lower, reentry would require transiting the upper

atmosphere. Anderson et al.72 used continuum flow analysis to consider waveriders

above 90 km in Earth’s atmosphere, and then applied corrections for low density

effects. They found that as altitude increased, so did viscous drag associated with

decreasing Reynolds number. While this lowered the maximum L/D, low density

effects mitigated the decrease to a small degree. Rault73 used DSMC for waveriders

at altitudes between 97 km and 140 km in Earth’s atmosphere and concluded that

the very concept of a waverider might not be accurate in this flight regime, as the

shock layers are broad and largely unattached to the leading edge. The effects of

leading edge shock detachment resulted in L/D values well below 1 for this flight

condition. An aero-assisted spacecraft would not be able to cruise with such poor

aerodynamic performance.

Anderson et al.74 extended the design space by designing viscous optimized

waveriders for atmospheres beyond Earth. This study was extremely promising for
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aero-gravity assist, as they calculated potential L/D values at Mars and Venus which

were well above the range of requirements for the maneuver. For example, at 30 km

altitude above Venus, a waverider with L/D = 14.96 was designed! While Mars was

also able to support promising L/D ratios (between 5 and 10), Venus was found to

be the most promising in L/D magnitude. Lewis and McRonald75 analyzed trends

in waverider design with specific AGA trajectories in mind. They showed curves

relating L/D to leading edge radius, and L/D to overall waverider length. They

also described a few sample trajectories including vehicle dimensions, maximum

stagnation point heating, length of the required atmospheric turn, and all relevant

velocities and velocity increments.

A trajectory based approach considers the aero-gravity assist maneuver inde-

pendent of the design of the waverider vehicle. By assuming some vehicle L/D ratio,

and a constant atmospheric flight altitude (ignoring the entry and ascent), analytical

equations can be derived.75 Simplifying the approach even more, an energy based

method looks at semi-major axis, perihelion distance, and orbital period without

consideration of where the planets lie along their orbits. Similarly, the energy of

heliocentric transfer orbits which would be needed to reach the fly-by planet(s) and

the final destination are easily computed. Finally, the needed performance of a

gravity or aero-gravity assist is simply the change in direction and orbital elements

between adjacent heliocentric transfer orbits. Using this approach, McRonald and

Randolph76,77 generated trends relating important parameters to the hyperbolic

excess approach velocity: atmospheric flight time, bending angle, maximum aero-

dynamic g-load, and velocity loss. Analyzing their data, they found that Mars was

a more promising candidate for AGA than Venus, because the atmospheric flight

speeds would be lower. Overall, the best trajectories were found when an aero-

gravity assist was used at both Mars and Venus. This would significantly reduce the

required launch energy from Earth. Johnson and Longuski78 developed a graphical
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Table 2.1: Fastest potential AGA trajectories to the outer planets with L/D = 7 (ignoring phasing). All flybys of Earth (E),
Mars (M), and Venus (V) represent aero-gravity assists. Time of flight (TOF) given in years. From Ref. [78]

v∞,
km/s

Jupiter (J) Saturn (S) Uranus (U) Neptune (N) Pluto (P)
Path TOF Path TOF Path TOF Path TOF Path TOF

3 EVEMJ 1.99 EVEMS 3.53 EVEMU 8.21 EVEMN 15.33 EVEMP 23.08
3 EVEVMJ 1.64 EVEVMS 2.43 EVEVMU 4.24 EVEVMN 6.35 EVEVMP 8.21
3 EVEVEMJ 1.56 EVEVMVS 2.20 EVEVMVU 3.46 EVEVMVN 4.91 EVEVMVP 6.18
4 EVMJ 2.20 EVMS 5.61 —– —– ——
4 EVEMJ 1.43 EVEMS 2.44 EVMVU 4.71 EVMVN 7.21 EVMVP 9.44
4 EVEMVJ 1.36 EVEMVS 1.92 EVEMVU 3.20 EVEMVN 4.65 EVEMVP 5.93
4 EVEMVEJ 1.32 EVEMVES 1.87 EVEMVEU 3.14 EVEMVEN 4.58 EVEMVEP 5.85
5 EMJ 2.46 —– —– —– —–
5 EVMJ 1.46 EVMS 2.61 EVMU 5.52 EVMN 9.14 EVMP 12.45
5 EVEMJ 1.24 EVMVS 2.08 EVMVU 3.53 EVMVN 5.18 EVMVP 6.63
5 EVEMVJ 1.23 EVEMVS 1.78 EVEMVU 3.04 EVEMVN 4.49 EVEMVP 5.76
6 EMJ 1.68 EMS 3.64 EMU 14.16 —– —–
6 EVMJ 1.27 EVMS 2.21 EMVU 4.41 EMVN 6.96 EMVP 9.23
6 EVEMJ 1.11 EVMVS 1.74 EVMVU 3.00 EVMVN 4.45 EVMVP 5.72

18



method of viewing this energy based method. They then created tables of minimum

time of flight to the outer planets with an L/D = 7 (see Table 2.1). These serve as

theoretical minimums for the time of flight from Earth to a destination planet with

a given launch energy.

As mentioned, the energy based method does not account for planet phasing.

Many studies have also conducted searches of launch opportunities over decade long

ranges maintaining the constant altitude and L/D assumptions. Sims et al.79,80

generated a comprehensive set of tables showing mission opportunities to Jupiter,

Saturn, Uranus, Neptune and Pluto. They allowed for an infinite lift-to-drag ratio,

as needed. Bonfiglio et al.81 generated similar trajectory tables, but now using L/D

= 5, 7, or 10.

The trajectory based approaches described thus far focus on the interplanetary

AGA trajectory, with only an analytic equation to describe the atmospheric flight.

Lohar et al.82 used the equations of motion, an estimate for the maximum L/D ratio,

and a Newtonian theory based drag polar to integrate the atmospheric trajectory.

They introduced a limited amount of control in allowing the spacecraft to vary its

pitch, and therefore its L/D. They then put the simulation into an optimization rou-

tine and attempted to maximize the heliocentric velocity. They demonstrated that

even without the simplifying assumptions of constant lift-to-drag ratio and ignoring

ascent/descent, the AGA maneuver is superior to the gravity assist maneuver. They

later demonstrated that the same is true, even with the introduction of a heat rate

constraint83 and especially when heliocentric plane change is desired.84

Lavagna et al.85 modelled the atmospheric AGA manuever with an increased

number of degrees of freedom in pitch control, thus complicating the design space.

By optimizing for planetocentric velocity loss and time of maneuver, they demon-

strated that a genetic algorithm was the most effective at parsing the atmospheric

trajectory design space, due to the extreme nonlinearity and number of local optima.
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The pitch angle is not the only the means of varying a vehicle’s lift vector and

controlling the atmospheric trajectory. Armellin et al.86 introduced a bank angle

control law and compared it to the pitch controller, once again using a genetic opti-

mizer. More advanced control systems have also been proposed using contemporary

control theories.87–89

Two hypersonic vehicles and their associated aerodynamic performance likely

vary sufficiently that they would not have identical optimal flight profiles. Armellin

et al.28 published a study in which they developed an algorithm to optimize the

atmospheric trajectory being flown concurrently with the vehicle shape (see Figure

2.11). They used the variable wedge angle method of describing waveriders intro-

duced by Starkey and Lewis17 including leading edge bluntness. The study is both

a proof of concept of the multi-faceted optimization approach, as well as a useful

validation that AGA would be more effective than gravity assist alone, even with

strong heating constraints which increase the leading edge radius and reduce L/D.

Figure 2.11: The three optimal waveriders corresponding to the three optimal tra-
jectory solutions 1, 2, 3. Note the varying degrees of turning from the approach
velocity vector towards the planet’s velocity vector. From Ref. [28]
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2.2.3 Aero-capture

When on an interplanetary trajectory, a force must be applied to slow a space-

craft in order to enter a captured orbit around a planet. Aero-assist can be used

in this scenario as well, by entering the destination planet’s atmosphere on a hy-

perbolic orbit. This aero-capture concept was first described by Cruz in 1979.90 It

was theorized using a moderate lift-to-drag shape in order to allow sufficient con-

trol authority to overcome uncertainties in atmospheric chemistry. As the concept

has evolved, our understanding of destination planets has improved, and technology

heritage has been prioritized. This has steered mission designers towards low-lift

(L/D < .4) and medium-lift (.4 < L/D < 1) forms. In fact, the authors are the

first to present results of an aero-capture using a high lift-to-drag waverider (in this

work and in Ref. [91]).

Section 2.2.3 will not exhaustively cover the state of the art in blunt body aero-

capture, as the maneuver is of limited similarity to the high-lift analog. Control algo-

rithms presented for medium- and low-lift aero-capture92,93 have little applicability

to waveriders. The increased strength of the lift force and reduced deceleration force

greatly change the dynamics. These studies can sometimes be used for comparison,

however. For example, Armellin and Lavagna94 have published a multi-objective

optimization of medium to low-lift aero-capture. The pareto-optimal solutions they

generated will be compared to pareto-optimal solutions for high-lift waveriders.

For a more complete analysis, Lockwood provides a thorough overview of aero-

capture concepts for Titan95 and Neptune,96 while Wright et al.97 presented a

comparable study for Mars.
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2.3 Interstellar Probes

As of this writing, the Voyager 1 probe is the only man-made object to reach

interstellar space. It was launched from Earth in the 1970s with a primary mission

of studying the Jovian and Saturnian systems. Exiting the solar system was only

a secondary mission objective, so it has limited capability for science in interstellar

space. The suggestion of a mission with the primary purpose of reaching interstellar

space was presented in 1987 by Nock98 and Etchegaray.99 At the time, the mission

concept was called the “Thousand Astronomical Units (TAU) Mission” (interstellar

space begins around 125 AU). This ambitious endeavor would use a nuclear powered

electric propulsion system in order to attempt to reach the TAU mark in 50 years.

The TAU mission suggested three main scientific objectives:99

1. Stellar Parallax. The confidence intervals of measurements at astronomical

scales are relatively large, as we are able to observe only from Earth or very

nearby. Sending a spacecraft to interstellar space could dramatically improve

the measurement accuracy. This has practical applications for our under-

standing of the expansion rate of the Universe and thereby its history and

evolution.

2. Astronomy. A unique vantage point would allow new observations of the

Universe, possibly revealing never before seen galaxies and star clusters.

3. Space Physics. A spacecraft sent to interstellar space could make better mea-

surements of the heliopause, interstellar medium and make tests of gravity

lensing with signals sent to Earth.

The TAU mission was never funded, but it has been revised and updated. In 1999,

NASA started an interstellar program, headquartered at JPL. Three studies high-

light their scientific goals,100 the engineering design,101 and the propulsion options
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in specific.102 The stated mission objective was to reach 200 AU in under 15 years

with sufficient consumables to last until at least 400 AU. Using a solar sail, the

necessary velocity was theorized to be achievable, but the mission was once again

never funded.

A thorough set of direct and gravity assist trajectory options to interstellar

space was presented by Fiehler and McNutt.103 They found a minimum time to 200

AU of 23.7 years by performing a gravity assist around Jupiter and then Saturn.

The baseline trajectories presented by Fiehler and McNutt will be heavily leveraged

for comparison with the aero-gravity assist trajectory options presented in this work

(these trajectory options are summarized in Fig. 2.12).

Figure 2.12: Performance of different trajectory options to reach 200 astronomical
units using single or double gravity assists around the outer planets. From Ref.
[103]
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Chapter 3

Geometric Modeling

This chapter will discuss the nature of hypersonic waveriders and various meth-

ods of generating their forms. Discrete inputs are used to describe compressible

shock structures and to create matching aerospace shapes. By modifying the inputs,

a great variety of vehicle geometries are possible, with different expected aerody-

namic, aerothermal, and structural characteristics. Optimization methodologies can

be used to modify the inputs and maximize one or multiple performance qualities.

The applied studies presented in the later chapters of this work use one or more of

the waverider models discussed in this chapter.

3.1 General Comments

Any aerospace vehicle traveling greater than the speed of sound will develop

shockwaves, greatly increasing the gaseous pressure over its surface area. As the

flight speed of the vehicle increases, so too does the pressure behind these shock-

waves. Any vehicular surface which lies at a nonzero angle relative to the velocity

experiences a deceleration force due to the increased pressure known as wave drag.

This is an unavoidable result, and at best, wave drag can only be mitigated by

changing the flight conditions or by reducing the frontal profile of the vehicle.

While wave drag is a penalty of the shockwaves present at supersonic and hy-
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personic speeds, the increased gas pressure surrounding the vehicle can be exploited

for a beneficial purpose: generating lift. If the shockwaves create stronger pressure

in the flow below the vehicle than the pressure in the flow above the vehicle, then

a net vertical force is created. This phenomena is known as compression lift, and

it serves as a fundamental principle behind the design of hypersonic waveriders.

The design objective is to exploit this behavior as efficiently as possible. Highly

compressed post-shock gas should be confined to the underside of the vehicle, and

the upper surface should be exposed to a less compressed flowfield. This is made

possible by designing the waverider such that its leading edges are attached to the

shock structures. If there is any detachment, or a gap between the shockwave and

the leading edge of the vehicle, highly compressed gas can ‘leak’ around the leading

edge to the upper surfaces of the vehicle. This is known as flow spillage.

The design process of a hypersonic waverider can be the derivative of a known

flowfield, can be conducted in concert with a flowfield construction, or can result

in a defined flowfield. Regardless, the final product of a waverider design includes

the shape of a vehicle, and an estimate of the compressible flow around it. This

implies an important detail of the waverider concept, they are designed for one

specific free-stream flight condition. For geometry definition, shock geometries must

be calculated, which can only be done with a fixed free-stream value for both the

Mach number, M, and the ratio of specific heats, γ. The values chosen typically

correspond to a relevant flight condition during the trajectory being designed (often

peak dynamic pressure).

During a real hypersonic trajectory both M and γ will likely vary, and in

those cases, the vehicle is said to be ‘off-design’. In many cases, the performance of

the waverider will suffer when flying in an off-design condition. As the flight speed

changes, the geometry of the shock structures will change as well, which can result

in leading edge detachment and flow spillage.
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R

R

Figure 3.1: Waverider
leading edge before
(dashed) and after
(solid) adding blunted
leading edge (blue).

In order to produce attached shockwaves, each wa-

verider shape is first created with sharp leading edges.

This allows relatively simple shock geometry calcula-

tion and makes high speed geometry generation more

tractable. Unfortunately, a realistic hypersonic design

requires the leading edges of the vehicle to be slightly

blunted for realistic survival of heating loads. The wa-

verider modeling conducted in this work similarly uses

blunted leading edges. The sharp vehicle designs are modified after the initial design

to add bluntness. Various methods of blunting leading edges have been proposed in

the past,56,58 however this work will use a volume addition methodology. Upper and

lower surfaces are moved perpendicularly outward a distance R, and a cylindrical

leading edge is created in the resulting gap (see Figure 3.1). This volume addition

procedure was preferred over numerically “polishing” the leading edges because that

can result in significant volume reduction.

Finally, the aerodynamic model which will be discussed in the next chapter

requires the numeric description of each waverider to be in a consistent format,

regardless of the geometry model used to generate it. In specific, that format is

an unstructured triangular mesh of the surface (see Figure 3.2). The greater the

number of triangles used to describe the surface, the more accurate the aerodynamic

model will be, in exchange for increased computation time. For each triangle in the

surface mesh, the following parameters are required:

1. Coordinates (x,y,z ) of the three vertices

2. Coordinates of the geometric center

3. Direction of the surface outward normal, n̂

4. Direction of the surface streamwise direction, t̂
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5. Length of the triangle in the streamwise direction

6. Area

Figure 3.2: Example of an unstructured triangular mesh grid of a waverider surface.

3.2 Caret-Wing Waveriders

Caret-wing waveriders will not be used in any of the case studies of the later

chapters of this work, however, they are a relatively simple to understand concept

which make subsequent sections easier to grasp. The caret-wing design was first

proposed by Terrence Nonweiler in 1959,4 and is the first documented waverider

concept. They are so named, because each lateral cross Section resembles the key-

board caret character, ˆ.

A caret-wing is formed from a basic compressible flow structure, a planar

shockwave, emanating from a wedge flow disturbance (see Figure 3.3). The leading

edges are drawn along the shock plane in the downstream direction. Designing the
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Figure 3.3: Caret-wing waverider

leading edges to be directly attached to the shockwave will prevent flow spillage and

improve the compression lift effect. The upper surface of a caret-wing is parallel to

oncoming flow (at zero angle-of-attack). The shock compresses the gas that flows

past the lower surface of the vehicle, while the gas flowing over the upper surface

will be at or near free-stream pressure.

3.2.1 Parameterization

There are relatively few variables required to design a caret-wing waverider

(see Figure 3.4):

1. Wedge angle, θ

2. Wedge width, y0

3. Wing angle, κ

4. Length, L, or Volume, V

5. Free-stream flight variables (likely M and γ)
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Figure 3.4: Caret-wing waverider design variables

The wedge width can be zero, as shown in Figure 3.3, however, it needn’t be,

as shown in Figure 3.4. There are practical reasons why a finite wedge width would

be desirable; the wedge section of a caret-wing could contain additional payload or

it has been considered for the placement of a propulsion system such as a scramjet.49

The wing angle, κ, can vary between 0◦ and 90◦, however, designs yielded

from a value chosen near either of these endpoints is unlikely to be desirable. As κ

approaches 90◦, the width of the caret-wing increases rapidly, and the compression

lift effect is dampened. As κ decreases towards 0◦, wall effects become increas-

ingly important, and simple 2-d flow assumptions are not sufficient to capture the

aerodynamics involved. The flow inside of the caret-wing section is assumed to be

entirely 2-dimensional and parallel to the surfaces (no lateral flow). Near the walls

of the caret-wing, boundary layer effects decrease the validity of that simplifying

assumption.

3.3 Starbody Waveriders

Starbody waveriders consist of multiple caret-wing sections attached leading

edge to leading edge and upper surface to upper surface (see Figures 3.5 and 3.6).
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Figure 3.5: Three caret-wings combine to form a star-
body

Figure 3.6: Three-tine Starbody
Figure 3.7: Starbody terminology and
axes

The number of caret-wing sections which are combined dictate the number of wing

protrusions, or so called tines (see Figure 3.7). In order to practically complete the

design, a minimum of three caret-wing sections are required. There is no maximum,

however, as increasingly thinner caret-wing sections could be combined. For this

work, a maximum of six-tine starbodies are considered. As the number of tines

increases, the associated value of κ (see Figure 3.4) for each caret-wing section

necessarily trends closer and closer to 0◦. As discussed in the previous section,

the assumption of a simple two dimensional flowfield within the caret-wing sections
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becomes less accurate in this case. The boundary layers from the vehicle walls

comprise a larger and larger percentage of the flowfield as κ decreases.

The most basic starbodies are both vertically and horizontally symmetric.

Regardless of the number of tines, or the roll angle, these vehicles always produce

zero net side force and zero net lift. Varying the angle-of-attack of a symmetric

starbody could produce a net lift force, however, this changes the strength of the

shockwave structures surrounding the vehicle, resulting in off-design behavior.

Starbodies do not need to be symmetric, so long as their leading edges are

located at adjacent shock planes. Breaking the symmetry about the x-y plane (see

Figure 3.7 for coordinate system) can result in vehicle shapes which use compression

lift to generate a net force in the vertical direction, even at zero angle-of-attack. It

is unlikely that asymmetry would be desired about the x-z plane, as a net side force

is undesirable for an aerospace vehicle.

3.3.1 Parameterization

The asymmetric starbody design methodology first creates a conical center-

body containing the 2-d flow impingement wedges of each caret-wing section (see

Figure 3.7). Each 2-d wedge corresponds to the base of a caret-wing. The dimensions

of the center-body are allowed to vary within certain limits, as are the locations of

the flow impingement wedges.

In this work, four parameters are used to describe the shape of the center-body:

number of flow impingement wedges and tines (n), eccentricity (e), distribution of

tines (D) and the vertical nose offset (α0). Two additional parameters are used

to scale the vehicle: volume (V ) or length (L) and slenderness ratio of the center-

body (a/L). Next, the sharp leading edged starbody is fully defined using a shock

strength calculator (these will be described in Chapter 4). The shock calculator

requires an additional two or three variables, often altitude in the atmosphere of
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a specified planet (h) giving standard day free-stream properties, and flight Mach

number (M ). Finally, a value for the leading edge radius (R) is required to add

bluntness.

Figure 3.8: Center-body dimensions and coordinate system.

Figure 3.9: Center-bodies with e = 0, e
< 0, and e << 0

Figure 3.10: Center-bodies with e = 0,
e > 0, and e >> 0

The eccentricity of the center-body, e, is a ratio between -1.0 and 1.0 which

compares the longer and shorter sides of an elliptical cross-section of the conical
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center-body. It is calculated as:

e =
a− b
a+ b

(3.1)

where a is the semi-major axis and b is the semi-minor axis (see Figure 3.8). As e

increases from zero, the center-body becomes more elliptical. In order to model an

ellipse elongated in either the spanwise or vertical axis, negative values of eccentricity

can be used. The absolute value of any e < 0 is used to represent eccentricity with

stretching along the z axis rather than along the y axis. Figures 3.9 and 3.10 show

center-bodies with various values of e.

The D parameter is a fraction between -1.0 and 1.0 that weights asymmetric

tine placement on the top (maximum at D = +1) or bottom (maximum at D = -1)

of the vehicle. In order to connect all shocks, there are limits to the location of the

tines on one side of the center-body. For example, a value of D = - .35 indicates that

each tine has rotated 35% from its initial, axisymmetric location towards its bottom-

most location. Figures 3.11 and 3.12 show five-tine center-bodies with various values

of D. Note that as D varies, the relative size of each tine will vary as the intersection

of adjacent shock planes occurs in different locations in space.

Figure 3.11: Center-bodies with D = 0, D > 0, and D >> 0

In the calculation of the center-body slenderness ratio, the semi-major axis of

the ellipse in the base plane is scaled by the length of the vehicle, L. This is similar

to specifying the half-angle of the center-body:

θcenter-body = tan−1(
a

L
) (3.2)
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Figure 3.12: Center-bodies with D = 0, D < 0, and D << 0

The slenderness ratio is preferred to a half-angle as it is more explicit about the

dimensions being compared when the center-body is non-circular.

The vertical nose offset, α0, moves the location of the nose of the cone, making

the center-body an oblique, rather than right, cone. The nose of the center-body is

only able to move vertically in the ±z direction, using a value of α0 as a fraction

between -1.0 and 1.0. Figure 3.13 shows five-tine centerbodies with various values

of α0. In terms of geometry generation, this changes the flow impingement wedge

angles and the resulting shock strengths. It is scaled by the semi-major axis (when

e > 0) or the semi-minor axis (when e < 0) in order to give the parameter units

of length. This method prevents the nose from creating negative flow impingement

angles. Typically a positive α0 is desired, as it will create larger flow impingement

angles on the lower half of the starbody and weaker shocks on the upper half of the

starbody, thus amplifying the compression lift effect.

Figure 3.13: Centerbodies with α0 < 0, α0 = 0, and α0 > 0

The center-body and final starbody can be scaled up or down to match a

proscribed overall length or volume. Only one can be used, however, or else the

geometry is overdefined.
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3.3.2 Creation Method

The steps to create the star shape are as follows:

1. Using L = 1, determine a from a/L.

2. At x = L, create the center-body ellipse using e and Equation 3.1 to determine

the semi-minor axis. See Figure 3.8.

3. Using α0, determine the location of the center-body nose, along the x,y = 0

line. See Figure 3.14.

4. Determine locations around ellipse of flow disturbances (using n and D). By

connecting the locations at x = L to the vehicle nose at x = 0, the flow

disturbance wedges are created. See Figure 3.15.

5. Calculate the resulting flow disturbance angle, θ, for each wedge. This is the

angle between the x -axis and the flow disturbance line along the edge of the

center-body. See Figure 3.16.

6. Calculate shock-angles, β, using a shock geometry solver such as the θ-β-M

relation or a high temperature iterative solver.

7. Using the β angle for each wedge, draw the shock planes. See Figure 3.17.

8. Find intersection lines of adjacent shock planes (these will be the sharp leading

edges). See Figure 3.18.

9. Connect lines found in step 8 to the lines on the surface of the center-body

found in step 4. This closes the vehicle. See Figures 3.19 and 3.20..

10. Move each surface a distance R in a direction perpendicular to that surface.

See Figure 3.21.
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11. Draw a circular leading edge in each resulting gap, ensuring tangency to both

surfaces.

12. Calculate a normalized volume, V 0.

13. Scale the vehicle to the desired absolute volume, V, or length, L.

See Figure 3.22 for the final waverider!

Figure 3.14: Step 3. Move center-body
nose using semi-minor or semi-major
axis, and input variable, α0.

Figure 3.15: Step 4. Determine flow
impingement locations around center-
body using D.

Figure 3.16: Step 5. Determine the flow
impingement angles, θ.

Figure 3.17: Step 7. Determine the lo-
cations of the shock planes. This image
is in the base plane of the center-body.
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Figure 3.18: Step 8. Find the intersec-
tions of the shock planes. Again, this
image is shown in the base plane of the
center-body.

Figure 3.19: Step 9. Connect the shock
intersections with the flow impingement
wedges. This image is in the base plane
of the center-body.

Figure 3.20: Step 9. Connect the shock
intersections with the flow impingement
angles and with the nose of the center-
body.

Figure 3.21: Step 10. Move each sur-
face out by a distance R

Figure 3.22: The example four-tine starbody waverider.
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3.3.3 Feasibility

Certain combinations of D, e, α0 and flight conditions result in designs for

which adjacent shock planes either don’t cross, or more often, intersect a different

shock plane first. The former condition can only be reached when adjacent shock

planes are parallel. The latter condition becomes more and more likely as D, e, and

α0 increase in magnitude.

As a demonstration, consider the generation of a four-tine starbody using

the center-body shown in Figure 3.23. The inputs will be infeasible if the shock

planes from the lateral flow impingement wedges intersect before either intersect

the planar shock from the flow impingement wedge in the -z direction. With the

given configuration, this condition is closely reached with a Mach number of 10 as

shown in Figure 3.24. With the exact same geometry inputs, but an increased design

flight speed of M = 100, the design is no longer feasible, and the shocks from the

lateral flow impingement wedges cross eachother before crossing the bottom most

shock (see Figure 3.25).

To consider the conditions which result in an infeasible design, the intersec-

tion of lateral shocks must occur lower than the shockwave from the bottom flow

impingement wedge. That is, as shown in Figure 3.26:

H2 < H1 (3.3)

The value for these heights are dependent on shock strengths and the parameters

depicted in Figure 3.27. The heights are defined as:

H1 =
∆S1

cos(φ)
=
L tan(β1)

cos(φ)
(3.4)

H2 = ∆S2 = L tan(β2) (3.5)
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where β1 and β2 are the shockwave angles, calculated as in step 7 above. The angle,

φ is calculated from the geometry input variables using the law of cosines (Equation

3.6) and law of sines (Equation 3.7):

R2
1 = (α0a)2 +R2

0 − 2α0aR0 cos(
π

2
+
Dπ

2
) (3.6)

Figure 3.23: Center-body of a starbody
waverider with e = .15, α0 = 1

2
, and D

= -1
3
.

Figure 3.24: Base plane of the example
center-body with shock planes drawn in
for M = 10, γ = 1.4. Design is feasible.

Figure 3.25: Base plane of the example
center-body with shock planes drawn in
for M = 100, γ = 1.4. Design is infea-
sible.
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Figure 3.26: Dimensionality of shock
plane intersections.

Figure 3.27: Relationship between in-
put variables and base plane geometry.

sin(π
2

+ Dπ
2

)

R1

=
sin(φ)

R0

(3.7)

Finally, when the center-body is not circular and D does not equal 0 or 1, the value

of R0 is not equal to the semi-major or semi-minor axes. Therefore, the value of

this distance is determined using the following equation describing an ellipse:

R0 =
ab√

(b cos(π
2

+ Dπ
2

))2 + (a sin(π
2

+ Dπ
2

))2

(3.8)

Depending on the method used to determine β as a function of the flow im-

pingement angles, the set of Equations 3.4 through 3.8 can either be solved in closed

form or must be solved using an iterative numerical root finder for the values of H1

and H2. With these values, feasibility is checked using the inequality presented in

Equation 3.3.
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3.4 Osculating Cone Waveriders

Gottfried Wilhelm von Leibniz coined the phrase ’kissing circle’ or ’osculating

circle’ (circulus osculans in the original latin) to refer to a circle which is exactly

tangent to a curve with circular radius matching the curve’s local radius of curva-

ture.104 An osculating cone is therefore one which contains an osculating circle in

some relevant plane.

In the osculating cone waverider generation method, a flowfield is first deter-

mined as one axisymmetric slice of the flow about a conical body. This is determined

by integrating the classic Taylor-Maccoll equations.54 The waverider shape is carved

from an imagined flowfield which is an amalgamation of multiples of these cross sec-

tions stacked side-by-side. All cross sections are generated from a cone with the

same half angle; however, each cone has a different local radius in the waverider’s

base plane. Given that multiple cones are theoretically joined together, each is

referred to as “osculating” or just “kissing” the net shockwave.

The radial conical sections are translated forward and backward relative to the

oncoming flow, thereby requiring only one Taylor-Maccoll solution per waverider,

while allowing variation in the shockwave’s local radius of curvature. This is only an

approximate solution, but previous studies of osculating cone waveriders using CFD

have validated that the method produces well-defined waverider shapes, so long as

there is smooth variation in shock radii.38 If the radii vary too rapidly, the Taylor-

Maccoll solution increasingly underpredicts the rate of lateral flow expansion. This

inaccuracy can also be mitigated by increasing the number of osculating cones used

to model the shockwave shape.
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Figure 3.28: Base plane of osculating cone waverider. Dashed lines indicate radii of
individual osculating cones. Red line indicates shock surface.

3.4.1 Parameterization

The parameterization of osculating cone waveriders follows the so-called dual

power law approach described by Chauffour (see Figure 3.28).38 An equation of the

form shown in Equation. 3.9 defines both the vehicle’s upper surface, as well as the

arbitary shock shape in the base plane (with different values for A, y0, and n for

each surface):

z = A(y − y0)n (3.9)

Note that y0 is the half-width of a flat section of the respective surface, A is a

scalar coefficient, and n is a scalar exponent.

In addition to these variables, additional inputs are needed to scale the vehi-

cle, describe the cone used in the Taylor-Maccoll integration, to quantify the flight
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condition, and to specify the bluntness of the waverider’s leading edge.

As with starbody waveriders, a value for either the volume, V, of the final

vehicle or the length, L, of the final vehicle is required. The vehicle is designed

using a unit length, and a baseline volume is calculated. The final vehicle is simply

scaled up so that the final length or volume matches the input.

As mentioned, each osculating cone has the same half-angle, θ, in order to

greatly increase the calculation efficiency, as the Taylor-Maccoll equations are in-

tegrated only once. The value of the half-angle is a required input to the shape

generation process.

The final variables are the same as those of starbody waveriders: two or three

inputs to define the flight condition, and one additional value indicating the leading

edge radius, R.

3.4.2 Creation Method

The steps to create a waverider using the osculating cones methodology are as

follows:

1. Solve the Taylor-Maccoll equations for the flowfield in one axisymmetric slice

around a cone with half angle, θ. For simplicity, assume that the cone increases

in radius in the +x direction, and has its nose located at the origin.

2. Generate points for the shockwave shape and upper surface shape using the

inputs As, y0,s, ns, Au, y0,u, and nu at an even interval dy. See Figure 3.29.

3. Use those points to numerically calculate the first and second derivative at

each point. The end points will require a forward or backward numerical

scheme, but the intermediary points can use any method. For example, the

central difference method calculates the derivatives as:
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Figure 3.29: Points for the upper sur-
face and the shock surface as seen in a
2d view in the waverider’s base plane.

Figure 3.30: One of the osculating
shocks and osculating cones. The back
radius of the shock, shown as R, is the
same length as the radius of curvature
at the point marked by the x. The in-
tersection with the upper surface is also
noted.

‘

Figure 3.31: 2d view in the waverider’s
base plane showing one of the osculat-
ing shocks and osculating cones. The
back radius of the shock, shown as R,
is the same length as the radius of cur-
vature at the point marked by the x.
The intersection with the upper surface
is also noted.

Figure 3.32: A 2d view in the wa-
verider’s base plane of the radii of all os-
culating shocks and their intersections
with the upper waverider surface.
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z′ =
z(y + dy)− z(y − dy)

2dy
(3.10)

z′′ =
z(y + dy)− 2z(y) + z(y − dy)

dy2
(3.11)

4. Use the first and second derivatives to calculate the radius of curvature of the

shockwave at each location. At each discretized location, the flow solution will

be solved using a cone with half angle, θ, and resulting shockwave radius in

the base plane of the waverider equal to the radius of curvature (see Figures

3.30-3.32). Local radius of curvature is calculated as:

R =
(1 + z′2)3/2

z′′
(3.12)

5. Moving along lines perpendicular to the local shock tangents, find intersections

with the upper surface. The lines being followed are the back radii of the

osculating shocks. See Figures 3.30-3.32.

6. Moving in the -x direction, upstream from the intersection points, trace the

upper surface until reaching the edge of the osculating cones. Connecting all

of these intersections forms the overall waverider leading edge. A triangle is

formed by connecting the original shockwave point (found in step 2), the upper

surface intersection (found in step 5) and the leading edge point (found in this

step). See Figures 3.33 - 3.35.

7. Translate each triangle along with the respective osculating cone such that the

nose of the osculating cone is at the origin. See Figure 3.36.

8. Rotate each triangle such that it is in the x-(-z) plane. See Figure 3.36.

9. Using the conical flowfield solution found in step 1, trace streamlines from

the leading edge locations until they reach the waverider base plane. In the
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Figure 3.33: Moving directly upstream, in the -x direction, the upper surface is
traced until it reaches its respective osculating shock.

Figure 3.34: Performing the upper sur-
face tracing until each osculating shock
intersection, the leading edge of the wa-
verider is created.

Figure 3.35: Depiction of the upper sur-
face traces, the waverider leading edge
and a few triangles described in step 6.

Figure 3.36: Trace of one streamline which will form the bottom waverider surface.
Note that the waverider upper surface and shock have been translated and rotated
so that the triangle formed in step 6 is entirely in the x-z plane.
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Figure 3.37: The lower surface of
the waverider formed from the stream
traces translated back into the original
waverider reference frame.

Figure 3.38: The waverider upper and
lower surfaces moved about to facilitate
drawing a circular leading edge in be-
tween.

rotated and translated frame, follow streamlines until the x -location matches

the x -location of the translated and rotated shockwave point and upper surface

intersection. See Figure 3.36.

10. Rotate the points found along the streamlines by the same magnitude but

opposite direction as in step 8.

11. Translate the streamline points by the negative displacement as performed

in step 7. The resulting points form the lower surface of the waverider. See

Figure 3.37.

12. Move the upper surface a distance R in the +z direction and the lower surface

a distance R in the -z. See Figure 3.38.

13. Draw a circular leading edge between the two surfaces.

14. Calculate a normalized volume, V 0.

15. Scale the vehicle to the desired absolute volume, V, or to the desired length,

L.
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Figure 3.39: The fully constructed example osculating cone waverider.

3.4.3 Feasibility

There are certain combinations of shockwave and upper surface power law

inputs which yield infeasible geometric designs. These can be categorized into two

main scenarios.

The most common issue arising from the osculating cones methodology is that

the shockwave curvature changes too rapidly. This causes the osculating shock radii

to be at high angles relative to each other, and they cross below the upper surface

Figure 3.40: The osculating shock radii cross before reaching the upper surface.
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(see Figure 3.40). If the methodology was continued past step 5 for such a design, it

would be found that the streamlines cross, and a non-physical bottom surface would

have been numerically created.

Another common problem arising from this methodology is that the upper

surface and shockwave meet at too extreme of an angle (see Figure 3.41). In fact,

the angle between the two should be less than 90◦, or else the sides of the waverider

will be open (see Figure 3.42). When step 5 of the waverider generation process is

completed, the upper surface intersections for y = ±ymax, should be coincident with

the shockwave. If the angle between the shockwave and the upper surface is greater

than 90◦, this will not be the case, and the vehicle will not be closed on the sides!

Figure 3.41: The angle between the
shock and the upper surface is too ex-
treme.

Figure 3.42: Infeasible waverider, as its
sides are open.
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Chapter 4

Aerodynamic Modeling

In this chapter, a description is given for methods of estimating the aerody-

namic forces and moments acting on a waverider. The flowfield is first assumed to

be inviscid, and a prediction of the velocity and gaseous properties is made, solving

for the temperature and pressure as a function of position over the body. Multiple

methods of calculating this pressure will be described as will the relative merits.

Next, the inviscid flowfield is used as an estimate of the flow properties at the edge

of the vehicle’s viscous boundary layers. Then, the viscous stresses on the vehicle are

determined. Finally, the pressure and shear stresses are integrated over the surface

area of the vehicle in order to generate net aerodynamic forces and moments.

4.1 Shock Calculations

The first step in determining the aerodynamic forces around the vehicle is to

calculate the strength and geometry of the compressible flow structures. The equa-

tions and methods in this section describe the means of calculating shock geometries

as well as the change in flow properties across the discontinuity.

Because waveriders are designed to be attached to shocks emanating from their

leading edges, many of these tools are used during the vehicle shape generation.

They also must be sufficiently robust to be used during trajectory propagation,
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when the free-stream flight conditions will change, as will the vehicle’s orientation

to the oncoming flow (due to varying angle-of-attack, α).

4.1.1 Constant γ Shocks

The first shock structure under consideration is the 2-d, attached, planar shock

in a non-reacting gas. In this scenario, a shockwave forms at an angle, β, relative to

the free-stream gas, turning the flow parallel to a compression corner with angle, θ.

Further, the gas has a constant ratio of specific heats, γ, which holds both upstream

and downstream of the shockwave.

Using the three conservation laws (mass, momentum, energy) and the perfect

gas law, the shock geometry and changes in flow properties and the shock geometry

can be found in closed form:

tan(θ) =
2M2

1 sin2(β)− 2

M2
1 (γ + cos(2β)) + 2

cot(β) (4.1)

M2 =

√
M2

1 sin2 β+ 2
γ−1

2γ
γ−1

M2
1 sin2 β−1

sin (β − θ)
(4.2)

P2 = P1

[
1 +

2γ

γ + 1

(
M2

n,1 − 1
)]

(4.3)

ρ2 = ρ1

[
(γ + 1)M2

n,1

(γ − 1)M2
n,1 + 2

]
(4.4)

T2 = T1

[
P2

P1

ρ1

ρ2

]
(4.5)

a2 =
√
γRT2 (4.6)

v2 = M2a2 (4.7)

where the subscript (1) refers to flow properties upstream of the shock, and (2)

refers to downstream conditions. A full derivation for equations 4.1 - 4.7 will not be

provided in this work, but is available from any fundamental aerodynamic textbook,

including Ref [105].
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One important note is that in most cases, the disturbance angle θ is known,

and β is an unknown to be solved for. Unfortunately, Equation 4.1 is only closed

form in the inverse scenario, when β is known and θ is not. In this case, numerical

iteration can be used to converge on a value for β. Alternatively, a closed form

approximation is available from Mascitti:106

B = −M
2
1 + 2

M2
1

− γ sin2(θ) (4.8)

C =
2M2

1 + 1

M4
1

+

(
(γ + 1)2

4
+
γ − 1

M2
1

)
sin2(θ) (4.9)

D = −cos2(θ)

M4
1

(4.10)

Φ = cos−1

(
4.5BC −B3 − 13.5D

(B2 − 3C)1.5

)
(4.11)

β = sin−1

(√
−B

3
+

2

3

√
B2 − 3C cos

(
Φ + 4π

3

))
(4.12)

In the case of a waverider with sharp leading edges, the pressure found with

Equation 4.3 can be used to calculate forces on the vehicle. With no leading edge

bluntness, the flowfield is assumed to be uniform behind the shockwave, therefore, no

additional steps are required to estimate the flowfield at the surface of the waverider.

This would be the case within any caret-wing section of a starbody (with RLE = 0),

or on the top-surface of an osculating cone waverider (with RLE = 0) at some non-

zero angle-of-attack. It does not apply to the lower surface of even a sharp leading

edge osculating cone waverider, as the surface is not linear and the post-shock flow

properties are never assumed to be constant (see Section 4.1.3).

4.1.2 Shocks with Local Equilibrium, Reacting Gas

At orbital flight speeds, non-ideal gas behavior can be extremely important.

At the high post-shock temperatures found in this flight regime, some energy is

absorbed into chemical reactions which change the composition of the gas and its
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thermodynamic properties. Recall that a primary assumption made in deriving the

oblique shock relations (Equations 4.1 - 4.7) is that γ is constant. If the shockwave

causes the chemical makeup of the gas to change, then the oblique shock relations

cannot be used as before.

In order to allow reasonable calculation time, it is assumed that all chemical

reactions are coincident with the shockwave. In reality, chemical reactions can

occur downstream of the shockwave. In this work, the gas downstream of the shock

is assumed to be in equilibrium. Similarly, it is assumed that the gas is calorically

perfect within the regions up and downstream of the shockwave, but not across the

discontinuity.

4.1.2.1 Iterative Calculation

In order to solve for the shockwave angle, β, relative to the free-stream flow

due to some disturbance angle, θ, a dual layered iteration is required. These steps

are adapted from the method outlined by Anderson.54 Even if the shock angle was

known, iteration would be required to determine the correct post shock chemical

composition. The shock angle is not known though, so it must be iterated as well

before the correct overall solution is found. The procedure is as follows:

1. Guess a value for the shock angle, β′. 90% of the value predicted by the θ-β-M

relation (Equation 4.1) is a good guess.

2. Using β′, calculate the component of velocity normal to the shock:

v1,n = v1 sin β′ (4.13)

3. Guess a value for the post-shock density, ρ′2. 4ρ1 is a suitable starting guess.

4. Calculate the post-shock pressure and enthalpy using the conservation of mo-
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mentum and energy:

P2 = P1 + ρ1v
2
1,n

(
1− ρ1

ρ′2

)
(4.14)

h2 = h1 +
v2

1,n

2

(
1− ρ2

1

ρ′22

)
(4.15)

5. Use a chemical equilibrium solver to determine the equilibrium density, tem-

perature and specific heat ratio for a gas with the specified enthalpy and pres-

sure. In this work, NASA’s Chemical Equilibrium with Applications (CEA)107

is used.

[ρ2, T2, γ2] = CEA(P2, h2) (4.16)

6. Compare the density obtained from the chemical equilibrium solver with the

guessed value from step 3:

ερ
?
>

∣∣∣∣1− ρ′2
ρ2

∣∣∣∣ (4.17)

If the difference between ρ2 and ρ′2 is greater than some predetermined accept-

able error (ερ = 10−5 was used in this work), then update ρ′2 = ρ2, and return

to step 4. If the difference is less than ερ, move on to the next step.

7. Calculate the ratio of normal flow velocities up and downstream of the shock,

using the conservation of mass:

v2,n

v1,n

=
ρ1

ρ2

(4.18)

8. Calculate the shock angle which would generate this ratio of flow velocities.

From the shock geometry:

tan(β − θ) =
v2,n

v1,n

tan(β) (4.19)

54



In order to develop an expression for β = f
(
θ, v2,n

v1,n

)
, the following trigono-

metric identity is required:

tan(β − θ) =
tan(β)− tan(θ)

1 + tan(β) tan(θ)
(4.20)

By setting the right hand side of Equation 4.19 equal to the right hand side

of Equation 4.20, and simplifying, the following expression is developed:

v2,n

v1,n

tan(θ) tan2(β) +

(
v2,n

v1,n

− 1

)
tan(β) + tan(θ) = 0 (4.21)

This is simply the quadratic equation with tan(β) as the only unknown. There-

fore, the shock angle can be calculated as:

tan(β) =

v2,n
v1,n
− 1±

√(
v2,n
v1,n
− 1
)2

− 4v2,n
v1,n

tan2(θ)

2v2,n
v1,n

tan(θ)
(4.22)

9. Compare the value of β′ and β:

εβ
?
>

∣∣∣∣1− β′

β

∣∣∣∣ (4.23)

If the difference between β and β′ is greater than some predetermined accept-

able error (εβ = 10−5 was used in this work), then update β′ = β, and return

to step 2. If the difference is less than εβ, then the process is complete!

With the value of β found, the individual post-shock flow properties were found as

steps within the most recent iteration.

In practice, the inner iteration loop is complete within 8 iterations, however

the outer loop might require 20 iterations in order to converge. Typically, the most

computationally challenging step is solving for chemical equilibrium. In fact, CEA
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requires iterations itself in order to reach a solution. Requiring CEA to run up

to 160 times in order to find the shock properties makes this a much more time

consuming process than using the standard shock strength calculations outlined in

Section 4.1.1.

4.1.2.2 Database Generation

It was found to be advantageous to create a database of post shock values

which could be interpolated during trajectory propagation. The process outlined

above was repeated for discretized values of 0◦ < θ < θmax, 10 < M < 210, and 0

km < h < hatmos for Mars, Earth and Venus. θmax was the value for which shock

separation occurs, and hatmos is the maximum altitude of the relevant atmosphere.

A variable grid size was used in order to limit the calculation time required to

generate the database, and speed up the interpolation process. Different regions of

the 3d space are more linear than other regions, allowing fewer data points.

In order to develop the database, the following steps are used:

1. A fixed initial discretization, or grid spacing value, is determined for each

variable (dθ = 8◦, dM = 40, dh = 25 km). Let this be grid 1.

2. At each node in grid 1, the post shock properties are calculated using the steps

in the previous section. Let this be database 1.

3. Each grid spacing value is cut in half (dθ = 4◦, dM = 10, dh = 12.5 km)

creating a new 3d grid, called grid 2.

4. At each new node in grid 2, the post shock properties are calculated using

interpolation of database 1. The new nodes are those which are in grid 2, but

not in grid 1. This is roughly half of the nodes.

5. At all nodes in grid 2, the post shock properties are determined. At any node
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not in grid 1, the properties are calculated using Section 4.1.2.1. At any node

which is in grid 1, the properties are known and simply copied. This creates

database 2.

6. For each new node in grid 2, the value of β from step 4, βI , is compared with

the value from step 5, βC :

εβ
?
>

∣∣∣∣1− βI
βC

∣∣∣∣ (4.24)

If the difference between βI and βC is greater than some predetermined ac-

ceptable error (εβ = 10−5 was used in this work), then this node is marked as

not converged. If the value is converged, then the node is marked as such. If

all nodes are converged, then the database is complete!

7. Each grid spacing value is cut in half (dθ = 2◦, dM = 5, dh = 6.25 km).

8. Grid 3 is created by adding up to 26 points around all unconverged nodes of

grid 2. Assume that b corresponds to an unconverged node in grid 2 with

M = Mb, θ = θb, and h = hb. In 3d space, there are 26 points surrounding b,

which correspond to all unique combinations of M = {Mb−dM,Mb,Mb+dM},

θ = {θb − dθ, θb, θb + dθ}, and h = {hb − dh, hb, hb + dh}, but are not b itself

(see Figure 4.1). If b is located at one edge of the 3d design space, then there

will only be 17 new nodes. If b is located at the intersection of two edges of

the 3d design space, there will only be 11 new points. If b is located at one of

the eight corners of the 3d design space, there will only be 7 new nodes.

9. Return to step 4, but now using the two most recent grids throughout, until

all values are converged in step 6.

In this manner, the final grid will be much more dense in regions of great

nonlinearity, and less dense where fewer data points are suitable. Figure 4.2 shows

the final grid for Mars.
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Figure 4.1: Red dot is point b. Blue dots are the new nodes.

Figure 4.2: Martian high temperature database data points. 288879 nodes were
required to obtain less than a 10−4% error in prediction of the shock angle at all
tested midpoints. Note that some regions of the design space require more densely
packed data points.
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Note that upon returning to step 4, a non-uniform database must be interpo-

lated. MATLAB’s scattered interpolant class is used to accomplish the complicated

process efficiently.

4.1.3 Conical Shocks

The differential equation describing the flow around a right circular cone was

first worked out by Taylor and Maccoll108 in 1933. Even though a 2d view of

a cross-section of the scenario looks similar to the 2d planar shock, the flow is

inherently non-linear in this case, due to 3d expansion. This 3d relieving effect

tends to accelerate the supersonic flow, and curve the streamlines away from the

surface of the cone. The initial shock angle is therefore less than the equivalent

wedge.

Despite the 3d relieving effect, the analysis can be completed in only two

dimensions, by making a reasonable assumption that the shockwave and flow about

the cone are axisymmetric. Using polar coordinates, where r̂ is a location radially

outward from the nose of the cone, and θ̂ is a positive angular direction away from

the cone, the total velocity is:

v =
√
v2
r + v2

θ (4.25)

It can be shown that if the shockwave about the cone is straight, then there

is no entropy gradient in the post-shock flow and the flow must be irrotational. In

axisymmetric polar coordinates, constraining the vorticity of the flow to be zero

yields the following relation between the flow directions:

dvr
dθ

= vθ (4.26)

This will be extremely important in applying the boundary conditions when solving

for the flowfield about a cone. The Taylor-Maccoll Equation is a second order,
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ordinary differential Equation:

γ − 1

2

(
vmax − v2

r −
(
dvr
dθ

)2
)(

2vr +
dvr
dθ

cot(θ) +
d2vr
dθ2

)
− dvr

dθ

(
vr
dvr
dθ

+
dvr
dθ

d2vr
dθ2

)
= 0 (4.27)

where vmax is the theoretical speed if all enthalpy was converted into kinetic energy:

vmax =
√

2h0 =
√

2h+ v2 (4.28)

where h and h0 are the static and total enthalpy of the flow, respectively. Equation

4.27 is simpler to integrate if in non-dimensional form. It is therefore helpful to

create a non-dimensional variable, v′, by scaling the flow velocity by vmax. Reworking

Equation 4.28, it is found that:

v

vmax

= v′ =

(
2

(γ − 1)M2
+ 1

)− 1
2

(4.29)

Finally, by dividing the Taylor-Maccoll Equation by vmax, the non-dimensional form

is:

γ − 1

2

(
1− v′2r −

(
dv′r
dθ

)2
)(

2v′r +
dv′r
dθ

cot(θ) +
d2v′r
dθ2

)
− dv′r

dθ

(
v′r
dv′r
dθ

+
dv′r
dθ

d2v′r
dθ2

)
= 0 (4.30)

Unfortunately, Equation 4.30 cannot be solved in closed form, instead requiring

numerical integration. In order to do so, the boundary conditions are defined to be

the flow velocity directly behind the shockwave. The total velocity is:

v′0 =

(
2

(γ − 1)M2
2

+ 1

)− 1
2
∣∣∣∣
behind shock

(4.31)
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where M2 is the Mach number directly behind the shock. It can be found using

Equation 4.2. Recalling Equation 4.25, the initial flow velocities in polar form are:

v′r,0 = v′0 cos(β − θcone) (4.32)

v′θ,0 = v′0 sin(β − θcone) (4.33)

The first derivative of v′r is known from the irrotational condition mentioned pre-

viously (see Equation 4.26). The second derivative of v′r is determined by solving

Equation 4.30 for d2v′r
dθ2

. The system of equations is:

dv′r
dθ

= v′θ (4.34)

d2v′r
dθ2

=
v′2θ v

′
r −

γ−1
2

(1− v′2r − v′2θ )(2v′r + v′θ cot(θ))
γ−1

2
(1− v′2r − v′2θ )− v′2θ

(4.35)

With the initial conditions, and the system of ordinary differential equations, an

ODE solver such as MATLAB’s ode23s can be used to find the entire flowfield

(vr,vθ) for any position (r,θ).

The flow properties within the flowfield are typically of more use than the

flow velocity. In order to find the thermodynamic properties of the gas, the Mach

number is first found by inverting Equation 4.29:

M2 =
2v′2

(γ − 1)(1− v′2)
(4.36)

As mentioned, the flow is assumed to be isentropic behind the shockwave. The

isentropic relations can therefore be used to find the temperature, pressure and
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density at any location, by simply using the Mach number:

T = T0

[
1 +

γ − 1

2
M2

]−1

(4.37)

P = P0

[
1 +

γ − 1

2
M2

] −γ
γ−1

(4.38)

ρ = ρ0

[
1 +

γ − 1

2
M2

] −1
γ−1

(4.39)

where the total conditions are behind the shockwave, and not necessarily in the free-

stream. The total conditions behind the shockwave (subscript 2) are found relative

to the free-stream total conditions (subscript 1) using the following equations:

P0,2

P0,1

=
ρ0,2

ρ0,1

=

(
γ+1

2
M2

1

1 + γ−1
2
M2

1

) γ
γ−1
(

1
2γ
γ+1

M2
1 −

γ−1
γ+1

) 1
γ−1

(4.40)

T0,2

T0,1

= 1 (4.41)

4.2 Surface Inclination Methods

Surface inclination methods can be used to estimate the inviscid flowfield

around a body. These techniques approximate the variation in pressure as primarily

a function of the angle between the free-stream and the local body.

While a waverider shape may have complex geometry, determining the local

body angle is a relatively simple calculation. This section describes two different

categories of surface inclination methods and their use in this study.

4.2.1 Newtonian and Modified Newtonian Method

Classic Newtonian flow theory is the simplest method of estimating the pres-

sure distribution over a blunted vehicle in hypersonic flow. The theory was worked

out with the incorrect assumption that fluid particles have no interactions with each
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other, but instead interact with the body using inelastic collisions. While the phys-

ical explanation was misguided, the resulting theory is quite useful for hypersonic

flow.

Figure 4.3: Schematic of Newtonian Hypersonic Theory.

A uniform flow of fluid particle is assumed to move towards a rigid body which

is locally inclined at an angle of θ relative to each fluid particle’s linear motion (see

Figure 4.3). After striking the surface, the fluid particles lose their momentum

normal to the wall and move tangentially to the surface. The time rate of change

of the fluid’s normal momentum (per area) is then:

∆(momentum)

∆(time)
= ρ∞v∞ sin2(θ) (4.42)

Of course, change in momentum is equal to force, in this case exerted on the body

by the fluid flow. If the force per area is considered to be a pressure in excess of the

static pressure of the flow, then the pressure coefficient and pressure are expressed

as:

P = ρ∞v
2
∞ sin2(θ) + P∞ (4.43)

cP = 2 sin2(θ) (4.44)
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Note that any surface area which is not directly incident to oncoming flow is assigned

a pressure coefficient of zero, rather than using a negative incident angle.

While Newtonian theory is extremely simple to apply, it has limited appli-

cability due to the lack of dependence on flight speed. An improved version was

worked out by Lester Lees109 and is referred to as the modified Newtonian method:

cP = cP,max sin2(θ) (4.45)

P =
1

2
ρ∞v

2
∞cP,max sin2(θ) + P∞ (4.46)

where cP,max refers to the pressure coefficient at a stagnation point behind a normal

shock at the given flight speed:

cP,max =
2

γM2

[(
(γ + 1)2M2

4γM2 − 2(γ − 1)

) γ
γ−1
(

1− γ + 2γM2

γ − 1

)
− 1

]
(4.47)

The geometry dependence of the modified method is the same as the classic Newto-

nian theory, however the coefficient is now dependent on flight Mach number, which

improves accuracy. In particular, the flight speed dependence improves the accuracy

of pressure estimation at lower Mach numbers. As M→ ∞, if it is assumed that

the value of γ goes to 1 (a good assumption), then the value of cP,max → 2 and the

original Newtonian theory is recovered.

4.2.2 Tangent Cone/Wedge

The tangent-cone/tangent-wedge methods are so-named as the thermody-

namic properties at a given location on a hypersonic body are assumed to be the

same as those on a cone/wedge which has an equivalent angle with the free-stream

(see Figure 4.4). A body with a blunted leading edge will create a curved shockwave

behind it. Moving from a point on the body to a point on the shockwave, the pres-
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sure decreases. Studies have shown that a good estimate of the amount of decrease,

is the pressure behind a shock that would result from a wedge or cone with the same

local half angle.54,110,111

Figure 4.4: Schematic of the tangent wedge and tangent cone methods of estimating
surface pressure. From Ref. [54]

The method was empirically developed, so there is no derivation to present

nor are there any new equations. The shock calculations described in Section 4.1

are simply made using the inclination of each local region of the vehicle.

4.2.3 Application to Waveriders

In practice, the modified Newtonian method is most useful and accurate at

estimating the pressure coefficient over blunt bodies.54,110 This is important as any

waverider with a finite leading edge radius is blunt, at least in this region.

The tangent methods are most useful for bodies which have attached, but

curved shockwaves. As shown by Mason and Lee57 the immediate presence of geo-

metric bluntness does not translate to aerodynamic bluntness. That is, waveriders

with very small leading edge radii will still have attached shockwaves. For these

waveriders, the tangent methods are most accurate at predicting the pressure at the

surface.

In this work, a distinction is made between aerodynamically sharp and blunt

bodies using the criteria of the critical attached inclination angle. For a given Mach
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number, there is a maximum disturbance angle, θc, which yields a solution to the

θ-β-M relation. In the case of a shock with constant γ, the critical angle can be

found by solving the following equation for βc and using it in Equation 4.1:104

sin2 βc =
1

4γM2

(
(γ + 1)M2 − 4

√
(γ + 1) [(γ + 1)M4|8(γ − 1)M2 + 16]

)
(4.48)

If the local inclination angle for a given region of the waverider is greater than

or equal to θc, the modified Newtonian method is used. If the local inclination

angle for a given region of the waverider is less than θc, one of the tangent methods

predicts the local surface properties.

In the case of starbody waveriders, when a local θ is less than θc, the tangent

wedge method is used. On the other hand, when a local θ is less than θc on an

osculating cone waverider, the tangent cone method is employed. As the leading

edge radius on either waverider model decreases towards zero, the local inclination

angles are the same as those that were used for shape generation of the sharp

leading edge vehicle. In this case, when using the respective tangent method, the

sharp leading edge solution is recovered. Thus, the aerodynamic calculations are

continuous from a sharp leading edge vehicle to a highly blunted waverider.

Using the local surface inclination methods allows one single aerodynamic

model to predict consistent pressure calculations as the vehicle experiences an angle-

of-attack, for any geometry type. The only requirement is a mesh of the surface

area of the vehicle into small regions with known area. With the edge points of each

meshed surface area, the determination of the local inclination is trivially simple.

The remaining pressure prediction only requires Equation 4.46 or one of the shock

strength calculators described in Section 4.1.
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4.3 Viscous Methodology

The reference temperature method estimates shear stress on vehicles flying at

hypersonic speeds.112 In order to account for the effects of compressibility, the fluid

properties relating to skin friction are estimated at a reference temperature, T ∗,

which is a function of the Mach number and vehicle wall temperature, Twall:

T ∗ = T2

(
1.28 + .023M2

2 + .58(
Twall

T2

− 1)

)
(4.49)

µ∗ = µ0

(
T ∗

T0

)1.5(
T0 + S

T ∗ + S

)
(4.50)

ρ∗ =
P2

RT ∗
(4.51)(

Re

x

)∗
=
ρ∗v2

µ∗
(4.52)

where T0, µ0, and S are gas specific constants (see Table 4.1). The wall temperature

depends on the application, but for an aero-assist application, a very high value is

warranted (Twall = 1900 K is used in this work).

Table 4.1: Gas constants for terrestial planets
T0 [K] S [K] µ0

[
Ns
m2

]
Mars 231 293.15 1.480 x 10−5

Earth 291.15 120 1.827 x 10−5

Venus 231 293.15 1.480 x 10−5

Calculations are made assuming turbulent flow over the entire vehicle. In real-

ity, portions of the vehicle would have laminar boundary layers, and therefore lower

skin friction. Hypersonic boundary layer transition is an extremely active area of

current day research, with a conclusive model still under development. Rather than

introduce a relatively unvalidated estimation method, requiring significant calcula-

tion complexity, a conservative estimate was used instead. For a turbulent boundary
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layer, the shear stress is estimated using the following correlation:

τ ∗ =
.0592ρ∗v2

2

2x.2(
(

Re
x

)∗
).2

(4.53)

4.4 Force and Moment Calculations

Thus far, this chapter has discussed estimations of inviscid and viscous flow-

fields. In this section, the gaseous properties which have been determined previously

are summed into resultant forces and moments acting on the vehicle. These forces

and moments will be fed into a flight simulator in later chapters.

As mentioned in the previous chapter, the vehicle models in this study were

developed with an aerodynamic panel code in mind. The surface of each waverider

was broken up into many triangles (see Figure 3.2). The aerodynamic environment is

calculated on each triangle, converted into a force, and finally the forces are summed

over the entire triangular mesh. This yields the resultant forces and moments acting

on the vehicle.

When within a planetary atmosphere, the exterior of a waverider is assumed

to be entirely surrounded by gaseous atmosphere. The pressure this gas exerts on

the surface of the vehicle has been solved for as a thermodynamic property in the

previous sections. Because the vehicle is moving, and is not entirely symmetric, the

pressure distribution is not uniform and there is likely a net pressure force. Over a

given region of the vehicle, the force due to aerodynamic pressure is:

FP = −P2An̂ (4.54)

where A is the area of the surface over which P2 exists and FP acts. Also, n̂ is

oriented outwardly normal to the surface.

The expression developed to determine the shear stress acting over a given
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region of vehicle surface (Equation 4.53) is written as a function of x, or the stream-

wise distance from the leading edge of the vehicle. Therefore, the shear stress must

be integrated over each surface, rather than simply multiplying by area. Assuming

that each surface is triangular, as is the case in the unstructured grids generated for

the previous Chapter’s waveriders, the skin friction force on a given region is:

Fτ =
25

18

A

l.2
τ ∗ cos2(θ)t̂ (4.55)

where A is the area of the surface over which Fτ acts, l is the length of that surface,

t̂ is oriented parallel to the local streamlines at the surface, and θ is the angle the

surface makes relative to the free-stream flow.

Finally, the inviscid and viscous aerodynamic forces are integrated over the

vehicle surface yielding the resultant force and moments. Assuming that there are

k triangles in a given waverider mesh, the axial and normal force coefficients are:

cA =
1

1
2
ρ∞|v|2S

{
k∑
m

(FP,m · x̂) +
k∑
m

(Fτ,m · x̂)

}
(4.56)

cN =
1

1
2
ρ∞|v|2S

{
k∑
m

(FP,m · ẑ) +
k∑
m

(Fτ,m · ẑ)

}
(4.57)

where x̂ and ẑ are in body axis coordinates (the origin is at the nose, and the

centerline of the vehicle is the +x axis). The angle-of-attack converts the axial and

normal forces into the more useful lift and drag coefficients which are related to the

free-stream flow direction:

cL = cN cos(α)− cA sin(α) (4.58)

cD = cN sin(α) + cA cos(α) (4.59)

Note that bank angle is not included here, and lift is assumed to be the entirety of

69



the resultant force which is normal to the velocity vector. The magnitude will be

converted into planetary axes using the bank angle during trajectory propagation

in the next chapter.

Finally, similar to the summations performed to develop the resultant forces,

the location and moment arms of each triangular surface can be included in order

to develop expressions for the net moment coefficients:

cl =
1

1
2
ρ∞|v|2SL

{
k∑
m

ryz,m(FP,m · φ̂)−
k∑
m

ryz,m(Fτ,m · φ̂)

}
(4.60)

cm =
1

1
2
ρ∞|v|2SL

{
k∑
m

rxz,m(FP,m · α̂)−
k∑
m

rxz,m(Fτ,m · α̂)

}
(4.61)

cn =
1

1
2
ρ∞|v|2SL

{
k∑
m

rxy,m(FP,m · β̂)−
k∑
m

rxy,m(Fτ,m · β̂)

}
(4.62)

where φ̂ is a bank angle rotation about the vehicle’s x -axis, α̂ is an angle-of-attack

rotation about the vehicle’s y-axis, β̂ is a yaw angle rotation about the vehicle’s

z -axis, and r is the distance from the relevant axis of rotation:

rxy,m =
√

(xm − xcg)2 + (ym − ycg)2 (4.63)

rxz,m =
√

(xm − xcg)2 + (zm − zcg)2 (4.64)

ryz,m =
√

(ym − ycg)2 + (zm − zcg)2 (4.65)

4.5 Stability Derivatives

To date, flight experience in the hypersonic regime has suggested that stability

of waverider forms presents a pressing challenge. Analysis of the effect of control

surfaces is not included at this stage of work, so stability has been considered without

a focus on controllability.

In this study, stability of waverider designs is determined using the magnitude
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of stability derivatives. This is a first order method which models aircraft behavior

around a specific flight condition as a linear system. Five point central differencing

is used to calculate the following numerical derivatives:

cmα(α) =
−cm(α + 2∆α) + 8cm(α + ∆α)− 8cm(α−∆α) + cm(α− 2∆α)

12∆α
(4.66)

clβ(β) =
−cl(β + 2∆β) + 8cl(β + ∆β)− 8cl(β −∆β) + cl(β − 2∆β)

12∆β
(4.67)

cnβ(β) =
−cn(β + 2∆β) + 8cn(β + ∆β)− 8cn(β −∆β) + cn(β − 2∆β)

12∆β
(4.68)

where ∆α, ∆φ, and ∆β are small disturbance angles.

For all stability calculations, the center of gravity (CG) is placed at the trim

location. Symmetry enforced by the parameterization of the geometry guarantees

trim in yaw and roll if the CG is along the centerline. Static longitudinal stability

is assessed using the static margin:

SM =
xNP − xCG

L
(4.69)

where xNP is the vehicle’s neutral point. The neutral point is the location of the

center of gravity which would make cmα = 0. Determining the neutral point requires

calculating one additional stability derivative, the change in cmα with changes in

xCG. That is:

cmα,xCG(α, xCG) =
1

12∆xCG
[−cmα(α, xCG + 2∆xCG) + 8cmα(α, xCG + ∆xCG)

− 8cmα(α, xCG −∆xCG) + cmα(α, xCG − 2∆xCG)] (4.70)

Then, the neutral point is calculated as:

xNP = xCG −
cmα(α, xCG)

cmα,xCG(α, xCG)
(4.71)
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Physically speaking, the neutral point is where the center of gravity would need to

be for changes in the vehicle’s angle-of-attack to not produce any pitching moment.

When the center of gravity is forward of the neutral point, then the value of cmα is

negative. This is the essence of stability. When cmα is negative, any angle-of-attack

disturbance causes a moment which acts acts to restore the pitch to zero. On the

other hand, if the neutral point is behind the CG, then pitch disturbances create

moments which tend to exacerbate the rotation. The static longitudinal stability

and distance away from neutral stability is summarized by the sign and magnitude

of the static margin.
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Chapter 5

Trajectory Simulation

In this work, aero-assisted trajectories are directly simulated. This allows a

more detailed consideration than a purely analytic approach. A simulation was writ-

ten in MATLAB utilizing dynamic integration capabilities. The equations and mod-

els used to create a flight path through outer space and planetary atmospheres are

the subject of this chapter, along with other topics related to simulating aerospace

trajectories.

5.1 Methodology and Simplifying Assumptions

The code was written so that the simulation framework can continuously prop-

agate a trajectory anywhere in the solar system, including into and out of a terres-

trial planetary atmosphere (Mars, Earth, Venus). When the position of the vehicle

is calculated to be inside of an atmosphere, aerodynamic forces are determined as

an acceleration on the vehicle along with gravitational accelerations. Outside of the

atmosphere, gravitational forces are considered alone.

Depending on the nature of the simulation, gravitational force is either cal-

culated for all major solar system bodies (a so called, ‘n-body’ simulation) or only

calculated for one main planetary body (2-body simulation). This methodology is

similar to the ‘patched conics’ approach of studying spacecraft trajectories. When in
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the near vicinity of a planet, the motion of a spacecraft is dominated by that planet,

and the gravitational acceleration due to other bodies can be neglected. The criteria

for defining the region around a celestial object for which it’s gravitational attrac-

tion is dominant is referred to as its ‘sphere of influence’. This radial distance is

calculated using Equation 5.1:

RSOI = a

(
m

MSun

) 2
5

(5.1)

where a refers to the semi-major axis of the planet’s orbit around the Sun, and m

is the mass of the planet. In any case study where the trajectory of an aero-assist

vehicle is entirely within a planet’s sphere of influence, a 2-body simulation is used.

This method is extremely common in satellite and spacecraft simulations and yields

sufficiently accurate results to justify the computational simplification.

Where this work differs from the patched conic approach is the use of a

full n-body simulation when trajectories are propagated through multiple plane-

tary spheres of influence. The distance calculated in Equation 5.1 corresponds to

points in space where the gravitational acceleration due to the Sun is roughly the

same magnitude as the gravitational acceleration due to the relevant planet. It is

therefore an approximation of the transition between when either body’s attractive

force is most influential on spacecraft motion. In that transition region, the force

due to both the planet and the Sun are both kinematically significant. While the

patched conic method provides an excellent first order trajectory approximation,

better results are achieved by considering the gravity of all planetary bodies. For

example, when considering an aero-gravity assist mission, the trajectory might be

propagated from Earth, through a series of gravity assist and aero-gravity assist

fly-bys before reaching some final destination. During each fly-by, the spacecraft is

within the sphere of influence of that planetary body. The patched conic approach
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says that the fly-by should be propagated using 2-body dynamics until the sphere

of influence is reached, and then a 2-body simulation should be run with the Sun as

the central body. The n-body simulation method instead calculates the acceleration

of all planets at every time step. This avoids the necessity of setting criteria for

when each gravitational acceleration is statistically relevant. When going through

the computational effort of numerically integrating the equations of motion of a

spacecraft, using a full n-body simulation is justified. A simpler approach such as

Keplerian orbit propagation is better suited for use with a patched conic method.

When calculating gravitational accelerations, spherical harmonics are ignored,

and each planet is treated as a point mass. Of course, this is only in terms of

calculating the direction and magnitude of the gravitational force, and the surface

of the planet is still a rigid boundary. The oblateness of each planet is not considered,

but the simulation is stopped with error if the radial distance between the aero-assist

vehicle and any planet is equal to or less than the approximate spherical radius of

the body. In most cases, a buffer altitude is added to the rigid boundary of the

planet in order to ensure that there is no contact with any surface features such as

mountains. Any time a buffer altitude is used in a case study, it will be specifically

mentioned in the later chapters.

Within an atmosphere, the accelerations due to aerodynamic lift and drag are

dependent on the vehicle’s design and must be calculated at each time step. As was

described in the previous chapter, compressible flow calculations were summed over

the waverider. The aerodynamic calculators require an estimate of the atmospheric

conditions (pressure, temperature, density, composition), and an atmospheric model

determines these based on the vehicle position.

The simulation created has 5-degrees of freedom: 3 translational directions, as

well as pitch angle and bank angle. Given that all of the waveriders developed using

the Chapter 3 methods are symmetric in the yaw direction, no yaw force would be
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expected using the aerodynamic models described. Further, waveriders operate in

an ‘off-design’ condition when they fly with a non-zero yaw angle, so there is no

motivation to induce a yaw angle. Thus, a yaw angle is neither desired nor possible

to generate unintentionally, so it was omitted from the simulation.

It must be noted that while the simulations account for changes in two of the

waverider’s euler angles, this study does not include modeling of control devices.

Admittedly, these would impact the aerodynamic and aerothermal environments

and slightly increase both drag and heating. The performance estimates obtained

herein would be slightly negatively impacted by these control devices. On the other

hand, as will be shown, the control scheme used is significantly more simplistic than

an actual flight vehicle would have. A more rigorous flight controller would likely be

able to recover some performance when it is designed for a specific flight platform.

5.2 Control Algorithms

The intent of the control scheme is to manipulate the vehicle’s aerodynamics

to guide the vehicle from atmospheric entry to atmospheric exit. The vehicle’s path

through the atmosphere is determined by manipulation of both its angle-of-attack

and bank angle.

These control schemes were created with two main principles in mind, simplic-

ity and breadth. First, because each simulation would be run inside of an optimiza-

tion loop, a significantly high number of trajectories would be run. From a given set

of initial conditions, the optimization routine might need to run over 10000 times

to reach a converged solution. For this reason, the vehicle controller could not be

a computationally heavy, real time system. In fact, trajectory simulations several

orders of magnitude faster than real-time were strongly desired.

Second, the same control scheme will be used for all waverider shapes, there-

fore the control law equations must be sufficiently robust to control vehicles with
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potentially drastically different aerodynamic behavior by simply manipulating the

gains and exponents. These gains and exponents are discrete inputs which can be

varied manually, or by an external numerical optimization algorithm.

Neither control surfaces nor reaction control thrusters are modeled; however it

is assumed that the vehicle has some method of either aerodynamically or propul-

sively affecting 0.25◦ of pitch or 0.5◦ of roll per second. This ensures smooth tran-

sition of the vehicle’s euler angles, while eliminating the need for detailed control

system modeling.

In all three control algorithms that will be discussed, the flight was broken

down into separate flight components. Control parameters are used to alternate

between the different scenarios. All paths have three separate stages:

1. Initial descent (α fixed)

2. Cruise

3. Final ascent (α fixed, α and cL > 0)

The initial entry stage is defined by two input parameters, the flight path angle

of entry and the angle-of-attack. Both values are inputs to the control system from

an external source (user or an optimization algorithm). In some cases, the lift vector

augments gravity, so as to pull to the vehicle deeper into the atmosphere. In the

upper atmosphere, there is insufficient density to fly at a constant altitude, therefore

a descent is necessary, and is either more efficient or only possible if lift-augmented.

In other cases, the vehicle has a steep entry flight path angle, and must use lift

acting opposite to gravity. As the flight path angle of entry becomes steeper, the

angle-of-attack must increase to prevent excessive heating and penetration too deep

into the atmosphere, or worse reaching the planetary surface. Conversely, as the

flight path angle of entry becomes more and more shallow, the vehicle must fly at

77



an increasingly negative angle-of-attack to prevent skipping out of the atmosphere

without ever reaching trimmed flight.

The intermediary, cruise stage represents the great flexibility of a lifting body.

Inertial forces are so great that without sufficient aerodynamic lifting force, the

aero-assist vehicle would likely be ejected from the atmosphere. A blunt body

might not be able to generate sufficient lift in order to hold itself in the atmosphere,

unless it decelerated critically and was not able to exit the atmosphere at all. The

three control methodologies created as part of this work differ in their handling

of the cruise flight stage. The specific algorithms as well as the advantage and

disadvantages of each will be discussed in the following sections.

The final ascent consists of applying the lift vector opposite to the gravitational

acceleration, thus facilitating an exit from the atmosphere. This operation can be

triggered by monitoring the orbital energy of the vehicle as it flies. When it nears the

desired final condition, εascent, which is supplied as an input to the control system,

the vehicle pulls up and exits as quickly as possible. The final orbital energy is that

which will allow the vehicle to successfully complete the mission under review. It

is inexact, however, as it requires an understanding of the exact flight path used to

reach atmospheric exit, before the ascent occurs. The exit trigger occurs when the

predicted flight path would result in the desired atmospheric exit conditions.

5.2.1 Altitude Varied

The first control algorithm developed is the most simplistic. It was created

primarily for use with aero-capture like mission scenarios, in order to allow compar-

isons with more conventional blunt entry vehicle types. It was also desired to create

an algorithm which could analyze the wide range of entry flight paths possible with

a high lift vehicle. The increased controllability of a waverider aero-shell over a con-

ventional blunt atmospheric entry body enables a significantly larger flight envelope.
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Blunt body atmospheric entry trajectories typically involve one single descent into

more dense regions of atmosphere, however, a high lift waverider allows for more

intricacy. While high lift designs were desired to facilitate the comparison, because

deceleration was required of the trajectory, flying in a higher drag configuration was

actually valued as well. For this reason, an angle-of-attack based controller was

implemented.

Further, this control algorithm was designed so that it would immediately

function without the need to specify inputs which are suitable for a given vehicle

geometry. The trade-off is that this control system is more rudimentary and does

not deliver as high of performance as the subsequent control algorithms.

Straightforward triggers were used to allow the vehicle to change angle-of-

attack and fly at different orientations for relevant sections of the flight. These

are:

1. Minimum altitude of negative lift, h(−α)

2. Maximum altitude of positive lift, h(+α)

With these two triggers, three zones are created, one with negative lift, one with

positive lift, and one in between with near zero lift (these are depicted in Figure 5.1).

In each region, the vehicle flies at a constant α, but of a different magnitude. As an

example, assume that the two triggers are set to 25 km and 15 km. As the vehicle

descends, it flies at negative α, until it crosses h(−α) = 25 km. At that point, it

pitches to reach α = 0, and holds there until a new trigger is reached. Assuming the

vehicle has enough inertia (as in Figure 5.1), it continues to descend, and eventually

passes h(+α) = 15 km altitude. In order to prevent an impact trajectory, the control

scheme triggers a pitch to a positive angle-of-attack. Eventually the vehicle lifts

up, and passes 15 km, and the same trigger sends the vehicle back to α = 0. This

process continues until the third flight segment is reached.
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Figure 5.1: Altitude based control system. Dashed lines separate the three altitude
control regions.

The specific angles used in the α > 0 and α < 0 regions are an input to the

simulation, set by the user or the optimization routine.

The initial descent is considered complete, and the control system is triggered

on when h(−α) is first reached. If it is not reached at all, then the vehicle will

exit the atmosphere and likely not complete its mission successfully. The input

parameters controlling the initial descent (entry flight path angle, γ and the descent

angle-of-attack) would then need to be modified.

The cruise stage is complete, and the vehicle begins its final ascent using the

limiting orbital energy, εascent, discussed above. When the vehicle’s orbital energy

crosses the limiting value, the vehicle will pitch up, to its maximum allowable mag-

nitude and use aerodynamics to ascend and exit the atmosphere more efficiently.
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5.2.2 Bank Modulation

Waverider vehicles can maintain higher lift-to-drag ratios when they limit their

angle-of-attack close to zero. For this reason, this control system primarily varies

the bank angle (φ) of the waverider, rather than its angle-of-attack. The on-design

aerodynamic forces generated by the waverider should be greater than or equal to

those required to maintain constant altitude flight. If the on-design aerodynamics

of the vehicle have excess strength, then, in order to maintain cruise conditions,

the vehicle will bank and rotate its lift vector slightly away from vertical until net

vertical forces are roughly eliminated.

Using this control algorithm, the initial descent is completed once the vehicle

reaches the nominal periapsis, marked by first having zero vertical velocity (shown

by the first set of red arrows in Figure 5.2). When this occurs, the second flight

stage is initiated and a trimming routine is executed to target constant altitude

flight. Note that this is only a notional periapsis, as the vehicle may reach lower

altitude during the controlled flight. The gains are sometimes marginally too large

or too small for truly constant-altitude flight, and those vehicles slightly drift upward

and downward, as seen in the blue altitude trajectory of Figure 5.2.

The gains and exponents (~xcontrol = {x1, x2, x3, x4, x5, x6}) are left as inputs, as

the ideal parameters are a function of entry conditions and waverider performance

characteristics. The overall system is represented by Equations 5.2 - 5.6:

(cL)goal = −(x1(~v · r̂) + x2∆h)(|~v|/|ventry|)x3
m

QS
(5.2)

φcommand = cos

(
(cL)goal

(cL)max

)−1

− π

2
x4 (5.3)

if ((cL)goal > (cL)max) then αcommand =
((cL)goal − (cL)α=0

(cL)α,max − (cL)α=0

αmax (5.4)
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φ̇ = q = x5(φcommand − φ) (5.5)

α̇ = p = x6(αcommand − α) (5.6)

The value of (cL)max is a function of the angle-of-attack (when φ = 0), while

(cL)α=max is the lift coefficient at the maximum allowable angle-of-attack. For a

given flight condition, if (cL)max is less than (cL)goal, only then is α allowed to vary.

Similarly, the angle-of-attack is reduced back to zero degrees before bank angle is

induced to reduce the vertical component of the lift vector. The maximum value of

the angle-of-attack is specific to each waverider, but is small overall. Typically the

value is restrained to less than ±4 degrees. Within this small rotation range, the

off-design effects are likely to be minimal.

In order to maintain constant altitude flight, the bank angle is smoothly varied

and determined relative to both the vertical velocity as well as the vertical displace-

ment from the target altitude. In both cases, the vertical direction is the outwardly

normal vector relative to the local planetary surface. The two feedback parameters

are inversely related to lift generation. For example, a positive vertical velocity (or

positive altitude displacement) will command negative lift generation by way of a

small bank angle. Conversely, negative vertical velocity (or negative altitude dis-

placement) will command an increase in the bank angle to reduce the lift generation

in the vertical direction.

Other logic exists in order to account for specific scenarios, such as constraining

the roll and pitch rates to the maximums specified in the introduction to Section 5.2.

At any given timestep, the value of (cL)max is determined from the waverider’s flight

condition. Then, the ODE solver is used on Equations 5.5 and 5.6 to determine the

values of φ and α.

One concern related to roll-based control systems is the magnitude of the re-

sulting plane change. Given the propulsive cost of inclination correction maneuvers,
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a high degree of plane change would be costly. In order to minimize the effect,

whenever the waverider returns to zero degrees, the direction of the bank is reversed

to average out the displacement from the initial approach plane. Fortunately, only

very small angles of bank are necessary for level flight, which keeps the inclination

of the outbound path to a minimal value (∆i < 3◦). However, as a precaution, ad-

ditional control logic is used to vary the angle-of-attack in cases when bank would

otherwise cause inclination to become too large.

5.2.3 Angle-of-Attack Modulation

In this final control scheme, the orientation of the waverider is once again de-

termined as a function of vertical velocity, measured relative to the fly-by planet’s

surface (~v · r̂) and altitude relative to a desired cruise altitude (∆h). In this case

however, the primary means of manipulating the aerodynamic lift force is by chang-

ing the vehicle’s angle-of-attack, rather than its bank angle. This methodology was

created in order to allow a test case in which cross-track distance was maximized. In

such a scenario, bank angle was desired to remain at a relatively high and constant

magnitude. Also, in some cases, a higher drag configuration might be desirable in

order to increase deceleration, therefore a higher angle-of-attack would be allowable,

despite some off-design waverider behavior.

The primary difference between this control system and the one described in

Section 5.7 is that bank angle is held at a fixed value rather than varied. Once

again, the cruise stage is triggered by the flight path’s nominal periapsis, marked

by zero vertical velocity. Once this occurs and the cruise stage begins, the gains

and exponents of the system are input as a control vector. The control laws are

represented by Equations 5.7 - 5.10:

(cL)goal = −(x1(~v · r̂) + x2∆h)(|~v|/|ventry|)x3
m

QS
(5.7)
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αcommand =
((cL)goal − (cL)α=0

(cL)α=max − (cL)α=0

αmax cosφ (5.8)

α̇ = p = x4(αcommand − α) (5.9)

φ̇ = p = 0 (5.10)

Again the value for (cL)α=max is the lift coefficient at the maximum allowable angle-

of-attack, αmax. This value varies for each waverider, as do appropriate values for

the control vector ~xcontrol = {x1, x2, x3, x4}. In addition to the gains and exponents

in the above system, the fixed bank angle exists as an input.

5.3 Equations of Motion

In this section, the movement of the aero-assist vehicle is described using the

equations governing its dynamics. These are completely general, so the mission

type being reviewed is of no importance. Modifying the initial and end conditions

is sufficient to consider any aero-assist mission. At this stage, the specific aero-shell

shape is of no importance either. The equations of motion will be written in terms

of aerodynamic coefficients which could correspond to any of the waverider models

described or any other vehicle shape.

The trajectory can be propagated in a number of different reference frames,

each with its own advantages and disadvantages. Three separate reference frames

will be considered here: planet-centered inertial, Sun-centered inertial, and a non-

inertial, rotating planet coordinate frame. Each will be discussed, as will the manner

in which positions and velocities can be transferred between them.

5.3.1 Planet-Centered Planet-Fixed

A planet-centered, planet-fixed non-intertial frame of reference rotates along

with the surface of that planet. It is therefore fixed, relative to the planet. In the
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case of Earth, which will be discussed as an example in this section, the coordinate

system is known as the Earth-centered, Earth-Fixed (ECEF, see Figure 5.3) frame.

The greatest advantage of this coordinate system is that neither locations

on the surface of the Earth, nor the bulk atmosphere are moving relative to the

frame itself. Further, all atmospheric gas motion can be neglected if winds are

ignored. This is a comfortable assumption given the low magnitude that atmospheric

winds have relative to the hypersonic speeds at which aero-assist vehicles operate.

Assuming an aero-assist vehicle would likely travel at or well over Mach 20, even a

Category 5 hurricane force wind of 70 m/s would only constitute 1.75% of the flight

speed.

Figure 5.3: Earth-centered, Earth-fixed reference frame. Longitude, σ, and latitude,
λ, of the spacecraft are as noted.

Further, the rotating coordinate system is most useful when considering the

86



state of the vehicle relative to locations on the surface of the planet. This is partic-

ularly relevant at Earth, as our own viewpoint is rotating along with the planet.

The z -axis of the rotating frame is defined to be the rotation axis of the planet,

with positive direction out the north pole. In the case of Earth, the x -axis points

from the center of the planet through the intersection of the equator and the prime

meridian (in the ocean, just off the coast of Africa). The y-axis completes the basis,

and points through the equator and the 90◦ longitude line.

The equations of motion in this non-inertial frame must include centripetal

acceleration in order to account for the movement of the frame itself. The set of

ordinary differential equations are as follows:

ṙ = v sin γ (5.11)

σ̇ =
v sin γ cosψ

r cos(φ)
(5.12)

λ̇ =
v cos γ sinψ

r
(5.13)

v̇ =
1

2
ρ∞v

2 S

m
cD −

µ sin γ

r2
(5.14)

γ̇ =
1

2
ρ∞v

S

m
cL cos(φ)− µ cos γ

vr2
+
v cos(γ)

r
(5.15)

ψ̇ =
1

2
ρ∞v

S

m
cL

sin(φ)

cos γ
− v tanλ cos(γ) cosψ

r
(5.16)

where r is the radial distance from the center of the planet, v is the flight speed, σ

is the longitude, λ is the latitude, γ is the flight path angle relative to the planet’s

local horizontal, ψ is the heading angle of the vehicle relative to due east, φ is the

bank angle, S is the reference surface area of the aero-shell, m is the mass of the

vehicle, cL and cD are the aerodynamic coefficients and ρ∞ is the atmospheric den-

sity, determined from an atmospheric model. See Figures 5.3 and 5.4 for depictions

of the coordinate system variables.
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Figure 5.4: Schematic of the local body axis system. The gray plane is tangent to
the local surface of the planet, and perpendicular to the position vector, r .

5.3.2 Planet-Centered Inertial

Inertial coordinates are the simplest to conceptualize. The motion of all space-

craft and planetary bodies are determined relative to some fixed observation point.

When inside of a planet’s sphere of influence, the center of that body is a natural se-

lection. The frame is oriented such that even if the planet is rotating, the coordinate

frame is fixed.

Inertial coordinate frames can be defined for any planetary body, but for the

purposes of discussion, this section is written with reference to Earth, and its inertial

coordinate system (Earth-Centered Inertial, ECI, see Figure 5.5). Inertial coordi-

nates around any other planet can be defined using the same method as the ECI

frame.

First, the x -vector is commonly selected to be the vernal equinox at the J2000

epoch (12:00, January 1st, 2000). The vernal equinox is a vector starting from the

center of the Earth, and pointing through Earth’s equator, directly at the center
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Figure 5.5: ECI coordinate system. With Earth fixed, the Sun rotates around
Earth in the ecliptic plane. The x -direction, or vernal equinox vector, is fixed in the
direction of the position where the Sun crosses the equatorial plane from north to
south. ψ is the azimuth angle of a location around the Earth.

of the Sun as the Sun (traveling along the ecliptic plane relative to a fixed Earth)

cross the Earth’s equatorial plane from south to north. Because of the precession

of Earth’s rotation, the south to north Sun vector crossing does not occur at the

exact same location year after year. In order to fully define the vernal equinox, it is

referenced with a specified epoch, in this case J2000.

The z -vector is defined to be pointing directly out the north pole, matching

the axis of rotation. The y-axis is the cross product of the two other vectors, which

completes the basis. The x,y plane is the equatorial plane, and is at roughly a 23.5◦

relative to Earth’s orbital, or ecliptic plane.

One main advantage of propagating the orbit in inertial coordinates is the
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simplicity of the equations of motion. There is no need to include the centrifugal

and Coriolis accelerations. The state vector of the spacecraft is able to provide

directionality for the aerodynamic forces. The calculations are performed in each of

the x̂, ŷ, ẑ planet-centered inertial directions. Using the radius and velocity vectors,

r and v, the acceleration equations are:

ax = −µ rx
|r|3

+
1

2
ρ∞|v∞|2

S

m

{
rx
|r|
cL cos(φ)− vx

|v|
cD

}
(5.17)

ay = −µ ry
|r|3

+
1

2
ρ∞|v∞|2

S

m

{
ry
|r|
cL cos(φ)− vy

|v|
cD

}
(5.18)

az = −µ rz
|r|3

+ 3
1

2
ρ∞|v∞|2

S

m

{
rz
|r|
cL cos(φ)− vz

|v|
cD

}
(5.19)

The free-stream density, ρ∞ is determined using an atmosphere model (discussed in

Section 5.4) at the current altitude (|r| −RE) above the surface. The states, r, and

v, are known from previous time steps, or initial conditions.

Due to the simplifying assumptions made about the control system’s ability

to impart moments about the vehicle, the equations of motion for the euler angles

of the vehicle are less fundamental. As discussed in Section 5.2 for each algorithm,

the assumptions vary, and in some cases, the bank rate is fixed to be zero. Also,

the yaw angle and yaw angle rate are always fixed to zero. The equations used to

integrate rotation rates into rotation angles are repeated here for completeness:

φ̇ = p = c1(φcommand − φ) (5.20)

α̇ = q = c2(αcommand − α) (5.21)

where c1 and c2 are scalar inputs to the control system.

The main disadvantage of inertial coordinates is that the atmosphere of the

planet is moving relative to the coordinate system. Therefore, in order to correctly
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calculate the aerodynamic forces, the velocity of the atmosphere relative to the

spacecraft must be accounted for. Similar to the rotating frame, it is assumed that

the atmosphere is quiescent relative to the surface of the planet. The linear velocity

relative to the inertial frame is therefore:

|vwind| =
2π|r|
T

(5.22)

where T is the rotational period of the planet. In the case of Earth, T = 23 hours, 56

minutes, 4 seconds. Earth’s 24 hour sidereal period is relative to the Sun. Because

Earth is rotating in the same direction as its orbit, it must rotate slightly further

than 360◦ each day. Relative to a fixed inertial observer, the Earth completes a 360◦

revolution 56 seconds less than a 24 hour sidereal day. Note that the speed of the

atmosphere is not the same as an orbital speed. While gravitational force does keep

the planet’s atmosphere attached, the primary force which keeps the atmosphere

rotating at roughly the same speed as the surface is friction, hence the rigid body

rotation form of Equation 5.22.

Further complicating the use of inertial coordinates is the need to book-keep

the direction of the relative wind velocity. Aerodynamic forces are typically calcu-

lated in airframe coordinates. Therefore the velocity of the free-stream atmosphere

is needed relative to the vehicle. In order to determine the relative atmospheric wind

speed, first determine the azimuth angle, ψ, of the spacecraft in the ECI system:

ψ = tan−1

(
ry
rx

)
(5.23)

Note that ψ is similar to the longitudinal angle in a rotational coordinate system, but

it is symbolized differently here to avoid confusion, as it does not refer to locations
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on the surface of the Earth. With the azimuth angle, the direction of the wind is:

v̂wind = − sin (ψ) x̂+ cos (ψ) ŷ + 0ẑ (5.24)

Using equations 5.22 - 5.24, the free-stream wind velocity relative to the vehicle,

v∞, is defined as:

v∞ = v− vwind =


vx

vy

vz

−

−2π|r|

T
sin (ψ)

2π|r|
T

cos (ψ)

0

 (5.25)

The magnitude of v∞ is the airspeed of the vehicle, and the direction is used in

calculating the euler angles. Similarly the air speed Mach number, M∞, for which

all aerodynamic calculations are made, is determined using the magnitude of v∞,

not v.

5.3.3 Sun-Centered Inertial

An inertial coordinate frame relative to the Sun is the most common means of

propagating an interplanetary spacecraft trajectory. Positions of each planet relative

to the Sun are readily available, possibly most notably from JPL’s HORIZONS

system.113 Therefore, propagation of individual planet’s orbits is not necessary, and

the relative position of the spacecraft to each planet is a simple vector subtraction.

In the Sun-centered inertial, or heliocentric inertial (HCI, see Figure 5.6) frame,

the x -vector is the same as the ECI x -axis, except that it points in the opposite

direction, from the Sun to the Earth. The z -vector is typically defined to be per-

pendicular to Earth’s ecliptic plane. It is therefore a unit vector in the direction of

Earth’s orbital angular momentum. Again, the y-vector is simply the cross product

of the other two principle directions in order to complete the basis.
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Figure 5.6: HCI coordinate system. Earth orbits around the Sun in the ecliptic
plane. The x -direction, or the negative of the vernal equinox vector, is fixed in the
direction of the position where the Earth’s equatorial plane crosses the ecliptic plane
from south to north.

For simplicity, this frame is not used when the aero-assist vehicle is inside of

a planetary atmosphere. For that reason, the equations of motion are extremely

simple and reduce to Newton’s law of gravitation:

ax = −µ rx
|r|3

(5.26)

ay = −µ ry
|r|3

(5.27)

az = −µ rz
|r|3

(5.28)

Other forces could be added in, such as solar radiation pressure, but for the purposes
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of this work, gravity was the only force assumed to act on the vehicle when in deep

space.

The rotation rates of the vehicle are not mentioned here, as the rotation rates

are set to zero when not in an atmosphere. It is assumed that the final vehicle would

have some manner of orientation control, but again, these systems are not modeled.

Further, the orientation of the vehicle in deep space is not of particular relevance at

this stage of design, as parameters such as viewing angles are not considered. The

only instance that orientation of the vehicle is important is at an atmospheric entry

point. These initial conditions are manually set when switching between coordinate

systems.

5.3.4 Coordinate Transformations

When certain relevant conditions are reached, it is useful to change coordinate

systems amongst the three presented. For example, when a spacecraft enters the

sphere of influence of a planet, it is often useful to use equations of motion in a frame

of reference centered at that planet, rather than at the Sun. Further, when the

spacecraft enters the atmosphere, if positions relative to a location on the surface

of the planet are of interest, then inertial coordinates might be transfered into a

planet-fixed coordinate frame.

5.3.4.1 HCI to ECI

First, consider a transformation from heliocentric inertial coordinates into

Earth-centered inertial coordinates. Again, the ECI system will be used as an

example, but conversion into another planet’s inertial coordinates follows the same

principle. At the instant in time that the conversion is made, the spacecraft and
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Earth have heliocentric positions, rHCI and rE,HCI , respectively:

rHCI =


rx

ry

rz


HCI

(5.29)

rE,HCI =


rE,x

rE,y

rE,z


HCI

(5.30)

Positions of planets in heliocentric coordinates can be obtained from an ephemeris

database such as JPL’s HORIZONS.113 The transformation into the position of the

spacecraft in ECI coordinates is then:

rECI =


rz

ry

rz


ECI

=


1 0 0

0 cos(ε) − sin(ε)

0 sin(ε) cos(ε)




rx

ry

rz


HCI

−


rE,x

rE,y

rE,z


HCI


(5.31)

The only needed variable is the angle between the ecliptic plane of Earth’s orbit

and Earth’s equatorial plane, ε. This is often called the obliquity of the ecliptic. As

mentioned previously, it has a value of roughly 23.5◦, but it varies slightly due to

the precession in Earth’s rotation. To calculate the exact value at a given Julian

date, Lasker114 presented a model, repeated here:

ε = 0.409092802283074 − 0.0002269661065878

(
JD − 2451545.0

36525

)
− 2.8623399732707 · 10−9

(
JD − 2451545.0

36525

)
+ .79645943005142 · 10−9

(
JD − 2451545.0

36525

) (5.32)
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5.3.4.2 ECI to HCI

The inverse conversion, from the ECI system into the HCI system, can be

conducted using the same set of equations reworked. In particular, Equation 5.31

can be written:

rHCI =


rz

ry

rz


HCI

=


1 0 0

0 cos(ε) − sin(ε)

0 sin(ε) cos(ε)


−1 

rx

ry

rz


ECI

+


rE,x

rE,y

rE,z


HCI

(5.33)

where ε is calculated using Equation 5.32.

5.3.4.3 ECI to ECEF

Because the z -axes of the ECI and ECEF frame are parallel, and the x-y

planes are co-planar, there are only two steps to convert between the two: 1) Find

the rotation angle about the z-axis to line up the x and y axes; and 2) Convert

Cartesian coordinates to spherical.

The x -axis in the ECEF frame points through the prime meridian, which was

placed based on the location of Greenwich, England. Using the model presented

by the United States Naval Observatory (USNO),115 the angle between the vernal

equinox and the prime meridian can be calculated as:

σV E =
2π

24
GMST (5.34)

where GMST is the Greenwich mean sidereal time in hours. This signifies the

number of hours since the prime meridian passed the vernal equinox. It is typically

reduced by a value of 24k such that it has a range from 0 hours to 24 hours (k is any

positive integer that satisfies the 0-24 hour condition). Alternatively, GMST can be
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used in full form and σ can be reduced by 2πk to only signify an angle between 0

and 2π. In order to calculate GMST, Equation 5.35 is also provided by the USNO:

GMST = 18.697374558 + 24.06570982441908

(
JD − 2451545.0

36525

)
(5.35)

To complete step 1 of the conversion, the ECI position is simply rotated about

the z -axis:

rECEF =


rz

ry

rz


ECEF

=


cos(−σV E) − sin(−σV E) 0

sin(−σV E) cos(−σV E) 0

0 0 1



rz

ry

rz


ECI

(5.36)

The ECEF frame typically uses spherical coordinates, not Cartesian, similar to

the equations of motion presented in Section 5.3.1. A standard conversion between

the coordinate systems will complete the ECI to ECEF conversion (all variables are

in the ECEF frame):

r =
√
r2
x + r2

y + r2
z (5.37)

σ = tan−1

(
ry
rx

)
(5.38)

λ = sin−1

(
rz√

r2
x + r2

y + r2
z

)
(5.39)

5.3.4.4 ECEF to ECI

Equations 5.34 through 5.39 can simply be inverted in order to obtain positions

in a planet centered inertial coordinate system, such as ECI, from a planet fixed

coordinate system, such as ECEF. For completeness, the equations are inverted
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here:

rECEF =


rz

ry

rz


ECEF

=


r cos(λ) cos(σ)

r cos(λ) sin(σ)

r sin(λ)

 (5.40)

GMST = 18.697374558 + 24.06570982441908

(
JD − 2451545.0

36525

)
(5.41)

σV E =
2π

24
GMST (5.42)

rECI =


rz

ry

rz


ECI

=


cos(σV E) − sin(σV E) 0

sin(σV E) cos(σV E) 0

0 0 1



rz

ry

rz


ECEF

(5.43)

5.4 Atmospheric Modeling

An atmospheric model is an essential component of a trajectory simulation.

The model is used to determine the temperature, pressure, and density of the at-

mospheric gas through which the aero-assist vehicle is flying at any time step in

the flight path. This has bearing on the aerodynamic forces and the aerothermal

environment surrounding the vehicle.

Earth’s atmosphere is relatively well understood and quantified. Our under-

standing of the atmospheres of Mars and Venus is less well known, and is based

primarily on a limited set of flight data. Each interplanetary spacecraft sent to

these planets has been equipped with scientific instruments capable of sampling and

quantifying the atmospheric properties as they descended towards the surface. Any

model of the gas properties at these planets is certainly less precise than a model of

Earth.

Many meteorological factors will determine the atmospheric conditions on any

given day, and these are hard, if not impossible to predict. Many simplifying assump-
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tions are necessary in order to run a trajectory simulation. First, as was mentioned

above, it was assumed that all atmospheres have zero wind velocity.

Other simplifying assumptions are made, but they vary depending on the

atmosphere model employed. Two different sets of atmosphere models were used:

exponential height profiles and the Global Reference Atmosphere Models (GRAM)

developed at the NASA Marshall Space Flight Center. Depending on the study,

either model could have been used, resulting in a slightly varied level of fidelity and

execution time.

5.4.1 Global Reference Atmosphere Models

The Global Reference Atmosphere Models116 are a set of applications which

provide engineering-level estimates of the properties of atmospheres at solar system

bodies. There is an application available for Earth (Earth-GRAM), Mars (Mars-

GRAM), and Venus (Venus-GRAM), as well as other destinations which might be

able to support an aero-assist mission (Titan and Neptune). They are the defini-

tive set of tools to determine atmospheric conditions for engineering applications.

Beyond the standard functionality, they also have useful features such as a realistic

dispersion algorithm in order to do perturbation Monte-Carlo analysis.

Earth-GRAM117 uses data from a number of sources, including sounding rock-

ets, weather balloons, aircraft, ground based observations and satellite remote sens-

ing. Earth-GRAM has geographic longitude and latitude variability, as well as

seasonal and monthly variations. Rather than using a standard atmospheric compo-

sition, Earth-GRAM has estimates of the concentration of different gaseous species

at each altitude location. These are used in this study in order to improve the esti-

mate of the air’s ratio of specific heats, γ. The value of γ has great importance on

the aerodynamic forces generated by the aero-assist vehicle. Finally, while they are

not used in this work, Earth-GRAM also provides detailed wind estimates.
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Figure 5.7: Atmospheric Density Comparisons using the GRAM suite of tools. From
Ref. [116]

Mars-GRAM118 compiles Martian atmospheric measurements from the Mariner

missions, the Viking missions, Mars Pathfinder, and Mars Global Surveyor. These

create a relatively comprehensive data set capable of characterizing atmospheric

conditions in the Martian atmosphere as a function of latitude, longitude and epoch

(which determines the position of the planet in its orbit).

Venus-GRAM119 is based primarily on the Venus International Reference At-

mosphere (VIRA).120 In turn, VIRA is based on the VEGA 1 and 2 missions, the

Galileo mission, the Pioneer and Magellan Venus orbiters, and the Venera 11, 13,

15 and 16 missions. The application is able to produce standard atmospheric val-

ues, including realistic variations for time of day, solar viewing angle, and lati-

tude/longitude position.

5.4.2 Scale Height

The simplest means of approximating the atmospheric conditions in the at-

mosphere of a planet can be done using a set of exponential decay equations. As

altitude increases, pressure and density tend to decrease exponentially.
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An exponential model for an atmosphere uses the principle of scale height,

H, or the altitude distance over which a thermodynamic property changes by one

exponential order, e1. In the simplest form, one single scale height can be used

for the entire altitude range of an atmosphere. Improved performance is found

if the scale height is instead a function of altitude as well. In order to scale the

exponential relationship, at least one value for pressure and density at a reference

altitude is required. At any other altitude, pressure and density are calculated as:

ρ = ρRef exp
hRef − h

H
(5.44)

P = PRef exp
hRef − h

H
(5.45)

With two thermodynamic properties known, atmospheric temperature can

be calculated using either an iterative gas composition calculator such as NASA’s

Chemical Equilibrium with Applications107 (CEA) or more simply, the ideal gas law:

T =
P

ρR
(5.46)

Similarly, the gas constant, R, can be assumed as a constant throughout the atmo-

sphere, or updated at each altitude using CEA.

Justus and Braun121 compiled a set of exponential atmospheric data. The

models used in this work are exclusively taken from that publication. The data

sources for the exponential models are the same as the GRAM tools, however av-

erages are used instead, in order facilitate much quicker implementation and much

faster calculation. The atmospheric data for Venus, Earth and Mars is presented

in Tables 5.2, 5.3, 5.4 respectively. Between each altitude range supplied, equations

5.44 and 5.45 are used to find the current value. If not using CEA to estimate gas

composition, Justus and Braun recommend using the values specified in Table 5.1.
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Table 5.1: Constants for Exponential Models
γ R

J/(Kg-K)
Venus 1.286 190.22
Earth 1.400 287.12
Mars 1.330 191.38

Table 5.2: Atmospheric Properties of Venus
Altitude Scale Height Density Pressure Temperature

km km kg/m3 kPa K
0 18.46 6.48E+01 9.09E+01 735.3
10 17.30 3.77E+01 4.68E+01 658.2
20 15.30 2.04E+01 2.22E+01 580.7
30 13.04 1.02E+01 9.50E+00 496.9
40 10.76 4.40E+00 3.45E+00 417.6
50 8.93 1.59E+00 1.05E+00 350.5
60 6.80 4.69E-01 2.32E-01 262.8
70 5.44 8.39E-02 3.64E-02 229.8
80 4.66 1.19E-02 4.43E-03 197.1
90 4.00 1.15E-03 3.68E-04 169.4
100 3.78 7.99E-05 2.63E-05 173.9
110 3.62 5.81E-06 1.73E-06 158.0
120 3.48 3.20E-07 9.74E-08 159.0
130 3.68 1.85E-08 6.21E-09 166.8
140 4.22 1.39E-09 5.84E-10 176.2
150 4.64 1.61E-10 9.41E-11 194.2
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Table 5.3: Atmospheric Properties of Earth
Altitude Scale Height Density Pressure Temperature

km km kg/m3 kPa K
0 10.20 1.225E+00 1.09E+00 288.1
10 7.66 4.135E-01 2.85E-01 223.3
20 6.31 8.891E-02 5.94E-02 216.6
30 6.50 1.841E-02 1.29E-02 226.5
40 6.86 3.996E-03 3.09E-03 250.3
50 8.14 1.027E-03 8.57E-04 270.6
60 8.02 3.097E-04 2.36E-04 247.0
70 7.14 8.283E-05 4.95E-05 219.6
80 6.33 1.846E-05 1.13E-05 198.6
90 5.62 3.416E-06 1.97E-06 186.9
100 5.57 5.604E-07 3.37E-07 195.1
110 5.69 9.708E-08 7.19E-08 240.0
120 8.38 2.222E-08 2.47E-08 360.0
130 11.71 8.152E-09 1.18E-08 469.3
140 14.86 3.831E-09 6.61E-09 559.6
150 17.70 2.076E-09 4.06E-09 634.4

Table 5.4: Atmospheric Properties of Mars
Altitude Scale Height Density Pressure Temperature

km km kg/m3 kPa K
0 11.60 1.550E-02 6.49E-03 214.0
10 11.73 6.470E-03 2.59E-03 205.0
20 10.68 2.630E-03 9.66E-04 188.3
30 9.77 9.800E-04 3.35E-04 175.0
40 9.06 3.400E-04 1.08E-04 162.4
50 8.42 1.080E-04 3.22E-05 152.2
60 7.93 3.180E-05 8.96E-06 144.2
70 7.53 8.730E-06 2.38E-06 139.5
80 7.47 2.290E-06 6.20E-07 139.0
90 7.51 6.010E-07 1.63E-07 139.0
100 7.38 1.590E-07 4.32E-08 139.0
110 7.75 4.140E-07 1.21E-07 149.4
120 8.34 1.190E-08 3.74E-09 159.7
130 9.58 3.760E-09 1.26E-09 170.0
140 9.65 1.090E-09 5.31E-10 245.1
150 9.70 4.730E-11 2.76E-11 288.6
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5.5 Aerothermal Modeling

The surface integrated heat load as well as the stagnation point heating are of

critical importance to the feasibility of aero-assisted missions. To limit leading edge

heating rates, geometries will tend to have relatively large leading edge radii. This

necessary trade-off decreases aerodynamic performance.

5.5.1 CBAero

A software package developed at NASA Ames, Configuration Based Aerody-

namics122 (CBAero), quantifies the aerothermodynamic environment at the surface

of the vehicle. The principle of CBAero is similar to this work: conceptual and

preliminary design must use rapid, engineering level solutions in favor of computa-

tionally heavy CFD. It uses proven and understood analysis methods to determine

aero-heating for arbitrary body shapes and is not limited in flight speed or free-

stream condition. It has been validated for use with subsonic, supersonic, and

hypersonic applications both at Earth and other planetary destinations.123

CBAero requires vehicle models to be input using a triangular surface grid (see

Figure 3.2). The exterior of every waverider generated in this study was meshed

into an unstructured triangular grid upon generation. This was chosen in order to

facilitate aerodynamic panel codes, but the specifics were selected in order to allow

the use of CBAero.

In order to determine the aero-heating environment, CBAero first assesses the

inviscid surface flow field, and estimates the streamline patterns. It then determines

whether the surface flowfield is laminar or turbulent based on the attachment dis-

tance of a given streamline. The user is allowed to specify a transition criteria of

Reθ/M. The local Reynold’s number and the reference enthalpy method (similar to

the reference temperature method discussed in Section 4.3) is used to estimate the
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local skin friction. Then, using Reynold’s analogy, the Stanton number is calculated:

St =
cf
2

(5.47)

The definition of the Stanton number can be used to develop an expression for the

convective heat rate as a function of wall temperature:

q̇conv = Stρ∞cP (Tw − T∞)v∞ (5.48)

Finally, assuming that the vehicle wall does not absorb any heat, the radiative heat

rate is set equal to the convective, and can be solved for the wall temperature:

q̇conv = q̇rad = σεT 4
wall (5.49)

where ε is the wall emissivity.

5.5.2 Waverider Validation

CBAero is a highly validated tool, however it has no documented use with

hypersonic waveriders. The closest known analog is its use studying the HL-20 at

hypersonic entry speeds.122 As a relatively quick validation, the waveriders presented

in Reference [124] were reproduced as best as possible using the osculating cone

methodology discussed in Section 3.4. The geometries produced are not identical,

because full dimensions were not provided, and because the method of blunting the

leading edge is different. In this work, the waverider is given a constant circular

leading edge over the full span of the vehicle. Vanmol instead allowed his leading

edges to vary spanwise. For the reproduced waveriders, the constant value was

chosen to be the leading edge radius at the nose of Vanmol’s waveriders.

Vanmol used a set of analytic relations in order to analyze the aerodynamic
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and aerothermal environment about his waveriders. Importantly, when he calcu-

lated heat transfer rates, similar to CBAero, he assumed that the wall temperature

was such that the heat transfer losses by radiation equal the heat transfer from con-

vection. Vanmol, however, capped the equilibrium wall temperature to be 1900 K,

in line with estimates for material performance of carbon-carbon composites of the

time. If a wall temperature of 1900 K was not sufficient to radiate all energy, then

the structure was assumed to absorb the excess heat. CBAero does not assume a

maximum radiative equilibrium temperature.

The results of the comparison are presented in Figures 5.8 through 5.23. Con-

vective heat transfer and wall temperature are presented along the leading edge for

Vanmol’s waveriders (black data points) and the waverider reproductions solved in

CBAero (blue data points). The stagnation points at each spanwise location are

plotted for Vanmol. CBAero data points represent every value along the triangu-

lated leading edge mesh. The blue data locations with the maximum heat transfer

and wall temperature are the triangles which lie closest to the stagnation point, and

likely contain the stagnation point. As mentioned, CBAero averages the expected

heating value at each triangular node to provide a value for the whole triangle area.

This will tend to lower the heating value at the stagnation points slightly.

The data matches particularly well along the centerline of the vehicles (nor-

malized distance = 0, in each chart). This is a promising result, as this is where the

geometry of the waveriders is most similar. As the spanwise location increases, both

the convective heat transfer and the wall temperature differ more and more. They

do however differ in the expected manner, given the geometry differences. Moving

towards the edge of the vehicle, the waverider reproductions have constant leading

edge radius, whereas Vanmol’s waveriders have sharper and sharper leading edges.

It would be expected that Vanmol’s waverider would have higher heating and wall

temperatures near the vehicle edges, and this is universally found.
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Figure 5.8: M = 5, Q = .2 atm waverider. Left image from Ref. [124]

Figure 5.9: Comparison of CBAero and analytical model for M = 5, Q = .2 atm
waverider. Background data from Ref. [124]

Figure 5.10: M = 5, Q = 1 atm waverider. Left image from Ref. [124]

Figure 5.11: Comparison of CBAero and analytical model for M = 5, Q = 1 atm
waverider. Background data from Ref. [124]
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Figure 5.12: M = 10, Q = .2 atm waverider. Left image from Ref. [124]

Figure 5.13: Comparison of CBAero and analytical model for M = 10, Q = .2 atm
waverider. Background data from Ref. [124]

Figure 5.14: M = 10, Q = 1 atm waverider. Left image from Ref. [124]

Figure 5.15: Comparison of CBAero and analytical model for M = 10, Q = 1 atm
waverider. Background data from Ref. [124]
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Figure 5.16: M = 15, Q = .2 atm waverider. Left image from Ref. [124]

Figure 5.17: Comparison of CBAero and analytical model for M = 15, Q = .2 atm
waverider. Background data from Ref. [124]

Figure 5.18: M = 15, Q = 1 atm waverider. Left image from Ref. [124]

Figure 5.19: Comparison of CBAero and analytical model for M = 15, Q = 1 atm
waverider. Background data from Ref. [124]
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Figure 5.20: M = 20, Q = .2 atm waverider. Left image from Ref. [124]

Figure 5.21: Comparison of CBAero and analytical model for M = 20, Q = .2 atm
waverider. Background data from Ref. [124]

Figure 5.22: M = 20, Q = 1 atm waverider. Left image from Ref. [124]

Figure 5.23: Comparison of CBAero and analytical model for M = 20, Q = 1 atm
waverider. Background data from Ref. [124]

110



Further, given the damping of the stagnation point heating using CBAero, it

would also be expected that the heating values would tend to be slightly lower than

what Vanmol found when performing calculation at the exact stagnation points

along the leading edge. This is also observed in many cases.

The largest data discrepancy occurs when Vanmol limits the wall temperature

to 1900 K (see Figures 5.15 and 5.23). Again, CBAero does not manually limit the

maximum radiative heat transfer, and for these cases, the wall temperatures do not

match well, even at the waverider root.

5.6 Integration Method

A MATLAB built-in ordinary differential Equation solver, ODE23, is used for

time integration of the equations of motion. ODE23 is an implementation of the

Bogacki-Shampine125 method. It uses a pair of third and second order Runge-Kutta

solvers using variable time steps.

The equations of motion represent a set of ordinary differential equations of

the form:

y′(t) = f(t, y(t)), t0 < t < tfinal (5.50)

where y(t0) is a known initial condition. In specific to the trajectory problem, y(t)

is a vector containing the states of the spacecraft, and y′(t) is a vector containing
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the state variable derivatives:

y(t) =



rx(t)

ry(t)

rz(t)

vx(t)

vy(t)

vz(t)

α(t)

φ(t)



(5.51)

y′(t) =



vx(t)

vy(t)

vz(t)

ax(t)

ay(t)

az(t)

α̇(t)

φ̇(t)



(5.52)

The Runge-Kutta formula of order s, approximates the function value at the

next time step as:

ŷ(t+ ∆t) = y(t) + ∆t
s∑
i=1

biki (5.53)

ki = f(t+ ∆t
i−1∑
j=1

ai,j, y(t) + ∆t
i−1∑
j=1

ai,jkj), i = 2, ..., s (5.54)

where bi, and ai,j are constants specific to the method. In the case of the Bogacki-

Shampine method, a2,1 = 1
2
, a3,1 = 0, a3,2 = 3

4
, b1 = 2

9
, b2 = 1

3
, and b3 = 4

9
. Carrying
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out the summations, the equations become:

k1 = f(t, y(t)) (5.55)

k2 = f(t+
1

2
∆t, y(t) +

1

2
∆tk1) (5.56)

k3 = f(t+
3

4
∆t, y(t) +

3

4
∆tk2) (5.57)

ŷ(t+ ∆t) = y(t) +
2

9
∆tk1 +

1

3
∆tk2 +

4

9
∆tk3 (5.58)

The Bogacki-Shampine method also includes a second order approximation to the

solution in order to improve accuracy and refine the time step if necessary. The

refinement uses the following equations:

k4 = f(t+ ∆t, ŷ(t+ ∆t)) (5.59)

y(t+ ∆t) = yn +
7

24
∆tk1 +

1

4
∆tk2 +

1

3
∆tk3 +

1

8
∆tk4. (5.60)

If the error between ŷ(t + ∆t) and y(t + ∆t) is too great, then the time step is

decreased.

Note that the value of k1, given by Equation 5.55 is simply the value of k4

calculated at the previous timestep using Equation 5.59. The method therefore only

requires three function evaluations per time step (equations 5.56, 5.57, and 5.59).

Further, the values of y(t) and y′(t) is required only at the time step, t, in order to

determine the value at the next time step, t+ ∆t.

The error tolerance determines the execution speed as well as the precision of

the final answer. In order to select a suitable value, a trade study was performed.

Four random initial conditions were chosen corresponding to an aero-gravity assist

at Mars, an aero-capture at Mars, an aero-gravity assist at Earth and an aero-

gravity assist at Venus. For completeness, the trajectories were also propagated
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using ODE45, another popular ODE solver in MATLAB.

The relative tolerance was incrementally decreased from 10−1 to the minimum

acceptable value in MATLAB, 10−13. The final positions of the spacecraft, at atmo-

spheric exit, were used as the means for comparison. For each solver, the trajectory

propagated using a tolerance of 10−13 was considered to be the accepted value. The

results are presented in Figure 5.24.

Figure 5.24: Comparison of trajectories propagated with ODE45 and ODE23.
Dashed lines are for ODE45 and solid lines are for ODE23.

For most tolerance values, and for all four example trajectories, ODE23 outper-

formed ODE45 in terms of convergence. A maximum value for the relative tolerance

was found to be roughly 10−8. Any smaller, and the values seemed to show good

convergence. ODE23 and ODE45 did not have a consistent relationship in terms

of computational speed. In two of the cases, ODE23 was faster, and ODE45 was

faster for the other two trajectories. As expected, good convergence came at the

expense of execution time. Once the solution was within a kilometer of the final

value, however, there was much less penalty to decreasing the tolerance.

By analyzing the data in these charts, ODE23 was selected as the integration

method, using a relative tolerance of 10−10.
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Chapter 6

Waverider Shape Studies

A pair of studies were conducted in order to investigate the waverider models

presented. In particular, a thorough analysis is performed of the method created

for generating asymmetric starbodies. In these studies, there is no mission under

review or trajectory propagated. A fixed design condition is presented, and then

a number of waveriders are created. Then, the aerodynamic models presented in

Chapter 4 and the aerothermodynamics code discussed in Section 5.5 are used to

calculate relevant metrics of comparing different waverider shapes. This chapter

discusses the results of these studies.

6.1 Starbody Asymmetry

First, the design space of asymmetric waveriders is investigated. Recall that

there are three input parameters which determine the asymmetry of the resulting

waverider shape: D, e, and α0. See Section 3.3 for a description of these variables.

As e and D increase in magnitude, the length of the tines tend to increase as

well. As each approach unity, the length can increase dramatically, as the connection

point between the shock on the underside and the nearest on the topside moves

towards infinity. The result is a flying wing-type vehicle.

As α0 increases in magnitude, the vertical symmetry of the starbody breaks,
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Table 6.1: Test con-
ditions for asymmetric
starbody study

n 3, 4, 5, 6
e -1:.01:1
D -1:.01:1
α0 -.62, 0, .62
R .01 m
w 9 m

Atmosphere Mars
M 18
h 20 km

not in terms of tine placement, but in terms of shock strength. Therefore, extremes

in this value do not tend to affect metrics such as volume and surface area as greatly

as D and e. On the other hand, α0 very directly changes the pressure distribution

over the surface of the waverider and creates a huge range of aerodynamic perfor-

mance as characterized by lift-to-drag ratio.

In order to quantify these trends, a numerical analysis was performed by creat-

ing a large database of waveriders. A flight condition was chosen and then waveriders

were created for all unique combinations of e and D for three different values of α0.

The test conditions are summarized in Table 6.1. In order to keep the waveriders

similar, all vehicles must be scaled to have a common length, volume or width. In

this case, each was limited to a maximum diameter of extent of 9 meters. This

means that each waverider would just fit into a 9 meter diameter launch fairing.

The waveriders were compared using lift-to drag ratio and static margin. Ap-

pendix A contains additional plots showing the range in the following vehicle shape

metrics: length, volume, surface area, and volumetric efficiency.

Figures 6.1 - 6.12 show the lift-to-drag results and Figures 6.13 - 6.24 show

the stability results. Each plot is displayed in a group of three corresponding to

the number of tines and the three different values of α0. All figures are contour

plots showing the values over the ≤ 40000 waveriders generated for each unique
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combination of e, D, and α0.

Note that there are discontinuities in the plots due to the shape generation

and variable definition method. In many cases, for a given value of e, D can only

vary slightly and still create a feasible waverider design. For example, see Figure

6.6. For e > -.5, the tines can be placed in a full down configuration, all the way

through a full up configuration and still generate a feasible design. On the other

hand, for e < -.5, only a small rotation of the tines is possible by way of D, therefore

D = -1 and D = +1 map to similar rotations so as to be feasible for all values of

D. This results in a skewing of the data from right to left (easily seen in the blue

segment of the figure). Similar skewing is seen in other charts such as Figure 6.8

and Figure 6.9.

The centerpoint of each one of the lower left hand figures corresponds to the

only values possible with a symmetric starbody. Introducing these three asymmetry

parameters clearly allows for a hugely increased design space.

The lift-to-drag ratio values vary greatly with all three asymmetry variables.

The most significant effect is in response to the effective angle-of-attack parameter,

α0. This is seen by comparing the relative magnitudes of the color scales in Figures

6.1 - 6.12. As α0 increases in magnitude, so does the magnitude of the lift-to-drag

ratio. For example, a 4-tined starbody with α0 = ±.62 is capable of producing

lift to drag ratios up to 4.5 or 5, whereas, with α0 = 0, the maximum magnitude

of L/D is roughly 1.5. Note that in this context, the sign of the the lift-to-drag

ratio is irrelevant, as the waverider can simply be inverted to produce the opposite

aerodynamic behavior.

The relationship between D, e and lift-to-drag ratio is complex and must

be considered on a case by case basis. In some instances (such as Figure 6.4)

as eccentricity and tine distribution increase in magnitude, the lift-to-drag ratio

decreases. In other cases (such as Figure 6.8), the exact opposite is true and the
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maximum magnitudes of lift-to-drag are found in the corners of the chart.

The number of tines does not tend to have a qualitative effect on the aerody-

namic performance of asymmetric starbodies. For example, by inspection of each

chart corresponding to α0 = ±.62, (Figures 6.1, 6.4, 6.7, and 6.10) it is seen that

there are certain qualitative features in common, regardless of the number of tines.

They are certainly not identical, but many of the regions of high L/D and low L/D

are shared.

The most consistent and pronounced effect on static margin is seen by varying

the value of α0. Vehicle asymmetry tends to force the vehicle to be closer to neutrally

stable. The magnitude of static margin for waveriders with α0 is typically one to two

orders of magnitude larger than the values found for vehicles with α0 = ±.62. This

is an important result. Breaking the symmetry of a starbody waverider results in a

much more stable vehicle configuration, even in lateral pitch stability. Developing

vehicle shapes which have greater aerodynamic performance appears to co-beneficial

to improved stability behavior.

Except for the case when n = 3, there is little consistent correlation between

e, D and static margin. In some cases, extreme values of e and D force the static

margin closer to 0. In other cases, it causes the magnitude to increase both in

the stable and unstable direction. Overall trends are difficult to determine, and

unfortunately, each must be addressed on a case by case basis.

6.2 Asymmetric Starbody and Osculating Cone Comparisons

In this section, two different types of waveriders are compared: “osculating

cone” waveriders and “starbody” waveriders. Each vehicle type has different benefits

and drawbacks which will be qualitatively and quantitatively analyzed.
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Figure 6.1: Range of lift-to-drag ratio
for a 3-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure 6.2: Range of lift-to-drag ratio
for a 3-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.3: Range of lift-to-drag ratio
for a 3-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure 6.4: Range of lift-to-drag ratio
for a 4-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure 6.5: Range of lift-to-drag ratio
for a 4-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.6: Range of lift-to-drag ratio
for a 4-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure 6.7: Range of lift-to-drag ratio
for a 5-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure 6.8: Range of lift-to-drag ratio
for a 5-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.9: Range of lift-to-drag ratio
for a 5-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure 6.10: Range of lift-to-drag ratio
for a 6-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure 6.11: Range of lift-to-drag ratio
for a 6-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.12: Range of lift-to-drag ratio
for a 6-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure 6.13: Range of static margin for
a 3-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.14: Range of static margin for
a 3-tined starbody with α0 = 0. M =
18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.15: Range of static margin for
a 3-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure 6.16: Range of static margin for
a 4-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.17: Range of static margin for
a 4-tined starbody with α0 = 0. M =
18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.18: Range of static margin for
a 4-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure 6.19: Range of static margin for
a 5-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.20: Range of static margin for
a 5-tined starbody with α0 = 0. M =
18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.21: Range of static margin for
a 5-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure 6.22: Range of static margin for
a 6-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.23: Range of static margin for
a 6-tined starbody with α0 = 0. M =
18, h = 20 km, in the Martian atmo-
sphere.

Figure 6.24: Range of static margin for
a 6-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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6.2.1 Optimization Methods

A genetic algorithm was used to optimize over the shape generating variables.

Multi-objective methodology allows for comparison between designs with different

strengths and weaknesses. Four objectives are considered which evaluate waverider

performance over a range of important areas. These are summarized in Equations

6.1 - 6.4, written in the standard form as a minimization problem:

f1 = −L/D (6.1)

f2 = q̇max (6.2)

f3 = −ηV (6.3)

f4 = −R (6.4)

The first objective function quantifies the aerodynamic performance of the

vehicle. As the lift-to-drag ratio increases, the losses due to drag are reduced. While

a higher ratio is not necessarily most efficient for aero-capture type missions, aero-

gravity assist and aero-assisted plane change would certainly benefit. Aero-heating

is certainly a crucial design limitation for any re-entry spacecraft. The heating

rate over the entire vehicle is calculated, but only the maximum local heat rate is

used as an objective. The surface integrated heat load is also an important design

metric, but it was found to be correlated closely enough with the maximum heat

rate (inversely) that it was unnecessary to include as an objective. In order to be a

useful spacecraft re-entry forebody, a waverider shape must have sufficient volume

in order to accommodate payload. The volumetric efficiency is used as a measure

of the usable volume compared to surface area, as per Equation 6.5:

ηV =
(36π)1/3V 2/3

S
(6.5)
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This parameter is scaled so that the maximum possible ratio is 1 (a sphere). The

more slender a vehicle is, the lower this ratio will be, and the less volume it will have

for payload. Further, as the vehicle slenderness increases, the structural bending will

likely increase, requiring greater structural mass.

Both aero-heating and volumetric efficiency are positively correlated with each

other and the final objective value, R. It is important to include all three nonethe-

less, as they each compete with aerodynamic performance differently. For example,

an osculating cone waverider with a lift-to-drag ratio of 5 may have greater blunt-

ness and a lower max heat rate than one with L/D = 4, if the power law equations

were tuned accordingly. On the other hand, the three metrics are positively cor-

related, and increasing L/D decreases R and q̇max, if the power law equations are

held constant. An accurate pareto curve is desired between all competing objective

pairs, and this can only be obtained with inclusion into the genetic algorithm. The

fourth objective function is not necessarily an isolated objective itself, however it is

a primary goal of this study to quantify the effect of bluntness on waverider aerody-

namics. While this final objective function increases the complexity of the genetic

algorithm from an optimization standpoint, it will allow the generation of a unique

and complete pareto curve.

Finally, the optimization routine includes a number of manually enforced con-

straints. The constraint shown in Equation 6.6 ensures that the vehicle is not too

wide. While the vehicle length is used as an independent variable in the design

process, the resulting width is a dependent variable. For the purposes of this study,

it is constrained to a value which would optimistically fit inside of a launch vehicle

payload fairing, wmax = 8 meters. In the case of starbody waveriders, the width is

defined as the smallest radius cylinder in which the vehicle could fit. Equations 6.7

and 6.8 constrain the leading edge bluntness to the desired range. It should be noted

that there are a number of implicit constraints used to enforce realistic waverider
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shapes which are not discussed here as they are not quantifiable. For example,

certain combinations of geometry inputs could result in a starbody shape in which

adjacent shock planes do not intersect, or adjacent osculating cone streamlines cross.

Discussion of these feasibility scenarios were discussed in Chapter 3.

g1 = w − wmax = w − 8 m ≤ 0 (6.6)

g2 = R−Rmax = R− .2 m ≤ 0 (6.7)

g3 = Rmin −R = .001 m−R ≤ 0 (6.8)

6.2.2 Design Conditions

The parameters used in this study are presented in Table 6.2. This includes

the free-stream conditions, the vehicle design constants and the optimization design

variables. Free-stream conditions are based on the exponential model presented in

the previous chapter of Earth’s atmosphere.

Table 6.2: Flight Conditions and Design Constants
h 25 km, 50 km, 75 km
M 30, 60, 90
L 10 m
R .001 m : .150 m

wmax 8 m
θ 4◦ : 30◦ Base vehicle half angle

y0,u .001 m : 2 m Width of flat Section of osc. cone upper surface
Au -.001 : -1 Coefficient in osc. cone upper surface power law
nu 1.001 : 10 Exponent in osc. cone upper surface power law
y0,l .001 m : 2 m Width of flat Section of osc. cone shock shape
Al .001 : 1 Coefficient in osc. cone shock shape power law
n l 1.001 : 10 Exponent in osc. cone shock shape power law
D -1 : 1 Starbody tine distribution parameter
e -1 : 1 Starbody centerbody eccentricity
α0 -1 : 1 Starbody effective angle-of-attack

For each of the 9 unique flight conditions, an 800 generation genetic algorithm

129



was completed. Each generation consisted of a population of 800, meaning that the

study comprised over 5.7 million unique waverider designs. The results are presented

in the following sections.

6.2.3 Optimal Shapes

A selection of the most optimal waveriders found are discussed here. The first

set of waveriders (Figures 6.25 and 6.26) were found to generate the greatest amount

of lift relative to the drag that they create. Both the osculating cone waverider

(Vehicle A) and the starbody waverider (Vehicle B) have almost negligible leading

edge bluntness and are very slender in the vertical direction. Both of these qualities

serve to minimize the strength of the forebody shock, thus yielding less pressure

on the body. Further, the slenderness reduces the frontal area over which pressure

drag acts. Vehicle A is also extremely slender in the lateral direction, reducing

both frontal area and overall surface area. Conversely, Vehicle B is just shy of the

maximum allowable width. This may not be intuitive, because the wider the vehicle,

the greater skin friction it experiences over such large surface area. The design

methodology of starbody waveriders precludes slenderness in both the lateral and

Figure 6.25: Vehicle A. Highest L/D osculating cone waverider for M = 30, Alt =
25 km. L/D = 7.31, R = .001 m, ηV = 29.4%, q̇max = 27.3 KW/cm2, q̇net = 7.69
KW, SM = -8%
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Figure 6.26: Vehicle B. Highest L/D starbody waverider for M = 90, Alt = 25 km.
L/D = 6.33, R = .001 m, ηV = 25.9%, q̇max = 3.80 MW/cm2, q̇net = 143 KW, SM
= -2%

vertical direction. This is due to the need to place leading edges at the intersection

of adjacent shock planes. If the tines bunch on the underside, as is the case with

Vehicle B, the intersection line moves further outward. Width does give greater

lifting surface area, which benefits the lift-to-drag ratio. The trade-off is not entirely

beneficial though, and Vehicle A has a greater value of L/D than Vehicle B. This

trend is seen throughout the comparison study, and osculating cone waveriders tend

to have better aerodynamic efficiency as measured by the lift-to-drag ratio.

The next set of waverider images (Figures 6.27 and 6.28) depict the osculating

cone waverider (Vehicle C) and starbody waverider (Vehicle D) which have the

minimum heating rates for their respective flight conditions. This metric is very

dependent on flight speed and free-stream gas properties, so the magnitude of q̇max

for Vehicles C and D relative to each other is not relevant. As expected, both

vehicles have a leading edge radius as close to the maximum constraint as would be

expected in a genetic algorithm. If a gradient based method was run with each of

these waveriders as a starting point, and maximum local heating rate was the sole

objective function, the design would almost certainly reach R = .2 m.

Vehicle C is one of the wider osculating cone waveriders returned by the op-
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timization, and in general, width increased as the max heating decreased. When

considering osculating cone waveriders, the relationship between R and q̇max is com-

plicated by the lateral bluntness of the nose. This is determined by the power law

equations, not just the choice of R. For example, even if Vehicle A had a larger

value of R, there would still be very little effective lateral bluntness, as the power

law equations dictated that the nose be relatively sharp in the horizontal direction.

Figures 6.29 and 6.30 depict waveriders with the best static longitudinal sta-

bility performance for their flight conditions. Recall that the center of gravity was

assumed to be at the trim location, as no control surfaces are yet modeled. While the

size and position of the control surfaces (or other control devices) could certainly

allow the CG to be placed away from the trim location, keeping all waveriders

trimmed allows consistent comparison. Pitch stability will be discussed further in

Section 6.2.5, however note that in most cases, no longitudinally stable vehicles were

found. The waveriders presented here were simply the least unstable.

The osculating cone waverider, Vehicle E, notably has a similar shape to Ve-

hicle C, which has a worse static margin. The primary difference between the two

is their design flight condition. Each were amongst the least statically unstable

Figure 6.27: Vehicle C. Minimum maximum heat rate osculating cone waverider for
M = 90, Alt = 75 km. L/D = 1.76, R = .198 m, ηV = 66.8%, q̇max = 6.51 KW/cm2,
q̇net = 46.0 KW, SM = -2.8%
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Figure 6.28: Vehicle D. Minimum maximum heat rate starbody waverider for M =
60, Alt = 25 km. L/D = .122, R = .199 m, ηV = 68.8%, q̇max = 73.3 KW/cm2, q̇net
= 221.7 KW, SM = -29.5%

Figure 6.29: Vehicle E. Maximum static margin osculating cone waverider for M =
30, Alt = 50 km. L/D = 3.16, R = .065 m, ηV = 52.6%, q̇max = 1.64 KW/cm2, q̇net
= 1.8 KW, SM = -1.09%

designs for their respective flight speeds and altitudes, however the increased speed

and altitude for which Vehicle C was designed causes its trimmed CG to be further

from its neutral point.

Vehicle F has a combination of vehicle design parameters which allow its

trimmed CG to be closest to pitch stability. The most noticeable geometric fea-

ture is its width. In this case, the waverider has much sharper leading edges, and

is more vertically slender, rendering it slightly less volumetrically efficient. Inter-

133



Figure 6.30: Vehicle F. Maximum static margin starbody waverider for M = 30,
Alt = 75 km. L/D = 2.29, R = .014 m, ηV = 41.8%, q̇max = .732 KW/cm2, q̇net =
.178 KW, SM = -1.29%

estingly, the vehicle has a relatively high L/D ratio (for the given flight condition),

even though the smaller tines are located on the underside, as opposed to Vehicle

B. The effective angle-of-attack is positive in both cases, allowing the pressure to be

greater on the underside regardless of the location of the tines.

6.2.4 Pareto Trade-offs

The competitive nature of the objective functions is seen in Figures 6.31

through 6.36 with each marker representing a waverider design. The utility of in-

cluding all three objective functions is seen by quickly noticing the wide variation in

the shapes of each pareto curve. Note that the legend shown in the first two plots

applies to all remaining results in this section.

The first set of curves pertain to the effect of bluntness on osculating cone

waveriders (Figure 6.31) and starbodies (Figure 6.32). Unfortunately, the trade-off

lines are concave, indicating that the slope is steepest in the undesirable sections

of the objective space. For example, the magnitude of ∂(L/D)/∂R is the greatest

where L/D is high. Near the maximum values of lift-to-drag, even small changes

in R have a drastic impact on aerodynamic performance. Even slight blunting of
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Figure 6.31: Osculating cone waverider
trade-off for lift-to-drag ratio with lead-
ing edge bluntness.

Figure 6.32: Starbody waverider trade-
off for lift-to-drag ratio with leading
edge bluntness.

leading edges can drastically reduce the vehicle’s effectiveness in generating lift and

limiting drag. This is in contrast to a convex pareto curve, in which modest values

of both objectives are feasible.

While the shape of the curves is analogous, optimized osculating cone waverid-

ers are capable of ∼10% L/D improvements over starbodies. In both Figures 6.31

and 6.32, the effect of Mach number independence is demonstrated. For a given flight

altitude, accelerating the vehicle through the three sets of Mach numbers tested has

little effect on optimized performance. This result has been demonstrated in many

other studies of waveriders, however it is beneficial to reproduce it here.

Altitude effects are considerable when looking at L/D potential. This is observ-

able when designing optimized aero-assist trajectories. Even without constraining

the cruise flight conditions, trajectory optimization routines will often narrow in on

a small range of altitudes. In this region of the atmosphere, the free-stream air is

dense enough to sustain a sufficiently high lift-to-drag ratio, without being so dense

that the magnitude of drag force decelerates the vehicle too rapidly.

The relationship between volumetric efficiency and lift-to-drag ratio is much

closer to fully convex. Figures 6.33 and 6.34 show the trends for osculating cone

waveriders and starbodies, respectively. Increasing the leading edge radius improves
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Figure 6.33: Osculating cone waverider
trade-off for lift-to-drag ratio with vol-
umetric efficiency.

Figure 6.34: Starbody waverider trade-
off for lift-to-drag ratio with volumetric
efficiency.

the volumetric efficiency, but reduces the lift-to-drag ratio. Further, a high lift-to-

drag ratio requires slenderness, in at least the vertical direction. Vertical slenderness

reduces the interior volume, but does not dramatically affect the overall surface area.

Once again, the Mach number has only limited effect on the trade-off curves.

The M = 30, Alt = 25 km line of the starbody optimization appears to be the only

exception. There is no clear physical explanation for this, therefore it is assumed to

be the result of a minorly stalled genetic algorithm. Re-running this flight condition

would likely generate waveriders which match the other Alt = 25 km pareto curves.

One interesting result regarding volumetric efficiency is the similar magnitudes

between the two waverider models. The increased slenderness of osculating cone

waveriders suggested that they might have less volume relative to their surface areas.

This is not the case however, and removes one potential benefit of starbodies. This

does not suggest that the osculating cone waveriders in this study have comparable

dimensional volumes, but that they could be scaled up with similar performance.

Future study could use vehicle volume as a constant rather than vehicle length to

make the needed comparison.

The effect of flight Mach number on waverider design is seen in the next set

of pareto curves. These show the lift-to-drag ratio vs. maximum heating rate (see
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Figure 6.35: Osculating cone waverider
trade-off for lift-to-drag ratio with max-
imum local heat rate.

Figure 6.36: Starbody waverider trade-
off for lift-to-drag ratio with maximum
local heat rate.

Figures 6.35 and 6.36). Mach number independence does not occur with heating

rate, and this presents a significant problem for aero-assist technology. Note that the

pareto curves shown here are less full, due to the challenges of scaling the heat rate

objective function (Equation 6.2). While volumetric efficiency will always be a value

between 0% and 100%, and L/D is unlikely to exceed 10, the range of maximum

heat rate is much less orderly. Optimization routines do not perform well when the

objective functions have dissimilar magnitudes, and can result in pareto curves with

grouping and gaps which Figures 6.35 and 6.36 show.

In terms of heating rate, there is little difference between the two waverider

models. This is not entirely unexpected; the maximum heating rate occurs at the

stagnation point of the vehicle’s nose, and is primarily a function of the leading

edge radius. Note that while it appears that there is a lesser gap between the M =

30 and M = 60 curves and the M = 60 and M = 90 curves, this is a by-product

of the logarithmic scale of the heating axis. If plotted on an equal axis, the effect

is reversed. The maximum heating rate rises exponentially with the flight Mach

number.

Finally, Figures 6.37 and 6.38 are not pareto-curves, but show the positive

correlation between lift-to-drag ratio and the surface integrated heat load. Blunt-
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Figure 6.37: Osculating cone waverider
trade-off for lift-to-drag ratio with sur-
face integrated heat rate.

Figure 6.38: Starbody waverider trade-
off for lift-to-drag ratio with surface in-
tegrated heat rate.

ness weakens the flowfield at the leading edge, but raises the temperature over the

remaining vehicle. Relative to each other, the behavior of each trendline is similar

to the maximum local heat rate, but they are inversely related to the aerodynamic

performance.

6.2.5 Stability Optimized Waveriders

The stability of waverider designs is an extremely vital subject of study, and

is considered here. The most basic feature of a vehicle’s stability behavior is its

static stability profile. Each design’s static stability is considered in all 3 primary

directions. All results are plotted against the volumetric efficiency, which was found

to have the strongest correlation of the four objective functions.

Figures 6.39 and 6.40 show the relative degree of pitch instability of each

waverider model. A positive value is desired, as it indicates that the CG has been

placed forward of the neutral point. This would indicate that the vehicle could fly

straight and level without needing any control surfaces to trim the aircraft, and any

pitch disturbances would be damped out. Unfortunately, almost no such designs

were found in this study. This is not to say that such designs do not exist, but they

do not appear to be co-optimal with any of the objective functions used. Future
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study could use a positive static margin as a constraint.

Starbody waveriders appear to have static margins slightly closer to stable,

except at very high volumetric efficiencies. At high ηV , starbodies are near symmet-

ric, with very large leading edge radii. Both of these negatively affect pitch stability,

as predicted in Section 6.1. Unexpectedly, both the flight altitude and speed were

crucially important in determining the static longitudinal stability. As altitude in-

creased, or speed decreased, the vehicle’s trimmed centers of gravity move further

and further aft from their neutral points.

Next, directional stability is considered. If the waverider experiences a distur-

bance causing a slight sideslip, it is desirable that the vehicle naturally tend toward

yawing to neutralize the disturbance. This means that a positive value is desired for

cn,β. A disturbance resulting in a positive sideslip equates to a negative yaw angle,

therefore a positive yawing moment is required to return to a yaw angle of zero.

Figures 6.41 and 6.42 are plots of the waverider directional stability. The star-

body designs and osculating cone designs have very different patterns. As starbodies

increase in volumetric efficiency, they are better able to maintain a yaw heading. A

more volumetric starbody is less vertically slender, and the design process dictates

Figure 6.39: Static margin for osculat-
ing cone waveriders. Black line repre-
sents stability threshold. Positive val-
ues are desired.

Figure 6.40: Static margin for starbody
waveriders. Black line represents sta-
bility threshold. Positive values are de-
sired.
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Figure 6.41: Directional static stabil-
ity derivative for osculating cone wa-
veriders. Black line represents stability
threshold. Positive values desired.

Figure 6.42: Directional static stabil-
ity derivative for starbody waveriders.
Black line represents stability thresh-
old. Positive values desired.

that it is therefore closer to vertically symmetric (see Figure 6.28). This provides

large surface area on the lateral sides of the vehicle with which to act as an effective

rudder. Osculating cone waveriders do not have similar geometric features and the

range of waverider behavior increases with ηV . Once again, design altitude and flight

speed play a key role, and helps to determine where in the spread a given waverider

design might fall.

Finally, the static stability of each waverider model in roll is analyzed using

cl,β. When an aircraft receives a positive sideslip disturbance, the result is an un-

equal free-stream condition on either side of the vehicle. This tends to create a

rolling moment, named the dihedral effect. A stable vehicle will respond with a

negative rolling moment in order to return the vehicle to zero sideslip. An unstable

configuration would have a positive rolling moment, and this would exacerbate the

sideslip disturbance.

The two waverider models in question have starkly different performance, and

starbodies are seen to be far superior. In Figure 6.43, it is seen that almost all

osculating cone waveriders found in this study are statically unstable in this mode.

Further, as the vehicles became less slender, the behavior diverges even more. While
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Figure 6.43: Roll static stability deriva-
tive for osculating cone waveriders.
Black line represents stability threshold.
Negative values are desired.

Figure 6.44: Roll static stability deriva-
tive for starbody waveriders. Black line
represents stability threshold. Negative
values are desired.

high-lift osculating cone waveriders tend to have effective dihedral due to the design

methodology (see Figure 6.25), they can have effective anhedral as they become

more oblate (see Figure 6.29). Further, in the thin atmosphere of high altitude

flight, these waveriders perform even worse.

Conversely, the overwhelming majority of starbody waveriders perform ad-

mirably in static roll stability (see Figure 6.44). This behavior is traced to the

additional lifting surfaces that they have around the circumference of the body.

Vertically oriented caret-wing sections of the vehicle generate the majority of the

lift. The lateral caret-wing sections, however, provide the majority of the restoring

roll force in this stability mode. The larger the non-lifting caret-wing sections are,

the more restorative moment they are capable of generating, as is the case with high

ηV designs.
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Chapter 7

Aero-Capture Design

7.1 Pure Mars Aero-Capture

Traditionally designed aero-capture maneuvers, using blunt capsules with lim-

ited lifting capability, are high risk, and require extremely precise control of vehicles

operating at the very limit of their design margins. Performing an aero-capture with

a lower drag, lift-generating body can reduce fuel requirements when used as an al-

ternative to using propulsion.74 Whereas the standard aero-capture sheds excess

hyperbolic velocity in a quick periapsis fly-by, a vehicle of the type proposed would

use lift to augment gravitational force, allowing it to remain in the atmosphere for

a longer period of time, thereby decreasing the rate of energy dissipation through

drag. The resulting lower heating rates and lower structural loads compared to those

of a non-lifting trajectory can ease the requirements on both the thermal protection

and structural systems.126

While the tools developed for this investigation could easily be applied to any

reasonable aero-capture target, Mars was used as the destination planet due to the

high availability of blunt body aero-capture studies.97 The exponential profile of the

Martian atmosphere described in Section 5.4.2 was used for free-stream properties.
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7.1.1 Mission Profile

The objective of an aero-capture is to dissipate orbital energy, facilitating

entry from a hyperbolic orbit into a final, closed orbit of a desired semi-major axis.

In this study, two initial conditions were considered, one corresponding to a fast

transfer orbit from Earth and a second corresponding to a more gradual Earth to

Mars transfer. The former scenario results in relatively high entry velocity, while

the latter scenario results in a lower entry velocity and energy. The details of these

initial conditions are given in Table 7.1. Values matching those in Refs. 97 and 127

were selected for ease of comparison.

Table 7.1: Initial Conditions
High Energy Initial Orbit Low Energy Initial Orbit

ra < 0 < 0
ε 20 km2/s2 12 km2/s2

v∞ 6.32 km/s 4.89 km/s
ventry ∼ 8 km/s ∼ 7 km/s
γentry ∼ 10◦ 9◦

Table 7.2 contains the details of the target and final orbits. The former takes

the vehicle from the edge of the atmosphere to apoapsis where an impulsive rocket

burn circularizes into the final orbit.

Table 7.2: Post Maneuver Conditions
Target Orbit Final Orbit

ha 400 km 400 km
hp < 125 km 400 km
ε ∼(-5 km2/s2) -5.64 km2/s2

e 0 < e < 1 0

7.1.2 Monte Carlo and Optimization

The design space of vehicle shape and trajectory optimization is often highly

nonlinear, therefore finding globally optimal solutions is extremely difficult. Even
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if globally optimal solutions were not achieved, it is still possible to analyze trends

in locally optimal solutions. For this study, a large number of randomized initial

inputs were uniformly distributed within the design space (see Table 7.3). The

altitude based control system described in Section 5.2.1 was used. Asymmetric

starbody waveriders were used as the shape model.

Table 7.3: Constraints
Min Max

n 3 6
D -1 1
e -1 1

γentry -16◦ -8◦

h−α h+α 55 km
h+α 0 km h−α
α+ 0◦ 8◦

α− -8◦ 0◦

εascent -5.5 km2/s2 -3 km2/s2

At each initial set of inputs, a gradient based optimization method was used

to find the nearest local solution. The overall scheme was therefore a combination

of Monte Carlo simulation and gradient based methods. The design space consisted

of nine inputs: three geometry and six trajectory variables (n varies, but is limited

to one integer value whenever the optimization routine is called). In addition to

the five control system variables, the trajectory simulation required an initial flight

path angle, γentry. This parameter served as a means of varying the penetration into

the atmosphere. Aerodynamic forces, and the direction of the lift vector during the

initial descent affected the actual path flown, however γentry served to create the

nominal path.

Each design was assessed with the objective function defined in Equation 7.1,

written as a minimization problem:

f =
− (texit − tentry)

|εfinal − εtarget|
(7.1)
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The optimization routine minimized the objective function for each initial condition,

returning a local optimum. This function reaches a minimum as the denominator

approached zero and as the magnitude of the time difference increased. The inclusion

of the denominator was intended to ensure that exit occurred along the target orbit.

Again, the target orbit was designed to take the vehicle to apoapsis at 400 km. If the

final energy, εfinal, was far from the target energy, εtarget, the aero-capture maneuver

did not succeed in reaching the final apoapsis, therefore the design variables were

modified to adjust.

If it is assumed that the total dissipated energy is constant, as necessitated

by the choice of denominator of the objective function, then the numerator can

serve to increase the overall time of flight. The purpose of this is to favor lifting

trajectories over flight paths usable with blunt bodies. It should be noted that as

the time spent in the atmosphere increases, without the total energy fluctuating,

the average dissipation rate decreases. However, the derivative of the energy was

not included; therefore, this objective function did not have a bias towards a specific

type of dissipation path.

7.1.3 Results

The Monte Carlo simulation was run with 4000 different initial inputs. With

the use of a gradient based optimizer, not all of these returned optimal solutions.

Almost three quarters, or 2931 of the cases did result in a locally optimal solution,

further, 2020 resulted in a target orbit within 1% of the target energy. The other

911 cases may have been locally optimal, however insufficient energy dissipation

took place during the atmospheric flight and therefore the target orbit was under

shot. The results of the following sections represent the 2020 feasible cases as the

remaining trajectories were filtered.
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7.1.3.1 Trajectory Types

The chosen control system model allowed for the generation of a variety of

flight paths. Each can be categorized into one of three categories: altitude hold,

skipping, or single skip. Three example trajectories of each type are presented in

Figure 7.1.

Altitude hold trajectories (Figure 7.1a) consist of a dive to a specific altitude,

followed by level flight until sufficient energy has been dissipated. The altitude at

which the glide occurs is dependent on the starbody’s value of L/D. The higher the

ratio, the higher the altitude at which the glide can occur, as the increase in cL

overcomes the lower free-stream density (and thus dynamic pressure). No altitude

(a) Altitude Hold Trajectories (b) Skipping Trajectories

(c) Single Skip Trajectories

Figure 7.1: Different trajectory types
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hold trajectory was found above h = 40 km, as the Martian atmosphere is not dense

enough to sustain level flight for the chosen class of vehicle.

Skipping trajectories (Figure 7.1b) involve repeated dives into the denser at-

mosphere. They can be categorized by the number of skips, as shown in Figure.

7.2. As the number of skips increase, the minimum altitude of the skips generally

increases as well. Repeated entry into the denser atmosphere will result in rapid

energy dissipation, and the vehicle will exit after only a short number of skips.

Single skip trajectories (Figure 7.1c) involve very high deceleration, corre-

spondingly high energy dissipation and heating rates, and a much more constrained

entry corridor. They are primarily non-lifting trajectories, even though lift may be

used to supplement gravity during the ascent and descent flight stages.

The overall frequency of occurrence of each trajectory type in this study is

displayed in Figure 7.2. Skipping trajectories were the most frequent solution found

in the Monte Carlo simulations. The number of single skip trajectories was quite

small, as would be expected for lifting bodies. While the study was designed to allow

single skip trajectories, it was understood that these would be far less frequent, as

the objective function devalued them.

Figure 7.2: Number of skips per trajectory
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Figure 7.3: Frequency of Aero-capture
Duration

Figure 7.4: Altitude at apoapsis follow-
ing aero-capture

There were more altitude hold solutions found than single skip, however the

optimization routine did not select these nearly as often as skipping trajectories.

While the control system allowed for altitude hold flight paths, the non-linearity of

the problem, and the precision which is required to enter and fly an altitude hold

decreased the frequency with which these solutions were found. By observing the

trends of flight duration in Figure 7.3, it is not evident that altitude hold solutions

are in fact more optimal than skipping for reducing the average energy dissipa-

tion rate. Skipping trajectories, on the other hand, could allow substantially more

atmospheric profiling to be completed as a secondary mission objective.

In order to validate the methodology of the control system, the starbody trajec-

tories were propagated past the edge of the atmosphere until they reached apoapsis.

If apoapsis occurred at some altitude other than the chosen 400 km, the details

of the trajectory path through the atmosphere are of little concern, as the aero-

capture was not successful and the circularizing maneuver would require relatively

large amounts of propellant. As shown in Figure 7.4, in the overwhelming majority

of solutions, the control system was able to guide the vehicle to apoapse where the

orbit could be circularized for the least energy, 400 km.

The limitations of the control system’s exit energy method are amplified by
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skipping trajectories. If the starbody is skipping, it is possible that when the limiting

condition is reached, the vehicle may already be in a lift-up condition and unable to

exit any quicker. For example, if the limiting condition is reached when the vehicle is

in the α > 0 region, the vehicle is already in a positive angle-of-attack configuration.

If the resulting exit flight path angle is too shallow and overshoots apoapsis at h

= 400 km, the only option is for the vehicle to begin the pull up operation before

entering the α > 0 region. This is likely to undershoot instead, as seen in Figure

7.4. On the other hand, if the vehicle is on an altitude hold, it is always capable of

executing the ascending exit pitch.

7.1.3.2 Geometric Effects

The number of starbody tines, n plays a role in setting the volumetric efficiency

of the starbody shape, as seen in Figure 7.5. The larger the number of tines, the

more likely the starbody is to have a high ratio of volume to surface area. If n had

been allowed to increase beyond 6, this trend likely would have reversed eventually.

Extreme values of n would result in a starbody with very high surface area, with

diminishing increases in volume.

Figure 7.5: Effects of n on the vehicle’s volumetric efficiency. Colors indicate differ-
ent numbers of tines
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For n = 3 and 4, there are two distinct peaks. The lower peak corresponds to

flying wing type bodies (see Figure 6.26). In this case, two tines tend to dominate,

as they are much larger than the other tine(s). The dominant tines are stretched

considerably in the y-direction, resulting in a vehicle with very high lifting surface.

Due to the extremely high surface areas in such cases, viscous drag will also be quite

high.

The second peak (ηv > .5), matches the peak found for higher tine starbodies.

For n = 5 and 6, the tendency towards more volumetrically efficient designs is a

result of the inverse design process. There are more tines usable to connect shock

planes on opposite sides of the center-body, therefore the tines do not need to

drastically lengthen in order to make connections as e and D increase in magnitude.

For n = 3 and 4, this peak corresponds instead to more blunt vehicle designs. These

designs use trajectories with less lift; therefore, they need more drag to decelerate

more quickly.

The behavior trends for peak acceleration illustrate one of the benefits of lifting

aero-capture, that peak acceleration can be lower than non-lift trajectories, typically

less than 4 g’s (see Figure 7.6). The number of tines does not have a clear impact on

this result, as the trend for each individual value of n follows the overall trend. This

is significant, as the number of tines is likely to play a large role in the structural

complexity of the vehicle. Three-tine designs tend to have more slender, higher

aspect ratio shapes, and are therefore likely to have higher structural mass. If an n

= 6 design is able to produce a trajectory with axial loads that are comparable to

those of an n = 3 design, the higher-numbered tine design should be more desirable

as the aspect ratio will be lower.

The value of L/D is not constant through a given trajectory. Accordingly, the

value of both lift and drag are calculated at every time step. The relative amount of

lift a given vehicle exhibits over the course of a trajectory is best characterized by
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Figure 7.6: Maximum g-load experi-
enced during entire trajectory (Earth
g’s)

Figure 7.7: Maximum magnitude of
lift-to-drag ratio during entire trajec-
tory

the peak value of L/D rather than a trajectory average. The mean value is set not

only by available aerodynamic performance, but by the type of trajectory flown. For

example, L/D varies greatly during a skipping trajectory, but is relatively constant

for an altitude hold.

The number of tines has an effect on the maximum magnitude of L/D as shown

in Figure 7.7. Four- and six-tine starbodies have more obvious trends than three-

and five-tine starbodies. This is due to the symmetry requirement imposed about

the x-z plane. For a starbody with an odd number of tines, this actually enforces

that one tine be located in the x-z plane. This generally results in less surface area

perpendicular to the lift direction in either the α > 0 or α < 0 orientation. The

design methodology does not enforce whether this odd tine is on the upper or lower

surface. On whichever side it does reside, however, the area that is perpendicular

to the lift direction will be less than on the opposite side. This tends to reduce the

tendency to favor trajectories where higher L/D is vital. Overall the maximal value

of L/D tends to decrease as n increases and the shapes become less wing-like.
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7.1.3.3 Effects of entry velocity

Reducing the transfer velocity has a pronounced effect on the trajectory path

chosen by the optimization routine. Figures 7.8 and 7.9 show the similar trend of

the decreasing importance of the flight path for decreasing transfer velocity.

Figure 7.8 shows the distribution of minimum altitudes reached during flight

for the two different entry velocities. Note that despite having less energy to dissi-

pate, the lower entry velocities tend to yield lower minimum altitudes. This seems

to have occurred because the gradient-based solver was more likely to settle on a

single or low skip trajectory to successfully complete the aero-capture maneuver.

In other words, the presence of locally optimal solutions in this regime may have

biased the results. It should not be concluded that altitude hold solutions at higher

altitudes do not exist, nor even that they are less prevalent than single skip trajec-

tories. Increasing the number of Monte Carlo simulation runs would be useful in

verifying that high lift solutions are just as widespread.

As was done in Figure 7.7, the distribution of values of maximum L/D is

plotted in Figure 7.9, but now the colors indicate the effect of entry velocity. It

should be noted that values of L/D greater than 3 are seldom optimal. An interme-

Figure 7.8: Altitude of closest approach
during entire trajectory. Colors indi-
cate entry energy

Figure 7.9: Maximum magnitude of
lift-to-drag ratio during entire trajec-
tory
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Figure 7.10: The flight Mach number as the vehicle experiences maximum dynamic
pressure

diate magnitude is more frequently preferred by the Monte Carlo simulations, with

a peak near L/D = 2. The peak at L/D = 2 is found for both values of the entry

velocity shown. The lower energy condition does tend to create a wider distribution

of solutions with L/D < 1.5; however, there is still a distinct peak near L/D = 2.

Moderate values of L/D are likely favored because they strike a balance between

desirable control behavior without the high drag of large surface areas.

As shown in Figure 7.10, the higher energy entries have a peak in the expected

range of 28 < M < 30. In order to take best advantage of the starbody’s design

point, the design M should actually be a function of the expected entry velocity.

With lower v∞, the peak value of Mach number tends to be more distinct and occurs

at a lesser Mach number.

7.1.3.4 Optimal Starbody Shapes

The geometries with the most locally optimal trajectory solutions were found

for each number of starbody tines, n. The resulting waveriders are displayed in

Figure 7.11, and their parameters are displayed in Table 7.4. While many of the

locally-optimal solutions tended to create the very large wing span shapes discussed

previously, these optimal starbodies all have relatively high volumetric efficiency.
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Table 7.4: Optimal Designs
n 3 4 5 6
V 40 m3 40 m3 40 m3 40 m3

m 8000 kg 8000 kg 8000 kg 8000 kg
D .380 -.724 -.442 -.616
e -.223 -.625 .031 -.742
L 11.0 m 9.8 m 11.7 m 13.9 m
bmax 4.15 m 4.35 m 1.82 m 1.78 m

S 103.2 m2 109.83 m2 87.3 m2 92.27 m2

ηV 54.8% 51.5% 64.4% 61.3%
Max L/D 2.48 2.97 1.98 2.17

Figure 7.11: Optimal 3, 4, 5, and 6 tine starbodies

All but the five-tine starbody have large surface areas on the upper or lower

surface, largely parallel to the vehicle’s z-axis, providing area for the generation of

lift. This trend found in the three-, four-, and six-tine starbodies suggests that the

five-tine solution is simply an outlier.

The variable,bmax, represents the widest tine. This value can therefore be used

to determine the maximum dimension, for example, that might have to be contained

in a faring or shroud. By this criteria, the six-tine solution is extremely favorable

as it demonstrates high lift with a value of bmax that is only half as large as the

four-tine solution.

7.1.3.5 Entry Corridors

Additional Monte Carlo trials were run over only the trajectory design space

while the starbody shape was held constant. The three-, four-, five-, and six-tine
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starbodies described in the previous section were used to characterize the entry

corridor. In order to quantify the range of entry conditions that a vehicle can

successfully use, the entry corridor, defined by the angle between the maximum

entry flight path angle and the minimum entry flight path angle, is calculated.

A main concern for aero-capture trajectories is the sensitivity to deviations

from the intended flight path. With a low value of L/D, a given vehicle has very

little ability to mitigate under- or over-shoot during the course of a trajectory. In

order to determine the entry corridor, approximately 500 Monte Carlo simulations

were run per vehicle over the design space. In each case the entry corridor was

calculated by identifying the two extrema of entry flight path angle, The results are

dependent on the entry velocity, so the simulations were repeated for each entry

condition. The results are presented in Table 7.5.

Table 7.5: Entry Corridors
n 3 4 5 6

v∞ = 6.32 km/s
γmax -9.11◦ -8.90◦ -9.73◦ -9.79◦

γmin -14.14◦ -15.24◦ -15.61◦ -14.73◦

Corridor 5.03◦ 6.34◦ 5.88◦ 4.95◦

v∞ = 4.89 km/s
γmax -8.95◦ -8.90◦ -9.25◦ -9.32◦

γmin -14.15◦ -13.64◦ -14.64◦ -14.65◦

Corridor 5.20◦ 4.74◦ 5.39◦ 5.27◦

Each of the vehicles studied was capable of generating at least L/D = 1.98,

so they all have similarly large entry corridors. This relatively large entry corridor

is perhaps the principle advantage of lifting aero-capture trajectories. In two of

the cases, the lower energy entry condition did not yield a larger entry corridor

than the corresponding high energy case, but this is unrealistic and likely due to an

insufficient number of trials being conducted.
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7.2 Mars Aero-Capture with Inclination Change

Analyzing the results in the previous section, it is clear from the controllability

evidenced by the large entry corridors that there is excess aerodynamic capability

present in the waverider models. One potential use of this excess lifting force is

to complete a secondary objective along with the aero-capture. One promising

such mission goal is inclination change. Using propellant to change the inclination

of a spacecraft’s orbit is one of the most mass costly spacecraft maneuvers. If

aerodynamics could be used rather than propellant, great savings are likely possible.

In this section, the maximum possible inclination change that is possible in one aero-

capture flight is investigated.

Identical initial conditions were considered as the previous section, one corre-

sponding to a fast transfer orbit from Earth (∼160 days) and a second corresponding

to a more gradual Earth to Mars transfer (∼250 days). The former scenario results

in a higher entry velocity (v = 8.02 km/s), while the latter scenario results in a

lower entry velocity (v = 6.95 km/s) and corresponding energy. The details of these

initial conditions are given in Table 7.6. Once again, values matching those in 127

and 97 were selected for ease of comparison.

Table 7.7 contains the details of the target and final orbits. The target flight

path takes the vehicle from the edge of the sensible atmosphere to apoapsis where

Table 7.6: Initial Conditions

Low Energy Entry High Energy Entry

ra < 0 < 0
ε 12 km2/s2 20 km2/s2

v∞ 4.89 km/s 6.32 km/s
v entry ∼7 km/s ∼8 km/s
γentry ∼9◦ ∼9◦

M design 26 29
γdesign 1.34 1.32
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Table 7.7: Post-Maneuver Conditions

Target Orbit Final Orbit

ha 400 km 400 km
hp < 50 km 400 km
ε ∼(-6 km2/s2) -5.64 km2/s2

e 0 < e < 1 0
i > 0 > 0

it is assumed an impulsive rocket burn circularizes into the final orbit.

For simplicity, the vehicle’s initial inclination was assumed to be zero; without

any side force, the vehicle would remain entirely in the Martian equatorial plane.

The vehicle was then oriented to exert aerodynamic forces in the out of plane direc-

tion and affect an orbital plane change. A previous study62 suggests that rotating

away from the planet’s equatorial plane is more costly than the reverse, so this is a

conservative approach.

No limit was placed on the maximum amount of inclination the final orbit can

have, even though a retrograde orbit (i > 90◦) is unlikely to be desirable, let alone

feasible, during only one periapsis fly-by. This was done as this work attempts to

conceptually explore what is possible rather than assume a design point.

A buffer altitude of 15 km was used to prevent collision with the surface or

any topographical features. This gives clearance above all locations on the Martian

surface except the three highest peaks. If the trajectory of any vehicle crossed this

15 km threshold, the simulation was stopped as if the vehicle had struck the surface.

In such cases the outputs were such that on the next function evaluation within the

optimization routine, the vehicle would likely avoid penetration so deep into the

atmosphere.

In order to manipulate the aerodynamics during the atmosphere, the angle-of-

attack control system described in Section 5.2.3 was used. Of course, a bank angle

controller would allow the waverider to remain on-design, however the bank angle

was used as a design variable so as to achieve sufficient inclination change.

157



7.2.1 Optimization

There were two design parameters limited to integer values only, n and v∞.

The number of tines was limited to 3, 4, 5 or 6 and the initial v∞ was set to

either 6.32 km/s or 4.89 km/s. Each unique combination necessitated a separate

optimization run, yielding eight total runs. All other variables were free to vary

within the ranges shown in Table 7.8.

Table 7.8: Optimization Design Parameters

Variable Min Max Comments

Geometry n 3 6 integer values only
D -1 1
e -1 1

Trajectory v∞ 4.89 km/s 6.32 km/s the min or max value only
γentry 8◦ 20◦

αentry -6◦ 6◦ further constrained by geometry
φ 0◦ 90◦

εascent -5.5 km2/s2 -3 km2/s2

7.2.1.1 Objective Function

An SQP gradient based optimization routine (built into MATLAB via the

function ‘fmincon’) was used to determine the optimal combination of geometry

and trajectory parameters. An initial guess was provided, the local derivatives were

calculated and then the routine stepped in the direction of the local minima. The

intent of this study was to determine the capability for plane change, therefore the

objective function incorporated only the final inclination, i, scaled by π/2 radians

as shown in Equation 7.2:

minf = − i

π/2
(7.2)
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7.2.1.2 Constraints

Constraint functions ensured that the aero-capture ran to completion. Doing

so was complicated by the main figure of merit, the final altitude of apoapsis, hf ,

being discontinuous as the vehicle decelerated. For hyperbolic orbits, the apoapsis

altitude is negative. As the vehicle decelerates, the apoapsis altitude increases in

magnitude towards negative infinity. When sufficient energy has been dissipated

and the orbit is neutrally captured, the value becomes infinite. Finally, as the ve-

hicle is more and more captured, the final apoapsis altitude decreases from positive

infinity. It could therefore only be calculated once the orbital energy became nega-

tive. Otherwise the gradient would have pushed in the incorrect direction. In order

to achieve this, an inequality constraint was created relative to the target apoapsis

altitude hT , which is shown in Equation 7.3. This constraint was multiplied by a

logical statement, so that the gradient was not calculated when the orbital energy

was greater than zero. This implied a need for a second constraint in order to pro-

vide a gradient at positive values of orbital energy. In fact, the final orbital energy,

εf , itself was used and scaled by the initial orbital energy, ε0.

The two inequality constraints are shown in Dquations 7.3 and 7.4. The con-

straint in Equation 7.3 has an extra term so that the apoapsis altitude target must

be reached only within .01 km or 10 meters. It was deemed that saving many iter-

ations was an acceptable trade-off for a 10 m accuracy, especially given the level of

uncertainties in other parts of the simulation. Both constrained values were scaled

to have similar magnitude.

c1 = (ε < 0)
|hf − hT | − .01km

hf
≤ 0 (7.3)

c1 =
εf
ε0
≤ 0 (7.4)
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7.2.2 Results

Fifteen random initial conditions were run for each of the eight sets of fixed pa-

rameters, resulting in 120 locally optimal trajectory and geometry solutions. While

it is not certain that true global optima were found, extremely large magnitudes

of plane change were found to be possible. All 120 cases were further analyzed to

determine trends in certain figures of merit as inclination increased. Next, from the

full set, eight optimal geometries were selected, one for each combination of tine

number and initial energy. These eight shapes were then used to further examine

the trajectory of the combined maneuver.

7.2.2.1 Optimization Trends

By combining the trajectory and geometry optimizations, the design space is

sufficiently complex that there are many local extrema in the objective function. On

the other hand, it was discovered that for a given starbody shape, there is in fact one

globally optimal set of trajectory parameters. Therefore, far fewer extrema would

be present if a dual layer optimization had been run, where the best trajectory was

found for each geometry generated during the optimization, rather than varying

both concurrently. This would have added dramatic increases in computation time

however, so it is not clear that there would be great benefit to this strategy. The

presence of so many extrema can be positive as well, as insight into the problem can

be gleaned by analyzing trends in the locally optimal solutions.

Each data point in Figures 7.12a-7.12e represents one of the 120 locally optimal

solutions. Note that the inclination of the final orbit was plotted inversely, as was

the volumetric efficiency, so that the ideal result would then be in the lower left

hand corner. In these plots, the results are parsed for the different atmospheric

entry speeds.
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Figure 7.12: Trends in design metrics as inclination change increases. This study
was conducted as a series of single objective optimizations, but these trends resemble
multi-objective pareto curves.
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In Figure 7.12a, one of the fundamental difficulties in designing hypersonic

vehicles is seen. The more slender a vehicle shape and design, the less drag it will

impart. In the case of starbodies, as a shape becomes more slender, its lifting area

increases as well, so the lift-to-drag ratio can increase dramatically. At the same

time, as the vehicle becomes more slender, it will have less usable volume. At

a later stage of design, when more would presumably be known about the other

required subsystems, a trade-off could be performed with a constraint placed on

the volumetric efficiency and even the packaging density. While there were many

designs found that were capable of greater than 70◦ of plane change, many would

require a vehicle shape with less than 40% volumetric efficiency. In these cases,

in order to fulfill the necessary cargo volume requirement, the vehicle cross-section

would need to be extremely large, possibly impeding fit into a launch vehicle fairing

unless deployment mechanisms were used.

The maximum heating rate experienced during the course of the trajectory

is a vital metric for sizing the thermal protection system. As the plane change

that can be realized from a given design increases, the maximum value of heat rate

experienced over the course of the trajectory increases as well (see Figure 7.12b). As

was expected, the higher energy entry condition shifts the results to higher heating

rates and slightly lower to greater plane change. If the vehicle has greater energy to

dissipate, then it must spend more time in the atmosphere decelerating, and there

is more time for aerodynamics to be used to impart plane change. Once again, as

the design process continues, constraints could be used to account for the maximum

acceptable heating rate of the expected vehicle materials.

Also note that the maximum aerodynamic g-load increases as the plane change

increases (Figure 7.12c). In order to achieve such high turning, the vehicle must use

relatively high aerodynamic forces to change its course. The high forces clearly

result in high aerodynamic g-loads on the vehicle. If the aero-shell had a 3g limit,
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for example, there are a number of trajectories which would not be possible, as the

vehicle could not withstand the g-load. Once again, the curve shifts to the right for

the higher energy initial condition due to stronger accelerations being imparted to

the vehicle. Increasing the sustainable g-load of a vehicle would likely undesirably

increase the structural mass as well.

High lift reentry is a unique flight environment and typical figures of merit do

not always accurately predict performance. This is the case with both the ballistic

coefficient (see Figure 7.12d) and the wing loading (see Figure 7.12e, measured by

total wetted area, as the entire surface area contributes to or impedes lifting force).

These values are plotted against maximum heat rate and maximum acceleration as

they have no discernable correlation to plane change acheivable. The former value

is commonly used in estimating the heat load expected on a blunt re-entry vehicle,

with higher drag (low ballistic coefficient) designs being favorable. While this trend

is observed to a small degree in Figure 7.12d, the trend is reversed at high ballistic

coefficients. Further, there appears to be a value of ballistic coefficient which would

minimize the heat load required.

In the case of purely atmospheric vehicles, the wing loading is a vital met-

ric for analyzing aircraft performance. In the high lift re-entry scenario, however,

no correlation was observed linking the achievable plane change and wing loading.

Only a slight trend was seen when comparing the wing loading to the maximum ac-

celeration required to complete the maneuver. Generally, as wing loading increases,

the required maximum acceleration decreases. This is due to the decreased turn-

ing capability associated with the decreased lifting potential of a high wing loading

vehicle.
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Table 7.9: Optimized Starbody Designs
n 3 4 5 6 3 4 5 6
v∞ 4.89 km/s 4.89 km/s 4.89 km/s 4.89 km/s 6.32 km/s 6.32 km/s 6.32 km/s 6.32 km/s

V 40 m3 40 m3 40 m3 40 m3 40 m3 40 m3 40 m3 40 m3

m 8000 kg 8000 kg 8000 kg 8000 kg 8000 kg 8000 kg 8000 kg 8000 kg
e .785 .793 .686 .188 -.482 -.071 -.196 -.486
D -.849 -.915 -.860 -.847 -.630 -.864 -.865 -.667
l 10.70 m 10.06 m 13.21 m 13.46 m 9.11 m 7.98 m 11.60 m 13.27 m
bmax 7.56 m 8.23 m 3.44 m 2.15 m 6.75 m 8.81 m 3.88 m 2.66 m
S 164.9 m2 170.7 m2 107.0 m2 90.0 m2 125.8 m2 143.5 m2 101.8 m2 93.6 m2

ηV 34.3% 33.1% 52.9% 62.9% 44.9% 39.4% 55.5% 60.4%
Max L/D 2.63 2.47 2.07 1.83 2.18 2.25 2.03 1.77

imax 78.8◦ 78.5◦ 49.7◦ 44.5◦ 86.5◦ 79.7◦ 57.2◦ 45.0◦

7.2.2.2 Optimal Vehicle Shapes

The details of the optimal geometries for each of the eight combinations of

n and v∞ are presented in Table 7.9 and the high initial energy optimal starbody

designs are displayed in Figure 7.13 (at the bank angle for their respective optimal

cruise trajectories). Several items are of importance in Table 7.9. First, all designs

have negative values of D. Recall that this parameter controls the location of the

starbody tines, and a negative value indicates that they have been shifted towards

the bottom side. With the starbodies shown in Figure 7.13, notice that there is a

grouping of small tines on the bottom side, and only larger tines on the top side of

the vehicle. This creates large lifting surfaces on the topside of the vehicle, which is

necessary for exerting strong aerodynamic forces. The vehicles are essentially flying

upside down from a conventional hypersonic configuration, in order to use negative

lift to overcome the strong orbital inertial forces which tend to push the waverider

out of the atmosphere.

Changing the eccentricity of the center-body yields different trends for the two

initial energy conditions. When the tine distribution parameter is large, a positive

value of e will tend to make the vehicle even more slender, as the center-body is

becoming flatter as well. However, if the reverse is true, that is if D is large and

e is negative, then the vehicle actually becomes more blunt. The large magnitude

164



Figure 7.13: Optimal 3-, 4-, 5-, and 6-tine starbodies (high initial energy)

of D is necessary in order to create the large lifting surface; however, having the

center-body become more eccentric in the vertical plane tends to increase the wave

drag that the vehicle will experience because the cross-sectional area increases. The

former scenario is found in the lower energy entry condition, where increased wave

drag is not necessary to sufficiently decelerate, whereas the latter scenario is present

when there is substantially more entry energy.

Next, while the slenderness ratio of the center-body was held constant, as dis-

cussed earlier, the overall ratio of the vehicle was not fixed, and varies dramatically.

The length of all vehicles are of the same approximate magnitude, however their

width is not. Note that bmax represents the widest tine. This value can therefore

be used to determine the maximum dimension, for example, that might have to be

contained in a launch vehicle faring or shroud. By this criterion, the six-tine solu-

tion is extremely favorable as it is capable of only marginally less lift with a value

of bmax that is only one quarter as large as the four-tine solutions.

Finally, the trends of volumetric efficiency are as predicted by Figure 7.12a,

except for three vs. four tine designs. The optimal three- and four-tine starbodies

look almost identical, except for the addition of a second small tine on the underside.

The four-tine version performs worse, however, as the extra tine on the lower surface

adds very little to lift, but detracts in terms of extra surface area and therefore skin

friction. In other cases however, the more volumetrically efficient the design, the

less plane change capability.
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7.2.2.3 Trajectory Analysis

In order to better understand the flight precision required for these trajectories,

the eight starbodies referred to in the previous section were used to fully quantify

the feasible space. As this is a conceptual study, there were no limitations placed on

g-load or heat rate. In actual practice, these factors would limit the steepest possible

entry condition; however, in the cases studied in this present work, only trajectory

limited conditions are observered. The steepest flight path angle represents the one

that would allow the vehicle to just avoid the buffer altitude of 15 km, described

earlier. The shallowest entry condition is somewhat more benign, and would likely

not be altered by other figures of merit in the same way.

The enclosed areas in Figure 7.14 show the range of trajectory parameters

at which successful trajectory solutions exist. Each upper curve represents the

steepest entry flight path angle that the vehicle could feasibly use, while the lower

line indicates the shallowest angle for which the vehicle would not simply skip out

of the atmosphere. At the far left of each area, the vehicle flies without any bank

angle, and therefore is capable of a wider range of entry flight path angles. As the

bank angle increases, more lift is diverted away from the flight plane and is no longer

usable for overcoming an excessively shallow or steep entry. Eventually, the bank

angle becomes so severe, that aero-capture is no longer possible. The vehicle does

not have sufficient drag to decelerate without using lift to maintain a prolonged

flight, and beyond the critical bank angle, there is not sufficient lift available to hold

altitude.

Because the higher tine number designs have less lift capability, they do not

have as wide of an entry corridor at small values of bank. Conversely, as they

are closer to axi-symmetric, the application of a bank angle has less adverse effect,

as they still have large lifting surfaces normal to the vertical direction after the
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Figure 7.14: Entry Corridors for all values of bank angle. Solid lines correspond to
high energy, v∞ = 6.32 km2/s2, Dashed lines correspond to low energy, v∞ = 4.89
km2/s2

rotation. The lower tine number designs resemble delta wing type aircraft, and are

less capable of sustained, high-bank flight.

While the areas enclosed in Figure 7.14 represents the set of all possible entry

and flight conditions, it does not indicate the effect on plane change. In order

to understand that impact, Figures 7.15 - 7.22 display the plane change possible

over the range of flight path angle and bank angle. At low levels of bank, the

final inclination consistently increases; however, as larger values are reached, the

relationship is more involved. The plane change increases more rapidly for shallow

entry flight path angles. This is because the overall flight time increases for a

successful aero-capture at these entry conditions. The vehicle remains at higher

altitudes in less dense atmosphere, therefore deceleration occurs more slowly, and the

vehicle has more time over which to increase inclination. In spite of this, for a given

bank angle, the maximum plane change does not occur exactly at the shallowest

entry flight path angle. There is a slight decrease at the most shallow angles. This
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Figure 7.15: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 3-tine starbody with low initial energy (v∞ = 4.89 km/s)

Figure 7.16: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 3-tine starbody with high initial energy (v∞ = 6.32 km/s)
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Figure 7.17: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 4-tine starbody with low initial energy (v∞ = 4.89 km/s)

Figure 7.18: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 4-tine starbody with high initial energy (v∞ = 6.32 km/s)
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Figure 7.19: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 5-tine starbody with low initial energy (v∞ = 4.89 km/s)

Figure 7.20: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 5-tine starbody with high initial energy (v∞ = 6.32 km/s)
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Figure 7.21: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 6-tine starbody with low initial energy (v∞ = 4.89 km/s)

Figure 7.22: Inclination achievable as a function of entry flight path angle and roll
angle for optimized 6-tine starbody with high initial energy (v∞ = 6.32 km/s)
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is a relic of the control system used, and is unlikely a universal trend. By entering

at such a shallow angle, the nominal periapsis is too high to allow constant altitude

flight. The vehicle uses lift to descend, however due to the weak gains in the control

system, it drops farther than is necessary. Deceleration occurs more rapidly, and

the overall flight time decreases compared to a slightly steeper entry

The greatest value of inclination is found at the maximum value of bank angle.

This occurs at the intersection between the shallowest and the steepest entry flight

path angle. As mentioned previously, this corresponds to the globally optimum set

of trajectory parameters for the given shape. The location of the peak is crucially

important, as the vehicle has absolutely no margin of error on entry conditions

to achieve this outcome. While a given maximum value of plane change may be

possible, a realistic mission design would likely target a lesser final inclination in

order to increase the entry corridor. Luckily, near the peak, the gradient of the

plane change is relatively small, and decreasing the bank angle slightly will not

greatly decrease the final inclination.

7.2.2.4 Equivalent ∆v

Table 7.10 shows a breakdown of the necessary ∆v for three scenarios: the

combined aero-assisted plane change with aero-capture as defined in this study, an

aero-capture followed by a propellant burn to achieve the same inclination change,

and a fully propellant-based combined capture and plane change scheme. When

calculating the ∆v required for an impulsive inclination change, the plane change

values in the third column are used, which correspond to the maximum attainable

with an aero-assisted aero-capture.

While the aero-assist does remove the significant majority of the needed ∆v,

a periapsis raise maneuver is still required in order to prevent an unwanted reentry.

This requires a small velocity increment to circularize the orbit. The magnitudes of
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Table 7.10: ∆v required from propellant for different mission types. Savings yielded
from aeroassist shown in parentheses

v∞ n Plane
Change

Exoatmospheric
Orbital In-
sertion
and Plane
Change

Aero-
capture
w/ Exoat-
mospheric
Plane
Change

Aero-
capture
w/ Aeroas-
sisted Plane
Change

4.89 km/s

3 78.77◦ 3.544 km/s 2.912 km/s .113 km/s
(.631 km/s) (3.431 km/s)

4 78.46◦ 3.543 km/s 2.912 km/s .113 km/s
(.631 km/s) (3.431 km/s)

5 49.70◦ 3.517 km/s 2.776 km/s .115 km/s
(.741 km/s) (3.402 km/s)

6 44.48◦ 3.512 km/s 2.605 km/s .107 km/s
(.907 km/s) (3.405 km/s)

6.32 km/s

3 86.53◦ 4.636 km/s 2.908 km/s .102 km/s
(1.727 km/s) (4.534 km/s)

4 79.73◦ 4.630 km/s 2.923 km/s .122 km/s
(1.708 km/s) (4.508 km/s)

5 57.16◦ 4.610 km/s 2.904 km/s .130 km/s
(1.706 km/s) (4.480 km/s)

6 45.00◦ 4.598 km/s 2.632 km/s .114 km/s
(1.967 km/s) (4.484 km/s)

each for all eight optimal shape/trajectories are as shown. There is little relationship

between the inclination of the orbit and the magnitude of the necessary periapsis

raise, it is mostly a function of the exiting flight path angle and the altitude flown

when in the atmosphere.

The aero-assist maneuver shows dramatic reduction in propulsive ∆v require-

ments compared to an impulsive only maneuver. In this case, the optimal maneuver

is solved for, rather than assuming that the plane change would occur at the target

circular radius of 400 km. Because the propellant required to change inclination

decreases as orbital velocity decreases, it is typically optimal to perform the maneu-

ver at a relatively high altitude even if the apoapse must be raised and lowered. In

the scenario under consideration here, further propellant savings can be achieved by
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incrementally inserting into the final circular orbit. First, a decelerating propellant

burn occurs at the initial hyperbolic periapse of 400 km above the Martian surface.

Enough ∆v is applied in order to enter a captured orbit, with apoapse at some

optimal altitude (the highest altitude was constrained to be one half of the radius

of Mars’ sphere of influence). At apoapse, the spacecraft performs the inclination

change. Finally, after returning to periapse, the spacecraft uses one last maneuver

in order to enter a circular orbit. Even with these improvements to a fully impulsive

maneuver, this maneuver is extremely costly and it would serve mission designers

well to avoid this.

The second category shows that a large velocity increment would be necessary

in order to impart the plane change even if the vehicle had used aero-capture to

decelerate from the hyperbolic entry conditions. Once again, the ∆v for the incli-

nation change was calculated for a propellant burn at some optimal altitude greater

than 400 km. The propellant required to raise and lower apoapsis was also included.
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Chapter 8

Aero-Gravity Assist Design

Gravity assist fly-bys have an important legacy in interplanetary space travel.

For missions beyond Mars, it is often beneficial to depart from Earth and perform

a series of gravity-assists around the inner planets before departing to the outer

planets. In certain cases, the spacecraft can not be turned sufficiently in only one

pass to reach the next planet in the sequence. In such cases, an aero-gravity assist

(AGA) is likely worthy of consideration.

8.1 Maximum Performance

The present section examines the aero-gravity assist about Mars, Earth and

Venus, using optimization methodologies to determine the maximum possible bene-

fit achievable with the maneuver. In order to perform trajectory design, the feasible

space of AGA performance must be identified. This is quantified by means of he-

liocentric velocity increase, ∆|v|, turning angle, ∆Θ, and energy loss relative to

the fly-by planet, C+
3 /C−3 . The velocity change, ∆|v| is not the standard delta-v

used to quantify velocity vector changes of impulsive maneuvers (see Equation 8.1),

but instead the change in overall velocity magnitude before and after the maneuver

(relative to the sun), as shown in Equation 8.2:

∆v = ~vf − ~vi (8.1)
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∆|v | = |vf | − |vi| (8.2)

Quantified as such, the inclination change is not included in the overall gain or loss.

A wide range of entry conditions has been considered, characterized by ap-

proach velocity, v−∞, examining the possible ∆|v| as a function of the energy lost

during the atmospheric pass. The orbital energy loss is not used directly but in-

stead quantified by hyperbolic excess velocity before and after the maneuver. If we

define ξ ≡ v+
∞/v−∞, the relationship between energy loss and ξ is given by Equation

8.3:

εf
ε0

=
(v+
∞)2/2

(v−∞)2/2
⇒ ξ =

√
εf
ε0

(8.3)

Such correlations are useful for designing AGA missions. In order to perform

preliminary or even medium fidelity interplanetary trajectory design, an upper limit

for AGA performance is required in the form of turning, ∆Θ, as a function of fly-by

energy loss, ξ. Quantifying this relationship is the primary purpose of this section.

In the following section, the maximum performances determined here will be used

to perform spacecraft trajectory designs using AGA.

8.1.1 Study Parameters

The ranges of the various parameters used in this study are summarized in Ta-

ble 8.1. The early chapters of this work provide more explanation on the significance

of the values, and how they are used to model the engineering problem under review.

This includes equations relating to the aerodynamics and the trajectory. The bank

angle variation based control system used in this study is described in Section 5.2.2.

The osculating cones methodology of developing hypersonic waveriders is used for

geometry generation.
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Table 8.1: Simulation and Optimization Options
Trajectory Approach velocity, v−∞ 6 km/s : 40 km/s

Hyperbolic Velocity Fraction, ξ .25 : .95
γentry 10◦ : 14.5◦

αentry 0◦ : 4◦

Vehicle Properties Mass 2500 kg
Volume 25 m3

Aerothermodynamics Leading Edge Radius 0.01 : 0.1 m
Control System Max Pitch Rate, q 0.25◦/s

Max Roll Rate, p 0.5◦/s
Optimization Population Size 1000

Generations 10
Minimum SQP Step Size 1e-12

8.1.1.1 Initial Conditions

For each optimization run, the vehicle is given a constant initial position and

constant initial velocity magnitude, v−∞, at the edge of the planet’s sphere of influence

(see Figure 8.1). Because Figure 8.1 is not drawn to scale, the inbound and outbound

paths appear to have steep angles relative to the sphere of influence. In reality, each

would be almost exactly normal to the sphere of influence and pointing almost

exactly towards or away from the center of the planet.

The direction of the initial velocity vector will vary slightly, allowing a range

of atmospheric entry conditions. The optimization routine selects the flight path

angle of entry, γentry, and from this design parameter, the necessary direction of the

velocity is determined to ensure that the vehicle approaches the atmospheric bound-

ary as selected. The value of γentry will vary, but to ensure consistent comparisons

between trajectories, the location of entry to the sphere of influence will be the same

for all trajectories.

In the heliocentric frame of reference, the vehicle is given an initial location

such that the spacecraft’s position vector relative to the planet is parallel to the

planet’s velocity vector. Using this definition, the vehicle lies in the ecliptic plane of

177



Figure 8.1: Initial conditions of spacecraft (not drawn to scale). Red and green
curves correspond to shallow and steep atmospheric entry initial conditions, respec-
tively

the spacecraft. For simplicity, it can be assumed that the maneuver occurs exactly at

the vernal equinox, so that the planet velocity is almost entirely in the heliocentric

+y-direction (see Section 5.3.3). Similarly, the relative position vector from the

planet to the spacecraft at the initial conditions is in the heliocentric +y-direction.

The initial spacecraft velocity vector is approximately in the (-y)-direction. The

initial position of the spacecraft is converted into planet-centric coordinates for

trajectory propagation.

Defining the initial conditions in this manner ensures that both the heliocentric

velocity increase and turning angle are relevant. So long as the range of γentry

is sufficiently small, the variation in the initial velocity vector direction will be

negligible, as shown in Figure 8.2. The magnitude of ∆|v| for a pure gravity-assist

is dependent on the approach direction, therefore, fixing the approach direction

isolates changes to AGA performance only.
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Figure 8.2: Variation of initial velocity vector direction for full range of γentry for
v−∞ = 20 km/s

8.1.1.2 Optimization Formulation

From initial analysis, it was clear that the design space was nonlinear and, in

places, non-continuous. A gradient based method would have difficulties with such

a problem, therefore a global analysis method is preferred. A genetic algorithm is

used to primarily parse the design space. Subsequently, a gradient based solver was

used to further refine the results to ensure the necessary conditions were satisfied.

Both schemes use the turning angle (in inertial coordinates of the fly-by planet)

before and after the maneuver as the objective function:

min f = −∆|Θ| = −(|Θf | − |Θi|) (8.4)

Further, a constraint is placed on the value of ξ for a given optimization run.

This serves to determine the maximum possible turning around the planet with a

given approach and departure energy.

There should be a direct correlation between vehicle turning and velocity in-

crease. This can be demonstrated by combining Equation 8.2 and the definition of
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the sphere of influence, vSOI ≈ v∞:

∆|v | = |v f | − |v i| = |vSOI + vPlanet|f − |vSOI + vPlanet|i (8.5)

∆|v | = |v+
∞ + vPlanet| − |v−∞ + vPlanet| (8.6)

Define an angle, ψ, as the clockwise rotation from the spacecraft’s approach vector

and the heliocentric (-y)-direction as depicted in Figure 8.1. Then, the expression

for the final velocity vector in terms of the initial velocity can be found using a

rotation of ∆Θ:

∆|v| =

∣∣∣∣∣∣∣∣∣∣


cos(∆Θ + ψ) − sin(∆Θ + ψ) 0

sin(∆Θ + ψ) cos(∆Θ + ψ) 0

0 0 1




0

−v+
∞

0

+


0

vPlanet

0


∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1




0

−v−∞

0

+


0

vPlanet

0


∣∣∣∣∣∣∣∣∣∣

(8.7)

This expression also assumes that the maneuver is brief compared to the planet’s

orbit, thus the direction of the fly-by planet’s velocity vector remains unchanged.

This is a reasonable assumption, as gravity assist maneuvers take place on the

scale of hours. Because the maneuver is theoretically confined to the ecliptic plane,

omitting the ignored z -terms and using the definition of ξ to replace the magnitude

of the final velocity yields the following simplification:

∆|v| =

∣∣∣∣∣∣∣
 v−∞ξsin(∆Θ + ψ)

−v−∞ξcos(∆Θ + ψ) + vPlanet


∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
 v−∞ sin(ψ)

vPlanet − v∞ cos(ψ)−


∣∣∣∣∣∣∣ (8.8)
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With the initial conditions defined in the section above, the approach angle is zero:

∆|v| =

∣∣∣∣∣∣∣
 v−∞ξsin(∆Θ)

−v−∞ξcos(∆Θ) + vPlanet


∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
 0

vPlanet − v−∞


∣∣∣∣∣∣∣ (8.9)

Equation 8.9 represents the general relationship for the AGA maneuver as estab-

lished.

For a given v−∞ and a fixed value of ξ, the only unfixed variable is ∆Θ. By

inspection of this equation, it is maximized when ∆Θ = 180◦. This is a physically

reasonable result. Given vector summations, the greatest final heliocentric velocity

that the spacecraft could have is if it departed parallel to the planet’s velocity vector.

Similarly, the least initial heliocentric velocity it could have (with a fixed value of

v−∞) is if it approached the planet in the anti-parallel direction. In such a case,

as the spacecraft approaches the GA or AGA maneuver, the spacecraft and the

fly-by planet are moving directly towards one another. Gravitational and possibly

aerodynamic forces bend the spacecraft’s velocity vector such that it now moves in

the same direction as the planet and with some excess velocity to spare.

In order to determine the actual theoretical maximum velocity increase, further

simplifications can be made. First, let the turning angle be 180◦ as explained, and

second assume that the maneuver was completed without any loss in v∞. Setting ξ

= 1 yields the following expression:

∆|v|max = (v∞ + vPlanet)− (vPlanet − v∞) = 2v∞ (8.10)

While ξ = 1 is not possible for an AGA and ∆Θ = 180◦ is unlikely for a pure gravity

assist, Equation 8.10 provides a very useful limit. This limit will be used to scale

the results found for possible velocity increment.
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8.1.1.3 Genetic Algorithm

A genetic algorithm was employed using double precision genes, rather than

encoding a binary genetic code for each population member. Instead of mutation by

way of flipping bits, in this method, a mutation direction is randomly selected with

weighting adaptively determined from the location of previous generation members

within the design space. Next, a mutation step size is randomly chosen ensuring

that it does not cross bounds and constraints. The psuedo-random mutation step

method helps to ensure sufficient diversity within the population. Standard crossover

techniques were used when mating genes by switching entire double precision design

variables and direct transfer of a small number of elites following fitness evaluation

of each generation.

A trade study was performed in order to determine the best options to use

with the genetic algorithm, specifically the population size versus the number of

generations. Three different scenarios were tested, keeping the total number of

function evaluations roughly constant: a large population size (80) with a small

number of generations (12); an average population size (30) with an average number

of generations (30); or a small population size (12) with a large number of generations

(80). It was found that the first scenario yielded the best results for this problem.

It is certainly not a guarantee that the same relative results would be found when

scaled up, however this provided for some quantitative reasoning for the values

chosen (Population = 1000, Generations = 10).

8.1.1.4 Gradient Based Algorithm

A sequential quadratic programming (SQP) algorithm was implemented as

the gradient based scheme. The initial guess is supplied as the best population

found during the single objective genetic algorithm optimization. The first and
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second derivatives are calculated at the initial guess and at each subsequent iteration

using finite differencing. Although additional function evaluations are necessary to

generate second order information, the number of iterations can often decrease as

compared to a first order method, which reduces the overall number of function

evaluations. At each iteration a subproblem is setup to find the search direction.

Once the search direction is determined, a line search is performed in order to select

the proper step size which will minimize the objective function along the search

direction. With the search direction and step size determined, the next iteration’s

design point is calculated. This process is repeated until stopping criteria is reached.

For this problem, the optimization was deemed complete when the norm of the step

size was sufficiently small.

8.1.2 Results

Both of the optimization methods were instrumental in the overall solution,

as improvement was made through generations and iterations in both. Once the

stopping criteria was reached for all thirty five v−∞ optimization runs for all three

planets, over 2362500 function evaluations (distinct simulation runs) had been com-

pleted. This includes 1000 simulations per generation of the genetic algorithm, and

roughly 500 cases for each iteration of the subsequent SQP algorithm. Once the

best trajectory was found for a fixed value of ξ, the value of εascent was varied to

generate data for the full range of ξ conditions outlined in Table 8.1. The results

are presented and discussed in this section.

The most important results of this section are shown in Figures 8.3, 8.5 and 8.7.

These plots present the least amount of energy loss that would allow a given plane-

tary fly-by turning angle at a given approach velocity. The maximum performance

for a given turning angle and the associated minimum energy loss is important,

as theoretically, any lesser amount of planetary turning is possible, simply using a
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higher drag configuration vehicle. Presumably, each trajectory found in this study

required the minimum drag configuration in order to complete the mission losing

the least amount of energy as possible. A lesser drag configuration, capable of in-

creased planetary turning, was not found to be feasible. However, a higher drag

configuration should theoretically always be possible. Therefore, if the maximums

are used as an upper limit on performance here, then subsequent trajectory design

has a feasibility boundary.

In previous work,75,81 an analytical correlation was used to determine the

energy loss which would occur during a given aero-gravity assist fly-by:

Θ = ΘGA + sin−1

(
1

1 + rv2/µ

)
+ sin−1

(
e2Θ/(L/D)

1 + rv2/µ

)
(8.11)

The data in these figures are an alternative, developed using optimization methods

and removing assumptions about a constant flight altitude and a constant lift-to-

drag ratio. Each data point used to generate these figures represents an AGA

trajectory found during this study. On the other hand, Figures 8.4, 8.6 and 8.8

display the theoretical performance using Equation 8.11.

The trends in the pairs of plots corresponding to the same planet are identical,

as the data used to populate the analytical charts was numerically extracted from the

trajectories in the optimized charts. For example, in Figure 8.3, with an approach

speed of v−∞ = 20 km/s, an AGA trajectory was found in which the ratio of energy

before and after entry, C+
3 /C−3 , was equal to .5 for a turning angle of 120◦. The lift-

to-drag ratio of this trajectory varies, as the vehicle varied its lift vector to maintain

constant altitude. The maximum value of lift-to-drag ratio was extracted from this

trajectory, as was the altitude at which the maximum L/D occurred. Then, using

those values, Equation 8.11 was used to determine that analytically, it would be

expected that 120◦ of turning would be possible with C+
3 /C−3 = .7.
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Figure 8.3: Maximum AGA perfor-
mance for aero-gravity assist at Venus

Figure 8.4: Analytic AGA performance
for aero-gravity assist at Venus

Figure 8.5: Maximum AGA perfor-
mance for aero-gravity assist at Earth

Figure 8.6: Analytic AGA performance
for aero-gravity assist at Earth

Figure 8.7: Maximum AGA perfor-
mance for aero-gravity assist at Mars

Figure 8.8: Analytic AGA performance
for aero-gravity assist at Mars
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Comparing the analytic data to the optimized data, a loss of 10% to 30% was

found. This is attributable to two causes: inefficiency in the control system used

and losses associated with ascent and descent. The vehicle does not fly at constant

L/D in a real trajectory, and the lift vector must be varied in order to maintain

a realistic constant altitude flight. This decreases the efficiency of the maneuver.

A more sophisticated control system would likely be able to recover some of these

losses. On the other hand, Equation 8.11 assumes that the entire maneuver occurs at

a constant altitude. Beyond the slight variations associated with a real trajectory,

this ignores the descent into the atmosphere and the ascent out. In these flight

regimes, the waverider is far away from its on-design conditions, and are some of

the least efficient portions of the flight path.

Note that each plot has a region where no trajectories were plotted in the

lower left hand corners. These correspond to regions for which gravity assist alone

would have sufficed, therefore AGA is not necessary or possible.

As has been suggested by previous work,74 Venus was found to be the most

promising for aero-assisted maneuvers, followed by Earth and then Mars. The atmo-

spheric composition of each planet is capable of sustaining varying levels of aerody-

namic performance and associated lift-to-drag ratios. Further, Earth and Venus are

more massive planets, therefore they provide increased gravitational accelerations

compared to Mars. This is seen both by the improved AGA performance, and with

the larger GA only regions in the lower left hand corners.

The sinusoidal relationship between ∆|v| and ∆Θ is displayed in Figures 8.9,

8.11 and 8.13. Each curve represents the relationship for a fixed value of v−∞. These

curves, closely match the relationship predicted using simplifying assumptions in the

derivation of Equation 8.9. If ξ were able to have a value of 1 for all of these trajec-

tories, then the sinusoidal peaks would occur at ∆Θ = 180◦ and ∆|v|/∆|v|max = 1.

It was expected that the amplitude would decrease from this theoretical maximum,

186



Figure 8.9: Variation in ∆|v | with ∆Θ
about Venus. Note the amplitude de-
crease and the phase shift.

Figure 8.10: Hyperbolic velocity frac-
tion required to achieve a given turning
angle about Venus

Figure 8.11: Variation in ∆|v | with ∆Θ
about Earth. Note the amplitude de-
crease and the phase shift.

Figure 8.12: Hyperbolic velocity frac-
tion required to achieve a given turning
angle about Earth

Figure 8.13: Variation in ∆|v | with ∆Θ
about Mars. Note the amplitude de-
crease and the phase shift.

Figure 8.14: Hyperbolic velocity frac-
tion required to achieve a given turning
angle about Mars
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as ξ cannot equal 1 for an aero-gravity assist mission which enters the atmosphere.

As can be seen from the figures, the maximum velocity increases does not occur at

180◦ though. This may at first seem non-intuitive.

In order to explain the phase shift, first consider the rate at which ξ changes

with ∆Θ as shown in Figures 8.10, 8.12 and 8.14. These plots are a 2d, side view of

the data presented in Figures 8.3, 8.5 and 8.7. The curves connect data points with

constant v−∞. Each data point represents the necessary energy loss to achieve a given

amount of turning during the cruise. The magnitude of the slope of the curve can

be thought of as an energy loss rate, or the rate at which hyperbolic excess velocity

is exchanged for increased turning around the fly-by planet. Recall that gravity

and aero-gravity assists are promising because turning around a fly-by planet using

gravitational forces can increase velocity relative to the Sun. The velocity increase

as a function of turning is approximated by Equation 8.9. As explained previously,

with fixed values of v−∞, ξ, and vPlanet, this equation is maximized for ∆Θ = 180◦.

Unfortunately, as shown in Figures 8.10, 8.12 and 8.14, ξ is itself a function of ∆Θ

as well.

Physically, as the turning angle nears 180◦, the benefit of turning the space-

craft’s velocity vector to be better aligned with the planet’s velocity vector no longer

outweighs the energy loss rate. For this reason, the peaks in Figures 8.9, 8.11 and

8.13 occur slightly earlier than what would be the geometrically predicted max-

imum of 180◦. In terms of heliocentric velocity gain, it is more optimal to exit

the atmosphere earlier than would allow departing the planet in the fully parallel

direction.

Using the assumption of a planar maneuver, used to derive Equation 8.8, an

estimation of the turning angle which maximizes heliocentric velocity increase can

be made. No longer restricting the approach angle ψ to zero, even the theoretical

maximum turning angle would no longer be 180◦, as the angle which would leave
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the vehicle parallel to the planet’s velocity upon departure is instead 180◦-ψ. First,

modify Equation 8.8 with ∆Θ′ = ∆Θ + ψ:

∆|v| =

∣∣∣∣∣∣∣
 v−∞ξsin(∆Θ′)

−v−∞ξcos(∆Θ′) + vPlanet


∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
 v−∞sin(ψ)

−v−∞cos(ψ) + vPlanet


∣∣∣∣∣∣∣ (8.12)

In order to calculate where the peak occurs, take the derivative of ∆|v| with respect

to ∆Θ’ and set it equal to zero:

d(∆|v|)
d(∆Θ′)

=
v−∞
[
vPlanet cos(∆Θ + ψ) dξ

d∆Θ′
+ ξ(v−∞

dξ
d∆Θ′

− vPlanet sin(∆Θ + ψ))
]√

(v−∞)2ξ2 + 2v−∞vMarsξ cos(∆Θ + ψ) + v2
Planet

= 0

(8.13)

or, more simply:

vPlanet cos(∆Θ + ψ)
dξ

d∆Θ′
+ ξ(v−∞

dξ

d∆Θ′
− vPlanet sin(∆Θ + ψ)) = 0 (8.14)

The values shown thus far for ∆Θ, ξ, and ξ’ (calculated numerically from Figures

8.10, 8.12 and 8.14) are independent of the value of ψ, therefore by simply varying

ψ, using the data presented thus far in this section and solving for ∆Θ’ in Equation

8.14, the value of ∆Θ which maximizes ∆v for any approach direction can be found

without needing to simulate any additional trajectories.

Let the term ‘antecedent angle’ be defined as the angle by which the peak

heliocentric velocity increase precedes the parallel direction (see Figure 8.1). For a

given approach angle ψ, the antecendent angle is:

antecedent angle ≡ π −∆Θ′ = π − ψ −∆Θ (8.15)

The antecedent angle for various approach direction and speeds is presented in

Figures 8.15 - 8.17. First, note that the curves are not defined for all approach angles,

as there were not AGA trajectories found for all turning angles. The maximum
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approach angle for which a given curve is defined, corresponds to the minimum

turning angle for which data is available in Figures 8.3, 8.5 and 8.7.

Figure 8.15: Planetary departure angle
away from parallel to Venus’ velocity
vector which maximizes heliocentric ve-
locity gain

Figure 8.16: Planetary departure angle
away from parallel to Earth’s velocity
vector which maximizes heliocentric ve-
locity gain

Figure 8.17: Planetary departure an-
gle away from parallel to Mars’ veloc-
ity vector which maximizes heliocentric
velocity gain

Even though the value of dξ
x∆Θ

is roughly constant (the slope in Figures 8.10,

8.12 and 8.14), the antecedent angle is not at all constant. Again, the physical

explanation for the presence of a non-zero antecedent angle is that the benefit of

increased alignment between the spacecraft departure vector and the planet’s veloc-

ity vector does not always outweigh the rate of hyperbolic excess velocity decay. It

might be expected then, that the antecedent angle would be constant, regardless of
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approach angle. It is not however, and there is a sinusoidal relationship.

The magnitude of the antecedent angle is very much a function of v∞. As the

approach energy decreases, the antecedent angle increases greatly, to as high as 45◦

in some cases. This phenomena occurs because as v∞ decreases, there is less excess

velocity that can be lost for the spacecraft to remain on an escape path. While

increased turning is favorable for heliocentric velocity increase, it is not beneficial if

the spacecraft can barely escape the fly-by planet.

The relatively large magnitude of the antecedent angles for many approach

conditions underscores the need to factor energy loss rate into the detailed design

of an AGA maneuver, as energy loss rate could be optimized over as well.

8.2 Mission Design Process

Adding even a single atmospheric entry to a series of fly-bys necessitates differ-

ent design methods to generate the tour through the solar system as well as design

a spacecraft capable of performing the hypersonic flight. In this section, a process

is presented for designing all preliminary aspects of missions employing aero-gravity

assists and resulting in a high fidelity, flyable trajectory. The overall objective is to

have a trajectory which will take a spacecraft from Earth to some final destination.

This is completed in three separate stages.

8.2.1 Phase Free Design

First, candidate planetary fly-by sequences are determined by considering a

simplified version of the planets’ orbits. Each is assumed to be on a perfectly

circular Keplerian orbit around the Sun with zero inclination and radius equal to

an average value of the planet’s semi-major axis. Given these assumptions, the

planet’s phase around its orbit is not needed to consider departure from or arrivals
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to that planet. For a given hyperbolic excess velocity, v∞, varying the departure

or approach angle from 0◦ to 360◦, yields heliocentric orbits. Note that the orbit

yielded from a departure angle of Φ is identical to those from a departure angle of

360− Φ or approach angles of Φ or 360− Φ.

For each heliocentric orbit, certain parameters can be identified, including

perihelion radius, orbital energy, and orbital period (when the orbit is not parabolic

or hyperbolic). If two planets have individual pairs of departure angle and local

v∞, which yield the same heliocentric orbit, as defined by identical orbital energy

and perihelion, then this orbit is a valid phase-free transfer orbit. As a means

of identifying transfer orbits, Strange and Longuski developed a graphical method

of searching for these routes using so-called Tisserand charts (see Figure 8.18).128

The method was later updated to allow for aero-gravity assists as well as gravity

assists by Johnson and Longuski.78 Each curve on the Tisserand chart represents

the locus of possible heliocentric orbital parameters by varying the departure angle

from 0◦ to 360◦ with a fixed value of v∞ relative to the planet. Therefore, any

intersections represent a heliocentric orbit that would allow transfer between two

different planets. The time of flight can be calculated by solving Kepler’s problem

for the four different combinations of departure and approach angle corresponding

to a given intersection.

By moving along a single curve, from one intersection to another, a gravity

assist is mapped out (see Figure 8.19). In some cases, the intersections along a

single curve necessitate a turn around the planet from approach angle to departure

angle which is too great to be completed in only one gravity assist fly-by. When

considering gravity assist alone, these solutions are thrown out. When allowing for

aero-gravity assists, the solution is considered, but the departure intersection must

be moved to a curve with lower v∞ (see Figure 8.20). The maximum gravity assist
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Figure 8.18: Tisserand chart for the inner planets. Curves shown for v∞ = 1, 3,
5, 7, 9 km/s

Figure 8.19: Tisserand Route for Earth to Jupiter using gravity assist only
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Figure 8.20: Tisserand Route for Earth to Jupiter using aero-gravity assist

only turning angle can be calculated using the following equation:

ΘGA = π − 2 cos−1

(
1

1− rpv2∞
µ

)
(8.16)

where all values are relative to the fly-by planet, not the Sun. A reasonable minimum

allowable rp for the inner planets is 500 km above the surface and 5 times the radius

of the planet for the outer planets.

In the case of an aero-gravity assist, determination of a maximum feasible

turning angle is more complicated. In fact, where the present method of AGA design

departs from previous work is the fidelity of the aero-gravity assist data. Rather

than use an analytic trajectory model assuming a constant lift-to-drag ratio and

ignoring the ascent and descent into the atmosphere, maximum AGA performance

is calculated with hypersonic shape and trajectory optimization. To determine the

turn possible in one AGA pass, and the associated loss in v∞, data generated using
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the method presented in Section 8.1 and shown in Figures 8.3, 8.5 and 8.7 is used.

The color for a given combination of v∞ and turning angle indicates the maximum

possible departure hyperbolic velocity, or the maximum ratio C+
3 /C−3 . Any data

point on or below this surface indicates that the maneuver is possible, simply with

an equally efficient or less efficient atmospheric flight. If the data point is below

the mesh, then additional velocity must be lost to drag as compared to the optimal

solution. In this first stage of design, only maximum performance is assumed. When

lowering the outbound trajectory to a lower v∞ line, a curve is followed equaling

the optimal maneuver data.

It is important to note that the AGA performance data set is trajectory and

aerodynamically constrained, but not aerothermally. Given uncertainties in both

passive and active cooling technology, aerothermal concerns are better left as an

objective, rather than a constraint.

Algorithm 1 explains the process of searching for phase free trajectories. First,

each allowable fly-by planet is iterated over as are the allowable values of excess

velocity, v∞, and approach/departure angles, Φ. At each unique combination, the

orbital period, perihelion radius and orbital energy are determined. These values

are all stored and create the Tisserand chart (see Figure 8.18). Next, iterations

move from the initial departure to the final destination by way of searching for

intersections. The initial condition is the Tisserand curve matching the launch C3

or v∞ from Earth. All Tisserand curves which intersect the initial curve are found

and cataloged. In the case of the initial departure, there is no arrival angle, so

any departure angle is allowable. In subsequent fly-bys, feasibility must be checked

against the maximum turning angle from Equation 8.16. If a given intersection point

would require excessive turning from the previous intersection point for a gravity

assist, then a solution is searched for along the maximum AGA Tisserand curve

instead (see Figure 8.20). The process is repeated iteratively until one of three
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Algorithm 1 Pseudocode of Phase Free Trajectory Design

1: select maximum v∞
2: for planet = allowable fly-by body do
3: for v∞ = 1 : v∞,max do
4: for Φ = 1◦ : 360◦ do

5: v =

 v∞ cos Φ
v∞ sin Φ

0

+

 0
vPlanet

0


6: r =

 rPlanet

0
0


7: ε = v2

2
− µ

r
. Calculate heliocentric energy

8: [a, e] = Cartesian to Keplerian(r, v)

9: T = 2π
√

a3

µ
. Calculate period

10: rp = a(1− e) . Calculate perihelion radius
11: end for
12: end for
13: end for
14: select destination planet
15: time of flight = 0
16: while current planet 6= destination planet do
17: for planet = allowable fly-by body do
18: for v∞ = 1 : v∞,max do
19: look for intersections between Tisserand curves for (departure planet,

departure v∞) and (planet, v∞)
20: if intersection found then
21: if arrival angle + maximum turn < departure angle then

22: cos(ν) = 1
e

(
a(1−e2)

r
− 1
)

. Calculate true anomaly

23: E = e+cos(ν)
1+e cos ν

. Calculate eccentric anomaly
24: M = E − e sin(E) . Calculate mean anomaly
25: time of flight = time of flight + T M

2π

26: update arrival angle
27: departure planet = planet
28: departure v∞ = v∞
29: end if
30: end if
31: end for
32: end for
33: end while
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stopping conditions: a maximum number of GA or AGA fly-bys has occurred, the

total time of flight exceeds a maximum allowable, or until the desired destination

planet is reached.

This phase free method is only an idealized, best case scenario, and real times

of flight will be greater, or non-existent in certain cases. The trajectories found

require all planets to be in an optimal position along their orbits when fly-by would

occur. This is of course unlikely to be the case, but a phase free search is an

important tool in suggesting promising planet sequences before searching for launch

opportunities among the thousands of possible permutations of solar system bodies.

8.2.2 Launch Opportunity Search

With promising paths defined, the phasing of the planets is accounted for to

determine launch opportunities to the planets using real ephemerides. Algorithm 2

and Figures 8.21 - 8.23 overview the steps involved in the process.

The overall launch window is discretized with a node every dt days (see Figure

8.21. The acceptable time of flight range to the first destination is as well, creating a

grid. At each node location, Lambert targeting is used to search for conical solutions

to connect the first and second planetary locations with the associated launch date

and time of flight. Multi-revolution type I and II Lambert solutions are allowed.

Spheres of influence are ignored, and gravity assists and aero-gravity assists are

modeled as instantaneous changes of direction.

For a given conic trajectory connecting the first two planets, the spacecraft

has a fixed arrival C3. In the case of a gravity assist, the following departure C3

must be identical. The Lambert problem must thus be solved in reverse. Conic arcs

between the second and third planets are found iteratively, until a time of flight is

found which requires the proper departure C3. Again, multi-revolution type I and

II Lambert solutions are allowed. If the destination planet of the iterative Lambert
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Figure 8.21: Launch opportunity search grid. A lambert arc from Earth to the first
fly-by planet is searched for at each x.

solver is one of the inner planets (Mars, Earth, Venus, Mercury), then multiple

planet revolution solutions are allowed as well. A similar solution method has been

presented previously, and termed C3 matching.129 This process is repeated for each

fly-by in the sequence until the ultimate destination planet has been reached.

When connecting each Lambert arc, maximum performance of both gravity-

assist and aero-gravity assist is needed to determine feasibility. In the case of gravity

assist, the maximum allowable angular difference between the in-bound and out-

bound Lambert trajectories is again directly calculable using Equation 8.16.

When gravity-assist alone is infeasible, then AGA is considered. Once again,

a solution is deemed viable by comparison with the maximum performance data in

Figures 8.3, 8.5 and 8.7. Unlike in the phase-free design method, however, trajecto-

ries are not designed to require maximum AGA performance unless necessary. As

the time of flight varies in the inverse Lambert solver described above, both the ratio

of departure C3 to approach C3 and angular turn vary. This relationship is plotted

in Figure 8.22 along with data reproduced from Figure 8.3. The trajectory solution

chosen is the one which corresponds to the easiest aero-gravity assist, as defined by
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Figure 8.22: Aero-gravity assist selection criteria, the ’easiest AGA’ method. Solu-
tion chosen which maximizes the difference between requirement and capability

Figure 8.23: At each launch opportunity, sequentially search for gravity assist and
aero-gravity assist options.

199



Algorithm 2 Pseudocode of Iterative Lambert Search

1: select maximum launch energy, C3,max

2: select earliest and latest allowable launch dates, Date0 and DateF

3: select interval between launch searches, dt1
4: select minimum and maximum time of flight to first fly-by, TOF0 and TOFF

5: select interval between time of flight, dt2
6: time to destination = 0
7: for launch date = Date0:dt1:DateF do
8: for TOF = TOF0:dt2:TOFF do
9: [rDep, vDep] = EphemerisData(Earth, launch date)

10: [rArr, vArr] = EphemerisData(Fly-by Planet 1, launch date + TOF)
11: [vTrans,Dep, vTrans,Arr] = Lambert(launch date, TOF, rDep, rArr)
12: C3,Dep = [vTrans,Dep − vDep]·[vTrans,Dep − vDep]
13: C3,Arr = [vTrans,Arr − vArr]·[vTrans,Arr − vArr]
14: if C3,Dep < C3,max then
15: [rDep, vDep] = [rArr, vArr]
16: dep. date = launch date + TOF
17: C3,Dep = C3,Arr

18: for planet = [Fly-By Planet 2,...,Destination Planet] do
19: [vTrans,Dep, rArr, vArr,TOFnew] =

C3Matching(C3,Dep, dep. date, EphemerisData, rDep)

20: Θ = cos−1
(

[vTrans,Arr−vDep]·[vTrans,Dep−vDep]

C3,Arr

)
21: if Θ < Θmax then
22: [vTrans,Dep, vTrans,Arr] = Lambert(dep. date, TOFnew, rDep, rArr)
23: C3,Arr = [vTrans,Arr − vArr]·[vTrans,Arr − vArr]
24: C3,Dep = C3,Arr

25: [rDep, vDep] = [rArr, vArr]
26: dep. date = dep. date + TOFnew

27: else
28: [vTrans,Dep, rArr, vArr,TOFnew,C3,Dep] =

AGA Search(C3,Arr, dep. date, EphemerisData, rDep)
29: [vTrans,Dep, vTrans,Arr] = Lambert(dep. date, TOFnew, rDep, rArr)
30: C3,Arr = [vTrans,Arr − vArr]·[vTrans,Arr − vArr]
31: [rDep, vDep] = [rArr, vArr]
32: dep. date = dep. date + TOFnew

33: end if
34: end for
35: end if
36: end for
37: end for
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the greatest magnitude between the two curves. Any point below the blue curve in

Figure 8.22 is theoretically possible, but the further from this upper limit, the easier

the aerodynamic design requirements on the AGA aero-shell as additional energy

can be lost to drag. Note that the upper corners of the figure, where C+
3 /C−3 equals

1, are the trajectory options selected for gravity assist alone, if the turning required

was feasible without entering the atmosphere.

The final product of the launch opportunity search is a pork chop like plot,

showing Earth departure C3 values for all launch opportunities.

8.2.3 Optimization

The last stage of the AGA design process is to solve for real trajectories, by

numerically propagating the entire flight from launch to arrival. This eliminates the

minor inaccuracies associated with assuming entirely heliocentric Keplerian orbits.

Further, a full trajectory propagation allows the atmospheric portion of any aero-

gravity assists to be optimized.

An n-body simulation was created, accounting for the gravitational accelera-

tion of every solar system body at each time step. Further, if or when the spacecraft

entered a planetary atmosphere during the simulation propagation, then the mul-

titude of hypersonic flight models described in previous chapters were invoked. A

promising launch opportunity from the sequential Lambert solver is used as the

starting guess for launch date and direction. The date, direction and energy of any

impulsive maneuvers are the only trajectory inputs. The atmospheric flight models

require a number of additional design parameters however, including those to define

the aero-shell shape and the flight control law.

When performing interplanetary trajectory optimization, there are a number

of objectives which could be maximized or minimized. These include time of flight,

mass delivered, launch energy, or Sun-Earth angles. When including an atmospheric
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fly-by, all of these objectives remain, but there are numerous additional potential

objectives regarding the atmospheric trajectory alone, such as minimum heat load

during AGA, maximum aero-shell volume, or minimum structural load.

8.3 Case Study of an Interstellar Probe

The end to end method of AGA interplanetary mission design is demonstrated

by applying it to the construction of an interstellar probe trajectory. Each of the

three stages were conducted and the results will be presented and discussed in the

following sections. For comparison, the results will be evaluated in contrast to the

baseline trajectories of previous studies of interstellar probes including those in Refs.

98 and 103.

8.3.1 Design Space

The design constants presented in Table 8.2 have great bearing on the over-

all results. The launch window was selected to provide a wide data set, without

requiring infeasible calculation time. A similar criteria dictated the grid interval.

An 8 day search algorithm is fine enough that it will be unlikely to altogether miss

any launch opportunities, while being coarse enough to limit the computation time

required. Admittedly, a finer grid would generate Lambert results which were closer

to optimal.

Table 8.2: Case Study Parameters
Earliest Launch Date 01-Jan-2018
Latest Launch Date 31-Dec-2040
Grid search interval 8 days

Launch energy 154 km2/s2

Spacecraft Mass 1000 kg
Max v∞ for AGA 40 km/s

Max AGA manuevers 2
Destination 200 AU
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The allowable launch energy was selected for two important reasons: 1) along

with the selected spacecraft mass, this is the expected capability of NASA’s devel-

oping Space Launch System (SLS)130 and 2) this was the maximum allowable C3

in the solar sail to 200 AU trajectory study conducted in Ref. 103. This is an

extremely high launch energy, but is likely necessary in order to limit flight time

when attempting to escape the solar system!

The maximum allowable approach hyperbolic velocity was limited to 40 km/s.

As the approach energy increases, the heat rate and heat load increase exponen-

tially.131 Even forecasting technology advancements, an atmospheric entry corre-

sponding to v∞ > 40 km/s is far-fetched. Minimizing the required entry speed is a

promising objective that could be used in n-body optimization.

While there is good intuition to suggest that using only one AGA in a given

trajectory is advisable, given the difficulty of the maneuver, a maximum of 2 per

trajectory will be allowed in order to compare the results. Similarly, from an oper-

ational and human safety standpoint, it is unlikely that an aero-gravity assist will

be performed at Earth. Again for completeness and comparison’s sake, Earth will

be fully included, along with more promising AGA bodies, Venus and Mars.

Finally, the destination is listed as simply 200 AU. At this stage of design,

no attention was paid to the azimuth or declination of the departure vector to

interstellar space. There are possibly certain scientific benefits for exiting the solar

system in a particular direction, however the scientific community does not appear

to currently have a consensus on what those directions might be. For this trajectory

study, therefore, the departure angle will not be constrained.

8.3.2 Phase-Free Results

Thousands of different planet sequences were isolated and analyzed. As a

means of observing the phase free results, see Figure 8.24. Each overlapped shaded
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Figure 8.24: Relative phase free time of flight to interstellar space using AGA at
different planets

region represents the area over which phase-free trajectories were found. The

straightforward relationship between final heliocentric energy and the total time

of flight is as expected. More importantly though, the data are presented in this

way in order to demonstrate the relative size and shapes of each colored area. Imme-

diately, the benefit of using aero-gravity assist is seen. Not only does the minimum

time of flight decrease, but the range of trajectory options increases as well. For

a given final energy, the diversity of routes increases for one AGA maneuver over

gravity assist alone, or two AGA manuevers instead of just one.

The relative utility of a single aero-gravity assist maneuver around each of the

inner planets carries information about the difficulties of the interstellar trajectory

problem, the dissimilarities in the planets’ physical characteristics, as well as design

constraints. As seen in Figures 8.3, 8.7 and 8.7, Venus can sustain the most efficient

AGA performance, followed by Earth and then Mars. This does not translate to

fast interstellar trajectories, however. To understand, consider the trajectory routes

presented in Table 8.3. This table does not contain exhaustive phase-free routes, but

note that all AGA trajectories involve an atmospheric fly-by, sandwiched between

two outer planet gravity assists. This would likely only be optimal in the case of

an extremely long trajectory, such as one to 200 Astronomical Units away from the
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Sun. The outer planet to AGA to outer planet flight sequence immediately favors

Earth over Venus and Mars over both.

Although greater turning is possible with aero-gravity assist, the capability is

not unlimited, and predicted waverider performance is often insufficient to complete

a turn from Jupiter to Venus back to Jupiter, for example. A related issue is the

relative velocities of the planets. Because the velocity of Venus is greater than Earth,

relative velocity with an inbound spacecraft is more likely to surpass the 40 km/s

limit. Further, as Venus is closer to the Sun, the spacecraft will be closer to its

maximum, periapse velocity. These two factors explain why Venus does not have

as rapid of a phase free trajectory option. If v∞ had been allowed to go higher,

more Venusian routes would be expected. The same comparisons apply to Earth

as opposed to Mars, however, in this case, Earth’s superior AGA capacity balances

out its orbital limitations. The ideal phase free time of flight is nearly identical with

Mars.

Due to the curvature of the relationship between heliocentric energy and time

of flight, performing a second aero-gravity assist has less of a benefit than adding the

first. As mentioned above, performing two AGA maneuvers in the same trajectory

has many practical drawbacks, and now it is seen that there are limited benefits as

well. At least in the case of an interstellar mission, phase free methodology suggests

that one Earth or Mars AGA is as good as performing two (any combination of

Venus, Earth and Mars was allowed).

Recall that the phase free method can be considered an ideal, best possible

case. It is therefore not expected that with any combination of GA or AGA maneu-

vers that a trajectory will be found to 200 AU in less than 20 years. In one of the

original proposals of a dedicated interstellar probe, Etchegaray99 determined that a

direct trajectory to 1000 AU could be completed in 50 years with nuclear powered

electric propulsion. A rough calculation suggests that this corresponds to arriving
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at 200 AU in under 15 years. There is no reason that the two methods could not be

combined for an even greater boost, but on the basis of individual merits, nuclear

electric rockets appear to hold more promise.

8.3.3 Launch Opportunities

With a substantial set of routes suggested, the iterative grid search algorithm

along with ephemeris data from JPL’s HORIZONS system examined real world

feasibility. 75 different planet sequencings from Earth to 200 AU were tested. Table

8.3 lists the routes which had sub-60 year trajectories along with details of their

fastest trajectory.

While the first stage of design was instrumental in proposing the 75 routes

searched, the trends vary sharply from the predictions of Figure 8.24. First, the

two best routes found were not for a two AGA trajectory, or even an Earth AGA,

but for single Mars aero-gravity assists. The explanation for the lack of Earth and

Venus trajectories is again the limit on maximum approach v∞. Had this constraint

been lifted, many more trajectories would likely be found. This helps to explain

the dearth of low time of flight routes with two AGA maneuvers as well. Even

though the AGA maneuver dissipates energy relative to the local planet, it picks up

heliocentric energy during the manuever (as was shown in Figure 8.20). This means

that subsequent fly-bys will likely be more energetic, and there is a greater chance

that a subsequent AGA would need v−∞ > 40 km/s.

The lack of 2-AGA routes less than 40 years is also likely due to the increasing

need for planets to be aligned in the correct location. With each additional planet

added to the route, one more planet must be in a feasible location. AGA widens the

range of acceptable phasing as compared to gravity assist alone, but it does become

harder with each additional constraint.

While Table 8.3 shows the best version of each selected route, Figures 8.25 -
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Table 8.3: Fastest potential AGA trajectories to interstellar space @ 200 AU
Time of Flight Launch Arrival

Route Phase Free, Lambert, Date C3, Velocity, Date
years years km2/s2 AU/year

No AGA
EVVEJS 30.36 56.46 12-Sep-2029 90.07 4.19 28-Feb-2086
EJVVEJ 36.92 56.55 16-Jul-2034 152.54 4.22 01-Feb-2091
EVVEJN 33.23 58.10 27-Jul-2038 141.21 4.19 01-Sep-2096
EVVEJU 32.74 59.09 06-Jun-2034 78.79 4.58 09-Jul-2093

Venus AGA
EJEVAGAN 25.85 43.96 11-Oct-2025 125.79 5.58 26-Sep-2069
EJEVAGAJ 24.38 44.76 16-Nov-2038 130.88 5.49 21-Aug-2083
EJVAGAJ 25.31 45.32 21-Apr-2032 125.63 4.74 18-Aug-2077
EJEVAGAU 25.76 45.38 14-Dec-2028 92.23 5.30 01-May-2074
ESJVAGAJ 28.33 46.27 19-Aug-2032 151.37 4.98 28-Nov-2078
EJVAGAJP 25.60 52.60 15-Oct-2038 143.60 5.00 29-Dec-2082

Earth AGA
EJEAGAJ 26.83 49.99 20-Oct-2037 136.97 4.33 17-Oct-2087
ESJEAGAJ 28.47 52.41 12-Oct-2034 142.16 4.39 10-Mar-2087
EJSEAGAJ 31.45 52.51 18-Sep-2037 148.35 5.83 26-Mar-2090
EJEAGAJS 25.49 56.89 08-Jun-2023 149.79 4.75 29-Apr-2080
EJEAGAJU 26.41 58.42 04-Aug-2035 122.48 4.57 03-Jan-2094
EJEAGAJP 27.05 59.62 20-Oct-2037 137.63 3.55 03-Jun-2097

Mars AGA
EJMAGAJ 28.43 35.02 25-Jan-2018 129.36 6.87 02-Feb-2053
EJMAGAN 30.79 36.63 30-Dec-2028 128.46 6.26 16-Aug-2065
EJMAGAJN 27.97 43.31 13-Dec-2039 140.41 5.58 06-Apr-2083
EJMAGAJP 29.25 44.27 04-Oct-2037 142.79 5.18 10-Jan-2082
ESJMAGAJ 30.23 47.11 14-Mar-2018 141.97 7.15 24-Apr-2065
ESJMAGAJS 28.78 53.33 02-Dec-2038 139.98 5.99 01-Apr-2092
EJMAGAJU 27.83 54.55 07-Oct-2038 139.72 4.74 24-Apr-2093
EJMAGAJS 27.40 58.05 07-Jul-2022 152.11 4.74 26-Jul-2080

2 AGA
EJVAGAEAGAJ 25.37 43.15 05-Dec-2039 98.54 5.76 30-Jan-2083
EJEAGAVAGAN 26.98 43.96 11-Oct-2025 125.79 5.58 26-Sep-2069
EJMAGAEAGAJ 26.64 44.34 24-Nov-2038 152.47 5.56 30-Mar-2083
EJEAGAVAGAJ 25.86 44.76 16-Nov-2038 130.88 5.49 21-Aug-2083
EJEAGAMAGAJ 24.85 44.87 04-Apr-2020 101.11 5.43 17-Feb-2065
EJVAGAMAGAJ 24.78 44.96 11-Feb-2030 123.26 5.31 29-Jan-2075
EJEAGAVAGAU 28.05 45.38 14-Dec-2028 92.23 5.30 01-May-2074
EJEAGAVAGAS 26.66 46.56 18-Sep-2037 107.84 4.92 10-Apr-2084
EJMAGAVAGAJ 24.23 49.35 24-Nov-2038 153.18 4.37 01-Apr-2088
EJMEAGAVAGAU 28.06 51.27 03-Feb-2030 97.88 4.89 11-May-2081
EJMAGAEAGAN 25.66 54.07 24-Nov-2038 152.47 4.57 19-Dec-2092
EJMAGAVAGAS 25.14 56.31 26-Sep-2037 94.55 3.92 19-Jan-2094
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Figure 8.25: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Jupiter GA, 200 AU route

Figure 8.26: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Neptune GA, 200 AU route
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Figure 8.27: Launch opportunities and required energy for Earth, Jupiter GA, Venus
AGA, Earth AGA, Jupiter GA, 200 AU route

Figure 8.28: Launch opportunities and required energy for Earth, Venus GA, Venus
GA, Earth GA, Jupiter GA, Saturn GA, 200 AU route
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8.28 show the launch opportunities of the entire 22 year span for 4 promising routes.

Appendix B shows the launch opportunities for all other routes with sub-60 year

trajectories.

Figure 8.25 depicts the full launch energy plot for an E-J-MAGA-J-interstellar

trajectory. There are groups of trajectories found which repeat roughly every 12 or

13 months, so a mission could be carried out just about any year with only a slight

penalty in overall time of flight or launch energy. This route is the most promising

found in this case study. This route will be examined in more detail in the next

Section.

Figure 8.26 also shows a route using a single Martian aero-gravity assist, but

the phasing required is much less common, therefore only providing fast trajectories

to interstellar space every 12 years. There is no discernible benefit in launch energy

to this trajectory either, however it would allow a fly-by of seldom visited Neptune.

While a route faster than 40 years to 200 AU was not found using two AGAs,

there are still benefits to using multiple in one mission, however. The increased en-

ergy gained from the additional AGA fly-by, reduces the launch energy requirements

considerably (see Figure 8.27). Once again, there are launch windows every 12 to

13 months corresponding to the ability to rendezvous with Jupiter for the first leg

of the journey.

Finally, a gravity assist only trajectory plot is presented in Figure 8.28. The

initial planet in the sequence is Venus rather than Jupiter, so considerably less

launch energy is required. There are consistent launch opportunities except for a

gap in the early 2030s, however, the times of flight are very long. For reference on

gravity assist only trajectories, the Voyager spacecraft recently escaped the solar

system and will reach 200 AU roughly 54 years after launch. This 54 years includes

an extremely fortuitous fly-by of both Jupiter and Saturn. Such phasing was not

found in the 22 year window over which this case study comprises.
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8.3.4 N-Body Optimization Design Criteria

The final stage of the case study is to perform an optimization of the trajectory

in order to find a flyable route. An optimization of the Earth-Jupiter-Mars AGA-

Jupiter-200 AU trajectory is performed.

In this stage of design, reaching 200 AU was used as a constraint, along with

a minimum close approach of 10 planet radii for each fly-by body (Jupiter twice, in

this case) and a close approach of the AGA fly-by body such that the atmosphere

was entered. The second and third of these constraints may seem redundant, as

the spacecraft wouldn’t reach 200 AU without the fly-bys. However, in practice,

these constraints proved necessary for guiding the numerical algorithm towards the

feasible solution space.

Two competing and one independent objective functions were used to select

trajectories: minimizing the surface integrated heating on the vehicle, maximizing

volumetric efficiency and reducing the overall time of flight. Maximizing volume

is seldom an effective objective when designing hypersonic vehicles, as it results in

very long or very wide and very skinny designs. While the volume is large, much

of it is in such slender regions of the vehicle that it is not particularly usable, and

the increased surface area has a detrimental impact on aerodynamics. Instead,

volumetric efficiency is used as a metric for usable volume (see Equation 6.5).

The optimization of an atmospheric flight vehicle and its flight trajectory are

unavoidably complex. In order to increase the likelihood of finding optimal and

feasible trajectories when co-optimized, the interplanetary propagation was kept

relatively simple without any deep space maneuvers. The independent variables

were:

• 10 osculating cone waverider geometry variables (see Section 3.4)

• 5 control system variables (see Section 5.2.2)
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• 3 launch parameters (date, energy, direction)

In order to propagate the n-body simulation and select an optimal solution,

a genetic algorithm was used. This allowed for a wider set of data for post-

optimization analysis, however a gradient based method was briefly tested and

seemed effective as well. This also allowed seeding the initial population with each

of the local minima in Figure 8.25. For reference, the trajectory corresponding to

the overall minima in Figure 8.25 is plotted in Figure 8.29. Note that at point 2 in

the mission sequence, the spacecraft makes a turn to a highly elliptical orbit with

an inclination of almost 90◦, hence the appearance of a straight orbit line emanating

away from the Sun at that point.

8.3.5 N-Body Optimization Results.

The best overall trajectory found during the genetic algorithm is presented in

Figure 8.30. While it may look similar to the patched conic plot in Figure 8.29, the

black curve was generated by a numerical propagation of a hypersonic waverider

from Earth through the fly-by sequence and to 200 AU. A route was found that was

two and a half years faster than the Lambert solution, at the price of launch energy

much closer to the maximum allowable of 154 km2/s2. The spacecraft first launches

to Jupiter and completes a turn backwards to enter a retrograde orbit. It slowly

moves out to aphelion beyond Jupiter’s orbit before swinging back in to complete

the aero-gravity assist around Mars. After a 71.6◦ turn through the atmosphere, it

passes through perihelion a few degrees below the ecliptic. It must enter an inclined

orbit following the aero-gravity assist in order to allow Jupiter sufficient time to reach

the final fly-by location. Following the second Jupiter gravity assist, the spacecraft

turns as close to parallel to Jupiter’s velocity as possible. The remaining coast to

interstellar space constitutes the bulk of the time of the flight, requiring 27.5 of the

32.45 years.
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Figure 8.29: 35.02 year route to 200 AU via J-MAGA-J based on sequential Lambert
arcs

The selection of a waverider geometry involves balancing aerodynamic perfor-

mance, vehicle size and aerothermal load. These three objectives often compete,

as they did in this case study. The aerodynamic performance was only indirectly

represented by the constraint of meeting the trajectory requirements, but the other

two were directly used as objective functions. As the vehicle shape becomes larger,
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Figure 8.30: 32.45 year route to 200 AU via J-MAGA-J based on n-body simulation

and its volume increases relative to its surface area, it becomes less slender. This

does not affect the stagnation heating rate, but it is negatively correlated with the

integrated heat load over the entire surface (see Figure 8.31). As the vehicle volume

increases, its frontal area increases. This strengthens the forebody shocks emanating

from the leading edges. The pressure and temperature rise behind the leading shock
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Figure 8.31: Pareto curve between competing objectives, minimizing the heat load
and maximizing the volumetric efficiency

becomes greater. Limiting the stagnation point heating is accomplished trivially by

increasing the leading edge radius, but this does not necessarily benefit the heating

over the rest of the surface area.

Any multidisciplinary design requires optimizing competing objectives such

as those shown in the pareto curve of Figure 8.31. As the vehicle becomes more

slender, it would be harder and harder to package the spacecraft inside of the aero-

shell. The converse is not viable either, however, as excessive heating will likely

overwhelm even the most capable thermal protection system. For this study, the

L2-norm optimum was chosen as the simplest trade-off. This equally weights the

value of each objective.

More detail on the 160 second atmospheric portion of the optimal trajectory

is shown in Figure 8.32 and the L2-norm optimal waverider is shown in Figure

8.33. The top chart shows the altitude profile from entry to exit, while the second

shows both the velocity relative to Mars and the Mach number. The optimization
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Figure 8.32: Time profiles during the atmospheric
pass

Figure 8.33: Optimal Wa-
verider

routine selected a cruise at 26 km above the surface. The vehicle does not settle

directly in at the cruise altitude, however. It has damped oscillations about the

target altitude. This is because the final waverider had too slim of a drag profile,

so in order to dissipate enough energy to reach the correct exit conditions (vexit =

28.04 km/s), it needed to linger in the atmosphere for longer. The control system

used is a simple feedback controller responding to the vertical velocity and the

altitude of cruise. Unsurprisingly then, gains and exponents could be selected which

result in oscillatory behavior as seen. There may be a more optimal vehicle with

a slightly blunter forebody, resulting in slightly higher drag that would not require

the oscillations. This would likely increase the integrated heat load though.

The extreme aerothermal environment is shown in the third time profile plot.

In order to exit the atmosphere in the correct location, the vehicle needed to bank

over and then pitch in order to turn. This is done at roughly constant altitude, so

it is only visible in the heating chart, as the heat rate and load increase with angle-

of-attack. For reference, the space shuttle had a peak heating of 113 W/cm2 during
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reentry.110 This trajectory has a peak heating rate of 48,000 W/cm2. While aero-

gravity assist maneuvers will always require extreme flight speeds, due to the high

launch energy and hyperbolic velocities resulting from preceding gas giant gravity

assists, the atmospheric fly-bys associated with interstellar trajectories are particu-

larly intense. In this case, the vehicle enters the Martian atmosphere traveling 45

km/s, cruises at over M = 140, and travels about 5600 km, or a little further than

New York to London, in under three minutes.
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Chapter 9

Conclusions

This chapter will discuss the many results found throughout this work and

summarize the most important aspects of the findings.

9.1 Discussion

A series of investigations were conducted in order to analyze and improve

many aspects of aero-assisted spacecraft missions. This includes the physical shape

of the vehicle performing the maneuver, the trajectory flown, and the optimization

schemes used to maximize both for certain design metrics.

One promising configuration of vehicle for performing aero-assisted missions

is the asymmetric starbody waverider. A means of producing these shapes was

described in detail. Using a limited set of parameters, these vehicle shapes can be

generated for specific flight conditions. Three of these parameters are dedicated to

increasing or decreasing the relative asymmetry of a given vehicle configuration. In

Chapter 6, a specific flight condition was chosen and the design space was thoroughly

examined. Each asymmetry parameter was found to have a different effect on the

aerodynamic and stability performance of the waverider. Introducing an effective

angle of attack to the vehicle gave dramatically improved static margin.

Next, a study was conducted numerically to analyze the tradeoffs between
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various performance metrics of asymmetric starbody waveriders and osculating cone

waveriders. It was found that small amounts of leading edge bluntness immediately

have a strongly adverse effect on the lift-to-drag ratio. Volumetric efficiency is also

unfavorably related to aerodynamic performance, as the highest-lifting waveriders

are capable of holding the least payload. While the maximum heat load experienced

by the waverider is inversely related to L/D, it was shown that the surface integrated

heat rate is positively correlated with aerodynamic performance. Further, the flight

conditions played a more crucial role in varying the aerothermal environment than

did the waverider geometry. Trajectory design and optimization can limit the heat-

ing on a vehicle more effectively than slight variation in bluntness. The primary

benefit of starbody waveriders for aero-assist missions is demonstrated by their im-

proved stability characteristics. While few osculating cone waveriders were found

to be statically stable in yaw, none were found to be statically stable in roll. Many

starbody waveriders, on the other hand, were found to be naturally statically stable

in the lateral directions. The next stage of design, including a reasonable set of

control algorithms and control devices and a full dynamic analysis, will be needed

to determine whether the improved stability behavior is sufficient to overcome the

10% reduction in L/D for starbody waveriders.

An optimization was executed to determine ideal parameters to design a star-

body waverider which uses aerodynamics to decelerate from hyperbolic planetary

approach velocity into a captured and highly inclined orbit. It was found that

increasing the plane change of the combined maneuver to nearly a polar orbit is

possible, however this has adverse effects on other important metrics such as heat

rate. Any subsequent work in designing such a vehicle will need to consider expected

structural and thermal limitations, as well as launch vehicle size and required pay-

load volume in order to determine the maximum inclination possible given these

other constraints. The overall entry corridors for such high-lift vehicles are quite
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large and add significant flexibility to the mission design. While there appears to

be an ideal set of entry conditions, the gradients of achievable plane change are

relatively low near these peaks. While other trajectory design choices could be used

to limit the needed propellant for a plane change maneuver when arriving at a desti-

nation planet, few would come close to offering similar benefits to the aero-assisted

mission. The ∆v savings by performing inclination change aerodynamically are

immense, as high as 4.5 km/s in some cases.

When including aero-gravity assists into an interplanetary trajectory, an up-

per limit on performance is required in the form of minimum energy loss for a given

turning angle around the planet. A study was first conducted using a combined

stochastic and gradient based optimization method to quantify the relationship for

Mars, Earth and Venus. The maneuvers were directly simulated, using the engineer-

ing level modeling techniques described. The maximum turning angle and velocity

increment was identified for the entire breadth of usable approach velocities and

energy dissipations. In addition to this performance database, much was learned

about the maneuver itself. It was demonstrated that all phases of the trajectory

are important to the final results, as at least 10%, and likely more of the analytical

performance is lost due to the ascent and descent flight segments when the waverider

is “off design” and the cruise control system not maintaining flight near maximum

L/D. Further, it was demonstrated that for any energy depletion rate, there will be

an optimal antecedent angle, less than the parallel direction, which maximizes the

heliocentric velocity increment. This was not necessarily expected, but is reason-

able as planetary alignment requires energy loss, and in certain cases the energy loss

outweighs increased alignment.

Finally, an end-to-end methodology for designing interplanetary trajectories

using aero-gravity assists was presented. The proposed approach uses three separate

steps which directly feed into each other. The final product is a flyable trajectory
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from Earth to the final destination, and a thorough dataset of alternate routes,

launch opportunities and aeroshell designs. The first stage of design ignores the

phasing of the planets in order to quickly parse the thousands of possible permu-

tations of planet sequences. By making only a few simplifying assumptions, strong

insight is gained into the problem under consideration. Also, the times of flight

calculated are usable as a theoretical limit for the fastest possible transfer under

the given study conditions (launch energy, maximum AGA entry speed, etc). The

second stage of design ‘brute forces’ a trajectory by iterating over the entire launch

window and acceptable times of flight (to the first planet). A simplifying assumption

is made to model a gravity assist or aero-gravity assist as an instantaneous change

in velocity direction (and magnitude for AGA). An iterative Lambert solver was

described which works backwards to find acceptable times of flight which generate

departure C3 values that match the incoming hyperbolic orbit. A novel method was

introduced to determine whether an AGA is possible to connect Lambert arcs and if

so, what outbound lambert arc to select. The scheme was given the name the ‘easi-

est AGA’ method, as it attempts to find the AGA trajectory with the most margin

for error in waverider performance. The third and final stage of the preliminary

design process involved optimizing the overall interplanetary trajectory in one sin-

gle orbit propagation from Earth to the final destination, including the atmospheric

AGA flight. This allows co-optimizing the interplanetary trajectory, the aeroshell

configuration and the hypersonic flight profile.

The AGA design method was demonstrated with an examination of a trajec-

tory search for routes to a radial distance of 200 AU from the Sun. It was shown

that even from a phase free standpoint, there is little benefit to using a second

AGA maneuver in a single spacecraft trajectory. It was determined that if the at-

mospheric entry speed is going to be constrained, then for a heliocentric escape

mission, AGA around Venus is likely ineffective. Two promising routes to inter-
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stellar space were found with varying levels of launch availability when considering

solar system ephemerides. When the overall time of flight is as long as an inter-

stellar route, performing initial gravity assist maneuvers around the outer planets

is actually beneficial. The fastest route using AGA to 200 AU demonstrated this,

as trajectories as short as 35 years were found using sequential Lambert targeting

to design a trajectory from Earth to Jupiter to Mars (AGA) to Jupiter to interstel-

lar space. This would be a savings of 21 years over the fastest gravity assist only

trajectory! When this trajectory was considered in detail and optimized using an

n-body simulator including full atmospheric flight, the time of flight was lowered by

two and a half years.

Unfortunately, the AGA performance required to make a relatively high speed

trajectory such as an interstellar one, in terms of aero-thermal load, is somewhat

pessimistic. While further thermal protection technology advancements will likely

be required before the realization of aero-gravity assist in practice, the maneuver

holds great promise to increase access to far away regions of space, both in and

out of our solar system. Optimization methodology is a useful tool for providing

a reasonable estimate of the limitations and capabilities of waverider performance

for aero-assisted missions. Studies such as these continue to demonstrate that hy-

personic waveriders are an encouraging means of flying higher and faster in the

atmosphere of planetary bodies. Further and increasingly detailed numerical inves-

tigations into AGA and other aero-assist trajectories serve as a consistent reminder

that innovative thinking can be used to solve even the most challenging problems

presented by deep space exploration.

9.2 Summary of Contributions

In summary, the following contributions have been made to the state of the

art:
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• An entirely new method of generating asymmetric starbody waveriders was

described. These novel shapes greatly extend the waverider design space. Ve-

hicles can be designed which produce substantial lifting force, even at zero

angle-of-attack. Using three discrete inputs, hypersonic waverider forms were

presented which have greatly varied aerodynamic behavior and physical di-

mensions of length, width, volume and volumetric efficiency.

• Asymmetric starbody waveriders were compared to the better understood os-

culating cone family of waveriders. It was shown that starbody waveriders

have significantly improved stability behavior, with only limited lift-to-drag

penalty and similar aero-heating performance.

• This work presented the first study of a combined aero-capture and orbital

plane change maneuver, in the form of a trajectory and vehicle shape opti-

mization. The maximum expected delta-v savings were presented along with

the waverider forms capable of completing the maneuver. A thorough trajec-

tory analysis was also included describing the likely structural and dynamic

pressure requirements. Up to 4.5 km/s of delta-v could be saved by captur-

ing and changing orbit inclination using a planetary atmosphere rather than

chemical rocket burns.

• By comparing aero-gravity assist simulations with analytical performance, the

necessity of including ascent and descent performance and improving control

systems was shown as a 10% to 40% loss from analytical predictions.

• A parameter termed the ’antecedent angle’ was introduced with a descrip-

tion and explanation of why departing an aero-gravity assist in the parallel

direction is not optimal for maximizing heliocentric velocity.

• This work was the first to describe and implement a method using aero-gravity
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assist simulation data in conceptual and preliminary trajectory design of in-

terplanetary missions.

• When performing an aero-gravity assist, it was explained why there are a near

infinite number of outgoing trajectory solutions as compared to only one for

a gravity assist. The “easiest aero-gravity assist” method was introduced and

described as a promising means of choosing amongst the trajectory options.

• An atmospheric simulation and interplanetary trajectory propagation was

combined inside the loop of a high fidelity interplanetary trajectory optimiza-

tion. This created the first end-to-end trajectory design optimization in which

the trajectory is numerically propagated from launch to its destination, in-

cluding an atmospheric pass.

• This work examined the benefit of using an aero-gravity assist maneuver for

an interstellar probe. It was shown that a time savings of over 21 years can

be achieved with just one aero-gravity assist included amongst a series of

planetary fly-bys.
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Appendix A

Asymmetric Starbody Waveriders

Figure A.1: Range of vehicle lengths for
a 3-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.2: Range of vehicle lengths for
a 3-tined starbody with α0 = 0. M =
18, h = 20 km, in the Martian atmo-
sphere.

Figure A.3: Range of vehicle lengths for
a 3-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure A.4: Range of vehicle lengths for
a 4-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.5: Range of vehicle lengths for
a 4-tined starbody with α0 = 0. M =
18, h = 20 km, in the Martian atmo-
sphere.

Figure A.6: Range of vehicle lengths for
a 4-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure A.7: Range of vehicle lengths for
a 5-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.8: Range of vehicle lengths for
a 5-tined starbody with α0 = 0. M =
18, h = 20 km, in the Martian atmo-
sphere.

Figure A.9: Range of vehicle lengths for
a 5-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure A.10: Range of vehicle lengths
for a 6-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.11: Range of vehicle lengths
for a 6-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.12: Range of vehicle lengths
for a 6-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure A.13: Range of vehicle volume
for a 3-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.14: Range of vehicle volume
for a 3-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.15: Range of vehicle volume
for a 3-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure A.16: Range of vehicle volume
for a 4-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.17: Range of vehicle volume
for a 4-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.18: Range of vehicle volume
for a 4-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure A.19: Range of vehicle volume
for a 5-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.20: Range of vehicle volume
for a 5-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.21: Range of vehicle volume
for a 5-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure A.22: Range of vehicle volume
for a 6-tined starbody with α0 = 0.62.
M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.23: Range of vehicle volume
for a 6-tined starbody with α0 = 0. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.24: Range of vehicle volume
for a 6-tined starbody with α0 = -0.62.
M = 18, h = 20 km, in the Martian
atmosphere.
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Figure A.25: Range of surface area for
a 3-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.26: Range of surface area for a
3-tined starbody with α0 = 0. M = 18,
h = 20 km, in the Martian atmosphere.

Figure A.27: Range of surface area for
a 3-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure A.28: Range of surface area for
a 4-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.29: Range of surface area for a
4-tined starbody with α0 = 0. M = 18,
h = 20 km, in the Martian atmosphere.

Figure A.30: Range of surface area for
a 4-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure A.31: Range of surface area for
a 5-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.32: Range of surface area for a
5-tined starbody with α0 = 0. M = 18,
h = 20 km, in the Martian atmosphere.

Figure A.33: Range of surface area for
a 5-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure A.34: Range of surface area for
a 6-tined starbody with α0 = 0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.

Figure A.35: Range of surface area for a
6-tined starbody with α0 = 0. M = 18,
h = 20 km, in the Martian atmosphere.

Figure A.36: Range of surface area for
a 6-tined starbody with α0 = -0.62. M
= 18, h = 20 km, in the Martian atmo-
sphere.
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Figure A.37: Range of volumetric effi-
ciency for a 3-tined starbody with α0

= 0.62. M = 18, h = 20 km, in the
Martian atmosphere.

Figure A.38: Range of volumetric effi-
ciency for a 3-tined starbody with α0 =
0. M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.39: Range of volumetric effi-
ciency for a 3-tined starbody with α0

= -0.62. M = 18, h = 20 km, in the
Martian atmosphere.
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Figure A.40: Range of volumetric effi-
ciency for a 4-tined starbody with α0

= 0.62. M = 18, h = 20 km, in the
Martian atmosphere.

Figure A.41: Range of volumetric effi-
ciency for a 4-tined starbody with α0 =
0. M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.42: Range of volumetric effi-
ciency for a 4-tined starbody with α0

= -0.62. M = 18, h = 20 km, in the
Martian atmosphere.
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Figure A.43: Range of volumetric effi-
ciency for a 5-tined starbody with α0

= 0.62. M = 18, h = 20 km, in the
Martian atmosphere.

Figure A.44: Range of volumetric effi-
ciency for a 5-tined starbody with α0 =
0. M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.45: Range of volumetric effi-
ciency for a 5-tined starbody with α0

= -0.62. M = 18, h = 20 km, in the
Martian atmosphere.
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Figure A.46: Range of volumetric effi-
ciency for a 6-tined starbody with α0

= 0.62. M = 18, h = 20 km, in the
Martian atmosphere.

Figure A.47: Range of volumetric effi-
ciency for a 6-tined starbody with α0 =
0. M = 18, h = 20 km, in the Martian
atmosphere.

Figure A.48: Range of volumetric effi-
ciency for a 6-tined starbody with α0

= -0.62. M = 18, h = 20 km, in the
Martian atmosphere.
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Appendix B

Interstellar Launch Opportunities

Figure B.1: Launch opportunities and required energy for Earth, Jupiter GA, Venus
GA, Venus GA, Earth GA, Jupiter GA, 200 AU route
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Figure B.2: Launch opportunities and required energy for Earth, Venus GA, Venus
GA, Earth GA, Jupiter GA, Neptune GA, 200 AU route

Figure B.3: Launch opportunities and required energy for Earth, Venus GA, Venus
GA, Earth GA, Jupiter GA, Uranus GA, 200 AU route

242



Figure B.4: Launch opportunities and required energy for Earth, Jupiter GA, Earth
GA, Venus AGA, Neptune GA, 200 AU route

Figure B.5: Launch opportunities and required energy for Earth, Jupiter GA, Earth
GA, Venus AGA, Jupiter GA, 200 AU route
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Figure B.6: Launch opportunities and required energy for Earth, Jupiter GA, Venus
AGA, Jupiter GA, 200 AU route

Figure B.7: Launch opportunities and required energy for Earth, Jupiter GA, Earth
GA, Venus AGA, Uranus GA, 200 AU route
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Figure B.8: Launch opportunities and required energy for Earth, Saturn GA, Jupiter
GA, Venus AGA, Jupiter GA, 200 AU route

Figure B.9: Launch opportunities and required energy for Earth, Jupiter GA, Venus
AGA, Jupiter GA, Pluto GA, 200 AU route
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Figure B.10: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Jupiter GA, 200 AU route

Figure B.11: Launch opportunities and required energy for Earth, Saturn GA,
Jupiter GA, Earth AGA, Jupiter GA, 200 AU route

246



Figure B.12: Launch opportunities and required energy for Earth, Jupiter GA,
Saturn GA, Earth AGA, Jupiter GA, 200 AU route

Figure B.13: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Jupiter GA, Saturn GA, 200 AU route
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Figure B.14: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Jupiter GA, Uranus GA, 200 AU route

Figure B.15: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Jupiter GA, Pluto GA, 200 AU route
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Figure B.16: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Jupiter GA, Neptune GA, 200 AU route

Figure B.17: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Jupiter GA, Pluto GA, 200 AU route
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Figure B.18: Launch opportunities and required energy for Earth, Saturn GA,
Jupiter GA, Mars AGA, Jupiter GA, 200 AU route

Figure B.19: Launch opportunities and required energy for Earth, Saturn GA,
Jupiter GA, Mars AGA, Jupiter GA, Saturn GA, 200 AU route
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Figure B.20: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Jupiter GA, Uranus GA, 200 AU route

Figure B.21: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Jupiter GA, Saturn GA, 200 AU route
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Figure B.22: Launch opportunities and required energy for Earth, Jupiter GA,
Venus AGA, Earth AGA, Jupiter GA, 200 AU route

Figure B.23: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Venus AGA, Neptune GA, 200 AU route
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Figure B.24: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Earth AGA, Jupiter GA, 200 AU route

Figure B.25: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Venus AGA, Jupiter GA, 200 AU route
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Figure B.26: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Mars AGA, Jupiter GA, 200 AU route

Figure B.27: Launch opportunities and required energy for Earth, Jupiter GA,
Venus AGA, Mars AGA, Jupiter GA, 200 AU route
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Figure B.28: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Venus AGA, Uranus GA, 200 AU route

Figure B.29: Launch opportunities and required energy for Earth, Jupiter GA,
Earth AGA, Venus AGA, Saturn GA, 200 AU route
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Figure B.30: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Venus AGA, Jupiter GA, 200 AU route

Figure B.31: Launch opportunities and required energy for Earth, Jupiter GA, Mars
GA, Earth AGA, Venus AGA, Uranus GA, 200 AU route
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Figure B.32: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Earth AGA, Neptune GA, 200 AU route

Figure B.33: Launch opportunities and required energy for Earth, Jupiter GA, Mars
AGA, Venus AGA, Saturn GA, 200 AU route
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