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The rise of human interaction in digital environments has lead to an abun-

dance of behavioral traces. These traces allow for model-based investigation of

human-human and human-machine interaction ‘in the wild.’ Stochastic models al-

low us to both predict and understand human behavior. In this thesis, we present

statistical procedures for learning such models from the behavioral traces left in

digital environments.

First, we develop a non-parametric method for smoothing time series data cor-

rupted by serially correlated noise. The method determines the simplest smoothing

of the data that simultaneously gives the simplest residuals, where simplicity of the

residuals is measured by their statistical complexity. We find that complexity regu-

larized regression outperforms generalized cross validation in the presence of serially

correlated noise.

Next, we cast the task of modeling individual-level user behavior on social me-



dia into a predictive framework. We demonstrate the performance of two contrasting

approaches, computational mechanics and echo state networks, on a heterogeneous

data set drawn from user behavior on Twitter. We demonstrate that the behavior

of users can be well-modeled as processes with self-feedback. We find that the two

modeling approaches perform very similarly for most users, but that users where

the two methods di↵er in performance highlight the challenges faced in applying

predictive models to dynamic social data.

We then expand the predictive problem of the previous work to modeling the

aggregate behavior of large collections of users. We use three models, corresponding

to seasonal, aggregate autoregressive, and aggregation-of-individual approaches, and

find that the performance of the methods at predicting times of high activity depends

strongly on the tradeo↵ between true and false positives, with no method dominat-

ing. Our results highlight the challenges and opportunities involved in modeling

complex social systems, and demonstrate how influencers interested in forecasting

potential user engagement can use complexity modeling to make better decisions.

Finally, we turn from a predictive to a descriptive framework, and investigate

how well user behavior can be attributed to time of day, self-memory, and social

inputs. The models allow us to describe how a user processes their past behavior and

their social inputs. We find that despite the diversity of observed user behavior, most

models inferred fall into a small subclass of all possible finitary processes. Thus, our

work demonstrates that user behavior, while quite complex, belies simple underlying

computational structures.
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Chapter 1: Introduction

Human beings, viewed as behaving systems, are quite simple; the ap-

parent complexity of our behavior over time is largely a reflection of the

complexity of the environment in which we find ourselves [...]

– Herbert Simon, The Sciences of the Artificial, page 11

For the first time in human history, we have massive data sets about how

humans interact with each other and with their environment. This data arises from

diverse settings, from cell phone call records to geotagged images to interactions on

social media. The prevalence of such data has caused a renaissance in the social

sciences, allowing for the quantitative study of how large populations of humans

behave outside of the laboratory. However, the abundance of such data does not in

itself o↵er understanding. Instead, we must turn to models that describe and explain

this data. This has been the core mission behind the nascent field of computational

social science [3]. In this thesis, we seek to advance this mission by developing

statistical methods for understanding time series data drawn from complex social

systems.

The main stochastic models and statistical tools we use in our investigations

originate from the discipline of computational mechanics [4]. Computational me-
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chanics began with the study of nonlinear dynamical systems [5], and was initially

used as a tool to study the route to chaos of the logistic map. It has since been

developed into a methodology for time series [4, 6], time-varying random fields [7],

and input-output systems [6, 8, 9]. Computational mechanics has been used to in-

vestigate many application domains, including ecology [10], crystallography [11],

neuroscience [12], anomaly detection [13] and social media [14].

The key insight behind the various facets of computational mechanics is the

value of viewing a system in terms of its predictive distribution. In this sense,

computational mechanics has much in common with older work on predictive pro-

cesses [15] and more recent work on modeling autonomous and controlled dynamical

systems [16]. Unlike most modeling approaches, computational mechanics provides

a constructive procedure for determining the unique, minimally complex, maximally

predictive representation of a time series, input-output system, or time-varying ran-

dom field. Thus, computational mechanics provides the simplest model that can

predict as well as any rival model. Moreover, because the model construction relies

solely on distributions over observed symbol sequences, computational mechanics

allows for the determination of models directly from data with few a priori as-

sumptions. In the terminology of computational mechanics, approaches for doing

so are known as reconstruction algorithms, since they reconstruct the appropriate

model from the supplied data. Such reconstruction algorithms embody the law of

parsimony, also known as Ockham’s razor, since they infer the simplest model that

predicts well.

In this thesis, we apply inferential methods arising from computational me-
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chanics to model several data sets originating from complex social systems. In Chap-

ter 2, we develop a new method for tuning a non-parametric smoother in the case

of serially correlated residuals. Most standard methods for tuning non-parametric

smoothers assume that the residuals can be treated as independent and identically

distributed noise. In contrast, we leverage computational mechanics to allow for

serial correlation in the residuals. We then apply this new method to time series

data arising from the Dow Jones Industrial Average, and investigate how market

behavior has changed in terms of large- and small-scale dynamics of day-to-day

performance.

In Chapter 3, we consider the task of predicting the behavior of individuals

on a social media service. We cast this problem in terms of forecasting a categorical

time series, and present two solutions. The first, based on computational mechan-

ics, begins by assuming that the observed data is generated by as simple a process

as possible, and then adds complexity to the model as the data requires it. The

second, based on reservoir computing, starts from a model that allows for very com-

plicated dynamics, and then relaxes down to a simpler model. We demonstrate the

performance of these models on a heterogeneous data set drawn from user behavior

on social media, and investigate the characteristics of user behavior that lead one

model to outperform the other.

In Chapter 4, we move from predicting individual-level behavior to predicting

the behavior of collections of individuals. We seek to predict times in which the

aggregate behavior is elevated compared to a baseline. We consider three comple-

mentary approaches: the first based on seasonal variability, the second based on
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aggregate memory, and the third based on individual excitability. We find that the

best model for this task varies depending on the acceptable trade-o↵ between true

and false positives, but that the non-seasonal approaches perform best overall.

In Chapter 5, we move from a predictive to a descriptive framework, and

explore the computational landscape of user behavior on social media. To do so,

we infer seasonal, self-driven, and socially-driven models of user behavior across a

heterogeneous collection of 15K users on Twitter. We find that a small class of

models can describe the majority of observed user behavior, but that there is great

diversity across the models within this class.

This thesis is based on the following publications:

• Chapter 2: D. Darmon and M. Girvan. Complexity-regularized regression for

serially-correlated residuals with applications to stock market data. Entropy,

17(1):1–27, 2014.

• Chapter 3: D. Darmon, J. Sylvester, M. Girvan, and W. Rand. Predictabil-

ity of user behavior in social media: Bottom-up v. top-down modeling. In

ASE/IEEE Int’l Conf. on Social Computing, pages 102–107, 2013.

• Chapter 4: J. Harada, D. Darmon, M. Girvan, and W. Rand. Forecasting

high tide: Predicting times of elevated activity in online social media. In

IEEE/ACM Int’l Conf. on Advances in Social Network Analysis and Mining,

2015.

• Chapter 5: D. Darmon, W. Rand, M. Girvan. The Computational Landscape

of User Behavior on Social Media. In preparation.
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Chapter 2: Complexity Regularized Regression for Time Series with

Serially Correlated Errors

2.1 Introduction

When studying the short-term behavior of a time series, a common assump-

tion is that the time series can be treated as a realization from a trend stationary

stochastic process. That is, it is assumed that the time series can be modeled as the

sum of a deterministic trend and a stationary stochastic process, where the deter-

ministic trend is assumed to vary slowly compared to the stochastic process [17]. As

an example, consider the closing price of the Dow Jones Industrial Average (DJIA)

over time, shown in Figure 2.1. Over large enough timescales, the market exhibits

clear trends. However, when considering short timescale (e.g., inter-day) behavior

of the market, these long-term trends could mask the dynamics of day-to-day fluc-

tuations. For example, because the value of the market tends to increase over time,

nearby time points will tend to be positively correlated. However, this long-term

correlation tells us nothing about the short-term dynamics of the market. A natural

solution is to estimate the trend and remove it. The problem of estimating the long-

term trend present in a time series can be cast as a time-domain regression problem,
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where we regress the observed values of the time series on the time index. Within

this framework, nonparametric regression methods may be used to infer the under-

lying trend without making strong a priori assumptions on its form. The literature

on nonparametric regression is rich and includes techniques, such as kernel-based

methods, smoothing splines, wavelets and series expansions, in terms of orthogo-

nal functions [17–19]. A complementary approach to non-parametric regression for

more flexible modeling can be found in the tools from robust statistics, which o↵er

statistical procedures that are flexible to deviations from an assumed model [20].

While the general issues related to robust statistics have received considerable at-

tention in the literature, their application to time series analysis has largely been

limited to robust tests for serial correlation [21, 22] and linear trends [23]. To the

best of our knowledge, little to no work has been done on robust statistics (in the

formal sense) for trend estimation under correlated errors.
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Figure 2.1: The closing price of the Dow Jones Industrial Average as an example of
a non-stationary time series.

While nonparametric methods have the advantage that they can adapt to
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regularities in the data, they also come with tuning parameters that must be set by

the investigator. These tuning parameters, also known as smoothing parameters,

include the bandwidth for kernel-based methods, the e↵ective degrees of freedom for

smoothing splines and the number of basis functions for orthogonal expansions. The

value for the smoothing parameter is often chosen via data-driven methods, such as

cross-validation, where the data is split into a training set used to infer the model

and a tuning set used to select the smoothing parameter [18]. However, many such

procedures are designed for regression where the residuals are uncorrelated, as might

be the case when performing regression on data in which each data point corresponds

to a separate measurement from some underlying population. The assumption of

uncorrelated residuals clearly does not hold for time-domain regression where we

expect short-term serial correlations. For example, early work in econometrics found

non-trivial serial correlations in stock prices [24]. Serial correlations in residuals

greatly impact the performance of automated, data-dependent methods for choosing

smoothing parameters. For instance, in [25], Hart shows that for kernel regression

estimation, when the residuals are drawn from an order-one autoregressive (AR(1))

process [17] with coe�cient �, for � & 0.17 (with the exact value depending on

the choice of kernel), in the limit of infinite data, cross-validation will choose an

estimate that nearly interpolates the data. Thus, even for a very simple model

of residuals with weak serial correlations, the standard method for choosing the

smoothing parameter of a nonparametric regression method will result in a trend

estimate that adapts to the correlations in the residuals, rather than reflecting the

true trend. In this case, neither the trend nor the residuals are correctly estimated.
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This is especially problematic when the properties of the residuals are the object

of study, as a near-interpolating trend estimate will cause the residuals to look like

numerical noise. Many approaches have been proposed to generalize cross-validation

for serially-correlated errors [26–29]. These methods typically involve block-wise

versions of cross-validation, where appropriately chosen blocks of a time series are

removed during each fold of the cross-validation procedure. See [30] for a review of

other literature on regression with correlated errors.

A new class of nonparametric regression methods, first proposed in [31], con-

siders the regression problem from a di↵erent perspective, where the focus shifts

from the regression curve to the residuals. Instead of considering the estimator’s

fidelity to the underlying curve, the method seeks to make the residuals look as

random as possible while maintaining as simple a regression curve as possible. This

method thus hinges on an often overlooked point from regression: under the assump-

tion of most methods, residuals resulting from a smoothing method should look like

white noise. However, because of this construction, the method from [31] does not

immediately apply to time series with serially-correlated residuals.

In this chapter, we develop a nonparametric regression technique that is model-

agnostic with respect to both the long-term trend and the serial correlations in the

residuals. This method relies on tools from the field of computational mechanics [4],

a formalism for dissecting the structure and randomness present in a stationary

stochastic process. Computational mechanics allows us to greatly expand the class

of possible residuals considered in [31]. Any nonparametric smoother may be used

to estimate the trend, and the residuals need not be white noise, though we do limit
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memory length. We then apply this technique to the Dow Jones Industrial Average,

a time series where we expect serially-correlated residuals, and investigate how both

the long-term and short-term behavior of the market has changed over time.

2.2 Methodology

2.2.1 Regression for Time Series

A typical model for time series is that the observed value Y
t

can be treated as

the sum of a “true” trend r
t

plus some deviation from the trend ⌘
t

[17]. That is, we

have the model:

Y
t

= r
t

+ ⌘
t

, t = 1, . . . , T. (2.1)

The residual process {⌘
t

} is typically specified in terms of its first two moments. In

particular, it is assumed to have zero mean:

E[⌘
t

] = 0, for all t (2.2)

(if not, this non-zero value would be incorporated into r
t

) and some autocorrelation

structure dependent on the lag between two time points,

R(t, s) = R(|t� s|) = E[⌘
t

⌘
s

], (2.3)
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which specifies the form of the serial correlation. It should be noted that the

form (2.1) for a time series addresses a very particular kind of non-stationarity.

Other types of non-stationarity commonly occur in time series, including, but not

limited to, heteroskedastic and heavy-tailed deviation processes. These types of

non-stationarities are typically investigated using autoregressive conditional het-

eroskedastic (ARCH) models and their generalizations [17]. As we assume the

trend stationary model, we do not address these types of non-stationarities with

our method.

As stated and without careful interpretation, (2.1) can be problematic, both

theoretically and practically [17]. One interpretation of this formulation is to con-

sider {Y
t

} as the discretization of a sample path from a continuous time stochastic

process:

Y (t) = r(t) + ⌘(t). (2.4)

Such an interpretation frequently occurs with financial time series due to the preva-

lence of stochastic di↵erential equation models, such as the famous Black–Scholes

model [32] for options. This formulation also frequently occurs in longitudinal and

functional data analysis, where the function r(t) is estimated using several inde-

pendent realizations from (2.4) [33, 34]. However, this model is inappropriate for

time-domain smoothing, since it assumes that both r(t) and ⌘(t) vary continuously

in time. Thus, for small values of �t, we expect Y (t±�t) to be nearly the same as

Y (t), so nothing is gained from smoothing about the time index t. Moreover, under
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this formulation and without any additional assumptions, because of the smoothness

in ⌘(t), it is impossible to extract the trend with only a single realization. Because

of this, a popular alternative formulation of (2.1) for time-domain smoothing is to

consider the model:

Y
t

= g(t/T ) + ⌘
t

, t = 1, 2, . . . , T, (2.5)

which places the estimation problem within the framework of nonparametric esti-

mation with equispaced design points [35–37]. This formulation explicitly assumes

that the time trend r(t) = g(t/T ) varies more slowly than the stochastic component

{⌘
t

}, thus motivating the use of smoothing about the time index and allowing for

the recovery of the time trend from a single realization.

In nonparametric regression, we seek an estimator r̂
t

that should capture the

true trend r
t

without picking up too much of the false “trend” introduced by the

residual term ⌘
t

. In the case of white noise, for example, this can be done by averag-

ing over nearby time points. If the noise terms truly are uncorrelated, this averaging

process reduces the pointwise variance in r̂
t

, but also increases its pointwise bias,

since, in general, r
t

6= r
t

0 for t 6= t0. The amount of smoothing is decided by a

smoothing parameter �. Some standard smoothing methods for time series include

kernel smoothing, smoothing splines and local polynomial smoothing, all of which

have an associated smoothing parameter [17].

The choice of the smoothing parameter falls within the larger statistical frame-

work of model selection [38]: from a certain class of models, how do we choose the
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model that best reflects the underlying process that generated the data? The model

selection procedure depends on the operationalization of “best”: a model may be

chosen to maximize a likelihood, minimize a certain error function, etc. In the case

of estimating a regression function via smoothing, a standard approach is to choose

the smoothing parameter � by cross-validation on the estimated mean-squared pre-

diction error between the observation Y
t

and regression function r̂
t

[18]. Let the T

data points be indexed by I = {1, 2, . . . , T}. To perform cross-validation, we parti-

tion the indices into K disjoint subsets P1,P2, . . . ,PK

. For each subset of indices,

we use the data indexed by I \ P
k

to estimate r̂
(�k)
t

(�), i.e., r̂(�k)
t

(�) is estimated

using all of the data except the data indexed by the subset P
k

. The mean-squared

error is then computed on the held out data for each subset:

[MSE(r̂(�k);�) =
1

|P
k

|
X

t2Pk

(Y
t

� r̂
(�k)
t

(�))2, k = 1, . . . , K. (2.6)

The estimate for the mean-squared error is then determined by averaging the mean-

squared error over the held-out subsets, giving:

[MSE(�) =
1

K

KX

k=1

[MSE(r̂(�k);�). (2.7)

Finally, the smoothing parameter is taken to minimize this estimate of the mean-

squared error, giving:

�̂ = argmin
�

[MSE(�). (2.8)
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This approach to choosing the smoothing parameter can be problematic when the

residuals are serially correlated [29], as we have discussed in the introduction.

2.2.2 Model-Free Regression

As we have stated, regression models of the form (2.1) typically require the

specification of a probability model for the stochastic component {⌘
t

}. Recent work

by P. L. Davies and co-authors has proposed methods for nonparametric regression

without such models [31, 39]. We recast their problem, which is stated for general

regression, in terms of time-domain regression. The basic idea, as summarized

in [40], is to choose the simplest regression function that makes the residuals “look

random”. The fact that the residuals should look random is a natural consequence

of the statistical model for the regression function. The problem of deciding whether

the residuals look su�ciently random is well developed and typically involves simple

diagnostic plots and tests on the residuals [41,42]. As a simple example, consider the

case where the observed time series is a sinusoid over a single period corrupted by a

small amount of white noise. Using a linear trend will induce both short- and long-

range correlation in the residuals: residuals near the peaks/troughs of the sinusoid

will be positively correlated with residuals near the peaks/troughs and negatively

correlated with residuals near the troughs/peaks. At the opposite extreme, a near-

interpolating trend would result in uncorrelated residuals, but the estimated trend

will also have many degrees of freedom. Davies et al.’s approach seeks to balance

between these two extremes.
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The setup for Davies et al.’s approach is as follows. We observe T observations

of a time series Y1, . . . , YT

, and we seek the regression function r, such that we will

model Y
t

= r
t

. For a given choice of r, we may compute the residuals:

⌘
t

= Y
t

� r
t

, t = 1, . . . , T. (2.9)

Define ⌘(r) = (⌘1, . . . , ⌘T ). We then specify a test for randomness in these residuals,

R(⌘(r)) where:

R(⌘(r)) =

8
>><

>>:

1 : reject randomness in ⌘(r)

0 : do not reject randomness in ⌘(r)

(2.10)

For example, R might be the Wald–Wolfowitz runs test [43], a nonparametric test

for the independence of binary random variables. We will return to this idea shortly

when we propose our extension to Davies et al.’s work. We also define a “complexity”

measure on r,  (r). For example,  might measure the number of extrema of r or

the integrated squared second-derivative (“wiggliness”) of r,

 (r) =

Z
(r00

t

)2 dt. (2.11)

Once R and  are specified, we seek the r that solves:

min
r

 (r) (2.12)

subject to R(⌘(r)) = 0. (2.13)
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That is, we seek the minimally complex regression function r̂, such that the residuals

“look random”. This approach has been operationalized by Davies et al. in their

runs method for nonparametric regression [31].

2.2.3 Computational Mechanics

A key part of Davies et al.’s method was the assumption that the residuals ⌘
i

should look “random”, where they operationalize random to mean that the residu-

als should appear like a realization from a white noise process. We could allow for

the residuals to appear like realizations from more general stochastic processes, but

we then need simple criteria to characterize the randomness of the residuals. Com-

putational mechanics, a formalism for investigating stationary stochastic processes,

provides such criteria. We now present a brief overview of computational mechanics.

A high-level review may be found in [44]. A more mathematical treatment may be

found in [4].

We restrict ourselves to a discrete time, discrete state stochastic process {X
t

}
t2Z

taking values from the finite alphabet X . For example, when {X
t

}
t2Z corresponds

to a stochastic process defined over all bi-infinite binary strings, X = {0, 1}. We will

use the standard convention of denoting a realization from this process at a fixed

time t by x
t

. For a time point t, we define the past of the process as:

X t�1
�1 = (. . . , X

t�2, Xt�1) (2.14)
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and the future (including the present) as:

X1
t

= (X
t

, X
t+1, . . .), (2.15)

and denote the set of all semi-infinite pasts by X� and all semi-infinite futures by

X+. We will denote particular realizations of semi-infinite pasts and futures by xt�1
�1

and x1
t

, respectively. Computational mechanics presents a particular model for use

in the prediction of this process. For prediction, we ultimately desire to make a

statement about the future of the process, conditioned on the particular past we

have observed. That is, we seek:

P (X1
t

|X t�1
�1 = xt�1

�1). (2.16)

While we might be able to predict using the entire past of the process, the insight of

computational mechanics is that we can instead use a statistic that compresses the

past as much as possible without losing any predictive ability. It can be shown that

the unique minimal su�cient predictive statistic of the past X t�1
�1 for the future

X1
t

of a conditionally stationary stochastic process is the equivalence class over

predictive distributions. For two pasts xt�1
�1 and yt�1

�1, we define an equivalence

relation, such that xt�1
�1 ⇠ yt�1

�1 if:

P (X1
t

|X t�1
�1 = xt�1

�1) = P (X1
t

|X t�1
�1 = yt�1

�1) (2.17)

as probability mass functions. In other words, two pasts are equivalent if they
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result in statistically-equivalent futures. Using this equivalence relation, we can

define equivalence classes over pasts p, such that

[p] = {xt�1
�1 2 X� : P (X1

t

|X t�1
�1 = xt�1

�1) = P (X1
t

|X t�1
�1 = p)}. (2.18)

In other words, for each possible predictive distribution, we choose a candidate past

p, and [p] represents all pasts that induce this predictive distribution. We can thus

think of p as a particular past or as the label for this class of pasts. Typically, we

will take the second perspective. We define our statistic ✏ : X� ! S as mapping a

past into the equivalence class for that past,

✏(X t�1
�1) = [X t�1

�1]. (2.19)

The statistic ✏ has been proven [4] to be the unique, minimal su�cient statistic

of the past of a stationary stochastic process for its future. We can think of ✏ as

partitioning the set of all pastsX� based on the conditional futures they induce. The

combination of the equivalence classes, as well as the allowed transitions between

them is called the ✏-machine or causal state model for the process {X
t

}
t2Z. The

mapping by ✏ of the stochastic process to its predictive equivalence classes results

in a new stochastic process {S
t

}
t2Z, called the causal state process. One of the

important properties of this process is its relationship to the statistical complexity,

denoted C
µ

, of the stochastic process. The statistical complexity of a stochastic

process is the average number of bits of its past necessary to optimally predict its
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future. For a conditionally stationary stochastic process, the statistical complexity

is equivalent to the Shannon entropy of the causal state process,

C
µ

= H[S] (2.20)

= �E[log2 P (S)] (2.21)

= �
X

s2S

P (S = s) log2 P (S = s), (2.22)

where S is the set of equivalence classes and P (S = s) is the asymptotic probability

associated with causal state s. The statistical complexity is also equivalent to the

mutual information between the past of the process and the causal state associated

with that past and, thus, captures the amount of information about the past stored

in the causal state. A complementary quantity associated with a stochastic process

is its entropy rate,

h
µ

= lim
t!1

H[X
t

|X t�1
�1], (2.23)

which represents the average uncertainty in the next symbol given the past. When

the ✏-machine representation of a stochastic process is available, the entropy rate is

computable [45] in terms of the uncertainty in the next symbol conditional on the
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current causal state,

h
µ

= H[X
t

|S
t�1] (2.24)

= �E[log2 P (X
t

|S
t�1)] (2.25)

= �
X

s2S

X

x2X

P (X
t

= x, S
t�1 = s) log2 P (X

t

= x|S
t�1 = s) (2.26)

= �
X

s2S

P (S
t�1 = s)

X

x2X

P (X
t

= x|S
t�1 = s) log2 P (X

t

= x|S
t�1 = s), (2.27)

where, again, P (S
t�1 = s) is the asymptotic probability associated with causal state

s.

The computational mechanics formalism requires knowledge of the full predic-

tive distribution (2.16) in order to determine the equivalence relation that defines

the ✏-machine. Since this distribution is not known in practice, we must infer the

✏-machine associated with {X
t

}
t2Z using a statistical procedure. For this work, we

use the causal state splitting reconstruction (CSSR) [46] algorithm. CSSR has been

used in many application domains, including ecology [10], crystallography [11], neu-

roscience [12], anomaly detection [13] and social media analysis [47]. This algorithm

provides an estimator for the ✏-machine associated with a realization of the observed

process {X
t

}T

t=1 by splitting candidate causal states. To do this, a maximum history

length Lmax is chosen, and all histories are initially placed in a single state. The value

of L is then incremented from zero to Lmax, and histories xt�1
t�L

in a state are split

if their one-step-ahead predictive distribution (called a morph in the computational
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mechanics literature):

P (X
t

|X t�1
t�L

= xt�1
t�L

) (2.28)

di↵ers significantly (at size ↵) from the one-step-ahead predictive distribution asso-

ciated with their causal state,

P (X
t

|S
t�1 = ✏̂(xt�1

t�L

)).

The states resulting from this procedure are precausal, in the sense that they are

optimal for one-step-ahead prediction. The precausal states are then refined to the

causal states by taking advantage of the unifilarity of the ✏-machine [45]. That is,

for a given causal state s
t�1 and an emission symbol x

t

, the causal state s
t

at the

next time step updates as s
t

= T (s
t�1, xt

), where T (·, ·) is a one-to-one mapping

from the previous causal state and the emission symbol to the next causal state.

The precausal states are split to ensure this one-to-one mapping holds. The entire

CSSR procedure results in an ✏-machine that is a consistent estimator for the true ✏-

machine assuming the true stochastic process is conditionally stationary, has finitely

many causal states and has finite-length su�xes of length Lmax or smaller in each

causal state [48].
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2.2.4 Complexity Regularized Regression

Using the tools presented in the previous section, we now extend Davies et

al.’s approach. Again, we compute the residuals:

⌘
t

= Y
t

� r
t

, t = 1, . . . , T. (2.29)

We then transform the residuals ⌘
t

into binary random variables using the Heaviside

function ⇥ to give:

B
t

= ⇥(⌘
t

) (2.30)

=

8
>><

>>:

0 : ⌘
t

 0

1 : ⌘
t

> 0

(2.31)

This binary sequence {B
t

}T

t=1 is then used to infer a causal state model via the CSSR

algorithm. Call this estimator for the causal state model ✏̂. The estimator ✏̂ consists

of the estimates for the equivalence classes of pasts, the predictive distributions

those equivalence classes induce and the allowed transitions between the equivalence

classes.

We use the inferred causal state model ✏̂ to extend Davies et al.’s approach in

two ways. First, we replace the constraint term R(⌘(r)) by C
µ

(B(r)), the statistical

complexity of the causal state model inferred from the binarized residuals. For an

independent and identically distributed stochastic process, C
µ

= 0, and we see that

if we enforce the constraint C
µ

(B(r)) = 0, we recover the same criterion from Davies
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et al.’s runs test-based regularization term R(⌘(r)), though it should be noted that

the runs test may be more powerful than using C
µ

to test for independence. Second,

instead of directly inferring r̂, we will assume a nonparametric model for r̂, indexed

by a smoothness level �, and infer the r̂
�

, such that:

r̂
�

= argmin
r�

C
µ

(r
�

). (2.32)

For example, with smoothing splines, � might be the e↵ective degrees of freedom.

For kernel smoothing methods, � might be the bandwidth of the kernel used. If we

take  (r
�

) to be (2.11), then  (r
�

) will be monotonic in �, and we can instead state

our optimization problem as:

�̂ = argmin
�

C
µ

(�). (2.33)

Thus, we see that this method seeks the simplest regression function, as measured

by �, which makes the residuals have minimal statistical complexity. We call this

method complexity-regularized regression (CRR).

2.2.4.1 Details for Operationalization

The statistical complexity of an ✏-machine depends on both the number of

causal states associated with the machine and the probabilities associated with

those causal states. Thus, the number of causal states gives another proxy for the

structure present in a stochastic process. In [49], the topological complexity of an
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✏-machine was defined as the logarithm of the number of states N(✏) of the model

✏,

C0 = log2 N(✏). (2.34)

The topological complexity is an upper bound for the statistical complexity of a

causal state model. Thus, we can take C0 as a proxy for the statistical complexity

of the causal state model. We do this for two reasons. First, statistical fluctuations

inherent in inferring C
µ

from finite data will have less of an impact on C0. Second,

by virtue of how the sequence {B
t

}T

t=1 is generated, changes in the number of states

will be more useful than changes in the probabilities of the transitions between those

states. Simply, topological changes in the causal state model are more useful for the

task at hand. Thus, in practice, we choose:

�̂ = argmin
�

C0(�). (2.35)

The CSSR algorithm has two parameters: ↵, a significance level used in the

state-splitting step of the algorithm, and Lmax, the maximal history to consider

when inferring (5.10). The significance level ↵ controls the probability that we do

not assign a history to an existing causal state when it belongs to that causal state

and is fixed at ↵ = 0.001 for all experiments in this chapter. The maximal history

Lmax balances the complexity of the causal state models that can be inferred by

CSSR and the accuracy with which the one-step-ahead predictive distributions are
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inferred. Thus, the value of Lmax controls the well-known bias-variance tradeo↵

present in all model selection problems [18]. If Lmax is too small, the true causal

state model will not be inferable using CSSR, because the histories will not resolve

correctly into their true causal states. If Lmax is too large relative to the length of

the time series, the one-step-ahead predictive distributions will be poorly estimated,

which will lead to spurious splitting of histories. A useful heuristic for choosing

Lmax, as recommended in [46], is to take it to be the largest value, such that the

joint distribution is consistently estimated. For the class of stochastic processes that

include those with finite-state ✏-machine representations, this bound is given by:

Lmax <
log2 T

h
µ

+ c
, (2.36)

where h
µ

is the entropy rate of the stochastic process and c is some positive con-

stant [50]. For all examples in this chapter, we fix Lmax = 5.

2.3 Simulation Experiments

In this section, we demonstrate CRR with a synthetic trend stationary time

series that decomposes as in (2.1) into a trend plus residual activity about the

trend. We take the trend to be the sum of a finite number of sinusoids with a

single dominant frequency. Thus, we assume that the underlying trend has a single

dominant scale. We allow serial correlations in the residuals by sampling them from

a linear autoregressive process of order one. As mentioned in the Introduction,

even for very weak serial correlation in such a process, standard methods, such as
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cross-validation, fail at choosing an appropriate smoothing parameter for the trend

estimate. By varying the serial correlation in the residuals, we can explore how

the performance of CRR compares to methods like cross-validation with increasing

serial correlation.

2.3.1 The Generative Model

To test the performance of complexity regularized regression, we sampled 1000

regression curves, indexed by s = 1, 2, . . . , 1000, using the generative model:

r⇤
s,t

=
10X

i=1

cos(2⇡!
s,i

t+ �
s,i

), t = 0, 1, . . . , 4999 (2.37)

where !
s,i

i.i.d.⇠ N(!0, 0.0012) and �
s,i

i.i.d.⇠ Uniform(0, 2⇡). For the high frequency

examples, we take !0 =
1

100
, and for the low frequency examples, we take !0 =

1
10,000

.

Thus, each regression curve is the sum of 10 sinusoids with random frequencies and

phases, but with a single dominant scale dictated by !0. Each regression curve

is then normalized, so that its range lies in [�1, 1], giving the final set of curves

r
s,t

, s = 1, . . . , 1000. The range-normalization was done to maintain the signal-to-

noise ratio between the true regression curve and the residuals. The set {r
s,t

}1000
s=1

provides a test bed of trends that have a single principle scale (either at a low or

high frequency) with variation in that structure dictated by the random frequencies

and phase shifts. See Figure 2.2 for sample realizations from (2.37).

Using these true regression curves, we generate the observed values Y
s,t

using
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the model:

Y
s,t

= r
s,t

+ ⌘
s,t

(2.38)

where the noise sequence is either white noise or an AR(1) process. In the white

noise case, the residuals are taken to be ⌘
t

i.i.d.⇠ N(0, �2). In the correlated noise

case, we take the residuals to be samples from an AR(1) process with variance �2

and lag-one coe�cient �. That is, the residuals are a realization of:

⌘
t

= � ⌘
t�1 + ✏

t

, t = 0, . . . , 4999 (2.39)

with ✏
t

⇠ N(0, (1� �2)�2), t = 0, . . . , 4999. We take ✏
t

to have variance (1� �2)�2,

so that the pointwise variance of ⌘
t

is �2, making the pointwise noise comparable

between the white noise and autoregressive processes. The serial correlation between

any two residuals separated by a time lag h is given by:

Corr(⌘
t

, ⌘
t+h

) = �h. (2.40)

Thus, for positive �, nearby points will be correlated, with that correlation decaying

exponentially in the time lag h. In the following numerical experiments, we take

� = 0.1 and vary � 2 {0.25, 0.5, 0.75}.
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Figure 2.2: Six example realizations from (2.38) with {⌘
t

} taken to be an order-one
linear autoregressive process with �2 = 0.1 and � = 0.75. The realizations of Y

t

are
in orange, and the regression curves r

t

are in black.

For each realization Y
s,t

, a smoothing spline was used to infer a nonparametric

regression function r̂(t) [18]. A smoothing spline is the function that satisfies:

r̂(t) = arg min
r2C2

nX

i=1

(r(t
i

)� y
i

)2 + �

Z
{r00(t)}2 dt, (2.41)

where C2 is the space of twice di↵erentiable functions. The solution to this opti-

mization problem is a natural cubic spline with knots at each of the design points t
i

,

with coe�cients regularized by an amount determined by the smoothing parameter

� � 0. As � goes to zero, the smoother reduces to the natural cubic spline inter-

polant of the points {(t
i

, y
i

)}T

i=1. As � grows towards larger and larger values, the

smoother does not allow any second-derivatives, and we recover the least-squares
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fit to the points. Thus, as described in (2.11), � is the parameter that allows us to

control the complexity of the regression function r̂(t). In practice, we will use the

e↵ective degrees of freedom cdof of r̂(t) to control the complexity of the regression

function. The e↵ective degrees of freedom range from one, which corresponds to the

least squares fit, to n, which corresponds to the natural cubic spline interpolant of

the data.

For CRR, the residuals were computed for each e↵ective degree of freedom

cdof 2 {1, 6, 11, . . . , 5001}. The CRR degree of freedom cdof
⇤
was chosen as the

smallest value that minimized C0(�). For cross-validation-based regression, we use

generalized cross-validation (GCV), a standard cross-validation-based method for

choosing the smoothing parameter for a linear smoother [18].

We measure the goodness-of-fit of the inferred r̂ by the mean-squared error be-

tween the true curve r and the inferred curve r̂ at the design points t 2 {0, . . . , 4999},

MSE(r, r̂) =
1

5000

4999X

t=0

(r(t)� r̂(t))2. (2.42)

2.3.2 Simulation Results

We begin by walking through an example of using CRR for a particular re-

alization from (2.37) with � = 0.75, a case with large positive correlation in the

residuals. After building the causal state models with the degrees of freedom for the

smoothing spline ranging from one (a linear fit via least squares) to 5000 (a cubic

spline interpolant), we can visualize how the topological complexity C0 varies as the
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degrees of freedom increase. Two example plots are shown in Figure 2.3. The left

and right panels correspond to low and high frequency trends r
s,t

. The numbers

of degrees of freedom chosen by generalized cross-validation and complexity regu-

larized regression are indicated by the red and blue lines, respectively. By (2.35),

the choice of 46 and 196 degrees of freedom for the low and high frequency trends

correspond to the lowest degrees of freedom for which the number of causal states

drops to its minimum, in this case two states.
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Figure 2.3: The topological complexity C0 as a function of the number of degrees of
freedom for the smoothing spline for the low (left) and high (right) frequency trends
with � = 0.75. The blue dashed and red dotted vertical lines indicate the degrees of
freedom chosen by complexity-regularized regression (CRR) and generalized cross-
validation (GCV), respectively. The black solid vertical lines indicate the optimal
choice of degrees of freedom for the given realization with respect to the mean-
squared error between the true and estimated trends given by (2.43).

Because we know the true value for r
s,t

, in the simulation study, we can also

compute the value dof⇤, such that:

dof⇤ = argmin
dof

MSE(r, r̂dof). (2.43)

This value represents the best choice of the smoothing parameter to minimize the
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mean-squared error given the data at hand, if we knew the true trend. The optimal

value dof⇤ is indicated in Figure 2.3 by the black vertical line. We see that for both

the low- and high-frequency trends, the degrees of freedom chosen by complexity-

regularized regression are much closer than the generalized cross-validation values.

We then define the smoothing parameter bias for a given realization s using

either tuning method as:

Bias
⇣
cdof

s

⌘
= cdof

s

� dof⇤
s

, (2.44)

or the deviation of the data-driven value from the optimal value if we knew the true

trend. Computing this bias across all thousand realizations from (2.37) gives a mea-

sure of how close the method came to recovering the true trend using a smoothing

spline and the data at hand. See Figure 2.4 for the distribution of the smoothing

parameter biases across all of the simulation conditions. A zero bias indicates that

the data-driven method performed as well as possible, a positive bias indicates un-

dersmoothing and a negative bias indicates oversmoothing. We see that except for

the case where the residuals ⌘
t

are white noise, CRR results in a much lower bias,

with a tendency to oversmooth the data. By comparison, GCV drastically under-

smooths the data. This agrees with the theoretical result reported in [25], though

their result was for kernel regressors, not smoothing splines. Both smoothing splines

and kernel-based methods are linear smoothers, so we expect the theoretical result

to extend to smoothing splines with small modifications.
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Figure 2.4: The distribution of biases cdof
s

� dof⇤
s

between the smoothing parameter
chosen GCV (dashed red) or CRR (solid blue) and the optimal value for the real-
ization Y

s,t

. A bias of zero (denoted by the black vertical line) indicates that the
method performed as well as the best regression curve in the class of all smoothing
splines.

Next, we examine the trends inferred for example low- and high-frequency

trends as we vary the correlation in the residuals, shown in Figure 2.5. The top

panels correspond to a low frequency trend, and the bottom panels correspond to a

high frequency trend. As we move from left to right in the figure, the correlation in

the residuals increases from zero to 0.5. As we saw from considering the smoothing

parameter bias, the trend inferred using generalized cross-validation (red) under-

smooths as we increase the correlation in the residuals, while the trend inferred

using complexity regularized regression (blue) tends to track the true trend (grey)

well, even for large values of correlation. We have also included the trend inferred

using the Davies and Kovac run method (green) using the default tuning parameter
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values in the ftnonpar package for R.
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Figure 2.5: The true regression curve (black) and the estimates via GCV (red),
CRR (blue) and Davies and Kovac’s run method (green); for example, low (top)
and high (bottom) frequency realizations from (2.37). Note that for all values of �
and !0, the CRR curves (blue) are in good agreement with the true regression curve,
while GCV (red) shows good agreement only for uncorrelated residuals (� = 0), and
Davies and Kovac’s run method (green) di↵ers substantially from the true regression
curve in all cases.

Finally, we quantify the performance of each of the data-driven methods us-

ing the mean-squared error (2.42) between the inferred trend and the true trend.

We computed the mean-squared error for each of the 1000 realizations across the

frequency and residual conditions. These results are summarized in Figure 2.6,

which shows the distribution of the mean-squared errors for each condition. We

see that GCV performs extremely well when the residuals are uncorrelated. This

is unsurprising, since GCV approximates leave-one-out cross-validation, and for un-
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correlated residuals, leave-one-out cross-validation is a nearly unbiased estimator for

the mean-squared error [19].Thus, for this case, using GCV to choose the degrees

of freedom will perform about as well as we can with smoothing splines. As we

increase the correlation, however, we see a robustness in the performance of CRR

that GCV does not share. In particular, as the residuals become more correlated,

CRR maintains a low mean-squared error, while the mean-squared error for GCV

increases with increasing correlation.
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Figure 2.6: The distribution of the mean squared errors (2.42) using CRR (blue
solid), GCV (red dashed) and Davies and Kovac’s run method (green dot-dash)
for the white noise and AR(1) residuals with � 2 {0, 0.25, 0.5, 0.75} for the low
frequency (top) and high frequency (bottom) trends.
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2.4 Financial Time Series

2.4.1 Modern Practices in Econometrics for Trend Stationary Time

Series

In the study of time series occurring in macroeconomics, a common approach

to analyzing systems of interest involves removing a (presumably) deterministic

trend from the observations and then treating the residuals as realizations from a

stationary stochastic process [51]. This can either be done in the time-domain, in

the state-domain or in a mixture of the two. For time-domain smoothing, one of the

most commonly-used tools for detrending data is the Hodrick–Prescott filter [52],

which is essentially a special case of the smoothing spline [53]. In their original

formulation, Hodrick and Prescott presented a heuristic choice of the smoothing

parameter for quarterly data (such as the U.S. gross domestic product). Several

authors have addressed how the choice of the smoothing parameter impacts the

correlation structure of the residuals [54–56]. Data-driven approaches for choos-

ing the smoothing parameter should be pursued, but as others have discussed [53],

and we have demonstrated with our simulation study, care must be taken in the

assumptions implicit to the chosen method. Other popular approaches include au-

toregressive models with a conditional mean that changes linearly in time [57]. It

should be noted that the definition of a “trend” in econometric time series has

remained open, even according to one of the leading researchers in the field [58].

Therefore, care must be taken in interpreting the results from an application of a
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method like CRR to such time series. In this spirit, we frame our study here as a

worked example with real data, rather than a definitive statement about any “true”

trends present in these time series.

We next apply complexity-regularized regression to a particular econometric

time series: the closing prices of the Dow Jones Industrial Average from January 2,

1930, to December 31, 2009. This corresponds to 80 years of the market’s activity

and covers 20,093 trading days. We divide the data into four double-decade periods

(1930 to 1949, 1950 to 1969, 1970 to 1989, 1990 to 2009) and investigate how both

the large timescale and intraday dynamics of the market have changed over these

periods. We follow the same procedure for choosing the smoothing parameter as in

the simulation experiments.

2.4.2 Macroscale Dynamics of the Market

Diagnostic plots for the topological complexity C0 as a function of the degrees

of freedom are shown in Figure 2.7. As before, we see that the generalized cross-

validation procedure allows for many more degrees of freedom compared to the

complexity regularization procedure. These diagnostic plots exhibit a property that

did not occur in the simulation experiments: the minimizer (2.35) sometimes occurs

at an isolated point that does not correspond to a “stable” location in the landscape

of inferred states. For example, for the diagnostic plot for the 1930 to 1949 period,

we see that the minimizer (2.35) occurs at an isolated point at one degree of freedom.

Similarly, the minimizer for the 1970 to 1989 period occurs at an isolated point at 81
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degrees of freedom. These isolated minimizers represent fragile ✏-machines that do

not persist with small perturbations in the trend. Because of this, we have modified

the operationalization to choose (2.35), such that it corresponds to the smallest

value � that belongs to an “island” of some width in degrees of freedom. For this

study, we have set the island length to two. We note that applying this modification

to the operationalization does not alter the results from our simulation study.

The trends for each double-decade period are shown in Figure 2.8. To charac-

terize the overall state of the market in each double-decade period, we next compute

the average curvature of the trend,

 
T

(r) =
1

T

Z
T

0

(r00(t))2 dt. (2.45)

The average curvature  
T

(r) captures how quickly the market changes direction in

its large-scale dynamics. This value, in addition to the number of trading days and

the estimated degrees of freedom of the trend, are reported in Table 2.1 for each

double-decade period.

Table 2.1 demonstrates an important di↵erence between the degrees of freedom

and the average curvature: they capture two di↵erent senses of smoothness. In

particular, the average curvature is scale-dependent. We see an instance of this

with the trend from 1990 to 2009, which has a much larger average curvature than

the other trends. By inspection of Figure 2.8, we see that this is because, during this

double decade, the magnitude of the price of the market greatly increased. Thus,

the “acceleration” of the trend during this time period has become larger, resulting
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in a larger average curvature. However, if we consider the degrees of freedom over

time, which capture a scale-independent sense of the complexity of r, we see that

long-term trend of the market exhibited greater complexity between 1930 and 1949

than during any of the other double-decade periods. We also note that the low

number of degrees of freedom for 1950 to 1969 is most likely artificial: by inspection

of Figure 2.7, we see that the optimal value occurs in a small island, and a value in

the larger island around 200 might be more appropriate. This motivates considering

the island length as a possible tuning parameter that may be set by the investigator.
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Figure 2.7: The topological complexity C0 as a function of the degrees of freedom
of the smoothing spline for each double-decade period. The vertical red and blue
lines indicate the degrees of freedom chosen by GCV and CRR.
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(a) 1930-1949 (b) 1950-1969

(c) 1970-1989 (d) 1990-2009

Figure 2.8: The inferred trends using CRR (blue) and GCV (red) for the DJIA time
series for the double-decade periods from 1930 to 2009. The insets demonstrate the
trend for the first 1000 trading days in each double-decade period, to highlight the
short-term fluctuations about the long-term trend.

Table 2.1: The number of trading days (T ), CRR degrees of freedom (cdofCRR) and
average curvature of the trend ( 

T

(r̂)) for the four double-decade periods from 1930
to 2009.

Time Period T cdofCRR  
T

(r̂)

1930–1949 4996 341 0.002727
1950–1969 5000 101 0.000361
1970–1989 5054 221 0.033354
1990–2009 5043 191 0.897089
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2.4.3 Microscale Dynamics of the Market and the Associated Causal

State Models

Previous work has considered the microscale dynamics of various markets using

tools from computational mechanics. The authors in [1] used inter-day data from

the Standard & Poor’s 500 index to construct causal state models. The authors in [2]

constructed causal state models using high-frequency, single minute resolution data

from the Standard & Poor’s 500 index, the Korean Stock Exchange (KOSPI) and the

Nikkei index. Both papers used first-order di↵erencing of either the price or log-price

to detrend the time series before binarizing. Use of first-order di↵erencing is closely

related to an assumption that the trend in the time series can be approximated

by a linear function, at least locally. This is equivalent to using a non-parametric

regression method with a very small amount of smoothing, as we have seen occurs

when using data-driven methods with correlated residuals. First-order di↵erencing is

also related to the Box–Jenkins approach to modeling time series, where higher-order

di↵erences of a time series are treated as realizations from a stationary autoregressive

moving average (ARMA) model [17].
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Figure 2.9: The residuals ⌘̂
t

inferred using CRR for each double-decade period. Note
that the residuals exhibit strong non-stationarity after detrending via CRR.

We also consider the computational structure of the microscale dynamics, but

make no assumption on the trend being locally linear. Instead, we consider the

residuals {⌘̂
t

}T

t=1 inferred from the CRR-based smoothing. These residuals for each

double-decade period are shown in Figure 2.9. We see that the residual series,

despite the detrending, are non-stationary: for example, the point-wise variance

clearly changes over time. The same is true if we perform the detrending using

first-order di↵erences, as shown in Figure 2.10.
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Figure 2.10: The residuals ⌘̂
t

computed using first-order di↵erencing for each double-
decade period, similar to the methods used in [1,2]. Note that the residuals exhibit
strong non-stationarity, even after di↵erencing.

Next, we construct causal state models using the binarized residuals {B
t

}T

t=1.

These causal state models are equivalent to those constructed in the smoothing

parameter selection step of complexity-regularized regression, and we use CSSR

with the same parameter values ↵ = 0.001 and Lmax = 5. The causal state models

for the double-decade periods are shown in Figure 2.11. Each node corresponds to a

causal state (an equivalence class over pasts), and each directed edge corresponds to

an allowed transition out of that state, annotated with b | p, where b is the symbol
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emitted (either zero when below the trend or one when above the trend), and p is

the probability of emitting that symbol, given the current causal state. We see that

all four decades are characterized by the same two-state causal state model, with

di↵ering transition probabilities. The first state (B) represents when the market

tends to remain above the prevailing trend, and a second state (S) represents when

the market tends to remain below the prevailing trend. Interestingly, the causal

state models for 1970 to 1989 and 1990 to 2009 are very similar, with only minor

di↵erences in the probabilities associated with the transitions out of state S.

(a) 1930 to 1949: Cµ = 1.0 bit, hµ = 0.79 bits per symbol

(c) 1970 to 1989: Cµ = 1.0 bit, hµ = 0.68 bits per symbol (d) 1990 to 2009: Cµ = 1.0 bit, hµ = 0.71 bits per symbol

(b) 1950 to 1969: Cµ = 1.0 bit, hµ = 0.48 bits per symbol

B S

1|0.25

0|0.23

1|0.77 0|0.75 B S1|0.90

0|0.10

0|0.90

1|0.10

B S1|0.82

0|0.18

0|0.81

1|0.19

B S1|0.82

0|0.18

0|0.80

1|0.20

Figure 2.11: The causal state models associated the binarized residuals B
t

after
removing the inferred trend r̂

t

for each double-decade period. Note that the overall
structure of the causal state models remain fixed while the transition probabilities
change from time period to time period.

The statistical complexity C
µ

and the entropy rate h
µ

of the binarized resid-

uals are reported in Table 2.2. As described previously, the statistical complexity

characterizes the amount of memory in a stochastic process, in the sense that it

quantifies the number of bits of the past necessary to optimally predict the future.
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The entropy rate characterizes the intrinsic randomness in the process [44], in the

sense that the entropy rate quantifies the uncertainty in the future of the process

after accounting for its entire past. Together, the entropy rate and statistical com-

plexity give a picture of the predictability of the process and the computational

overhead necessary to optimally perform the prediction. We see that for all four

double-decade periods, the statistical complexity is one. That is, in order to predict

whether or not the market will be above or below the prevailing trend the next

day, we need only know whether the market is above or below the prevailing trend

on the current day. This memory does not change from double-decade period to

double-decade period. However, the entropy rate does di↵er, indicating that despite

the similar memory, the intrinsic randomness of day-to-day fluctuations has changed

over time.

Table 2.2: The statistical complexities C
µ

and entropy rates h
µ

for the causal state
models inferred from the binarized residuals for each double-decade period.

Time Period C
µ

(bits) h
µ

(bits per symbol)

1930–1949 1.0 0.79
1950–1969 1.0 0.48
1970–1989 1.0 0.68
1990–2009 1.0 0.71

2.5 Discussion and Future Work

When performing data-driven non-parametric regression, choosing the ap-

propriate tuning parameter to learn from the data is paramount. Oversmooth-

ing the data will miss out on important details, while undersmoothing the data
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will pick up spurious structure introduced by noise. We have proposed a method

for choosing this tuning parameter in the situation where the residuals are corre-

lated. We have seen that complexity-regularized regression outperforms generalized

cross-validation, a popular data-driven approach, in the correlated case. Moreover,

complexity-regularized regression does so with no assumptions on the properties

of the residual process other than stationarity and short memory. Thus, our ap-

proach presents a non-parametric alternative to more standard methods [59], which

assume a parametric form for the residual process. In addition, we have seen that

complexity-regularized regression outperforms the original runs-based method of

Davies et al., in the case of correlated residuals, while still maintaining the spirit of

model-free regression.

To apply our method, we have removed a great deal of information from the

residuals by only considering their signs in constructing a causal state model. A

similar loss of information occurs when using, for instance, the Wald–Wolfowitz

runs test. Keeping the magnitudes, as well as the signs, of the residual series

should give a more accurate representation of its “randomness”. Recent work has

extended the techniques of computational mechanics to continuous-valued, discrete-

time stochastic processes [60] without the need to introduce a (somewhat arbitrary)

discretization. This new formalism also associates a statistical complexity with any

continuous-valued time series, with a similar interpretation in terms of the amount

of past necessary to predict the future of a time series. The statistical complexity

of the continuous-valued residuals would incorporate more information about the

residuals and might improve the complexity regularization formalism.
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We have seen from the DJIA example that, even after removing the most

prominent trend in the data, non-trivial non-stationarities in the residuals remain.

This is most likely due to the multi-scale nature of the time series, which presum-

ably contains shorter timescale weekly and monthly seasonalities in addition to the

longer timescale overall trend. To account for these non-stationarities, we could

iteratively use complexity-regularized regression to generate a family of trends at

di↵erent timescales. For example, we might consider the trend inferred using the

methodology as representing the lowest frequency components of the trend. We

could then treat the inferred residuals as a fresh input to complexity-regularized re-

gression and estimate a higher-frequency trend in the residuals. We could continue

in this manner until the residuals appear “random enough” by some criterion.

2.6 Conclusion

A new method for nonparametric regression has been proposed to handle the

case of serially-correlated residuals, as commonly occurs in time series analysis. The

method is “model-free,” in the sense presented in [40], i.e., we assume no model

for the residuals and, instead, infer a regression curve to force the residuals to

satisfy some criterion of randomness. The algorithm works by employing standard

nonparametric regression estimators and choosing their smoothing parameter, so

as to make the residuals look random, in that the statistical complexity of the

binarized residuals is minimized. The approach was found to outperform GCV

when the residuals are correlated.
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We have applied complexity-regularized regression to analyzing the day-to-

day price associated with the Dow Jones Industrial Average from 1930 to 2009. Our

approach allows us to recover both long-term trends in the market and short-term

behavior.
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Chapter 3: Predictability of User Behavior in Social Media: Bottom-

Up v. Top-Down Modeling

3.1 Introduction

At the most abstract level, an individual using a social media service may

be viewed as a computational agent [61]. The user receives inputs from their sur-

roundings, combines those inputs in ways dependent on their own internal states,

and produces an observed behavior or output. In the context of a microblogging

platform such as Twitter, the inputs may be streams from other Twitter users, real

world events, etc., and the observed behavior may be a tweet, mention, or retweet.

From this computational perspective, the observed behavior of the user should give

some indication of the types of computations the user is doing, and as a result, an

insight into viable behavioral models of that user on social media. Large amounts

of observational data are key to this type of study. Social media has made such

behavioral data available from massive numbers of people at a very fine temporal

resolution.

As a first approximation to the computation performed by a user, we might

consider only the user’s own past behavior as possible inputs to determine their
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future behavior. From this perspective, the behavior of the user can be viewed as a

point process with memory, where the only observations are the time points when

social interactions occurred [62]. Such point process models, while very simple, have

found great success in describing complicated dynamics in neural systems [63], and

have recently been applied to social systems [64,65].

We propose extending this previous work by explicitly studying the predictive

capability of the point process models. That is, given observed behavior for the

user, we seek a model that not only captures the dynamics of the user, but also

is useful for predicting the future behavior of the user, given their past behavior.

The rationale behind this approach is that if we are able to construct models that

both reproduce the observed behavior and successfully predict future behavior, the

models capture something about the computational aspects, in the sense outlined

above, of the user.

Since in practice we never have access to all of a user’s inputs, nor to their

internal states, we cannot hope to construct a ‘true’ model of a user’s behavior.

Instead, we construct approximate models. In particular, we consider two classes of

approximate models: causal state models and echo state networks.

The causal state modeling approach, motivated by results from computational

mechanics, assumes that every individual can initially be modeled as a biased coin,

and then adds structure as necessary to capture patterns in the data. It does this

by expanding the number of states necessary to represent the underlying behavior

of the agent. Causal state models have been used successfully in a number of

di↵erent domains, including elucidating the computational structure of neural spike
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trains [12], uncovering topic correlations in social media [66], and improving named

entity recognition in natural language processing [67]. As opposed to the simple-

to-complex approach used by causal state modeling, echo state networks start by

assuming that agent behavior is the result of a complex set of internal states with

intricate relationships to the output variables of interest, and then simplifies the

weights on the relationships between the internal states and the output variables

over time. Echo state networks have proven useful in a number of di↵erent domains

including wireless networking [68], motor control [69], and grammar learning [70].

Our motivation for considering these two models was twofold. First, they share

a structural similarity in that they both utilize hidden states that influence behavior

and incorporate past data when making future decisions. Second, they approach

modeling from two di↵erent perspectives. As mentioned, both representations have

a notion of internal state, and the observation of past behavior moves the agent

through the possible states. It is the model of these dynamics through the states

that makes it possible to use these methods to predict an individual’s behavior.

Moreover, whereas computational mechanics seeks to construct the simplest model

with the maximal predictive capability, echo state networks relax down from very

complicated dynamics until predictive ability is reached. Due to this di↵erence, we

hypothesize that there are some users that will be easier to predict using a causal

state modeling approach, and a di↵erent set of users that will be easier to predict

using an echo state network approach.

In the rest of this chapter, we explore this hypothesis. We begin by describing

the two approaches we used and their relevant literature. After this, we describe
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the data used to test the predictive ability of these methods, and the investigations

that we carried out to evaluate this ability. Finally, we conclude with limitations of

the present work and future avenues of research.

3.2 Methodology

3.2.1 Notation

For each user, we consider only the relative times of their tweets with respect

to a reference time. Denote these times by {⌧
j

}n

j=1. Let the reference start time

be t0 and the coarsening amount be �t. From the tweet times, we can generate a

binary time series {X
i

}T

i=1, where

X
i

=

8
>><

>>:

1 : 9⌧
j

2 [t0 + (i� 1)�t, t0 + i�t)

0 : otherwise

. (3.1)

In words, X
i

is 1 if the user tweeted at least once in the time interval [t0 + (i �

1)�t, t0 + i�t), and 0 otherwise. Because the recorded time of tweets is restricted

to a 1-second resolution, a natural choice for �t is 1 second. However, due to

limitations in the amount of data available we will coarsen the time series to less

than this resolution. Thus, in this chapter, we consider the behavior of the user

as a point process, only considering the timing of the tweets, and discarding any

informational content in the tweet (sentiment, retweet, mention, etc.).

Once we have the user’s behavior encoded in the sequence {X
i

}T

i=1, we wish

to perform one-step ahead prediction based on the past behavior of the user. That
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is, for a time bin [t0 + (i � 1)�t, t0 + i�t) indexed by i, we wish to predict X
i

given a finite history X i�1
i�L

= (X
i�L

, . . . , X
i�2, Xi�1) of length L. This amounts to a

problem in autoregression, where we seek a function r from finite pasts to one-step

ahead futures such that we predict X
i

using

X̂
i

= argmax
xi2{0,1}

r(x
i

; xi�1
i�L

). (3.2)

If we assume that {X
i

}T

i=1 was generated by a stochastic process, the optimal choice

of r would be the conditional distribution

r(x
i

; xi�1
i�L

) = P (X
i

= x
i

|X i�1
i�L

= xi�1
i�L

), (3.3)

and the optimal prediction would be the x
i

that maximizes this conditional prob-

ability. If we further assume that {X
i

}T

i=1 is a conditionally stationary stochastic

process [71], the prediction function simplifies to

r(x
i

; xi�1
i�L

) = P (X
L

= x
i

|XL�1
0 = xi�1

i�L

), (3.4)

independent of the time index i.

Because in practice we do not have the conditional distribution available, we

consider two approaches to inferring the prediction function r: one from computa-

tional mechanics [4] and the other from reservoir computing [72], specifically the

echo state network [73]. These two methods for inferring r di↵er dramatically in

their implementations. Computational mechanics seeks to infer the simplest model
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that will capture the data generating process, while echo state networks generate a

complex set of oscillations and attempt to find some combination of these that will

map to the desired output.

3.2.2 Computational Mechanics

Computational mechanics proceeds from a state-space representation of the

observed dynamics, with hidden states {S
i

}T

i=1 determining the dynamics of the

observed behavior {X
i

}T

i=1. The hidden state S
i

for a process, called the causal or

predictive state, is the label corresponding to set of all pasts that have the same

predictive distribution as the observed past x
i

. We call the mapping from pasts to

labels ✏. Two pasts x and x0 have the same label s
i

= ✏(x) = ✏(x0) if and only if

P (X1
i

|X i�1
�1 = x) = P (X1

i

|X i�1
�1 = x0) (3.5)

as probability mass functions. That is, the two pasts x and x0 give statistically

equivalent predictions over all possible futures x1
i

. Now, instead of considering

P (X1
i

|X i�1
i�L

= xi�1
�1), we consider the label for the past s

i

= ✏(xi�1
�1), and use

P (X1
i

|S
i

= s
i

). We then proceed with the prediction problem outlined above. The

state S
i

(or equivalently the mapping ✏) is the unique minimally su�cient predictive

statistic of the past for the future of the process. Because the hidden states {S
i

}T

i=1

can be thought of as generating the observed behaviors {X
i

}T

i=1, they are called the

causal states of the process. The resulting model is called an ✏-machine (after the

statistic ✏) or a causal state model (after the causal state S).
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Of course, in practice the conditional distribution P (X1
i

|X i�1
�1 = x) is not

known, and must be inferred from the data. Beyond the advantage of computational

mechanics’s state-space representation as a minimally su�cient predictive statistic,

it also admits a way to infer the mapping ✏ directly from data. We will infer the

model using the Causal State Splitting Reconstruction (CSSR) algorithm [46]. As

the name CSSR implies, the estimate ✏̂ is inferred by splitting states until a stopping

criterion is met. The algorithm begins with a null model, where the data generating

process is assumed to have a single causal state, corresponding to an IID process.

It continues to split states (representing a finer partition of the set of all pasts)

until the partition is next-step su�cient and recursively calculable. The resulting ✏̂

and the estimated predictive distributions P̂ (X
i

|S
i

= ✏̂(xi�1
i�L

)) can then be used to

estimate the prediction function, giving

r̂cm(xi

; xi�1
i�L

) = P̂ (X
i

= x
i

|S
i

= ✏̂(xi�1
i�L

)). (3.6)

We will refer to the estimated ✏̂ and associated predictive distributions as the causal

state model for a user.

3.2.3 Echo State Networks

Neural networks can be divided into feed-forward and recurrent varieties. The

former are easier to train but lack the capacity to build rich internal representations

of temporal dynamics. In contrast, the latter are naturally suited to representing

dynamic systems, but their learning algorithms are more computationally intensive
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and less stable. Echo state networks attempt to resolve this conflict by using ran-

domly selected, fixed weights to drive the recurrent activity and only training the

(far simpler) output weights.

In addition to simplifying the training process, echo state networks shift the

problem into a higher dimensional space [74]. This technique of dimensional ex-

pansion is commonly employed in machine learning, for instance by Support Vector

Machines, Multilayer Perceptrons, and many kernel methods. A decision boundary

which is nonlinear in the original problem space is often linear in higher dimensions,

allowing a more e�cient learning procedure to be used [75, 76].

The echo state networks we used here consists of 10 input nodes, 1 output

node and a “reservoir,” consisting of 128 hidden nodes, which is randomly and

recurrently connected. The connection weights W within the reservoir as well as

the weights to it from the input and output nodes (Win and Wfb, respectively)

are sampled uniformly at random from the interval [0, 1]. W is also scaled such

that the spectral radius ⇢(W) < 1 [77]. This scaling ensures the network will

exhibit the “echo state property:” the e↵ect of previous reservoir states and inputs

will asymptotically approach zero as time passes rather than persisting indefinitely

or being amplified [78]. Only the weights Wout from the reservoir to the output

nodes are trained. The goal is to draw on the diverse set of behaviors within the

reservoir and find some linear combination of those oscillations which match the

desired output.
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States of reservoir nodes y
t

are updated according to

y

t

= �(Winxt

+Wy

t�1 +Wfbzt�1) (3.7)

where x

t

is the current network input, z
t�1 is the previous network output, and �

is the logistic sigmoid function. The output of the network is determined by

z
t

= �(Wout [xt

|y
t

]) (3.8)

where | represents a vertical concatenation.

The training procedure involves presenting the network with each input in the

sequence and updating the internal reservoir. The inputs and reservoir states are

collected row-wise in a matrix S. We redefine the network’s targets during training

to be z0
t

= ��1(z
t

) and collect them row-wise in D. This allows us to use a standard

pseudo-inverse solution to compute the output weights Wout = (S�1
D)T which

minimizes the MSE of the network on the training output.

3.3 Data Collection and Preprocessing

The data consists of the Twitter statuses of 12,043 users over a 49 day period.

The users are embedded in a 15,000 node network collected by performing a breadth-

first expansion from a seed user. Once the seed user was chosen, the network was

expanded to include his/her followers, only including users considered to be active

(users who tweeted at least once per day over the past one hundred tweets). Network
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collection continued in this fashion by considering the active followers of the active

followers of the seed, etc.

The statuses of each user were transformed into a binary time series using their

time stamp, as described in the Methodology section. In this chapter, only tweets

made between 7 AM and 10 PM (EST) were considered. For any second during this

time window, a user either tweets, or does not. Thus, each day can be considered

as a binary time series of length 57,600, with a 1 at a timepoint if the user tweets,

and a 0 otherwise.

Because of statistical and computational limitations, the time series were fur-

ther coarsened by binning together disjoint intervals of time. We considered time

windows with length equal to ten minutes (�t = 600). Thus, we created a new time

series by recording a 1 if any tweeting occurs during a ten minute window, and a 0

otherwise. Once we have the (either coarsened or not) time series, we can visualize

the behavior of a user over the 49 day period by using a rastergram. A rastergram

visualizes a point process over time and over trials. The horizontal axis corresponds

to the time point in a particular day, and the vertical axis corresponds to the day

number. At each time point, a vertical bar is either present (if the user tweeted on

that day at that time) or absent. Visual inspection of rastergrams serves as a first

step towards understanding the behavior of any given user. Figure 3.1 demonstrates

the original and coarsened time series for two users.

The users were further filtered to include only the top 3,000 most active users

over the 49 day period. A base activity measure was determined by the proportion

of seconds in the 7 AM to 10 PM window the user tweeted, which we call the tweet

57



Figure 3.1: Coarsening of two users. Each row in the rastergram corresponds to
a single day of activity for a fixed user. The original time series are at single
second resolution, resulting in 57,600 time points in each day. After binning together
activity using disjoint (partitioned) ten minute windows, there are 96 time points
in each day (T = 96).

rate. Of the top 3,000 users, these tweet rates ranged from 0.38 to 8.5⇥ 10�5. 90%

of the top 3,000 users had a tweet rate below 0.05. The distribution of the tweet

rates amongst the top 3,000 users is shown in Figure 3.2.

3.4 Results and Discussion

3.4.1 Testing Procedure

The 49 days of user activity were partitioned, chronologically, into a 45 day

training set and a 4 day testing set. This partition was chosen to account for possible
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Figure 3.2: The observed distribution of the fraction of time spent tweeting (tweet
rate) over the 49 day period for all of the users. 90% of the 3,000 users had a tweet
rate below 0.05.

changes in user behavior over time, which would not be captured by using a shu✏ing

of the days. Thus, for each user, the training set consists of 4,320 timepoints, and

the testing set consists of 384 timepoints.

The only parameter for the causal state model is the history length L to use.

This was treated as a tuning parameter, and the optimal value to use was determined

by using 9-fold cross-validation on the training set. The maximal history length Lmax

that can be used and still ensure consistent estimation of the joint distribution is

dependent on the number of time points n, and is bounded by

Lmax <
log2 n

h+ ✏
, (3.9)

where h is the entropy rate of the stochastic process and ✏ is some positive con-
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stant [50]. Thus, because 0  h  1 for a stationary stochastic process with two

symbols, as a practical bound, we take

Lmax < log2 n.

For this data set, the bound requires that Lmax < 12. Thus, we use the 9-fold cross-

validation to reconstruct causal state models using histories of length 1 through 11,

and then choose the history length that maximizes the average accuracy rate taken

over all of the folds.

Experiments showed that the echo state network was robust to varying pa-

rameter choices as long as the echo state property is achieved [79, 80]. As a result

all networks were created with ⇢(W) = 0.99 and LESN = 10.

3.4.2 Comparison to Baseline

In all cases, we compute the accuracy rate of a predictor using zero-one loss.

That is, for a given user, we predict the time series X1, . . . , Xn

test

as X̂1, . . . , X̂n

test

and then compute

Accuracy Rate =
1

ntest

n

testX

i=1

[X̂
i

= X
i

]. (3.10)

We compared the accuracy rates on the causal state model and echo state

network to a baseline accuracy rate for each user. The baseline predictor was taken

to be the majority vote of tweet vs. not-tweet behavior over the training days,
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regardless of the user’s past behavior. That is, for the baseline predictor we take

X̂
i

=

8
>>><

>>>:

0 : p̂  1
2

1 : p̂ > 1
2

, (3.11)

where p̂ = 1
n

train

P
n

train

j=1 X
j

. This is the optimal predictor for a Bernoulli process

where the {X
i

} are independent and identically distributed Bernoulli random vari-

ables with parameter p. In the context of our data, for users that usually tweeted in

the training set, the baseline predictor will always predict that the user tweets, and

for users that usually did not tweet in the training set, the baseline predictor will

always predict the user does not tweet. For any process with memory, as we would

expect from most Twitter users, a predictor should be able to outperform this base

rate.

The comparison between the baseline predictor and the casual state model

and echo state network predictors are shown in Figure 3.3. In both plots, each red

point corresponds to the baseline rate on the testing set for a given user, and the

blue point corresponds to the accuracy rate on the testing set using one of the two

models. Here, the tweet rate is computed in terms of the coarsened time series. That

is, the tweet rate is the proportion of ten minute windows over the 49 day period

which contain one or more tweet. Clearly, the model predictions show improvement

over the baseline prediction, especially for those users with a tweet rate above 0.2.

To make this more clear, the improvement as a function of the tweet rate

of each user is shown in Figure 3.4 for both methods. Breaking the users into
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(a) Causal State Model
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Figure 3.3: The improvement over the baseline accuracy rate for the casual state
model and echo state network. In both plots, each red point corresponds to the
baseline accuracy rate for a user, and the connected blue point is the accuracy rate
using either the causal state model or the echo state network.

two groups, with the high tweet rate group having a tweet rate greater than 0.2

and the low tweet rate group having a tweet rate greater than or equal to 0.2, we

can estimate the conditional density of improvements among these groups. These

estimated densities are shown in Figure 3.5. We see that most of the improvement

lies in the high tweet rate group, while the low tweet rate group is concentrated

around 0 improvement.

3.4.3 Typical Causal State Models for the Users

The causal states {S
i

}T

i=1 of a stochastic process {X
i

}T

i=1 form a Markov chain,

and the current causal state S
i

plus the next emission symbol X
i+1 completely

determine the next causal state S
i+1 [4]. These two properties of a causal state

model allow us to write down an emission-decorated state-space diagram for a given
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Figure 3.4: The improvement over the baseline accuracy rate for the causal state
model and the echo state network. For both models, the greatest improvement
occurred for a coarsened tweet rate near 1

2
.

user. That is, the diagram resembles the state-space diagram for a Markov (or

Hidden Markov) model, with the additional property that we must decorate each

transition between states by the symbol emitted during that transition.

Several such diagrams are shown in Figure 3.6. Each circle corresponds to a

causal state, and each arrow corresponds to an allowable transition. The arrows

are decorated with e
ij

|p
ij

, where e
ij

is the emission symbol observed transitioning

from causal state i to causal state j, and p
ij

is the probability of transitioning

from causal state i to causal state j. For example, Figure 3.6(a) corresponds to a

Bernoulli random process with success probability p. At each time step, the causal

state returns to itself, emitting either a 1, with probability p, or a 0, with probability

1� p.

The four causal state models shown are typical examples of the models ob-

served in 79.3% of the 3,000 users. The model corresponding to Figure 3.6(a) is
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Figure 3.5: The distribution of improvements for both the causal state model and
echo state network, with the users partitioned into ‘High Tweet Rate’ (tweet rate
greater than 0.2) and ‘Low Tweet Rate’ (tweet rate lower than 0.2) groups.
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Figure 3.6: Typical 1, 2, 3, and 4-state causal state models. Of the 3,000 users,
383 (12.8%), 1,765 (58.8%), 132 (4.4%), and 100 (3.3%) had these number of states,
respectively.

simple: the user shows no discernible memory and so the behavior is a biased coin

flip. Only 383 (12.8%) of the users correspond to this model. The second model,

Figure 3.6(b), displays more interesting behavior. We see that such users have two

states, labeled A (active) and P (passive). While the user is in state A, it may stay

in state A, continuing to emit 1s, or transition to state P emitting a 0. While in

state P, the user may stay in state P, continuing to emit 0s, or transition to state A

emitting a 1. Thus, these two states correspond to a user that is typically active or

passive over periods of time, exhibiting ‘bursting’ behavior as in the second user in

Figure 3.1.

Users corresponding to the causal state models shown in Figure 3.6(c) and

Figure 3.6(d) exhibit even more involved behavior. Both have a rest state R, where

the user does not tweet. However, the active states show more structure. For

example, in Figure 3.6(c) we see that the user has an active state A, but sometimes

65



transitions to state P emitting a 0, where the user can then return back to the active

state A or transition to the rest state R. Figure 3.6(d) shows similar behavior, but

with an additional intermediate state I. While these models match our intuitions

about how a typical Twitter user might behave, it is important to note that the

models result entirely from applying CSSR to the data, and did not require any a

priori assumptions beyond conditional stationarity.

3.4.4 Direct Comparison between the Performance of the Causal

State Models and the Echo State Networks

Given the striking similarity in performance between the causal state model

and the echo state network, we next compared them head-to-head on each user.

The improvement for the causal state model vs. the improvement for the echo state

network on each user is shown in Figure 3.7. As expected given the previous results,

the improvements for each method are very strongly correlated.

Next, we investigated the top 20 users for which the causal state model or

the echo state network outperformed the other model. For those users where the

causal state model outperformed, the clearest indicator was the structured (near

deterministic) behavior of the users. The top four such users are shown in Figure 3.8.

The causal state model inferred from the data can be used to characterize the

structure of the observed dynamics in a formal manner [4]. Because the hidden

states S = {s1, . . . , s|S|} determine the observed dynamics, the entropy over those

states can be used to characterize the diversity of behaviors a process is capable of.
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Figure 3.7: The improvement over baseline for the causal state model vs. the im-
provement over baseline for the echo state network. The red line indicates identity,
where the two methods improve equally over the baseline predictor.

The entropy over the causal state process is called the statistical complexity of the

process, and given by

C
µ

= H[S] (3.12)

= �
X

s2S

P (S = s) log2 P (S = s). (3.13)

Informally, it is the average number of bits of the past of a process necessary to

optimally predict its future. For example, for an IID process, C
µ

= 0 bits, since

none of the past is necessary to predict the future, while for a period-p process,

C
µ

⇡ log2 p bits, since it takes log2 p bits of the past to synchronize to the process.

Of the top twenty users best predicted by the causal state model, the average
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Figure 3.8: Raster plots for the four users where the causal state model most out-
performed the echo state network. Note that in all but the bottom left case, the
users show highly ‘patterned’ behavior. This is typical of the top twenty users for
which the causal state model outperformed the echo state network.

statistical complexity was 3.99 bits, while the top twenty users best predicted by

the echo state network had an average statistical complexity of 2.72 bits. Figure 3.9

shows the di↵erence between the two methods as a function of the inferred statistical

complexity. We see that the causal state models tend to outperform the echo state

network for high statistical complexity users, while the echo state network tends to

outperform for the low (near 0 bits) statistical complexity users.

Of the top twenty users best predicted by the echo state network, we observed

68



●● ●●●
●

●●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●
●

●

●
●

●
●

●
●

●

●

● ●●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●●

●

●
●

●

●

●

●● ●●
● ●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

● ● ●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●
●●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●●

●

●
●

●

●

●

● ●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●
● ●●

●

●

●

●
●

●

●
●

●
●

●

● ●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

● ●

●

● ●● ●
●

●
●

●

●

●

●

●

●
● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●
● ●

●
●

●

● ●
●

●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●
● ●

●
●

●

●

●

●

●
●
● ●

●

●
● ●●

●

●

●
●

●●● ●
●

●

●

●
●

●
● ●●● ●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
● ●

●
●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●
●
●

●

●● ●

●

●

●●●●

●

●

●

●

●
●

●

●
●

●● ●●●

●

●
●

●
● ●

●●

●

●
● ● ●●

●
●

●
●● ● ●●

●

●●

●
●

●

●
●●

●

●

●

● ● ●● ●

●

●
●

●

●

●

● ●
●

●● ●●●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●●
●

●●

●●

●

●

●

●

●
● ●

●

●●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●●
●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

● ●● ●● ●

●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

● ●● ●
●● ●

●

●

●
● ●

● ●

●

●

●

●●
●
●●

●

●
●● ●●●● ●

●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

●

●
●●●● ●● ●

●

● ●

●

● ●
●

●

●

●

●● ●●
●

●

●
●● ●●●●●

●●
●

●

●

●

●
●

●

● ●
●

●

●

● ●●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

● ●

●
● ●● ●●

●

●
●

●● ●●

●
● ●

●
●

● ●● ●

●

●
●

●

●

●●

●

●

●

●●

●

●●
●
●

●● ●● ●

●

●
●

●●●
●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●
● ●● ●● ●

●

●

● ●

●
●

● ●

●

●

●
●● ●

●

●
●

●● ●
●

●

●

●

●

●●● ●

●

●

●

●●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●
●

●

●●●
●

●
●●

●

●●
●

●

●

●

●
●

●

●
●●

●
● ●●●●

●

●

●

●●
●

●

●

●

● ●● ●

●

●

●

●

● ● ● ●

●

● ●●●●●

●

● ●
●

●

●
●

●

●

●
●

●
●

●● ● ●
●

●
●

●

●●
●
●● ●

●

●●● ●

●

●

●
● ●● ● ●●

●

●●
●

●

●

●

●
●

●

●

●

●
●●

● ● ●●
●

● ●

●

●

●●
●

●●●●

●

●

●
●●

●

●
●

●
● ●

●
● ●●

●
●●

●

●

●

●●

●

●

●

●
●

● ●●
●

●

●

●

●● ●●
●

●
●
● ● ●●●●

●
● ●

●
●
●

● ●

●

●

●

●

●

●
●●

●● ●
●

●● ●●●●
●

●● ● ●
●

●●●

●

●● ●
●
●●●

●

● ●●
●

●●● ●
●

●●●●

●

● ● ● ●●

●

●●●
●

●

●
●

●
●

●
●

●●

●

●● ●● ●● ●
●

●●

●

●
●

● ● ●●
●

● ●●
●
● ●● ● ●●● ●

●
●

●
●●
●

●
●●

● ●●●

●

●
●

●
●● ● ●● ● ●●●●●●●●●●●

●

●

●

●

●

● ●●●●

●

●● ●

●

● ●

●

●

●

●●
●

●

●

●

●

●● ●●●

●

●●●●
● ●

●

●

●●

●

●●●● ● ●● ● ●●

●

●

●

●● ● ● ●

●

●
●

● ●●
● ●
●●

●

●●
●

●● ●

●●

●

●

●
●
●●

●
●

●

●

●● ●● ●
●● ●

● ●

●

●●

●

●●

●

●

●

● ●●

●

●

● ●●
●

●
●

●

●

● ●●

●

●
●

●

●

●
● ●● ●●

●

●● ●●
●

●

●

●●

●
●

●
●

● ●
●

●● ●

●

●

●

●
●

●
●

●

●
● ●●●● ●●●●

●

● ● ●●●●

●

● ● ●● ●
●

● ●

● ●●
●

●

●

●

●● ●
●
●● ●● ●●

●
●●

●

● ● ●●●●●
●

●● ● ●●

●

●
●

●●

●

●

●

●

● ● ●

●

●
●
● ●● ●

●

● ●●●

●

●●● ●
●

●●

●

● ●● ●

●

●

●

●
●● ● ●● ●● ●● ●●●●● ●

●
●●●●●

● ●

●

● ●
●●

●

●

●

●● ●● ●● ●

●

●● ●● ●●●●● ●

●

●

●●
●

●●●● ●● ●● ●

●

●●

●

● ●

●

● ●●●● ● ● ●●●●
●

●
●

●
●

●

●● ●● ●● ●● ●
●
●●

●

●
●

● ● ●●●● ●●●●●● ●
●

●

● ●● ●

●

●
●● ●● ●● ●●●

●

●●●●●●●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●● ●●

●

●

●

●
●●

●
● ●●●● ● ●●

●
● ● ●

●
●● ●● ●● ●● ●● ●●● ●
●

●●● ●

●

●

●
●

●● ●

●

●
●

●● ●● ● ●●
●

●● ● ●●● ●●● ●●

●

●● ●
●

●
● ●● ●

●

●● ●●

●

● ●● ●●●●
●
●● ●●● ●● ●
●

●

●

●●●●

●

●●
●

●●●●

● ●

●
● ●●●●● ●●
●

●● ●●● ●●

●

●● ●● ●

●
●

●

●

● ●● ●
●

●●● ●● ●●●● ●
●

●
●

● ●●●● ●● ●●●

●

● ●● ●●● ●● ●
●

●
●

● ●●

●
●

● ●●●● ● ● ●● ●
●
●●
●

●● ●

●

●●● ●●●

●

● ●●●● ●●●●

●

●
●

●

●●●●● ●●

●

●

●

● ●

●

●

●

●●● ●

●

●●●● ●● ● ●●●●● ● ●●
●

●
●

● ●●●●● ●●
●
●● ●● ●● ●● ●●● ●●●●● ● ●● ●●● ●●● ● ● ●●● ● ●● ●● ●● ●●
●

● ● ●●●●

●

● ●● ●●●
●

● ●●

●

●● ●●

●

● ●●●
●

●●●● ● ● ●●● ●●● ●
●
● ●● ●●● ●●

●
●

●●●●●
●

● ●
●

●●●● ●●

●

●●●● ●●
●

●
●
●●●●

●

●●●●●● ●● ●●

●

●● ●● ●● ●●●●●

●

●
●
●● ●●

●
● ●●

●

●●
●

●

●

●
● ●

●

●●●● ●●●●●●

●

●

●

●●●

●

●● ●● ●
●

●●
●

●

●

●

●

●● ●●

●

●●
●

●

● ● ●
●

●●●● ●●
●

●●●●● ●● ●
●

● ●●
●

●

●●●
●

● ●●● ● ●●
●

●●
●

●
●

●●
●
●

●
●●●● ●

●

● ●
●
●●●●●●●●●

●

●●●
●
●● ● ● ●●●

●
●●● ●●● ● ●

●

●●● ● ●●
●
●● ●●●●● ●●● ● ●●●● ●●

●
●●●●● ●●●
●

● ●●

●

●

●●●●●●●● ●● ●●●●●
●

● ●● ●●●● ●
●

●●●● ●● ●●● ●●●● ● ●
●
● ●●●

●

●● ●● ●●
●
●● ●● ●●● ●● ●● ●● ●● ●●

●
●● ●
●

●
●

●●● ●● ●● ●●

●●

●●●
●

●● ● ●●●

●

●● ●●● ●● ●●● ●●

●

●●
●

● ● ●●●●
●

●● ●●
●●

● ● ●● ●
●
●

●
●●●●● ●●● ● ●●● ●● ●

●
●
● ●● ●● ●●●● ●●●●●● ●●●●● ●●●

●

●

●●
●

●● ●●●●●● ●● ●●

●

●●

●

● ●●

0 1 2 3 4 5 6 7

−0
.2

−0
.1

0.
0

0.
1

0.
2

Inferred Statistical Complexity

C
SM

 R
at

e 
− 

ES
N

 R
at

e

Figure 3.9: The di↵erence in improvement between the causal state model and the
echo state network for each user as a function of the inferred statistical complexity
C of each user. The blue lines indicate the cuto↵ points above and below which the
top twenty best users for the causal state model and echo state network, respectively,
lie, and correspond to 0.0465 and -0.0494.

that the test set tended to di↵er from the training set. To test this hypothesis, we

estimated the entropy rates of the test and training sets. The entropy rate h
µ

of a

stochastic process {X
i

}1
i=1 is defined as the limit of the block entropies of length L

as the block length goes to infinity,

h
µ

= lim
L!1

1

L
H[X1, . . . , XL

]. (3.14)

Thus, the entropy rate can be approximated by estimating block entropies

H
L

=
1

L
H[X1, . . . , XL

] (3.15)

of larger and larger block sizes and observing where the block entropies asymptote, as
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Figure 3.10: The di↵erence in accuracy rates between the causal state model and the
echo state network for each user, binned into quartiles by the absolute value of the
di↵erence in entropy rates for the training and testing sets. The causal state model
performs best when this di↵erence is low, and the echo state network performs best
when it is high.

they must for a stationary stochastic process [81]. Unlike block-1 entropy (Shannon

entropy), the entropy rate accounts for long range correlations in the process that

may explain apparent randomness.

As we observed in the top twenty users, we see that overall the causal state

model tends to perform best relative to the echo state network when the training

and test set are similar, while the echo state network tends to outperform in the

cases where the training and test set di↵er. This can be seen in Figure 3.10, in which

the users have been grouped into quartiles by the absolute value of the di↵erence

between training and test set entropy rates.
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tested on its training data, with the training data corrupted by flipping a proportion
q of the bits. Bars indicate plus or minus one standard deviation in the accuracy
rates across all users.

3.4.5 Bit Flip Experiment

To further explore this di↵erence between the two models, we performed the

following ‘bit flip’ experiment. For each user, we trained both the causal state model

and the echo state network on the full 49 days of data. We then tested the users on

the same data, but with some proportion q of data set flipped such that 0s become

1s and vice versa, with q ranging from 0 to 1 in increments of 0.1. This allows us to

synthetically create examples where the training and test sets di↵er as much or as

little as desired.

The result of this experiment is shown in Figure 3.11. The causal state model

performs as expected, with the accuracy rate degrading as the corruption in the
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training set approaches 50%. Beyond this point, the large variance in the accuracy

rates result from the di↵erent types of models inferred from the data. In particular,

the 58.8% of users with a two-state ‘bursting’ causal state model as in Figure 3.6(b)

continue to perform well, as the recoding of a burst of zeros or ones does not e↵ect

the predictive capability of the model.

The echo state networks show the same degradation in accuracy rate as the

corruption in the training set approaches 50%, but beyond this amount they begin

to show improvement. The large variance in the accuracy rates is again explained

by a bimodality in the accuracy rates.

We believe the improvement in accuracy the echo state networks display when

more than 50% of bits are changed is a result of many of the networks having

learned a simple “trend-following” model: if you are in a tweeting state, continue

tweeting; if you are in a non-tweeting state, continue not tweeting. This is very

similar to the commonly observed two-state causal state model (Figure 3.6(b)) with

one important di↵erence—the echo state network does not fix the probabilities of

being in either the active or passive states based on the training data. When a

high proportion of bits have been flipped a sequence of, for instance, short periods

of activity embedded in long stretches of quiescence will become the inverse: short

periods of silence and long stretches of activity. A causal state model which has

learned a two-state solution based on the original data will struggle since it expects

di↵erent probabilities than those observed in the corrupted sequences, while an echo

state network that has learned only to follow the recent trend will be able to adapt

to the new, altered sequences so long as there are long trends remaining in the data.
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The echo state network thus displays less fidelity to the observed data, but in doing

so may be better able to adapt to particular perturbations if the patterns change,

for example a user who maintains a ‘bursting’ pattern over time, but changes the

length of these bursts.

3.5 Conclusion and Future Work

Overall, the causal state models and the echo state networks both showed

improvement, and in some cases drastic improvement, over a baseline predictor.

Moreover, for a large proportion of the users, the two methods gave very similar

predictive results, as exemplified by Figure 3.7. Out of all the users, 58.8% had in-

ferred causal state models similar to Figure 3.6(b), where a user has a tweeting state

A and a non-tweeting state P. This bursting-type behavior is naturally captured by

the echo state network, and thus the similarity in performance on these users is to

be expected.

We have observed that predictability of user behavior is not homogeneous

across the 3,000 users considered, and in many cases the reason for the di�culty in

prediction di↵ers across users. In some cases, considering a long enough history of

a user’s behavior is enough to predict their future behavior, but others still appear

random after accounting for previous behavior.

In this chapter, we have shown that by building representations of the latent

states of user behavior we can start to predict their actions on social media. We

have done this using two di↵erent approaches, which have di↵erent ways of captur-
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ing the complexity of user behavior. Causal state modeling starts from a simple

model and adds structure, while echo state networks start with complex descrip-

tions and simplify relationships. We hypothesized that these two methods would

perform di↵erently when applied to a diverse collection of users derived from a real

world social media context. Our results indicate that the two methods perform dif-

ferently under di↵erent conditions. Specifically, computational mechanics provides

a better model of a user’s behavior when it is highly structured and does not change

dramatically over time, while the echo state network approach seems to be more

adaptive, while at the same time giving up some of the deep structure present in

the behavior. Moreover, we have shown that both methods are robust to noise and

decay gracefully in performance.

Ultimately, the two methods performed very similarly on a large proportion

of the users. It should be noted that this was not expected. The two methods di↵er

drastically in their modeling paradigm, and the data was quite dynamic, providing

plenty of opportunity for di↵erentiation. Our best explanation is that in the end, and

as noted above, most users exhibit only a few latent states of behavioral processing,

and as such any model which is able to capture these states will do well at capturing

the behavior of users. We could test this hypothesis in future work by restricting the

number of states that both the echo state network and the computational mechanics

approach can use, and observing if the results change substantially.

However, before we address that question, there are several other limitations

of the present work that need to be addressed. One of the biggest weaknesses of

the present approach is its failure to incorporate exogenous inputs to a user. That

74



is, we have treated each user as an autonomous unit, and only focused on using

their own past behavior to predict their future behavior. In a social context, such

as Twitter, it makes more sense to incorporate network e↵ects, and then examine

how the behavior of friends and friends of friends directly impact a user’s behavior.

For example, the behavior of many of the users, especially those users with a low

tweet rate, may become predictable after incorporating the behavior of users in their

following network. The computational mechanics formalism for doing so has been

developed in terms of random fields on networks [7] and transducers [6], but it has

yet to be applied to social systems.

We have also simplified the problem down to its barest essentials, only con-

sidering whether a tweet has occurred and not its content. Information about the

content of a tweet should not decrease the predictive abilities of our methods, and

could be incorporated in future work, for example, by extending the alphabet of

symbols which we allow X
i

to take.

This study has also focused on user behavior over a month and a half period.

With additional data, a longitudinal study of users’ behaviors over time could be

undertaken. We have implicitly assumed the conditional stationarity of behavior

in our models, but these assumptions could be tested by constructing models over

long, disjoint intervals of time and comparing their structure.

We have seen that taking a predictive, model-based approach to exploring user

behavior has allowed us to discover typical user profiles that have predictive power on

a popular social media platform. Moreover, we have shown this using two di↵erent

modeling paradigms. In the near future, we plan to extend this work to take into
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account the social aspects of this problem, and see how network e↵ects influence user

behavior. However, the increase in predictive power without explicitly incorporating

social factors gives us reason to believe that it is possible to make predictions in the

context of user interactions in social media. Such predictions could be useful in

any number of domains. For instance, in a marketing type approach, these models

could be used to understand who will respond to a message that is sent out to a

group of users, and potentially even assist in the determination of whether or not

a particular piece of content will go viral. Predicting user behavior on social media

has the potential to be transformative in terms of both our understanding of human

interactions with social media, and the ability of organizations to engage with their

audience.
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Chapter 4: Forecasting High Tide: Predicting Times of Elevated Ac-

tivity in Online Social Media

4.1 Introduction

For a wide variety of organizations, companies, and individuals there is a

growing interest in using social media to get their message out. For instance, brand

managers are often tasked with launching promotions that raise the awareness of

their brand among users of social media. However, the signal that a brand is trying

to convey can easily get lost in the ‘noise’ produced by other brands, individuals,

bots, etc. While good content is important to engage an audience, it is also impor-

tant to know when users will pay attention to the content in order to increase the

chance that the message is spread. Therefore, a brand manager must consider not

only what they want to say, but when they want to say it.

In order to e↵ectively spread a message on a social media platform, an im-

portant first step is to understand the patterns of user engagement. After receiving

and becoming aware of information, users on a social media platform then evaluate

the content of the information and decide whether it should be retransmitted or

not. Previous research has examined di↵erent criteria for this decision, including
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the sender’s level of activity and the freshness of the information [82], as well as

the user’s benefit from spreading the information [83]. In this research, instead of

exploring criteria related to evaluation of content and the decision to retransmit, we

focus on timing when users on social media are engaged in retransmission behavior.

A key assumption of our approach is that information is most likely to be retrans-

mitted during the highest activity periods. In particular, in this chapter, we study

the task of predicting user engagement on Twitter, and we measure engagement in

terms of the number of users actively issuing retweets.

It is well known that user activity on social media services follows both diurnal

and weekly patterns [84, 85]. For example, Figure 4.1 demonstrates the number of

users active on Twitter out of a collection of 2145 over a four week period, starting

on Mondays at 9am EST. At the daily level, the number of users actively retweeting

increases over the course of a day and then decreases at night. However, the times of

peak activity also fluctuate from week to week. Such fluctuations in social systems

has been attributed to the fact that observed aggregate social behavior, driven

by individual human actions, can be described as mixtures of Poisson and non-

Poisson processes, where these processes can be seen as modeling individual decision

making [86]. Thus, we expect the aggregate behavior of a collection of users who

have di↵erent decision making processes to exhibit significant temporal fluctuation

from seasonality from week to week. In order to e↵ectively reach a large number

of activated users, it is therefore important to determine when they are the most

engaged by tracking such fluctuations while controlling for the diurnal and weekly

seasonality. Moreover, recent work studying the attention of users on Twitter has
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found that retweets of a given tweet typically occur on the time scale of minutes [87,

88]. Given this observation, it is also important that we track seasonal fluctuations

at a fine temporal resolution.
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Figure 4.1: The number of users actively retweeting during disjoint ten minute
windows. Each row corresponds to a week, and each column corresponds to a day
of the week, starting from Monday.

In order to model the number of active retweeters on Twitter at any given

time, we propose three approaches: a seasonality model that assumes the overall

retweet activity on Twitter is fully explained by the time-of-day and day-of-week, an

autoregressive model that explicitly models deviations from the day-to-day season-

ality, and an aggregation-of-individuals approach that models the activity patterns

of each individual user and then aggregates these models to describe the overall

activity pattern.

The seasonality model is based on the assumption that user engagement over

time can be explained by seasonal patterns at the daily and weekly level. Thus, in

order to predict the time when users are engaged at a certain level using this model,

we consider only engagement patterns from the past.
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The autoregressive model seeks to describe the population-level fluctuations

about the seasonality using a simple linear autoregressive model. We assume that

the deviations from seasonality have memory where we can think of this memory in

terms of activation / deactivation of the users on Twitter. For example, a certain

topic might become popular over the course of several hours, leading to activity

greater than expected by the baseline seasonality. Such bursts of activity have been

observed on both Twitter and blogging platforms [89]. By noting when and how

such bursts occur, we can better predict the number of users active on Twitter

compared to using seasonality alone.

The aggregation-of-individuals model explicitly views the overall activity as

the accumulation of the activity patterns of all of the users under consideration.

In particular, we model each user-to-be-aggregated as a point process with mem-

ory [64]. In this case, each individual user can become activated / deactivated,

depending on their own previous behavior and the behavior of their inputs. By

viewing the user as a computational unit, we can build a predictive model of how

they interact with Twitter. This approach has been successfully applied to individ-

ual level prediction [90] on Twitter, where many high volume users were found to be

well-described by such a model. We can then aggregate these individual level models

to produce a global prediction of activity levels that accounts for individual-level

activation.

In the rest of this chapter, we explore the problem of identifying periods of high

activation on a social media platform. We begin by describing our three models and

relevant literature. Then we describe the data sets used to test the predictive ability
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of these models for the proposed problem. Next, we review the predictive ability

of the various models, and compare the benefits and tradeo↵s of each approach.

Finally, we conclude with the limitations of the present work and future directions

to extend and improve it.

4.2 Related Work

A large body of work has investigated the dynamics of technology-mediated

human interaction. Relevant to our work, [91] found that human behavior on

email services is dominated by bursty-type behavior, with periods of high activity

separated by long stretches of inactivity. The authors of [92] found stereotypical

temporal patterns in the interaction between blogs and mainstream media news.

Studies of Twitter have found similar stereotypical aggregate behavioral patterns for

the popularity of particular hashtags over time [92,93]. More recent work has sought

to develop first principle mathematical models explicitly geared towards human

behavior on social media [94, 95].

A great deal of work has been done on the problem of predicting the future

popularity of individual tweets and hashtags based on their features. As a very

recent example, in [96], the authors performed an experiment to investigate how the

wording of a tweet impacts whether it is retweeted, controlling for both the author

and the topic of the tweet. In [97], the authors predict the volume of tweets about a

hashtag day-to-day using features extracted from a corpus of tweets containing that

hashtag on previous days. Similar studies can be found in [98–101]. The problem
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of predicting individual tweet, hashtag, and topic popularity has been well-studied,

and these references are only meant to give a sampling of the much larger literature

on the subject.

The problem of predicting the total volume of tweets over time has attracted

much less attention from the research community. Notable exceptions include [102–

104]. In [102], the authors build a predictive model for the overall volume of tweets

related to a particular hashtag. Similar to one of our approaches, the authors do

this by aggregating individual predictive models for a universe of users, where the

users were chosen if they previously tweeted on a topic and followed a user who

also tweeted on that topic. They then identified predictive models for each user at

the resolution of days, where predictions were made based on previous activity of a

user and their local network structure. The goal of predicting day-resolution volume

from users on a particular topic di↵ers greatly from predicting high volume times

from a collection of users determined based on their network properties, which is the

goal of this chapter. In [103], the authors seek to determine the one hour period

in which the followers of a given collection of users are most likely to be active.

However, their investigation is purely sociological in nature, in that they make no

predictions, and the data used in their analysis only covered a single week of activity.

Thus, their approach is not directly applicable to forecasting retweet volume from

streaming data. Finally, in [104], the authors use a two state Hidden Markov

modeling framework, where the hidden states correspond to when the user is either

in an active mode or an inactive state. Using these models, they predict the expected

interarrival time for a user given their observed previous behavior by filtering their
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hidden state, and make predictions based on this time. Thus, this approach is

similar in spirit to our aggregation-of-individuals approach. However, they assume

a particular hidden state model architecture that is homogeneous across users, while

our approach, as we will see, allows for model heterogeneity across users. Moreover,

while their approach could be used to predict total retweet volume by aggregating

their individual model predictions, they focus on individual level prediction.

4.3 Methodology

Here we define our exact problem and the proposed solutions. Consider a set

U = {u1, u2, . . . , uU

} of U users. Each user in U has an individual retweet history.

Let � be a time interval; here we take � = 10 minutes. Then for each user u in the

set of users U , we specify their retweet activity during any window of length � by

X
n

(u) =

8
>>>>>><

>>>>>>:

1 : user u retweeted between times

(n� 1)� and n�

0 : otherwise

. (4.1)

That is, {X
n

(u)}N

n=1 specifies the retweet activity of the user during each of the N

time intervals [0,�), [�, 2�), . . . , [(N � 1)�, N�).

The total number of users active during any time interval [(n � 1)�, n�) is

then given by

A
n

=
X

u2U

X
n

(u). (4.2)
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This is the value we seek to predict.

4.3.1 Seasonality

For the seasonality model, we assume that retweet activity shows day-to-day

variability, but regularity from week-to-week. We assume that the seasonality re-

peats every T timesteps,

s
n

= s
n+jT

, j = 1, 2, . . . (4.3)

and that the observed number of users retweeting A
n

is given by

A
n

= s
n

+ ✏
n

(4.4)

where ✏
n

can be thought of as the deviation from the seasonality at any given time n.

Under the assumption of seasonality, we infer the seasonal component by averaging

across W weeks [105],

ŝ
n

=
1

W

X

j2{0,1,...,W�1}

A
n+jT

, n = 1, . . . , T. (4.5)

Figure 4.2 shows the aggregate retweet activity across the four weeks from Figure 4.1

with the estimated seasonality superimposed.

If we assume that {✏
n

}N

n=1 is a realization from a white noise process, the

optimal predictor under mean-squared loss for A
n

is s
n

, the seasonality. Thus, we
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Figure 4.2: The number of users retweeting A
n

over four consecutive weeks. The
estimated seasonality ŝ

n

is shown in blue.

use our estimator for the seasonality as the predictor for the seasonality model,

AS
n

= ŝ
n

. (4.6)

85



4.3.2 Aggregate Autoregressive Model

In the seasonality model, we have assumed that the residuals {✏
n

}N

n=1 are

white noise. More explicitly, we have assumed that they show no autocorrelation:

E[✏
t

✏
s

] = �2
✏

�
st

, where �2
✏

is the variance of the white noise process and �
st

is the

Kronecker delta. A more reasonable model for the residual would incorporate mem-

ory, since aggregate social systems are known to exhibit such memory [106]. Thus,

a simple refinement of the previous model allows for memory in the deviations from

seasonality. More explicitly, we consider the model

A
n

= s
n

+ Y
n

(4.7)

where we now take {Y
n

}N

n=1 to be a realization from an autoregressive process of

order p, an AR(p) model [105]. That is, we consider the dynamics of Y
n

to be

governed by

Y
n

=
pX

j=1

b
j

Y
n�j

+ ✏
n

(4.8)

where {✏
n

} is again a white noise process with mean 0 and variance �2
✏

.

The predictor for the aggregate autoregressive model is

AAR
n

= ŝ
n

+
p̂X

j=1

b̂
j

Ŷ
n�j

, (4.9)

where Ŷ
n

= A
n

� ŝ
n

is the deviation of the observed aggregate retweeting activity
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from the estimated seasonality at time n. We choose the autoregressive order p̂ by

minimizing the the Akaike information criterion on the training set [107].

4.3.3 Aggregation of Causal State Models

Before describing the aggregation procedure, we briefly review computational

mechanics, which is our basic modeling approach for the individual-level models. [4]

provides a more in-depth introduction to computational mechanics, and [90] de-

scribes an application of computational mechanics to modeling individual user ac-

tivity on Twitter. Computational mechanics provides a framework for describing

stationary [108] (and more generally, conditionally stationary [71]), discrete-time,

discrete-alphabet stochastic processes by linking the observed process to a hidden

state process. In this way, the formalism of computational mechanics is closely re-

lated to Hidden Markov Models and other state-based models of discrete-alphabet

stochastic processes [109]. In particular, any conditionally stationary stochastic

process {X
n

} naturally induces a hidden state process {S
n

}, where the transition

structure of the hidden state process is determined by the predictive distribution

of {X
n

}. The hidden state process {S
n

} is always Markov, and the combination

of its Markov chain representation and the state conditional emission probabilities

P (X
n

= x|S
n�1 = s) is called the causal state model or ✏-machine for the stochastic

process {X
n

}. In the case where the predictive distribution for {X
n

} is unknown,

machine reconstruction algorithms can be used to automatically infer the ✏-machine

that best describes the observed data {X
n

}N

n=1. We use the Causal State Splitting
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Figure 4.3: A demonstration of how (a) the retweet volume A
n

results from the
summation of the individual retweet behavior {X

n

(u)}
u2U of the users in U and (b)

the aggregation-of-individuals prediction ACSM
n

is formed via filtering through each
user u’s ✏-machine.
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Reconstruction (CSSR) algorithm [46] to infer an ✏-machine for each user’s observed

retweeting activity.

As with the autoregressive model, the CSSR algorithm requires a maximum

history length Lmax to look into the past in order reconstruct the ✏-machine asso-

ciated with a user u’s behavior. While theory exists for choosing the largest Lmax

such that we can consistently infer the one-step-ahead predictive distributions used

in CSSR [50], we take the practical approach of choosing Lmax based on cross-

validation. In particular, we perform 5-fold cross validation using the log-likelihood

of the held out data as our objective function. The form of the log-likelihood asso-

ciated with a realization from a stochastic process under an ✏-machine model may

be found in [12].

For each user u, we reconstruct their associated ✏-machine. We then perform

prediction as follows: at time n�1, we determine the current causal state S
n�1(u) for

each user u based on their activity pattern Xn�1
1 (u) = (X1(u), X2(u), . . . , Xn�1(u)).

The causal state S
n�1(u) specifies the one-step-ahead predictive distribution for each

user, P (X
n

(u) = 1|S
n�1(u) = s(u)). We then aggregate these probabilities to form

our prediction for the number of active users at the next time step,

ACSM
n

=
X

u2U

P (X
n

(u) = 1|S
n�1(u) = s(u)). (4.10)

This can be seen to be the expected number of users active at time n given the

causal states of the users at time n�1, under the assumption that the behavior of a

user u at time n is independent of the causal states of all others users at time n� 1
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given the causal state of u at time n� 1.

4.4 Data Collection and Selection of U

We begin with a collection of 15000 Twitter users whose statuses (Tweet text)

were collected over two disjoint five week intervals: from 25 April 2011 to 29 May

2011 and from 1 October 2012 to 5 November 2012. The users are embedded in a

15000 node network collected by performing a breadth-first expansion of the active

followers of a random seed user. In particular, the network was constructed by

considering the followers of the seed user, and including those followers considered

active (i.e. users who tweeted at least once per day over the past one hundred

days). The collection of users continued from the followers of these followers, etc.,

until 15000 users were included. From this network of users, the subset of users U

was chosen to account for 80% of the retweet volume for the first four weeks in the

five week period under consideration. That is, we take u1 to be the user issuing

the greatest number of retweets, then u2 to be the user issuing the second greatest

number of retweets, etc., until we reach the user u
U

such that the total number of

retweets issued by the users in U account for 80% of the retweet volume. This results

in U = 2145 users for the 2011 collection and U = 1610 users for the 2012 collection.

Because we are interested in predicting times of greatest retweet activity, for each

day we only consider the retweet activity from 6 AM EST to 10 PM EST. The

data used in our analysis can be made available upon request by the corresponding

author.
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4.5 Results

In the following results, we use the first four weeks of the five week periods

from 2011 and 2012 for inference of the three model types, and leave the last weeks

from each year for testing. As described in the methodology section, we choose

the parameters of each model as follows. The seasonality model has no tuning pa-

rameter, and we use the full four weeks to infer the seasonality component. We

choose the model order p of the autoregressive model to maximize the Akaike infor-

mation criterion on the four week training period. For each causal state model in

the aggregation-of-individuals model, we infer the user-specific history length L by

5-fold log-likelihood cross-validation over the 28 days in the training sets.

4.5.1 Adjustment to the Aggregation-of-Individuals Model

As described in the methodology section, the predictor for the aggregation-of-

individuals model (4.10) is equivalent to the expected number of users in U who are

active at time step n given their causal states at n�1 under a certain independence
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assumption. In particular, we have taken the predictor to be

ACSM
n

= E

"
X

u2U

X
n

(u)

����Sn�1(u1), . . . , Sn�1(uU

)

#
(4.11)

=
X

u2U

E[X
n

(u)|S
n�1(u1), . . . , Sn�1(uU

)] (4.12)

=
X

u2U

E[X
n

(u)|S
n�1(u)] (4.13)

=
X

u2U

P (X
n

(u) = 1|S
n�1(u)), (4.14)

where going from (4.12) to (4.13) we make the assumption that for all u 2 U , the

observed behavior of user u at time n is independent of the causal states of all other

users u0 at time n� 1, given the causal state of user u at time n� 1. While such an

independence relationship holds when conditioning on the local causal states of a

time-varying random field [7], it need not be true when conditioning on the marginal

causal states.

Motivated by the form of the deviation of (4.10) from the predicted value (see

Figure 4.4), we define the adjusted aggregation-of-individuals predictor as

ACSM⇤

n

= �0 + �1A
CSM
n

, (4.15)

where the parameters �0 and �1 were estimated by regressing the true values A
n

from the training set on the unadjusted aggregation-of-individuals predictions ACSM
n

from the training set. We will use this predictor for the remainder of this work, and

address alternative corrections in the conclusion.
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Figure 4.4: The transformation of the aggregation-of-individuals model used to
adjust for associations in user behavior. The red line corresponds to the linear least
squares fit from regressing the true values A

n

from the training set on the unadjusted
aggregation-of-individuals predictions ACSM

n

from the 2011 data.

4.5.2 Predicting Activation Level at Varying Thresholds

We next present an experiment to test the predictive capability for each of

the three proposed models. As mentioned in the introduction, ideally a potential

influencer would like to choose the optimal time(s)-of-day to send out a message

such that the largest number of users will be active around those times. As a proxy

for this goal, we consider the task of identifying whether or not the activity level

over an interval of length � will fall into the 100pth percentile for that day. As an

example, how well can we predict whether the number of activated users falls within

the 80th percentile for a given day?

Let N� be the number of timepoints to predict on in a day (N� = 86 for this

analysis). For a given day d 2 {1, 2, . . . , 7} in the testing set, the true distribution
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of the activity levels is given by

FTrue
d

(a) =
1

N�

n

train

+N

�

dX

n=n

train

+N

�

(d�1)+1

[A
n

 a] . (4.16)

We then define the historical distribution of the activity levels for a day d in terms

of the estimated seasonality for that day from the training set

FHist
d

(a) =
1

N�

N

�

dX

n=N

�

(d�1)+1

⇥
AS

n

 a
⇤
. (4.17)

We will use FHist
d

(Â
n

) to predict whether or not a predicted activity level Â
n

exceeds

the quantile p⇤ of activity for a given day, where Â
n

is one of AS
n

, AAR
n

, or ACSM⇤
n

.

That is, for a threshold p, we predict the indicator for whether the activity at time

n will exceed some quantile p⇤ as

Î
n

(p) =

8
>><

>>:

1 : FHist
d(n) (Ân

) > p

0 : otherwise

. (4.18)

Whether or not the activity at time n exceeded the quantile p⇤ is then given in terms

of the true distribution as

I
n

=

8
>><

>>:

1 : FTrue
d(n) (An

) > p⇤

0 : otherwise

. (4.19)
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Table 4.1: The AUC for each of the methods on the test weeks from 2011 and 2012.
Year Seasonality Autoregressive Agg. of Individuals

2011 0.778 0.773 0.825

2012 0.720 0.773 0.771

As we vary the threshold value p, the true positive rate is given by

TPR(p) =

n

testP
n=n

train+1

h
Î
n

(p) = 1, I
n

= 1
i

n

testP
n=n

train+1

[I
n

= 1]
(4.20)

and the false positive rate is given by

FPR(p) =

n

testP
n=n

train+1

h
Î
n

(p) = 1, I
n

= 0
i

n

testP
n=n

train+1

[I
n

= 0]
. (4.21)

We show the ROC curves associated with the fixed quantile p⇤ = 0.8, along

with their AUCs, for the test weeks from 2011 and 2012 in Figure 4.5 and Table 4.1.

The true and false positive rates are computed using the last 86 of the 96 time points

in each day, since both the autoregressive and aggregation-of-individuals models

require up to ten timepoints to begin prediction depending on the model order p or

largest history length L, respectively.

Overall, based on the AUC values, the aggregation of individuals model per-

forms best in 2011 and the autoregressive model performs best in 2012. However,

inspection of the ROC curves indicates that based on the desired balance between

true and false positives, each of the models may outperform the others, with no

model strictly dominating. For example, if a high false positive rate is acceptable,
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Figure 4.5: The ROC curves associated with each of the three models for the testing
week in 2011 (top) and 2012 (bottom) with p⇤ fixed at 0.8. The AUC values for the
seasonality, autoregressive, and aggregation-of-individuals models for 2011/2012 are
0.778/0.720, 0.773/0.773, and 0.825/0.771.
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the seasonality model achieves the lowest false positive rate to give a 100% true

positive rate on the testing sets in 2011 and 2012. However, the seasonality model

generally underperforms when the desired false positive rate is low, in which case

either the aggregation of individuals model (in 2011) or the autoregressive model

(in 2012) performs better. While we only report on predicting under the condition

that p⇤ = 0.8, we find similar results for p⇤ � 0.7.

4.5.3 Utility of Individual Level Models Beyond Aggregate Predic-

tion

Though we do not focus on individual-level prediction in this chapter, we

wish to highlight some of the possible advantages o↵ered by the aggregation-of-

individuals approach not immediately evident from the ROC analysis above. In

particular, as demonstrated in Figure 4.3, the aggregation-of-individuals generates

individual level, behavioral models for each user u. These models have the advantage

of being interpretable. Consider the four models in Figure 4.6. The models can be

represented as directed graphs, where each vertex corresponds to a causal state,

and each arrow corresponds to an allowed emission from that state. The arrows are

decorated with the emission symbol x 2 {0, 1} (i.e. user u either retweets or does

not during a time interval) and the causal state conditioned emission probability

P (X
n

(u) = x|S
n�1(u) = s) of transitioning from state s while emitting symbol x.

That is, each arrow is decorated as x|P (X
n

(u) = x|S
n�1(u) = s).

These models allowed for user-specific targeting. Consider the model repre-
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Figure 4.6: Four example ✏-machines inferred from the users. (a) A user who
retweets at random with bias p. (b) A user who retweets in a bursty manner,
with an active state A and a passive state P . (c) A user who retweets in a bursty
manner, with a refractory state R. (d) A user who retweets in a bursty manner with
both a refractory state R and an intermittent state I.

sented by (b). Users of this type tend to retweet in a bursty manner, with an active

state A and a passive state P . This corresponds to a simple order-1 Markov model.

For such users, it is su�cient to target them when they have recently retweeted.

Users exhibiting behavior like models (c) or (d) require more subtle targeting. Model

(c) has the same active and passive states as in (b), but with an additional refractory

state R that occurs after the user is quiescent while in the passive state P . Depend-

ing on the balance between 1 � ⇢ and ↵, which correspond to the probabilities of

retweeting from the active and refractory states, it may be more beneficial to target

the user when they are currently active or when they are ‘resting’ in the refractory

state. Model (d) is similar to model (c), with an additional intermediate state I that

occurs after the user has issued a retweet from the active state A. Again, depending

on the balance between ↵, 1� ⇢, and ◆, the user can be targeted for when they are

most likely to retweet. Many of the users have simple ✏-machines similar to (a), (b),

(c), and (d), which allow for this sort of user-specific targeting.
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4.6 Conclusion

We have found that while user retweet activity clearly exhibits seasonality

from day-to-day and week-to-week, seasonality alone does not explain the times

of high user activity on social media. Incorporating additional information about

either the deviations from seasonality or the behavioral patterns of individual users

allows for more accurate prediction of times of high volume, especially when a low

false positive rate is desired. Since overexposure to a message may lead to reduced

user engagement (content fatigue) due to the repetitive nature of the message, it

can be said that having a low false positive is important in this motivating example.

In future work, we will explore more sophisticated models that should pro-

vide even greater predictive power. For example, the individual models used in

the aggregation-of-individuals method did not incorporate social inputs to the users

beyond their own previous behavior. The computational mechanics framework al-

lows for the incorporation of inputs via either dynamic random field-based [7] or

transducer-based [6, 9] models of a user’s behavior. Such an extension could elimi-

nate the need for the adjustment to the aggregation-of-individuals predictor needed

to translate the model’s output to a prediction.

This work highlights that in building predictive models for complex social sys-

tems, a multi-level view of the system under consideration often leads to improved

predictive ability. Thus, in the predictive problem considered in this chapter, influ-

encers who track potential user engagement can use complexity modeling to make

better informed decisions.
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Chapter 5: The Computational Landscape of User Behavior on So-

cial Media

5.1 Introduction

The current decade has been marked by an increasing availability of high-

resolution, heterogeneous data sets capturing human behavior in both real-world

and digital environments [110–113]. This has made possible, for the first time,

large scale investigations into human behavior across diverse groups of individu-

als. Of such phenomena, human communication patterns are perhaps one of the

most well-studied. Such studies have included written correspondences [114], email

correspondences [115, 116], and call/SMS records [117, 118]. The complexities of

these behavioral patterns include heavy tails, seasonality, and burstiness. This is

certainly still an active field of research, and many authors have called into question

whether the observed patterns are truly universal characteristics of human behavior

or epiphenomena of the methods used in data collection and analysis [91, 119,120].

The standard model for human communication patterns treats the observed

behavior as the realization from some sort of point process. Typically, the point

process is taken to be a renewal process, where the observed behavior is completely
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specified by a distribution over the times between activity. To account for the com-

plex properties of human behavior enumerated above, the interevent distribution is

specified to have a heavy right tail, which naturally gives rise to burstiness. The au-

thors of [115,116] develop a refinement of this model which incorporates seasonality

by allowing an individual to pass between passive and active states, where the be-

havior within the active state is governed by a Poisson process. Further refinements

of this model allow the activity during the active periods to follow non-Poissonian

dynamics [120].

Our approach di↵ers in at least four ways from the standard approach just

described. First, motivated by the field of computational mechanics [4], we define

our models explicitly in terms of a predictive representation of the observed behavior.

Second, we do not assume the behavior of individuals only depends on the time

between actions. Third, we seek to understand the behavior locally in time, where

locality is defined around periods of activity. In this sense, our approach is most

similar to [115, 116], except that we do not assume that the time local behavior

follows a Poisson process. Finally, we explicitly incorporate the interactive aspect of

online social media services, something missing from much of the work on modeling

human interevent distributions, with [104] as a notable exception.

In [121], the authors set out to elucidate the structural properties of stochastic

processes using tools from computational mechanics. To do so, they restricted their

investigation to the subset of stochastic processes that are finitary, that is, those

stochastic processes that admit a representation with a finite number of causal

states [122]. In this work, instead of elucidating all possible finitary models, we
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approach the problem from the opposite direction: we seek to trace the compu-

tational landscape of human behavior in digital environments by discovering the

finitary models present in user behavior, and then investigate their computational

structure.

We consider four models for user behavior on social media. Figure 5.1 provides

a schematic representation of these models. The most general model (a) assumes

that a user’s future behavior is influenced by both their past behavior and the past

behavior of their social network. Models (b) and (c) are two restrictions of this

model, the former where we assume that user’s future behavior is only influenced by

their past behavior, and the latter where we assume that the user’s future behavior

is only influenced by the past behavior of their social network. Finally, model (d)

corresponds to the case where the user’s behavior is entirely explained by the time

of day.

In the rest of the chapter, we proceed as follows. First, in Section 5.2 we moti-

vate and develop the four models just presented, and propose methods for inferring

them. In Section 5.3.1 we explore the descriptive performance of these models on a

real world data set derived from 15K users on the microblogging platform Twitter.

In Section 5.3.2, we investigate the structure of the models present amongst the

users in our data set, and discuss the implications of these models. In Section 5.3.4,

we present case studies of user behavior, and the insights gained from the di↵erent

models. Finally, we conclude with the implications of our present work for the study

of human communication patterns.
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Figure 5.1: A schematic representation of the classes of models that we consider
in this chapter. (a) The most general case, where the user’s observed behavior
is influenced by their social inputs and their own past behavior. (b) The self-
driven case, where the user’s behavior only depends on their past behavior. (c) The
socially-driven case, where the user’s behavior only depends on their social inputs.
(d) The seasonally-driven case, where the user’s behavior can be attributed to the
time-of-day.

5.2 Methodology

5.2.1 User Behavior as a Discrete-Time Point Process

Consider the behavior of a user on a social media service. At any given time

instant, a user either posts to the social media service or not. Thus, the user’s

behavior may be modeled as a point process, where events correspond to posts.

A naive model of the user’s behavior might assume that they are equally likely

to use the service during any time instant. Under this model, the time between

uses is exponentially distributed, and their activity pattern would correspond to a
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realization from a Poisson process. However, human communication patterns are

known to be exhibit non-trivial complexities not accounted for by this model [91,

123], and thus more flexible models are required. In the following sections, we

present three models that capture the observed complexity of human behavior in

very di↵erent ways: a seasonally-driven model where the user’s behavior is accounted

for by time-of-day; a self-driven model where a user’s behavior results from self-

feedback; and a socially-driven model where a user’s behavior results from both

social- and self-feedback.

In practice, the information about human behavior on digital services is re-

ported in seconds. Because we are interested in human-scale interactions between

a user, their inputs, and the social media service, this time resolution is too fine.

We begin by discretizing time into intervals of length �. We then ask if, during an

interval [(t�1)�, t�), the user was active. We denote this value for a user v by X
t

(v)

and have

X
t

(v) =

8
>><

>>:

1 : user v active during [(t� 1)�, t�)

0 : otherwise

(5.1)

The choice of � specifies the time scale of interest. For example, if we take � = 1 day,

then the process {X
t

(v)} captures the weekly patterns of behavior that the user ex-

hibits. If instead we take � = 1 hour, then {X
t

(v)} captures the daily patterns of

the user. In this chapter, we will take � = 10 minutes, because we are interested in

the short-timescale behavior of user behavior and user-user interaction. However, it

is important to note that there is no single ‘correct’ resolution when considering the
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behavior of a point process, and a multi-timescale analysis may be appropriate [124].

Moreover, di↵erent time resolutions may be more or less appropriate for di↵erent

users. Figure 5.2 demonstrates the activity patterns {X
t

(v)} of six users at the 10

minute resolution, represented as a rastergram. Each row of the rastergram corre-

sponds to a single day of activity, and each column of the rastergram corresponds

to a ten minute window within a single day. A point occurs in the rastergram when

X
t

(v) = 1 for that day and time.

In a social media setting, a user has access to information provided by other

users on the service. For example, a user might passively examine the messages

generated by other users they follow, observe a particular form of communication

directed at them, or actively investigate a keyword or topic. Generically, we will

denote the inputs to a user as Y
t

(v). We will generally assume that the inputs to the

user can be mapped to a finite alphabet Y . As an example, if we consider Y
t

(v) to

correspond to whether or not the user v receives a mention during the time interval

[(t�1)�, t�), then we take Y = {0, 1}, where y = 0 corresponds to no mention during

that time interval, and y = 1 corresponds to one or more mentions.

Our goal in this chapter is the develop several contrasting models of a user’s

observed behavior {X
t

(v)}. We take a predictive view of modeling, where we

seek to infer the probability that the user engages with the social media service,

given their past history of engagement and the past history of their inputs. Let

X t�1
�1(v) = (. . . , X

t�2(v), Xt�1(v)) be the past behavior of user v, and let X1
t

(v) =

(X
t

(v), X
t+1(v), . . .) be the future behavior of the user. Similarly, let Y t�1

�1 (v) =

(. . . , Y
t�2(v), Yt�1(v)) and Y 1

t

(v) = (Y
t

(v), Y
t+1(v), . . .) be the past and future val-
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Figure 5.2: The activity patterns for six users on Twitter represented as rastergrams.
Each row of a rastergram corresponds to a day, and each column corresponds to a
� length window within a day.
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ues of the user’s inputs, considering t as the present. Then we are interested in

determining

P (X1
t

(v) | X t�1
�1(v) = xt�1

�1, Y t�1
�1 = yt�1

�1(v)), (5.2)

the distribution over user v’s behavior starting from time t, given their own past

behavior and the past behavior of their inputs. For ease of presentation, in the

following sections, we drop the dependence on v in the notation, but emphasize that

for each user v, we assume a unique model for that user’s behavior.

5.2.2 Seasonally-Driven Model: Inhomogenous Bernoulli

Thus far, we have specified our model of human behavior in terms of a discrete-

time point process: the observed behavior of the user is either active or quiescent

during any given interval of time. One of the simplest models that can capture

some of the complexity of human behavior is a renewal process [125, 126]. From

this perspective, the activity of the user is taken to occur at random times, with

the time between occurrences governed by a distribution over the interarrival times.

For example, if we take the interarrival distribution to be geometric with parameter

p, then the renewal process is a Bernoulli process, the discrete-time analog of a

Poisson process. Typically, the interarrival distribution is taken to have a long tail,

to capture the fact that human behavior tends to be bursty, with long periods of

quiescence punctuated by periods of high activity. See Figure 5.2 for examples of

users who exhibit such behavior. Popular distributions for the interarrival times
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include log-normal, power law, and stretched exponential distributions [91].

Due to the inherent seasonality in human behavior, time-homogeneous renewal

process-based models are almost certainly misspecified. For example, a typical user

on Twitter will be more likely to be active during the daylight hours in their geo-

graphic area than during the nighttime hours. This fact may explain the long tails

typically observed in studies of the activity patterns of humans [127]. Moreover, we

see such daily and weekly seasonality patterns in the aggregate behavior of users on

Twitter. Figure 5.3 demonstrates the observed seasonality in the aggregated number

of tweets issued by the users studied in this chapter. Because of this, we consider

a time-inhomogeneous point process model for a user’s observed activity, where the

probability a user is active during any time interval is independent of their previous

activity and the activity of their inputs, and varies smoothly with time,

P (X
t

= 1 | X t�1
�1 = xt�1

�1, Y t�1
�1 = yt�1

�1, ) = p(t) (5.3)

Moreover, we assume that p(t) is periodic, p(t+ ⌧) = p(t), with ⌧ chosen such that

for a coarsening interval �, ⌧� = 1 week.

We estimate the individual seasonality p(t) for each user via a Generalized

Additive Model (GAM) [128]

logit(p(t)) = �0 + f(t) (5.4)
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Figure 5.3: The total number of tweets issued per hour by the 15000 users considered
in this chapter over one week periods. Each color corresponds to one of 32 weeks.
The solid red line corresponds to the weekly seasonality, estimated by averaging
across the 32 weeks.

where

logit(x) = log

✓
x

1� x

◆
(5.5)

using the mgcv package in R. Figure 5.4 demonstrates the observed behavior of

several users, along with their estimated activity probabilities p(t).

5.2.3 Self-driven Model: The ✏-machine

The previous model assumes that the user’s activity during any time interval

is independent of their activity during other time intervals, and accounts for the

seasonality and bursting observed in a user by allowing the probability of their

activity to vary across time. Alternatively, a user might exhibit burstiness due to
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Figure 5.4: (a) Rastergram representation of the activity of three users on Twitter
over a 32 week period. (b) The expected activity of the same three users. Each panel
corresponds to the expected activity by day-of-week, from Monday to Sunday. (c)
The expected activity from (b), laid out in the same format as the rastergram. Note
that the color scale for each panel is taken from 0 to max

t

p
v

(t) for each user v to

make the seasonality in the activity patterns more obvious.

self-excitation. As an example, the user might be isolated from the devices they use

to interact with the social media service, which would lead to a period of quiescence.
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Then, upon regaining access to their devices, they might use the service, which could

lead to a self-excitation to continue using the service.

This sort of behavior motivates an autoregressive model for the user’s behavior,

where their behavior in the future is determined by their past behavior. That is,

the probability that they behave a certain way in the future starting at time t is

determined by how they behaved up until time t,

P (X1
t

| X t�1
�1 = xt�1

�1, Y t�1
�1 = yt�1

�1, )

= P (X1
1 | X0

�1 = x0
�1).

(5.6)

This model assumes that the users behavior is conditionally stationary [129]. For

human behavior, this assumption may not hold in general, and thus care must be

taken in applying this model with actual data. We address this in Section 5.2.5,

where we specify our procedure for day-casting user behavior. Previous work has

found this model to perform well with many users on social media platforms such

as Twitter [47, 64,104].

Computational mechanics provides a framework for elegantly handling stochas-

tic processes governed by a dynamic such as (5.6) [4]. We now give a brief introduc-

tion to computational mechanics, which will be used for both the self-driven and the

socially-driven model. In the time series case, computational mechanics provides the

unique, minimally complex, maximally predictive model of a discrete state, discrete

time stochastic process {X
t

}
t2Z over the alphabet X . The insight of computational

mechanics is that when considering the predictive distribution (5.6), it is typically
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more useful to consider a statistic of the past xt�1
�1 rather than the entire past itself.

It can be shown that the unique minimal su�cient predictive statistic of the past

X t�1
�1 for the future X1

t

of a conditionally stationary stochastic process is the equiv-

alence class over predictive distributions. For two pasts ut�1
�1 and vt�1

�1, we define an

equivalence relation such that

ut�1
�1 ⇠ vt�1

�1 =) (5.7)

P (X1
t

| X t�1
�1 = ut�1

�1) = P (X1
t

| X t�1
�1 = vt�1

�1) (5.8)

as probability mass functions. In words, two pasts are equivalent if they result

in statistically equivalent futures. Using this equivalence relation, we can define

equivalence classes over pasts p such that

[p] = {xt�1
�1 2 X� : P (X1

t

| X t�1
�1 = xt�1

�1)

= P (X1
t

| X t�1
�1 = p)}

(5.9)

where X� = X ⇥ X ⇥ . . . is the set of all semi-infinite pasts. In words, for each

possible predictive distribution, we choose a candidate past p, and [p] represents

all pasts which induce this predictive distribution. We can thus think of p as a

particular past, or as the label for this class of pasts. Typically, we will take the

second perspective. We define our statistic ✏ : X� ! S as mapping a past into the
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equivalence class for that past,

✏(X t�1
�1) = [X t�1

�1]. (5.10)

We can think of ✏ as partitioning the set of all pasts X� based on the conditional

futures they induce. The combination of the equivalence classes as well as the

allowed transitions between them is called the ✏-machine for the process {X
t

}
t2Z.

For a stochastic process with a finite number of predictive equivalence classes, the

✏-machine may be represented as deterministic finite automata, where the states of

the automata correspond to the predictive equivalence classes, and the transitions

between states are determined by the outputs x 2 X . A demonstration of a portion

of such a representation is given in Figure 5.5(a). Generically, a stochastic process

may have infinitely many predictive equivalence classes, in which case the ✏-machine

representation corresponds to a deterministic automata with infinitely many states.

For each time t, we can associate the current past X t

�1 with its mapping under

the equivalence relation S✏M
t

= ✏(X t

�1). Thus, the equivalence relation induces a

new stochastic process {S✏M
t

}
t2Z, called the causal state process. The causal state

process has many favorable properties. For example, {S✏M
t

}
t2Z is Markov, regardless

of whether {X
t

}
t2Z is. Moreover, the causal state process at time t shields the future

of the process from its past, i.e. X1
t+1 ? X t

�1 | S✏M
t

. This motivates the name causal

state process.
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x : p�M

s�M
i s�M

j

(a) The causal state transition
structure associated with an
✏-machine.

x | y : p�T

s�T
i s�T

j

(b) The causal state transition
structure associated with an
✏-transducer.

Figure 5.5: Transitions between ✏-machine/transducer causal states. Each transition
is labeled by the marginal/joint emission symbol, as well as the transition probability
p✏M/T.

5.2.4 Socially-driven Models: The ✏-transducer

The previous two models assume that either the user is driven seasonally by

time-of-day type influences, or that the user is self-driven. On a social media service,

we expect a user to interact with other users, and therefore we would expect the

user’s behavior to be associated with the behavior of those users. For example, a

user might become more likely to tweet if they have recently been mentioned by

another user. Such social associations are captured by the social inputs {Y
t

(v)}
t2Z

of a user v. In particular, we will focus on the mention history of the user,

Y
t

(v) =

8
>><

>>:

1 : mention of v in [(t� 1)�, t�)

0 : otherwise

. (5.11)

That is, Y
t

(v) corresponds to whether or not the user v received any mentions during

the time window of length � indexed by t.

We take the modeling perspective where the user acts as a transducer, mapping
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their own past behavior and the past behavior of their social inputs into their future

behavior. More explicitly, as with the self-driven example, we seek the minimally

complex, maximally predictive model for the user’s behavior. Again, computational

mechanics provides such a model via the ✏-transducer [6, 8, 9]. The main insight is

the same as for the ✏-machine: we define an equivalence relationship over joint input-

output pasts such that two pasts are equivalent if they induce the same predictive

distribution over the future output. For two joint input-output pasts (rt�1
�1, ut�1

�1) and

(st�1
�1, vt�1

�1), where ut�1
�1, vt�1

�1 2 X� and rt�1
�1, st�1

�1 2 Y�, we define the equivalence

relation such that

(rt�1
�1, ut�1

�1) ⇠ (st�1
�1, vt�1

�1) =)

P (X1
t

| Y 1
t

, X t�1
�1 = ut�1

�1, Y t�1
�1 = rt�1

�1)

= P (X1
t

| Y 1
t

, X t�1
�1 = vt�1

�1, Y t�1
�1 = st�1

�1).

(5.12)

In [9], the authors show that this equivalence relation is the same as the equivalence

relation originally given in [6, 8]. That equivalence relation is specified in terms of

two conditions on the joint pasts: equivalence in terms of one-step-ahead predictive

distributions for the output, also known as weak prescience [4], and determinism /

unifilarity on appending input-output pairs (a, b) to the joint pasts. More formally,
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the alternative equivalence relation is

(rt�1
�1, ut�1

�1) ⇠ (st�1
�1, vt�1

�1) =)

(i) P (X
t

| Y
t

, X t�1
�1 = ut�1

�1, Y t�1
�1 = rt�1

�1)

= P (X
t

| Y
t

, X t�1
�1 = vt�1

�1, Y t�1
�1 = st�1

�1)

(ii) P (X
t+1 | Y

t+1, X
t

�1 = ut�1
�1b, Y t

�1 = rt�1
�1a)

= P (X
t+1 | Y

t+1, X
t

�1 = vt�1
�1b, Y t

�1 = st�1
�1a)

(5.13)

where in condition (ii) we consider only input-output symbols (a, b) admissible based

on the pasts (rt�1
�1, ut�1

�1) and (st�1
�1, vt�1

�1). From this equivalence relationship, it is

clear that if the next output Y
t

is independent of the next input X
t

given the joint

input-output past (Y t�1
�1 , X t�1

�1), then the equivalence relationship becomes

(ut�1
�1, rt�1

�1) ⇠ (vt�1
�1, st�1

�1) =)

P (X1
t

| X t�1
�1 = ut�1

�1, Y t�1
�1 = rt�1

�1)

= P (X1
t

| X t�1
�1 = vt�1

�1, Y t�1
�1 = st�1

�1).

(5.14)

That is, the equivalence relationship no longer depends on the future input. Unless

otherwise stated, we assume the conditional independence between the future input-

output pair, and thus use this equivalence relationship. We do so for several reasons.

First, for the problem at hand, it seems reasonable to assume that, for su�ciently

small time windows, the behavior of a user is independent of their immediate social

input, conditional on their own past behavior. That is, an individual requires a

finite amount of time to respond to any social input, and thus their immediate
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present behavior is una↵ected by their immediate social input. Second, and more

pragmatically, in order to perform prediction of {X
t

}
t2Z without also requiring a

model for {Y
t

}
t2Z, the assumption of conditional independence is required.

In either case, at any given time t, the equivalence relation defines a map-

ping ✏ from the current joint past (Y t

�1, X t

�1) to its equivalence class S✏T
t

=

✏((Y t

�1, X t

�1)), inducing the channel causal state process {S✏T
t

}
t2Z. Transitions be-

tween channel causal states occur on joint input-output pairs, and thus an ✏-transducer,

like an ✏-machine, can be represented as a deterministic automata. The associated

representation is given in Figure 5.5(b).

If the user’s behavior is purely driven by their social inputs, then we can con-

sider a special case of (5.14) where their future behavior is independent of their past

behavior, conditional on their past social inputs. That is, the associated predictive

distribution reduces to

P (X1
t

| X t�1
�1 = xt�1

�1, Y t�1
�1 = yt�1

�1, )

= P (X1
1 | Y 0

�1 = y0�1).

(5.15)

We call this special case the self-memoryless transducer to emphasize that the user

maintains a memory of their past inputs while forgetting their past outputs. In this

case, the equivalence relation (5.14) reduces to

rt�1
�1 ⇠ st�1

�1 =)

P (X1
t

| Y t�1
�1 = rt�1

�1) = P (X1
t

| Y t�1
�1 = st�1

�1).

(5.16)
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5.2.5 Data Collection and Pre-processing

The activity of the 15K users was collected over a 49 week period, from 6 June

2014 to 15 May 2015. After data cleaning to account for outages in the data collec-

tion, 44 weeks of data were generated. We did not include the quiescent users in our

analysis. As described above, the self-driven and socially-driven models assume that

a user’s behavior can be modeled as a conditionally stationary stochastic process,

where the distribution over futures is independent of the time index conditional on

the observed past of the user or the observed joint input / output past, respectively.

In order to make this assumption approximately true, we ‘daycast’ the time series

associated with each user as follows. For a user, we determine their native time zone

(as self-reported on Twitter), and window their activity to be between 9 AM and

10 PM during their local time. We take this time window to capture the waking

hours of a typical individual.

For this study, we split the 44 weeks of data into 28 weeks of training data and

16 weeks of testing data. The training data is used to select and infer the models, as

we describe in the next section. The testing data is used for the comparison of these

models in terms of their descriptive performance. This train/test split is performed

to ensure that we obtain unbiased estimates of how the models perform for each

user.
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5.2.6 Model Inference and Selection

For the seasonally-driven model, the only model parameter associated with

each user is the smoothing parameter for the splines used to estimate the non-

parametric term f(t) in (5.4). This parameter is chosen using generalized cross

validation [130] on the 28 weeks of training data.

For both the ✏-machine and ✏-transducer models, we use the Causal State

Splitting Reconstruction (CSSR) algorithm [46] to infer the models from data. We

describe the algorithm for ✏-machine reconstruction here. The modification of CSSR

for ✏-transducer reconstruction is provided in Appendix A. CSSR works via a two-

phase process that takes advantage of the fact if a set of states is weakly prescient

and deterministic, then it is prescient [48]. The first phase of the algorithm de-

termines a set of weakly prescient states. It begins by assuming that all histories

induce the same one-step-ahead predictive distribution. This is equivalent to as-

suming the process is independent and identically distributed over the alphabet X ,

or to grouping together all histories into a candidate causal state represented by

the su�x ⇤�, where � is the null symbol. At each successive step, the histories in

each candidate causal state are grown by one symbol into the past, and a statistical

test of size ↵ is performed to check whether the history’s one-step-ahead predictive

distribution matches its parent state. If not, the history is compared against all of

the remaining candidate causal states. Finally, if the history does not agree with

any of the candidate causal states, it is split into a new candidate casual state. Such

potential splitting is performed for L = 1, 2, . . . , Lmax where Lmax is the maximum
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history length used.

At the end of the first phase, a set of candidate causal states has been de-

termined. The histories in each candidate causal state have statistically equivalent

predictive distributions within the causal states, and statistically distinct predictive

distributions between the causal states. The true causal states have this property,

in addition to being unifilar. The second phase of CSSR first removes transients

and then splits the candidate causal states to ensure that they are unifilar. That

is, for a candidate causal state, the transitions from that state are determined by

growing each history in that state forward by a single symbol. By unifilarity, all of

the histories should transition to the same state upon appending a particular emis-

sion symbol. If histories transition to more than one state, those histories are split

into new candidate causal states. This procedure is repeated until no new splits

occur. Because this procedure only ever refines the candidate causal states, the

states returned retain the property of weak prescience, while gaining the property

of unifilarity, and thus gain the property of causal states.

The CSSR algorithm, in both the ✏-machine and ✏-transducer case, requires the

specification of ↵, the size of the hypothesis test used first phase of CSSR, and Lmax,

the maximum history length used in determining the candidate causal states. The

size ↵ controls to probability of splitting a history from a candidate causal state

when it should not be split, and thus indirectly controls the number of causal states

associated with the model. We fix ↵ at 0.001 for all examples in this chapter. The

maximum history length Lmax directly balances between the flexibility of the model

and the precision with which the probabilities may be estimated. As an example,
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suppose a maximum history length Lmax is su�cient to resolve the causal states.

In the extreme case that each history of length Lmax specifies a unique predictive

distribution (an order Lmax Markov model), then the model would result in |X |Lmax

causal states. However, as we increase Lmax, we also necessarily decrease the number

of examples of each history used to estimate the predictive distribution. This can

result in spurious splitting of histories.

We use a cross-validation [130] approach to choose the appropriate Lmax for

each user. In particular, for each user, we define the empirical total variation (ETV)

distance between their observed behavior and the model predictions over an index

set T
k

as

ETV(Lmax, k)

=
1

|T
k

|
X

t2Tk

 
1

2

X

x2X

���
Xv(t),x � p(Lmax

,�k)
v

(x, t)
��
! (5.17)

where �
x

0
,x

is the Kronecker delta and p
(L

max

,�k)
v

(x, t) is the probability of observing

outcome x at time t using the model inferred with all of the data except that from

the index set T
k

. In the binary case, (5.17) reduces to

ETV(Lmax, k)

=
1

|T
k

|
X

t2Tk

���
Xv(t),1 � p(Lmax

,�k)
v

(1, t)
��

(5.18)

Thus, we see that (5.17) quantifies the model performance by comparing the actual

outcome for the user to the estimated probability of that outcome using the model.

121



We choose the index sets {T
k

}K

k=1 with K = 5 at the level of days, such that each

index set T
k

corresponds to 39 days of data, with the remaining 157 days used to

infer the model, with the index sets disjoint. We can then compute the average of

the empirical total variation over the held out sets,

ETV(Lmax) =
1

K

KX

k=1

ETV(Lmax, k), (5.19)

and choose Lmax to minimize this value. We perform this optimization using Lmax

from 1 to 6, which for � = 10 minutes corresponds to a time span between ten

minutes and an hour.

5.3 Results

5.3.1 Descriptive Performance Across the Model Classes

We begin by examining the ability of the four models to describe a given user’s

behavior. To do so, we compute the ETV, as defined by (5.17), between the held

out test data and the cross-validated models of each type. This provides us with a

measure of how the models generalize to unseen behavior, and thus an indication of

how well the models describe a user’s behavior. Because the ETV for a given user

depends on their overall activity level, we standardize the ETV for a model M by

the ETV for the seasonality model, giving us a score function

Score(M;S) =
ETV(S)

ETV(M)
. (5.20)
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Table 5.1: Pairwise comparison between the ✏-machine (✏M), self-memoryless ✏-
transducer (✏T-ML), and self-memoryful ✏-transducer (✏T-MF) across the users. Of
the users with Score(M;S) > 1 for both M1 and M2, the proportion of users with
Score(M1;S) > Score(M2;S).

M1 / M2 ✏M ✏T-ML ✏T-MF

✏M — 0.466 0.164
✏T-ML 0.534 — 0.278
✏T-MF 0.836 0.680 —

Recalling that a smaller ETV value indicates a smaller distance between the observed

behavior and the model predictions, we see that Score(M;S) will be greater than 1

when model M outperforms the seasonal model, and smaller than 1 otherwise.

The scores across all users for all models are shown in Figure 5.6. The diagonal

shows the distribution of scores across the users for each model type. The self- and

socially-driven models generally perform better than the seasonal model, with all

of the score distributions having heavy tails to the right. We see that the self-

memoryful ✏-transducer performs best, with a score greater than 1 for 82.1% of the

users. The self-memoryless ✏-transducer is next best, with a score greater than 1 for

79.4% of the users. The ✏-machine has a score greater than 1 for 72% of the users.

We further summarize the pairwise comparisons between the non-seasonal

models in Table 5.1. As expected, the self-memoryful ✏-transducer outperforms both

the ✏-machine and the self-memoryless ✏-transducer on most users. However, the

users are much more equally split between those where the ✏-machine outperforms

the self-memoryless ✏-transducer (46.6%) and vice versa (53.4%).
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Figure 5.6: The relative descriptive performance of the models for each user on the
test set data using the ETV-based score defined by (5.20). The diagonal entries
show the density of scores for the ✏-machine, self-memoryless ✏-transducer, and self-
memoryful ✏-transducer across the users. The o↵-diagonal entries compare the scores
between the di↵erent models.

5.3.2 ✏-machine Causal Architectures

We next explore the typical ✏-machine architectures across the users. Fig-

ure 5.9(a) shows the distribution of the number of states for each user’s ✏-machine.
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The number of causal states for an ✏-machine gives a rough indication of the com-

plexity of the user’s behavior since each causal state indicates a further refinement

of the past for predictive su�ciency. In fact, the logarithm of the number of states

is called the topological complexity of the ✏-machine [49]. We see that most users are

best described by models with a small number of states, with 95% of users having

13 or fewer causal states.

We next consider the general types of stochastic processes captured by many of

the ✏-machines. We find that a large proportion of the users have ✏-machines which

correspond to a generalization of a discrete-time renewal process. Recall that a

discrete-time renewal process is a point process such that the lengths {N
i

} of periods

of quiescence (runs of 0s between successive 1s) are independent and distributed

according to an inter-arrival distribution f0(n) = P (N = n) [131]. Equivalently,

discrete-time renewal processes can be defined in terms of the survival function

w0(n) = P (N � n). Because discrete-time renewal processes are a special case of

the more general processes described by (5.6), their ✏-machine architecture takes on

a very particular form [131]. The ✏-machine for a discrete-time renewal process has

a unique start state transitioned to after a period of activity, and transitions after

a period of quiescence traverse a chain of states that accumulates the number of

time points since since the last active period. We reproduce the generic architecture

found amongst the renewal process ✏-machines in Figure 5.7 (left). This is a special

finite state case of the more general architecture for a discrete-time renewal process.

In the nomenclature introduced in [131], this is an ñ eventually �0-Poisson process

with characteristic parameters (ñ,�0 = 1), where ñ refers to the number of quiescent
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time steps necessary for the ✏-machine to behave as a Poisson (Bernoulli) process,

and the �0 refers to the smallest resolution at which the inter-event times may be

coarse-grained and remain geometrically distributed. Such a process has an inter-

event distribution

f0(n) =

8
>><

>>:

p0(n) : n = 0, . . . , ñ

f0(ñ)�
n�ñ

0 : n > ñ

. (5.21)

where {p0(n)}ñ

n=0 specify the initial ñ+ 1 values of the inter-event distribution and

�0 =
1�

Pñ
n=0

p

0

(n)

1�
P

˜n�1

n=0

p

0

(n)
. We note that using CSSR with finite Lmax necessarily results in the

reconstruction of finite state ✏-machines, and thus for an ñ eventually �0-Poisson

processes with ñ > Lmax, the inferred ✏-machine will be an approximation to the

longer memory process. In fact, this motivates a particular family of parametric

models with parameters ñ and {p0(n)}ñ

n=0 which specify the initial inter-event be-

havior. We emphasize that this particular family of parametric models was not

assumed, but rather discovered via the use of CSSR.

A renewal process is specified by a distribution f0(n) over run lengths {N
i

}

of quiescence. For such a process, the distribution f1(m) over run lengths {M
i

}

of activity follows a geometric distribution. One could also define a process where

these roles are reversed: the distribution f1(m) over run lengths of activity takes an

arbitrary form, and the distribution f0(n) over run lengths of quiescence follows a

geometric distribution. We call such a process a reverse renewal process, since the

roles of quiescence and activity are reversed. The ✏-machine for a reverse renewal
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process is given in Figure 5.7 (right). In analogy to the ñ eventually �0-Poisson

process, we call this process a reverse m̃ eventually �1-Poisson process, which has

the inter-quiescence distribution given by

f1(m) =

8
>><

>>:

p1(m) : m = 0, . . . , m̃

f1(m̃)�m�m̃

1 : m > m̃

(5.22)

where {p1(m)}m̃

m=0 specify the initial m̃+1 values of the inter-quiescence distribution

and �1 =
1�

Pm̃
m=0

p

1

(m)

1�
P

˜m�1

m=0

p

1

(m)
.
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Figure 5.7: The ✏-machine representations of an eventually �0-Poisson process with
characteristic (ñ,�0 = 1) (left) and a reverse eventually �1-Poisson process with
characteristic (m̃,�1 = 1) (right).

More generally, we can define a class of processes such that the distributions
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over run lengths of activity and quiescence are allowed to deviate from the ge-

ometric distribution. We call such a process a mixed renewal process. A mixed

renewal process switches between periods of quiescence and activity with probabil-

ities governed by the quiescence length f0(n) and activity length f1(m) distribu-

tions. The ✏-machine for a mixed renewal process with geometric tails for both the

inter-arrival and inter-quiescence distributions is given in Figure 5.8. We call such

a process a mixed (m̃1, ñ0) eventually (�1,�0)-Poisson process. Again, this class

of processes o↵ers another parametric model for user behavior, with parameters

ñ0, m̃1, {p0(n)}ñ

n=0}, and {p1(m)}m̃

m=0}.

Because of the stereotyped architecture of the ✏-machines for renewal, reverse

renewal, and mixed renewal processes, we can easily identify those users whose ✏-

machines have these architectures. An ✏-machine represents a mixed renewal process

if and only if there is precisely one state transitioned to on an x from a state

transitioned to on an x0 6= x, x 2 {0, 1}. For example, the state transitioned to on a

1 from states transitioned to on a 0 represents the start of a run of 0s. The ✏-machines

for renewal / reverse renewal processes have this property, in addition to only having

a single state transitioned to on a 1 / 0. Thus, renewal and reverse renewal processes

are a subset of mixed renewal processes. Using these rules, we can identify which

users’ models correspond to renewal, reverse renewal, or mixed renewal processes.

We find that 1881 (13.1%) of the ✏-machines correspond to (homogeneous) Bernoulli

processes, 5408 (37.7%) correspond to two-state renewal / reverse renewal processes,

2713 (18.9%) correspond to pure renewal processes with three or more states, 85

(0.59%) correspond to pure reverse renewal processes with three or more states, and
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Figure 5.8: The ✏-machine representation of a mixed eventually (�1,�0)-Poisson
process with characteristic (m̃1, ñ0,�1 = 1,�0 = 1).

1250 (8.7%) correspond to mixed renewal processes with four or more states. Thus,

Figure 5.9(a) can be seen to be the mixture of mixed renewal and non-mixed renewal

users. We decompose the distribution into Figures 5.9(b) and 5.9(c), respectively.

This demonstrates that most of the user’s with a large number of states are not of

the mixed renewal type.

As we have seen, by definition the non-mixed renewal users must be such

that their ✏-machine has one or more states transitioned to on an x from a state

transitioned to on an x0 6= x. In practical terms, this means that for these users,
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(b) For mixed renewal users.
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(c) For non-mixed renewal users.

Figure 5.9: The distribution of the number of causal across the 14342 active users in
the data set. (a) The distribution for all users. (b) The distribution for users with
mixed renewal ✏-machines. (c) The distribution for users with non-mixed renewal
✏-machines.
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Table 5.2: The number of ✏-machines and ✏-transducers by their mixed renewal
order.

Mixed Renewal Order # of ✏Ms # of ✏Ts

0 1881 (13.1%) 648 (5.1%)
1 9546 (66.7%) 8249 (65.3%)
2 611 (4.3%) 400 (3.2%)
3 493 (3.4%) 309 (2.4%)
4 530 (3.7%) 243 (1.9%)
5 518 (3.6%) 220 (0.02%)
6 134 (1.0%) 147 (0.01%)

knowledge of the time since a user switched from a period of activity / quiescence to

a period of quiescence / activity is not su�cient to resolve a causal state. However,

in many cases it is su�cient to know the behavior of the user immediately prior to

a switch from quiescence to activity or vice versa. For example, a user may behave

di↵erently when they have switched from active to passive after just being active

compared to after just being passive. These cases correspond to generalizations of

the mixed renewal process to higher orders. Table 5.2 summarizes the number of

models that correspond to a mixed renewal model of a certain order. For example,

a zeroth order mixed renewal model corresponds to a Bernoulli process, a first order

mixed renewal process corresponds to the model architecture in Figure 5.8, etc. We

see that many of the models resolve to mixed renewal models of higher orders. In

total, 95% of the users have an ✏-machine in agreement with a mixed renewal model

of order 6 or smaller.
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5.3.3 ✏-transducer Causal Architectures

Thus far, we have considered the models associated with user behavior when

we ignore their inputs. Next we turn to the models that incorporate those inputs,

namely the ✏-transducer. Recall that the input {Y
t

} we consider is whether a user

was mentioned during time interval t. We begin by considering the distribution of

the number of states across the ✏-transducer models. Figure 5.10 shows these distri-

butions for the self-memoryless (top) and self-memoryful (bottom) cases. Again, as

with the ✏-machines, we see that most users are well-described by ✏-transducers with

a small number of states, with 95% having 6 states or fewer in the self-memoryless

case and 90% having 25 or fewer states in the self-memoryful case. For the self-

memoryless case, 12059 of the 12641 mentioned users (95%) have an ✏-transducer

with the architecture given in Figure 5.11. That is, the user has a ‘just-mentioned’

state (labelled 0), and subsequent periods without the user receiving a mention lead

to transitions away from this state, until a terminal state ñ is reached. This ar-

chitecture is analogous to the ✏-machine architecture of a renewal process shown

in Figure 5.7. In particular, the causal states map to the time since the user was

mentioned, with all times of length ñ or longer mapped to the same state. Thus,

when viewed as purely socially-driven, the relevant quantity to track for almost all

of the users is the time since they were last mentioned.

A similar overarching ‘counting’ model architecture is also present amongst

the memoryful ✏-transducers. Recalling that another way to view the states of a

mixed renewal process is as counting the length of runs of x since the last x0 6= x,

132



0
20

00
40

00
60

00

Number of Causal States

N
um

be
r 

of
 U

se
rs

1 3 5 7 9 11 14 17

●

●

●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●

(a) Self-memoryless.

0
50

0
15

00
25

00
35

00

Number of Causal States

N
um

be
r 

of
 U

se
rs

1 11 23 35 47 59 71 83 95

●

●

●

●

●

●

●

●
●

● ●

● ●
●

● ● ●
● ●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(b) Self-memoryful.

Figure 5.10: The distribution of channel causal states in the self-memoryless (top)
and self-memoryful (bottom) cases. We exclude 1885 of the 14342 active users who
did not receive any mentions.

we can generalize this to the ✏-transducer by considering states that count the

lengths of runs of input-output symbols (y, x) since the last input-output sym-

bol (y0, x0) 6= (y, x). As in the memoryless ✏-transducer case, we call this a mixed

renewal-like process, since the causal states act in a similar fashion to those for
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Figure 5.11: The self-memoryless ✏-transducer architecture associated with 12059 of
the 12641 mentioned users (95%). Note that we suppress the transitions 0 | y : 1�p

n

,
since the transitions do not depend on x in the self-memoryless case.

a mixed renewal process. We present a schematic representation of the partition-

ing of the channel causal state space in Figure 5.12. For these ✏-transducers, the

causal states can be partitioned based on the runs of (y, x) they count since the last

(y0, x0) 6= (y, x). Thus, we begin by dividing the set of causal states into four quad-

rants, based on the runs of (y, x) which they count. All states in a quadrant labeled

by (y, x) are transitioned to on (y, x). Then, the causal states within a quadrant are

further partitioned into thirds, where each third corresponds to the symbol (y0, x0)

seen before the current run of (y, x). Thus, each third has a unique start state that

is transitioned to on a (y, x) from a state transitioned to on a (y0, x0). 10216 of

12641 (81%) of the mentioned users have an ✏-transducer in this mixed renewal-like

class. Note that the partitioning given in Figure 5.12 is the most general possible

for this type of ✏-transducer. The quadrants / thirds within a quadrant may further

134



collapse, as dictated by the structure of the ✏-transducer. For example, Figure 5.13

is a mixed renewal-like transducer inferred for 27% of the mentioned users. This

✏-transducer has three states, which correspond to runs of (0, 0), (0, 1), and (1, ⇤)

and are labeled as such. In this case, the quadrants corresponding to (1, 0) and

(1, 1) collapse, since the corresponding state counts runs of y = 1 regardless of the

user behavior x. Moreover, all thirds within a given quadrant also collapse, since

the states treat runs of (y, x) as the same from any (y0, x0) 6= (y, x). In terms of the

actual behavior of the user, we see that the state labeled (0, 0) corresponds to when

the user has been both quiescent and unmentioned in the recent past. In this case,

the user has probability � of being active given this state. The state labeled (0, 1)

corresponds to when the user has been active, but not mentioned, in the recent past.

In this case, the user has probability ↵ > � of being active given this state. Finally,

the state labeled (1, ⇤) corresponds to the case where the user has been mentioned

in the recent past, regardless of whether or not the user has been active. The user

has probability � > � of being active given this state. Thus, for over a quarter

of the users, we see that knowledge of the recent past of both their own and their

inputs behaviors provides su�cient information for predicting their future behavior.

In particular, each of the quadrants requires only a single state, whereas in the most

general model of this type with Lmax = 6 allows for 6⇥ 3 = 18 states per quadrant.

As with the renewal, reverse renewal, and mixed renewal processes inferred

from the ✏-machines, this mixed renewal-like ✏-transducer motivates a particular

parametric model, albeit a much more complicated one. In this case, we need to

specify the chain lengths ñ(y0,x0),(y,x) within each third (y0, x0) of a quadrant (y, x).
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However, this results in at most L · |X | · |Y| ·(|X | · |Y|�1) states overall, compared to

(|X | · |Y|)L states in the most general model, and therefore a linear growth in model

complexity as a function of history length L compared to a geometric growth.

Again, as with the mixed renewal process, the mixed renewal-like ✏-transducer

generalizes to higher orders by considering the input-output behavior immediately

prior to a switch from (y0, x0) to (y, x) 6= (y0, x0). For example, a second order

mixed renewal-like ✏-transducer would distinguish between a user becoming quies-

cent and unmentioned after being mentioned twice in the past compared to going

unmentioned before the previous mention. Many of the users exhibit ✏-transducers

of higher order as shown in Table 5.2. Of the 12641 mentioned users, 78% are mixed

renewal-like of order 6 or smaller.

5.3.4 Case Studies

Thus far, we have considered the model architectures and performances in the

aggregate, providing an aerial view of the computational landscape of the users.

Next we turn to two case studies that demonstrate how the di↵erent models capture

di↵erent views of a user’s behavior. Figure 5.14 highlights two users in the score-

score plane defined by the ✏-machine score and the self-memoryless ✏-transducer

score. We choose this pair of models because, unlike with self-memoryful ✏-transducer,

they are not sub/super-models of each other.

For each of the users highlighted in Figure 5.14, we present various observed

and inferred properties of their behavior in Figures 5.15 and 5.16. The first panel
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Transition on:

0 | 0
0 | 1
1 | 0
1 | 1

Repeating 0 | 0
since 0 | 1.
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Figure 5.12: A schematic demonstrating the partitioning of the transducer state
space associated with a renewal-like ✏-transducer. Each quadrant is determined by
the input-output symbol pair being ‘counted,’ and each third within a quadrant is
determined by the input-output pair the count begins from. We only show outgoing
transitions for the first third of the first quadrant, which correspond to transitions
of 0 | 1, 1 | 0 or 1 | 1 after observing 0 | 0.

137



(0, 0)

(0, 1)

(1, ⇤⇤)

0 | 0 : 1 � �

1 | 0 : �

1 | 0 : �

0 | 0 : 1 � �
1 | 1 : �
0 | 1 : 1 � �

0 | 0 : 1 � �

1 | 0 : �

1 | 1 : �

0 | 1 : 1 � �

0 | 1 : 1 � �

1 | 1 : �

Figure 5.13: The most common self-memoryful ✏-transducer architecture associated
with 3376 of the 12641 mentioned users (27%).
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Figure 5.14: The position of the two users taken as case studies in the score-score
plane defined by the ✏-machine and self-memoryless ✏-transducer scores.

(a) corresponds to the mentions the user receives, represented as a rastergram. The

second panel (b) corresponds to their activity. The third panel (c) shows their

inferred seasonality p(t). The fourth (d), fifth (e), and sixth (f) panels show the

inferred ✏-machine, self-memoryless ✏-transducer, and self-memoryful ✏-transducer,

respectively, for the user.

The first user, depicted in Figure 5.15, corresponds to an individual strongly
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driven by their social inputs. We can see directly from inspection of the rastergrams

(a) and (b) that the user is typically active immediately following a mention, but

not always. In fact, the user appears to have a strong seasonality to their behav-

ior, as shown in (c), but this seasonality mostly reflects the seasonality of their

social influence. Turning to the ✏-machine for their observed behavior, we see that

it corresponds to that of a renewal process with ñ = 3, thus indicating a short

memory for the transition from activity to quiescence. However, this again largely

reflects the dynamics of the mention time series, which we can see by turning to the

self-memoryless ✏-transducer (e). The self-memoryless ✏-transducer is renewal-like

with ñ = 1: when mentioned, the user almost always becomes active, and when

unmentioned, the user almost always stays quiescent. By incorporating the user’s

own behavior with the self-memoryful ✏-transducer, we see that the user exhibits

both self and social memory in the sense captured by the mixed renewal-like model.

The user’s self-memoryful ✏-transducer is identical to Figure 5.13. Thus, to predict

this user, it is su�cient to track whether they have just been active or whether they

have just been mentioned.

The second user corresponds to a case where the ✏-machine outperforms the

self-memoryless ✏-transducer. Unlike in the first case study, it is unclear from direct

inspection of the rastergrams (a) and (b) how well we can attribute the users be-

havior to their mentions. While it appears that periods of activity may be initiated

by a mention, use of the rastergrams alone is inconclusive. The ✏-machine (d) for

the user’s behavior, a mixed renewal type, indicates that they possess memory for

both their quiescence and activity: as they switch from quiescence to activity, they
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Figure 5.15: Case study for user marked 1 in Figure 5.14. (a) The mention input
Y
t

for the user. (b) The activity X
t

of the user. (c) The estimated seasonality p(t)
for the user. (d) The ✏-machine for the user’s activity. (e) The self-memoryless ✏-
transducer for the user’s activity. (e) The self-memoryful ✏-transducer for the user’s
activity.
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are more likely to remain active, and vice versa. We see from the self-memoryless ✏-

transducer (e) that the user does exhibit memory of their mentions, with the chance

of them becoming active decaying with the time since the last mention in a renewal-

like manner. Finally, turning to the self-memoryful ✏-transducer, we see that it is

of the mixed renewal-like type. However, unlike the first case study, this user dis-

tinguishes between all four of the {quiescent, active} ⇥ {unmentioned, mentioned}

conditions. Moreover, when the user switches to the unmentioned and quiescent

condition (top right quadrant), they maintain a memory as to whether they had

previously been active (bottom left / right quadrants) or not (top left quadrant).

5.4 Conclusions

In this chapter, we have developed and applied a modeling framework for hu-

man behavior in digital environments. The approach begins by viewing a user’s

behavior as a discrete-time point process at a prespecified temporal resolution, and

then considers four possible stochastic models that might give rise to the user’s be-

havior, namely the seasonal, self-driven, socially-driven, and self- and socially-driven

processes approximated by an inhomogeneous Bernoulli process, an ✏-machine, and

self-memoryless/memoryful ✏-transducers.

We have found that simple computational architectures, as specified by their

✏-machines and ✏-transducers, describe much of the observed behavior of the users

in our data set. A renewal process model, or its generalizations to reverse renewal

and mixed renewal processes, was found to be appropriate for approximately 80%
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Figure 5.16: Case study for user marked 2 in Figure 5.14. (a) The mention input
Y
t

for the user. (b) The activity X
t

of the user. (c) The estimated seasonality p(t)
for the user. (d) The ✏-machine for the user’s activity. (e) The self-memoryless ✏-
transducer for the user’s activity. (e) The self-memoryful ✏-transducer for the user’s
activity. We suppress between-quadrant transitions since they are implied by the
color scheme given in Figure 5.12 and provide the associated probabilities in the
table.

of the users in our study. This is in agreement with much of the literature on

human communication patterns. However, we emphasize that we did not assume
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such models a priori, but rather discovered their prevalence by using non-parametric

modeling in an exploratory fashion. In fact, the appearance of reverse renewal and

mixed renewal processes demonstrate that renewal process models alone are not

su�cient to describe, for example, the burstiness observed in human communication

patterns. Moreover, we discovered a new class of renewal-like models that generalize

renewal processes to input-output systems. We found that this class of models

describes over 70% of the users in terms of the interaction between their activity

and their social inputs. The prevalence of these stereotyped ✏-machines/transducers

motivates the use of either frequentist (such as the cross-validation approach used

in this paper) or Bayesian (as recently developed in [132]) approaches that take

advantage of these structures a priori during the estimation process. In addition

to the renewal-like models, more general models were necessary for over 20% of the

users in the self-driven case and nearly 30% of the users in the self- and socially-

driven case.

The apparent complexity of user behavior seems to arise from a simple com-

putational landscape. Our present work lays out an initial sketch of this landscape’s

features. We hope this work motivates further exploration of this landscape and

refinement of its map.
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Appendix A: transCSSR for ✏-Transducer Reconstruction

There are many algorithms for inferring ✏-machines from data, from the topo-

logical methods first presented in [5] to more recent methods based on Bayesian

methods [132]. Additional algorithms have been developed based on spectral meth-

ods [133] and integer programming [134]. However, the most popular method is

the Causal State Splitting Reconstruction (CSSR) algorithm [46]. It is also the

only current ✏-machine reconstruction algorithm that provides a provably consistent

(in the statistical sense) estimator for a stochastic process’s ✏-machine under mild

conditions on the stochastic process.

The theory for ✏-transducers has only recently been developed, and therefore

there are currently very few algorithms for ✏-transducer reconstruction from finite

data. Sketches of CSSR-like algorithms for ✏-transducer reconstruction are pro-

vided in [4, 12], however they are not developed beyond suggestions for the reader.

In this appendix, we develop the ideas originally suggested in these prior works,

and present a generalization of CSSR for ✏-transducer reconstruction from data

resulting from input-output systems. In homage to CSSR, we call our algorithm

transCSSR, a portmanteau of transducer and CSSR. The transCSSR algorithm has

been implemented in Python, and is maintained at http://github.com/ddarmon/
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transCSSR-master/.

As stated in Chapter 5, there are at present two formulations of input/output

computational mechanics that di↵er only in how they condition on the future input

to the system in forming the predictive distribution for the future output. The

original formulation [6, 8] does not condition on the future input, while the more

recent formulation [9] does. However, the original formulation is a special case of

the recent one, and thus we focus on this more general version in our explication of

the transCSSR algorithm.

A.1 An Outline of the Algorithm

Consider an input/output alphabet pair (Y ,X ), a joint realization (ȳ, x̄) =

(yN1 , xN

1 ) of length N , a maximum lookup length Lmax, and a significance level

↵. Our goal is to estimate the set of causal states S. The transCSSR algorithm

goes about this estimation process by taking advantage of a key consequence of the

definition of the causal states in terms of equivalence relation. Namely, as shown

in [9], the equivalence relation

(rt�1
�1, ut�1

�1) ⇠ (st�1
�1, vt�1

�1) =)

P (X1
t

| Y 1
t

, X t�1
�1 = ut�1

�1, Y t�1
�1 = rt�1

�1)

= P (X1
t

| Y 1
t

, X t�1
�1 = vt�1

�1, Y t�1
�1 = st�1

�1).

(A.1)
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in terms of the input-conditioned predictive distribution over semi-infinite futures

X1
t

induces the same partition of the joint pasts as the equivalence relation

(rt�1
�1, ut�1

�1) ⇠ (st�1
�1, vt�1

�1) =)

(i) P (X
t

| Y
t

, X t�1
�1 = ut�1

�1, Y t�1
�1 = rt�1

�1)

= P (X
t

| Y
t

, X t�1
�1 = vt�1

�1, Y t�1
�1 = st�1

�1)

(ii) P (X
t+1 | Y

t+1, X
t

�1 = ut�1
�1b, Y t

�1 = rt�1
�1a)

= P (X
t+1 | Y

t+1, X
t

�1 = vt�1
�1b, Y t

�1 = st�1
�1a)

(A.2)

in terms of the input-conditioned predictive distribution over one-step ahead futures

X
t

(condition (i)) when we enforce unifilarity (condition (ii)). Thus, if we determine

a minimal partition of histories such that it (i) induces the same one-step ahead pre-

dictive distribution for all histories in a state and is (ii) unifilar, we have determined

candidate causal states for the input-output process, and thus an estimate for the

input-output process’s ✏-transducer.

transCSSR does so in three stages:

1. Initialization

2. Homogenization

3. Determinization.
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A.1.1 Initialization

The initialization step begins by setting L = 0 and assuming that all joint

histories result in the same predictive distribution. That is, the set of candidate

causal states is taken to be Ŝ = {s0} with s0 = {(⇤, ⇤)}, where (⇤, ⇤) is the null joint

history. The one-step-ahead predictive distribution is then taken to be

P (X0 | Y0, S = s0) = P (X0 | Y0). (A.3)

That is, we begin by assuming that the transducer is completely memoryless of both

the input and output pasts.

A.1.2 Homogenization

In the homogenization procedure, the joint histories in each candidate causal

state are grown by one input/output symbol, and a statistical test is used to deter-

mine whether the resulting one-step-ahead predictive distribution is identical to the

one-step-ahead predictive distribution of the parent causal state. This is equivalent

to testing that the next output symbol is independent of the past, given the current

causal state, the shielding property of causal states [9].

In practice, this is done as follows:

1. For each s 2 Ŝ, estimate the one-step-ahead predictive distribution associated

with that causal state.

(a) When L = 0, use (A.3).
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(b) When L > 0, for each joint input / output history of length L, (y�1
�L

, x�1
�L

),

estimate the one-step-ahead predictive distribution

P
�
X0 | Y0, (Y

�1
�L

, X�1
�L

) = (y�1
�L

, x�1
�L

)
�
as

P̂
�
X0 = x | Y0 = y, (Y �1

�L

, X�1
�L

) = (y�1
�L

, x�1
�L

)
�

=
⌫
�
X0 = x, Y0 = y, (Y �1

�L

, X�1
�L

) = (y�1
�L

, x�1
�L

)
�

⌫
�
Y0 = y, (Y �1

�L

, X�1
�L

) = (y�1
�L

, x�1
�L

)
�

(A.4)

where ⌫(·) gives the counts of the occurrences of instances of (·) in the

data stream (yN1 , xN

1 ). This is the maximum likelihood estimate for the

one-step-ahead predictive distribution in the non-parametric case.

(c) The one-step-ahead predictive distribution for s is taken to be the weighted

average of the one-step-ahead predictive distributions for each history in

s,

P̂ (X0 = x | Y0 = y, S = s)

=
1

Z

X

(y�1

�L,x
�1

�L)2s

⌫
�
(Y �1

�L

, X�1
�L

) = (y�1
�L

, x�1
�L

)
�
⇥

P̂
�
X0 = x | Y0 = y, (Y �1

�L

, X�1
�L

) = (y�1
�L

, x�1
�L

)
�

(A.5)

where Z =
P

(y�1

�L,x
�1

�L)2s
⌫
�
(Y �1

�L

, X�1
�L

) = (y�1
�L

, x�1
�L

)
�
.

2. For each s 2 Ŝ, test that s is Markovian.

(a) For each (y�1
�L

, x�1
�L

) 2 s and for each (a, b) 2 Y ⇥ X , grow the history

(y�1
�L

, x�1
�L

) into the past by (a, b). Estimate the probability

P
⇣
X0 | Y0, (Y

�1
�(L+1), X

�1
�(L+1)) = (ay�1

�L

, bx�1
�L

)
⌘
using (A.4).
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(b) Test that the new symbol (ay�1
�L

, bx�1
�L

) has the same one-step-ahead pre-

dictive distribution as its parent using the hypothesis test with the null

hypothesis

P
⇣
X0 | Y0, (Y

�1
�(L+1), X

�1
�(L+1)) = (ay�1

�L

, bx�1
�L

)
⌘
= P

⇣
X0 | Y0, Ŝ = s

⌘

(A.6)

for all (a, b) 2 Y ⇥ X . If we do not reject the null, add (ay�1
�L

, bx�1
�L

)) to

s.

(c) If we do reject the null, test whether (ay�1
�L

, bx�1
�L

) belongs to one of the

other causal states s⇤ 6= s using the restricted alternative hypothesis,

P
⇣
X0 | Y0, (Y

�1
�(L+1), X

�1
�(L+1)) = (ay�1

�L

, bx�1
�L

)
⌘
= P

⇣
X0 | Y0, Ŝ = s⇤

⌘
.

(A.7)

If we do not reject the null for more than one state s⇤, we add (ay�1
�L

, bx�1
�L

)

to the state with the smallest test statistic.

(d) If we reject the restricted alternative hypothesis for all s⇤ 6= s, we create

a new state and add (ay�1
�L

, bx�1
�L

) to that state.

3. Increment L by 1.

4. Repeat steps 1–3 until we reach the maximum history length Lmax.

Any hypothesis test for comparing two distributions may be used in Steps 2b

and 2c. In our implementation, we use the G-statistic [14]. Consider the case
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of two distributions with common support A. Denote the distributions over A by

p1 = (p11, . . . , p1|A|) and p2 = (p21, . . . , p2|A|). Consider a sampleX1 = (X1,1, . . . , X1,n
1

)

of length n1 from p1 and X2 = (X2,1, . . . , X2,n
2

) of length n2 from p2. We wish to

use the samples X1 and X1 to perform the hypothesis test

H0 : p1 = p2

H1 : p1 6= p2

(A.8)

The G-statistic associated with these samples is

G = 2
2X

r=1

|A|X

c=1

n
r

p̂
rc

log
p̂
rc

p̄
c

, (A.9)

where p̂
rc

= ⌫(Xr,·=c)

nr
are the maximum likelihood estimates for p

rc

under the alter-

native hypothesis and p̄
rc

= ⌫(X
1,·=c)+⌫(X

2,·=c)

n

1

+n

2

are the maximum likelihood estimates

for p
rc

under the null. The G-statistic is asymptotically �2(|A|� 1).

A.1.3 Determinization

At the end of the homogenization stage of transCSSR, each state corresponds

to a collection of histories that are statistically equivalent in terms of one-step-ahead

prediction, and are distinct from each other state in terms of their own one-step-

ahead predictive distribution. The causal states have this property, in addition to

being unifilar. That is, for each possible joint input/output symbol, transitions

between states should be deterministic. The determinization step of transCSSR

results in such a collection of states by splitting histories from a state when they
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transition to di↵erent states on the same input/output pair (a, b).

In practice, this is done as follows:

1. Determine transient states using the state transition structure, and remove

them, thus leaving only recurrent states.

2. For each state s 2 Ŝ:

(a) For each input/output pair (a, b) 2 Y ⇥ X :

i. For all joint histories (y�1
�(L

max

�1), x
�1
�(L

max

�1)) 2 s, determine the state

they transition to on accepting (a, b), ✏((y�1
�(L

max

�1)a, x
�1
�(L

max

�1)b)).

Call these the successor states for the histories (y�1
�(L

max

�1), x
�1
�(L

max

�1))

on (a, b).

ii. If there are n
s

successor states with n
s

> 1 on accepting (a, b), then

the transition for state s is not deterministic on (a, b). To ensure

determinism, create n
s

� 1 new states, and apportion the histories

in s such that each new state contains histories that have the same

transition on accepting (a, b). Go to i.

(b) Repeat (a) until every (y�1
�(L

max

�1), x
�1
�(L

max

�1)) 2 s has the same successor

state on each (a, b).

3. Repeat steps 1 and 2 until no more splitting occurs.

This process can only generate states containing fewer histories, and therefore

always terminates. In the extreme case, it terminates with each history assigned to

its own state. Since the new states are always split from a state where all histories
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give statistically equivalent predictions over one-step-ahead futures, the new states

also maintain this property. Therefore, the final collection of states is both weakly

prescient and deterministic, and therefore causal. Pseudo-code for the steps of

transCSSR is given in Algorithm A.1.3.

We next turn to demonstrating transCSSR on data generated from an example

input/output channel: the odd random channel.
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Algorithm 1 Pseudo-code for the algorithm transCSSR. Arguments: Y ,X : the dis-
crete alphabets for the input and output processes; (yN1 , xN

1 ) the joint input/output
sequence of length N with each joint symbol (y, x) drawn from Y ⇥ X ; Lmax, the
maximum history length used when estimating candidate causal states; ↵, the prob-
ability of falsely rejecting the null hypothesis (A.6) or the restricted alternative
hypothesis (A.7).

I. Initialization: L 0, ⌃ {{;}}
II. Homogenization:

while L < Lmax do

for each s 2 ⌃ do

estimate P̂ (X
t

|Ŝ = s)
for each (yt�1

t�(L�1), x
t�1
t�(L�1)) 2 Y t�1

t�(L�1) ⇥ X t�1
t�(L�1) do

for each (a, b) 2 Y ⇥ X do

estimate
p P̂ (X

t

|(Y t�1
t�L

, X t�1
t�L

) = (ayt�1
t�(L�1), bx

t�1
t�(L�1)))

Test(⌃, p, (ayt�1
t�(L�1), bx

t�1
t�(L�1)), s,↵)

end for

end for

end for

L L+ 1
end while

III. Determinization:
Remove transient states from ⌃
recursive  False

while Not recursive do

recursive  True

for each s 2 ⌃ do

for each (a, b) 2 Y ⇥ X do

(y0,x0) first (yt�1
t�(L

max

�1), x
t�1
t�(L

max

�1)) 2 s

T (s, (a, b)) ✏̂((y0a,x0b))
for each (y,x) 2 s, (y,x) 6= (y0,x0) do

if ✏̂((ya,xb)) 6= T (s, (a, b)) then
create new state s0 2 ⌃
T (s0, (a, b)) ✏̂((ya,xb))
for each (y0,x0) 2 s such that
✏̂((y0a,x0b)) = ✏̂((ya,xb)) do

Move((y0,x0), s, s0)
end for

recursive  False

end if

end for

end for

end for

end while
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Test(⌃, p, (ay, bx), s,↵)
if null hypothesis (A.6) passes a test of size ↵ then

s {(ay, bx)} [ s
else if restricted alternative hypothesis (A.7) passes a test of size ↵ for

s⇤ 2 ⌃, s⇤ 6= s then

Move((ay, bx), s, s⇤)
else

create new state s0 2 ⌃
Move((ay, bx), s, s0)

end if

Move((y,x), s1, s2)
s1  s1 \ {(y,x)}
re-estimate P̂ (X

t

|Ŝ = s1)
s2  s2 [ {(y,x)}
re-estimate P̂ (X

t

|Ŝ = s2)
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A.2 A Worked Example – The Odd Random Channel

We now demonstrate transCSSR using one of the channels presented in [9].

Consider the odd random channel, whose ✏-transducer is given in Figure A.1. The

generative story for the odd random channel is as follows. The channel stores the

parity of the input sequence, whether an even or odd number of 1s have occurred

since the last 0. If the parity of the input sequence is even, that is, 0, 2, 4, etc., 1s

have occurred since the last 0, then the channel acts as the identity: the input symbol

is outputted. If the parity of the input sequence is odd, then the output symbol is

random, taking the values 0 and 1 with equal probability. Thus, as demonstrated in

Figure A.1, the ✏-transducer has two states corresponding to the parity of the input

sequence: A, when the parity of the input stream is even, and B, when the parity of

the input sequence is odd. Alternatively, the Odd Random Channel may be defined

in terms of its transition matrices T(x|y)

T
(x|y)
ij

= P (X
t

= x, S
t

= s
j

| Y
t

= y, S
t�1 = s

i

), (A.10)

which are given by

T

(0|0) =

0

BB@
1 0

1/2 0

1

CCA ,T(0|1) =

0

BB@
0 0

1/2 0

1

CCA ,T(1|0) =

0

BB@
0 0

1/2 0

1

CCA ,T(1|1) =

0

BB@
0 1

1/2 0

1

CCA .

(A.11)

Despite the simple two state ✏-transducer representation of the Odd Random
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A B0 | 0 : 1

1 | 1 : 1

0 | 0 : 1/2

0 | 1 : 1/2

1 | 0 : 1/2

1 | 1 : 1/2

Figure A.1: The ✏-transducer representation of the Odd Random Channel. The Odd
Random Channel has two states, determined by the parity of the input sequence.
When the parity is even (state A), the channel acts as the identity, taking the current
input as the current output. When the parity is odd (state B), the output is chosen
uniformly from {0, 1}.

Channel, it has no finite state presentation purely in terms of the joint histories. This

is analogous to the sophic processes [135] of discrete-valued, discrete-time stochastic

processes which can not be represented as a Markov chain of any finite order. A

heuristic argument for why the Odd Random Channel has no finite state presentation

goes as follows. The behavior of the Odd Random Channel is completely determined

by the current parity of the input. However, the current parity of the input is only

known once the most recent 0 is encountered, and one may have to look infinitely

far into the past to encounter such a 0, if one even exists.

In the following sections, we demonstrate the steps of transCSSR with a data

generated by taking a fair Bernoulli process as the input to the Odd Random Chan-

nel. All probabilities are estimated using a joint data stream of length N = 100000.
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A.2.1 Su�ciency for the Odd Random Channel

We begin by estimating P (X0 | Y0) from the data stream, which gives us the

stochastic matrix

0.832 0.168

0.167 0.833

0 1

1
0
y

x

where each entry is P̂ (X0 = x | Y0 = y). These predictive probabilities correspond

to the state of complete ignorance about whether the transducer is in the even or

odd state. They correspond to a weighted average of the the channel probabilities,

with weights given by the probability of the parity being even / odd. Note that

when the input is a fair Bernoulli process, the probability of being in the even state

is 2/3 and the probability of being in the odd state is 1/3. Thus, we begin with a

single causal state s0 = {(⇤, ⇤)}, which has this associated predictive distribution.

Next, we take L = 1. There is only one causal state with a single joint

history, so we grow its joint history (⇤, ⇤) into the past by each (a, b) 2 Y ⇥ X ,

and estimate the stochastic matrix for each new history according to (A.4). The

associated stochastic matrices are given in Figure A.2. We see that each new history

has a predictive distribution that is clearly di↵erent from that of the parent history

(⇤, ⇤). Moreover, the histories (⇤0, ⇤0), (⇤0, ⇤1), and (⇤1, ⇤0) all have equivalent

predictive distributions, so they are all assigned to the same causal state. In fact,

with these length 1 joint histories all belong in the even state, since either we have

just observed a zero as with (⇤0, ⇤0) and (⇤0, ⇤1), or we have observed a history
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that must have occurred in the odd state and leads to a transition to the even

state as with (⇤1, ⇤0). However, the history (⇤1, ⇤1) does not resolve into any of

the recurrent causal states: the 1 observed from the output could have resulted

from the input having either even or odd parity. Again, the predictive distribution

corresponds to a weighted sum of their predictive distributions. Thus, for L = 1, we

have three candidate causal states, s0 = {(⇤, ⇤)}, s1 = {(⇤0, ⇤0), (⇤0, ⇤1), (⇤1, ⇤0)},

and s2 = {(⇤1, ⇤1)}. The candidate causal states and their predictive distributions

are given in Figure A.3.

Next, we take L = 2. We have already accounted for the children histories

for causal state s0. The stochastic matrices for each of the histories in s1 and s2

are given in Figure A.4. We see that all of the children histories generated from

the histories in s1 have the same predictive distribution as their parents. This

occurs because all of the parent histories in s1 already resolve to the even state, and

therefore their backward time children must also belong to this state. Also note

that for the first time we have encountered input-output pairs that are not allowed

by this transducer. For example, the child (⇤00, ⇤01) of (⇤0, ⇤1) cannot occur: the

Odd Random Channel cannot emit a 1 on receiving a 0 when it is in the even state.

We denote these non-admissible input-output pairs by a dash (�) in the stochastic

matrix for these entries. The children of (⇤1, ⇤1) resolve into two causal states: the

histories (⇤01, ⇤01), (⇤01, ⇤11), and (⇤11, ⇤01) are moved to a new causal state s3,

and the history (⇤11, ⇤11) is moved to the existing causal state s0. Thus, for L = 2,

we have four candidate causal states given in Figure A.5.

Finally, we take L = 3. We do not give the 40 new predictive distributions
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(*, *)

1.000 0.000

0.000 1.000

0 1

1

0
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(*0, *0) (*0, *1)

(*1, *0) (*1, *1)

1.000 0.000

0.000 1.000

0 1

1

0

y x

1.000 0.000

0.000 1.000

0 1

1

0

y x

0.597 0.403

0.403 0.597

0 1

1

0

y x

Figure A.2: The stochastic matrices P̂ (X0 = x | Y0 = y, (Y�1, X�1) = (y,x)) for the
Odd Random Channel.

resulting from the 10 parent histories of length L = 2. Instead, we skip to the

final partitioning after splitting children histories, shown in Figure A.6. We see that

no new causal states were formed during this stage of the Homogenization; all of

the children histories had predictive distributions equivalent to those of the existing

causal states.
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(⇤, ⇤) (⇤1, ⇤1)(⇤0, ⇤0) (⇤0, ⇤1)

(⇤1, ⇤0)

0.832 0.168

0.167 0.833

0 1

1

0

y x

1.000 0.000

0.000 1.000

0 1

1

0

y x

0.597 0.403

0.403 0.597

0 1

1

0

y x

s0 s1 s2

Figure A.3: The candidate causal states and their predictive distributions
P (X

t

= x|Y
t

= y, S
t�1 = s) after the L = 1 Homogenization step.

A.2.2 Determinization for the Odd Random Channel

We begin the Determinization step by considering the allowed transitions be-

tween the causal states listed in Figure A.6, and removing any transient causal

states. The transitions between the states is given in Figure A.7. We see that states

s1 and s3 are transient. We outline state s0 since it corresponds to the unique start

state for transducer when we begin transduction without knowledge of whether the

Odd Random Channel is in the even or odd state.

After removal of s0 and s2, we see that transitions between s1 and s3 are

unifilar. Thus, the Determinization step terminates without splitting any histories

from these states. The estimate of the ✏-transducer resulting from transCSSR is

shown in Figure A.8. By comparing to Figure A.1, we see that the inferred ✏-
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Figure A.4: The stochastic matrices P̂ (X0 = x | Y0 = y, (Y �1
�2 , X

�1
�2 ) = (y,x)) for

the Odd Random Channel.

transducer agrees with the underlying ✏-transducer up to statistical variation in the

predictive probabilities.
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Figure A.5: The candidate causal states and their predictive distributions
P (X

t

= x|Y
t

= y, S
t�1 = s) after the L = 2 Homogenization step.
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Figure A.6: The candidate causal states and their predictive distributions
P (X

t

= x|Y
t

= y, S
t�1 = s) after the L = 3 Homogenization step.
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s0

s1

s2

s3

(0, 0)
(0, 1)

(1, 1)

(1, 0)

(1, 1)

(1, 1)

(1, 1)

(1, 1)
(0, 0)
(0, 1)

(1, 0)

(0, 0)

(0, 0)
(0, 1)
(1, 0)

Figure A.7: The allowed transitions between the candidate causal states after the
L = 3 Homogenization step. The edges are labeled by the input-output pair (y, x).
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s1 s30 | 0 : 1

1 | 1 : 1

0 | 0 : 0.497 1 | 0 : 0.503

0 | 1 : 0.501 1 | 1 : 0.499

Figure A.8: The inferred ✏-transducer for the Odd Random Channel, with N =
100000, Lmax = 3, and ↵ = 0.001. Compare to Figure A.1.

164



Bibliography

[1] J.B. Park, J. Won Lee, J.S. Yang, H.H. Jo, and H.T. Moon. Complexity analy-
sis of the stock market. Physica A: Statistical Mechanics and its Applications,
379(1):179–187, 2007.

[2] Jae-Suk Yang, Wooseop Kwak, Taisei Kaizoji, and In-mook Kim. Increasing
market e�ciency in the stock markets. The European Physical Journal B,
61(2):241–246, 2008.

[3] Claudio Cio�-Revilla. Introduction to Computational Social Science: Princi-
ples and Applications. Springer Science & Business Media, 2013.

[4] Cosma Rohilla Shalizi and James P Crutchfield. Computational mechanics:
Pattern and prediction, structure and simplicity. Journal of Statistical Physics,
104(3-4):817–879, 2001.

[5] James P Crutchfield and Karl Young. Inferring statistical complexity. Physical
Review Letters, 63(2):105, 1989.

[6] Cosma Rohilla Shalizi. Causal architecture, complexity and self-organization
in the time series and cellular automata. PhD thesis, University of Wisconsin–
Madison, 2001.

[7] Cosma Rohilla Shalizi. Optimal nonlinear prediction of random fields on net-
works. Discrete Mathematics and Theoretical Computer Science, pages 11–30,
2003.

[8] James P Crutchfield. Optimal structural transformations–the ✏-transducer.
Technical report, UC Berkeley Physics Research Report.

[9] Nix Barnett and James P Crutchfield. Computational mechanics of input-
output processes: Structured transformations and the ✏-transducer. arXiv
preprint arXiv:1412.2690, 2014.

165



[10] Fabio Boschetti. Mapping the complexity of ecological models. Ecological
complexity, 5(1):37–47, 2008.

[11] Dowman P Varn and James P Crutchfield. From finite to infinite range order
via annealing: The causal architecture of deformation faulting in annealed
close-packed crystals. Physics Letters A, 324(4):299–307, 2004.

[12] Robert Haslinger, Kristina Lisa Klinkner, and Cosma Rohilla Shalizi. The
computational structure of spike trains. Neural Computation, 22(1):121–157,
2010.

[13] Asok Ray. Symbolic dynamic analysis of complex systems for anomaly detec-
tion. Signal Processing, 84(7):1115–1130, 2004.
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namical classes of collective attention in twitter. In Proceedings of the 21st
international conference on World Wide Web, pages 251–260. ACM, 2012.

171



[94] Christian Bauckhage, Kristian Kersting, and Fabian Hadiji. Mathematical
models of fads explain the temporal dynamics of internet memes. In ICWSM,
2013.

[95] Christian Bauckhage, Kristian Kersting, and Bashir Rastegarpanah. Collec-
tive attention to social media evolves according to di↵usion models. In Pro-
ceedings of the Companion Publication of the 23rd International Conference
on World Wide Web, pages 223–224, 2014.

[96] Chenhao Tan, Lillian Lee, and Bo Pang. The e↵ect of wording on mes-
sage propagation: Topic-and author-controlled natural experiments on twitter.
arXiv preprint arXiv:1405.1438, 2014.

[97] Zongyang Ma, Aixin Sun, and Gao Cong. Will this #hashtag be popular
tomorrow? In Proceedings of the 35th international ACM SIGIR conference
on Research and development in information retrieval, pages 1173–1174. ACM,
2012.

[98] Liangjie Hong, Ovidiu Dan, and Brian D Davison. Predicting popular mes-
sages in twitter. In Proceedings of the 20th international conference companion
on World wide web, pages 57–58. ACM, 2011.

[99] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Rt to win! predicting
message propagation in twitter. In ICWSM, 2011.

[100] Jiang Yang and Scott Counts. Predicting the speed, scale, and range of infor-
mation di↵usion in twitter. ICWSM, 10:355–358, 2010.

[101] Bongwon Suh, Lichan Hong, Peter Pirolli, and Ed H Chi. Want to be
retweeted? large scale analytics on factors impacting retweet in twitter net-
work. In Social computing, 2010 IEEE Second International Conference on,
pages 177–184. IEEE, 2010.

[102] Yiye Ruan, Hemant Purohit, David Fuhry, Srinivasan Parthasarathy, and
Amit Sheth. Prediction of topic volume on twitter. WebSci (short papers),
2012.

[103] Esam Alwagait and Basit Shahzad. Maximization of tweet’s viewership with
respect to time. In Computer Applications & Research (WSCAR), 2014 World
Symposium on, pages 1–5. IEEE, 2014.

[104] Vasanthan Raghavan, Greg Ver Steeg, Aram Galstyan, and Alexander G Tar-
takovsky. Modeling temporal activity patterns in dynamic social networks.
IEEE Transactions on Computational Social Systems, 2013.

[105] Jianqing Fan and Qiwei Yao. Nonlinear time series. Springer, 2002.

172



[106] Joachim Mathiesen, Luiza Angheluta, Peter TH Ahlgren, and Mogens H
Jensen. Excitable human dynamics driven by extrinsic events in massive com-
munities. Proceedings of the National Academy of Sciences, 110(43):17259–
17262, 2013.

[107] Rob J Hyndman and Yeasmin Khandakar. Automatic time series for forecast-
ing: the forecast package for r. Journal of Statistical Software, 27(3), 2008.

[108] Geo↵rey Grimmett and David Stirzaker. Probability and random processes,
volume 2. Oxford Univ Press, 1992.

[109] Michael L Littman, Richard S Sutton, and Satinder P Singh. Predictive rep-
resentations of state. In NIPS, volume 14, pages 1555–1561, 2001.

[110] Stephen Eubank, VS Kumar, Madhav V Marathe, Aravind Srinivasan, and
Nan Wang. Structural and algorithmic aspects of massive social networks. In
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 718–727. Society for Industrial and Applied Mathematics, 2004.

[111] Ryan Compton, David Jurgens, and David Allen. Geotagging one hundred
million twitter accounts with total variation minimization. In Big Data (Big
Data), 2014 IEEE International Conference on, pages 393–401. IEEE, 2014.

[112] Adam DI Kramer, Jamie E Guillory, and Je↵rey T Hancock. Experimental
evidence of massive-scale emotional contagion through social networks. Pro-
ceedings of the National Academy of Sciences, 111(24):8788–8790, 2014.

[113] Jameson L Toole, Carlos Herrera-Yaqüe, Christian M Schneider, and Marta C
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