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Some words are harder to learn than others. For instance, action verbs like

run and hit are learned earlier than propositional attitude verbs like think and want.

One reason think and want might be learned later is that, whereas we can see and

hear running and hitting, we can’t see or hear thinking and wanting. Children

nevertheless learn these verbs, so a route other than the senses must exist. There

is mounting evidence that this route involves, in large part, inferences based on the

distribution of syntactic contexts a propositional attitude verb occurs in—a process

known as syntactic bootstrapping. This fact makes the domain of propositional

attitude verbs a prime proving ground for models of syntactic bootstrapping.

With this in mind, this dissertation has two goals: on the one hand, it aims to

construct a computational model of syntactic bootstrapping; on the other, it aims to

use this model to investigate the limits on the amount of information about propo-

sitional attitude verb meanings that can be gleaned from syntactic distributions. I

show throughout the dissertation that these goals are mutually supportive.

In Chapter 1, I set out the main problems that drive the investigation. In



Chapters 2 and 3, I use both psycholinguistic experiments and computational mod-

eling to establish that there is a significant amount of semantic information carried

in both participants’ syntactic acceptability judgments and syntactic distributions

in corpora. To investigate the nature of this relationship I develop two computa-

tional models: (i) a nonnegative model of (semantic-to-syntactic) projection and

(ii) a nonnegative model of syntactic bootstrapping. In Chapter 4, I use a novel

variant of the Human Simulation Paradigm to show that the information carried in

syntactic distribution is actually utilized by (simulated) learners. In Chapter 5, I

present a proposal for how to solve a standing problem in how syntactic bootstrap-

ping accounts for certain kinds of cross-linguistic variation. And in Chapter 6, I

conclude with some future directions for this work.



INFORMATION AND INCREMENTALITY IN SYNTACTIC
BOOTSTRAPPING

by

Aaron Steven White

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Valentine Hacquard, Chair/Advisor
Professor Jeffrey Lidz, Co-Advisor
Professor Philip Resnik
Professor Naomi Feldman
Professor Hal Daumé III
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Chapter 1: Introduction

1.1 Contextual information

Words have meanings. Those meanings must be learned. Learning the mean-

ing of some words seems like it could be quite easy. For the moment, assume that

learning a word-meaning—e.g the meaning of the word dog—involves pairing some

concept or set—e.g. the dog concept or set of dogs, call either dog—with some

linguistic symbol: dog. How one goes about doing this, the intuitive story goes, is

by noticing that utterances involving the word dog cooccur with instantiations of

the concept/set dog quite often and thus an association between the word and the

concept is built. And just so, the meaning of dog is learned. In this scenario, the

learner’s ability to discover correlations between the language and the nonlinguistic

context—the perceivable objects and events surrounding the hearer—is paramount.

Left unelaborated, this story has well-known problems (cf. Goodman, 1955; Quine,

1960; Kripke, 1982): why not consider subparts of the dog (tail, head)? Super-

ordinate categories properly containing the dogs (mammal, animal)? Or dog at

the time of utterance, cat every other time?

Nonetheless, few would deny that nonlinguistic context plays a major role

in learning the meanings of at least some—maybe most—words. How else would a
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learner figure out that dog means dog? It has become clear that solving these prob-

lems requires understanding both the nature of human conceptual understanding—

how the learner conceptualizes the nonlinguistic context—and the structure of the

mechanism that learners use to link words with concepts—how the learner extracts

information from nonlinguistic context. Within the latter vein, there have been

many interesting proposals: some involving empirically motivated learning biases

that might direct the learner toward the correct concepts (cf. Carey and Bartlett,

1978; Markman and Hutchinson, 1984; Markman and Wachtel, 1988; Merriman

and Bowman, 1989; Markman, 1990, a.o.) and others that rely on more general

properties of inductive reasoning that might direct the learner toward the correct

concepts (cf. Xu and Tenenbaum, 2007; Frank et al., 2009, a.o.). For instance,

maybe, as Markman and Wachtel (1988) suggest, children prefer to map words to

whole objects—dog is more salient as a meaning for dog than tail or head—or

maybe they assume that concepts with smaller extensions should be preferred to

ones with larger extensions (Tenenbaum and Griffiths, 2001)—a sort of weighted

Subset Principle (Berwick, 1985).

1.1.1 The problem of observability

But even equipped with these kinds of proposals, learning the meanings of

other words seems like it is probably quite a bit harder. For example, how do

learners acquire those words whose meanings are not obviously linked with features

of the nonlinguistic context—or more precisely, participants conceptualizations of
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these contexts? The parade case of such words—what Gleitman (1990) refers to as

words with meanings “closed to observation” and which Gleitman et al. (2005) dub

the hard words—are those that refer to abstract objects/concepts (liberty, tyranny),

mental states (think, know), preferences (want, prefer), authorizations (allow, for-

bid), etc. One property that binds many of these words together is that many are

verbs involving propositional attitudes, which express relations to ways the world

might be, in fact is, would be best if it were, etc. It is these hard words that this

dissertation focuses in on.

The problem with these hard words is that one can’t very well see, hear, or

feel propositional attitudes like thinkings or wantings, so it is quite unclear how

the learner pairs up words for these attitudes—think or want—with the appropriate

concepts—for now, call them think and want—under an account where correla-

tions between particular words and nonlinguistic context are the primary (or only)

data (Landau and Gleitman, 1985; Gleitman, 1990).

There is now a wealth of experimental results evidencing the magnitude of this

problem. One particular instance of this can be found in work within the Human

Simulation Paradigm (HSP; Gillette et al. 1999; Snedeker and Gleitman 2004)—

discussed at length and deployed in Chapter 4. In one instantiation of this paradigm,

adult participants are given videos of parents playing with their children. In these

videos the sound has been removed, with the idea that this partially replicates the

learner’s nonlinguistic context. A beep is then placed where a target word was

uttered, and participants are asked to say what the word is. Accuracy is quite high

in recovering concrete nouns, like dog, but essentially zero in recovering mental state
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verbs.

What this suggests is that—even for adults, who are constantly talking about

desires and beliefs—desires and beliefs are just not salient as potential word mean-

ings from the nonlinguistic context alone. And indeed, further work within this

paradigm suggests that, even if scenes are constructed to make propositional atti-

tudes salient, gains from nonlinguistic context alone are only modest (Papafragou

et al., 2007).

1.1.2 The problem of multi-faceted meanings

This problem of observability is sharpened by the fact that these words also

tend to have meanings that are multifaceted. For instance, one facet of the meanings

of both think and know is that they involve beliefs in some important way.

(1) a. Bo thinks that Jo is out of town.

b. Bo knows that Jo is out of town.

These words clearly don’t mean the same thing, though. They have (at least) a

second facet to their meaning on which they differ. In saying (1b), a speaker pre-

supposes something very specific about what they and their conversational partners

have (typically) already accepted as true—namely, that (2), corresponding to the

content of know ’s subordinate clause, is also true.

(2) Jo is out of town.
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This presupposition furthermore projects through—i.e. is unaffected by—various

semantic operators, such as negation (3a) and questioning (3b) (Kiparsky and

Kiparsky, 1970; Karttunen, 1971; Horn, 1972; Karttunen and Peters, 1979). Both

(3a) and (3b) show the same behavior as (1b) in requiring the speaker to presuppose

the truth of (2).

(3) a. Bo doesn’t know that Jo is out of town.

b. Does Bo know that Jo is out of town?

This is certainly not the case with (1a). In uttering (1a), a speaker has no commitments—

as far as the meaning of the sentence is concerned—with respect to whether (2) is

true. Indeed, one can easily imagine a discourse in which (1a) is uttered as a justi-

fication for a behavior that is based on mistaken premises. Maybe Jo is Bo’s boss

and, incorrectly believing that Jo has left for the day, he is packing up early. A

coworker who knows that Jo isn’t out of town might well say (1a) to explain Bo’s

behavior, but it would be very odd to say (1b).

And similarly, the negative (4a) and questioned (4b) versions of (1a) do not

show the projection behavior seen with (3a) and (3b).

(4) a. Bo doesn’t think that Jo is out of town.

b. Does Bo think that Jo is out of town?

In fact, rather than leaving the content of the subordinate clause alone, as it does

when it is attached to know, the negation attached to think in (4a) seems to reach

down into that content. A natural interpretation of (4a) is (5), where the negation
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has “lowered” into the subordinate clause.1

(5) Bo thinks that Jo isn’t out of town.

Thus, beyond the fact that states like thinkings and knowings are not salient in the

nonlinguistic context, whatever it means to learn the words think and know (and

want and prefer and allow and forbid), it doesn’t seem so simple, on the face of it,

as linking think with some concept think and know with some concept know.

1.1.3 Solving the two problems

But then how do learners acquire this constellation of facts about even just

these two verbs—think and know? How do they figure out, on the one hand, that

both think and know share a facet of their meaning in that they both involve beliefs

in some crucial way? And on the other hand, how do they figure out that know

and think differ with respect to other facet(s) of their meaning—e.g. that know

(i) requires the content of its complement to be presupposed and (ii) protects that

content from interference by negation and questions, while think (i) does not require

its content to be presupposed and (ii) allows its content to be interfered with by the

likes of negation?

The now standard answer, at least at a broad level, is that learners need to

move beyond nonlinguistic context as their only source of evidence for word-learning.

They need to furthermore incorporate a word’s linguistic context. To understand

1Or perhaps it has neg-raised from the subordinate clause to the matrix clause; cf. discussion
in Fillmore 1963; Horn 1971, 1975, 1978, 1989; Bartsch 1973; Ross 1973; Prince 1976; Gajewski
2007, a.o.
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what this means, it is useful to step back and consider a rough but useful division

that exists in the literature between two broad types of linguistic context: lexical

context and syntactic context.

To a first approximation, lexical context encompasses words that cooccur with

the one being learned, and syntactic context encompasses the types of abstract

structures the word is found in. For instance, suppose a learner received the datum

in (6). The lexical context of eat might be represented as in (6a). And assuming

the learner can parse the string in an adult-like way, its syntactic context might be

represented as in (6b).

(6) The men eat apples.

a. {men, the, apples}

b. S

VP

NPeat

NP

If linguistic context is necessary for learning words like think, know, and want–i.e.

those whose meanings are not associated with sensory correlates—which subtype of

information—lexical context or syntactic context—might be used? The likely answer

to this is that both are necessary in interaction, to different extents, for different

kinds of verbs. However, authors differ on whether syntactic context could ever be

necessary independent of lexical context. For instance, Pinker (1994) and Grimshaw

(1994) both argue that the only sense in which syntactic context might be useful is

in interaction with lexical context. Knowing that eat tends to take NPs referring
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to edibles, like apples, in object position could plausibly help a learner figure out

that eat means eat. But most of the information in this case is coming from a

semantic generalization—commonly occurs with words referring to edibles—and so

it is unclear what further work, if any, the syntactic context is doing here. Indeed,

if the learner can (i) figure out what role the referent of each noun phrase plays

in the event named by the verb—via only the semantics of those noun phrases—

and (ii) there are some general constraints regarding where each argument may

be syntactically situated given its entailments (cf. Baker, 1988; Grimshaw, 1990;

Dowty, 1991), the syntactic context may be doing little work beyond highlighting

the lexical material on which the learning mechanism should make its inferences (cf.

Connor et al., 2013).

I take this to be a reasonable position for verbs like eat, whose syntactic

contexts likely contains very little information about its meaning beyond that it

involves two participants. (In fact, due to the presence of intransitive uses such as

the men ate, unilateral reliance on the syntax might even lead learners astray.) Less

clear is whether this strategy of seeding inference with only lexical context could

be extended to all verbs—especially propositional attitude verbs like think, know,

and want. For instance, it seems unlikely that a learner could glean much at all

about the meaning of want from the distribution of nouns it occurs with, since want

imposes few to no restrictions on its direct object’s meaning (cf. Resnik, 1996, p.

138, Table 1). And this is not specific to want ; many propositional attitude verbs

that allow NP direct objects do not constrain the semantics of those objects.
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(7) Bo wants {an apple, a toy, a back rub}.

(8) Bo {knows, remembers, needs, demands} {a doctor, a story, the time}.

This leaves two alternatives: abandon linguistic context as a necessary condition

for learning the hard words—maybe it was brash to reject nonlinguistic context

so quickly after all—or assume that not all word learning relies chiefly on either

lexical or nonlinguistic context. It is quite unclear how the former route could work;

but even granting that a learner could learn the meaning of want without recourse

to some amount of linguistic context, telling a story about how learners go on to

distinguish want from, e.g., hope will likely be difficult.

To see this, note that hopings seem to involve wantings—if (9a) is true, (9b)

must also be true—but hope seems to have an extra facet of its meaning over and

above the component it shares with want. If (10) is true, (9a) is very odd, whereas

(9b) is fine. Thus hope seems to place an extra constraint on the states that it can

describe—namely, that the hoper believe that the state of affairs they hope to come

about is also possible (Portner, 1992; Scheffler, 2009; Anand and Hacquard, 2013;

Hacquard, 2014; Harrigan, 2015).

(9) a. Bo hopes to dance with Jo.

b. Bo wants to dance with Jo.

(10) Bo believes he’ll never dance with Jo.

This is similar to the previous example involving think and know. Remember that

think and know, like want and hope, share a component of their meaning involving
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belief, but they differ in the sorts of contexts they are allowed in. This suggests a

potentially quite general problem pertaining to propositional attitude verbs: even if

the nonlinguistic context is sufficient to learn the meaning of, e.g., want or think, a

learner who also posits the meaning of want for the meaning of hope, or the meaning

think for the meaning of know, might very well find herself with a subset problem

(Wexler and Hamburger, 1973; Baker, 1979; Berwick, 1985; Pinker, 1989); want will

always be true in the contexts hope is true, and know will always be true in contexts

where think is true, so it’s hard to see how a learner who posited the meaning want

for the meaning hope might change her mind given the nonlinguistic context alone.

Maybe one of the learning bias accounts could be made to block this from the

start. For instance, Markman and Wachtel (1988) show that learners are biased

to assume that word meanings are mutually exclusive: if they already have a word

associated with a particular meaning, they are biased to not associate a new word

with that meaning. So for the sake of argument, assume that a learner has acquired

want correctly—a plausible assumption given that want is almost two orders of

magnitude more frequent that hope—then she might be disinclined to posit the

meaning of want for that word, since she already has a word that corresponds to

that meaning.

And just so. But the learner is not out of the weeds yet. As noted earlier,

since x hopes p also seems to entail that x believes that p is possible and there

does not seem to be an English word meaning believe possible a mutual exclusivity

account alone will not solve all possible subset problems here. Indeed, if the learner

is biased to posit simpler lexical meanings, the believe possible meaning would be
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incorrectly preferred absent some further mechanism. Maybe the Size Principle can

be leveraged here: hope, in having a more complex meaning, plausibly constrains

the situations it is compatible with more than want or the non-attested believe-

possible. Then, it might be preferred over these alternatives based on a “suspicious

coincidence.”

Indeed, this strategy might be generalizable: just as hope p entails want p,

know p entails think p. And in each case, the former places a further constraint on

the states it describes. Maybe, then, learners could use aspects of the conversation

at hand—a special sort of context that straddles both nonlinguistic and linguistic

context that I refer to as the discourse context—to figure out that hope is only used

when describing situations in which the hoper believes the hoped state of affairs

to be possible and that know is only used when describing situations in which all

conversational participants take the known state of affairs for granted.

As noted by Hacquard (2014) and Dudley et al. (2015), this will likely be a

tough row to hoe, at least in the case of know v. think. Think has a property—

shared by many attitude verbs that Hooper (1975) dubs assertives (discussed in

more detail below)—that it can be (and often is) used to contribute not (just) a

report of someone’s mental state but also the content of that mental state. For

instance, adapting an example from Simons (2007) (cf. Hacquard’s 2014 example

4), the main point of Beth’s utterance in (11) is not to contribute the mental state

report but to proffer a possible answer to Anne’s question.2

2Note that this is not to say that (11) does not involve a mental state report but rather that
that mental state report is somehow secondary in this context.
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(11) Anne: Why isn’t Bo at the meeting?

Beth: Jo thinks he’s out of town.

In this circumstance, if Beth is being cooperative, she certainly seems committed to

Bo’s being out of town at least plausibly being true. And indeed, many uses of think

have this flavor, particularly within child-directed speech and children’s production

(Diessel and Tomasello, 2001). But if the complement of think is meant to be taken

as at least plausibly true, how does the learner distinguish it from know?

Maybe the learner has some exquisite sensitivity to whether a particular propo-

sition is taken for granted already or not, which is what seems to distinguish the

think and know uses. The problem here is that there are cases of know in child-

directed speech that patently could not involve all conversational participants taking

the content of know ’s subordinate clause for granted—for instance, cases where the

speaker wishes to convey that something is true while also also querying the hearer’s

mental state, as in (12).

(12) Do you know that Daddy’s coming home late tonight?

This suggests that the problem of multi-faceted meanings still rears its head, even

once nonlinguistic context is elaborated with discourse context. How does a learner

figure out that want and hope share some facet of their meaning involving desire

but that only hope requires that the desirer further believe their desire is realizable?

Or similarly, how does a learner figure out that think and know share some facet of

their meaning involving belief but that only know requires the presupposition of its

complement?
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1.1.3.1 Syntactic context and two problems

This is all to reiterate that, for at least some distinctions among propositional

attitude verbs, neither nonlinguistic context nor lexical context are likely to help in

drawing fine-grained distinctions among propositional attitude verbs, and so a final

possibility remains within the rough taxonomy given earlier: the sort of distinction

I have been discussing must be learned using syntactic context. How might the

learner do this?

The answer that Landau and Gleitman (1985) and Gleitman (1990) propose

under the heading syntactic bootstrapping is that children use the syntactic contexts

that a word cooccurs with—its syntactic distribution—to deduce its meaning.3 The

proposal moves forward in the following way. Suppose the learner makes the follow-

ing assumption: the degree to which two verbs overlap in their syntactic contexts

correlates with the degree to which their meanings overlap. She then notes that the

syntactic contexts of want and hope only partially overlap. Want, but not hope,

allows noun phrase objects (13a); both want and hope allow subjectless infinitival

complements (13b) (control complements); and hope, but not want, allows tensed

subordinate clause complements (13c).

(13) a. Bo {wants, *hopes} an apple.

3This is at least the accepted genealogy of the idea. As a historical note, this was actually
proposed earlier in Lasnik 1989, a paper in the proceedings of the 1982 University of Western
Ontario Learnability Workshop. The relevant quote: “...there appears to be a tacit assumption
that the meaning of, e.g., a verb, can be presented and apprehended in isolation. But this seems
implausible. Rather, verbs are presented in grammatical sentences which, therefore, explicitly
display subcategorization properties. In fact, one might consider reversing the whole story: sub-
categorization is explicitly presented, and the child uses that information to deduce central aspects
of the meaning of verbs” (p. 195, fn. 12).
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b. Bo {wants, hopes} to have an apple.

c. Bo {*wants, hopes} that he will have an apple.

Finally, based on these data and the premise that overlap in syntactic contexts

correlates with overlap in meaning, she might then infer that want and hope may

share some facet(s) of their meanings, but not others.

Now, this on its own is insufficient. Knowing that there is an overlap in

meaning does not yet indicate what that particular overlap is. Thus, this story

needs to be augmented to explain not only how to find out whether there’s an

overlap, but also to say how that overlap gets labeled with the appropriate facet or

feature of the words’ meanings. One wants to know not only that want and hope

share a meaning feature, but furthermore what that shared feature is. I refer to

the first of these problems—finding out that there is an overlap—as the clustering

problem because it deals with finding out that particular words cluster together

with respect to the syntactic contexts they occur in. I refer to the second of these

problems—finding out what facet of the meaning a particular clustering of verbs

corresponds to—as the labeling problem because it deals with labeling the clusters

of words that are found.4

The traditional solution to both problems within the syntactic bootstrapping

literature is to assume that whatever mechanism solves the clustering problem simul-

4The terminological choices clustering problem and labeling problem belie a particular view of
the problem a learner faces—namely, that at base, the learner must discover symbolic relation-
ships among verbs’ meanings. This does not preclude a learning model that imputes continuous
representations to the learner, as long as those representations are somehow linked to symbolic
representations. I do not intend any sleight of hand here, though; the tension between models that
(explicitly) traffic in symbols (at some level) and those that do not (explicitly) are discussed at
length in Chapters 2 and 3.
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taneously solves the labeling problem by associating particular syntactic contexts

with particular semantic features. Thus, under a standard syntactic bootstrapping

account, the learning mechanism comes pre-built with “...grammatical knowledge

[that] includes principles that provide a systematic mapping between semantic and

syntactic structures” (Lidz et al., 2004, but see also the rich literature on this topic

Fillmore 1970; Zwicky 1971; Jackendoff 1972; Grimshaw 1979; Pinker 1989; Levin

1993), and this systematic mapping is deployed to label clusters associated with

particular syntactic features. As noted by Kako (1997) as well as Lidz et al. (2004),

this might be cashed out in a couple different ways—either by imbuing syntactic

contexts themselves with semantic content (the Frame Semantic Hypothesis) or by

imbuing them with semantic content inherited from the verb’s semantic features

(the Lexical Projection Hypothesis)—but for current purposes what is important to

note is that the principles are taken to be hard-coded.

This hard-coding assumption is problematic in the current context because

it relies on an assumption that whatever these mapping principles look like, they

are cross-linguistically universal. This is a reasonable assumption in the context of

verbs that only occur with noun phrase and prepositional phrase arguments, like

hit or give, since these verbs’ occurrence in particular frames is quite stable across

languages. But it is problematic if one turns to a domain, such as the propositional

attitude verbs, where the syntactic contexts that particular subclasses of verbs occur

in apparently vary quite wildly. I note where this variability occurs briefly in the

next section and then again in Chapter 5.

This, among other considerations I lay out in Chapter 2, is one impetus for

15



investigating the clustering problem and the labeling problem separately in the

domain of propositional attitude verbs, since it could well be that the solutions to

these two problems lie in separate mechanisms. In Chapters 2, 3, and 4, I focus in

on the clustering problem for attitude verbs, though along the way I note particular

successes of my solution to this problem in terms of its ability to find clusters which

the analyst might give a coherent labeling to. In Chapter 5, I give a suggestion for

a solution to the labeling problem that takes advantage of both a property of the

model I propose as well as a novel linguistic insight.

To set the stage for my solutions to these problems, it is useful to review what

is already known about the correlation between semantic features and syntactic

contexts in English. I carry this review out in the next section. This review has

two main purposes: to establish (i) that there appear to be promising correlations

between the syntax and the semantics that learners might take advantage of, but

(ii) that these correlations are not perfect thus making it unclear to what extent

they even could be relied on by a learner.

In the subsequent section, I note that this second point is the result of the

imprecise nature of traditional distributional analysis. Results of this methodology

are by necessity only suggestive for learning accounts due to the fact that traditional

distributional analysis cannot be done at scale; it is not possible to ask for precise

measures of the relationship between semantics and syntax that might validate or

invalidate a syntactic bootstrapping approach to propositional attitude verb learning

(or indeed word-learning more generally). Indeed, this is a more general problem for

an approach to understanding lexical semantics—a problem that this dissertation
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contributes a partial solution to.

1.2 Propositional attitude verb syntax and semantics

In the previous section, I briefly touched on three facets of propositional at-

titude verb meanings. I noted that think and know involve beliefs but that they

differ with respect to whether their complement is presupposed: know is factive, and

thus presupposes its complement, whereas think is nonfactive, and thus it does not.

The other distinction I noted was that between want and hope, which both involve

desires but which differ with respect to whether the referent of their subject must

furthermore believe that state of the world is possible. Hope requires such a belief,

whereas want does not. These examples, as one might expect, were not chosen at

random: these four verbs exemplify two of four high-level semantic distinctions that

appear in the literature to have some amount of correlation with the syntax. In the

remainder of this section, I review these four distinctions.

1.2.1 Representationality

Perhaps the most well-known semantic distinction among propositional atti-

tude verbs is that between verbs that express beliefs—or represent “mental pictures”

or “judgments of truth” (Bolinger, 1968)—and those that express desires—or more

generally, orderings on states of affairs induced by, e.g. commands, laws, preferences,

etc. (Bolinger, 1968; Stalnaker, 1984; Farkas, 1985; Heim, 1992; Villalta, 2000, 2008;

Anand and Hacquard, 2013, a.o.). Within the first class, which I henceforth refer
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to as the representationals, fall verbs like think and know ; and within the second

class, which I henceforth refer to as the preferentials, fall verbs like want and order.

There appear to be various aspects of the syntactic distribution that roughly

track this distinction in English. One well-known case is finiteness: representationals

tend to allow finite subordinate clauses (1a) but not nonfinite ones (1b); preferentials

tend to allow nonfinite subordinate clauses (2b) but not finite ones (2a).

(14) a. John thinks that Mary went to the store.

b. *John thinks Mary to go to the store.

(15) a. *John wants that Mary went to the store.

b. John wants Mary to go to the store.

There are two important things to note about this distinction. First, though the

representationality distinction is often talked about as though it were mutually

exclusive, some verbs appear to fall into both categories, and suggestively, show up

in both frames. For instance, as noted in the last section, hope p involves both a

desire that p come about and the belief that p is possible (Portner, 1992; Scheffler,

2009; Anand and Hacquard, 2013; Hacquard, 2014; Harrigan, 2015, but see also

Portner and Rubinstein 2013), and it occurs in both finite (16a) and nonfinite (16b)

syntactic contexts.

(16) a. John hopes that Mary went to the store.

b. John hopes to go to the store.

Second, the link between representationality and finiteness is just a tendency. Some
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verbs plausibly classed as representationals allow nonfinite subordinate clauses (17a)/(17b),

and others plausibly classed as preferentials allow subordinate clauses that look finite

(17c).5

The roughness of this correlation is perhaps not surprising since not all lan-

guages track representationality with tense: for instance, various Romance languages

track the distinction with mood—representationals tending to take indicative mood

and preferentials tending to take subjunctive mood (Bolinger, 1968; Hooper, 1975;

Farkas, 1985; Portner, 1992; Giorgi and Pianesi, 1997; Giannakidou, 1997; Quer,

1998; Villalta, 2000, 2008, a.o.). I return to this cross-linguistic variability in detail

in Chapter 5.

(17) a. John believes Mary to be intelligent.

b. John claims to be intelligent.

c. John demanded that Mary go to the store.

But though the correlation between representationality and tense is imperfect, even

in English, finiteness does not appear to be the only associated syntactic (distri-

butional) property. Also relevant appears to be a distinction in whether the verb’s

subordinate clause can be fronted—or in Ross’s (1973) terms, S-lifted.6 At least

some representationals’ subordinate clauses (18) appear to be able to undergo S-

5Whether (17c) involves a finite subordinate clause is to some extent dependent on whether
what is often called the English subjunctive involves tense. On the one hand, the complementizer
that is the same one that occurs with tensed subordinate clauses, but on the other, the verb shows
up in its base (untensed) form.

6There is a further distinction in the literature made between S-lifts involving first person and
third person propositional attitude verb subjects (Reinhart, 1983; Asher, 2000; Rooryck, 2001). I
incorporate this first-third distinction into our experiment, but the data regarding this syntactic
distinction are murky at best.
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lifting, but many preferentials’ subordinate clauses (19) cannot (Bolinger, 1968).

(18) Mary already went to the store, I {think, believe, suppose, hear, see}

(19) a. *John already went to the store, I {want, need, demand}.

b. *John to go to the store, I {want, need, order}.

(Not all representationals allow S-lifting. This is likely because the availability of

S-lifting for a particular verb is conditioned by other semantic and pragmatic prop-

erties it has, so we defer further discussion of which verbs allow it until distinctions

beyond representationality have been discussed.)

1.2.2 Factivity

The representationality distinction is cross-cut by another common distinction:

factivity (Kiparsky and Kiparsky, 1970; Karttunen, 1971; Horn, 1972; Hooper, 1975).

Factivity is defined in terms of its discourse effects. I noted these effects briefly in

the last section in contrasting the verbs think and know, but very roughly, a verb

is factive if upon uttering a sentence containing a factive verb with a subordinate

clause, a speaker takes the content of the subordinate clause for granted regardless of

propositional operators placed around the propositional attitude verb: in particular,

negation (21b)/(20b) or questioning (21c)/(20c). For instance, each sentence in (20)

commits the speaker to (22) being true, but modulo the context, the sentences in

(21) do not. That is, in uttering the sentences in (20), the speaker presupposes (22)

(Stalnaker, 1973). This suggests that know, love, and hate are factive, while think,
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believe, and say are not.

(20) a. John {knew, loved, hated} that Mary went to the store.

b. John didn’t {know, love, hate} that Mary went to the store.

c. Did John {know, love, hate} that Mary went to the store?

(21) a. John {thought, believed, said} that Mary went to the store.

b. John didn’t {think, believe, say} that Mary went to the store.

c. Did John {think, believe, say} that Mary went to the store?

(22) Mary went to the store.

Factivity truly cross-cuts the representationality distinction in that there are verbs

representing all four possible combinations: (i) representational (cognitive) factives,

like know, realize, and understand, (ii) preferential (emotive) factives, like love and

hate, (iii) representational nonfactives, like think and say, and (iv) preferential non-

factives, like want and prefer.7

The factivity distinction appears to be tracked most closely by whether the

verb allows both question and nonquestion subordinate clauses (Hintikka, 1975;

Ginzburg, 1995; Lahiri, 2002; Sæbø, 2007; Egré, 2008; Uegaki, 2012; Spector and

Egré, 2014; Anand and Hacquard, 2014). For instance, the factive know can occur

7One question that arises here is whether, given the existence of representational+preferential
verbs like hope, there could also be such representational+preferential factives. In a certain sense,
this may be the case for the emotive factives, since it seems like sentences containing them imply
that the holder of the emotion also believes the subordinate clause to be true. If all preferential
factives are emotive (and show this behavior), this might suggest that there are no preferential
factives. One must tread carefully here, however, since not all entailments need be encoded in the
meaning of the verb—i.e. this belief entailment could plausibly arise via the same sorts of pragmatic
processes that give rise to the factive presupposition in the first place. I remain agnostic on this
issue here, since it does not bear on the current work.
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with both nonquestion (23a) and question (23b) subordinate clauses, while the non-

factive think can occur with nonquestion subordinate clauses (24a) but not question

subordinate clauses (24b).8

(23) a. Mary knows that John went to the store.

b. Mary knows {if, why} John went to the store.

(24) a. Mary thinks that John went to the store.

b. *Mary thinks {if, why} John went to the store.

1.2.3 Assertivity

Further cross-cutting representationality and factivity is the “assertivity” dis-

tinction (Hooper, 1975).9 Like factivity, assertivity is defined in terms of its effects

on discourse. Again very roughly, a verb is assertive if it can be used in situa-

tions where its subordinate clause is relevant to the main point of the utterance

(see Urmson 1952; Simons 2007; Anand and Hacquard 2014 for discussion). For

instance, think and say seem to allow this (25a), but hate does not (25b).

(25) a. A: Where is Mary?

B: John {thinks, said} that she’s in Florida.

b. A: Where is Mary?

B: # John hates that she’s in Florida.

8This paradigm is filled out by what Lahiri (2002) calls rogatives, like wonder and (for some
speakers) ask. Wonder, at least, takes only subordinate questions and not nonquestions.

9Whether assertivity fully cross-cuts representationality is unclear, since the only verb that
both has a preferential component and is plausibly assertive—hope—also has a representational
component.
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Assertivity correlates with the availability of S-lifting and the propositional anaphor

object so. Assertives, like think and say, can occur with S-lifted subordinate clauses

(26a) and so (27a), but doubt cannot occur with either S-lifting (26b) or so (27b).

(26) a. She’s in Florida, John {thought, said}.

b. *She’s in Florida, John doubted.

(27) a. John {thinks, said} so.

b. *John doubts so.

(Hooper, 1975) claims that the assertivity distiction cross-cuts the factivity distinc-

tion to give rise to a further split between semi-factives (assertive factives), like

know, and true factives (nonassertive factives), like love and hate (see Karttunen

1971 for an early description of this distinction).10 Important for my purposes is

that the semi-factive v. true factive distinction appears to correlate (i) with the

(semantic) representationality distinction—semi-factives also tend to be cognitive

factives and true factives, emotive factives—and (ii) at least two sorts of syntactic

distinctions. First, semi-factives tend to allow both polar (28a) and WH (28b) ques-

tions, but true factives tend to allow only WH questions (29b), not polar questions

(29a).

(28) a. Mary knows if/whether John sliced the bread.

b. Mary knows if/whether John sliced the bread.

10The pragmatic effects that distinguish semi-factivity from true factivity are beyond the scope
of this dissertation. Much ink has been spilled regarding the nature of semi-factivity in recent
years, however, so the interested reader is encouraged to see, e.g., Simons 2001; Abusch 2002;
Abbott 2006; Romoli 2011.
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(29) a. *Mary {loves, hates} if/whether John sliced the bread.

b. Mary {loves, hates} how John sliced the bread.

Second, semi-factives tend to allow complementizer ommission (30a), but true fac-

tives tend not to (30b). This second correlation is less strong and is likely modulated

by syntax: expletive subject emotive factives appear to be better with complemen-

tizer omission, particularly when they passivize (see Grimshaw 2009 for further

recent discussion of complementizer ommission).

(30) a. I {know, realize} (that) Mary already went to the store.

b. I {hate, love} *(that) Mary already went to the store.

(31) a. It {amazed, bothered} me ???(that) Mary already went to the

b. I was {amazed, bothered} ?(that) Mary already went to the

1.2.4 Communicativity

The final distinction I note is communicativity—which, transparent from its

name, roughly corresponds to whether a verb refers to a communicative act, or

perhaps more generally, (manner of) externalization of linguistic form. This dis-

tinction cross-cuts at least the representationality distinction—there are both rep-

resentational communicatives, like say and tell, and preferential communicatives,

like demand—and perhaps other distinctions as well, such as the factive-nonfactive

distinction (see Anand and Hacquard 2014 for extensive discussion of whether com-
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municativity truly cross-cuts factivity or not).11

The syntactic correlates of communicativity seem quite apparent on the sur-

face. Communicative verbs, along with a subordinate clause, tend to take noun

phrase (32a) or prepositional phrase (32b) arguments representing their communi-

catee (Zwicky, 1971).

(32) a. John told me that Mary went to the store.

b. John said to me that Mary went to the store.

But though this is often treated as a clearly marked distinction, there are var-

ious reasons to be cautious about it. For instance, note that demand and tell

can occur in string-identical contexts with want and believe. These string-identical

contexts appear to be be distinguished only given some parse of the string. Want-

ing and believing don’t seem to involve anything besides a wanter/believer and

a thing wanted/believed. In contrast, telling and demanding seem to require a

tellee/demandee.

(33) John {told, demanded, wanted, believed} Mary to be happy.

This is plausibly syntactically encoded. Note that the pleonastic element there,

which is plausibly an overt cue to the particular syntactic configuration in question,

is only allowed with want and believe, but not tell and demand. This has been used

to suggest that tell and demand in (33) involve an underlying object while want

and believe do not.

11Whether say and tell are only representational is a question. Both can be used to talk about
commands conditional on their taking a nonfinite subordinate clause. In any case, they plausibly
have something like a representational use with finite subordinate clause.
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(34) John {*told, *demanded, wanted, believed} there to be a raucous party

happening outside.

Further, there are some string-identical contexts that both communicative and non-

communicative verbs can appear in which plausibly have no syntactic (or perhaps

even selectional) distinctions. For instance, the communicative verb promise and

the verb deny, which is plausibly noncommunicative in this syntactic context, both

allow constructions with two noun phrases.

(35) John {promised, denied} John a meal.

This is not to say that the semantic distinction has no syntactic correlates, of course;

it is just to say that they may not be apparent from the string context.

1.3 Beyond pen and paper

In the last section, I showed various promising results regarding the rela-

tionship between semantic features and syntactic features derived from traditional

distributional analysis. In the context of propositional attitude verb learning, such

results are important in that, it provides a general guide to to where one might look

to see whether syntactic bootstrapping is feasible as a strategy for learning these

words.

The problem is that this is as far as traditional distributional analysis is likely

to take us. Understanding how words are learned involves understanding how con-

textual cues to a word’s meaning are utilized to infer that meaning. Distributional
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analysis can tell us which contextual cues (or combinations thereof) might be cor-

related with which features, but it cannot tell us the strength of this correlation.

But if what we are looking for is a mechanism to take advantage of contextual cues,

this information is crucial, especially if the correlations traditional distributional

analysis provides are not perfect. And as noted above, while possibly quite strong,

these correlations are certainly not perfect in the domain of propositional attitude

verbs. Indeed, as I note in Chapter 5, beyond not being perfect, they are also

cross-linguistically unstable.

So how does one go about assessing the correlations between contextual cues—

of interest here, syntactic contextual cues—and a word’s semantic features? The

answer is that one must devise some way of quantifiying the relationship between a

word’s semantics and its syntactic distribution. This in turn requires some way of

measuring a word’s semantics and its syntactic distribution. In Chapter 2, I address

how one can obtain a measure of the semantics (or at least a suitable proxy). For the

remainder of this section, I focus on what it means to obtain a measure of syntactic

distribution.

There are a couple ways to obtain such a measure, which correspond to two

common notions of syntactic distribution. For the syntactician and the semanticist,

a word’s syntactic distribution is defined modally: which syntactic contexts can

a word occur in? For the computational linguist, a word’s syntactic distribution

might more commonly be defined as actualized: which syntactic contexts does a

word occur in—e.g. in a corpus? The two are presumably related, but the latter

likely involve aspects of linguistic performance independent of the former. For this
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reason, I refer to the former (modal) notion as competence distribution and the latter

(actualized) notion as performance distribution.

To get a sense for how these two notions pull apart, note that a verb might

allow a frame according to its competence distribution that rarely, if ever, shows up.

For instance, believe can occur in the syntactic context I Mary to be intelligent,

but that locution has a register that will make that syntactic context’s empirical

distribution with believe look quite different from the nearly equivalent I that

Mary is intelligent. This is presumably not because believe is any worse in the first

context as compared to the second; it’s just that the second is found in a much

wider variety of registers. Further, this is not because the first syntactic context is

unlikely overall, since the highly frequent verb want shows up in contexts like I

Mary to be intelligent quite frequently.12

Pulling these two notions apart yields two kinds of syntactic distribution that

might be measured. Measurement of the first kind, the competence distribution,

corresponds most closely to the methodology employed in traditional distributional

analysis—grammaticality/acceptability judgments—and thus gathering such a mea-

sure provides a way of validating those traditional methodologies’ findings while

12A related distinction arises in the literature on selectional preferences/semantic plausibility
(Katz and Fodor, 1963; Johnson-Laird, 1983; Trueswell et al., 1993, 1994; Grimshaw, 1994; Pinker,
1994; Resnik, 1996, among many others). Frequency is only partially correlated with the plausibil-
ity of a description. For instance, in a search of the PukWaC corpus (Baroni et al., 2009), the six
most frequent content words heading objects of the verb eat (log relative frequency in parentheses)
are food (-3.25), meat (-4.16), meal (-4.35), diet (-4.51), fish (-4.59), and lunch (-4.83). In contrast,
words for offal, such as heart (-7.74) or liver (-8.15), occur much less frequently; and some, such as
kidney, do not occur at all in the corpus. This does not seem to be a fact about the coherence of
the description eat kidney, e.g., as compared to a description like eat idea. Rather, as in the case of
I believe Mary to be intelligent, some performance factor(s), broadly construed—e.g. the frequency
with which one has cause to talk about eating offal as opposed to eating lunch—conspire to make
it less frequent. The relationship between this notion of coherence and the notion of acceptability
in a frame is fleshed out in Chapter 3.
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augmenting them with an explicit methods for assessing correlation between par-

ticular semantic features and syntactic distribution. I carry this out in Chapter

2.

Measurement of the second kind of syntactic distribution, performance dis-

tribution, hews more closely to the sort of information that learners actually have

access to—a corpus of utterances—and thus gathering such a measure provides a

way of showing what may actually be learnable from the input. I carry this out in

Chapter 3 by building on the methods utilized in Chapter 2.

In the case of both of these measures, one can only say whether information

that correlates with the semantics lies in that measure’s notion of syntactic dis-

tribution. However, for a syntactic bootstrapping story to go through, it must be

further shown that learners can utilize the information in syntactic distribution in a

setting where they receive that information incrementally. In Chapter 4, I present

a methodology for assessing this.

1.4 Discussion and roadmap

In this chapter, I laid out the central problems of learning what Gleitman

et al. (2005) dub the hard words, focusing in particular on the propositional attitude

verbs like think, know, and want. I noted two main problems for learning these

verbs: (i) the eventualities they describe tend not to have sensory correlates, and

(ii) their meanings are both fine-grained and multi-faceted, thus presenting problems

for accounts based on learning from nonlinguistic context (or even discourse context)
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alone.

I then turned to a discussion of learning from linguistic context, noting two

particular kinds of linguistic contexts that have been discussed as possible learning

cues: lexical context and syntactic context. I noted that, while lexical context is

likely useful for certain distinction among verbs—indeed, it may be useful even for

some distinctions among propositional attitude verbs—it likely does not track other

distinctions of central interest. This led me to turn to the use syntactic context as

a word-learning cue—a strategy exemplified most notably in syntactic bootstrapping

approaches to word learning.

I noted two problems that any syntactic bootstrapping approach must solve:

(i) it must explain how learners cluster verbs based on the syntactic contexts they

occur with—the clustering problem—and (ii) it must explain how learners label

these clusters with the facets of meaning they correspond to—the labeling problem.

The ability of a syntactic bootstrapping account to solve either of these problems

for any particular type of verb is dependent on the (i) the granularity with which

that particular verb type’s semantics is mirrored by the syntactic distribution and

(ii) the availability of principles that would allow a learner to label the semantic

features. I raised doubts about this second prospect having to do with the cross-

linguistic stability of the mapping principles, particularly in the attitude domain,

arguing that the labeling problem quite plausibly could be solved via other means,

and so the first problem should be attacked first in isolation.

I then turned to an overview of what is known about this relationship in the

domain of propositional attitude verb. I showed that the results are quite promising
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but also that the correlations are not perfect. This raises the need for a more fine-

grained investigation of these correlations, which I carry out in this dissertation.

In Chapter 2, I begin this investigation by showing how to quantify the rela-

tionship between näıve speakers’ knowledge of the syntactic contexts a propositional

attitude verb can occur in—what I refer to as the competence distribution—and their

knowledge of that verb’s semantics. To do this, I deploy a methodology that Fisher

et al. (1991) used to probe such relationships as they obtain for verbs across the

lexicon, here focusing in on the propositional attitude verb domain in order to test

the limits of this relationship. The main result of this chapter is that there is a sig-

nificant correlation between the syntax measure and the semantics measure. This

omnibus result, however, tells us little about the relationship between particular

syntactic contexts and particular facets or features of the meaning. To delve into

this, I develop a model, which I dub the nonnegative model of projection, to investi-

gate this relationship. The benefit of this model is that it furthermore implements

part of a solution to the clustering problem. I show that this model discovers the

sorts of fine-grained features discussed above.

In Chapter 3, I investigate to what extent the same sort of relationship

found between verbs’ competence distributions and their semantics also obtains

between the distribution of syntactic contexts a propositional attitude verb occurs

in in a corpus, what I refer to as its performance distribution, and participants’

knowledge of those same verb’s semantics. To do this, I develop a model that

augments the nonnegative model of projection presented in the previous chapter

with a model of corpus count data. This model simultaneously discovers competence
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distributions using the corpus distributions, while at the same time solving the

clustering problem. The main result of this chapter is that performance distributions

also carry a significant amount of information about propositional attitude verb

semantics and that this information is comparable with that found in the direct

measures of competence distribution employed in Chapter 2.

In Chapter 4, I investigate whether the information in performance distri-

butions is in fact accessible to learners, and if so, how robustly represented this

information is. To do this, I adapt recently developed methodologies related to the

Human Simulation Paradigm (HSP) to (i) measure the informativity of particular

items in the performance distribution about the semantics of the word that occurs

in them and (ii) measure the informativity of the distribution itself. The main result

of this chapter is that, even if items are manipulated in such a way to give partic-

ipants as little information as possible, inference to all propositional attitude verbs

meanings are extremely robust, even down to extremely fine-grained facets of those

verbs’ meanings.

In Chapter 5, having focused for the majority of the dissertation on solving

the clustering problem, I present a novel proposal for how to approach the label-

ing problem. This proposal starts with the observations that, particularly in the

propositional attitude verb domain, the relationship between particular aspects of

the semantics and particular syntactic contexts seems to be cross-linguistically un-

stable. This does not raise problems for the model presented in previous section

necessarily, since as long as those languages exhibit roughly the same patterns of

correlations between meaning and syntactic context, this model should similarly
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succeed in solving the clustering problem. The problem arises if labels are some-

how associated a priori with particular syntactic contexts—for instance, if tense

were somehow associated with the representationality distinction—since not all lan-

guages show this correlation. The proposal presented in this chapter is that, while

not all languages associate particular facets of the semantics with particular syn-

tactic contexts, at least some particular facets may be associated with families of

syntactic contexts and that the learner’s job is to select the appropriate syntactic

context to associate with that facet using the data. I then show how this might be

encoded in a model like the one I develop in the previous chapters.

In Chapter 6, I conclude the dissertation with future directions for this work.
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Chapter 2: A computational model of projection

In Chapter 1, I laid out the central motivations for the syntactic bootstrap-

ping approach. Propositional attitude verbs are prime candidates for words whose

meanings are learned via syntactic bootstrapping. This raises the question: how

much information about a propositional attitude verb’s meaning lies in its syntactic

distribution?

I begin to give an answer to this question in the current chapter by quantita-

tively assessing how much information about a word’s meaning lies in that word’s

competence distribution using both experimental and computational methods. As I

noted in the last chapter, such a quantitative assessment provides a way of assessing

the viability of results from traditional distributional analysis. I show that (i) there

is significant agreement between the competence distributions and the measure of

semantics employed and (ii) these agreements largely corroborate the results of the

traditional distributional analysis methods.

Besides providing such an assessment, this chapter also contributes a novel

methodology for inducing semantic features from the sorts of competence distribu-

tion measures employed here. I show that this methodology is furthermore linguis-

tically interesting in that it quite naturally models the linguist’s traditional notion
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of projection.

To lay the groundwork for this contribution, I begin the chapter with a broad

overview of the notion of projection. This leads naturally into a discussion of the

experimental methodology I utilize in this chapter to measure aspects of a word’s

meaning and its competence distribution. This methodology is the direct application

of one developed by Fisher et al. (1991) and extended by Lederer et al. (1995). As

it will be important for grounding discussion throughout the dissertation, I review

the logic of this methodology as it relates to the notion of projection.

Subsequently, I present three experiments that focus in on propositional atti-

tude verbs: one that aims at quantifying these words’ competence distributions and

two that aim at assessing their semantic properties. In analyzing the competence

distribution data, I explore various ways of extracting information from the measure

of the competence distribution that fall broadly in the domain of factor analysis.

I relate these factor analysis methods back to the earlier discussion of projection,

showing that the assumptions these methods make about the process that generates

competence distributions directly maps onto the linguist’s notion of projection. I

argue that in particular non-negative matrix factorization methods hew very closely

to the sorts of projection architectures linguists conceptualize.

In the next section, I turn to an analysis of the two semantic measures. I show

that, on the whole, these measures agree, but that they also show interesting areas

of disagreement. Despite this disagreement these measures both correlate reliably

with the competence distribution measure. This establishes that there is a significant

amount of information shared between the syntax and the semantics. I then delve
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into these what drives these correlations by asking how well particular features

extracted using the factor analysis methods employed to analyze the competence

distribution data fare in predicting the two measures of semantics. I then conclude.

2.1 The meaning-syntax relationship

In this section, I present an abstract characterization of the traditional method-

ology employed by linguists to study the relationship between meaning and syntactic

distribution. I then review a critique of this traditional methodology brought for-

ward by Fisher et al. (1991) along with their methodological solution.

2.1.1 Linguistically relevant meaning

Linguists of all stripes have a standing interest in the relationship between

word meaning and syntactic distribution—an interest that Zwicky (1971) distills

quite elegantly in the introduction to his classic squib on manner-of-speech verbs.

To what extent is it possible to predict certain properties of words (syn-

tactic, semantic, or phonological), given others? [And] insofar as there

are such dependencies among properties, what general principles explain

them? (ibid., p. 223)

Indeed, it has long been recognized that questions regarding which semantic

distinctions are morphosyntactically relevant are the only ones linguists can claim

propriety over; distinctions in meaning beyond those predictable from other lin-

guistic properties fall equally well into the domain of the lexicographer (Fillmore,
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1970)—or in modern times, the computer scientist (cf. Mikolov et al., 2013). Em-

bedded in this view is the idea that an item’s linguistic contexts are responsive

to only some conceivable contrasts in meaning and that a linguistic theory of the

link should speak to exactly which these are and why other conceivable contrasts

are excluded (cf. Jackendoff, 1972; Grimshaw, 1979; Pinker, 1989; Levin, 1993). As

Zwicky puts it, the question for the linguist is “what sorts of word classes are there,

and why these and not others?” (ibid., p. 223)

An example of the distinction between linguistically relevant and linguistically

irrelevant semantic distinctions comes from Pesetsky (1991). Following Zwicky,

he notes that, though “verbs of manner of speaking”—e.g. holler and whisper—

and “verbs of content of speaking”—e.g. say and propose—are distributionally

distinguishable, “verbs of loud speech”—e.g. holler and shout—and “verbs of soft

speech”—e.g. whisper and murmur—do not seem to be. (For example, verbs of

content of speaking “resist adjunct extraction and allow complementizer deletion”

(Pesetsky, 1991, p. 14).) That is, the manner-content distinction has consequences

for the syntax, whereas the loud-soft contrast does not.

In fact, the generalization extends beyond predicates that refer to speech

sounds to predicates that refer to sounds in general. The volume, pitch, resonance,

and duration of the relevant sound do not seem to have bearing on its distributional

properties, but the mode of generation (internally v. externally caused) does (Levin

and Hovav, 2005). This suggests that, whatever constitutes the nature of the con-

nection between a word’s semantic properties and its syntactic distribution, it is

blind to certain possible conceptual distinctions—in this case, sonic properties.
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Thus, though nonlinguistic meanings—i.e. concepts—may be distinguishable

to a very fine grain-size, linguistic meanings may not be. In this sense, the linguistic

system can be conceived of as a filter on the properties of the conceptual system’s

objects, retaining some properties wholesale while discarding others. To introduce

a convention I use throughout the dissertation, suppose ci is some representation of

concept i, then si is some representation that encodes all and only the linguistically

relevant features of ci.
1 At a high level of abstraction, then, (part of) the inter-

face between language and other areas of cognition—in particular, the Conceptual-

Intentional (CI) interface—might be viewed as an information-preserving, or homo-

morphic,2 mapping CI from objects in the concept space C to their syntactically

relevant features in the semantic feature space S.3

C
CI−→ S

1I use the following conventions throughout the remainder of the dissertation: italicized capital
letters stand for representational spaces—i.e. possible representations; normal capital letters refer
to mappings between these spaces; bolded lower-case letters, which will tend to be subscripted,
refer to particular instantiations of the corresponding space, and bolded upper-case letter refer to
collections of these specific instantiations. The bolding convention in particular is used because
representational instantiations are cashed out as vectors and their collections as matrices or tensors,
and bolding is standard in linear algebra and related disciplines for representing vectors and their
generalizations.

2This way of speaking assumes that the distinctions made among linguistic meanings is a subset
of those made between nonlinguistic meanings. Such a containment relationship is not conceptually
necessary. I have nothing to say about this possibility.

3This presupposes a contentious point about the complexity of lexical items (cf. Fodor and
Lepore, 1998, 1999). While Fodor and Lepore’s arguments are serious, I believe that a reader
who abides by the dictum that lexical items be represented atomically might still find use in this
chapter. This is one main reason that I stress the distinction between discovering distributional
regularities and discovering semantic content throughout the chapter. I take it as prima facie
reasonable that representations of a word’s distributional regularities may be complex in a way
that the representation of its content may not be, since of course, one needs to explain C-selection
somehow. One might then wonder whether I have just put a new name—distributional regularity—
on an old concept—semantic decomposition. I think there is reason to believe that I have not,
given the way I link distributional regularities to similarity judgments, but I will have to leave this
question open.
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It is worth stressing the following implication: si may not exhaust the seman-

tic representation of word i; indeed, si may not even be semantic in any important

sense. For instance, it might be conceived of as a (structured) index into sub-

sets/subspaces of concepts—hence the importance of specifying that the mapping is

homomorphic, not necessarily isomorphic. In this sense, si would be purely formal,

though depending on its structure, it might imperfectly mirror relationships in the

conceptual space. Thus, knowing si for a word i would be insufficient for fixing that

word’s corresponding concept ci.

By definition, however, si would be sufficient for determining various linguistic

properties of word i, such as its syntactic distribution di. To say that the syntactic

distribution di of word i can be determined from its linguistically relevant semantic

features si is to say that there is some mapping from the space of possible semantic

representations S to the space of syntactic distributions D. In standard models of

the syntax-semantics interface, this mapping, call it P, is determined by a set of

projection principles (cf. Gruber, 1965; Carter, 1976; Chomsky, 1981; Pinker, 1989;

Grimshaw, 1990; Levin, 1993; Hale and Keyser, 2002).4

S
P−→ D

To take a concrete example: in reviewing the literature on the representational

(think, say, know) v. preferential (want, order, prefer) distinction among proposi-

tional attitude verbs, I noted the apparent correlation (in English) between repre-

4In the remainder of the dissertation, I overload the term projection principles to refer to either
the mapping P itself or the principles that make it up, allowing context to disambiguate where
possible. In general, the term will be used to refer to the function P itself.
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sentationality and tense: representationals tend to take finite subordinate clauses,

whereas preferentials tend to take nonfinite subordinate clauses. If this correlation

holds, this would suggest (i) that representationality and preferentiality are encoded

in si; and (ii) that the principles map the encoding of representationality to some

representation of the distribution that encodes finite complementation and the en-

coding of preferentiality to some representation of the distribution that encodes

nonfinite complementation.

Putting these two components together—the mapping from the conceptual

space C to the (linguistically relevant) semantic feature space S and the mapping

P from the semantic feature space S to the syntactic distribution space D—the fol-

lowing abstraction over the relationship between meanings and distributions results.

C S DCI P

If this model is correct, the upshot for a theory of verb-learning that relies

on syntactic context—e.g. syntactic bootstrapping—is that there is likely a limit

on the meaning properties that syntactic context could be used to learn even in

principle. Why? Suppose the learner has access to the syntactic distribution di for

some word i and that their job is to infer the concept ci association with word i.

That is, they need to “reverse” both the projection rules P and the mapping from

the conceptual space to semantic features CI.5

5In the remainder of this chapter, I use the following convention: solid lines represent theo-
retical, or computational-level (Marr, 1982), relationships; dashed lines represent algorithms that
map between representations—as in the case of syntactic bootstrapping, possibly utilizing the
computational-level relationships.
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C S DCI P

SynBoot

A learner’s ability to perform this reversal from the syntax alone will necessar-

ily be bound by the information lost due to the mapping P from semantic features to

syntactic distributions—i.e. the projection principles—and the information lost due

to the mapping CI from concepts to semantic features. This gives Zwicky’s question

new force. Reformulating it relative to the above abstraction, this question has two

parts: (i) what kinds of things constitute the possible semantic representations S?

And (ii) what kind of relation do the principles P instantiate?

How does one approach this question? The traditional methodology—e.g. the

one that produced many of the results discussed in the last chapter—is to assume

knowledge of both the concepts C and the syntactic distributions D associated

with various words and then to attempt to infer both the space of (linguistically)

relevant semantic representations S and the projection principles P. Thus, making

the simplifying assumption that learners have access to all objects in the conceptual

space C and the syntactic distributions of some words D, the linguist and the learner

look very much alike. The only difference between the two under this model, modulo

the simplifying assumptions, is that the learner does not have access to the pairing

of the concept ci and syntactic distribution di for word i; rather, they have the

syntactic distribution di of word i and a set of possible concepts {cj}.6

6From a machine learning perspective, the linguist carries out some supervised learning algo-
rithm to inferm S and the learner carries out an unsupervised learning algorithm.
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This method has been quite successful, uncovering regularities in many dis-

parate areas of the lexicon (see Levin and Hovav 2005 and Williams 2015 for broad

overviews of this work). However, Fisher et al. (1991) note that this methodology

has its limits in the fact that

...only those semantic generalizations that can be readily labeled by the

investigator are likely to be discerned. It may well be that there are

semantic abstractions which, while correlated with the syntax, are not

so easy to puzzle out and name. (p. 342)

In the propositional attitude verb domain, for instance, one possibility is

that representationality, factivity, assertivity, and communicativity have been been

posited as syntactically relevant, in part, because they are readily labeled by in-

vestigators. This methodological problem arises, they argue, as a consequence of

confounding isolation of a property and labeling of that property, since “...disagree-

ments over labels for semantic features can get in the way of deciding whether those

features are marked in the syntax” (ibid, p. 342). Note that this is analogous to

the labeling problem, discussed in Chapter 1: even assuming syntactic distribution

is attended to, how does a learner link the appropriate features of that distribution

(syntactic contexts) to the appropriate meaning components?

Their methodological solution has three components: (i) independent mea-

sures of both the array of syntactic contexts a verb i can occur in (its syntactic

distribution) and that verb’s meaning; (ii) some way of extracting regularities from

meaning measure; and (iii) some way of stochastically mapping these regularities
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into the semantic measure. Within the above abstraction, (i) involves measuring

di and ci, while (ii) and (iii) involve constructing a mechanism that carries out the

same sort of reversal as syntactic bootstrapping.

To implement these components, Fisher et al. begin by attaining, for a set of

verbs spanning the lexicon, semantic similarity judgments for those verbs—call the

resulting data Y, an approximation to the true concepts C. The idea here is that

such quantitative representations allow one to bypass the sort of explicit labeling

inherent to the traditional method, since distinctions among features salient to the

participants are not explicitly invoked.7

C S D

Y

CI P

Their goal is to then compare this proxy Y with a quantitative representation

of those verbs’ syntactic distributions gathered using an acceptability judgment

task.8 I refer to these sorts of quantitative representations as X, an approximation

of D.

7There is a question here to what extent the Ci is solely dependent on C and not, e.g., D
itself. Fisher et al. give various arguments that Y is plausibly the product of participants utilizing
some aspects of the meaning of the words in the task independently of the correspond syntactic
distributions D. As far as I can discern, it would be nearly impossible to tell whether the similarity
judgments Y are a product (to some extent) of comparing of verbs’ syntactic distributions D or
whether they are a product of conceptual feature correlated with those distributions.

8Lederer et al. (1995) took a similar tack, using the same sort of semantic similarity judgment
task but replacing acceptability judgments with syntactic distributions extracted from a corpus.
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C S D

Y X

CI P

Fisher et al.’s question is then how well the semantic similarity judgments Y

and acceptability judgments X match up and in what ways do they match up. The

first method they use for doing this is direct comparison of the similarity judgments

and (similarities derived from) the acceptability judgments.

C S D

Y X

CI P

The second method they use is to explicitly extract features from the semantic

similarity judgments. The specific algorithm they use for extracting these features

is a form of additive clustering (ADCLUS; Shepard and Arabie 1979), which can in

turn be viewed as doing inference over a generative model of similarity judgments,

where similarity judgments are the number of matching binary features, weighted

by feature and with noise (Tenenbaum, 1996; Tenenbaum and Griffiths, 2001).9 As

such, I denote it with a a dashed arrow back up to the conceptual space. The features

extracted using this procedure are then mapped into the syntactic distribution proxy

using a linear map.

9Fisher et al. actually use a related algorithm called OVERCLUS (Sarle, 1979). I have been
unable to track down the original reference for OVERCLUS, which is an unpublished dissertation
proposal, and an implementation no longer ships with the statistical package Fisher et al. report
using (SAS). As far as available secondary references go in describing OVERCLUS, however, it
appears to produce the same basic kind of representations as ADCLUS—binary features—and can
similarly be encoded as doing inference over a generative model.
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C S D

Y X

CI P

ADCLUS

Another way of thinking about this mapping is as going from C to D directly.

This depends to some extent on whether there is some procedure for reconstructing

the distributions D from their acceptability judgment proxy X. For instance, aver-

aging acceptability judgments for a particular verb-subcategorization frame pair, as

Fisher et al. do, might qualify.10 This is discussed extensively later in this and the

next chapter.

C S D

Y X

CI P

ADCLUS

One thing worth noting about these last two steps is that the methods that

Fisher et al. utilize to extract syntactic regularities and compare them against the

semantic similarities make potentially substantive assumptions about the nature of

the syntactic regularities and the nature of their relationship to the semantics—

in the case of the regularity extraction procedure, that these representations are

discrete/symbolic.

10As I note in the next section, however, averaging is not a particularly good way of analyzing
the sort of acceptability judgment data—ordinal data—Fisher et al. collect.
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2.1.2 Discussion

In this section, I presented an abstract characterization of the traditional

methodology employed by linguists to study the relationship between meaning and

syntactic distribution. The basic architecture of the system can be described by

two mappings: one from the conceptual space to a space of linguistically relevant

semantic features (CI) and another from the linguistically relevant semantic features

to syntactic distributions (P)—the projection principles.

C S DCI P

I casted the traditional methodology for discovering the projection principles

P and linguistically relevant semantic features S as involving analysis of concept

(ci)-syntactic distribution (di) pairs. I then reviewed a methodological critique of

the traditional methodology brought forward by Fisher et al. (1991) along with

their methodological solution. In the course of this review, I reified the logic of their

methodology pseudoformally as using quantitative proxies of the semantics Y and

the syntactic distributions X to discover these relationships.

C S D

Y X

CI P

The remainder of this chapter follows Fisher et al.’s experimental methodolo-

gies and analytical logic quite closely. I diverge from them in two ways, however.
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X

D

S P

Figure 2.1: graphical model for generative model corresponding to S
P−→ D → X.

First, I focus here on a much smaller piece of the lexicon than Fisher et al., who look

at much wider swaths of the lexicon and similarly sized swaths with subcategoriza-

tion frames that were not particularly fine-grained. The idea of looking at a smaller

swath and using fine-grained frames is that this can help uncover the limits of se-

mantic information in syntactic distribution. Second, in contrast to Fisher et al.,

who are not concerned with the regularities that can be extracted from the syntax

directly, I present an analytical innovation that takes the above structure seriously

by reifying it into a generative model. This generative model gives the chapter its

title in that it naturally captures the traditional notion of projection.

Figure 2.1 shows an abbreviated representation of this model in the form of

a graphical model, where shaded circles represent observed variables—here, the

syntactic proxy X—and unshaded circles represent variables that must be inferred.

Following the logic laid out above, all but the syntactic proxy is observed, and thus

the true competence distribution D, the linguistically relevant semantic features S,

and the projection rules P must be inferred.

In the next section, I show two ways this model can be cashed out—Principal
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Component Analysis and Nonnegative Matrix Factorization—contrasting the output

of these methods with another: hierarchical clustering.

2.2 Experiment 1: verb-frame acceptability

In this section, I present an experiment aimed at getting a measure of how

acceptable a variety of propositional attitude verbs are in different syntactic con-

texts. My goal is two-fold. First, I assess how closely the sorts of regularities found

in these data correspond to the attitude verb distinctions discussed above. I carry

this out by using two standard exploratory analyses—hierarchical clustering and

principal component analysis—and one novel analysis (at least in this domain)—

nonnegative matrix factorization. Second, I assess the strengths and weaknesses

of each exploratory analysis with respect to how well they satisfy various method-

ological considerations. This assessment is driven in part by the sorts of regularities

that are discovered in the data, along with theoretical considerations. I suggest that

the nonnegative matrix factorization approach most closely fits with the traditional

notion of projection.

2.2.1 Design

This experiment aims to get a measure of how acceptable a variety of proposi-

tional attitude verbs are in different syntactic contexts. To do this, 30 propositional

attitude verbs were selected in such a way that they evenly spanned the classes

in Hacquard and Wellwood’s (2012) semantic classification. This classification is
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essentially a more elaborated version of the classification presented in Section 2.1.

19 syntactic features whose distribution has been claimed to be sensitive to

attitude verb lexical semantics were then selected. These features consist in five11

broad types: clausal complement features, noun phrase (NP) complements, prepo-

sitional phrase (PP) complements, expletive arguments, and anaphoric arguments.

(Note that I break these features into types for expository purposes only. No special

status is afforded to these groupings in the analysis.)

2.2.1.1 Features of interest

Six types of clausal complement features were selected: finiteness, complemen-

tizer overtness, subordinate subject overtness, subordinate question type, S-lifting,

and small clause type. Finiteness had two values: finite (1a) and nonfinite (1b).

(1) a. Mary thought that John went to the store.

b. Mary wanted John to go to the store.

Complementizer presence had two values: present (2a) and absent (2b).

(2) a. Mary thought that John went to the store.

b. Mary thought John went to the store.

Embedded subject presence had two values: present (3a) and absent (3b) and is

relevant only when the clause is finite and has no overt complementizer.

11A sixth feature—degree modification—was also selected for investigation. I exclude this from
the analyses since the information degree modification carries is likely purely—or at least mostly—
semantic in nature.
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(3) a. Mary wanted John to go to the store.

b. Mary wanted to go to the store.

Embedded question type had three values: nonquestion (4a), polar question (4b),

and WH question (4c).

(4) a. Mary knows that John went to he store.

b. Mary knows if John went to he store.

c. Mary knows why John went to he store.12

S-lifting had two values: first person (5a) and third person (5b).

(5) a. John went to the store, I think.

b. John went to the store, Mary said.

Small clause type had two values: bare small clause (6a) and gerundive small clause

(6b).

(6) a. Mary saw John go to the store.

b. Mary remembered going to the store.

Two NP structures were selected: single (7a) and double objects (7b).13

(7) a. Mary wanted a meal.

b. Mary promised John a meal.

12Only adjunct questions were used, since constituent questions are ambiguous on the surface
between a question and a free relative reading.

13NPs were chosen so as not to have an interpretation in which they could be interpreted to
have propositional content (Moulton, 2009a,b; Uegaki, 2012; Rawlins, 2013; Anand and Hacquard,
2014).
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A third feature relevant to NP complements—passivization—was also included (8).14

(8) John was said to be intelligent.

Two types of PP complement were selected: PPs headed by about (9a) and PPs

headed by to (9b).

(9) a. Mary thought about John.

b. Mary said to John that she was happy.

Three types of expletive arguments were selected: expletive it matrix subject, ex-

pletive it matrix object, and expletive there matrix object/embedded subject.

(10) a. It amazed John that Mary was so intelligent.15

b. John believed it that Mary was top of her class.

c. John wanted there to be food on the table.

Three types of anaphoric complement features were selected: so (11a), null comple-

ment/intransitive16 (11b), and nonfinite ellipsis (11c).

(11) a. Mary knew so.

b. Mary remembered.

c. Mary wanted to.

14The availability of structures like (8) and the unavailability of structures like (3a), appears to
correlate with whether a predicate’s eventivity and/or its encoding of manner (Postal, 1974, 1993;
Pesetsky, 1991; Moulton, 2009a,b, see also Zwicky 1971 for other syntactic and semantic features
that track manner of speech).

15It is difficult to force the subject in a sentence like (10a) to be interpreted nonreferentially. As
I see in Figure 2.2, this likely affected the judgments for verbs like tell, which are fine in this frame
if the subject is interpreted referentially.

16Note that I cannot be sure that these structures involve null complements in either Williams’
(2015, Ch. 5) broad or narrow sense. See Hooper 1975; Hankamer and Sag 1976; Grimshaw 1979;
Depiante 2000; Williams 2012 for further discussion of these structures.
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2.2.1.2 Stimulus construction

These 19 features were then combined into 30 distinct abstract frames. (Again,

note that the features are mentioned for expository purposes only. They do not enter

into the analysis in any formal sense.) These abstract frames are listed along the

x-axis in Figure 2.2. Each categorial symbol in the frame should be interpreted as

follows:

NP NP constituent (e.g. Mary)

WH (Adjunct) WH word (e.g. why)

V Bare form of verb (e.g. think)

VP Verb phrase with verb in bare form (e.g. fit the part)

S Finite clause without complementizer (e.g. John fit the part)

For each abstract frame, three instantiations were generated by inserting lexi-

cal items, resulting in 102 frame instantiations. These 102 frame instantiations were

then crossed with the 30 verbs to create 3060 total items.

Thirty lists of 102 items each were then constructed subject to the restriction

that the list should contain exactly 3 instances of each verb and exactly 3 instances

of each frame and that the same verb should never be paired with the same frame

twice in the list. (That is, no verb showed up with more than one instantiation of

the same frame in a single list.)

These lists were then inserted into an Ibex (version 0.3-beta17) experiment

script with each sentence displayed using an unmodified AcceptabilityJudgment
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controller (Drummond, 2014). This controller displays the sentence above a discrete

scale. Participants can use this scale either by typing the associated number on

their keyboard or by clicking the number on the scale. A 1-to-7 scale was used with

endpoints labeled awful (1) and perfect (7). All materials, including the instructions

participants received, are available on my github.

2.2.2 Participants

Ninety participants (48 females; age: 34.2 [mean], 30.5 [median], 18–68 [range])

were recruited through Amazon Mechanical Turk (AMT) using a standard Human

Intelligence Task (HIT) template designed for externally hosted experiments and

modified for the specific task. Prior to viewing the HIT, participants were required

to score seven or better on a nine question qualification test assessing whether

they were a native speaker of American English. Along with this qualification test,

participants’ IP addresses were required to be associated with a location within the

United States, and their HIT acceptance rates were required to be 95% or better.

After finishing the experiment, participants received a 15-digit hex code, which

they were instructed to enter into the HIT. Once this submission was received,

participants were paid $3.50.

2.2.3 Data validation

Even with the stringent requirements listed above—a qualification test, IP

restriction, and high HIT acceptance rate—some participants attempt to game the
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system. There are two main ways that participants do this: (i) submitting multiple

HITs despite being instructed not to and (ii) not actually doing the task—e.g.

choosing responses randomly.

The first is easy to detect. When data are submitted in Ibex, the submitting

participant’s IP address is converted into an MD5 hash, which is in turn associated

with the responses they submit. This hash can then be used to check whether

participants followed instructions in only submitting a single HIT. Two participants

submitted multiple HITs: one participant submitted three and another submitted

two. In both of these cases, only the first submission was used.17

The second requires more care to detect. Here, I use the fact that multiple

participants did the same list. The idea is to compare each participant’s responses

against those of all other participants that saw the same list. If a participant has

low agreement with the other participants that saw the same list and the other par-

ticipants show high agreement with each other, then I conclude that the disagreeing

participant was providing lower quality data and remove them from the analysis.

To implement this, the Spearman rank correlations between each participant’s

responses and those of every other participant that did the same list were calculated.

For instance, if participants x, y, and z all did list 1, the correlation between x’s

and y’s responses, x’s and z’s, and y’s and z’s was computed. The distribution of

these correlations was then inspected for outliers.

The median Spearman rank correlation between participant responses is 0.64

17Note that this method does not distinguish between one participant attempting to submit
multiple HITs from the same IP and two participants each submitting a single HIT from the same
IP. I err on the side of caution in filtering all the but the first HIT from the same IP.
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(mean=0.63, IQR=0.69-0.58). To find outliers, Tukey’s method was used. Four

comparisons fall below Q1-1.5*IQR and none fall above Q3+1.5*IQR. The four

that fall below are due to two participants, each from a different list. Perhaps not

coincidentally, those participants were also the ones that submitted multiple HITs.

The remainder of the analyses exclude responses from these two participants.

After excluding these participants, the median remains the same (to two sig-

nificant figures) and the mean shifts upward slightly, from 0.63 to 0.64. (This is

to be expected since the mean is more sensitive to outliers.) The IQR becomes

slightly smaller, and Q1 shifts slightly upward (IQR=0.69-0.59). These correlations

are comparable to those reported by Fisher et al. (1991).

2.2.4 Results

In this section, I provide an exploratory analysis of the acceptability judgment

data. The goal here is two-fold: first, to show the general contours of the data set;

and second, to develop a model that extracts interpretable distributional features

from the acceptability judgment data. I begin with (hard) hierarchical clustering of

the verbs as a way of breaking into the data. One problem this method has is that

it cannot capture overlapping categories. To capture such overlapping categories,

I move to analyzing the data with factor analysis, which can capture overlapping

clusters/features. Two factor analysis approaches are explored: Principal Compo-

nent Analysis (PCA) and Nonnegative Matrix Factorization (NMF). I show that,

generally, PCA does well at capturing high-level feature while NMF does well at
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Figure 2.2: Mean rating for each verb-frame pair ordered by hierarchical clustering.
Darker shades represent higher mean ratings.
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capturing fine-grained features. I argue, however, that NMF does a better job of

capturing theoretical intuitions.

2.2.4.1 A bird’s eye view

Figure 2.2 displays the mean rating for each verb-frame pair.18 Darker cells

represent higher mean rating. The ordering along each axis is derived from a hier-

archical clustering of the verbs (y-axis) and a separate hierarchical clustering of the

frames (x-axis).19 The hierarchical clustering of the verbs can be seen in Figure 2.3

and the hierarchical clustering of the frames, in Figure A.1 in Appendix A. These

two display methods provide a bird’s eye view of the verb clusters and the syntactic

distributions that belie those groupings.

Three clusters of verbs are immediately clear from Figures 2.2 and 2.3. First,

a major cluster emerges that tends to be good with finite complements (believe,

hear, see, hope, pretend, suppose, say, think, forget, hate, love, feel, deny, doubt,

imagine, remember, understand, guess, realize, and promise). These verbs appear

to correspond roughly to Bolinger’s (1968) representational class.

18Note that averaging in this way implicitly assumes that all points on the ordinal (likert) scale
map onto (contiguous) intervals of equal measure on the latent scale (acceptability). This is not a
valid assumption in general, since each participant in acceptability judgment experiments appears
to use likert scales in slightly different ways—i.e. ordinal scale responses tend to exhibit scaling
effects. (The existence of scaling effects in ordinal scale tasks has been well-known since at least
Stevens 1946; see Schütze and Sprouse 2014 for a recent discussion of scaling effects in acceptability
judgment tasks.) A 6 response for one person could be equivalent to a 7 response for some and a
5 response for others. This is taken into account explicitly in later sections by incorporating an
ordinal logit model with participant random effects into the analyses; but for current purposes, it
seems unlikely that this violation is problematic.

19For both clusterings, Euclidean distance, the default in the R function dist(), was used as
the metric and complete linkage, the default in the R function hclust(), as the agglomerative
clustering criterion. Neither choice is principled, but since the analysis in this section is mainly
qualitative, I see no apparent problem with either.
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The second major cluster that arises contains verbs that involve a way of or-

dering states of affairs for their optimality with respect to some set of constraints:

desires/needs (want, need), permits (allow, forbid), and commands (demand, ex-

pect). These verbs are also the ones that tend to take nonfinite complements. This

second grouping is interesting in that it also turns out to be one of the most co-

hesive in terms of semantic similarity judgments, as I show in Section 2.3. For the

remainder of the chapter, I refer to this cluster as the preferential class.

The final high-level cluster involves some verbs that encode emotion toward

a state of affairs or object (worry, amaze, and bother)—but not others (hate and

love)—along with the apparent outlier tell.20 There are likely two reasons tell ends

up in this cluster. First, since it is impossible in a standard acceptability judgment

task to differentiate expletive subjects—e.g. it—from their referential counterparts,

participants have the option of reading any of the frames that begin with it Ved . . .

as though the it were referential. Second, since all of the frames constructed with

an expletive subject also contained an NP object and only some of the other frames

did, tell ends up globally more close to the seemingly semantically disparate emotion

verbs.

As one digs further into smaller clusters within these three major ones, some

regularities emerge, but some unexpected aspects arise as well. Among the regulari-

ties are pairs that clearly belong together semantically: hate and love, hear and see,

want and need, forbid and allow, etc. Many of the intermediate groupings are some-

20The distinction the clustering finds between worry, amaze, and bother, on the one hand,
and hate and love, on the other, is clearly driven by the fact that the former group takes their
experiencer argument as an object and the latter takes their experiencer argument as a
subject. To what extent this syntactic distinction is mirrored in the semantics is an open question.
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what odd, however. In terms of its semantics, why should believe be grouped with

perceptual verbs like hear and see and not other belief verbs like think and suppose.

Similarly, why should forget be grouped with hate and love and not remember and

cognitive verbs, like realize and understand?

Indeed, even the three high-level clusters are not immune to these sorts of

questions. For instance, though it clearly takes multiple frames that involve nonfinite

complements, expect is something of an outlier among the preferential; though it does

seem to have a use involving obligations (12a), it also seems to have a use involving

predictions (12b). This second use—which can be drawn out by making the referent

of the embedded subject something that could not have obligations (Wurmbrand,

2014)—seems much more akin to the representational (see Portner and Rubinstein

2013 for discussion of expect and its relation to wish in languages like Spanish).

(12) a. I expect you to be here on time.

b. I expect the pizza to be a little late.

(Cf. I expect that the pizza will be a little late.)

The presence of expect in the preferential contrasts with a notable absence: the

verb hope, which shows up among the representational verbs. That hope patterns

with the representational on the macro level is interesting since, like expect, hope

seems to share elements of its semantics with both the representational and the

preferential (Anand and Hacquard, 2013; Portner and Rubinstein, 2013; Hacquard,

2014; Harrigan, 2015).

The problem here is that, in partitioning verbs into classes—even hierarchical
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ones—one misses aspects of the verbs’ meanings that seem to cross-cut these par-

titions; some verbs, like expect and hope, share aspects of their meaning with both

verbs in the representational and the preferential. This results in clusters that look

interpretable at the macro level but not at the intermediate and lower levels. I refer

to this problem as the Overlap Problem and take it up in the next section.

2.2.4.2 Recasting the Overlap Problem

To approach the Overlap Problem, it will be useful to first recast it. Assume

some verb-by-frame matrix D such that dij represents (an approximation of) the

association between (e.g., acceptability of) verb i in frame j inferred from X. For

instance, Figure 2.2 is a visual representation of such a D, estimated by averaging

likert scale responses for each verb i and frame j.

The aim is then to find some S that encodes generalizations about the distri-

butions encoded in D. Suppose that S is represented as a matrix—one whose cells

sik encode the association between verb i and property k. (For the moment, I leave

vague both what these distributional features are and how to interpret the nature of

these verb-feature associations, though both questions are addressed in turn.) What

is needed, then, is some method f for inferring S from D.

S
f←− D

(Hard) hierarchical clustering (HHC) is one such (family of) method(s), in the

sense that nonterminal nodes in trees, such as the one in Figure 2.3, can be conceived

61



of as representing some relevant distributional regularities. These regularities can in

turn be encoded in a matrix S in the following way: assign an index k to each node

of the tree, and let sik = 1 denote that verb i is dominated by node k (associated

with property k) and sik = 0 denotes that verb i is not dominated by node k (not

associated with property k). The possible S produced by f for arbitrary D are

subject to the following condition.21

|{i : rim = rin}| ∈

0,min

|{i : rim > 0}|

|{i : rin > 0}|


 ,∀m,n

The Overlap Problem then arises in the following way. Taking the exam-

ple from the last subsection, suppose (distributional) feature m is associated with

the (semantic) representational (in some yet-to-be-defined way) and (distributional)

feature n is associated with the (semantic) preferential (in some yet-to-be-defined

way). If it is correct to characterize verbs like expect and hope as sharing meaning

components with verbs in both the representational class and the preferential class

and if this is tracked by the syntax (which it seems to be), both would be marked

positively for features m and n. But the above constraint implies that, if features n

and m have any overlap, the verbs that are associated with one, must be a subset

of the verbs that are associated with the other. This, in turn, means that either

all representational verbs would need to have preferential components or that all

preferential verbs would need to have representational components. This could be

true (cf. Heim’s (1992) seminal analysis of want), but it begs the current question,

21Note that this itself is a generalization of “flat” hard clustering methods—e.g. k-means—which
do not allow containment.
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since hope and expect still fall onto either side of the relevant divide.

To solve the Overlap Problem, then, the representational constraint on S in-

herent to the HHC inference procedure f must be loosened. To do this, it will be

useful to represent the structure of the procedure directly. Suppose f is the func-

tion that right-applies the linear map Q to its argument. Thus, Q maps from verb

distributions to regularities underlying those distributions.

S = f(D) = DQ

If one knew Q, it could be applied to D to get S. But Q is unknown, so it

is necessary to infer it. One common way of finding such a Q is Principal Compo-

nent Analysis (PCA). Indeed, the method often used to carry out PCA, Singular

Value Decomposition, is the same one that underlies Deerwester et al.’s (1990) La-

tent Semantic Analysis/Indexing, which was in turn proposed as a model of lexical

context-based word-learning by Landauer and Dumais (1997).

2.2.5 Principal Component Analysis

As a method for extracting regularities in data, PCA can be viewed as con-

structing a mapping Q that shifts the perspective on the data so that the most

salient regularities are laid bare—where salience, here, is defined in terms of vari-

ance. It does this by using Q (often called the loading matrix) to rigidly rotate the

datapoints (verbs), valued on some dimensions (syntactic contexts), using weight-
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Figure 2.5: Frame loadings on first and second principal components of data in
Figure 2.2. Dark gridlines are x = y = 0.

65



ing combinations of those dimensions.22 These weighted combinations of the origi-

nal dimensions, derived (roughly) via the correlation between different dimensions

(agreement between the columns of Figure 2.2), correspond to underlying dimen-

sions called principal components. For instance, one principal component that PCA

finds in the acceptability data positively weights frames like NP Ved S, NP Ved that

S, S, I V, and S, NP Ved and negatively weights frames like NP Ved NP S, NP Ved

NP that S NP Ved NP to VP, NP was Ved to VP, and all of the expletive subject

frames. This information is encoded along the x-axis in Figure 2.5.

Each verb is in turn associated with a weight for each principal component,

encoded in S (the score matrix). With respect to the principal component de-

scribed above, the representationals (think, believe, remember, forget, etc.) tend

to be positively weighted, and the preferentials (allow, forbid, need, want) tend to

be negatively weighted. (I refine this generalization shortly.) This information is

encoded along the x-axis in Figure 2.4.

The amount of variance along a dimension further provides a natural way of

measuring the salience of a feature in the data, with the convention that the princi-

pal components are ordered by the amount of variance they explain in the original

dataset. Figure 2.4 shows each verb’s embeddings on the first and second principal

components according to this ordering, and Figure 2.5 shows the relationship be-

tween each component and different syntactic frames. The dark grid lines on each

figure represent the zero-intercept for each axis. These lines are useful since the

22As per standard practice, each dimension (the columns of Figure 2.2) were mean-centered and
standardized prior to applying PCA.
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quadrant a verb falls into determines whether it has a preference or dispreference

for a specific frame given its value on a certain component.

For instance, think is in the positive-positive quadrant in Figure 2.4, and the

frames NP Ved S and S, I V are in the positive-positive quadrant in Figure 2.5.

This means that, given only its values on the first two principle components, think

will prefer these frames. It will further outright disprefer the frames in the negative-

negative quadrant. The converse is true of verbs in the negative-negative quadrant

in Figure 2.4, such as want. These verbs will prefer frames in the negative-negative

quadrant of Figure 2.5 and disprefer frames in the positive-positive quadrant.

It is important that these preferences and dispreferences are true given only

the values of the verbs and frames on the first two principal components. This is

because, even though a verb may show a preference for a frame via its score on

one component, its score on other principal components may encode that verb’s

dispreference for that frame. In fact, this can be seen even on these two figures.

Note that the frame NP Ved to VP shows up in the positive-negative quadrant in

Figure 2.5. The extent to which think and NP Ved to VP are positive with respect

to principal component 1 determines the preference of think for NP Ved to VP on

that dimension of its meaning. Similarly, the extent to which think is positive and

NP Ved to VP is negative with respect to principal component 2 determines the

dispreference of think for NP Ved to VP on that dimension of its meaning. Taking

into account just these two dimensions, think disprefers NP Ved to VP, though on

other principal components, it may show a preference for it.

As noted, it seems that the first principal component corresponds to some-
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thing like the classification seen earlier: representational verbs tend to be positive

along the x -axis and preferential verbs tend to be negative.23 Note that if this is a

correct characterization of the first component, both expect and hope come out as

representational. The second principal component appears to correspond to having

an ordering component. The more negative, the more likely that the verb orders

states of affairs for their optimality with respect to some set of constraints (de-

sires, commands, etc.). Of particular interest here is the fact that both expect and

hope are negative on this component. This is interesting because it suggests that

there is evidence in the syntax that expect and hope share properties with both the

representational and the preferential.

Figures 2.4 and 2.5 show only the two most salient underlying dimensions of

the data. And as noted, very much the same split emerges that was seen in the

hierarchical clustering in Figure 2.3, with the exception that the mixed status of

expect and hope is now apparent. But PCA yields features beyond these first two,

which explain only about half of the variance in the data. Indeed, PCA yields as

many components as there are features (frames) in the original matrix. If all compo-

nents are taken into account, X itself can be perfectly reconstructed; but since many

components will explain little variance—i.e. are not very salient—taking them into

account yields little insight into verbs’ underlying features. For this reason, many

methods for choosing how many components to keep—know as stopping rules—have

been developed (see Jackson 1993 for discussion of various stopping rules). One

23Tell is again a notable exception here in that it is quite negative along this component despite
its being a representational. This, again, is likely because it comes out good with the expletive
subject frames due to the availability of a referential reading of the expletive it.
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Figure 2.6: Verb embeddings on third and fourth principal components of data in
Figure 2.2. Dark gridlines are x = y = 0.

common stopping rule, known as the Kaiser-Guttman Criterion (Guttman, 1954),

is to take only the components with associated eigenvalues great than 1. For this

dataset, this yields 21 significant components. Another common rule is the total

variance criterion. With a standard cutoff of 95%, this criterion yields 14 significant

components.

Once one delves into these 14-21 later significant components, however, their

interpretations, while still somewhat clear, become murkier. For instance, in Figures

2.6 and 2.7 the third principal component corresponds quite well to factivity. The

factives hate, love, forget, remember, understand, amaze, worry, and see are all

negative, and the nonfactives suppose, think, expect, hope, believe, say, tell, and guess
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Figure 2.7: Frame loadings on third and fourth principal components of data in
Figure 2.2. Dark gridlines are x = y = 0.
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are all positive. Further, one noted distributional characteristic of factives—-that

they occur with both question and nonquestion finite complements (Hintikka, 1975;

Zuber, 1983; Ginzburg, 1995; Lahiri, 2002; Sæbø, 2007; Egré, 2008; Uegaki, 2012;

Spector and Egré, 2014; Anand and Hacquard, 2014)—also obtains; both question

(NP Ved WH S, NP Ved if S, It Ved NP WH S ) and nonquestion (NP Ved that S,

NP Ved it that S, It Ved NP that S ) finite complements are negative on component

3. The murkiness arises when considering other verbs and frames that are negative

on component 3. For instance, both doubt and deny are nonfactive yet negative on

component 3,24 and the frames NP Ved NP VPing and NP Ved NP show no clear

relationship to the question-taking generalization.

This murkiness deepens when considering the fourth principal component.

This component corresponds roughly to speech. Verbs like promise, deny, tell, de-

mand, and say are negative on this component. These are not the only verbs that

are negative, however. Nonspeech verbs like remember, forget, imagine, pretend,

hate, and love also show up with negative scores on this component. Moving further

into the next 10-17 significant principal components, this problem only worsens.

The reason for this murkiness is likely due to quirks of PCA. To fully appreciate

these quirks, it is useful to first note an important property of the sorts of Q PCA

produces: Q is orthogonal and thus right-invertible. Since Q is right-invertible, the

following equality holds.

24This is actually a well-known issue in the factives literature. See Egré 2008; Spector and Egré
2014; Anand and Hacquard 2014 for recent discussion.
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X
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Figure 2.8: Graphical model corresponding to S
P−→ D → X. (Same as Figure 2.1.)

D = SQ−1 = SQ>

Thus, PCA can be viewed as performing factor analysis: given verb-by-frame

matrix X find a verb-by-(latent) distributional feature matrix S as well as a (latent)

distributional feature-by-frame matrix P. Note that this way of viewing the problem

now maps directly onto the framework discussed in Section 2.1. Replacing Q−1

with P, the problem is one in which syntactic distributions D are the product of

projection principles P “acting on” the features of S. In this case, “acting on”

is instantiated as mapping from one vector space—one in which the distributional

features for words wi fall—to another—one in which the distribution for words wi

fall. This can be represented in a graphical model as Figure 2.8.25

There is some sleight of hand going on here, though. How valid is it to replace

Q−1 with P? The answer is: not valid in the least. This replacement is potentially

problematic in that it implies that P is invertibility. But to say that the projection

principles P can be inverted to produce a syntax-to-semantics mapping Q is in fact

25This figure—identical to Figure 2.1 but repeated here for convenience—suppresses the prior
parameters and (nuisance) parameters involved in generating X from D.
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to state a very strong thesis regarding the nature of projection. If (i) a given P were

invertible and (ii) a noiseless representation of D were accessible, this would imply

that S would be perfectly reconstructable.

I have no evidence for or against this invertibility assumption, though I think

that there are strong methodological reasons for not making it. The reason is that, if

P is invertible and that assumption is inherent to whatever procedure one carries out

to find S and P, then there is no harm done (assuming D is measured without noise,

or at least well-estimated, by X, which are themselves strong assumptions). But if P

is not invertible and the invertibility assumption is inherent to whatever procedure

is carried out to find S and P, one may end up with poor results, since the correct

P is, by definition, not in the procedure’s codomain. As a methodological strategy,

then, it seems that, if it is possible not to make the invertibility assumption, one

should not. I point this out here for the following reason: if one attempts to induce

some projection principle P using a factor analysis procedure like PCA, the true

projection principles P (if they exist) could only be discovered if they are invertible.

This suggests that one should seek a form of factor analysis that does not require

the invertibility assumption.

Though it clarifies the relationship to projection, this does not yet explain why

PCA produces the murkiness seen above. Lee and Seung (1999) note two possibly

relevant properties. First, PCA learns holistic representations; each component

(latent feature) in Q−1 has consequences for each observed feature in D (and thus

X)—i.e. most cells of Q−1 are not (close to) zero. This can be seen, for example,

in Figure 2.5, where few of the frames have near-zero values on either component.
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Second, PCA is greedy in the sense that it loads as much information as possible into

as few of the initial principal components as possible. This is useful for compression,

since only the most informative features can be saved with little loss of information,

but it is not necessarily useful for analysis, since it may distribute many intuitively

distinct features over a few components.

These properties of PCA solutions arise from two sources: (i) PCA allows

both positive and negative values in S and Q−1 and (ii) PCA puts no constraints

on the sparseness of its features—i.e. relative prevalence of (near) zero values in

S and Q−1. This results in holistic representations because one latent feature’s

upweighting an observed feature can be directly counteracted by another latent

feature’s downweighting that same observed feature. It also results in uneven feature

informativity (greediness) because latent features can make unfettered use of the

real line as opposed to preferring (near) zero values, and thus the PCA computation

loads as much information as possible into the initial features.

To ameliorate these problematic properties, I turn to a family of methods

known as non-negative matrix factorization (NMF).26 Like PCA, NMF attempts to

factor D into S and P. Unlike PCA, however, NMF puts slightly stronger con-

straints on S and P; specifically, as the name implies, NMF requires both S and P

to be non-negative. This results in a “parts-based respresentation” as opposed to a

holistic representation, as in PCA (Lee and Seung, 1999). In such a parts-based rep-

resentation, features target specific aspects of the observable distribution as opposed

26NMF methods have been used for some time in the document classification literature (cf. Xu
et al., 2003) and are becoming popular for semantic representation (cf. Murphy et al., 2012; Fyshe
et al., 2014, 2015).
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to making slight alterations to every aspect. This comes about because latent fea-

tures cannot specify which aspects of the observed distribution they disprefer, only

the ones they prefer. In this case, they can only upweight—never downweight—the

association between a verb and a frame.

One nice side effect of moving to NMF is that, though the constraints on the

forms of S and P are tightened by disallowing negative values, the requirement

that P be invertible is loosened. (This is not to say that NMF forces us into

noninvertibility, since I could define a procedure that forced constrained P to be

invertible, but this is not necessary. The procedure I use for conducting NMF will

not enforce such a constraint for the methodological reason I discuss above.)

One choice that must be made in moving to NMF is what form S and P take

beyond being non-negative. Typically, NMF is used to find non-negative real-valued

S and P. One thing I have ignored up until this point that is relevant to the current

choice point is the fact that positivity and negativity along a component are not the

only things that matter when interpreting the results of factor analysis. Extent along

that component must also be taken into account. For instance, hate and love are

associated with the third component almost four times more strongly than remember

is. This in turn has consequences for how strongly these verbs are associated with

each frame: verbs that score more negatively on the third component—e.g. hate and

love—are positively associated more strongly (as far as this component is concerned)

with frames that load negatively—e.g. NP Ved WH S—than verbs that score less

negatively—e.g. remember. But if these components—i.e. latent distributional

features—plausibly correspond to latent semantic features—e.g. factivity—what
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does it mean for the feature to be unbounded in this way? Moving to NMF does

not help this, since in the typical case, NMF features are also unbounded.

To remedy this interpretational issue, I further constrain S beyond simple non-

negativity (leaving the cells of P unbounded and non-negative). Since unbounded-

ness in the verb representations is the problem, one route that could be taken is to

assume the cells of S lie on some closed interval containing 0. A natural choice for

such an interval is [0, 1]. Another is to put an even stronger constraint on the cells

of S by forcing them to lie in {0, 1}, thus making S a binary mask. One benefit of

this second route is that it allows us to introduce sparsity into the representation at

a fundamental level: cells must be either 0 or 1.27

Except for the non-negativity constraint on the loading matrix P, this brings

the model quite close in form to those proposed by Griffiths and Ghahramani (2006)

in a nonparametric context (see also the review in Griffiths and Ghahramani 2011

and references therein).28 As noted by Navarro and Griffiths (2008), it is also closely

related to Shepard and Arabie’s (1979) ADCLUS model of similarity judgments,

which assumes that the similarity between two objects is approximated by the

weighted sum of the features they share (cf. Tversky, 1977). The importance of

this second relationship arises in Section 2.4, where I construct mappings from S to

similarity judgments Y.

27As noted in the next section, I also induce sparsity in a less fundamental way: by introducing
the equivalent of an L1 regularizer on P into the fitting procedure.

28Indeed, the parametric version of this model is quite similar to Smolensky’s (1986) Harmo-
nium, which has been recently revived under the name Restricted Boltzmann Machine (Hinton
and Salakhutdinov, 2006; Salakhutdinov et al., 2007; Larochelle and Bengio, 2008; Hinton and
Salakhutdinov, 2009; Coates et al., 2011) after the fact that they correspond to a constrained form
of Boltzmann machine (Ackley et al., 1985).
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2.2.6 Non-negative projection model

As before, specifying the forms of S and P does not tell us how to find them. In

this case, I take a Markov Chain Monte Carlo (MCMC)-based sampling approach.

But before moving onto the analysis of these fits, I first need to specify two further

aspects of the model: a noise model and a way of selecting the correct number of

features—i.e. a stopping criterion.

2.2.6.1 Noise model

One difficulty with NMF—and indeed, with most matrix factorization methods

besides PCA—is the need to specify a noise model. Such a noise model is often

necessary because an algorithm for discovering a specific sort of factorization may

be intractable or non-existent without one.

Luckily, there is natural such model in this case. Note that, up until now,

I have worked under the assumption that X was well-approximated by averaging

acceptability judgments. This was useful for expediting a qualitative analysis of

patterns in the judgment data. But as I noted in footnote 18, raw means are not

technically appropriate for this kind of data due to random variation in scale use.

This can lead to poor estimates of the true acceptability of a verb-frame pair. Two

routes are often used to remedy this: (i) transformation of the data prior to analysis

or (ii) modeling the relationship between the (unobserved) acceptability and the

rating explicitly. This second route is the natural choice for the noise model.
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Figure 2.9: Graphical model corresponding to S
P−→ D → X with the addition of

the ordinal logit mixed model parameters g.

The specifics of this model will not concern us here,29 besides to say that

it requires some nuisance parameters g, on which X is assumed to be dependent.

Figure 2.9 shows the graphical model with the addition of these parameters. As with

the parameters of interest, these (nuisance) parameters are sampled using MCMC.

2.2.6.2 Stopping criterion

Another obstacle for implementing the projection model is deciding on a rea-

sonable number n of features to define the columns of S and the rows of P. This

is not a problem when using PCA, since the number of principal components will

always be equal to the number of syntactic contexts in the original data. A common

approach in these cases is to fit the model with many different values of n then as-

sess the point at which adding features no longer improves the model’s explanation

of the data.30 This is similar to the idea behind the Kaiser-Guttman criterion and

29The model is an ordinal logit mixed model with strictly nonnegative cutpoints and random
effects for participants. The interested reader can find a formal specification in Appendix A and a
computational implementation on my github.

30Another option would be to use a nonparametric prior over binary matrices, such as the Indian
Buffet Process (Griffiths and Ghahramani, 2006, 2011). I have implemented such a version, but
found convergence issue related to the discreteness of S. Benjamin van Durme (p.c.) notes that this
is a motivation for using unit-valued matrices, which remedy the “stickiness” of binary matrices
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others described above for PCA, which tend to rely on amount of variance explained

or some measure related to the variance. (In this sense, many of these criteria are

comparable to the common adjusted R2.) Since the model’s noise component does

not attempt to minimize a variance-based measure, however, a more general measure

based on likelihood must be used.

The measure I use is known as the Watanabe-Akaike—or Widely Applicable—

Information Criterion (WAIC), which Gelman et al. (2013) argue is preferable to

other common information criteria used for comparing hierarchical models—e.g.

the Deviance Information Criterion (DIC)—especially in cases where “the posterior

distribution is not well summarized by its mean” (ibid, p. 182).31 The current model

is such a case since the posterior over S is multimodal; swapping columns i and j

in S and rows i and j in P will result in a solution that is equally good in terms

of both the posterior density and likelihood. WAIC attempts to approximate the

results of Leave One Out Cross Validation (LOO-CV)—i.e. jackknifing—and has

two components: (i) the log posterior predictive density (LPPD), which measures

the model fit, and (ii) the WAIC estimate of the effective number of parameters

(pWAIC
32), which measures the number of parameters that are doing explanatory

work. The first term serves to measure the models fit to the data, and the second

serves to penalize models for fitting the data too closely.

to some extent.
31Watanabe (2010) gives the first specification of this measure. See also Watanabe 2013 for

discussion of the related Widely applicable Bayesian Information Criterion (WBIC).
32I use Gelman et al.’s second method of estimating pWAIC, which they recommend because “its

series expansion has a closer resemblance to the series expansion for LOO-CV and also in practice
seems to give results closer to LOO-CV” (ibid, p. 174).
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2.2.6.3 Model fitting

The MCMC sampler was implemented in Python using the version 2.3 of the

pymc package (Patil et al., 2010). For each number of features n between 1 and 15,

the sampler was randomly initialized and run for 11 million iterations with a burn-

in of 1 million and a thinning interval of 10000. After each run, the traces of the

loading matrix P, response model parameters, and the deviance were analyzed for

autocorrelation. In most cases, at least the deviance trace showed worrying amounts

of autocorrelation. In those cases, the sample with the lowest deviance was extracted

and the sampler was initialized with that sample and rerun using the same sampling

parameters. This was repeated until only low lag (or no) autocorrelation was found

in the traces. This took two repeats of this procedure for most values of n.33

To induce sparsity in the mapping matrix P, exponential priors (λ = 1) were

placed on each cell. This is analogous to L1 regularization, which can be derived

in a Bayesian context by placing Laplace priors on the parameters. And if x ∼

Laplace(λ), then |x| ∼ Exponential(λ).34

2.2.6.4 Results

Figure 2.10 shows both the LPPD and the WAIC of the model (both scaled

by −2) with each setting of n. (The pWAIC for each model is proportional to the gap

33Ideally, the sampler would be rerun with sampler parameters an order of magnitude larger than
the ones used. However, this is infeasible, given that even under GPU acceleration, the current
procedure took 12 days.

34With this sort of regularization, NMF is sometimes referred to as Nonnegative Sparse Coding
(NNSC Hoyer, 2002, 2004) or the related Nonnegative Sparse Embedding (NNSE Murphy et al.,
2012).
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Figure 2.10: Log Pointwise Predictive Density (LPPD) and Watanabe Akaike
(Widely Applicable) Information Criterion—both scaled by -2—for models with
different numbers of features. The gap between the LPPD and WAIC lines is pro-
portional to the effective number of parameters as computed by Gelman et al.’s
(2013) second method (pWAIC2).

between the two lines.) I see that WAIC bottoms (tops) out at 14 features, despite

the fact that LPPD continues to decrease (increase). This continual decrease is

expected, since adding features will never worsen the model fit. (A model with

n− 1 is a special case of the model with n features, where one feature in the model

with n features is set to 0 for all verbs.) All further analyses therefore focus on the

model with 14 features.

To analyze the output of the fit model, I first extract the sample with the

minimum deviance (maximum likelihood) across all samples. Here, I focus only on
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the parameters of interest, S and P; a graph depicting the noise model parameters

(ordinal logit cutpoints) can be found in Appendix A. Figure 2.11 shows the feature

matrix S (analogous to the PCA score matrix) for this sample and Figure 2.12 shows

the projection matrix P> (analogous to the PCA loading matrix).

Figure 2.11 shows that the non-negative projection models finds roughly four

quite general features (1-4) with the remainder (5-14) being somewhat fine-grained.

Further, the general features tend to project many syntactic contexts weakly, while

the more specific features tend to project a few syntactic contexts very strongly.

This is interesting in the sense that it looks like the general features have something

like a baselining function: they serve to situate the verbs that have them in roughly

the right part of distribution space, while the more specific features refine this

placement.

In some sense, this is similar to the behavior of PCA, which also finds major

features (principal components that explain a lot of variance) and then makes small

refinements using later components. The important difference between PCA and

the current model is that the small refinements appear to target specific classes

with less noise.

This results in specific features like feature 14, which seems to target verbs

of content of speech (tell and promise); feature 13, which seems to target the (ex-

periencer object) emotive factives (worry, amaze, bother); feature 12, which seems

to target implicative verbs (remember, forget, bother); feature 10, which (excluding

feel) seems to target verbs involving permission/obligation (demand, allow, forbid,
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deny35); and feature 8, which targets preferentials (want, need, demand, expect, hate,

love).

Features 13 (worry, amaze, bother) and 14 (tell and promise) are particularly

interesting in comparing the non-negative model to PCA. I noted above that, despite

the fact that tell and promise appear to be good in the expletive subject contexts

(It Ved...)—likely due to the fact that a nonreferential reading of the subject is

not necessary—PCA discovers a component that seems to correspond to content of

speech. That is, it separates tell and promise from other verbs. One problem with

the PCA solution was that verbs like imagine and remember show up with about the

same score as tell on the same component. This problem is remedied in the current

case in that the content of speech verbs have the feature and the non-content of

speech verbs don’t; there is not equivocation with the binary representation (at

least at each sample).

One place where PCA appears to do somewhat better is in the more general

features. The general features discovered by PCA—i.e. principal components 1 and

2—corresponded quite well to previously described classes of verbs: representation-

als and preferentials. Indeed, this analysis even appeared to discover that some

verbs fall into both classes. In contrast, the general features discovered by the non-

negative model are somewhat muddled. For instance, feature 1 appears to be quite

random; feature 2 corresponds roughly to representationality, but with the addition

of worry and demand and to the exclusion of hope and pretend ; feature 3 includes

35Deny may show up in this class because of its lack of permission use in the NP V NP NP
context.
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some, but not all, of the preferentials with the addition of many representationals;

and feature 4 corresponds to a subset of representationals (again, with the addition

of worry). In this more muddled solution, hope still cross-classifies with both want

and think on different features, but it is unclear what to make of this, since the

classes themselves are hard to interpret.

The likely reason for the more muddled solution in this case has to do with the

nature of the weaker projective relationships found in P. Because those relationships

are weaker, it is less costly for the model to posit that a verb has that feature rather

than some of the more specific features, which tend to project more heavily over

fewer syntactic contexts. This could result in the model being less certain about

which verbs have a more general feature and which do not, thus meaning that the

particular configuration found in the more general features in Figure 2.11 could be

non-representative of the samples overall, which is always a problem with analyzing

point estimates (and particularly discrete ones).

Unfortunately, due to the multimodality mentioned earlier, there is not much

to be done about this here. Cells (and thus features) are not identifiable over the

course of sampling, so it is not possible to estimate the probability of a verb having

a particular feature. It is important to note, however, that, though this solution

appears muddled from the point of view of the analyst, my own labellings of an

algorithm’s output are of no consequence in the larger scheme. Indeed, the logic

I laid out in Section 2.1 explicitly eschews such labellings, at least as a matter of

determining the amount of semantic information in syntactic distribution. And as

I show in Section 2.4, this logic bears fruit, since at least some of the hard-to-
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Figure 2.11: Verb features (S) inferred by non-negative projection model. Black
cells represent 1s.

interpret features extracted using the non-negative model turn out to be predictive

of participants’ similarity judgments.

2.2.7 Discussion

In this section, I presented an experiment aimed at getting a measure of how

acceptable a variety of propositional attitude verbs are in different syntactic con-

texts. My goal was two-fold. First, I assessed how closely the sorts of regularities

found in these data correspond to the attitude verb distinctions discussed in Sec-

tion 2.1. I carried this out by using two standard exploratory analyses—hierarchical

clustering and principal component analysis—and one novel (at least in this do-
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Figure 2.12: Relationship between features and syntactic frames (P>) inferred by
non-negative projection model. Darker cells represent larger values.
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main) analysis—nonnegative matrix factorization. Second, I assessed the strengths

and weaknesses of each exploratory analysis with respect to how well they satisfy

various methodological considerations. This assessment was driven in part by the

sorts of regularities I discovered in the data, along with theoretical considerations.

I came away with the following generalizations. First, the representationality

distinction is robustly discovered by every method. I noted, however, that cer-

tain methods miss the fact that the representationals and preferentials may not be

mutually exclusive. For instance, hope and expect seem to share aspects of both

classes.

This lead us to the first methodological consideration: whatever method is used

for extracting regularities should be able to represent overlapping classifications.

This motivated the move to a method that produces representations that allow

overlap. Principal component analysis (PCA) fit this bill. PCA was able to discover

the fact that hope and expect have both representational components if the first two

principal are interpreted as corresponding to representationality and preferentiality,

respectively. This seemed plausible given the the quadrants in which various verbs

that have been classified as such lie. An interesting distinction was also seen lying

along the third principal component. This component appeared to correspond to

factivity, and as has been claimed for factivity, this component involved loadings on

both question and nonquestion complements.

As I moved into the later principal components, however, generalizations about

the semantics that might be associated with that component became murkier. For

instance, the fourth principal component appeared to correspond to content of

87



speech to some extent, but there were various aspects of this component that looked

quite noisy. I argued that this murkiness likely arises from two properties of PCA

that are undesirable for current purposes: PCA learns holistic representations and

loads information greedily into initial components, thus making possibly distinct

regularities indistinguishable. These properties, in turn, arise from two sources: the

availability of both positive and negative values and a lack of representational spar-

sity. These considerations motivated us to move to a model that addresses them by

constraining distributional regularities to be defined only in terms of non-negative

matrices—our non-negative model of projection. Beyond remedying these prob-

lems, I noted that this model also satisfies a theoretical consideration pointed out

in Section 2.1: mappings from semantics to syntax seem unlikely to be invertible.

The method by which the non-negative projection model explains the data

is interesting. Much like PCA, it appears to find a few very general features that

situate the verbs having those features within a general distributional space and

many much more specific features that target particular areas of that space. Unlike

PCA, the more specific features appear to less noisily target features like content of

speech.

I would like to end this section by recapitulating how these results relate to

the larger goals of the chapter. In Section 2.1, I gave a formal characterization of

the logic I hew to throughout the chapter. I focused in this section on one small

part of this logic—-that found in the lower right corner. This piece concerns how

regularities might be extracted from syntactic distributions.
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Much of the section consisted in exploring the consequences of making various

choices for these regularity extraction procedures. This exploration was spurred

on by two concerns: relating these results to previous literature in the domain of

propositional attitude verb semantics and satisfying various methodological con-

siderations. I would like to stress, however, that though these considerations are

relevant to the ultimate question regarding what aspects of meaning syntactic dis-

tribution could be used to learn, I have not yet satisfied Fisher et al.’s method-

ological critique in that I nonetheless performed much of the exploratory analysis

by attempting to label various regularities. To assist in filling out this part of the

above logic, I turn in the next section to two methods for gathering a proxy for the

semantics Y.

2.3 Experiments 2 & 3: verb similarity

In this section, I present two experiments aimed at getting a measure of how

similar in meaning näıve speakers take the propositional attitude verbs from Exper-

iment 1 to be. This fits into the running diagram as gathering data Y about the

concepts C.
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The first experiment (Experiment 2) employs a generalized semantic discrimination—

or triad—task, in which participants are given lists of three words and asked to

choose the one least like the others in meaning (Wexler, 1970; Fisher et al., 1991).36

The second experiment (Experiment 3) employs an ordinal (likert) scale similarity

task, in which participants are asked to rate the similarity in meaning of a word

pair on a 1-7 scale.

There are two reasons I use both tasks. First, the generalized semantic dis-

crimination task replicates the methodologies used in the Fisher et al. 1991 and

Lederer et al. 1995, whose logic I employ in this chapter, and the ordinal scale task

is a standard way of measuring similarities, regardless of the formal properties of the

objects being compared. Second, I would like to assess to what extent the semantic

properties employed in these similarity tasks are task-dependent. This may in turn

suggest how close the representations Y used to make the judgments are to the

concepts themselves.

In Sections 2.3.1 and 2.3.2, the experiments themselves are described along

with some exploratory analyses that qualitatively relate their results to the results

of Experiment 1. In Section 2.3.3, the two measures are themselves compared to

36I follow Fisher et al. (1991) here, but interestingly, a similar paradigm—using a larger set of
words per trial—is put to use in Chang et al. 2009 to assess the coherence of topics in a topic
model.
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assess their agreement.

2.3.1 Experiment 2: generalized semantic discrimination task

2.3.1.1 Design

In this experiment, I aim to get a measure of how similar in meaning näıve

speakers take the propositional attitude verbs from Experiment 1 to be. To do

this, I constructed a list containing every three-combination of the 30 verbs from

Experiment 1 (4060 three-combinations total). Twenty lists of 203 items each were

then constructed by random sampling.

These lists were then inserted into an Ibex (version 0.3-beta15) experiment

script with each three-combination displayed using an unmodified Question con-

troller (Drummond, 2014). This controller displays an optional question above a

list of answers. In this case, the question was omitted and the verbs making up each

three combination constituted the possible answers. Participants could select an

answer either by typing the number associated with each answer or clicking on the

answer. All materials, including the instructions participants received, are available

on my github.

2.3.1.2 Participants

Sixty participants (28 females; age: 34.5 [mean], 31 [median], 18–68 [range])

were recruited through AMT using a standard HIT template designed for externally

hosted experiments and modified for the specific task. All qualification requirements
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were the same as those described in Section 2.2.2. After finishing the experiment,

participants received a 15-digit hex code, which they were instructed to enter into

the HIT. Once this submission was received, participants were paid $3.

2.3.1.3 Data validation

The data validation procedure is the same one described in Section 2.2.3 with

the exception that I calculate Cohen’s κ instead of Spearman’s ρ.37 The median

Cohen’s κ between participant responses is 0.45 (mean=0.45, IQR=0.52-0.37).38 To

find outliers, I use Tukey’s method. No comparisons fall below Q1-1.5*IQR and

none fall above Q3+1.5*IQR. Thus, I exclude no participants.

The median agreement here is quite a bit lower than the interrater agreement

found by either Fisher et al. or Lederer et al. (Spearman’s ρ=0.78).39 This is likely

driven by the fact that I am investigating a much smaller portion of the lexicon and

thus am bound to find that participants have less certainty about which verbs are

more semantically similar.40

Another possible contributor to this lower correlation is that Cohen’s κ is more

37Both Fisher et al. and Lederer et al. compute Spearman rank correlations over count matrices
of the form found in Figure 2.13. The method they use is not available to us without significant
alteration since I collected data from more than two participants per list. Instead, I opt for a
standard measure of interrater agreement here. This measure is preferable in any case since (i) it
allows us to assess each participant’s reliability at the same time as I assess overall agreement and
(ii) it can be applied to the raw data instead of a statistic of the data, as in the cases of Fisher
et al. and Lederer et al..

38An analysis of the distribution of Fleiss’ κ (the multi-rater generalization of Scott’s π) by list
corroborates this analysis (median=0.45, mean=0.45, IQR=0.48-0.40).

39Fisher et al. report Spearman’s ρ=0.81 (Exp. 1); 0.78 (Exp. 2); 0.76 (Exp. 3), 0.79 (Exp. 4),
0.72 (Exp. 5). Lederer et al. report Spearman’s ρ=0.81.

40If this is indeed true, interrater agreement on this and other similarity judgment tasks could
be a way of investigating the “semantic density” of a lexical neighborhood. Modeling reaction
time, as a proxy for uncertainty, might also be fruitful in future research.
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Figure 2.13: Similarity rating for each verb-verb pair from generalized semantic
discrimination experiment. Darker shades represent more times chosen similar. Note
that the diagonal elements are not observed and are set to the maximum over all
other cells.

conservative than Spearman’s ρ. As I see in Section 2.3.2.3, however, the conserva-

tiveness of Cohen’s κ is not likely to be the culprit here, since even Spearman’s ρ

shows roughly the same amount of agreement among participants using a different

measure.

2.3.1.4 Results

Figure 2.13 shows the number of times each pair of verbs occurred together

and were not chosen as dissimilar. That is, if believe, think, and want occurred

together, and want was chosen as the odd man out, then the similarity between
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believe and think is incremented. Verbs are arrayed along the x- and y-axes in the

same order they were on the y-axis in Figure 2.2. This arrangment allows for a visual

assessment of the agreement between the syntactic clustering and the similarity

judgments. Roughly, the more clearly dark blocks of cells appear in the graph, the

more the syntactic clustering and the semantic judgments are in agreement.

Blocks along the diagonal suggest high agreement. There are roughly three

blocks of size greater than three-by-three along the diagonal: a first group of repre-

sentationals (believe, hear, see, hope, suppose, say, think), a second group of repre-

sentationals (imagine, remember, understand, guess, realize), and a group of prefer-

entials (need, want, demand, expect).

Blocks off the diagonal suggest that a larger group was split in two by a

disagreement regarding some elements. The particular case of this I see in the Figure

2.13 is among the two blocks of representationals. What appears to be happening

here is that participants did not rate representationals with negative affect (forget,

hate, deny, doubt) as similar to the other representationals.

This effect of negative affect appears to be quite strong, as can be seen in

Figure 2.14. This figure shows each verb’s embedding derived from two-dimensional

nonmetric multidimensional scaling (NMDS)41 applied to the generalized seman-

tic discrimination dissimilarity matrix (Shepard, 1962a,b; Kruskal, 1964a,b). This

dissimilarity matrix is derived by counting the number of times a pair of verbs oc-

41Multidimensional scaling (MDS) maps from a distance matrix into an n-dimensional coordinate
space such that the distances between elements in the n-dimensional space correspond as closely
as possible to the distances listed in the distance matrix. The definition of “as closely as possible”
determines the type of MDS carried out. NMDS results if this relationship is constrained only to
be monotonic.
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Figure 2.13.
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curred together and one was chosen as the most dissimilar in the triad. In the

want, think, believe example above, the dissimilarity between want and think and

the dissimilarity between want and believe would both be incremented.

The effect of negative affect can be seen in the fact that verbs with such a

component—worry, doubt, forget, hate, bother, forbid, deny—tend to cluster together

(here, to the upper left). This sensitivity to affect mixes with a sensitivity to the

clusters noted above and in acceptability judgments. The representational cluster

(believe, hear, see, hope, suppose, say, think, imagine, remember, understand, guess,

realize) can be seen to the right—with clear pockets of more fine-grained clusters,

such as perception and speech (tell, say, hear, see) to the lower right and doxastic

state to the upper right (understand, remember, realize, suppose, think, believe,

imagine).

The two interesting cases discussed in Section 2.2.4—expect and hope—turn

out to be interesting here as well. Note that expect falls midway between the repre-

sentational cluster and what looks to be a preferential cluster (need, want, demand,

allow). Hope, on the other hand, falls much further into representational territory.

In fact, this layout is somewhat similar to that seen in Figure 2.4, where the em-

bedding of hope on the first and second principal components of the acceptability

judgments puts it closer to the representationals than expect.
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2.3.2 Experiment 3: ordinal similarity

2.3.2.1 Design

As in Experiment 2, I aim to get a measure of how similar in meaning näıve

speakers take the propositional attitude verbs from Experiment 1 to be. To do this,

I constructed a list containing every pair of the 30 verbs from Experiment 1 along

with the verb know (460 unordered pairs, 920 ordered pairs). Twenty lists of 62

ordered pairs were then constructed such that every verb was seen an equal number

of times and no pair—either unordered or ordered—was seen twice.

These lists were then inserted into an Ibex (version 0.3.7) experiment script

with each pair displayed using an unmodified AcceptabilityJudgment controller

(Drummond, 2014). This controller displays the verb pair separated by a pipe

character—e.g. think | want—above a discrete scale. Participants could use this

scale either by typing the associated number on their keyboard or by clicking the

number on the scale. A 1-to-7 scale was used with endpoints labeled very dissimilar

(1) to very similar (7). To encourage them to make a symmetric similarity judgment,

participants were instructed to rate “the similarity between the meanings of the two

verbs” as opposed to rating how similar the first verb was to the second (or vice

versa). All materials, including the instructions participants received, are available

on my github.
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2.3.2.2 Participants

Sixty participants were recruited through AMT. All qualification requirements

were the same as those described in Section 2.2.2. After finishing the experiment,

participants received a 15-digit hex code, which they were instructed to enter into

the HIT. Once this submission was received, participants were paid $1.

2.3.2.3 Data validation

The data validation procedure is the same one described in Section 2.2.3. The

median Spearman rank correlation between participant responses is 0.40 (mean=0.41,

IQR=0.52-0.32). To find outliers, I use Tukey’s method. No comparisons fall below

Q1-1.5*IQR and none fall above Q3+1.5*IQR. Thus, I exclude no participants.

2.3.2.4 Results

Figure 2.15 shows the mean similarity rating for each pair of verbs, collapsing

over the two orderings (before or after the pipe character) in which the verbs in the

pair were presented. As in Figure 2.13, verbs are arrayed along the x- and y-axes

in the same order they were on the y-axis in Figure 2.2, so as for that figure, blocks

along the diagonal suggest high agreement and blocks off the diagonal suggest that

a larger group was split in two by a disagreement regarding some elements.

There are roughly three blocks of size greater than three-by-three along the di-

agonal: a first group of representational verbs (believe, hear, see, hope, suppose, say,

think, know), a second group of representational verbs (imagine, remember, under-
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Figure 2.15: Similarity rating for each verb-verb pair from ordinal scale experiment.
Darker shades represent higher mean ratings. Note that the diagonal elements are
not observed and are set to the maximum over all other cells.
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stand, guess, realize), and a group of preferential verbs (need, want, demand, expect).

Each of these three corresponds to a block found in the last experiment, suggesting

high agreement between this task and the generalized semantic discrimination task.

Also as before, there are two blocks of representational verbs off-diagonal,

and again, what appears to be happening here is that participants did not rate

representational with negative affect (forget, hate, deny, doubt) as similar to the

other representational verbs. Thus it seems that negative affect is again having a

large effect on participants’ judgments.

This is corroborated in Figure 2.16, which shows each verb’s embedding derived

from two-dimensional NMDS applied to the likert distance matrix. This distance

matrix is derived by subtracting each cell in Figure 2.15 from 7, thus essentially

inverting the likert scale.

The effect of negative affect can be seen in the fact that verbs with such a

component—worry, doubt, forget, hate, bother, forbid, deny—tend to cluster together

(here, encompasses the entire left side of the diagram). This sensitivity to affect

mixes with a sensitivity to the clusters noted above and in acceptability judgments.

Some of the representational verbs (believe, see, suppose, think, imagine, remember,

understand, guess, realize) can be seen to the upper right. Some of the clear pockets

of more fine-grained clusters, like perception (hear, see, feel) are broken up, while

others, like speech (tell, say), remain coherent.

Finally, the two interesting cases discussed in Section 2.2.4—expect and hope—

turn out to be interesting here as well. They fall next to each in the lower right

of the diagram, directly between the the representational verbs and the preferential
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Figure 2.16: Embedding derived by two-dimensional nonmetric multidimensional
scaling applied to the ordinal scale judgments represented in Figure 2.15.

verbs.

2.3.3 Comparison of (dis)similarity datasets

In the previous two subsections, I noted quite a few points of agreement be-

tween the two semantic similarity measures. And indeed, overall, the correlation

between responses on the generalized semantic discrimination task and those on the

likert scale task are quite high (Pearson’s r=0.76, p < 0.001).42 This suggests that

these two task are tapping the similar aspects of participants’ semantic knowledge.

But though these measures tend to tap similar semantic knowledge, they diverge in

42If the likert scale judgments are z-scored or ridit scored prior to averaging, the correlation goes
up slightly (Pearson’s r=0.79 for both transformations).
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Figure 2.17: Relationship between generalized semantic discrimination similarity
responses and ordinal scale similarity responses. Only low outlier pairs are labeled.
(See Table A.1 in Appendix A for high outlier pairs.)

some respects. This can be seen in Figure 2.17, which plots the number of times each

verb pair was rated similar in the generalized semantic discrimination task against

the mean likert scale rating for that pair. The line superimposed on this graph gives

a robust regression fit to these data. If a pair is above the line, it was rated higher

than expected in the likert scale task given its rating in the generalized semantic

discrimination task. If a pair is below the line, it was rated higher than expected in

the generalized semantic discrimination task given its rating in the likert scale task.

Though much of the variability around the line is likely noise in participant

responses, I also see what may be regularities. To investigate these regularities,
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I compute each pair’s standardized residual with respect to the robust regression

fit. The variance in the data is likely heteroscedastic with respect to the gener-

alized semantic discrimination ratings (studentized Breusch-Pagan = 135.54, p <

0.001), and thus standardizing by the residual standard error inferred by the model

is not warranted. Instead, I infer a scedastic function conditioned on the generalized

semantic discrimination ratings by fitting a generalized linear model with inverse-

gamma link to the absolute value of the residuals. I then standardize each residual

with respect to the robust regression fit by the inverse-gamma model’s prediction.

Table 2.1 shows all pairs whose residual is 2.5 standard deviations below the mean

according to this method—i.e. rated more similar in the generalized semantic dis-

crimination task than expected given the likert ratings. Table A.1 in Appendix A

shows all pairs whose residual is 2.5 standard deviations above the mean. I focus

on the outliers in Table 2.1, as the pattern there is clearer.

Many of these pairs appear to be antonymous along some dimension of their

meaning. For instance, the antonymous pairs remember | forget, hate | love, allow

| forbid, and allow | deny43 are rated quite highly in the generalized semantic dis-

crimination task but quite low in the likert scale task. Pairs like demand | deny and

see | tell don’t seem to immediately fit this generalization.

It is less clear what is happening in the case of see | tell, but one possibility

for demand | deny is that participants are simultaneously contacting a distinction

in the source and goal roles and negation on the modal quantifier. If x demands

43Note that the sense of deny that participants are likely getting in this case is the one that
comes out in the double object frame and not the clausal complement frame. That is, denying
someone something entails not allowing that person that thing.
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verb 1 verb 2 Standardized residual
forget remember -3.23
see tell -2.86
allow deny -2.79
demand deny -2.55
forbid forget -2.55
allow forbid -2.54
hate love -2.50

Table 2.1: Pairs rated more highly in the generalized semantic discrimination task
than in the likert scale task.

y from z, z is the source and x is the goal with respect to x’s demands, a strong

deontic modality; in contrast, if x denies z y, x is the source and z is the goal

with respect to x’s denials, the negation of a strong deontic modal.

2.3.4 Discussion

In this section, I presented two experiments aimed at getting a measure of

how similar in meaning näıve speakers take the propositional attitude verbs from

Experiment 1 to be. Within the logic laid out in Section 2.1, this corresponds to

getting two different proxies Y for the semantics.

C S D

Y X

CI P

The first experiment (Experiment 2) employed a generalized semantic discrim-

ination task, in which participants are given lists of three words and asked to choose

the one least like the others in meaning. The second experiment (Experiment 3)

employed an ordinal (likert) scale similarity task, in which participants are asked to
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rate the similarity in meaning of a word pair on a 1-7 scale.

In the data from both tasks, I showed that, qualitatively, participants appear

to be sensitive to the representationality distinction in their similarity judgments,

though the representational cluster appears to be split in both cases by participants’

sensitivity to negative affect. By comparing the results of the two experiments, I

suggested that some aspect of meaning involving negation also appears to be differ-

entially accessed in each task. In particular, participants in the ordinal scale task

were much more sensitive to antonymy than participants in the generalized semantic

discrimination task. In the next section, I present multiple ways of quantifying the

relationship between the results presenting in this section and those presented in

Section 2.2.

2.4 Quantifying the syntax-semantic connection

Having now presented qualitative aspects of all three datasets—albeit, using

formal means—I explore in this section various ways of quantifying the relationship

between the acceptability judgments presented in Section 2.2 and the semantic sim-

ilarity judgements presented in Section 2.3. I do this in two ways. First, following

Fisher et al., I assess the overall correlation between the acceptability judgments

and the semantic similarity judgments.

C S D

Y X

CI P
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Second, in order to discover more fine-grained relationships, I map from the

regularities S, extracted from the acceptability judgments, to the semantic similarity

judgments Y.

C S D

Y X

CI P

I begin with the basic correlational analyses. This provides an overall measure

of the extent to which syntactic distribution correlates with the semantics (making

the relevant assumption laid out in Section 2.1). I then move into the more sophis-

ticated analyses involving mapping from S to Y. This second makes it possible to

delve into the relationship between the distributional regularities extracted using

the non-negative projection model and the similarity judgments directly.

I present two such analyses. The first assesses both the nature of partici-

pants perception of semantic similarity relative to the distributional features and

the salience of those features. Salience in this case is quantitatively instantiated as

feature weights in the mapping model(s). This in turn gives us a way of assessing to

what extent the distributional features S might be related to the true linguistically

relevant semantic features, which in the formal sketch presented in Section 2.1 are a

(homomorphic) function of the conceptual space C. The second uses the resulting

models to assess how useful different syntactic contexts could plausibly be for a

learner in discriminating the semantically relevant distinctions.
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Figure 2.18: Relationship between frame distances based on acceptability judgment
data present in Section 2.2 and dissimilarities based on the similarity judgment data
presented in Section 2.3. Lines show local regression fits.

2.4.1 Basic correlational analysis

To get a measure of the overall correlation between the acceptability and simi-

larity judgments, it is necessary to define a measure of distance over the acceptability

judgments. In Section 2.2 I used Euclidean distance, viewing each verb as a point in

30-dimensional space, with each dimensions corresponding to a frame (see footnote

19). This choice of distance measure is arbitrary but suitable for a first pass.

Figure 2.18 plots these acceptability-based distances against the correspond-

ing dissimilarity for each pair. Both axes are normalized by dividing each dis-

tance/dissimilarity by the maximum for that measure, which is necessary in order
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to compare the generalized semantic discrimination and ordinal datasets on the same

axis. Superimposed on these points are local regression fits, regressing the general-

ized semantic discrimination and ordinal scale dissimilarities on the acceptability-

based distances.44

The correlation between the acceptability-based distances and both the gener-

alized semantic discrimination dissimilarities (Spearman ρ=0.27; Mantel(iter=10000),

p < 0.001) and the ordinal dissimilarities (Spearman ρ=0.28; Mantel(iter=10000), p

< 0.001) are significant and comparable. Much of this positive correlation appears

to be driven by agreement on verbs that are close together on both measures, with

less agreement regarding those that are further apart. This suggests that syntac-

tic distribution may be useful in signaling to learners which verbs are similar but

not which ones are dissimilar. One possible implication of this is that a learning

mechanism is only licensed in making conclusion about how well two verbs features

match, not how much they mismatch.

A similar analysis can be run over the binary features extracted using the

non-negative factor analysis model seen in Figure 2.11. Here again, a distance

measure must be defined. Perhaps the simplest in this case is Hamming (Manhattan)

distance, which corresponds to simply counting up the number of features that

two verbs mismatch on.45 The correlation between these feature-based distances

and both the generalized semantic discrimination dissimilarities (Spearman ρ=0.27;

44The default parameters for the loess() function were used.
45Another way of conceptualizing this distance, which will be useful for understanding the analy-

sis in the next section, is geometric. Suppose that each verb lies on the vertex of a unit hypercube,
where si (row i of Figure 2.11) identifies which vertex the verb lies on. Then, the Hamming dis-
tance between verb m and verb n in feature space corresponds to counting the number of edges of
the hypercube that one would need to traverse to get from sm to sn.
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Mantel(iter=10000), p < 0.001) and the likert dissimilarities (Spearman ρ=0.25;

Mantel(iter=10000), p < 0.001) are again significant and comparable. Further,

they hew quite closely to the distances computed from the raw data itself. This

suggests that very little, if any, of the semantic similarity information in the original

data was lost in abstracting the 14 binary features from the judgments over the 30

frames.

2.4.2 Distributional features and similarity

Looking at overall correlations does not yet tell us which distributional features

appear to be active in the similarity judgments (or at least correlated with such an

active feature). To carry this analysis out, I run two different types of regressions: a

multinomial regression, in which the generalized semantic discrimination judgments

are regressed on (similarities derived from) the features of the verbs included in each

triad, and an ordinal regression, in which the ordinal scale judgments are regressed

on (similarities derived from) the features of the verbs included in each pair.

Each of these analyses requires that I define some way of deriving similarities

from the binary features extracted in Section 2.2. There are a few natural ways of

doing this. The first is to take the raw additive inverse of the Hamming (Manhattan)

distance in N (the number of features). This maps straightforwardly onto the basic

correlational analysis in the last section in that the correlation between this measure

and the similarity judgments must be the same as the correlation between Hamming

distance and distances derived from the similarity judgments.
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HammingSimN(si, sj) = N − Hamming(si, sj)

= N −
N∑
k=1

|sik − sjk|

= N − ‖si − sj‖

Note that this measure ensures that, if smk = snk for all k, the N-Hamming

similarity is at its maximum of N . This implies that, if m = n, Hamming(sm, sn) =

maxi,j Hamming(si, sj) = N , and if smk 6= snk for all k, then Hamming(si, sj) = 0 =

mini,j Hamming(si, sj). This seems reasonable.

Such a measure may be problematic unmodified, however, since as I note in

Section 2.3, similarity judgments seem to be sensitive to different aspects of verbs’

meanings to different degrees. To remedy this, I might include strictly positive

weights that represent the importance of each feature in that particular task. To

retain the above properties, the N-Hamming similarity would need to be generalized

in the following way.46

WeightedHammingSimw(si, sj) =
N∑
k=1

wk − wk|sik − sjk|

= ‖w‖1 − ‖w(si − sj)‖1

46WeightedHammingSimw is known more commonly as weighted Minkowski (1-norm) distance.
And like weighted Minkowski (1-norm), WeightedHammingSimw is equivalent to HammingSimN—
unweighted Minkowski (1-norm)—iff w = 1N , where 1N is a vector of 1s of length N .
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Under the assumption that w is strictly positive, this second function—and a

forteriori, the first—defines a positive-definite kernel function.47. As such, I hence-

forth abbreviate it to

KHammw(i, j) = WeightedHammingSimw(si, sj)

In fact, this kernel is equivalent to the one employed in Shepard and Arabie’s

(1979) ADCLUS model but for one major difference: where ADCLUS only counts

matches between features that are both 1,48 KHammw counts matches between fea-

tures that are both 1 and 0. (I return to why I use KHammw instead of something

like the ADCLUS kernel shortly.)

This comparison makes clear the relationship between the current question and

more general questions in mathematical cognitive science regarding generalization—

e.g. Shepard’s (1987) exponential law of generalization. The relationship defined

by KHammw is linear in the the distributional features encoded in S. This raises a

possible worry, in that many generalization and discrimination phenomena are best

fit by models that involve exponential decay (see Tenenbaum and Griffiths 2001

for discussion). And indeed, returning to Figure 2.18, it seems this nonlinearity

may be appearing here in the relationship between frame distance and dissimilarity

ratings; it is easier to predict which words are similar if they are nearby in frame

space than if they are far away, and further, the drop-off in predictability appears

47More generally, WeightedHammingSim defines a positive-definite kernel if ‖w‖1 > 0 and a
positive-semidefinite kernel if ‖w‖1 ≥ 0.

48In this way, the ADCLUS kernel is like a feature-weighted version of Tversky’s (1977) Contrast
Model, though there are some other differences in that the Contrast Model is a valid positive
(semi)definite kernel only under specific combinations of weights.
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to be logarithmic. This in turn suggests that there is a need to scale distributional

distances nonlinearly—perhaps, exponentially. The problem is that, unlike the sorts

of cases that Shepard and others consider, the current feature space is discrete,

meaning that most current models of these nonlinearities are inappropriate.

To remedy this, I consider Kondor and Lafferty’s (2002) diffusion kernels on

graphs. As Kondor and Lafferty note, diffusion kernels “can be regarded as the dis-

cretisation of the familiar Gaussian kernel of Euclidean space” and that KHammw (in

its equiweighted variant) underperforms diffusion kernels in categorical prediction

tasks. This latter suggests that these sorts of kernels may be useful in this case as

well, which corresponds to Kondor and Lafferty’s diffusion kernel for the hypercube

(see footnote 45). This is a special case of the diffusion kernel for arbitrary strings

over alphabet A with number of symbols |A|, where WeightedHammingSimw. (I

abbreviate WeightedHammingSimw as WHSw below for readability.)

KDiff(i, j) =

(
1− exp[−|A|β]

1 + (|A| − 1) exp[−|A|β]

)WHSw(si,sj)

This gives the elegant characterization for binary alphabets A = {0, 1}. (See

Kondor and Lafferty 2002 for a derivation of both of these kernels.)

KDiffw(i, j) =

(
1− exp[−2β]

1 + exp[−2β]

)WHSw(si,sj)

= (tanh β)WHSw(si,sj)
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In the following, I consider the four natural choices that this discussion delim-

its: the equiweighted linear model (KHamm1), the weighted linear model KHammw),

the equiweighted diffusion model (KDiff1), and the weighted diffusion model (KDiffw).

For each type of regression, corresponding to each similarity dataset, I fit all four

models and then compare their performance using two metrics that are similar to

WAIC, the metric used to determine a stopping criterion for the non-negative re-

gression model. In the case of the weighted models, w is learned. In the case of

the diffusion models, a second parameter β (akin to a inverse decay parameter in

the general case of nonparametric density estimation) must be set; I also learn this

parameter from the data.

I further place exponential priors—equivalent to L1 regularization—on both

w and β for the relevant models. This simultaneously serves as to bias against the

more complex models, since their MLE estimates might not be the same as their

MAP estimates under this regularization, and it also instantiates a variable selection

procedure.

2.4.3 Multinomial logit mixed model

I use a standard multinomial logit mixed model with a softmax link and subject

random effects, which account for each participant’s implicit bias toward a particular

kind of response. (See Appendix A for details on these components.) The model

was implemented in python using the pymc package and was fit using the Powell

optimization implemented in the scipy optimize module (Jones et al., 2001), which
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attempts to find the the model’s Maximum A Posteriori (MAP) estimate given the

data. For each of the four similarity models, this optimization was repeated 100

times with random initialization and the MAP estimate selected.

2.4.3.1 Model comparison

In Section 2.2, I use WAIC to perform model comparison for the non-negative

projection model. This method is not available to us here because the parameters

were not derived via sampling. I still need a way of trading model fit with model

complexity, however. I thus fall back to model comparison measures that can be

computed using only point estimates. The Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) are two such common measures.49 Table 2.2

shows these model comparison measures, along with the deviance (the log-likelihood

scaled by −2) for each of the four models.

Two generalizations are clear from this table. First, both diffusion kernel

models outperform both linear kernel models on both AIC and BIC. This suggests

that, as in many other areas of cognition, similarity in distributional features decays

exponentially with the distance in feature space. Second, both weighting models

outperform their unweighted counterpart. This suggests that certain distributional

features are more salient than others—a suggestion that is corroborated by the

earlier observation that different judgment tasks may tap different aspects of the

semantics. Given these clear cut results, I focus on only the weighted diffusion

49These measures are less desirable, since they require assumptions about the posterior—namely,
multivariate normality—that may or may not hold. Violation of these assumptions may not be too
problematic, however, given the clear separation between the models’ performance in the current
case.
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Kernel Feature weighting Deviance AIC BIC
Linear None 26103 26469 27825
Linear Weighted 26032 26426 27886
Diffusion None 26069 26437 27800
Diffusion Weighted 25744 26140 27606

Table 2.2: Model comparison measures for multinomial logit mixed model. The
minimum values for AIC and BIC are bolded.

model for the remainder of this subsection.

2.4.3.2 Feature weights

Figure 2.19 shows the weights w learned for the multinomial logit mixed model

with weighted diffusion kernel. (The MAP estimate for β was 0.37.) I see that the

multinomial logit mixed model utilizes three of the very general features from the

non-negative projection model (features 2, 3, and 4), and four of the more specific

features (features 5, 6, 7, and 13). The highest weighted feature (feature 2) is the one

that I pointed out comes closest to the representationality distinction. Interestingly,

the rest of the features—besides feature 13, which corresponds to emotive factivity

but has a small weight—are ones that I pointed out as harder to interpret. This is

interesting in the sense that it is an apparent justification of Fisher et al.’s critique

of beginning with a labelling of verb classes.

2.4.3.3 Frame informativity

Knowing the relative importance of each distributional feature is interesting,

but it tells us little about how a learner might go about accessing those features.

That is, it does not tell us how much discriminative power each frame has for abduc-
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ing the features strongly associated with that frame. To assess this, it is necessary

to find some way of measuring frames’ informativity relative to the weighting on dis-

tributional features presented in the last subsection and the projective relationship

between that distributional feature and that frame, as encoded in P (Figure 2.12 in

Section 2.2). With regard to the projective relationships, two things are important:

(i) strength of the relationship and (ii) relative uniqueness of that relationship. The

first is required for obvious reasons: for a frame to be important it should be im-

portant for an important feature. The second is required because the frame should

not simultaneously be important for two different important features: if a frame is

similarly important for two similarly important features, a verb’s showing up in that

frame helps little in being able to tell which of those two features the verb has.

I thus use a measure that can take into account both strength in particular

projective mappings and inequality50 across projective relationships. The Gini co-

efficient, which measures the unevenness of a distribution, is useful in this case. I

compute two Gini coefficients for each frame: unweighted Gini, computed directly

from the columns of P (the transpose of Figure 2.12); and weighted Gini, computed

by applying the weights w (Figure 2.19) to the columns of P and then performing

the same computation on the rows of the resulting matrix. Unweighted Gini, then,

provides a measure of discriminative power relative just to the distributional charac-

teristics of the data, and weighted Gini provides a measure of discriminative power

relative to the salience of those characteristics as they relate to verbs’ meanings

50Another common term for inequality in this sense is sparsity. See Hurley and Rickard 2009
for reasons to use Gini, over other common measures, as a measure of sparsity.
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Figure 2.19: Feature weights for multinomial logit mixed model with weighted
diffusion kernel. Features correspond to those in Figure 2.11.

(presuming that the similarity judgments are a good proxy for this).

Figure 2.20 shows the results of both computations. The black bars give the

unweighted Gini for a frame and the black+grey bars give the weighted Gini. (The

grey bar thus gives the difference between weighted Gini and unweighted Gini.)

The frames are ordered along the y-axis by their weighted Gini, and so the graph

can be interpreted as follows: if one were trying to learn the semantics of a novel

word and only got to choose a single syntactic context, they should prefer the

syntactic contexts toward the top. For instance, the first six syntactic contexts

involve both NP objects—either on the surface or implicitly through passivization—

and sentential complement, so knowing whether a verb takes an NP object and a
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sentential complement would be quite useful in determining its semantically relevant

distributional features.

One thing this graph does not tell us is how useful combinations of syntactic

contexts are. Note that this is not derivable from the discriminative power of the

syntactic contexts alone, as seen in Figure 2.20, since two different frames may be

projected from very different sets of features. This means that seeing a verb in two

different frames could either make it easier to discriminate the semantically relevant

distributional feature(s) that that verb has—to the extent that the syntactic contexts

intersect on features they project strongly from—or make it harder—to the extent

that the syntactic contexts don’t intersect on features they project strongly from.

To assess the discriminative power of a combination, over and above the syntactic

contexts that constitute that combination, I then must define a way of assessing

the discriminative power of the intersection of features that those syntactic contexts

project from. But how does one measure the intersection when the latent features

and syntactic contexts are associated via continuous values?

To see how to do this, it is useful to first consider how one might do this

if the projective relationships were binary (as the relationship between verbs and

features is). If this were the case, the discriminative power of a single syntactic con-

text might be defined as the inverse of the number of feature it is projected from,

which is maximized when a syntactic context is projected from only one feature.

Intersection for two syntactic contexts could be defined as the latent features both

project from—bitwise and applied to the columns corresponding to the two syntac-

tic contexts—and the discriminative power of the combination could be computed
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from the resulting vector in the same way as it is for single frames. Then, a combina-

tion is useful over and above its constituent syntactic contexts, if the discriminative

power is increased relative to both frames.

In the continuous case, bitwise and is not available, but its natural generaliza-

tion, the Hadamard (pointwise) product, is. The Hadamard product is intuitively

correct for what I aim to do. If two different syntactic contexts project strongly

from some feature, the product of that projection will be large; if only one syntactic

context in a combination projects strongly from some feature and the other, weakly,

then the product will be middling; and if neither syntactic context in a combination

strongly projects, the product will be small. This means that, (i) to the extent that

two syntactic contexts agree on only a subset of each of their projections and (ii)

to the extent that the disagreements are large, the combination adds discriminative

power. To analyze the additional discriminative power that a combination of syn-

tactic contexts adds, I can then compute the Hadamard product of the constituent

contexts projection relationships.

Our aim is to ascertain how predictable this value is from the discriminative

power of the syntactic contexts and how much is due to their interaction. This

can be done by constructing a regression to relate the discriminative power of the

constituent contexts to that of the combination. I then residualize the combination’s

value by that regression’s prediction to get a measure of the combination’s gain in

discriminative power. Because the value of discriminative power is bounded by 0

and 1, I need a regression that assumes a dependent variable on a bounded interval.

Beta regression does the trick here. I regress the combination discriminative power
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Figure 2.20: Unweighted (black) and weighted (black+grey) Gini computed using
feature weights from multinomial logit mixed model with weighted diffusion kernel
(Figure 2.19) and projection principles inferred from non-negative projection model
(Figure 2.12).

(weighted Gini), computed as above, on both of its constituent’s discriminative

powers (after a logistic transformation) and their interaction. I then residualize the

combination discriminative power by the regression predictions. Figure 2.21 shows

these residualized values.

I see a few interesting patterns in these data. First, on the whole most frames

enter into at least some useful interactions, suggesting that all frames have at least

some extra discriminative power in combination with others. Second, some frames

show more gains in discriminative power in combination with nearly all frames,

while others are very selective about the frames they interact with. This tends to
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Figure 2.21: Weighted frame combination Gini residualized by beta regression
on weighted Gini of each frame in combination (full bars in Figure 2.20). Grey
represents a positive residual and orange, a negative.
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pattern with initial discriminative power. For instance, both NP Ved that S and NP

Ved WH S show only non-negative increases in discriminative power in combination

with other frames, though they also have lower discriminative power to begin with.

And frames with higher discriminative power to begin with do not tend to interact

with fewer frames. For instance, NP Ved to VP tends not to show much if any

increase in interaction. (Though interestingly, it does interact positively with both

NP Ved that S and NP Ved WH S.)

To some extent this correlation between initial discriminative power and inter-

activeness is unsurprising, since if a frame is already highly discriminative, there is

less seeing a verb in another frame could do to reduce uncertainty about the features

of that verb. On the other hand, this was the point of looking at the residualized

scores, and indeed, some high informativity frames show large numbers of frames

they interact with. For instance, the top four frames look very much like the bottom

two but for their negative interaction with various low interactivity frames.

2.4.4 Ordinal logit mixed model

I now turn to the ordinal logit mixed model analysis of the ordinal scale data. I

use a standard ordinal logit mixed model with strictly positive cutpoints and subject

random effects, which account for each participant’s implicit bias toward particular

parts of the scale. (The subject random effects model is the same as the response

model described in Section 2.2; see Appendix A for details on this components.)

The model was implemented in python using the pymc package and was fit using
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the Powell optimization implemented in the scipy optimization module, which

attempts to find the model’s MAP estimate given the data. For each of the four

similarity models, this optimization was repeated 100 times with random initializa-

tion and the minimum deviance model selected.

2.4.4.1 Model comparison

As for the multinomial logit mixed model reported above, I use AIC and BIC

for the initial model comparison. Table 2.3 shows the model comparison measures for

each of the four models.51 Similar generalizations hold as in the last section, though

the results are less clear cut. Both the diffusion kernel and weighting improve the

fit in comparison to the unweighted linear model. This improvement is not additive,

however, as can be seen in the fact that the weighted diffusion model only does

slightly better than either the weighted linear model or the unweighted diffusion

model in terms of AIC, and the unweighted diffusion model does far better than

either weighting model in terms of BIC. This contrasts with the finding from last

section that the weighted diffusion model bested both the weighted linear model

and the unweighted diffusion model by a wide margin on both measures.

The reason for this difference could rest on the nature of the task. Likert sim-

ilarity scale tasks require participants to map whatever representation of similarity

they have for a given domain into a discrete scale. Regardless of how this mapping

is done, if similarities decay exponentially with distance and objects are fairly uni-

51Note that the values in Table 2.3 should not be compared to those in Table 2.2 since the
datasets are not the same. The reason the numbers are lower in the current table is that fewer
total datapoints were collected for the likert scale task.
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Kernel Feature weighting Deviance AIC BIC
Linear None 9811 10521 12699
Linear Weighted 9682 10420 12685
Diffusion None 9714 10420 12611
Diffusion Weighted 9678 10418 12689

Table 2.3: Model comparison measures for ordinal logit mixed model. The mini-
mum values for AIC and BIC are bolded.

formly distributed through a space, one would expect most verb-verb pairings to

yield low ratings on the scale. And this is indeed what I find.

But there is a catch. Because participants tend to use the scale differently, one

needs to take into account differences among participants mappings in the analysis.

I did this using an ordinal logit model with participant random effects. This means

that, in fitting the model, the inference algorithm has to simultaneously decide

whether the many low scores seen in the data arose as a consequence of participants

mappings, which could map larger intervals of the latent similarity measure to low

points on the scale than high points, or as a consequence of the similarities them-

selves. This would yield a result wherein the linear model looks better than it should

because the exponential decay in similarity is being explained in the mappings from

similarity to likert scale as opposed to the similarities themselves. That is, the linear

model has a way of mimicking the diffusion model by pushing the explanation into

the response model.

This does not appear to be the case, however. If the linear model were mim-

icking the diffusion model, one would predict the lower ratings to have exponentially

larger interval sizes than the smaller, but in fact, their size is comparable. Across

participants, the interval size for a 1 rating on the likert scale in both the unweighted
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diffusion (median=0.56) and weighted diffusion models (median=0.58) is about the

same as—or even a bit smaller than—the interval sizes in the unweighted linear

(median=0.24) and weighted linear models (median=0.36). And this pattern holds

for the remainder of the likert scale points as well (see Figure A.3 in Appendix A).

In fact, rather than the linear models mimicking the diffusion models, it ap-

pears that the diffusion models are mimicking the linear models. One of the main

differences between the linear and diffusion models is in the distribution of similar-

ities they produce: the diffusion models tend to yield more uneven distributions of

similarities, with many low similarities and few high similarities. In contrast the

linear models tend to spread similarities more evenly. In degenerate cases, however,

the diffusion models can act like the linear models if their inverse decay parameter

is relatively large or if the distances that get exponentiated are very small (below

1). This appears to be what is happening here.

In the multinomial logit mixed models, both diffusion models showed much

more uneven similarities (Gini=0.30 [unweighted diffusion], 0.46 [weighted diffu-

sion]) than their linear counterparts (Gini=0.11 [unweighted linear], 0.17 [weighted

linear]). In contrast, in the current models, both diffusion models show similar

uneveness in their similarities (Gini=0.01 [unweighted diffusion], 0.14 [weighted dif-

fusion]) than their linear counterparts (Gini=0.11 [unweighted linear], 0.15 [weighted

linear]). This appears to be driven by a large inverse decay value in the unweighted

diffusion model (β = 2.81), where distances cannot be below 1, and small distances

in the unweighted diffusion model, which arise as a consequence of small feature

weights (max=0.02, mean=0.003). Further, the feature weights with non-negligible
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Figure 2.22: Feature weights for ordinal logit mixed model with weighted linear
kernel.

measure in the diffusion model match exactly those in the linear model, suggesting

that these two models are doing essentially the same thing. For the remainder of

this section, then, I analyze the weighted linear model.

2.4.4.2 Feature weights

Figure 2.22 shows the weights w learned for the ordinal logit mixed model

with weighted diffusion kernel. The features with non-negligible weights in the

ordinal logit mixed model are a subset of those that have non-negligible weights for

the multinomial mixed model. This again suggests that the generalized semantic

discrimination task and the ordinal scale task pick up on similar things aspects of
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the meaning. It also suggests that, whatever each is picking up on, the multinomial

logit model picks up on more distributionally relevant aspects of it.

2.4.4.3 Frame informativity

As with the multinomial logit model, I measure frame informativity in terms

of that frames unweighted and weighted Gini index relative to w (Figure 2.22) and

P (Figure 2.12 in Section 2.2). Figure 2.23 shows the results of these computations.

I again focus on weighted Gini and change in rank between unweighted and weighted

Gini.

On the whole, the most discriminative frames have less discriminative power

than in the multinomial logit mixed model, though the worst have no less. This

may be due to the fact that the feature weights are much more even in this case

than the last. With regard to specific frames, here again, I find many of the NP

object frames have high discriminative power. (This may also be why the expletive

object frame NP Ved it that S is so discriminative.) Interestingly, the NP V S and

S, I V frames show up higher than in the multinomial logit mixed model, though

this may have to do with the fact that all frames are closer in discriminative power

overall, and thus small changes can change rank.

Figure 2.24 shows data for the ordinal logit mixed model analogous to that

found in Figure 2.24 for the multinomial logit mixed model. In this case, there is a

much different overall pattern of results, where overall the increases in discriminative

power are low, and they are spread out across frames. This contrasts with the
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Figure 2.23: Unweighted (black) and weighted (black+grey) Gini computed using
feature weights from ordinal logit mixed model with weighted linear kernel (Figure
2.22) and projection principles inferred from non-negative projection model (Figure
2.12).

previous situation, where certain frames had, in a certain sense, maxed out on their

discriminative power in such a way that combining them with others would not

result in better discrimination. This situation mirrors that seen in Figure 2.23 in

that no frames really outperform any others to a great extent.

2.4.5 Discussion

In this section, I explored various ways of quantifying the relationship between

the acceptability judgments presented in Section 2.2 and the semantic similarity

judgements presented in Section 2.3. First, following Fisher et al., I assessed the
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Figure 2.24: Weighted frame combination Gini residualized by beta regression
on weighted Gini of each frame in combination (full bars in Figure 2.20). Grey
represents a positive residual and orange, a negative.
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overall correlation between the acceptability judgments and the semantic similarity

judgments.

C S D

Y X

CI P

Second, in order to discover more fine-grained relationships, I map from the

regularities S, extracted from the acceptability judgments, to the semantic similarity

judgments Y.

C S D

Y X

CI P

I began with the basic correlational analyses. These analyses were carried out

by defining a distance measure between verbs based on X (the “raw” data) as well

as one on S. In both cases, I found significant correlations with distances derived

from both of the similarity datasets Y. In the case of both the distance on X and

the distances on S, these correlations were of roughly the same size.

I then moved into more sophisticated analyses that allow us to delve into

the relationship between the distributional regularities extracted using the non-

negative projection model and the similarity judgments directly. I presented two

such analyses. The first assessed how best to model participants’ perception of

semantic similarity relative to the distributional features and the salience of those

features. For the generalized semantic discrimination task, a model that assumes
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exponential decay in similarity (the diffusion kernel) outperforms one that assumes

linear decay. For the ordinal scale task, the linear decay model wins out. I suggested

that this may be related to the way participants make semantic discrimination

judgments v. direct semantic similarity judgments.

The second analysis used the model fits that resulted from the first analysis

to assess how useful different syntactic contexts could plausibly be for a learner in

discriminating the semantically relevant distinctions. I found that two of the gen-

eral features (features 2 and 3) and one specific feature (feature 6) showed up as

important in both analyses. These were also the only features that were assigned

non-negligible weights in the ordinal logit mixed model, while in contrast the multi-

nomial logit mixed model utlized these features plus another general one (feature

4) and three other specific ones (features 5, 7, and 13). This may suggest that

the generalized semantic discrimination responses are derived more directly from C

than the ordinal responses.

2.5 General discussion

In this chapter, I presented experiments aimed at quantitatively assessing how

much information about propositional attitude verbs’ meaning lies in their com-

petence distribution. I showed that the measure of syntactic distribution and the

measure of semantics extracted from these experiments are significantly correlated.

In analyzing the data from these experiments I developed a computational model,

based on the linguist’s notion of projection, which extracts features from the compe-
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tences distribution proxy collected in this experiment. I then analyzed these features

both qualitatively and quantitatively to assess their relationship to previous propos-

als about the relationship betwen syntax and semantics in the attitude verb domain,

finding that in large part those previous proposals are corroborated. In the next

chapter, I turn to the question of whether one finds the same amount of semantic

information present in performance distribution as well.

132



Chapter 3: A computational model of syntactic bootstrapping

In Chapter 2, I show that syntactic distribution, as proxied by acceptabil-

ity judgments, goes quite far in predicting the fine-grained properties of a word’s

semantics, as proxied by semantic similarity judgments. As discussed in the last

chapter, acceptability judgments are one of the most direct measures available of

what I have been calling the competence distribution of a word. This direct mea-

sure, however, is not necessarily representative of the sort of data learners have

access to in verb-learning; rather, they have access to what I have been calling

performance distributions—e.g. cooccurrence counts between verbs and subcatego-

rization frames. With this in mind, the first goal of this chapter is to show that

similar levels of semantic information lie in the kinds of performance distributions

that learners plausibly have access to at the same time as presenting a model that

takes advantage of this information.

To assess the semantic information that lies in these performance distribu-

tions, I adapt the nonnegative projection model proposed in Chapter 2, which was

applied to acceptability judgment data, to verb-subcategorization frame counts from

a corpus. This can be done quite straightforwardly due to the modular nature of

this model: at a high level, the response model used for the acceptability judgments
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need merely be replaced with a count model. The resulting model can be con-

ceived of on two levels: on the first level, it generates competence distributions (the

sorts of syntactic structures a verb is good with) by projecting semantic features

into a distribution space using the projection rules. Then, from these competence

distributions, it generates performance distributions (the sorts of syntactic struc-

tures a verb occurs with) by sampling verb-frame pairs according to the competence

distributions.

I propose that this model abstractly characterizes the syntactic bootstrapping

process, and on analogy with the nonnegative projection model proposed in the

last section, I call this model the nonnegative syntactic bootstrapping model. This

model is, in many ways, the midway point between two types of models of learning

semantics from syntactic distribution. On the one hand are category-based models

of semantic representation, which tend to be founded in probabilistic approaches to

semantic representation like Latent Dirichlet Allocation (LDA Blei et al., 2003); and

on the other hand are vector space models of semantic representation, which tend

to be founded broadly in matrix factorization techniques such as Singular Value

Decomposition (SVD) like Latent Semantic Analysis (LSA Deerwester et al., 1990)

and, more recently, neural embedding models like skip-gram with negative sampling

model (Mikolov et al., 2013). I refer to these latter sorts of models as feature-based

models for reasons that become clear.1

The chapter begins in Section 3.1 with a review of previous models, both prob-

1This is, by necessity, a rough characterization, since at a higher level, the goal of both general
approaches is to factor the observed data into some representations involving latent objects (cat-
egories or features), and thus they have similarities. But the sorts of representations each traffics
in is distinct enough to warrant discussion.
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abilistic and vector space, that learn word-meaning representations from syntactic

distribution. The upshot of this discussion is to motivate the need for a midway

point between the representational freedom of vector space models, which can result

in hard-to-interpret features—cf. the discussion of PCA in Chapter 2—and the sorts

of representations that common category-based probabilistic models produce, which

tend to be easier to interpret but which I show have other undesirable properties

from the point of view of semantic representation.

The particular undesirable property I focus on is the fact that these represen-

tations are what I refer to as globally normalized and thus don’t allow us to naturally

represent words that may have multiple features simultaneously. In Section 3.1.1, I

discuss this normalization property at length, showing that it can be converted into

a sort of representation I refer to as locally normalized, arguing that this represen-

tation does not fall prey to the interpretability issues inherent in the vector space

models. I then suggest that the conversion process itself is of interest because it

shows a deep connection between the category view of word-meaning and a feature

view of word-meaning. The upshot of this suggestion is that normalized represen-

tations can be fruitfully thought of as topological in nature and the unnormalized

representations can be thought of as logical in nature.

In Section 3.2, I present the nonnegative syntactic bootstrapping model, which

incorporates the desirable features of both the vector space models and the proba-

bilistic models discussed in the previous two sections. This model utilizes the same

nonnegative projection model employed in the previous chapter, but it replaces the

response model used there with a model of counts. I show that the features that this
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model induces correlate with the similarity judgments presented in the last chapter

to approximately the same extent as the acceptability judgments in the last chapter.

The upshot of this—the main result of this chapter—is that syntactic distributions

in corpora—performance distributions—carry a significant amount of fine-grained

information about attitude verb syntax.

In Section 3.4, I conclude by showing how to build an incremental learning

algorithm for this model.

3.1 Computational models and syntactic distribution

Computational models of word-meaning induction from syntactic distribution

tend to fall into two main classes: category-based models that attempt to induce

verb classes from syntactic distributions culled from corpus counts (LDA and related

models) and vector space models that attempt to induce spatial representations from

these corpus counts (LSA-based models and neural embedding models). I begin

with a review of work within both domains, focusing in particular on the sorts of

representations they traffic in.

3.1.1 Category models

3.1.1.1 Prior approaches

Category-based models, which might involve either hard or soft-clustering ap-

proaches, tend to find their inspiration in Levin’s (1993) now classic handbook as

well as various resources that derive at least partially from it. One of the more
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straightforward approaches within the category-based frameworks is exemplified by

Schulte im Walde and Brew 2002; Schulte im Walde 2003, 2006.2 Schulte im Walde’s

approach was to estimate the parameter of a multinomial distribution over frames

for each verb (with additive smoothing λ = 0.5), then apply k-means clustering with

various distance metrics (Manhattan distance, Euclidean distance, KL divergence,

information radius, skew divergence, and cosine distance) and various values of k.

Choice of optimal k was based on optimizing two indices of agreement with a gold-

standard categorization. Thus, under this approach verbs are viewed as falling into

distinct hard clusters.

Other approaches make similar assumptions but utilize slightly different meth-

ods. For instance, Stevenson and Merlo (1999) and Merlo and Stevenson (2001)

were interested in whether grammatical features that constitute subcategorization

frames—e.g. active v. passive—could be used to discover a fixed set of three pre-

defined classes. To do this, they utilized both an unsupervised method, hierarchical

clustering converted to a flat hard clustering like that produced by k-means, as well

as a supervised method, decisions trees trained on the gold standard classes (see

also White et al. 2014 for a similar approach focused on the fine-grained semantics

of propositional attitude verbs). Stevenson and Joanis (2003) extend this method-

ology with a semi-supervised approach to feature selection. Simalar to Stevenson

and Merlo’s hierarchical clustering approach, Schulte im Walde (2000) used a rela-

tive entropy-based hierarchical clustering and well as a generative latent class model

2Each of these papers present slightly different analyses while keeping the general approach
roughly the same. Schulte im Walde 2006 presents perhaps the most comprehensive set of analyses;
this discussion is based on that paper.
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proposed in Rooth 1995.

More recent approaches eschew hard clusters for soft clusters. That is, instead

of representing a word as belonging to a single category, the word’s representation

is fundamentally associated with a discrete distribution over some number of cate-

gories (possibly an unbounded number). One common method for performing this

soft clustering is to employ probabilistic methods originally designed for document

classification. Perhaps the most popular current framework for carrying this out

is that of Latent Dirichlet Allocation (LDA; Blei et al., 2003) and related models

that employ priors that allow the number of latent categories to vary, such as the

Hierarchical Dirichlet Process (HDP; Teh et al., 2006). Because it is useful for the

sake of grounding discussion, I give the generative story for the Latent Dirichlet

Allocation (LDA) model (Blei et al., 2003), since it forms the core of many lexical

representation models. For convenience, I convert the common document speak into

word speak, where V is the number of words to represent—i.e. soft cluster—and

F is the number of possible contextual features (cooccurring words, cooccurring

structures, etc.).

In this model, verbs are associated with discrete distributions over categories—

sometimes referred to as topics in reference to this model’s document classifica-

tion origins—parameterized by a multinomial/categorical parameter θi of length K,

where (K + 1) is the total number of categories. These categories are in turn as-

sociated with a multinomial/categorical distribution over, e.g., possible contextual

features (words, strings, syntactic structures, etc.) of a word. The LDA generative

story is quite simple.
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1: for word category k in 1 : K do

2: Choose a distribution over contextual features φk ∼ Dirichlet(β1K)

3: end for

4: for word i in 1 : V do

5: Choose a distribution over word categories θi ∼ Dirichlet(α1K)

6: for occurrence j in 1 : ni do

7: Choose a category sij ∼ Categorical(θi)

8: Choose a contextual feature xij ∼ Categorical(φsij)

9: end for

10: end for

x

φβ

yθα

ni

V

K

Figure 3.1: Plate diagram for Latent Dirichlet Allocation (LDA)

Griffiths et al. (2007) propose using this sort of approach for word-word cooc-

currences, where a word’s semantic representation is discovered by associating each

of K categories with a distribution over words, and each word is associated with a

distribution over theK categories.3 Building on work in the computational literature

on selectional preferences (cf. Resnik, 1996; Ritter and Etzioni, 2010; Ó Séaghdha,

3Griffiths et al. also briefly consider some alternative model structures, but for current purposes,
I focus on the simpler model, since the more complex models represent meanings themselves in
the same way.
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2010), Ó Séaghdha and Korhonen (2014) propose various models that take into ac-

count both the words that a particular word occurs with as well as the syntactic

relationships those cooccurring words have to the word of interest.4

Vlachos et al. (2008, 2009) construct a similar model with a nonparametric

prior that infers verb representations from verb-subcategorization frame cooccur-

rences. In the same vein as Vlachos et al., Alishahi and Stevenson (2008) present a

model that learns subcategorization frames as distributions over syntactic features,

constructions as distributions over subcategorization frames, and verbs as distribu-

tions over constructions (see also Barak et al. 2013, 2014b,a, which utilize the same

model and focus on very coarse-grained attitude verb classes). The impetus for this

extra construction level in Alishahi and Stevenson’s case is to capture some notion of

semantic structure underlying multiple frames (Jackendoff, 1990; Goldberg, 1995).

A similar idea drives Lewis and Steedman’s (2013) approach. Lewis and Steed-

man use the output of a Combinatorial Categorial Grammar parser to induce types

using a k-nearest neighbors style clustering analysis. They then apply vanilla LDA

to verb-type cooccurrence counts, representing verbs as distributions over categories

that are in turn associated with distributions over types.

3.1.1.2 Representational assumptions

The representational assumption that these approaches all have in common

is what I refer to as the global normalization property: the representation of a

4See also Gormley et al. 2012, who augment the vanilla topic model of selectional restrictions to
discover a low dimensional representation of the properties that categories are constructed from.
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word’s semantics must sum to 1.5 The hard clustering models trivially assume this,

since they assume that the verb representation is given by a single category. This

can be thought of as a one-hot vector representation, with zeros in all positions

besides that corresponding to a particular category. This view seems problematic,

at least for encoding propositional attitude verb semantics for reasons discussed

extensively in Chapters 1 and 2: propositional attitude verbs’ meanings are multi-

faceted. Want and hope share a property (preferentiality), but so do think and hope

(representationality).

One way to get around this problem is, of course, to multiply the number of

categories so that, e.g., one category encodes nonfactive belief verbs (think), one

encodes factive belief verbs (know), one encodes nonfactive nonbelief verbs (want),

and another encodes factive nonbelief verbs (love). But this clearly misses a general-

ization that, e.g., think (a representational nonfactive) and know (a representational

factive) cross-classify to the exclusion of want (a preferential nonfactive) and love

(a preferential factive). Indeed, in the limit, this leaves every verb in a separate

category.6

The soft clustering models—e.g. LDA—provide more representational free-

dom, which at least partially fixes this problem by assuming that a particular verb

may be associated with multiple categories. The caveat to this freedom is that,

5The hierarchical clustering approach is something of an exception to this, at least in principle.
In practice, however, the hierarchy is cut at a certain threshold to create mutually exclusive
categories, resulting in the same sort of representation produced by hard clustering models like
k-means. Thus, it falls under this generalization.

6Of course, the whole question of this dissertation is essentially where this limit is, and it seems
unlikely that, as a matter of syntactic distribution, a learner would ever have enough evidence to
place each verb in its own category.
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on any particular occurrence of the verb, that occurrence falls into a particular

category. This is problematic in a sense related to the problematic aspect of the

hard clustering approach: many verbs seem to retain the same semantic features on

each occurrence, and so modeling them as though each occurrence is the product

of a different category seems incorrect. For instance, on each occurrence of hope,

the speaker is presumably committed to both the desire entailment and the belief

entailment.

This is not to say that one or the other component might not be foregrounded

on a particular use; indeed, it seems quite likely that on any one use, either the

belief or preference component is foregrounded. But regardless of this presumably

pragmatic foregrounding effect, both entailments remain. For instance, the belief

component seems foreground in (1b) since B presumably means to convey that she

believes its possible that John went to the store—or perhaps merely that it’s possible

that he did.

(1) A: Did John go to the store?

B: I hope he did.

But even with this foregrounding, the desire component does not go away: B in (1)

is still committed to all wanting it to be the case that John went to the store. For

instance, she cannot follow up with (2) and not contradict herself.

(2) B: ...but I don’t want him to have.

Thus, this is very different from a case of polysemy—where the word might shift

142



between (possibly systematically) related meanings, and thus be amenable to a

univocal semantic description, but nonetheless has only one particular meaning,

with particular entailments, on a particular use. For instance, (3) might have an

aperture reading or an obstruction reading.

(3) The ghost went through the door.

And perhaps the event being described could be described by both expressions. But

no one would argue that the aperture reading—with its entailment that the ghost

move through the door frame—also has the obstruction entailment—that the ghost

also passed through the door filling that doorframe. This can be seen in the fact that

(3) can truly describe a scene in which the ghost passes through an open door frame.

This suggests that hope is not really the same sort of beast as the standard polysemy

examples. It really does require a description incorporating both components of its

meaning.

The question then becomes: why should both components not determine cooc-

curring words, structures, etc. on each occurrence? One common tack is to ignore

how the model itself views the representation—as a probability of a category on a

particular occurrence—and try to treat the distribution associated with each word

as something like encoding weights between particular words and its features. This

gives rise to a representation that, unlike the one-hot hard clustering representation,

can be viewed as encoding a word’s multiple features simultaneously.

I think this view is reasonable but not in its barest form. Recall the example of

think, want, hope. Suppose we encode these three verbs using two categories/features—
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representationality and preferentiality—which we can represent as a two-element

vector. The vector associated with think might be (0, 1), whereas the vector for

want might be (1, 0). But what about the vector for hope? Ideally, it would encode

an equal relationship between representationality and preferentiality. But since each

verb’s representation is, at base, a distribution over categories, and one category is

sampled on each occurrence of a verb, the verb’s category/feature relationships

must sum to one. This means that the only way to encode an equal relationship

between hope and both representationality and preferentiality is to associate hope

with the vector (0.5, 0.5). In turn, this means that a verb’s relationship to its

categories/features cannot be interpreted on its own but only relative to the entire

representation.

The reason why this problem arises has to do with the fact that the simplex

representation encodes not only the strength of the relationship between a word and

a feature but also information about how likely that relationship is to manifest itself.

But these two properties seem separable. The relationship between a word and a

component of its meaning seems more essential than the likelihood of observing that

component’s effects. How, then, does one derive the “true” relationship between a

word i and feature k from θi? One possibility is to loosen the restriction that the

representation be globally normalized.
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3.1.2 Vector space models

In the last section, I noted that many category-based models, both hard clus-

tering and soft clustering models, constrain their representations of verb semantics

to be globally normalized. I then suggested that these globally normalized represen-

tations were not intuitive as featural representations, which is seemingly what one

needs to represent the multi-faceted nature of propositional attitude verbs. In this

section, I consider a semantic representation that does not fall prey to the problems

inherent to globally normalized representations.

There are a broad range of vector space models to semantics. The general ap-

proach to semantic representation in these models is to view words as points in some

space of observable features. For instance, in the case relevant to this dissertation,

one might conceive of verbs as lying in some space whose dimensions correspond to

subcategorization frames and whose values correspond to some relationship between

the verbs and the frame—e.g. cooccurrence count, term frequency-inverse document

frequency (tf-idf), pointwise mutual information (PMI), etc. Any sort of observable

feature is possible as a dimension. (The same is of course true of the category-based

models, as discussed in the last section.)

One touchstone case of these vector space models is that arising from the La-

tent Semantic Analysis/Indexing (LSA/LSI) literature (Deerwester et al., 1990). As

is true of LDA (discussed briefly above), LSA’s original application was to document

representation, but by replacing documents with words, LSA provides a natural way

of representing words (Landauer and Dumais, 1997). Assuming the spatial view of
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words, the idea behind LSA—an idea which recurs throughout this section—is that

learning a semantic representation consists in factoring a matrix encoding the spatial

position of each word within the observable dimensions into two distinct matrices:

one that represents the relationship between a verb and various latent features or

components of that verb (the score matrix) and another that represents the rela-

tionship between the latent features and the observed features (the loading matrix).

The particular way that LSA does this is known as Singular Value Decomposition

(SVD). This method underlies the algorithms that compute Principal Component

Analysis (PCA), as used in the last chapter.

As noted in Chapter 2, one nice aspect of this sort of model is that it naturally

encodes the notion of projection from semantic features to syntactic distribution:

semantics-to-syntax projection is projection from one vector space (the semantics)

to another (the syntax).7 One problem with this sort of approach is that, left

unconstrained as in the case of LSA, it results in feature values that are hard to

interpret even if the features themselves correspond to a clear semantic class.

As noted in Chapter 2, one remedy for this—the one employed in that chapter—

is to enforce non-negativity and sparsity and to employ unit- or binary-valued fea-

tures. The first two of these are also employed in Murphy et al. 2012; Fyshe et al.

2014, 2015, though the last is not.

This general spatial meaning approach has been extended rapidly in recent

years. It has been put to particularly common use within the deep learning litera-

7In fact, it is a misnomer to call this projection in the second case, since the mapping in question
is not an endomorphism.
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ture. One model popular for inducing word representation is that given in Mikolov

et al. (2013), who present their skip-gram with negative sampling model (cf. Rumel-

hart et al. 1986 for an early example of this sort of model; see also Bengio et al. 2006;

Collobert and Weston 2008). Roughly, this model attempts to learn representations

in some real-valued space that can be used to predict words on either side of that

word. Like standard LSA models, these neural word embedding models appear to be

performing a sort of implicit matrix factorization, which Levy and Goldberg (2014b)

argue is based on a variant of a matrix containing the point-wise mutual informa-

tion between objects (e.g. verbs) and observable features (e.g. subcategorization

frames).

Levy and Goldberg (2014a) note that these representations, often called neural

word-embeddings “are considered opaque, in the sense that it is hard to assign

meanings to the dimensions of the induced representation.” (p. 303) and they give

a similar method that uses the same notion of predicting context, but instead of

predicting string-adjacent words, their model predicts adjacent adjacent words in a

dependency parse. They note that, whereas the string adjacent version produces

“broad topical similarities...the dependency-based contexts yield more functional

similarities of a cohyponym nature.”

It is useful, however, to separate interpretability of a dimension itself and in-

terpetability of a value along that dimension. In the last chapter’s section on PCA,

I showed several cases in which the component of the meaning that a particular di-

mensions was sensitive to was at least somewhat clear. For instance, it appeared that

PCA discovered meaning features like representationality, preferentiality, factivity,
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and communicativity. But the relative position of words along these dimensions was

uninterpretable.

This arises because the feature values can fall anywhere in (−∞,∞) on the

reals. This problematic aspect was noted in the last chapter in the discussion of

PCA. For instance, what does it mean to be negative on a feature? Should that be

interpreted as not having the feature? And what does it mean for a particular verb

to a value, e.g., four times greater than another verb, but in the same direction? It’s

always possible to pass individual real values through a normalizing (or “squashing”)

function—for example, the standard logistic function—but unless that value itself

is passed through that function as a part of whatever objective was used to fit the

model, it is unclear what the interpretation of that operation should be.8

For this reason, this sort of value is very different from the globally normal-

ized representations discussed in the last section, in that the value of one feature

does not affect the values of the others. In this sense, these representations are

unnormalized, since nor constraint applies to their sum. But for this same reason,

this sort of representation is more powerful, since a verb is free to be related to

a particular feature to an extent independent of its relationship to other featues.9

The problem is that it leaves the feature values themselves uninterpretable without

further constraint. Interpretability of both the feature itself and its value are im-

portant, though. If a learner’s job is to discover features of a word’s meaning such

as representationality and preferentiality, which themselves are seemingly symbolic,

8Note that it is the dot product of two vectors and not their values that is passed through a
logistic in a model Mikolov et al.’s model.

9I do not mean to say that this representation is necessarily more expressive, however.
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then it is a prerequisite to have a value that itself can be interpreted symbolically.

This is one of the main benefits of the category-based approach; the categories

that verbs are associated with can be interpreted symbolically yet the representation

itself encodes uncertainty about which aspect of the meaning is relevant on any one

occurrence of the word. The problem, noted in Chapter 2, is that some words seem

to have multiple components of their meaning on each occurrence. This is intimately

related to the normalization property discussed briefly in the last section. In the next

section, I present a model that can incorporates the benefits of the category-based

model while not requiring such constrained representations.

3.2 The model

The current model is the same as the model in Chapter 2 in terms of the priors

on S and P. In that chapter, I utilize a prior over the distributional regularities

S with a finite number of features K, fitting the model with various K and then

perform model comparison.10

πk | α, β ∼ Beta(α, β)

sik | πk ∼ Bernoulli(πk)

I further retain the previous chapter’s exponential prior on P. This prior

10I have also implemented a nonparametric version using the Indian Buffet Process prior (Grif-
fiths and Ghahramani, 2006, 2011), but as in Chapter 2, only the parametric version is tested
here.
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induces sparsity in the same way as an L1 regularizer.11

bkj | λ ∼ Exponential(λ)

Where the current model diverges from the previous chapter is in the form

of D (the representation of the competence distribution) and X (the acceptability

judgment data). In that chapter, D is a deterministic product of S and P. This D is

then “passed through” an ordinal response model, whereby larger dij get mapped to

distributions with more mass over higher scale points (denoting higher acceptability

of a verb with a particular syntactic context). Because P (the projection rules) is

non-negative real-valued, D is also non-negative real-valued. Indeed, this would also

be possible in the current setup, since counts are also non-negative real-valued and

thus, X (now, the counts) could be thought of as a product of adding some sort of

noise to D.

There are two problems with this approach. First, it produces a represen-

tation of the competence distribution that is too sensitive to the relative counts

found in the corpus unless some sort of frequency damping model is employed (cf.

Goldwater et al. 2011). This seems right for representing performance distributions,

but not competence distributions, which I argued in the last section, should involve

something more like a unit interval representation.

11Indeed, an Exponential(λ) prior is equivalent to an L1 regularizer with weight λ. In the
more general case of real-valued parameters—i.e. not non-negative parameters as in this case—the
equivalent of L1 regularization in a Bayesian context is a Laplace prior. But if x ∼ Laplace(λ),
then |x| ∼ Exponential(λ).
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This suggests that a model that conditions its learning of competence distri-

butions on performance (count) distributions must have some way of representing

the competence distributions that factors out the relative counts. But if D were

represented as in the last chapter—as non-negative real-valued—D would retain

some residue of the empirical distributions and thus would not be a good candidate

for a competence distribution representation.

To remedy this, I pass SP through a Beta distribution to produce a distribu-

tion over D with support only on the unit interval. As I will see, this boundedness

forces the model to explain the count aspects of the empirical distributions in some

other way.

dij | S,P ∼ Beta([SP]ij, 1)

In the current model, the way that the model is forced to explain the count

data is via an auxiliary (nuisance) variable g. This variable can be thought of as

encoding, in gi, the relative prevalence of verb i. The count of verb i with syntactic

context j, xij, is then modeled as a draw from a Poisson distribution with parameter

gidij.

gi | γ, δ ∼ Gamma(γ, δ)

xij | gi, dij ∼ Poisson(gidij)
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One metaphor for thinking about this component is that each word i is associ-

ated with a “potential energy” gi and each syntactic context j associated with that

word “gets” up to that much energy. The proportion that each context actually

uses of the energy it could use is encoded in dij. If one knew both gi and dij for a

word i and syntactic context j, they would then expect to see those two together

on average gidij times.

The energy in this metaphor corresponds quite directly to a word’s overall

count. Since poisson distributions can be compounded, gi
∑

j dij gives the expected

number of occurrences of word i. This means that, though the overall distribution

of proportions dij matter for the counts, they themselves are not constrained by

having to explain counts in the same way as, e.g., a globally normalized simplex

representation (multinomial parameter), since each can take on a value in (0, 1).

As I show shortly, this layout has two benefits beyond the theoretical one just

discussed: first, g can be completely collapsed in inference due to a conditional

conjugacy; second, because of this collapse, xij is distributed as a three parameter

version of the two parameter Negative Binomial (the poisson-gamma mixture dis-

tribution), which is known to describe empirical (count) distributions in language

well (Church and Gale, 1995).

Figure 3.2 gives the plate diagram for the above model. The generative story

is given by:

1: for feature k in 1 : K do

2: Choose a feature probability πk ∼ Beta(α, β)

152



X

D g

γ

δ

S P

λ

α

β

Figure 3.2: Plate diagram for non-negative projection model.

3: for verb i in 1 : V do

4: Choose a feature value sik ∼ Bernoulli(πk)

5: end for

6: for syntactic context j in 1 : F do

7: Choose a projection strength bkj ∼ Exponential(λ)

8: end for

9: end for

10: for verb i in 1 : V do

11: Choose a verb prevalence gi ∼ Gamma(γ, δ)

12: for syntactic context j in 1 : F do

13: Choose a competence distribution strength dij ∼ Beta([SP]ij, 1)

14: Choose a cooccurrence count xij ∼ Poisson(gidij)

15: end for

16: end for
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3.2.1 Batch learner

In this section, I focus on two pieces of the inference equations for a learner that

computes the posterior over latent verb features S, projection rules P, and compe-

tence distributions D given counts X—that is, a learner that computes P(S,P,D | X; Ψ),

where Ψ = {α, β, λ, γ, δ}, by “reversing” the above generative story. The particular

pieces I focus on are the likelihood P(X | D; γ, δ) and the posterior on P(D | S,P).

I provide the full equations necessary for constructing a Gibbs sampler as well as

the gradients necessary for conducting Maximum A Posteriori (MAP) estimation

over the continuous matrices in Appendix B.

Note that g does not occur in the above probability functions. Since the goal

is a model of word-learning, g is not particularly interesting in that it encodes count

information that one needs to control for but which is only partially related to the

representations of interest S and P. In the next section, I show how it is possible

to compute the above posterior without explicitly finding a probability distribution

over g. This is possible due to a useful conditional conjugacy.

3.2.1.1 A useful conditional conjugacy

It is well-known that the gamma distribution is a conjugate prior of the poisson

distribution. A less well-known, but related, conjugacy arises from the product dis-

tribution constructed from a gamma random variable and another random variable

independent of the gamma. This product distribution is conditionally conjugate to

the poisson with respect to the gamma distribution. This can be taken advantage
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of to analytically integrate out g.

P(S,P,D | X; Ψ) ∝ P(S,P,D | X; Ψ)

=

∫
RV
+

dg P(g,S,P,D,X; Ψ)

= P(S,P,D; Ψ)

∫
RV
+

dg P(X | g,D)P(g; γ, δ)

Let us focus for the moment on the integral, since this is where the conditional

conjugacy becomes important. First, note that, if d is an arbitrary positive random

variable with parameters α, β, g ∼ Gamma(γ, δ), x ∼ Poisson(gd), and g ⊥⊥ d then

P(d | x; a, b, γ, δ) ∝ P(d, x; a, b, γ, δ)

=

∫
R+

dg P(g, d, x; a, b, γ, δ)

= P(d; a, b)

∫
R+

dg P(x | g, x)P(g; γ, δ)
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This yields the same form as our model, whereby the posterior is the product

of the prior over d and the integral over g. Since this will come up later, note also

that this integral is equivalent to the likelihood of d, P(x | d; γ, δ). This integral is

quite easily solved analytically using the standard conjugacy technique.

∫
R+

dg P(x | g, d)P(g; γ, δ) =

∫
R+

dg
(gd)x

x!
exp [−(gd)]

δγ

Γ(γ)
gγ−1 exp [−δg]

=
dxδγ

x!Γ(γ)

∫
R+

dg gx+γ−1 exp [−g(d+ δ)]

=
dxδγ

x!Γ(γ)

Γ(x+ γ)

(d+ δ)x+γ

=
Γ(x+ γ)

Γ(x+ 1)Γ(γ)

dxδγ

(d+ δ)x+γ

Note that the normalizing constant in the above equation is just that of a

negative binomial distribution. Indeed, the previous equation just the PMF of a

negative binomial distribution with the parameterization NegativeBinomial(γ, d
d+δ

).

This distribution gives the distribution over number of successes before γ failures

in a series of bernoulli trials with probability d
d+δ

of success. One can think of a

success here as seeing a particular syntactic context.
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For current purposes, let us assume that d ∈ (0, 1), since in the model it is

beta distributed and thus has support only on (0, 1). Figure 3.3 shows the PDF for

this likelihood at various values of x and δ and γ set to 1—that is, in which

What can be seen here is that, for small δ, one needs a quite large x to conclude

that d is near 1. But as δ gets larger, the probability of d being near one rises quickly

for any count. This has to do with the fact that, as δ goes to 0, the quantity d
d+δ

,

the probability of success in the negative binomial, is close to 1 regardless of the

value of d, and so we expect many successes—i.e. a large x—before a failure. On

the other hand, as δ gets larger, d
d+δ

gets smaller and smaller regardless of the value

of d, since it is bounded at 1, and so the larger the count, the more the likelihood

will prefer d near one.

This is interesting, but the existence of this conjugacy alone does not imply

anything about the more complex situation present in the above model, in which

there are multiple dij for any one verb. All xij are dependent on a single unobserved

gi, which one would like to integrate out. But this dependency could cause problems

that do not arise in the simple case. It turns out, however, that due to certain

properties of the Poisson PMF, we can take advantage of the conjugacy above.
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∫
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i=1
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δγ

Γ(γ)
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F∏
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V∏
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i exp
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F∑
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δγV
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V∏
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 F∏
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d
xij

ij

xij !

 Γ
(
γ +

∑F
j=1 xij

)
(
δ +

∑F
j=1 dij

)γ+∑F
j=1 xij

This looks a good deal more complicated than the previous, but in the simple

case where P(dmn | X,D−(mn); γ, δ) is desired (as in Gibbs sampling), it simplifies

somewhat to.
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P(dmn | xm,D−(mn),S,P; γ, δ) ∝ dxmn
mn(

δ +
∑F
j=1 dij

)γ+∑F
j=1 xij

P(dmn | S,P; γ, δ)

where P(dmn | S,P; γ, δ) is the prior on dmn.

The major difference between this equation and the simpler one I began the

section with is that, instead of being divided by only (dmn+δ)xmn+γ, dxmn
mn is divided

by the sum of all dm. One interesting thing to note about this is that it penalizes

dmn that are too low relative to the size of xmn, but it does nothing to penalize dmn

that are high with respect to the relative size of xmn. This is to say that, as far as the

likelihood is concerned, it is worse to predict that an object does not have a feature

when it does than to predict that it does, when it actually doesn’t. This is not to

say that there is no pressure to push the probability of unseen object-feature pairs

down; just that that pressure is spread out across the matrix—or more specifically,

the row corresponding to a particular verb.

How this pressure gets distributed is to some extent controlled by the prior, as

I show in the next section. Thus, in a certain sense, the model is only using positive

evidence—rewarding high probability instances and not punishing low probability

instances. This allows the model to learn a verb’s distribution—particularly a low

frequency one—by making inductive hypotheses based on higher frequency verbs.

This in turn results in high frequency verbs “sucking” low frequency verbs closer to
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their distribution.

This has a second benefit relative to the results reported in the last chapter.

There, I noted that being close in distribution was predictive of being close semanti-

cally (according to the semantic similarity judgments), but that being far away was

not. This model implements this in terms of competence distributions, since if need

be, it can allow one verb’s distribution to assimilate to another’s without too much

penalty, especially of the assimilating verb is low frequency. In the next section, I

show how the beta prior I place on the dij can further take advantage of this for the

purpose of feature induction.

3.2.2 Factor analysis-based smoothing

The prior on D has the following form.

P(D | S,P) =
V∏
i=1

F∏
j=1

P(dij | S,P)

=
V∏
i=1

F∏
j=1

Γ([SP]ij + 1)

Γ([SP]ij)Γ(1)
d
[SP]ij−1
ij (1− dij)1−1

=
V∏
i=1

F∏
j=1

Γ([SP]ij + 1)

Γ([SP]ij)
d
[SP]ij−1
ij

=
V∏
i=1

F∏
j=1

[SP]ijd
[SP]ij−1
ij
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For a particular dmn, this simplifies to the following.

P(dmn | S,P) = [SP]ijd
[SP]ij−1
ij

When combined with the likelihood term of the posterior P(dmn | X,D−(mn),S,P; γ, δ),

the following is obtained.

P(dmn | S,P) =
[SP]mnd

xmn+[SP]ij−1
mn(

δ +
∑F
j=1 dij

)γ+∑F
j=1 xij

Thus, as before, this equations penalizes dmn that are too low relative to the

size of xmn, but it does nothing to penalize dmn that are high with respect to the

relative size of xmn. That is, it is still worse to predict that an object does not have

a feature when it does than to predict that it does, when it actually doesn’t.

Nonetheless, there is still a pressure coming from the denominator not to

overpredict dmn near 1. The addition of the prior modulates this pressure by (i)

adding what amounts to a pseudocount (as in standard LDA) and (ii) scaling the
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entire likelihood by the size of the projection strength [SP]mn, which in turn is

related to verb m’s features via the projection rules. Thus, the influence of the

features and projection rules is felt in the form of a redistribution of pressure across

dm not to overpredict particular dmn, based on the particular features a verb has.

In the next section, I report on an experiment that deploys this model of syntactic

bootstrapping on actual data.

3.3 Experiment

In this section, I report on an experiment that fits the model of syntactic

bootstrapping proposed in the last section to subcategorization frame distributions

in a corpus—as I have been referring to them, performance distributions. I then

show that the distributional regularities extracted from the corpus explain the se-

mantic similarity data from last chapter about as well as features extracted from the

acceptability judgment data in that chapter using the same core projection model.

3.3.1 Data

Three subcategorization datasets containing verb-by-subcategorization frame

counts were considered. Two of these datasets were previously constructed: an En-

glish corpus built by Schulte im Walde using the methods described in Schulte im

Walde 2003 for German and Korhonen et al.’s (2006) VALEX lexicon, which is built

using Korhonen’s (2002) update of Briscoe and Carroll’s (1997) set of 163 subcat-

egorization frames—a superset of those in the well-known ANLT and COMLEX
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dictionaries (Grishman et al., 1994). Both of these datasets lack some subcate-

gorization information important to attitude verb syntax—e.g. information about

the voice of the clause—and so a further subcategorization frame dataset was con-

structed. All datasets were submitted to the basic correlational analysis described

below, but only this latter dataset, described further below, was submitted to the

full modeling procedure.

Data constituting this third dataset were extracted from the Parsed uk Web

as Corpus (PukWaC) dataset (Baroni et al., 2009). PukWaC is the part-of-speech

(POS) and dependency parsed version of ukWaC, which is an approximately two

billion word web scrape of the uk domain. To create PukWaC, ukWaC was lem-

matized and POS tagged using TreeTagger (Schmid, 1994) and dependency parsed

using MaltParser (Nivre et al., 2007).

To extract subcategorization frames associated with particular verbs the fol-

lowing post-processing was conducted. For each item tagged as a verb in a particular

sentence, the parents and dependents of that verb were collected. For instance, in

3.3.1, the parent of amazed is was and the dependents of amazed is had.

NN VBD VVN IN PPS VHD VVN SENT
I was amazed that they had come .

ROOT

SUBJ
VC

OBJ

SUBJ VC

For verb dependents, the tense/aspectual marker—e.g. past or gerund (-

ing)—of the dependent was recorded by analyzing the part-of-speech tag. If the

dependent was an auxiliary verb (have or be), the tense of that verb was recorded.
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The tense/aspect of the dependents were mapped down into four values: past and

present to tensed, gerund to gerund, past participle to pastpart, and bare to

bare. Modal auxiliaries were mapped to tensed.

The dependents of this verb were then checked for the presence of a subject

(marked by the subj dependency relation) and a complementizer (that, if, like, etc.)

or WH word (who, what, etc.). Subjects were mapped to three values: unambigu-

ously nominative pronouns (I, he, she, etc.) to nom, unambiguously accusative

pronouns to acc, and all others to caseunknown. This was done to get a rough

sense of whether the verb occurred in a tensed clause (4a), ECM (4b), or small clause

(4c) construction, since the tense information on the verb is sometimes otherwise

ambiguous if the verb is in its bare form. (If the dependent verb occurred in its bare

form, the dependents of that verb were also checked for the present of an infinitival

marker to.)

(4) a. Bo thinks that he went to the store.

b. Bo wants him to go to the store.

c. Bo saw him go to the store.

The complementizers were mapped to four values: that and like (as in seems like)

to finite, for to nonfinite, if and whether to polarq, and any WH word (what,

who, etc.) to whq.

In cases with no auxiliaries, the subject of the matrix verb—in the above

example amaze—was recorded. If the parent of the matrix verb was an auxiliary,

as in the case above, the auxiliary chains were followed until a subjects (if any) was

165



found.12. These subjects were mapped into four values: it to it, there to there,

everything else to referential, and no subject to none. The idea here is to get

an approximation to whether the verb occurred with an expletive subject (and if so,

what kind) or not.

Dependents were also checked for whether there were noun phrases or prepo-

sitional phrases marked with the relation obj. These were marked in three boolean

features: main object 1 (true if one or two NP dependents were found), main ob-

ject 2 (if two NP dependents were found), and prepositional object (if at least one

prepositional phrase was found).

The final feature that was extract was whether the matrix verb was passivized.

This is important for distinguishing object experiencer verbs from other verbs, which

was found ot be important in the last chapter. To assess this, the presence of a form

of the auxiliary be as the immediate parent along with past participle marking on

the matrix verb was recorded. If both were, that verb was recorded as passivized.

For each observation of each verb, these feature values were concatenated to

produce a subcategorization frame; 427 such combinations were observed at least

once. The number of times a particular verb was found with a particular frame was

then recorded to make up the performance distribution matrix X.

12If the verb is embedded, it may not have a subject if the subordinate clause it is found in does
not have a subject
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3.3.1.1 Filtering

For this particular experiment, I focus only on verbs that plausibly occur with

some sort of embedding syntax broadly construed. For instance, the sentences in

(5) count as embeddings under this broad construal.

(5) a. Bo thinks that Jo went to the store.

b. Bo wants Jo to go to the store.

c. Bo saw Jo go to the store.

d. Bo loves going to the store.

Of course, the criterion for embedderhood cannot be that the verb only occurs in

embedded clauses, since many embedders also allow nonembedding structures.

(6) a. Bo thinks about Jo.

b. Bo wants Jo.

c. Bo saw Jo.

d. Bo loves Jo.

The natural criterion would then seem to be that the verb at least sometimes occurs

in embedded clauses. The problem here is that, due to noise in the parsing, many

verbs that are not actually embedders appear as though they have embedded syntax.

Two fairly prevalent instances of this are cases where free relatives are parsed as

though they are embedded question clauses (7a) and purposes clauses as though

they are infinitival clauses (7b).
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(7) a. I’ll kiss whoever you tell me to.

b. I drank to celebrate my birthday.

These cases are likely somewhat rarer than true embedding cases relative to the

frequency of the verb, however. That is, kiss will likely not take free relatives nearly

as often as clear NPs and drink will likely not take purpose clause nearly as often as it

takes an NP object or no object at all. One strategy for filtering out nonembedders,

then, is to somehow assess the frequency of a verb-embedded clause pair relative

to the frequency of the verb with any complement and an embedded clause of any

type (finite, infintival, question, etc.) with any verb. Pointwise Mutual Information

(PMI) was used for this purpose.

Prior to calculating PMI, verbs with frequency less than 1000 were filtered.

As can be seen in Figure 3.4, this removes all but the top 1500 verbs. From this

filtered set, PMI was taken between a categorical variable verb and a binary variable

embedded-clause.13 This second variable was set to true in the case that a verb on

a particular datapoint had a verb dependent and false otherwise. PMI was taken

according to the standard formula (Church and Hanks, 1990).

PMI(verb, embedded-clause) = log
P(verb, embedded-clause)

P(verb)P(embedded-clause)

Figure 3.5 shows the distribution of the normalized version of the PMI mea-

sure: NPMI(verb, embedded-clause) = PMI(verb,embedded-clause)
− log P(verb,embedded-clause)

Verbs were then fil-

13Dunning’s (1993) G could also have been used here.
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tered for whether they had PMI greater than 0 or were in verb set from previous

chapter. All verbs included satisfy both the frequency and PMI conditions except

worry from the original set, which fails to satisfy the PMI condition. This yields a

total of 232 verbs.

3.3.2 Hybrid sampler/optimizer design

The sampler designed for this experiment implements Gibbs sampling for the

posterior on D, P, and S—both parametric and nonparametric (IBP)—and Max-

imum A Posteriori (MAP) estimators (gradient descent with dynamic step-size to

enforce support boundaries) for D and P. The MAP estimators can be used in
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place of the Gibbs samplers when the dimensions of S are fixed—i.e. when S has a

parametric prior.

For the purposes of this chapter, I investigate only the parametric model and

use MAP estimators in place of samplers for D and P, meaning that estimates of

the posterior variance will be poor. This was done mostly for convenience, since the

inference algorithms converge much more quickly when using the optimizers.

Fitting was separated into three separate stages: (i) a maximum likelihood

(MLE) pre-training stage for D; (ii) a MAP pre-training stage for S and P; and (iii)

a hybrid sampler/optimizer training stage for D, P, and S. I describe each stage in

detail below.

3.3.2.1 MLE pre-training (D only)

D was pre-trained by optimizing the log-likelihood logP(X | D; γ) (as noted

above, δ is set to 1). This results in a MLE estimate, since the implicit prior

on dmn is uniform on (0, 1). Optimization was carried out using gradient descent

with dynamic step size to enforce the (0, 1) bounds on dmn. Figure 3.3 shows that

likelihood of particular dmn given values of xmn and gamma. The step size is given

by:

step-size(dmn) = rmin (dmn, 1− dmn)

where r is a learning rate parameter (set to 0.01 for all simulations). The

additive updates are given by
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update(D,m, n) = step-size(dmn) tanh

(
∂

∂dmn
logP(X | D; γ, δ)

)

where tanh is the hyperbolic tangent. The application of hyperbolic tangent

is necessary to ensure that, when the gradient is steep, dmn is not pushed outside of

(0, 1). Since the hyperbolic tangent has infimum −1 and supremum 1, and since the

step size will never be great than the distance from the current dmn and a bound,

updates will never push dmn outside its bound.

Figure 3.7 shows the sort of D this procedure produces using the PukWaC-

derived dataset and Figure 3.6 shows the counts that D is derived from. Figure

3.7 As can be seen from the similarity of these two graphs, the MLE procedure

fits D tightly. This is expected without any prior information to raise the prob-

ability of verb-subcategorization frame pairs with fewer (or even no) occurrences.

Another way of thinking about the MLE-derived D is that it represents a relatively

unsmoothed representation of the competence distributions. (I say “relatively” here

because there is of course some smoothing coming from γ and δ.)

3.3.2.2 MAP pre-training (S and P)

Subsequent to the MLE pre-training described above, S and P were pre-trained

by iteratively optimizing the log-posterior of S, logP(D | P,S) + logP(S | α, β) and

P, logP(D | P,S) + logP(P | λ). Note that because S is discrete, it is not possi-

ble to use a method like gradient descent to optimize it. A proxy of this S of the
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Figure 3.6: Log of verb-subcategorization frame counts plus 1. White represents 0
and grey is scaled with the log count.

Figure 3.7: Log of D. White represents values closer to −∞ and darkest grey
represents least negative values.
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same form and with the same prior as P was used for this purpose. That is, for

the purposes of this pre-training, S was treated as though its cells are distributed

Exponential(λ). Thus, the pre-training reduces to a standard non-negative matrix

factorization (NMF) but for the fact that the cells of D are assumed to be unob-

served and beta-distributed, where standard NMF assumes the factorized matrix is

observed with gaussian-distributed cells.

The step size for dmn is the same as given above. The step size for both smk

and bkn is given by14

step-size(smk) = rmax [0,min (smk, | log smk|+ 1)]

step-size(bkn) = rmax [0,min (bkn, | log bkn|+ 1)]

where r is a learning rate parameter (set to 0.01 for all simulations). Analogous

to those in the previous section, the additive updates are given by

update(S,m, k) = step-size(smk) tanh

(
∂

∂smk
[logP(D | S,P)) + logP(S | λ)]

)

update(P, k, n) = step-size(bkn) tanh

(
∂

∂bkn
[logP(D | S,P)) + logP(P | λ)]

)

Because the S inferred by this procedure is not of the correct form, the cells

of the S resulting from the above procedure were thresholded by the median of the

column in which they lie: cells were set to 1 if they fell above the column median

14This step size function is a rectifier from (−∞, 1) and ln from (1,∞).
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and 0 otherwise, thus converting S into a bit matrix for sampling in the next stage.15

Without any further processing, this procedure is likely to significantly de-

crease the log-posterior of the true model, since in most cases, the maximum value

in a particular column of S prior to the above thresholding procedure is far below

1. This results in cells of SP that are far too large. To remedy this, the maximum

along each column of S was calculated prior to the above thresholding and used

to scale each row of P. This returns SP to a scale somewhat similar to the one

resulting from the NMF pre-training, though its cells will still be somewhat too

large.

(Before moving on, it is worth noting that a MAP pre-training procedure that

treat S as continuous but bounded on (0, 1) in the same way as D was also tried,

but the results of this procedure were poor. This approach may still be feasible with

some tweaking of various hyperparameters, but in various trials runs, I could not

find such an appropriate set of parameters.)

3.3.2.3 Training (D, P, and S)

Subsequent to the MLE pre-training described above, D, S and P were pre-

trained by iteratively optimizing their respective log-posteriors. On each iteration,

S was sampled using the Gibbs sampling equations described above, and D and P

were incremented once using the update equations described in the previous two

sections.

15This particular thresholding procedure has a secondary benefit in that exactly half of the cells
in a particular column will be 1 and thus it is easy to tell how far S has moved from its initial
state over the course of sampling.
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Dataset Generalized Discrimination Ordinal Scale
PukWaC 0.129 (p = 0.028) 0.1348 (p = 0.059)

Schulte im Walde 0.189 (p = 0.001) 0.142 (p = 0.023)
VALEX 0.123 (p = 0.0399) 0.064 (p = 0.218)

Table 3.1: Spearman rank correlation between Jensen-Shannon divergence derived
from three different datasets and similarity judgments. P -values derived from Man-
tel (permutation) test with 10000 iterations.

3.3.3 Results

3.3.3.1 Basic correlational analysis

As in the previous chapter, I begin with a basic correlational analysis to assess

the relationship between distances defined on the syntactic distribution themselves

and the two similarity judgment tasks presented in the last chapter. This analysis

was carried out on all three datasets referenced in Section 3.3.1. For each dataset,

the conditional probability of each subcategorization frame given each verb was

estimated by taking the conditional relative frequency with additive smoothing (fol-

lowing Schulte im Walde 2006, λ = 0.5). Jensen-Shannon divergence was used as

the distance measure, and so the additive smoothing is necessary here, since that

measure does not tolerate zeros.

Table 3.1 shows the correlation between the distances as derived above and

the two similarity judgment tasks. The correlations here are much lower than the

ones seen in the last chapter between the acceptability judgment-based distance

and the similarity judgment-based distance, which were 0.28 for the generalized dis-

crimination similarities and 0.27 for the ordinal similarities. This interesting in the

sense that, in that section, both distances defined directly on the acceptability judg-
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ments and on the features extracted from those acceptability judgments using the

nonnegative projection model showed similar levels of correlation with the distances

derived from the similarity judgments. One difference here is that, whereas the sub-

categorization frames for the acceptability judgment task were selected specifically

for to discriminate well among attitude verbs, many of the subcategorization frames

extracted from the corpus may be irrelevant to distinguishing among particular

attitude verbs.

If this is the case, there are two possibilities: (i) these irrelevant subcategoriza-

tion may make it difficult for the model to extract semantically relevant features; or

(ii) the model may be able to cut through these irrelevant subcategorization frames

to discover semantic features relevant to participants similarity judgments. I show

in the next section that the latter appears to be the case.

3.3.3.2 Model analysis

The model was trained with number of latent feature values ranging from 2 to

30 with 10 chains per number of latent features. The chain that converges on the

lowest mean likelihood across samples was kept. Ideally, a stopping criterion similar

to the one employed in the last chapter—WAIC—would be used here to select the

optimal number of features. The problem is that, while the likelihood falls with

higher numbers of latent features—the likelihood at 2 features is −9099346.0 and

the likelihood at 30 is −9091140.0—these likelihood values do not always decrease

over two adjacent pairs. This suggests sensitivity to the initialization conditions,
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Figure 3.8: Features extracted from PukWaC dataset using nonnegative projection
model of syntactic bootstrapping.

which was the impetus for running multiple chains; in spite of this, it appears that

for some numbers of features the fitting algorithm was not sampling from the true

posterior.16

To remedy this, I take the chain with the lowest mean likelihood, which was one

run for 25 latent features. The final S was taken from this chain and all subsequent

analyses are based on this S, which can be seen in Figure 3.8.

As in the last chapter, to measure the information shared between the inferred

features and the similarity judgments, I take the correlations between Manhattan

distance defined on this S and the two similarity judgment-based distances. Both the

16Indeed, this sampler will not necessarily sample from the true posterior, since optimizers were
used for D and P.
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correlation between the generalized discrimination judgments (Spearman ρ = 0.238,

Mantel[iter=10000] p < .001) and the ordinal judgments (Spearman ρ = 0.245,

Mantel[iter=10000] p < .001) are comparable to the correlations found in the last

chapter and are also substantially greater than those reported in the last section.

This is interesting in light of the fact that the correlations defined directly on the

observed syntactic distributions was much lower, possibly suggesting that the model

is filtering out irrelevant aspects of the distributions.

3.4 Discussion

In this chapter, I reviewed two classes of models of word representation:

category-based and vector space models. I argued that, on the one hand, the

category-based models has a representation of words that is constrained in an inap-

propriate way due to what I called the global normalization property; on the other

hand, vector space models have representations that are not constrained enough

making their feature values uninterpretable. I then gave a model that I argued was

a natural midpoint between these models that builds on each’s strengths without

inheriting their problems. I showed that this model extracts features from perfor-

mance (count) distributions that compare in their correlations with the similarity

judgments to those extracted from the acceptability judgments presented in Chapter

2, despite the fact that the raw correlations between the performance distributions

and the semantic similarity judgments were quite a bit lower.
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Chapter 4: Incrementality in syntactic bootstrapping

In the previous two chapters, I showed that there is quite fine-grained seman-

tic information present in propositional attitude verbs’ syntactic distributions—

both their competence distributions (Chapter 2) and their performance distributions

(Chapter 3). In the course of doing this, I developed a computational model of pro-

jection that could take advantage of this information. I showed that when trained

on either acceptability judgments or corpus data, using appropriate models of the

data generating process, this projection model can be used to predict participants

semantic similarity judgments well. The conclusion I draw from these results is that,

if a learner had access to (propositional attitude) verbs’ syntactic distributions in

their entirety they could learn quite fine-grained aspects of those words’ meanings.

One question that arises here is whether it is reasonable to assume that learners

have such access to verbs’ entire syntactic distribution when making inferences about

those verbs’ meanings. The answer to this is almost surely no. Learners receive data

incrementally, and it seems likely that the inferences that underlie word-learning also

operate incrementally. The question that naturally arises, then, is whether learners

can take advantage of propositional attitude verbs’ syntactic distributions in an

incremental setting.

180



In this chapter, I present three experimental studies aimed at answering this

question. The chapter begins with a review of the Human Simulation Paradigm

(HSP; Gillette et al. 1999) and related tasks that serve as the inspiration for the

current studies. This paradigm is discussed extensively below, but quickly: the

idea behind HSP is to provide adult participants with a context—a scene, some

cooccurring lexical items, etc.—in which a particular word was uttered but from

which the word itself has been removed. Participants are then asked the free choice

question: what word occurred in that context? By manipulating the particular

kinds of contextual information presented, one can then investigate the amount of

information provided by particular kinds of contexts about particular kinds of words

(Gillette et al., 1999; Snedeker and Trueswell, 2004; Papafragou et al., 2007).

After this review of HSP, I then move onto the first two experiments, which

simultaneously serve as norming studies for the third experiment but which are also

of interest in their own right. The first of these norming studies is a special case of

HSP akin to that used by Medina et al. (2011) and Trueswell et al. (2013) to measure

the informativity of particular contexts themselves (as opposed to comparing types

of contexts against each other). In this variant, participants are not learning a word

given a set of contexts but rather treating each instance as a separate word. One can

then measure various properties of the response distributions to particular items—

e.g. how often the true word that occurred in the context was actually recovered—to

assess their informativity about the true word’s meaning.

In general, accurate recovery of the true word is the dependent measure ana-

lyzed in HSP—whether used in the traditional way or as a measure of item informa-
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tivity. As has long been noted in this literature, this is not an ideal state of affairs,

since it doesn’t account for the fact that participants may give a response whose

meaning is quite close to the true word’s. I show this qualitatively in analysis of

the first norming task, motivating a second norming task that aims to measure this

closeness quantitatively.

Related to this worry is a second worry: when one asks participants to re-

cover the word found in a particular context, the participant is explicitly asked

to discretize their hypothesis around a single word meaning. The question of how

discrete this hypothesis is has been a topic of recent debate—in particular, do par-

ticipants keep track of uncertainty about a word’s meaning? In the attitude verb

domain, this question is particularly poignant, since possibly unlike the well-studied

noun-learning domain, the verb domain seems to involve quite a bit more complexity

that may not make it amenable to using standard methods that ask participants to

choose discrete responses. To remedy this, I develop a novel extension of HSP that I

refer to as Spatial HSP (SHSP). The idea behind using spatial SHSP is to avoid the

possibly problematic forced discretization that comes with using a standard HSP

task. The task is spatial in the sense that, instead of giving categorical responses

regarding their hypothesis about a word meaning, they give similarity judgments

between the word they are learning and the words they already know, thus hopefully

enabling the tapping of uncertainty about the word’s meaning.
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4.1 The human simulation paradigm

4.1.1 The classic paradigm

The human simulation paradigm (HSP), introduced in Gillette et al. 1999, is

a standard instrument used in word-learning research.1 The task in this paradigm

is simple: adult participants are given some information about the context a word

was uttered in—scenes, surrounding words, structures, etc.—and they are asked

which word occurred in that context. The idea behind using adult learners here

is that, while there is a question of what level of conceptual development child

learners have attained at a particular age, adult learners presumably have some

level of conceptual development that allows them to grasp the meanings of the sorts

of words children learn in the first few years of life. This in turn allows one to

ask questions about the informational properties of various purported learning cues,

controlling for conceptual development.

In Gillette et al. 1999, six different contextual conditions are tested, which

form the basis for later work in HSP. Their first experiment investigates the useful-

ness of solely nonlinguistic scene information plus lexical category information. For

this experiment, they chose the 24 most frequent nouns and the 24 most frequent

verbs from a transcript of video-recorded play sessions. They then collected 6 video

clips for each verb and played participants each of these clips in sequence, with a

beep occurring when the word occurred. Participants were asked to guess at each

1See also Snedeker et al. (1999); Snedeker (2000) for work in this paradigm from around the
same time.
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beep which word occurred in that position, having been told (i) that the beeps for

a particular set of clips all involved the same word and (ii) whether the word was

a noun or verb. Participants did much better with nouns than with verbs for this

experiment. They further showed that this could be wholly predicted by the im-

ageability rating for particular nouns or verbs, where verbs like run are rated much

more imageable than propositional attitude verbs like think.

Gillette et al.’s second task, which is the one important for current purposes,

manipulated the kind of information participants had access to for making infer-

ences about the word meaning: (i) scene information only—the original task—(ii)

items from lexical categories (noun, verb, adjective) that surround the word; (iii)

scene information plus lexical information; (iv) syntactic frames with nonce words

replacing words from lexical categories; (v) the full sentence the word occurred in

(syntactic frame + word from lexical categories); and (vi) all of the previous kinds

of information. The upshot is roughly that more information is better.

Focusing in on the verbs, Snedeker and Gleitman (2004) replicate this more-

information-is-better result (see also discussion in Gleitman et al., 2005).2 They

argue that verbs fall into three groups with respect to the sorts of cues used to

learn them (and further that these three groups correspond to well-defined devel-

opment stages): “relatively concrete verbs that describe specific actions in and on

the observable world (fall, stand, turn, play, wait, hammer, push, throw, pop), the

more abstract mental-content verbs (know, like, see, say, think, love, look, want),

2Indeed, they argue that it is actually a partial ordering, but this is not relevant for current
purposes.
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and a third set, of what have been called light verbs (come, do, get, go, have, make,

put).” Relevant for current purposes, perhaps unsurpringly, the mental-content

verbs (propositional attitude verbs) have low accuracies in the contexts (i-iii) from

above but show a spike in accuracy when moving to contexts (iv-vi)—i.e. when one

has syntactic information, possibly in concert with lexical information.

Papafragou et al. (2007) replicate this strong effect of syntactic information on

ability to infer propositional attitude verb meanings, but they also show that scene

information is not totally irrelevant. If participants are given scenes involving some-

thing that highlights a character’s beliefs, participants are more willing to conjecture

propositional attitude verb meanings. This is further reinforced by combining these

scenes with linguistic—specifically, syntactic—information.

4.1.2 Norming HSP with HSP

A question that has arisen recently as a topic of debate in the word-learning is

how memory constrains learners’ ability to utilize cues to a word’s meaning (Medina

et al., 2011; Trueswell et al., 2013). In many accounts of noun-learning in particular,

the assumption is often that learners have access to the full history of their experience

with a word, or at least some nonnegligible chunk (see Yu and Smith 2012 for recent

discussion).

One way memory constraints have been investigated is to ask how sensitive to

the information carried by a particular piece of contextual information a learner’s

hypotheses are with the idea that, to the extent that learners decisions are based on
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particular learning instances—the less smooth their learning trajectory—the more

constrained their memory for previous instances is likely to be. Testing this requires

some way of measuring the information carried by particular learning instances.

It is this, rather than the particulars of the learning mechanisms proposed in this

subliterature that I am interested in.

Following Gillette et al. (1999), Medina et al. (2011) selected the 24 most

frequent nouns and 24 most frequent verbs from a video corpus developed by one

of the authors. They then selected 288 from this corpus and presented each of 37

participants with 96 scene-only vignettes (2 per word). Unlike the standard HSP, in

which participants would see 6 clips in a row for the same word, each of the clips in

the Medina et al. study was completely disconnected from the others. The idea here

is that, by disconnecting the vignettes, the informativity of each can be measured

on its own terms. They take as their measure of informativity, the accuracy with

which participants can recover the actual word that occurred in the vignette (as is

standard, at the point of a beep).

Medina et al. then threshold items into two sets High Informativity (HI) and

Low Informativity (LI) by their accuracy, choosing 33%, as this gave them a 1 : 5

ratio of HI:LI vignettes.3 They then use this partitioning to construct sequences of

five vignettes with one HI instances and four LI instances, thus using the experiment

with disconnected vignettes as a norming experiment for the second, a standard HSP

task. They find that manipulating the placement of the HI instances significantly

3No verb or abstract noun vignettes showed up as HI vignettes, so Medina et al. drop verbs
and abstract nouns from consideration for the rest of the experiments.
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affects participants’ ability to eventually recover the correct word. In particular, the

earlier a high informativity instance the better.

4.1.3 Spatial HSP

In the current series of experiments, I adapt this strategy of first measuring

the informativity of particular items, then using that to construct training sets, to

HSP with syntactic frames instead of scene information, as in Medina et al. (2011).

Before moving onto the actual experiments, however, I would like to first make a

note on some crucial methodological alterations to the HSP tasks described above.

In Medina et al. 2011, accuracy is used as the measure of item informativity.

But while accuracy is useful as a rough measure of informativity, going back to

Gillette et al. 1999, accuracy has had known issues as such a measure, since it

doesn’t take into account responses that may be semantically close to the true word

but which are nonetheless inaccurate. As I show evidence of in the next section, this

makes this measure susceptible to various issues. Of particular note, no distinction

is made in an accuracy measure between really bad guesses, such as ones that

don’t even fall into the correct syntactic category, and better guesses, which might

involve words that are semantically close to the true word. This second problem

is exacerbated when an item might be very informative about the semantics of the

word that occurred in it, but when a semantically related high frequency word—

plausibly, one that comes to mind more quickly—also fits well within the context.

I show evidence that such frequency effects happen in the current experiments.
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I remedy this state of affairs by implementing a, to my knowledge, novel exten-

sion of the Medina et al. norming task that takes into account not only participants’

ability to recover the exact true word, but also semantically related words. To do

this, I employ an ordinal scale semantic similarity judgment task of the sort used

in Chapters 2 and 3 to measure the relationship between syntax in competence

distribution (Chapter 2) and performance distribution (Chapter 3) to measure the

relationship between participants’ responses and the true word. To build this task,

I extract all (lemmatized) responses from the previous task and pair them with the

true word that occurred in the item they were a response to, and gather similarity

judgments for those pairs. These similarity judgments are then used to get an es-

timate of the distribution of similarity among responses to particular items, which

gives a more fine-grained view of those items’ informativity.

A potential problem for understanding verb semantics related to standard

HSP’s use of accuracy as a measure of informativity is that HSP gathers free choice

word responses. This is a problem in that, as I have discussed in earlier chapters,

many of the verbs of interest in this dissertation seem to display multiple semantic

features at once, and thus learners might plausibly be at least somewhat certain

that a particular word has some features but not certain whether it has others. But

in the classic paradigm, participants are forced to choose a particular semantics on

each trial. On the whole this might not be problematic if the method participants

use for selecting a discrete choice is guided by the uncertainty that they have about

a word’s features. We should then see these uncertainties arising out of aggregate

behavior. But this is not an ideal state of affairs; it relies on faithful mappings
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from the representation a particular participant has of a particular word’s semantic

features to whatever guides that participant’s procedure for selecting a particular

instantiation of those features to then give a response. Indeed, even if these map-

pings are faithful, passing the decision procedure through the participant’s lexicon,

may create undesired warping effects.

To remedy this, I present a novel extension of HSP that aims at more faith-

fully measuring participants’ uncertainty about the semantic features a verb has,

which I call the spatial HSP. In this task, instead of giving free choice responses,

participants are tested using a similarity judgment task that asks them to compare

a novel word they just learned from some training set—here, items culled from the

norming tasks described above—to words they already know. Thus, instead of being

forced to choose an instantiation of semantic features they may be uncertain about,

participants can hopefully show their uncertainty more clearly. The use of the two

norming tasks is then, following Medina et al. to understand how the distribution

of informativity in the training sets affects participants uncertainty.

4.2 Norming tasks

In this section, I present two norming tasks that will be used to construct

training sets for the task presented in Section 4.3. These two tasks together were

aimed at measuring the informativity of each syntactic context about the meaning

of the word that occurred there. The first task is a linguistic context-only HSP task

with disconnected instances. That is, it is not the case that participants were told
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they were learning the same word across instances. The second task is a likert scale

similarity judgment task built from the responses gathered in the first.

4.2.1 Human simulation norming

4.2.1.1 Design

This norming task takes the form of a standard human simulation task with

only linguistic context. In this task, participants are given a sentence with a blank

somewhere in it and are asked to fill the blank with the word they think most

people would respond with. All sentences were sampled from a corpus of child-

directed speech as described below, and thus the blank replaces a real word. For

instance, (1a) was an actual sentence used in the experiment.

(1) a. I told you I’m not having a new baby now.

b. I florped you I’m not having a new baby now.

This task was conducted online, and responses were collected using an HTML text

box. This text box was filled with a greyed out placeholder verb florp that disap-

peared when a participant started typing, implemented using the standard HTML

input tag placeholder attribute. This placeholder verb had tense/aspect mor-

phology matching the verb that it takes the place of. For instance, (1b) shows the

sentence derived from the true sentence (1a). Text boxes were autofocused to allow

participants to use only the keyboard while performing the task.
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The norming items fell into one of 40 conditions as formed from a full cross

of the following three factors whose descriptions are given in subsequent sections:

verb (levels: 10 attitudes verbs), lexical content (levels: real, nonce), and

context of utterance (levels: dinner, play). Participants received one item

from each condition for a total of 40 items.

In addition to providing typed responses to the HSP task, participants were

asked a memory question about the item they just responded to in order to ensure

they were paying attention. The rationale and construction of this memory task is

described further in the next section.

4.2.1.2 Materials

4.2.1.2.1 Corpus sampling procedure For each of the 31 verbs investigated in

the studies in Chapter 2, all sentences containing at least one of those verbs were

extracted from Gleason corpus (Masur and Gleason, 1980), which is part of the

CHILDES database (MacWhinney, 2014b,a).4 The description of this corpus, taken

from the CHILDES manual for North American English corpora (p. 44), is as

follows.

The participants are 24 children aged 2;1 to 5;2 who were recorded in

interactions (a) with their mother, (b) with their father, and (c) at the

dinner table. The 24 participants were recruited through nursery schools

and similar networks, and were from middle-class families in the greater

4CHILDES provides a lemmatized version of the sentence. This lemmatized version was used
for the search.

191



Boston area. There were 12 boys and 12 girls. All families were White,

and English was spoken as a first language in all families. Each child

was seen three times: once in the laboratory with the mother; once in

the laboratory with the father; and once at dinner with both mother

and father. The laboratory sessions were videotaped and audiotaped,

and the dinners were only audiotaped. Laboratory sessions included:

(a) play with a toy auto, (b) reading a picture book, and (c) playing

store.

This corpus was chosen because, unlike many corpora in CHILDES, it provides

data from two different contexts that children commonly find themselves in—play

and meal (dinner) contexts—thus heightening the chances that data sampled from

this context are more representative of children’s linguistic experience overall. It

also provides data from an age range where children’s verb vocabularies are rapidly

developing—in particular, where much development of the attitude lexicon occurs

(de Villiers, 2005).

In this first norming task, both contexts were considered as separate factor

levels. The number of sentences each verb occurred in within both the play and

dinner sections of the corpus (across children) were then tabulated, and the top ten

most frequent verbs from the previous study found. For each of these high frequency

verbs, up to 30 sentences were taken from the dinner sessions and up to 60 taken

from play sessions (30 from the mothers’ play sessions and 30 from the fathers’).
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Each of these sentences was then hand-checked for transcription errors and

acceptability. Unacceptable sentences were marked for exclusion, including those

that might seem unacceptable out of context. For instance, taking examples from

the sentences extracted for know, such sentences often involve continuations, as in

(2), or discourse-dependent processes, like the topicalization in (3).

(2) I think next time you go off the board, you know, I think you will dive in

instead of jump in, okay?

(3) That, I know.

In other cases, it seemed likely that an acceptable sentence might be hard to parse

in the context of a human simulation task. To retain as much fidelity to the true

syntactic distribution—what I have been calling performance distribution—of the

verb while reducing this complexity, sentences for which it was possible were modi-

fied from their original form without changing the syntactic structure or selectional

relationships to the verb in question. For instance, the conditional antecedent and

matrix verb in (4) were excluded to create new sentence with only the conditional

consequent.

(4) I said, if you have to really start really considering it, it is impossible to make

that kind of decision, you know?

After this acceptability checking and modification procedure was complete, 20 sen-

tences were subsampled for each verb from each modified context set (play and

dinner), excluding the unacceptable sentences. These sentences form the real level
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of the lexical context factor.

To create the items in the nonce level of the lexical context factor, all

nouns, verbs, adjectives, and adverbs for the above sentences were replaced with

nonce words with morphology matching the ones found on the real words found

in the original sentence. All determiners, prepositions/particles (of, to, at, up,

etc.), and complementizers (that, if, for, to) were retained. Among the determin-

ers were included quantificational determiners/quantifiers (every(thing), any(thing),

etc.) and WH words (who, what, where, etc.). The intention here was to retain only

words from functional categories.5 To this end, some nouns and verb-like elements

were also retained.

These noun exceptions included all personal pronouns (I, you, (s)he, me, mine,

etc.) as well as temporal (now, then) and locative indexicals (here, there).6 These

exceptions seem reasonable since under many theories, they fall into the determiner

class or are at least partially constituted by a determiner-like meanings.

Verb exceptions included all auxiliary verbs: all forms of be, perfect auxiliary

forms of have, all modal auxiliaries (can, might, must, etc.). Semi-modals (have to,

ought to) were treated as lexical verbs in this respect—i.e. have or ought would be

5There is a question here whether all prepositions are purely functional. This seems unlikely,
but the replacement of prepositions can severely degrade participants ability to access the syntactic
structure of a sentence. This is likely due to the fact that prepositions are relatively closed-class—
at least compared to nouns, verbs, and adjectives. It is standard in human simulation paradigm
experiments to retain prepositions (cf. Gillette et al., 1999).

6Under this criterion might fall temporal expressions like today, yesterday, and tomorrow, since
they seem indexical in ways similar to now and then. The problem is that many complex temporal
expressions, like last night or next week are similarly indexical, and it is unclear where to draw the
line. One criterion could be to retain only single word indexical expressions, like yesterday, today,
and tomorrow, but this privileges expressions that involve days over those that involve other time
intervals, and thus some amount of arbitrariness is necessary. The current methods seems to me
the most conservative if indexical expressions are to be retained.
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replaced with a nonce word but to retained.

Finally, four common adverbs were excepted from replacement by a nonce

word: too, either, and else. This seems reasonable since, in contrast to derived

adverbs like carefully or intentionally, these adverbs’ meanings are logical in nature

and thus naturally fall into a class with, e.g., the pronouns. Indeed, all are anaphoric.

4.2.1.2.2 Memory task In many psycholinguistic experiments—e.g. acceptability

judgment tasks—it is possible to analyze the distribution of reaction times across

participants to assess whether they were in fact doing the task. (See Chapter 2

for an example of such a filtering procedure.) In this case, however, much more

variability is expected in response speed due to differences in typing speed, meaning

that reaction time analysis alone may be insufficient for detecting bad responders.

(Indeed, we exclude no participants in this section based on the same reaction time

criterion used in Chapter 2.) To this end, an additional measure was gathered to

assess whether participants are in fact doing the task: a lexical memory task.7

Of the 20 real word items participants received, half were followed by the

question “which word was in the previous sentence?” along with five words, only one

of which was actually in the previous sentence. (None of the nonce word sentences

were followed by this memory task.) For instance, participants who saw the sentence

in (5) received the memory question along with the set of words in (6).

(5) I think what we should do is try to florp what we took apart last and put

that together first.

7Much thanks to Ellen Lau for suggesting this.
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(6) a. Which word was in the previous sentence?

b. {boy, mothers, together, never, family}

Participants’ response accuracy for each item was then collected and analyzed for

the purposes of data validation.

4.2.1.3 Participants

Participants were recruited until each item had at least 20 observations as-

sociated with it after the data validation procedure described in the last section.

Participants were allowed to respond to up to three lists. 577 unique participants

were recruited through Amazon Mechanical Turk (AMT) using a standard Human

Intelligence Task (HIT) template designed for externally hosted experiments and

modified for the specific task. Of these unique participants, 483 responded to a

single list, 88 responded to two lists, and 6 responded to three lists. No participant

that responded to multiple lists responded to the same list twice.

Prior to viewing the HIT, participants were required to score seven or better

on a nine question qualification test assessing whether they were a native speaker of

American English. Along with this qualification test, participants’ IP addresses were

required to be associated with a location within the United States, and their HIT

acceptance rates were required to be 95% or better. After finishing the experiment,

participants received a 15-digit hex code, which they were instructed to enter into

the HIT. Once this submission was received, participants were paid $1.
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4.2.1.4 Data validation

Three data validation techniques were used. First, for each participant, the

number of correct responses to the memory task were tabulated (by list for par-

ticipants that responded to more than one list). The vast majority of participants

(0.793) obtain perfect scores, with almost all of the remainder answering incorrectly

only once (0.168) or twice (0.031). Given this distribution, only participants that

scored 8 (of 10) or better on the memory task were retained. This resulted in the

exclusion of 3 participants: 1 who responded with only 3 correct, 1 that responded

with only 6 correct, and 1 that responded with only 7 correct.8

Next, participants’ log reaction times (log RTs) were analyzed. First, each

participant’s median log RT and the interquartile range(IQR)—the difference be-

tween 25th and 75th precentiles)—of their log RTs were computed. The median and

IQR of each of these statistics was then computed over participants. Participants

were excluded using Tukey’s method, wherein the Tukey interval ([Q1-1.5*IQR,

Q3+1.5*IQR]) is constructed for both by-participant medians and IQRs and partic-

ipants excluded if their median log RT or IQR log RT fell outside this interval. No

participant’s median log RT fell outside the Tukey interval of median log RT over

participants and no participant’s IQR log RT fell outside the Tukey interval of IQR

log RT over participants; thus no participants were excluded under these criteria.

The median log RT-based exclusion procedure was also conducted for par-

8Even if the participant with 7 correct were retained at this stage of validation, most of that
participant’s responses would be excluded in the third stage due to the fact that that participant
gave almost solely nonce word responses.
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ticular responses. For each participant, the IQR of the log RT for that partici-

pant’s responses was computed. Responses were then excluded if they fell below the

participant-specific Tukey interval. 6 responses (across participants) were excluded

in this way.

The final filtering step was to exclude all nonword responses. As an initial

approximation, nonword was defined as any word not occurring at least once in

the PukWaC corpus. Of the 26953 total response tokens and 1517 response types,

258 response tokens and 85 response types were marked as nonwords in this way.

Those words that were marked as nonwords were then handchecked. Many cases

either involved the participant responding with the placeholder verb—i.e. florp,

florps, florping, or florped—a random string9—e.g. lmpw or toxat—or a multiword

string10—e.g. where were you or he asked me.

Other responses, however, were clear typos. (Indeed, multiple participants

emailed to apologize for having made a typo somewhere in the experiment.) For

instance, know had three typo variants—knlw, knkow and knokw. When their correct

variant was clear, these typos were corrected manually. For instance, knkow would

be changed to know.11 These corrections results in 16 of the datapoints original

marked as nonword responses to become word responses. The remaining 242 were

then excluded.

One problem with using corpus counts to filter nonwords is that, while filtered

9Some participants’ strategy in this case was to type a nonword from the sentence itself. For
instance, two of the nonwords used in the experiment were spurply and slargle, and these were
both given as responses.

10Participants were explicitly instructed not to do this at multiple points in the instructions.
11These changes were not made to the raw data itself, but rather in the analysis script, and are

documented in the analysis scripts made available on my github.
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words will tend to be nonwords (the method has high precision) some nonfiltered

words may still be nonwords, since common typos will be counted (the method

has lower recall). A subsequent filtering step was thus conducted by hand. Of the

26711 response tokens and 1432 remaining after the first nonword filtering step, 75

response tokens from 62 response types were deemed nonwords that were not typo

variants of a real word.12 Of the 26636 response tokens and 1372 response levels

remaining after this filtration, 44 were clear typo variants of true words, which were

corrected. The final number of response tokens after filtering was thus 25636 and

the final number of response types after filtering was 1328.

4.2.1.5 Results

In this section, I begin with a mixed effects regression analysis of accuracy

as conditioned by lexical context and context of utterance, controlling

variability due to participants, verbs, and items (nested within verb). I show that

only lexical context, not context of utterance reliably conditions higher

accuracy. This is something of a sanity check to ensure that the task fits with

previous findings—it does—but it is also of wider interest, since to my knowledge

no one has tested context of utterance in HSP before. Further, it allows for

the explicit quantification of variability in informativity within a verb using random

effects.

I then turn to three analyses focused on which properties of particular items

12In fact, for some of these nonwords, the intent was clear. For instance, practic is likely a typo
of practice. These typos were only corrected if the true variant already showed up at least once
elsewhere (not as a typo).
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give rise to the overall accuracies I show in the first section. In the first analysis,

I assess the extent to which participants are able to recover the correct syntactic

category of a word. This is important, since if they can’t recover the syntactic

category, other higher order properties of the linguistic context, such as the syntactic

structure, probably won’t be accessible either. In the second analysis, I delve briefly

into which aspects of the syntactic structure (tense information, complementizer

information, etc.) predict accuracy. This analysis is somewhat limited in scope,

since as I note in the final of these three analyses: a response may be inaccurate

while still being quite close to the true response semantically. In this final analysis, I

give a qualitative characterization of this “closeness.” This characterization in turn

motivates a quantitative method for assessing similarity of a response to the true

word as a measure of the informativity of a particular item.

4.2.1.5.1 Accuracy I begin with an analysis of accuracies as they are conditioned

by the two factors in the design. To repeat the original example from above, if the

true sentence were (7a), the stimulus created from that sentence would be (7b), with

florped the placeholder within a text box. The accuracy for this particular item (1

of 20 from its particular condition) would be calculated as the number of times told

were given as a response to (7b) over the total responses for (7b).

(7) a. I told you I’m not having a new baby now.

b. I florped you I’m not having a new baby now.
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Figure 4.1: Distribution of by-item accuracy given verb, lexical context, and context
of utterance. Each box represents the distribution of accuracy over the 20 items in
that condition.

To visualize the distribution of accuracy for particular items within particular condi-

tions, the proportion of times an item was responded to with the word that actually

occurred in the corpus was computed. Figure 4.1 shows the distribution of these ac-

curacies across verbs as well as lexical context, given by the fill on the boxplot,

and context of utterance, given by the facet. Each box thus represents the

accuracies for 20 items in the standard way: boxes given Q1-Q3 and whiskers give

the Tukey fence ([Q1-1.5*IQR, Q3+1.5*IQR]). We see that, on the whole, sentences

whose content words were replaced with nonce words, had lower accuracy. This is

not surprising given that these sentences were designed to remove some information

that might help participants infer the meaning of the word in the blank.

201



Table 4.1: Fixed effects for mixed effects logistic regression accuracy model.

Dependent variable:

Accuracy

Intercept −2.404∗∗∗

(0.573)

lexical context: real 1.112∗∗∗

(0.134)

Observations 26,636
Log Likelihood −12,620.700

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This trend is corroborated by the results of fitting a mixed effects logistic

regression to these accuracy data with accuracy as the dependent variable; fixed

effects of lexical context, context of utterance, and their interaction;

random intercepts for participants, verbs, and items (nested under verbs). This

model shows high correlation among the fixed effects, suggesting that some of the

fixed effects may not be necessary. To assess this, the same model without the

interaction was also fit and a likelihood ratio test conducted. This test did not

reach significance (χ2(1) = 0.129, p = 0.719), and thus the interaction term was

dropped.13 The same procedure was carried out for lexical context (χ2(1) =

64.077, p < 0.001) and context of utterance (χ2(1) = 0.110, p = 0.741). Only

lexical context was significant under this criterion and was thus retained while

the others were dropped.

13Note that, though it is standard to talk in terms of likelihood ratio tests—firmly within a
null hypothesis testing paradigm, this procedure will also almost always coincide with a reduction
in the Akaike Information Criterion (AIC) as well, and so this model building procedure can be
thought of as a procedure aimed at reducing overfitting.
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4.2.1.5.1.1 Fixed effects Table 4.1 shows the fixed effect terms of the result-

ing model. This model is given in terms of reference coding, where the reference

level is lexical context: nonce. Thus the intercept term gives the expected

log-odds of an accurate response against an inaccurate response in the nonce con-

dition. The upshot of this table is that the effect of the lexical context having real

words as opposed to nonce words is reliably positive, thus confirming the apparent

trend for participants to respond more accurately when the lexical context is real

words. This, again, is unsurprising, since the whole point of including a nonce word

condition was to remove some information relevant to making an inference about a

word’s meaning.

4.2.1.5.1.2 Random effects Turning to the random effects, the variance for

the participant random intercepts is 0.173 (sd: 0.416) (in log-odds space); the vari-

ance for the verb random intercepts is much larger at 3.183 (sd: 1.784); and the

variance for the item random intercepts was similarly large at 2.946 (sd: 1.716).

This means that participants varied little in their ability to answer accurately—for

comparison, the participant random intercept standard deviation is less than half

the size of the estimated fixed effect of lexical context. Verbs and items on the other

hand show much higher variability. This can be seen in Figure 4.1 in the fact that

some verbs—e.g. tell, know, think, and want—have much higher accuracy over most

of their items than other verbs—like remember, guess, and hear. The item variabil-

ity can be seen in the size of the boxes for each verb; even the verbs with the highest

median accuracies show a lot of variability in those accuracies.
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4.2.1.5.1.3 Frequency effects? One possible explanation for the verb vari-

ability may be a frequency effect: verbs with higher frequencies may come to mind

more readily during the task and so participants might also respond with these more

readily. But if participants are more willing to respond with higher frequency verbs,

those verbs might have a higher accuracy due to their frequency. To control for

this, a second mixed model was fit with true word log frequency (obtained from the

counts available from the ukWaC website) as a predictor alongside lexical con-

text. To ensure that the intercept corresponds to the lowest frequency word in the

set of true words (guess) instead of a log frequency of 0, the predictor was entered

as the true word log frequency minus the minimum true word log frequency over

all words. This predictor was significant (χ2(1) = 3.847, p < 0.05). A third model

was fit with the interaction between true word log frequency and lexical

context, but this term was not significant.

Table 4.2 shows the fixed effects estimates for this model. Note that the

effect of lexical context remains the same and the intercept lowers. Note that

this lowering has to do with the fact that now the intercept correspond to the

reference level lexical context: nonce at true word log frequency: 0,

which corresponds to the specific verb guess instead of the average at lexical

context: nonce. The effect of true word log frequency is approximately

the same size as that of lexical context. This means that for every order of

magnitude increase in frequency of the true word, participants were more accurate

(on average) to about the same extent as if they had gotten a real item instead of
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Table 4.2: Fixed effects for mixed effects logistic regression accuracy model with the
addition of the true word’s log frequency as a predictor.

Dependent variable:

Accuracy

Intercept −4.518∗∗∗

(1.077)

lexical context: real 1.112∗∗∗

(0.134)

true word log frequency 1.014∗∗

(0.465)

Observations 26,636
Log Likelihood −10,345.660

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

a nonce item.

Surprisingly, however, controlling for frequency does not affect the variance

estimates for verb random intercepts all that much, though there is a reduction.14

The new estimate of the variance for verb intercepts is 2.156 (sd: 1.469), which is

about a 0.25 reduction in the standard deviation from the previous estimate. This

suggests that not all variability in verb responses is driven by frequency effects.

4.2.1.5.1.4 What else might drive accuracy? To get an accurate response, it

must be clear from a particular item which verb fits in that item. On the one hand,

as I show in Section 4.2.1.5.4, many of the most common responses to particular

items are verbs that, while not accurate because they don’t match the true item,

nonetheless share a semantic component with the true item and are thus intuitively

14One wouldn’t expect it to affect the participant or item random intercepts, since frequency is
a property of verbs, not participants or items, and indeed, those estimates remain constant.
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closer in meaning than some random item. This would suggest an item that is

somewhat informative about the semantics of a word, but not fully informative. On

the other hand, some items may be extremely uninformative—to the point that even

the syntactic category of the true response is unclear. These two states of affairs

are quite different in nature, and ideally there would be some way of pulling them

apart.

In the next section, I investigate the question of how easy it is to recover the

correct syntactic category (verb) across items (Section 4.2.1.5.2). In the subsequent

section, I then turn to a preliminary analysis of which syntactic features are most

useful in giving an accurate response. Finally, I turn to the inaccurate responses that

participants give in order to assess how informative items are about the meaning a

verb has (Section 4.2.1.5.4).

4.2.1.5.2 Nonverb responses Going back to at least Brown 1957, it has been

known that syntactic category is a useful cue to word meaning. Indeed, to use

the syntactic distribution a verb occurs in to help infer its meaning, one first needs

to know that the word they are dealing with is a verb in the first place. One pos-

sibility for at least some of the inaccuracy for some of the above verbs then could

be uncertainty about the syntactic category that the word falls into. Here, I assess

this as binary outcome: either the participant knew that an item was a verb or not.

To assess the overall uncertainty about syntactic category, responses were la-

beled for whether they were a verb or not by hand. As in Figure 4.1, Figure 4.2

shows the distribution over items of the proportion of nonverb responses to that
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Figure 4.2: Distribution of by-item proportion of nonverb responses. Verbs are
ordered as in Figure 4.1 (by median accuracy).

item. A model with the same structure as the one discussed in the last section was

fit with nonverb as the dependent variable, and the likelihood ratio test proce-

dure repeated. In this case, as before, the interaction between lexical context

and context of utterance is not significant; but in contrast to the previous

case, both main effects of lexical context and context of utterance are

significant.

Table 4.3 shows the fixed effect for this model. On the whole, the probability

of nonverb responses is quite low, even at the reference level (lexical context:

nonce × context of utterance: dinner). As one might expect, the chances of

a nonverb response go further down when the items contain real words, but they

also go down in the play context. This appears to be driven by more verbs having
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Table 4.3: Fixed effects for mixed effects logistic regression nonverb model.

Dependent variable:

Nonverb

Constant −6.413∗∗∗

(0.457)

lexical context: real −1.396∗∗∗

(0.342)

context of utterance: play −0.762∗

(0.339)

Observations 26,636
Log Likelihood −2,981.346

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

at least a few somewhat uncertain items in the dinner context, especially when they

involve nonce words.

Dinner sentences were longer on average, and so one plausible driver of the in-

crease in nonword responses is that, in longer sentences, participants get overloaded

with the number of nonce words whose category they are uncertain about and then

shut down, making a random guess.15 To test this, a model including item word

count alongside the other predictors as well as one including both item word count

and its interaction with lexical context alongside context of utterance

was constructed. Neither model showed significant improvement in likelihood ratio

15To establish that dinner sentences were longer on average, a mixed effects poisson regres-
sion was conducted on only the lexical context:real sentences with sentence length as the
dependent variable, a fixed effect for context of utterance, and random intercepts for verb.
The context of utterance effect is significant under a likelihood ratio test comparing this
model to one without the fixed effect (χ2(1) = 5.08, p < 0.05). The coefficient for the dinner
level is furthermore positive (log increase in length: 0.084), suggesting that dinner sentences are
longer on average. (Only lexical context:real were used in this regression since the lexical
context:nonce sentences will necessarily have the same length as their corresponding lexical
context:real sentence.)
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tests (χ2(2) = 1.546, p = 0.462).

4.2.1.5.3 Syntactic features Once a participant knows that the word they are

trying to recover is a verb, the question arises what aspect of the syntactic structure

they might use in recovering the word. To assess this, I use an off-the-shelf method

for measuring variable importance: mean gini decrease in a random forest (Breiman,

2001).16

First, the syntactic features of every item were hand-coded using the same

feature set described in Chapter 3 (see that chapter for a description of each feature

level): complementizer (none, finite, polar question, WH question), embedded

tense (none/no embedding, infinitival, bare, gerund, tensed), matrix subject

(referential, it, there), embedded subject (none/no embedding, nominative, ac-

cusative, case unknown), matrix object 1 (true, false), matrix object 2 (true,

false), matrix oblique (true, false). These features were then merged with their

corresponding items in the HSP dataset, and along with verb, lexical context,

context of utterance, and true word log frequency, were entered into

a random forest classifier with 1000 trees and three variables tried at each split and

accuracy as the dependent variable.

Table 4.4 shows the importance of each feature as measured by the mean

decrease in the Gini obtained when including that feature. Higher numbers mean

better predictability. The best predictor by far is verb, followed closely by true

16Initially, an analysis in the same family as the previous accuracy model was attempted, since
each syntactic feature might have been entered in as a predictor and then its significance tested
in a likelihood ratio test. However, these models showed poor convergence, likely due to gross
imbalances in the distribution of particular feature values, and so a more robust method was used.
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Table 4.4: Variable importance as measured by mean decrease in Gini

mean decrease Gini

verb 1, 255.597
true word log frequency 768.296

complementizer 498.921
embedded tense 273.295

embedded subject 187.749
lexical context 175.070
main object 1 131.388

context of utterance 71.683
main subject 60.163
main object 29.048

word frequency. This is somewhat unsurprising given that verbs show high

variability in the accuracies associated with them (see Figure 4.1) and it was already

noted that the log frequency of the true word also predicts higher accuracy. With

regard to other predictors already discussed, the somewhat low importance score

assigned to lexical context is interesting given its significance in the previous

analysis.

Turning to the syntactic, complementizer is the most useful of the syntactic

features. This is likely driven by question complementizers, since overt reflexes of

the nonquestion complementizers are rare; speakers almost always drop the comple-

mentizer in nonquestion complements. The second most important syntactic feature

is embedded tense, which as noted in Chapter 2, is consistently associated (at

least in English) with robust semantic distinctions. embedded subject and main

object 1 follows these. Embedded subject, which encodes the case of the embed-

ded subject if it is ambiguous, may be a useful cue for distinguishing between tensed

and untensed complements if that particular distinction is ambiguous in a particular
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instance. main object 1 is likely useful for determining whether something is a

speech verb—in particular, tell.

4.2.1.5.4 Response distributions This is useful, but it’s not quite the end of the

story. One thing that the previous analyses do not take into account is that, even

if participants don’t give the exact verb that occurred in a particular position, they

might nevertheless answer with one that is semantically similar. For instance, note

that the overall accuracy for remember is quite low, and to some extent, this could

be a product of nonverb responses. But even among verb responses, the sorts of re-

sponses participants give are far from random. As I will show, the most common re-

sponse to remember sentences was not remember, but know. Considering that know

seems to be involved in the meaning of remember at some level of representation—x

remembered p at t seems to presuppose that x knew p at s < t—it’s quite interesting

that participants give this response.

To get a feel for how prevalent inaccurate-yet-semantically-similar responses

are, I now turn to a qualitative analysis of the distribution of responses to each

verb’s items. In the next subsection (Section 4.2.2), this qualitative analysis will be

augmented with a quantitative analysis that uses a similarity judgment task akin to

those presented in Chapter 2. To delve into these responses, it will be useful to first

find the proportion of times a word was given for a particular item, then look at the

distribution of those proportions. This is analogous to looking at the distribution of

accuracy over items shown in Figure 4.1, where the outcomes are binary (accurate v.

nonaccurate); the differences is that here, the outcomes are treated as many-valued.
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Prior to looking at these distributions, it’s necessary to perform some prepro-

cessing on the responses. Because some items will involve an inflected version of the

verb, the correct response will be the verb’s inflected form. For the purposes of com-

puting response accuracy, a match between the true word in its inflected form and

the response is ideal. For the current analysis, the inflectional morphology is likely

not important. Therefore, it will be useful to map the true verb and the responses to

their root form. One way to obtain these root forms is to use a stemmer. Stemmers

make frequent mistakes, however, and since there are so few response types (see

above for counts), it is easy to lemmatize by hand. This hand lemmatization was

done for all response types, regardless of syntactic category, except for adverbs.17

After this lemmatization, the proportion of times a particular root form was

given as a response to a particular item was computed. This results in a relative

frequency distribution over the root form of responses for each item. Because (i) for

current purposes we care about general trends over items for particular verbs and

(ii) it is difficult to visualize each item’s distribution in an easy to digest way, I graph

these distributions by response type in Figure 4.3. This graph shows, for each verb,

the response roots with the highest median relative frequency over items. Thus, as

in 4.1, each bar represents datapoints for 20 items in the relevant condition. The

bar itself gives the median and the error bar gives the range.

We see that for verbs think, want, see, tell, and know, the most common

responses in both the real and nonce conditions are the true verb itself. This

17Two issues arose for this lemmatization: (i) all past participal forms were converted into their
root verb, even though this might be problematic when the response was intended to be a deverbal
adjective; and (ii) semi-modals like supposed (to) would be lemmatized to suppose.

212



do
look

tell
bet

say
say

bet
believe

hear
hear

guess
see

see
guess

know
know

hope
hope
think

think

like
want

hear
think

help
try

think
help

eat
read

want
know

have
tell

know
do

do
see

see
hear

eat
hope

hope
remember

say

want
like

like
ask

do
do

see
see

think
think

care
care

know
know

go
know

buy
try

like
put

eat
wear

know
eat

be
get

see
like

need
want
want

have
have

need

be

care
go

have

want
want

remember
do

like
like

think
think

do
see

see
remember

know
know

want
give
hope

die
have

call
see

see
eat

mean
give

eat
think
think

know
know

say
do

do
say

like
love

like

be
think

have
want

water

eat
hear

want
go

do
do

know
know

see
see

hope
give

get
help

love
love

help
read

know
like

ask
see

see
know

give
show

show
ask

tell
tell

like

do
forget

believe
want

want
say

hear
believe

say
see

see
hear

hope
hope

know
know

think
think

do
get

hope
care

think
drink

go
do

see
think

like
know

know
need
need

like
have

have
want

want

guess hear

know need

remember say

see tell

think want

10
9
8
7
6
5
4
3
2
1

10
9
8
7
6
5
4
3
2
1

10
9
8
7
6
5
4
3
2
1

10
9
8
7
6
5
4
3
2
1

10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative frequency

R
an

k
of

b
y
-i

te
m

m
ed

ia
n

p
ro

p
or

ti
on

Lexical context

nonce

real

Figure 4.3: Distribution of by-item response root relative frequencies given verb,
lexical context, and context of utterance. Each bar+error bar represents the distri-
bution of relative frequency for the labeled response root over the 20 items in that
condition.
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suggests that many of the sentences these verbs are found in are highly informative

about their semantics and, further, that this seems to be a result of their syntax to a

great extent—since these verbs are guessed even without lexical context. Among the

other responses for these verbs, think and know, notably, have responses that tend to

involve representational attitudes: the second and third most common responses to

think sentences are know and hope, respectively, in both real and nonce conditions

and the third most common response to know sentences is think.18 Tell has responses

that tend to be communicative (ask and show) or that at least involve a transfer

semantics (give). See has responses that are cognitive but nonperceptual (know) but

also some very bleached responses (do). And want has a secondary response that is

quite bleached (have) but other responses that are closer to its preferential semantics

(need)—though these responses are not given much more often than representational

responses like know and think, which is interesting.

For the verbs say, need, and hear, the most common response in the real

conditions is the true verb but not in the nonce conditions. This may suggest that

much of participants’ ability to guess the correct verb in these three cases is somehow

dependent on the lexical context. Each has a slightly different response profile

in terms of how (intuitively) close the responses are to the true verb’s meaning.

For instance, like want, need receives many bleached responses (have), but it also

receives quite a few responses with preferential semantics (want) in both the real

and nonce conditions. Similarly, hear receives quite a few bleached response (do),

18It is unclear whether the use of care, the second most common response to know sentences, is
representational or not.
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but also quite a few perceptual responses (see). This may suggest that the fact that

hear is perceptual is encoded in at least some of the items—e.g. in small clause

items, like John heard Mary leave—but that what kind of perceptual verb it is is

not gleanable.19 Say differs from need and hear in this respect in the sense that,

while it has common representational responses (think and know), it doesn’t seem

to have any common speech responses, except for maybe call. One possibility is

that say—like many of the speech verbs—has more perceptual correlates than the

other representationals, and thus that a syntax-based learner would require more

nonlingistic context than for the other representationals.

The final group of verbs—remember and guess are interesting for the fact

that, though their most common responses in either the nonce or real conditions are

technically incorrect, they are both quite close semantically. In the case of remember,

the vast majority of responses are know. This is interesting since remember seems

to encode know as a subpart of its meaning (as mentioned above). Further, the

other responses to remember are also broadly representational, with both cognitive

(think) and perceptual (see) representationals. Guess similarly has a most common

response that is representational (think) and most of the other responses are also

representational (hope, know, see).

One interesting aspect of both of these cases is that the representationals cross

not only the cognitive-perceptual divide, but also the factive-nonfactive divide. Fac-

tive remember gets think responses and nonfactive guess gets factive responses know.

19The fact that see is a common response to both see and hear sentences could suggest a
frequency effect, which seems likely since see is about two orders of magnitude more frequent (as
measured by the frequency in ukWaC) in the present tense than hear. (They are about equally
frequent in the past.)
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Indeed, this extends to even the previous two groups of verbs, where nonfactive

think, say, and hear got know responses and factive know got think responses. One

reason this may be is that the purported syntactic cue to factivity—that the fac-

tive verb occurs with both polar question and nonquestion complements—cannot

be contained within a single subcategorization frame; it is fundamentally an aspect

of a verb’s distribution.

4.2.1.6 Discussion

In this section, I explored various aspects of participants’ responses to the

HSP norming task. I showed that accuracy in this task is predicted by both lexical

context, corroborating previous findings in this domain, and true word frequency.

I then investigated further drivers of this accuracy: participants ability to detect

that the target word was a verb and, once participants correctly detect syntactic

category, the syntactic features that predict accuracy. I then moved on to a more

fine-grained analysis of participants response distributions, and found that many

common responses to a particular verb’s items tended to be somewhat semantically

close to that verb. With the next norming task, I aim to quantify this semantic

closeness explicitly.

4.2.2 Similarity norming

In the previous task, I noted that despite the wide variability in item accuracy

across verbs, even inaccurate responses are not completely random. Indeed, this
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has been noted since the inception of HSP. In this task, I aim to quantify this

semantic closeness using the same sort of similarity task employed in Chapter 2. I

then conduct analyses of these similarities akin to the accuracy analyses from the

last section.

4.2.2.1 Design

All response roots that were (i) marked as verbs in Section 4.2.1.5.2 and (ii)

were inaccurate were paired with the true verb that occurred in that position. (This

is why only inaccurate pairs were retained. An accurate pair is just the same verb

twice.) There were 2429 such pairs. For each of the 10 verbs sampled from the

corpus, the pairs involving that word as the true word were then randomized and

inserted into lists, with amount of pairs proportional to the number of unique re-

sponse types to a particular word. With the criterion that each list should contain

around 60 pairs, 37 lists were created in this way.

4.2.2.2 Participants

155 participants were recruited through Amazon Mechanical Turk (AMT)—

five for 36 of the lists and 10 for the last20—using a standard Human Intelligence

Task (HIT) template designed for this particular experiment.21 Prior to viewing

the HIT, participants were required to score seven or better on a nine question

20The five extra participants were recruited because an off-by-one error that affected only one
list was discovered after the first five were run for that list.

21A separate experiment script was created in Ibex for each list. The javascript and HTML for
this script were then scraped and loaded into an AMT HIT template designed for this task.
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qualification test assessing whether they were a native speaker of American English.

Along with this qualification test, participants’ IP addresses were required to be

associated with a location within the United States, and their HIT acceptance rates

were required to be 95% or better. Once a participant’s submission was received,

they were paid $1.

4.2.2.3 Data validation

As in the previous task, a log reaction time-based data validation procedure

was conducted. First, each participant’s median log RT was computed. The median

of these median log RTs as well as the interquartile range (IQR)—the difference

between 25th and 75th precentiles)—was then computed. Participants were excluded

using Tukey’s method applied to both participant medians (described above) and

IQRs. 5 participants’ median log RTs fell below Q1 log RT minus 1.5 times the IQR

and were thus excluded. No participant’s IQR fell outside of the Tukey interval of

IQRs across participants.

The same RT-based exclusion procedure was also conducted for particular re-

sponses. For each participant, the IQR of the log RT for that participant’s responses

was computed. Responses were then excluded if they fell below that participant’s

median log RT minus 1.5 times that participant’s specific IQR. 18 responses (across

participants) were excluded in this way. This yielded a total of 12320 observations

with the minimum number of observations per item being 4. (Post-filtering, 7 items

had 4 responses and the remaining 1737 had 5 or more.)
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4.2.2.4 Results

Prior to analysis, two standardization procedures were applied to similarity

judgments: a ridit scoring and a z-scoring. Ridit scoring involves constructing

for each participant the empirical cumulative distribution function (CDF) of their

responses, then mapping each discrete response level to its corresponding quantile,

thus accounting for differences in participants’ use of the ordinal scale and forcing

the ratings onto the unit interval. Z-scoring involves first mean-centering the ordinal

responses (as though they were interval responses) and dividing each by the standard

deviation of the responses (again, as though they were interval responses). This ridit

scoring is used for the purposes of visualizing the data as well as for later construction

of the task this is a norming study for. The z-scored responses are used in the

statistical analysis, since they allow for the use of standard linear models, which

tend to be much easier to fit.

The average of both the ridit score and z-score transformed variants of the

judgments was then taken (separately) and each result associated with each of the

true word-response pairs from the previous experiment. Following the lead of the

accuracy graph (Figure 4.1) from the last section, the by-item mean of these ridit

scored judgments was then taken. Figures 4.4 and 4.5 show the distribution of these

by-item similarity means by verb and context of utterance. Figure 4.4 includes accu-

rate response in this mean as 1s and nonverb responses as 0s (neither of which were

included in the similarity task). Figure 4.5 shows only the similarity distributions

for inaccurate verb responses to each item.
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Figure 4.4: Distribution of ridit-scored similarity across items with accurate items
set to 1.
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Figure 4.5: Distribution of ridit-scored similarity across items with accurate items
set to 1.
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4.2.2.4.1 Fixed effects To assess the effects of lexical context and context

of utterance on the similarity between an inaccurate verb response and the true

word, a linear mixed effects model was fit with mean z-score similarity for each

true word-response word as the dependent variable; lexical context, context

of utterance, and their interaction as fixed effects; and random intercepts for

participant, verb, and item (nested under verb). Thus, this model has the same

structure as the original accuracy model, but instead of being fit to accuracy as the

dependent variable, it is fit to similarity as indexed by the mean of participants’

z-scored similarity responses to a particular response-true word pair—only when

the response was inaccurate.22 And as before, likelihood ratio tests were conducted

to assess the significance of particular predictors. As before, the interaction term

was not significant (χ2(1) = 0.002, p = 0.968) and was thus dropped. The two

main effect terms lexical context (χ2(1) = 14.961, p < 0.001) and context of

utterance (χ2(1) = 7.807, p < 0.01) were significant and were thus kept.

Table 4.5 shows the fixed effect estimates for the resulting model. As in the

previous section, estimates are given in terms of reference coding with a reference

level lexical context: nonce × context of utterance: dinner. The posi-

tive effect of lexical context: real suggests that participants were able to get

closer to the true word’s semantics when they had both syntactic and lexical infor-

mation. This is yet another corroboration of the utility of combining structural and

22Indeed, the current model can be thought of as the continuous component of a two-stage zero-
inflation model: one that first considers whether the response given by a participant will be a verb
or not; then decides whether that response will be accurate; then if inaccurate, decides how similar
the response is to the true response. The accuracy and nonverb models from the last section would
serve as the first two components.
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Table 4.5: Fixed effects for linear mixed effects similarity model.

Dependent variable:

inaccurate response similarity

Intercept 0.445∗∗∗

(0.120)

lexical context: real 0.126∗∗∗

(0.032)

context of utterance: play 0.091∗∗

(0.032)

Observations 17,104
Log Likelihood −18,301.710

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

lexical information. The positive effect of context of utterance suggests that

participants were able to get closer to the true word’s semantics when they were

responding to sentences that came from the play context.

This latter effect is quite interesting, since in the accuracy model, no significant

effect of context of utterance obtains. This means that though participants

are not reliably more likely to respond with the true word based alone on the context

in which a sentence was uttered, they do get reliably closer to that word. This may in

turn arise due to the same reason that participants are better able to grasp the true

syntactic category of the word in the play contexts. It further suggests that dinner

contexts may be a particularly interesting test case, since on the whole they provide

somewhat less information per-occurrence about an attitude verbs semantics. I

return to this in the discussion.
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4.2.2.4.2 Random effects Turning now to the random effects, the variance for the

participant random intercepts is 0.012 (sd: 0.111); the variance for the verb random

intercepts is 0.136 (sd: 0.369); and the variance for the item random intercepts is

0.174 (sd: 0.417). The size of the participant random intercept standard deviation

is about the size of the effect of lexical context. This suggests that partici-

pants showed variability in their ability to produce high similarity inaccurate verb

responses that dwarfs the consistently robust effect of lexical context; said an-

other way, it would be unsurprising from the point of view of this model if some

participants did about as well with nonce contexts as others did with real contexts

(holding context of utterance fixed). Given that the fixed effect of context

of utterance is slightly smaller than that of lexical context, this also holds,

mutatis mutandis, for context of utterance.

As in the accuracy model, verb and item variance far outstrip participant vari-

ance with standard deviations 3− 4 times the size of that estimated for participant

effects. Looking at the Best Linear Unbiased Predictors for the verb intercepts, this

variability appears to affect different classes of verbs differently. Inaccurate verb

responses to perception verbs (hear, see) and (tell, say) tend to be much less simi-

lar to the true verb than those to, e.g., cognitive representations (remember, know,

think, guess). This seems likely driven by the fact that the perception and speech

verbs very often take noun phrase complements, which is likely only a vague cue to

their semantics, whereas the cognitive representationals do so less often, tending to

take full clausal complements.
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Table 4.6: Variable importance as measured by increase in node purity predicting
inaccurate verb response similarity judgments

increase node purity

verb 1, 499.350
embedded tense 744.547
main object 1 308.085

complementizer 209.125
main subject 149.053

context of utterance 63.127
lexical context 49.653

main prep 35.782
main object 2 3.429

4.2.2.4.3 Syntactic features To investigate this conjecture further, I carry out a

variable importance analysis similar to the one presented in the last section. There,

I entered the hand-coded syntactic features associated with each item into a random

forest classifier. In this case, I enter the inaccurate verb response z-score similarities

analyzed above along with verb, lexical context, and context of utter-

ance into a random forest regression with 1000 trees and 3 variables tried at each

split. Table 4.6 shows the variable importance measure increase in node purity

for this model.

Here, again, verb comes out as an important predictor, as one might expect

given the high variability in accuracy across verbs seen in the analysis of the random

effects in the last section. Also as in the last section, embedded tense, main

object 1, and complementizer are important predictors.
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4.2.2.5 Discussion

In this section, I presented a norming task aimed at gathering a measure of

similarity of participants’ responses to the true verb that occurred in a particular

item. I then explored various aspects of participants’ inaccurate verb responses

to the HSP norming task. I showed that accuracy in this task is predicted by

both lexical context and context of utterance. I then investigated further drivers of

these inaccurate verb response similarities: in particular, the syntactic features that

predict similarity. Here, I showed that the same predictors that predict accuracy

are also important predictors of similarity.

4.3 Spatial human simulation

In this section, I use the two norming tasks presented above to construct a

third experiment aimed at investigating participants’ ability to recover the semantics

of an attitude verb. This paradigm is close to a standard HSP experiment in the

sense that, unlike the first norming task above, participants are told that they were

learning the same word over multiple items. It differs, however, in the sense that,

instead of giving a free choice response after each item is presented, participants are

asked for similarity judgments after the entire set of items.

4.3.1 Design

The task has two main parts: a training phase, in which participants receive a

set of sentences containing the same novel word, and a test phase, in which partici-
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pants are asked to make ordinal scale similarity judgments. In the first part of the

test phases, participants make similarity judgments between the novel word they

were just trained on and all real words from the ordinal scale experiment presented

in Chapter 2. In the second part of the test phase, participants make similarity

judgments between two known words drawn from this same group and selected so

as to span the similarity range.

The experiment has four factors: verb (the same 10 verbs tested in the norm-

ing studies), lexical context (real v. nonce), informativity (high v. low)

and training size (big v. small). These latter two factors are explained in more

detail below; the former two are the same as from the norming studies.

4.3.2 Materials

Training sets were constructed by partitioning the sentences corresponding to

each verb from the previous experiment into two sets by-verb. For each of the ten

verbs from the norming studies, the median ridit similarity value was obtained by

averaging over the values for responses to each item, including accurate responses as

1 and nonverb responses as 0. Items with scores below this median were labeled low

informativity (LI) for that verb and items with scores above the median were labeled

high informativity (HI). Thus, for each verb at each level of lexical context (real

and nonce), there were 10 LI and 10 HI items.

Training sets were then constructed from either solely HI or solely LI items.23

23This diverges from Medina et al. (2011) in the sense that their training sets involved a mix
of the two sets. The reason this was done here was to attempt to draw out the largest possible
difference from the sets, which as I show, even this stark partitioning is barely able to do. People
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Two of the training sets use all of the items in the informativity partition (training

size: big). The other uses only half the items (training size: small). In the

LI + small case, the lowest informativity items were used—i.e. those in the first

quartile of informativity scores for their particular verb—and in the HI + small

case, the highest informativity items were used—i.e. this in the fourth quartile of

the informativity scores for their particular verb.

10 different nonce-real test sets were constructed. This test set consisted of 31

pairs: the nonce verb participants were trained on paired with the 31 verbs in the

ordinal scale task presented in Chapter 2 and used again in Chapter 3. A real-real

test list that remained constant across training sets was also constructed. This list

was selected from all pairs in the original ordinal scale task by ordering those pairs

based on their mean z-scored rating across participants and then taking every 30th

pair. This selection was hand-checked to ensure that a few verbs didn’t show up a

disproportionate amount of times under this procedure. None did. The reasoning

behind this selection procedure was the ensure that the pairs come from across the

similarity space, so that any contraction or expansion in the mapping governing

participants similarity responses due to the training could be detected.

4.3.3 Participants

2400 participants (515 unique) were recruited through Amazon Mechanical

Turk (AMT) using a Human Intelligence Task (HIT) template designed for this

perform extremely well at the task even with LI sets.
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particular experiment.24 Prior to viewing the HIT, participants were required to

score seven or better on a nine question qualification test assessing whether they

were a native speaker of American English. Along with this qualification test, par-

ticipants’ IP addresses were required to be associated with a location within the

United States, and their HIT acceptance rates were required to be 95% or better.

Once this submission was received, participants were paid $1.

Participants were allowed to do as many of the lists as they liked, though they

were not allowed to do the same list more than once. Lists were deployed in batches

of 10, each containing a training set for a particular true verb. This was done to

ensure that any participant who did two lists in quick succession would not have

gotten two lists pertaining to the same true verb. The median number of lists that

each participant did was 1 and the mean was 4.7.

4.3.4 Data validation

Three separate filtering stages were conducted prior to analysis: (i) participant

filtering based on memory task accuracy; (ii) participant filtering based on median

and IQR of (log) reaction times to the similarity task; and (iii) response filtering

based on median and IQR of (log) reaction times by-participant.

For the first stage of filtering a mixed effects logistic regression with random

intercepts for participant and verb was built with accuracy on the memory task as

the dependent variable and all experimental conditions lexical context, item

24A separate experiment script was created in Ibex for each list. The javascript and HTML for
this script were then scraped and loaded into an AMT HIT template designed for this task.
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informativity, and training size) as well as all possible two- and three-way

interactions as fixed effects. The inclusion of these fixed effects was meant to control

for the fact that the memory task in certain conditions may be harder—e.g. those

conditions with lexical context: nonce, where participants had to remember

nonce words—or less well estimated—e.g. an error in the conditions with training

size:small counts more than one in training size:big. This full interaction model

was tested against a model without the three-way interaction but with the two-way

interactions using a likelihood ratio test, and the three-way interaction was found

to be significant (χ2(1) = 17.01, p < 0.001), so the full model was kept.
Table 4.7 shows the fixed effects of this model. We see here that—somewhat

unsurprisingly—participants do better at the memory task when the lexical context

is real words as opposed to nonce words. More surprisingly, they also appear to

do significantly better when the lexical context is both real words and the items

are high informativity or the training size is larger. These three positive effects are

slightly tamped down by the significant three-way interaction, which is negative and

essentially works to cancel the two two-way interactions just mentioned.

Participants were excluded based on the Best Linear Unbiased Predictors

(BLUPs) of the participant random intercepts inferred by the model—fit using

Restricted Maximum Likelihood (REML) as implemented in the R package lme4.

These BLUPs for the participant intercepts were then mean-centered and standard-

ized by their standard deviation. All participants whose standardized intercept fell

below −2—i.e. two standard deviations below the mean accuracy—were then ex-

cluded. This results in the exclusion of 25 total participants, and the loss of 9920
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Table 4.7: Fixed effects of mixed effects logistic regression with random intercepts
for participant and verb. The reference level is lexical context:nonce x infor-
mativity:low x training size:small.

Dependent variable:

Accuracy

Intercept 2.094∗∗∗

(0.122)

lexical context:real 0.942∗∗∗

(0.158)

informativity:high 0.046
(0.136)

training size:big 0.105
(0.119)

lexical context:real x informativity:high 0.526∗∗

(0.249)

lexical context:real x training size:big 0.522∗∗

(0.213)

informativity:high x training size:big 0.093
(0.170)

lexical context:real x informativity:high x training size:big −1.298∗∗∗

(0.312)

Observations 15,780
Log Likelihood −3,852.397
Akaike Inf. Crit. 7,724.793
Bayesian Inf. Crit. 7,801.458

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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total datapoints.

Next, as in previous sections, participants were excluded based on a reac-

tion time analysis (see above for procedure). Only reaction time to the similarity

judgment task was considered. In the median-based filtering, 9 participants had a

median log RT below the Tukey interval of participant medians and were excluded,

resulting in the enclusion of 10240 datapoints. In the IQR-based filtering, 2 partic-

ipants had IQRs of log RTs outside the Tukey interval, resulting in the exclusion of

310 datapoints.

Finally, as in previous sections, particular responses were excluded based on a

reaction time (see above for procedure). 685 observations (across participants) were

excluded for a log RT falling outside the Tukey interval for the participant that gave

that response.

The final dataset size after this filtering was 125412 observations (60568 nonce-

real judgments) with each list having at least 18 response sets (out of the 30 total

collected). Note that this results in a number of responses to any particular simi-

larity judgment item that is still more than three times greater than the number of

responses even to the original likert scale task, presented in Chapter 2, which only

had 5 responses per verb pair.

4.3.5 Results

In this section, I present two types of analysis: one that assesses the overall

effects of manipulating the training set size and informativity on participants’ ability
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to recover the true word from the training items corresponding to that word; and

another that assesses what representation participants learned.

To investigate the first, I compare the ordinal scale similarities presented in

Chapter 2 to the similarity responses reported by participants in the learning task.

As is standard with ordinal scale judgments, responses for both the original task

and the current task were z-score-transformed by participant. The mean over these

transformed responses was then taken over pairs in the original task, thus yielding

a single similarity value for each possible (unordered) pairing.

The similarity values for each of the true verbs for which training sets were built

in the current study were then paired with each set of responses given by participant.

For instance, for training sets built from sentences that originally contained think,

the (transformed) similarity judgments given after being trained on those sentences

were paired with the (transformed and averaged) similarity judgments from the

original experiment for which think was one of the verbs in the pair. The idea behind

the current analysis is to then assess the correlation between the true word similarity

judgments, obtained from the original similarity task carried out in Chapter 2, and

what I refer to as the learned word judgments, as obtained from the current task.

More specifically, I ask how predictable the learned word similarity judgments are

given the true word similarity and the various factors present in the experimental

design

To carry this analysis out, I begin with a mixed effects model with fixed effects

for true word similarity, lexical context, informativity, and training

size as well as all two-way, three-way, and four-way interactions between these vari-
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ables; random intercepts for participant and verbs as well as random slopes for true

word similarity for both participants and verbs. The fixed effects allow for the

assessment of the overall effects of the experimental factors on participants’ ability

to recapitulate the true verbs similarity ratings from the training set they received,

and the random effects allow for the assessment of variability across participants

and verbs in accuracy of this recapitulation.

As in previous sections, I carry out a series of likelihood ratio tests to as-

sess which fixed effects should be kept in the model. First, the same model as

above was fit without the one four-way interaction and compared to the full model

with that interaction. This four-way interaction does not come out significant

(χ2(1) = 2.537, p = 0.111) and was thus dropped. Next, three models excluding all

three-way interactions containing a particular categorical variable (lexical con-

text, informativity, or training size). For instance, excluding the three-way

interactions involving lexical context would entail excluding true word simi-

larity × lexical context: real × informativity: high, true word similar-

ity × lexical context: real × training size: big, and lexical context: real

× informativity: high × training size: big. Under this criterion, the three-way

interactions containing informativity (χ2(3) = 25.126, p < 0.001) and training-

size (χ2(3) = 25.197, p < 0.001) come out significant, while those containing lexi-

cal context do not (χ2(3) = 0.632, p = 0.889). Thus, all three-way interactions

containing lexical context were dropped, leaving a single three-way interaction:

true word similarity × informativity: high × training size: big. This in-

teraction was also tested alone and came out significant (χ2(1) = 24.832, p < 0.001).

234



The final model’s fixed effects can be found in Table 4.8.

4.3.5.1 Fixed effects

I now delve into these fixed effect estimates. These estimates are given in

reference coding with the following reference level: lexical context:nonce × in-

formativity:low × training size:small. (As is standard for continuous variables,

the intercept represents true word similarity at 0). Coefficients for true word

similarity or any of the interactions that contain it represent slopes or changes in

slope; all other variables can be thought of as shifts in the intercept for the relevant

condition (moving the line up or down along the y-axis wholesale). Since the inter-

esting aspect of these data is the correlation between the true word similarity and

the learning word similarity, I focus solely on this former sort of coefficient. (It is

unclear to me how one should interpret for the latter with respect to participants’

ability to learn a word’s semantics from its linguistic contexts.)

The first important coefficient is the one corresponding to true word simi-

larity. This coefficient gives the relationship between the true word similarity and

learned word similarity in the reference level (lexical context:nonce × infor-

mativity:low × training size:small), which should intuitively be the hardest.

Nonetheless, on average, participants recapitulate the similarity judgments of the

true word reliably, shown by the positive slope. As one might expect from results in

the norming studies, participants do reliably better when given lexical information—

even in the low informativity contexts with small training sizes—which can be seen
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Table 4.8: Fixed effects of mixed effects regression with random intercepts for par-
ticipant and verb. The reference level is lexical context:nonce × informa-
tivity:low × training size:small. (As is standard for continuous variables, the
intercept represents true word similarity: 0)

Dependent variable:

learned word similarity

Intercept −0.095∗∗

(0.042)

true word similarity 0.375∗∗∗

(0.030)

lexical context: real −0.096∗∗∗

(0.024)

informativity: high −0.019
(0.023)

training size: big 0.050∗∗

(0.023)

true word similarity × lexical context: real 0.068∗∗∗

(0.011)

true word similarity × informativity: high 0.005
(0.016)

true word similarity × training size: big −0.035∗∗

(0.016)

lexical context: real × informativity: high −0.026
(0.027)

lexical context: real × training size: big 0.028
(0.027)

informativity: high × training size: big −0.025
(0.027)

true word similarity × informativity: high × training size: big 0.114∗∗∗

(0.023)

Observations 60,568
Log Likelihood −71,436.690

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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in the reliably positive interaction between true word similarity and lexical

context.

Interestingly, the other two two-way interactions—true word similarity

with informativity and training size show different trends. As can be seen from

the interaction of true word similarity and informativity, participants do no

better when given high informativity items with small training sets containing nonce

words than if they’re given low informativity items. And, as can be seen from the

reliable negative iteraction between true word similarity and training size,

if they are given more low informativity nonce items, they actually do worse. The

last makes intuitive sense: low informativity items were low informativity because

participants didn’t get very close to the relevant verb’s semantics, compared to other

items containing that verb, so giving a participant more of those items would likely

only hinder their ability to find the correct semantics. With this said, however,

the size of this interaction relative to the main effect of true word similarity

is actually quite small (less than 10% of the size), and so participants’ inferences

actually still look quite robust.

Finally, the positive three-way interaction true word similarity × in-

formativity: high × training size:big suggest that getting more contextual

information only helps when the instances received are high informativity. This

also makes intuitive sense: if one gets a lot of really good information about the

semantics of a word, they should do better in recovering those semantics. What’s

interesting about this effect is its size interpreted in the context of its constitutive

two-way interactions. Note that the size of the interaction between true word
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similarity and training size a third and a quarter the size of the three-way

interaction, meaning that getting more good items seems to help more than getting

more bad items hurts. This is interesting in the current context, since real dis-

tributions will include some high informativity and some low informativity items,

and so even if a learner were to get a string of low informativity items, a string of

high informativity items might well quickly return them to the correct part of the

semantic space.

4.3.5.2 Random effects

I now turn to the random effects estimates, which allow for the quantification

of uncertainty across verbs and participants. I again focus on the slope estimates—

here, the by-verb and by-participant random slopes—since the intercepts don’t have

clearly interesting interpretation. The variance estimate for the verb slopes was

0.007 (sd: 0.085) and the variance estimate for the participant slopes was 0.033 (sd:

0.182). This state of affairs is the complete flip of that seen in the norming studies

where there tended to be low variability due to participants and high variability due

to verbs.

For a rough comparison to the fixed effects just mentioned, this variability

among verbs might make a randomly selected verb look about as good (for the av-

erage participant) in the lexical context : real × informativity: low × training

size:small condition as an average verb in the lexical context : real × informa-

tivity: high × training size:big condition. That is, this model would not be

238



very surprised if there are some verbs that could be learned twice as fast as others

even with bad data, or conversely, for which it would take twice as long to learn

even with good data. In contrast, a randomly selected participant might do just as

well (for an average verb) in the lexical context : nonce × informativity: low ×

training size:small condition as an average participant in the lexical context : real

× informativity: high × training size:big condition.

Delving into participant variance within particular conditions, the rough gen-

eralization seems to be that participants show lower variability when they are in one

of the “extreme” conditions—nonce words with small low informativity training sets

or real words with big high informativity training sets—but higher variability in the

“middling conditions.” One reason for this might be that the extreme conditions

give so little or so much information to work with that participants tend to come

to the same conclusions about the semantics, but as more or better information

comes in, participants have to work harder to incorporate that information into

their representation of the word.

4.3.5.3 Relationship to known words

One thing the above analysis does not tell us is what the representations

that participants learn might look like. To assess this, I now analyze the actual

similarity judgments that participants gave. As an initial stab, the number of times

each participant from each condition gave a particular verb the highest rating that

participant gave to any response was extracted. The maximum count for these
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was then computed within the condition and the verb with this maximum count

extracted. For the verbs want, think, tell, and know, this verb was the true verb

across conditions. For guess, the verb was think for every condition except for the

lexical context : real × informativity: high × training size:big condition. For

say, the verb was say for all but some of the low informativity conditions, where

think, want, and know were given. For remember, remember was given in about half

the conditions and know, think, and understand were given in the others. For hear,

see was given in about half the conditions, with tell, think, hear, and feel filling in

the rest. On the whole then, participants appear to be quite accurate in recovering

at the least the correct space of verbs—e.g. representational v. nonrepresentational

or even, to some extent, factive v. nonfactive—if not the true verb itself.

This, however, is only a rough measure and throws away quite a bit of in-

formation latent in the similarity judgments. To access this information, a more

fine-grained analysis is necessary. I give a preliminary one here, but leave a more

sophisticated one for future work.

4.4 Discussion

In Chapters 2 and 3, I showed that there is quite fine-grained semantic infor-

mation present in propositional attitude verbs’ syntactic distributions—both their

competence distributions (Chapter 2) and their performance distributions (Chapter

3). One question that remains even after showing this is whether it is reasonable to

assume that learners have such access to verbs’ entire syntactic distribution when
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making inferences about those verbs’ meanings. The answer to this is almost surely

no. Learners receive data incrementally, and it seems likely that the inferences

that underlie word-learning also operate incrementally. The question that natu-

rally arises, then, is whether learners can take advantage of attitude verb syntactic

distributions in an incremental setting.

In this chapter, I presented three experimental studies aimed at answering

this question. The first two experiments, norming studies for the third, were aimed

at assessing the informativity of particular sentences in children’s input using a

variant of the Human Simulation Paradigm (HSP). I did this by extending a previous

norming methodology, pioneered by Medina et al. (2011), to allow the similarity

between a true word and a response to be quantified.

I then used the results of these norming studies to construct an experiment

that manipulated the informativity of items in different training sets given to partici-

pants. In this experiment, participants were taught a novel word using these training

sets, as in the standard HSP task, but instead of asking participants to make guesses

about the word that occurred in each item of the training set, they were asked, after

viewing the entire set, to make similarity judgments between the word they just

learned and words they already knew. The idea here was that this might allow for

the quantification of uncertainty in participants’ grasp of the novel words semantic

features. Corroborating previous experiments, I showed that participants can uti-

lize syntactic information quite robustly, even using only low informativity learning

instances, to learn the meanings of a novel word.
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Chapter 5: A strategy for solving the labeling problem

In Chapter 1, I defined two of the main problems of syntactic bootstrapping

approaches to verb learning. On the one hand, the syntactic bootstrapping model

must define a method by which to discover regularities in verbs’ syntactic distribu-

tions (the clustering problem) and on the other it must have some way of linking

these regularities with the facets of meaning they are associated with (the labeling

problem). One strength of the syntactic bootstrapping approach is that it gives a

natural solution to both problems. Verbs are clustered based on how many of the

same syntactic contexts they occur in and these clusters are labeled based on rules

relating semantic features and syntactic contexts.

One weakness of this approach, at least in its traditional instantiation, is

that it is brittle to cross-linguistic variation. This brittleness does not show for

many commonly studied classes of verbs—e.g. vanilla transitive verbs like hit or

ditransitive verbs like give—since those classes tend to have fairly cross-linguistically

stable syntactic distributions. But as noted briefly in Chapter 1 and as elaborated

more fully below, this brittleness is potentially damning for traditional solutions to

the labeling problem, since they rely on fixed rules mapping syntax to semantics.

This is particularly problematic in the domain of propositional attitude verbs, since
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these verbs show much more cross-linguistic variability with respect to the kinds of

syntactic contexts they occur in.

In this chapter, I show one way that the traditional approach might be adapted

to solve this problem that relies in a crucial way on the properties of the model of

syntactic bootstrapping developed in this dissertation. Like traditional approaches

to syntactic bootstrapping, the model I propose in Chapters 2 and 3 encodes the

abstract notion of a projection rule—a rule that maps from semantic features to

syntactic contexts/features. Unlike the traditional syntactic bootstrapping model,

however, the rules themselves undergo change; they are inferred at the same time

verbs’ semantic features are. It is this flexibility in inferring the mapping rules that

I seize on to solve the labeling problem for attitude verbs.

To concretize this proposal, I focus on a particular distinction among attitude

verbs: the representational-preferential distinction. As I have noted throughout the

preceding chapters, this distinction is robustly attested in participants’ similarity

judgments, both for words they already know (Chapters 2 and 3) and for words they

have just learned (Chapter 4). And in English it appears to be robustly tracked by

tense, evidenced both in acceptability judgments (Chapter 2) and corpus distribu-

tions (Chapter 3). But as I noted briefly in Chapter 1, tense does not robustly

track this distinction cross-linguistically. In the next section, I review the syntactic

correlates of this distinction in English—suggested in previous literature and corrob-

orated in previous chapters—noting in particular that tense appears to be a robust

correlate in English. I then present two problem cases for tense in particular as a

cue to the representational-preferential distinction.
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Following previous work in this domain, I then suggest that the syntactic

correlates of the representational-preferential distinction in each of the three cases

discussed can be given an abstract characterization in the following terms: represen-

tational verbs, like think and know, take subordinate clauses that are more closely

matched to main clauses than those taken by (pure) preferential verbs, like want

and prefer. This relativizes the mapping between the representationality feature and

syntactic context to a language while retaining the abstract notion of projection.

This, in turn, makes it possible to construct such a learner within the model I have

been developing, which I give a preliminary sketch of in English. I then turn to a

small experiment in implementing this proposal before concluding with some future

directions.

5.1 The representational-preferential distinction

5.1.1 Representationals and preferentials in English

I now review the representational-preferential distinction discussed in Chap-

ter 1. This distinction is one among propositional attitude verbs is that between

verbs that express beliefs—or represent “mental pictures” or “judgments of truth”

(Bolinger, 1968)—and those that express desires—or more generally, orderings on

states of affairs induced by, e.g. commands, laws, preferences, etc. (Bolinger, 1968;

Stalnaker, 1984; Farkas, 1985; Heim, 1992; Villalta, 2000, 2008; Anand and Hac-

quard, 2013, a.o.). Within the first class—the representationals—fall verbs like think

and know—and within the second class—the preferentials—fall verbs like want and
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order.

There appear to be various aspects of the syntactic distribution that roughly

track this distinction in English. One well-known case—the parade case—is finite-

ness: representationals tend to allow finite subordinate clauses (1a) but not nonfinite

ones (1b) while preferentials tend to allow nonfinite subordinate clauses (2b) but

not finite ones (2a).

(1) a. John thinks that Mary went to the store.

b. *John thinks Mary to go to the store.

(2) a. *John wants that Mary went to the store.

b. John wants Mary to go to the store.

There are two important things to note about this distinction. First, though the

representationality distinction is often talked about as though it were mutually

exclusive, some verbs appear to fall into both categories. For instance, as noted in

the last section, hope p involves both a desire that p come about and the belief that p

is possible (Portner, 1992; Scheffler, 2009; Anand and Hacquard, 2013, but see also

Portner and Rubinstein 2013). Ideally, then, a model of syntactic bootstrapping

would discover that hope has both a representational and a preferential semantics.

Such a discovery seems plausibly since hope shows up in both finite (3a) and nonfinite

(3b) frames.

(3) a. John hopes that Mary went to the store.

b. John hopes to go to the store.
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Second, the link between representationality and finiteness is just a tendency. Some

verbs plausibly classed as representationals allow nonfinite subordinate clauses (17a)/(17b),

and others plausibly classed as preferentials allow subordinate clauses that look fi-

nite (17c). In spite of this, as I show in Chapters 2 through 4, finiteness is a useful

cue in distinguishing representationals and preferentials.

5.1.2 Representationals and preferentials outside English

The roughness of this correlation is perhaps not surprising since not all lan-

guages track representationality with tense. I focus on two cases of this: ones where

the distinction is roughly tracked by mood—in the Romance languages, representa-

tionals tend to take indicative mood and preferentials tend to take subjunctive mood

(Bolinger, 1968; Hooper, 1975; Farkas, 1985; Portner, 1992; Giorgi and Pianesi, 1997;

Giannakidou, 1997; Quer, 1998; Villalta, 2000, 2008, a.o.)—and others where the

distinction is tracked by the availability of verb second (V2) syntax (Truckenbrodt,

2006; Scheffler, 2009).

An instance of the correlation with mood can be seen in Spanish. In Spanish

both the representational (belief) verb creer (think/believe) and the preferential

(desire) verb querer (want) take finite subordinate clauses. The difference between

these subordinate clauses is that, whereas verbs like creer (think) take subordinate

clauses with verbs inflected for indicative mood (4a), verbs like querer (want) take

subordinate clauses with verbs inflected for subjunctive mood (4b).

(4) a. Creo
think.1s.pres

que
that

Peter
Peter

va
go.pres.ind

a
to

la
the

casa.
house.
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b. Quiero
want.1s.pres

que
that

Peter
Peter

vaya
go.pres.sbj

a
to

la
the

casa.
house.

This makes the subordinate clause under creer look more like the declarative main

clause in Spanish, whose tensed verb is inflected for indicative mood.

(5) Peter va a la casa.

Peter go.pres.ind to the house.

An instance of the correlation with V2 can be seen in German and other Germanic

languages—e.g. Dutch. V2, which is generally found in main clauses, is a phe-

nomenon in which a clause’s tensed verb appears as the second word in a sentence.

For instance, (6) shows a German main clause with the tensed form of the auxiliary

verb sein (be) occurring as the second word of the sentence (in second position).

(6) Peter
Peter

ist
is

nach
to

Hausen
home

gegangen
gone

In subordinate clauses headed by the complementizer dass (that), this verb occurs

clause-finally, which evidences the fact that German is underlyingly a subject-object-

verb (SOV) language. Both the verb glauben (think) and the verb wollen (want)

can take such clauses, in which the main verb is tensed.

(7) a. Ich
I

glaube,
think

dass
that

Peter
Peter

nach
to

Hausen
home

gegangen
gone

ist.
is.

b. Ich
I

will,
want

dass
that

Peter
Peter

nach
to

Hausen
home

geht.
goes.

Only glauben (think), however, allows a second sort of structure more akin to the

main clause in the position of the tensed verb (Scheffler, 2009). If the complementizer
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dass (that) is not present, glauben (think) can take a subordinate clause with syntax

that looks exactly like that of the main clause—compare the main clause in (6) with

the subordinate clause in (8a). Wollen does not allow this (8b).

(8) a. Ich
I

glaube,
think

Peter
Peter

ist
is

nach
to

Hausen
home

gegangen.
gone.

b. *Ich
I

will,
want

Peter
Peter

geht
goes

nach
to

Hausen.
home.

Thus, though both Spanish and German take tensed complements, militating against

a hard-coded link between tense and representationality, they still show language-

internal correlations between representationality and some more abstract aspect of

the clausal syntax. Further, the aspect of the clausal syntax that occurs with only

the representational verbs—indicative mood in Spanish and V2 in German—also

tends to show up in declarative main clauses.

5.1.3 Main clause syntax

This apparent language-internal correlation has led some authors to conclude

that, rather than there being a relationship directly between representationality

and tense, as is evidenced in English, the relationship needs to be specified more

abstractly. One idea is that this more abstract mapping between semantics and

syntax should be specified in terms of main clause syntax (Dayal and Grimshaw,

2009; Hacquard, 2014).

Under this view, then, the apparent relationship between tense in English,

mood in Spanish (and the rest of Romance), and V2 in German (and other Germanic

248



languages besides English) is really the outgrowth of a more abstract relationship

between some cluster of syntactic features—call them main clause features—that

are language-specific but likely highly constrained. The way in which they are con-

strained is that they tend to be associated with properties of the subordinate clause’s

that are “close” to the attitude verb. For instance, both complementizers and mood

tend to be assumed to be quite high within the clausal structure (cf. Cinque, 1999;

Speas, 2004), which in turn seems to make them amenable to selection by particular

semantic classes of verbs—e.g. representationals or preferentials. Indeed, ideally,

one could pin the relevant feature to some particular type of head which carries

the relevant selection information—e.g. the complementizer— and is “as high as

possible” within the subordinate clause so as to make selection maximally local.

Suggestive of this possibility is that the standard analysis of German V2,

which has that V2 is a particular kind of complementizer-driven movement akin to

that seen in English WH-movement (Den Besten, 1983). English may be amenable

to such an analysis in the sense that complementizer drop with finite subordinate

clauses tends to only occur with representationals (Dayal and Grimshaw, 2009), as

discussed in Chapter 1.

(9) a. Bo {thinks, believes, knows} (that) Jo is out of town.

b. Bo {loves, hates} *(that) Jo is out of town.

This latter fact is furthermore suggestive, since of course English main clauses do

not have complementizers, bolstering the relationship between main clause syntax

and representationality, at least in English. This, however, also raises a potential
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problem for languages like Spanish, which lack complementizer drop in any subor-

dinate clauses but whose declarative main clauses do not have complementizer. I

return to this in this chapter’s discussion.

But regardless of whether main clause syntax information can be carried solely

in the complementizers themselves—thus allowing for an extremely local form of se-

lection giving rise to the relationship between representationality and main clause

syntax—or whether somewhat longer distance relationships need to be posited, there

is nonetheless a potential relationship between the representational-preferential dis-

tinction and this language-specific-yet-highly-constrained main clause feature.

The importance of this for current purposes is that, if such a correlation be-

tween representational and main clause syntax exists, it may signal a possible can-

didate for a hard-coded-yet-flexible projection rule that allows for a solution to the

labeling problem in this particular case. Further, since the main clause syntax itself

is presumably observable to the same extent that subordinate clause syntax is, the

language specific instantiation of the main clause feature may well itself be learn-

able. And if this can be made to work in this particular case, one might seek further

cases where, though a particular mapping between semantics and syntax appears

unstable cross-linguistically, there is nonetheless a more abstract feature that cor-

relates with said mapping and which itself might be learner from some observable

features of the input.

In the next section, I show how this insight about the correlation between

main clause syntax and representationality might be incorporated into the model of

syntactic bootstrapping developed throughout the dissertation to solve one piece of

250



the labeling problem for propositional attitude verbs.

5.2 Leveraging main clause syntax

In this section, I show how one might incorporate the abstract relationship

between main clause syntax and representationality into the model of syntactic

bootstrapping I develop throughout the dissertation. The essential idea is that

the learner should construct a particular projection rule or set of rules over the

course of learning, which—unlike the other rules they construct—is directly linked

to a particular semantic feature—in this case, representationality. The model as it

currently stands only has a way of constructing sets of rules that are unlabeled, so

what needs to be added is some way of singling out a rule or set of rules that project

onto the main clause syntax features. The problem is that what these main clause

syntax features are must themselves be learned. Luckily, however, these features

should be quite easily learnable; they are just the ones that are seen every time a

declarative main clause is seen.

This suggests a quite simple addition to the current model of syntactic bootstrapping—

one that requires only a minor change to the structure or algorithm that the model

employs. This solution is to add declarative main clauses to the data set as though

they were subordinate clauses taken by a particular attitude verb that is never

heard,1 and then force the model to explain this verb’s distribution using only a

single feature. This in turn means that the model has to have at least one feature

1It is sufficient to use this only to implement the proposal here. I remain agnostic about whether
this is the correct syntactic or semantic analysis of any particular sentence.
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that projects onto the main clause features.

The idea that main clauses are in fact subordinate clauses to a particular kind

of verb (or set of verbs) is an old idea instantiated most famously by Ross’s (1970)

Performative Hypothesis (see also Rizzi, 1997; Ambar, 1999; Krifka, 2001; Ginzburg

and Sag, 2001; Speas and Tenny, 2004; Hacquard, 2010). I follow Hacquard (2010),

and others, in calling this special element assert.

Why should this minor addition of a special verb assert along with a rule

that labels assert’s feature as representational work to solve the labeling problem?

The intuition here is that (i) the syntactic contexts that assert occurs in are

extremely constrained—to one context: a finite clause with no complementizer—

and (ii) assert is extremely frequent—every declarative sentence counts as evidence

for the distribution of assert. The second property makes it expensive—in terms

of likelihood—for the model to ignore assert. This means that the model should

ensure that assert’s distribution matches up with the features that the model posits

and the projection rules for those features. The first property—in concert with the

second—will ensure that at least one feature projects onto main clause syntax. This

feature should presumably be the representational feature associated with assert

and hopefully other verbs. In the next section, I implement this proposal and give

some preliminary results.
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5.3 Experiment

In this section, I fit the nonnegative projection model proposed in Chapter

3 to the modified dataset suggested in the last section. I show that this model

discovers a small core of high frequency representational verbs that share a feature

with assert.

5.3.1 Data

The dataset used here is the same one used in the experiment in Chapter

3, which was extracted from the PukWaC corpus (see that chapter for dataset

construction).2 To this dataset was added approximately 3.5 million observations

of main clauses, represented as a subordinate clause embedded under a special verb

assert.

Main clauses were identified within the corpus by checking that a particular

verb was a dependent of a root node in the dependency parse. Some clauses

identified as main clauses were misparses, e.g., of constituents like purpose clauses.

These were filtered out by only allowing main clauses that (i) had a subject in

the dependent parse; (ii) were tensed in the dependency parse; and (iii) had no

complementizer. (This last criterion excludes question main clauses, but, though

these may be useful to include in future experiments.)

Finally, all main subject values for assert were set to referential (see Chapter

2This corpus is not necessarily ideal for testing a learning model, but due to the fact that
annotations in CHILDES—the standard collection of child-directed speech corpora in English—
are extremely noisy, similar automatic extraction of subcategorization frames is difficult.
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3 for description). This was done to mimic the fact that performatives are claimed

to involve covert first person subjects. A version of this dataset was also constructed

in which the subject features was not included in the construction of the frames,

but this made no discernible difference on the results.

5.3.2 Model fitting

The model fitting procedure was the same given in Chapter 3 except for two

things. First, the number of features was set at 2. The idea here is to force the

model to make a choice of either giving a verb the same feature as assert or not.

(The other feature will, in essence, be a “waste bin” feature, collapsing all other

semantic features besides representationality into one.) As in Chapter 3, the model

fitting was restarted multiple times with random initializations to ensure that a high

likelihood point was discovered.

Second, as mentioned in the previous section, assert was only allowed one

feature which remained constant across the model fitting. That is, the model had

only one feature with which to explain the syntactic contexts that assert occurs

with. Thus, this feature will have an associated projection rule that picks out at

least the main clause syntax.

5.4 Results

Of the 232 verbs plus assert, 10 verbs share a feature with assert: ask,

consider, find get, know, say, see, show, tell, and think. This list is interesting because
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it includes verbs from across the range of representationals. Ask, tell, say, and show

involve communication, while think, know, see, find, and get involve cognition and

perception. Furthermore, no preferentials—besides perhaps ask, tell, and say, at

least with some frames—are represented in this list.

One interesting thing about this list is the prevalence of question-taking verbs.

As noted above, all of the question main clauses were removed from the dataset,

and so it’s interesting that these verbs are included. This is especially surprising,

since for none of these verbs does the model posit a second feature. One way

this may have happened is through a process of generalization for the projection

rule associated with the feature associated with assert. For instance, think, say,

and know both take subordinate clauses that look like main clauses (“subordinate

clauses” of assert) with high frequency. But know takes question complements

with fairly high frequency as well—as does say in certain circumstances—and so the

model may have adjusted the projection rule to include some weights on question

complements. This may in turn heightened the likelihood that verbs like ask would

find their way in.

Another interesting thing about this list is the notable absence of many rep-

resentational verbs, such as understand, realize, suppose, point out, etc. These verbs

for some reason end up in the “waste bin” category. One possibility for why this

occurs in that these verbs are slightly lower frequency than the ones that make it

into the above list and are plausibly acquired later. This may in turn have given

the fitting procedure less impetus to associate them with the more targeted feature

associated with assert.
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5.5 Discussion

In this chapter, I reviewed the labeling problem for syntactic bootstrapping. I

noted that the standard approach to this problem—reliance on hard-coded links be-

tween particular projection rules and particular semantic features—runs into prob-

lems with cross-linguistic variation in the mappings from semantics to syntax. If

languages vary with respect to how they map semantic features into the syntax,

then those mappings seemingly couldn’t be hard-coded. I showed that this was par-

ticularly pernicious within the domain of propositional attitude verbs, since even

the distinctions that appeared most robustly in participants’ semantic similarity

judgments, show little cross-linguistic stability in their mappings to the syntax—at

least on the face of it.

I then turned to a discussion of what these mappings look like within partic-

ular languages. Following recent work, I noted that though the particular syntac-

tic syntactic features a semantic distinction like representationality maps to differ

across languages, there appears to be a family resemblance between these cross-

linguistically active syntactic features. The particular family resemblance relevant

to representationality appears to be whether or not a verb takes main clause syntax.

In the latter part of the chapter, I then showed how this family resemblance

might be incorporated into a syntactic bootstrapping learner of the kind proposed

throughout the dissertation. I showed in a preliminary experiment that, when im-

plemented this sort of learner shows promising results, though there is much more

work yet to be done on this problem.
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There are two particular directions that seem likely to be fruitful. First, these

sorts of models could—indeed, should—be deployed on languages other than English

to truly test their robustness to different sorts of input conditions. For instance,

would the sort of model developed here be able to detect that subjunctive rather

than tense is the property important to the representational-preferential distinction

in Spanish? Would it similarly be able to detect that V2 is relevant in German?

Second, since the model was fit to a dataset that likely does not reflect the child’s

input, a dataset derived from a corpus of child-directed speech is desirable.
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Chapter 6: Conclusion

I began this dissertation by laying out the central problems of learning what

Gleitman et al. (2005) dub the hard words, focusing in particular on the proposi-

tional attitude verbs like think, know, and want. I noted two main problems for

learning these verbs: (i) the eventualities they describe tend not to have sensory

correlates, and (ii) their meanings are both fine-grained and multi-faceted, thus pre-

senting problems for accounts based on learning from nonlinguistic context (or even

discourse context) alone.

I then turned to a discussion of learning from linguistic context, noting two

particular kinds of linguistic contexts that have been discussed as possible learning

cues: lexical context and syntactic context. I noted that, while lexical context is

likely useful for certain distinction among verbs—indeed, it may be useful even for

some distinctions among propositional attitude verbs—it likely does not track other

distinctions of central interest. This led me to turn to the use syntactic context as

a word-learning cue—a strategy exemplified most notably in syntactic bootstrapping

approaches to word learning.

I noted two problems that any syntactic bootstrapping approach must solve:

(i) it must explain how learners cluster verbs based on the syntactic contexts they
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occur with—the clustering problem—and (ii) it must explain how learners label

these clusters with the facets of meaning they correspond to—the labeling problem.

The ability of a syntactic bootstrapping account to solve either of these problems

for any particular type of verb is dependent on the (i) the granularity with which

that particular verb type’s semantics is mirrored by the syntactic distribution and

(ii) the availability of principles that would allow a learner to label the semantic

features. I raised doubts about this second prospect having to do with the cross-

linguistic stability of the mapping principles, particularly in the attitude domain,

arguing that the labeling problem quite plausibly could be solved via other means,

and so the first problem should be attacked first in isolation.

I then turned to an overview of what is known about this relationship in the

domain of propositional attitude verb. I showed that the results are quite promising

but also that the correlations are not perfect. This raises the need for a more

fine-grained investigation of these correlations, which I carried out.

In Chapter 2, I began the investigation by showing how to quantify the rela-

tionship between näıve speakers’ knowledge of the syntactic contexts a propositional

attitude verb can occur in—what I refer to as the competence distribution—and

their knowledge of that verb’s semantics. To do this, I deployed a methodology that

Fisher et al. (1991) used to probe such relationships as they obtain for verbs across

the lexicon, here focusing in on the propositional attitude verb domain in order to

test the limits of this relationship. The main result of this chapter was that there

is a significant correlation between the syntax measure and the semantics measure.

This omnibus result, however, tells us little about the relationship between partic-
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ular syntactic contexts and particular facets or features of the meaning. To delve

into this, I developed a model, which I dubbed the nonnegative model of projection,

to investigate this relationship. The benefit of this model is that it furthermore

implements part of a solution to the clustering problem. I showed that this model

discovers the sorts of fine-grained features discussed in Chapter 1.

In Chapter 3, I investigated to what extent the same sort of relationship

found between verbs’ competence distributions and their semantics also obtains

between the distribution of syntactic contexts a propositional attitude verb occurs

in in a corpus, what I refer to as its performance distribution, and participants’

knowledge of those same verb’s semantics. To do this, I developed a model that

augments the nonnegative model of projection presented in the previous chapter

with a model of corpus count data. This model simultaneously discovers competence

distributions using the corpus distributions, while at the same time solving the

clustering problem. The main result of this chapter is that performance distributions

also carry a significant amount of information about propositional attitude verb

semantics and that this information is comparable with that found in the direct

measures of competence distribution employed in Chapter 2.

In Chapter 4, I investigated whether the information in performance distribu-

tions is in fact accessible to learners and how robustly represented this information

is. To do this, I adapted recently developed methodologies related to the Human

Simulation Paradigm (HSP) to (i) measure the informativity of particular items in

the performance distribution about the semantics of the word that occurs in them

and (ii) measure the informativity of the distribution itself. The main result of this

260



chapter is that, even if items are manipulated in such a way to give participants as

little information as possible, inference to all propositional attitude verbs meanings

are extremely robust, even down to extremely fine-grained facets of those verbs’

meanings.

In Chapter 5, having focused for the majority of the dissertation on solv-

ing the clustering problem, I presented a novel proposal for how to approach the

labeling problem. This proposal starts with the observations that, particularly in

the propositional attitude verb domain, the relationship between particular aspects

of the semantics and particular syntactic contexts seems to be cross-linguistically

unstable. This does not raise problems for the model presented in previous section

necessarily, since as long as those languages exhibit roughly the same patterns of

correlations between meaning and syntactic context, this model should similarly

succeed in solving the clustering problem. The problem arises if labels are some-

how associated a priori with particular syntactic contexts—for instance, if tense

were somehow associated with the representationality distinction—since not all lan-

guages show this correlation. The proposal presented in this chapter was that, while

not all languages associate particular facets of the semantics with particular syn-

tactic contexts, at least some particular facets may be associated with families of

syntactic contexts and that the learner’s job is to select the appropriate syntactic

context to associate with that facet using the data. I then show how this might be

encoded in a model like the one I develop in the previous chapters.

I now conclude the dissertation with some further directions for this work.
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6.1 Future directions

6.1.1 Quantifying meanings

In Chapters 2 and 3, I validate the nonnegative model of projection and the

nonnegative model of syntactic bootstrapping against semantic similarity judgments.

Semantic similarity judgments are useful for validation in that many disparate mod-

els of semantics can be tested against the same dataset. This is because most compu-

tational models of semantics—be they category-based, vector-based, ontology-based,

etc.—provide some way(s) of measuring the distance between two meanings (or at

least the divergence of one meaning from the other).

This generality presents a problem, however, in assessing what these similarity

judgments are actually indexing, since they are designed to some extent to provide

omnibus measures of the semantics. To be sure, such omnibus measures seem to be

differentially sensitive to certain semantic features, as I showed in Chapter 2; but it

is very hard to tell a priori which features a particular methodology will be sensitive

to.

As such, one potential future direction is to utilize the method presented in

Chapter 2 of comparing the outcomes of two similarity tasks against each other to

pinpoint exactly where they disagree. This line runs two risks, however. First, it

is possible that particular methods tap necessarily vague concepts. In Chapter 2,

the difference between the two methods lie in how participants responded to some

vague notion of antonym, where many semantic distinctions that are different in
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principle are collapsed into one.1 This might be so no matter how many words are

tested. Second, and relatedly, one risks studying the particular methods themselves

as opposed to the underlying space they are meant to tap. That is, it is always

possible that with so few verbs, the apparent differences between the methods had

little to do with the underlying space itself, but were artifacts of some other process

involved in making the sorts of decisions the task demands.

Another potential direction in the vein of methods for quantifying meaning are

tasks aimed more explicitly at particular features. These tasks come in roughly two

flavors: those that explicitly ask about semantic features of the verb (Hartshorne

et al., 2013) and those that explicitly ask about semantic properties of a verb’s

arguments (Kako, 2006).2 These sorts of methods are useful since, as long as they

are well normed, they give much more direct access to particular features, thus

bypassing a step of inducing features from similarities.

The main problem with these latter sorts of methods is that they may not

exhaust the space of features, where semantic similarity judgments might be more

successful. Thus, these methods, like the traditional methods employed by linguists

fall prey to the criticism that our discoveries are limited by the space of features

that readily come to the mind of the investigator. But this was just the problem

that quantitative assessment was intended to solve (Fisher et al., 1991).

A potential remedy here is to combine these more explicit methods with se-

1The hope in this case would be that, even though the notion of antonymy in the “residual
space” of the two methods is vague, other aspects of the judgments in each method would help to
parcel different sorts of antonymy out based on other aspects of a word’s content.

2The distinction between these two kinds of properties is sometimes difficult or impossible to
discern. The fact that break involves a change of state implies that one of its arguments undergoes
a change of state.
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mantic similarity-based methods to assess to what extent the more explicit methods

exhaust the information in the similarities—e.g. by predicting the similarities from

the explicit feature judgments. One way of generating new explicit feature ques-

tions might then be to take similarity values that are not well predicted, find clusters

within those badly predicted values, ask annotators what commonality that group

has, and then construct a question based on that commonality.

A final potential direction is to validate directly onto psycholinguistic data.

6.1.2 Mapping from syntax to meaning

As discussed throughout the dissertation, the main job of a syntactic boot-

strapping mechanism is to map from a word’s syntactic distribution to the concept

associated with that word. In Chapter 2, I showed that, though a learner can con-

clude by similarity in distribution that there is likely a similarity in meaning but

not that, if there is a dissimilarity in distribution, there is dissimilarity in meaning.

I then incorporated this idea into the syntactic bootstrapping model in Chapter 3

by using the particular combination of prior and likelihood I did.

One question for future research is why this property should exist. Why

shouldn’t being different in distribution also implied difference in meaning? One

intuition is that, in generalizing about two words based on their distribution, it is

easier to ask which frames they share than which frames they don’t share. But this

intuition is vague and possibly wrong, since of course linguists do such comparisons

on a conscience level all the time. What lower-level aspect of cognition—perhaps
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specifically linguistic cognition—gives rise to this state of affairs?

A second question in this same vein is what, if anything, the particular func-

tional relationship between similarity in distribution space and similarity in seman-

tic similarity space means about cognition. In Chapter 2, I showed that similarities

gathered in the generalized discrimination task appeared to be logarithmically re-

lated to the syntactic similarities, whereas those gathered in the ordinal scale task

appeared to be sigmoidal.3 Are these logarithmic relationships fundamental to the

syntactic bootstrapping mechanism? Or are they merely artifacts of the similarity

tasks?

Finally, and relatedly, how does the learner, whose whole job is to find the

correct mapping from words to concepts use distributional similarity to construct

the mapping? One potential future direction aimed at investigating this question

is to construct a model which has access to the concepts—e.g. proxied by similar-

ity judgments—and the distributions, but does not have the mapping from verbs

to concepts. This model would then need to learn this mapping by discovering a

permutation (of indices) that is optimal under some loss. Relevant to the previ-

ous discussion in this section, this loss should encode that similarity in distribution

should match similarity in meaning. How divergence in such similarity are penal-

ized is relevant to the question of what status (if any) the exponential properties

mentioned above have in the learning mechanism.

3The best fitting model for the generalized discrimination task was the diffusion ker-
nel/exponential model, whereas the best fitting one for the ordinal scale task was the linear model.
(The sigmoid would arise from the latter in due to the presence of a logistic function implicit in
that mapping.)
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6.1.3 Finer-grained incremental conjectures

In Chapter 4, I defined a way of looking at fine-grained aspects of participants’

final conjectures about a word’s meaning after different amounts of training. This

provides a view of their incremental conjecures with a grain-size proportional to

the number of different training set sizes—in that chapter five or ten sentences.

Ideally, however, one would have such fine-grained resolution about the participant’s

conjecture after each sentence in the training set—not just at the end—and it would

be prohibitively expensive to test all possible set sizes in a systematic way.

One way this might be remedied is to instead run the spatial human simulation

experiments from Chapter 4 to get a series of fine-grained final conjectures, and then

attempt to “backtrack through” the conjectures after each training item. This might

be done in two complementary ways.

The first is a modeling approach. If a model is set up that assumes (i) a unique

starting point for conjectures and (ii) that each item draws a participant’s conjecture

toward a particular point in similarity space more or less strongly (depending on its

informativity), then assuming full randomization of the training sets, a rough idea

of the conjecture path over the course of the training set might be attainable.

In concert with this modeling approach, one might also collect data from a

standard human simulation paradigm run on the same training sets. Though the

standard paradigm gives less fine-grained results than the similarity judgments gath-

ered after each training set, it still gives an indication of nearby words in similarity

space. With this in mind, the backtracking model sketched above might be aug-
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mented to incorporate data from a standard human simulation paradigm.

6.1.4 Main clause syntax and beyond

Chapter 5 gives a preliminary sketch of a model that takes advantage of main

clause syntax features to label verbs as either representational or preferential. There

are multiple ways this sketch could be expanded.

The first involves the corpus used in training the model. As an initial stab, the

use of child-directed speech corpora is crucial for testing the efficacy of this approach.

The current problem with such corpora is the poor state of the parses associated

with their sentences. Good parses are crucial for extracting good subcategorization

frames, so either producing better parses or working around the current parses in

an innovative way is necessary. Second, and perhaps more importantly, corpora

from other languages must be tested. A similar hurdle arises for such corpora—

particularly child-directed speech corpora.

Beyond logistical questions are questions regarding the model itself. In par-

ticular, how quickly does labeling happen if this model is converted into an online

version? And what other sorts of labels might be learned in a similar fashion?

For instance, could different sorts of non-main clause features be helpful in labeling

distinctions among preferentials?
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Appendix A: Appendix A

A.1 Figures and tables

It Ved NP WH S

It Ved NP WH to VP

It Ved NP that S

It Ved NP to VP

NP Ved

NP Ved NP

NP Ved NP NP
NP Ved NP S

NP Ved NP about NP
NP Ved NP that S

NP Ved NP to VP

NP Ved S

NP Ved VP

NP Ved VPing

NP Ved WH S
NP Ved WH to VP

NP Ved about NP

NP Ved for NP to VP

NP Ved if S

NP Ved it that S

NP Ved so

NP Ved that S

NP Ved there to VP

NP Ved to

NP Ved to NP that S

NP Ved to VP

NP was Ved that S

NP was Ved to VP

S, I V
S, NP Ved

Figure A.1: Hierarchical clustering of frames based on data in Figure 2.2.
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verb 1 verb 2 Standardized residual
want love 3.39
want imagine 3.32
remember see 3.32
think promise 3.15
feel doubt 3.15
want think 2.99
think deny 2.91
suppose hate 2.79
think hope 2.77
doubt amaze 2.73
see imagine 2.65
understand deny 2.60
think expect 2.59

Table A.1: Pairs rated more highly in the likert scale task than in the generalized
discrimination task.

A.2 Non-negative projection model

A.2.1 Parametric binary feature model

πj | α ∼ Beta(α, 1)

rij | π ∼ Bernoulli(πj)

A.2.2 Nonparametric binary feature model

In footnote 30 in Section 2.2, I note that a nonparametric version of the non-

negative projection model was implemented. To do this, I use an Indian Buffet

Process prior on the verb binary feature space (Griffiths and Ghahramani, 2006).

This allows us to simultaneously infer the number of features at the same time as we
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infer what those features are. For ease of implementation, a stick-breaking process

representation was used (Teh et al., 2007). A truncation of 100 features appears to

be more than sufficient.

π | α ∼ IBPStick(α)

rij | π ∼ Bernoulli(πj)

A.2.3 Projection principles (feature loading) model

pjk ∼ Exponential(1)

A.3 Response models

A.3.1 Ordinal logit mixed model

Because both the non-negative projection model D̂ = ZB (Section 2.2.6) and

the similarity kernels K (Section 2.4.2) both have strictly non-negative codomains,

an ordinal logit mixed model with strictly positive cutpoints was used. The model

for all participants i, for all but one likert scale response level j, for all verbs m,n

is then
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λi ∼ Gamma(1, 1) = Exponential(1)

ci1 | λ ∼ Exponential(λi)

cij | λ,C>1:j−1 ∼ ci(j−1) + Exponential(λi)

limn | Q ∼ Multinomial(qi1mn, qi2mn − qi1mn, . . .)

where Q is defined by

qacceptability
ijmn ≡ logit−1(cij − rmn)

qsimilarity
ijmn ≡ logit−1(cij −K(m,n))

for verb m and frame n or verb m and verb n, respectively.
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Figure A.2: Distribution over participants of size of acceptability interval mapped
to each rating.
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Figure A.3: Distribution over participants of size of similarity interval mapped to
each rating.
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A.3.2 Multinomial logit mixed model

A standard multinomial logit model with a softmax link was used.

softmax(x) =

[
exp(x1)∑
i exp(xi)

,
exp(x2)∑
i exp(xi)

, . . .

]

The idea behind this model is that participants choose a verb in the generalized

discrimination task based on the similarity of the other two verbs according to some

kernel K. The more similar those two verbs are the more likely the participant is

to choose the other verb. The model also encodes a participant-specific bias vector

bi to account for random variation in how much participant i likes to choose a

particular response based on which position it had on the display, independent of

its semantics.

δi ∼ Gamma(1, 1) = Exponential(1)

bij | δ ∼ Exponential(δi)

timno | B ∼ Categorical

softmax


K(n, o) + bi1

K(m, o) + bi2

K(m,n) + bi3





A.3.2.1 Distribution of bias
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Figure A.4: Distribution over participants of bias for response based on placement
in response list.
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Appendix B: Appendix B

B.1 Generative story for IBP prior

In Chapter 3, I give the generative story for S with finite columns (features).

This generative story does not work for the infinite feature case because the first

outer for-loop would never terminate and thus no observed counts would be gener-

ated. To describe the infinite case, we can use the Indian Buffet Process metaphor,

wherein the feature probabilities are implicitly integrated out.

1: Choose K ∼ Poisson(α) + 1

2: for verb i in 1 : V do

3: for feature k in 1 : K do

4: Choose a feature value sik ∼ Bernoulli
(∑i−1

v=1 svk
i

)
5: end for

6: Choose a number of new features Knew ∼ Poisson( α
K

)

7: for new feature k in 1 : Knew do

8: Set si(K+k) ≡ 1

9: for verb v in 1 : (i− 1) do

10: Set sv(K+k) ≡ 0
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11: end for

12: end for

13: Set K ≡ K +Knew

14: end for

15: for feature k in 1 : K do

16: for syntactic context j in 1 : F do

17: Choose a projection strength pkj ∼ Exponential(λ)

18: end for

19: end for

20: for verb i in 1 : V do

21: Choose a verb prevalence gi ∼ Gamma(γ, δ)

22: for syntactic context j in 1 : F do

23: Choose a competence distribution strength dij ∼ Beta([SP]ij, 1)

24: Choose a cooccurrence count xij ∼ Poisson(gidij)

25: end for

26: end for

B.2 Sampler derivation

In Chapter 3, I give the derivation of the log-likelihood and log-posterior for

D. This in turn yields a relatively simple form for the log-likelihood.
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log P(S,P,D | X; Ψ) ∝ log P(S,P,D; Ψ) + log P(X | D; Ψ)

= log P(S,P,D; Ψ) + log

 V∏
i=1

∏F
j=1 d

xij

ij(
δ +

∑F
j=1 dij

)γ+∑F
j=1 xij



= log P(S,P,D; Ψ) +
V∑
i=1

 F∑
j=1

xij log dij

−
γ +

F∑
j=1

xij

 log

δ +
F∑
j=1

dij



The Jacobian (gradient) ∇ logP(X | D; γ, δ) has cells.1

1The Hessian is also quite easy to compute, but since D is bounded, we need a constrained
optimization method. Most of these methods require only Jacobians.
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∂

∂dmn
log P(X | D; γ, δ) =

∂

∂dmn

V∑
i=1

 F∑
j=1

xij log dij

−
γ +

F∑
j=1

xij

 log

δ +
F∑
j=1

dij



=
∂

∂dmn

 F∑
j=1

xmj log dmj

−
γ +

F∑
j=1

xmj

 log

δ +
F∑
j=1

dmj



=

 F∑
j=1

∂

∂dmn
xmj log dmj

− ∂

∂dmn

γ +
F∑
j=1

xmj

 log

δ +
F∑
j=1

dmj



=
xmn
dmn

− ∂

∂dmn

γ +
F∑
j=1

xmj

 log

δ +
F∑
j=1

dmj



=
xmn
dmn

−

γ +
F∑
j=1

xmj

 ∂ log
(
δ +

∑F
j=1 dmj

)
∂dmn

=
xmn
dmn

−

(
γ +

∑F
j=1 xmj

)
(
δ +

∑F
j=1 dmj

)

This is useful because it can be used in the initialization of a sampler—

e.g. using an optimization procedure to set D to its MLE—and/or in the sampler

itself—e.g. by including the prior over D to get the Jacobian of the log-posterior

∇ logP(X | D; γ, δ)P(D | S,P), given samples for S and P. Finding the Jacobian

of the posterior might be useful if one does not care to quantify the distribution

over D and are satisfied with a point estimate. For instance, the Jacobian of the

log-posterior might be employed in lieu of an Markov Chain Monte Carlo (MCMC)
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approach. In the next section, we derive this Jacobian explicitly in the same section

that we present the necessary equations to construct a Gibbs sampler for D.

B.2.1 Inference equations

I now show how to discover S, P, and D. One way to do this is to construct a

Gibbs sampler for these variables. I show how to construct two mixed approaches:

one that samples S and P using Gibbs, then optimizes D using∇ logP(X | D; γ, δ)P(D | S,P);

and one that samples S, then optimizes D using ∇ logP(X | D; γ, δ)P(D | S,P) and

P using ∇ logP(D | S,P)P(P;λ). The last of these approaches is used the experi-

ment below, though all approaches were implemented, and the code is available on

my github.

I begin by deriving the joint P(S,P,D; Ψ), which, due to the way it factors,

will provide us with the raw ingredients for both the Gibbs transition probabilities

and the optimization gradients. First, note that

P(S,P,D; Ψ) = P(D | S,P)P(P;λ)P(S;α, β)

B.2.1.1 Inferring D

The (log-)prior on D has the following form.
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P(D | S,P) =
V∏
i=1

F∏
j=1

P(dij | S,P)

=
V∏
i=1

F∏
j=1

Γ([SP]ij + 1)

Γ([SP]ij)Γ(1)
d
[SP]ij−1
ij (1− dij)1−1

=
V∏
i=1

F∏
j=1

Γ([SP]ij + 1)

Γ([SP]ij)
d
[SP]ij−1
ij

=
V∏
i=1

F∏
j=1

[SP]ijd
[SP]ij−1
ij

log P(D | S,P) = log

 V∏
i=1

F∏
j=1

[SP]ijd
[SP]ij−1
ij



=
V∑
i=1

F∑
j=1

log
(

[SP]ijd
[SP]ij−1
ij

)

=
V∑
i=1

F∑
j=1

log[SP]ij + ([SP]ij − 1) log dij

Interestingly, the likelihood places a very similar pressure on D:

One can now find the gradient ∇ log[P(X | D; γ, δ)P(D | S,P)]. Because the

log-posterior is the sum of the log-likelihood and the log-prior, one can simply add

the gradient of the log-prior to the gradient of the log-likelihood to get the log-

posterior. But the gradient of the log-likelihood has already derived, so one need

merely derive the gradient of the log-prior.
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∂

∂dmn
log P(D | S,P) =

∂

∂dmn

V∑
i=1

F∑
j=1

log[SP]ij + ([SP]ij − 1) log dij

=
∂

∂dmn
([SP]mn − 1) log dmn

=
[SP]mn − 1

dmn

∂

∂dmn
log[P(X | D; γ, δ)P(D | S,P)] =

∂

∂dmn
log P(X | D; γ, δ) +

∂

∂dmn
log P(D | S,P)

=
xmn
dmn

−

(
γ +

∑F
j=1 xmj

)
(
δ +

∑F
j=1 dmj

) +
[SP]mn − 1

dmn

=
xmn + [SP]mn − 1

dmn
−

(
γ +

∑F
j=1 xmj

)
(
δ +

∑F
j=1 dmj

)

This gradient might be used in optimizing D within the internal loop of a

Gibbs sampler (instead of, or prior to, sampling). Another option is to sample D as

well. The relevant equations:
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P(dmn | D−(mn),S,P,X; Ψ) ∝ P(X | dmn,D−(mn); γ, δ)P(dmn,D−(mn) | S,P)

∝ P(xmn | dmn; γ, δ)P(dmn | S,P)

=
dxmn
mn(

δ +
∑F
j=1 dmj

)γ+∑F
j=1 xmj

[SP]mnd
[SP]mn−1
mn

=
[SP]mnd

xmn+[SP]mn−1
mn(

δ +
∑F
j=1 dmj

)γ+∑F
j=1 xmj

∝ d
xmn+[SP]mn−1
mn(

δ +
∑F
j=1 dmj

)γ+∑F
j=1 xmj

log P(dmn | D−(mn),S,P,X; Ψ) ∝ log
d
xmn+[SP]mn−1
mn(

δ +
∑F
j=1 dmj

)γ+∑F
j=1 xmj

= (xmn + [SP]mn − 1) log dmn −

γ +
F∑
j=1

xmj

 log

δ + dmn +
F∑
j 6=n

dmj



This leaves us to define a proposal distribution for dmn. Using a symmetric

proposal distribution (given the current dmn) is preferable in order to reduce com-

putations; if the proposal is symmetric, we need not compute the ratio of proposal

probabilities. Since dmn must be bounded on (0, 1), one simple symmetric proposal

distribution is Uniform(0, 1). The problem with this distribution is that it will often

result in poor proposals, since it is insensitve to the current dmn—henceforth, dold
mn.

282



Instead, one might condition the parameters of the proposal based on the closest

bound. For instance, one might use

Uniform

(
doldmn −

min
(
doldmn, 1− doldmn

)
b

, doldmn +
min

(
doldmn, 1− doldmn

)
b

)

where b ≥ 1. The size of b determines the size of the possible jumps. For

instance, if dold
mn = 0.5, b = 1 yields Uniform(0, 1), b = 2 yields Uniform(.25, .75),

etc. This is dynamic in the sense that, as dmn approaches either bound, the interval

over which the proposals are drawn gets smaller, regardless of b. This is nice, because

intuitively, if dmn is closer to the bounds already, we are probably fairly sure it should

be there (though this means we will need a good initialization strategy).

This dynamicity presents a problem, however, in that the proposals will no

longer be symmetric in the majority of cases. (The only time the proposals will be

symmetric is if dnew
mn = 1 − dold

mn.) Luckily, though, the Uniform PDF is simple, so

the ratio of proposal densities is just

P(dnewmn → doldmn)

P(doldmn → dnewmn )
=

b
2min(dnewmn ,1−dnewmn )

b
2min(doldmn,1−doldmn)

=
min

(
doldmn, 1− doldmn

)
min (dnewmn , 1− dnewmn )

The full log acceptance probability is then
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log A(doldmn → dnewmn ) = log min

(
1,

P(dnewmn | D−(mn),S,P,X; Ψ)

P(doldmn | D−(mn),S,P,X; Ψ)

P(dnewmn → doldmn)

P(doldmn → dnewmn )

)

= min

(
0, log

P(dnewmn | D−(mn),S,P,X; Ψ)

P(doldmn | D−(mn),S,P,X; Ψ)

P(dnewmn → doldmn)

P(doldmn → dnewmn )

)

= min



0,

(xmn + [SP]mn − 1) (log dnewmn − log doldmn)−

(
γ +

∑F
j=1 xmj

)


log
(
δ + dnewmn +

∑F
j 6=n dmj

)
−

log
(
δ + doldmn +

∑F
j 6=n dmj

)


+

log min
(
doldmn, 1− doldmn

)
− log min (dnewmn , 1− dnewmn )



Though this equation looks quite expensive, much of the necessary computa-

tions can be done once and saved.

B.2.1.2 Inferring P

The simplicity of our prior on P makes its gradient and sampling equations

extremely easy to derive. Whether sampling or optimizing P, we assume that D,

S, and X are known.
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log P(P | D,S,X;λ) ∝ log P(D | P,S) + log P(P;λ)

We already know the first term, so we need merely derive the second. (In this

section, we leave the restrictor of the sums over k undefined. The reason for this

has to do with the way S is sampled, so we defer discussion until the next section.)

log P(P;λ) =
∑
k

F∑
j=1

log P(pkj ;λ)

=
∑
k

F∑
j=1

log (λ exp[−λpkj ])

∝
∑
k

F∑
j=1

−λpkj

= −λ
∑
k

F∑
j=1

pkj

= −λ‖P‖1

Note that this is just an L1 regularizer, as mentioned above. The Jacobian of

the prior is quite simple; the Jacobian of the likelihood (prior on D) is a bit more

complicated.
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∂

∂pln
log P(P;λ) =

∂

∂pln

−λ∑
k

F∑
j=1

pkj



= −λ

∂

∂pln
[log P(D | P,S) + log P(P;λ)] =

∂

∂pln
log P(D | P,S) +

∂

∂pln
log P(P;λ)

= −λ+
∂

∂pln
log P(D | P,S)

= −λ+
∂

∂pln

V∑
i=1

F∑
j=1

log[SP]ij + ([SP]ij − 1) log dij

= −λ+
V∑
i=1

F∑
j=1

∂

∂pln
log[SP]ij +

∂

∂pln
([SP]ij − 1) log dij

= −λ+
V∑
i=1

F∑
j=1

∂

∂pln
log
∑
k

sikpkj +
∂

∂pln
(−1 +

∑
k

sikpkj) log dij

= −λ+
V∑
i=1

F∑
j=1

silpln∑
k sikpkj

+ silpln log dij

= −λ+
V∑
i=1

F∑
j=1

silpln

[
1∑

k sikpkj
+ log dij

]

= −λ+ pln

V∑
i=1

sil

F∑
j=1

1

[SP]ij
+ log dij

286



The Gibbs sampling equation is given by

log P(pln | P−(ln),D,S,X;λ) ∝ log P(D | pln,P−(ln),S) + log P(pln,P−(ln);λ)

=
V∑
i=1

F∑
j=1

log[SP]ij + ([SP]ij − 1) log dij − λ
∑
k

F∑
j=1

pkj

∝ −λpln +

∑V
i=1 log[SP]in + ([SP]in − 1) log din

+
∑V
i=1

∑F
j 6=n log[SP]ij + ([SP]ij − 1) log dij

∝ −λpln +
V∑
i=1

log[SP]in + ([SP]in − 1) log din

= −λpln +
V∑
i=1

log[SP]in +

([∑
k

sikpkn

]
− 1

)
log din

∝ −λpln +
V∑
i=1

log[SP]in + (silpln − 1) log din

B.2.1.3 Inferring S

As with P, we ultimately want to compute

287



log P(S | D,P,X;λ) ∝ log P(D | P,S) + log P(S;α, β)

And since we already know the form of logP(D | P,S), we need merely define

the prior over S. I specified two related priors on S: one that requires a set number of

features K and another that allows for an unbounded number of features. Both take

advantage of the Beta-Bernoulli conjugacy. We’ll derive the finite (parametric) case

first, then return to the infinite (nonparametric) case. (A less explicit derivation

of the finite case can be found in Griffiths and Ghahramani 2011, which is more

concerned with the infinite case.)

The finite prior is given by
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P(S | α, β,K) =

∫
(0,1)K

dπ P(S, π | α, β,K)

=

∫
(0,1)K

dπ P(S | π)P(π | α, β,K)

=

∫
(0,1)K

dπ
K∏
k=1

P(πk | α, β)
V∏
i=1

P(sik | πk)

=

∫
(0,1)K

dπ
K∏
k=1

Γ(α+ β)

Γ(α)Γ(β)
πα−1k (1− πk)β−1

V∏
i=1

πsikk (1− πk)1−sik

=

∫
(0,1)K

dπ
K∏
k=1

πα−1k (1− πk)β−1
V∏
i=1

πsikk (1− πk)1−sik

=

∫
(0,1)K

dπ
K∏
k=1

πα−1k (1− πk)β−1π
∑V

i=1 sik
k (1− πk)V−

∑V
i=1 sik

=

∫
(0,1)K

dπ
K∏
k=1

πα−1k (1− πk)β−1π
∑V

i=1 sik
k (1− πk)V−

∑V
i=1 sik

=
K∏
k=1

∫
(0,1)

dπ π
α−1+

∑V
i=1 sik

k (1− πk)β−1+V−
∑V

i=1 sik

=
K∏
k=1

∫
(0,1)

dπ π
α−1+

∑V
i=1 sik

k (1− πk)β−1+V−
∑V

i=1 sik

=
K∏
k=1

Γ
(
α+

∑V
i=1 sik

)
Γ
(
β + V −

∑V
i=1 sik

)
Γ(α+ β + V )

∝
K∏
k=1

Γ

(
α+

V∑
i=1

sik

)
Γ

(
β + V −

V∑
i=1

sik

)
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And the log-prior is

log P(S | α, β) ∝ log
K∏
k=1

Γ

(
α+

V∑
i=1

sik

)
Γ

(
β + V −

V∑
i=1

sik

)

=
K∑
k=1

log Γ

(
α+

V∑
i=1

sik

)
+ log Γ

(
β + V −

V∑
i=1

sik

)

Since it will be useful in deriving the Gibbs equation, we now derive the

conditional distribution of sil given all other cells of S.

P(sml | S−(ml);α, β) ∝ P(sml,S−(ml);α, β)

∝
K∏
k=1

Γ

(
α+

V∑
i=1

sik

)
Γ

(
β + V −

V∑
i=1

sik

)

∝ Γ

α+ sml +
V∑
i 6=m

sil

Γ

β + V − sml −
V∑
i6=m

sil



Note that this can be simplified when taking the ratio of the probability that

sml = 1 to the probability that sml = 0.
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P(sml = 1 | S−(ml);α, β)

P(sml = 0 | S−(ml);α, β)
∝

Γ
(
α+ 1 +

∑V
i 6=m sil

)
Γ
(
β + V − 1−

∑V
i 6=m sil

)
Γ
(
α+ 0 +

∑V
i 6=m sil

)
Γ
(
β + V − 0−

∑V
i 6=m sil

)

=
α+

∑V
i 6=m sil

β + V − 1 +
∑V
i 6=m sil

(Note that inverting the ratio results in inverting the term involving α with

respect to the term involving β.)

we now move onto the infinite case. Due to some complexities that arise from

taking limits, the prior in the infinite case must be specified in terms of equivalence

classes over binary matrices. Griffiths and Ghahramani (2011) discuss this exten-

sively. The gist is that, if variates (instantiations) of S are treated as sequences of

binary numbers, one can define a mapping [·] that maps from unordered sequences

to ordered sequences. The net effect of this is to reduce the support of the prior

considerably. The prior over these equivalence classes can then be defined in terms

of a sum over the image of [S].
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P([S] | α) =
∑
S∈[S]

P(S | α)

=
αK+ exp[−αHV ]∏2V −1

h=1 Kh!

K+∏
k=1

Γ(
∑V
i=1 sik)Γ(V + 1−

∑V
i=1 sik)

V !

where K+ is the number of columns k for which
∑V

i=1 sik is nonzero and Kh

is the number of columns that correspond to the hth binary number. (Only K+ is

important in the actual sampling, since it gives the number of rows of P we must

keep track of.) This makes the relationship to the finite case clear ( α
K
→ 0 and

β ≡ 1). The only difference is in the fact that K+ may vary. (Indeed, this is the

point of using the nonparametric prior in the first place.)

Interestingly, this equation simplifies substantially when computing the same

conditionally probability as above. Indeed, the infinite version of P(sml | S−(ml);α, β)

is just like the finite version.

P(sml = 1 | S−(ml);α, β)

P(sml = 0 | S−(ml);α, β)
∝

∑V
i 6=m sil

V −
∑V
i 6=m sil

The trade-off is that some of the complexity inherent to the infinite version is

moved into other procedures in the sampler, as we specify below.
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we can now move onto computing logP(S | D,P,X;λ). For both D and P, we

found both the gradient for the relevant quantity and the Gibbs equation. In this

case, computing a gradient is not useful since S is discrete. And since the constraints

would not be linear, we cannot use a method like Integer Linear Programming (ILP).

Thus, we will compute only the Gibbs equations.

General to both the finite and infinite cases (where, as for P, [SP]mj assumes

the replacement of sml with the proposed):

log P(sml | S−(ml),D,P,X; Ψ) ∝ log P(sml | S−(ml);α, β) + log P(D | sml,S−(ml),P)

= log P(sml | S−(ml);α, β) +

[∑F
j=1 log[SP]mj + ([SP]mj − 1) log dmj

]

+
[∑V

i6=m
∑F
j=1 log[SP]ij + ([SP]ij − 1) log dij

]

∝ log P(sml | S−(ml);α, β) +
F∑
j=1

log[SP]mj + ([SP]mj − 1) log dmj

= log P(sml | S−(ml);α, β) +
F∑
j=1

log[SP]mj +

([∑
k

smkpkj

]
− 1

)
log dmj

∝ log P(sml | S−(ml);α, β) +
F∑
j=1

log[SP]mj + (smlplj − 1) log dmj

= log P(sml | S−(ml);α, β) +
F∑
j=1

log

smlplj +
∑
k 6=l

smkpkj

+ (smlplj − 1) log dmj
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The log posterior odds for the finite case is then given by

log
P(sml = 1 | S−(ml),D,P,X; Ψ)

P(sml = 0 | S−(ml),D,P,X; Ψ)
∝ log

α+
∑V
i 6=m sil

β + V − 1 +
∑V
i 6=m sil

+

∑F
j=1 log[SP]mj,1 + (plj − 1) log dmj

−
∑F
j=1 log[SP]mj,0 − log dmj

∝ log
α+

∑V
i 6=m sil

β + V − 1 +
∑V
i 6=m sil

+
F∑
j=1

log[SP]mj,1 − log[SP]mj,0

+plj log dmj

= log
α+

∑V
i 6=m sil

β + V − 1 +
∑V
i 6=m sil

+
F∑
j=1

log
[
plj +

∑
k 6=l smkpkj

]

− log
[∑

k 6=l smkpkj
]

+plj log dmj

And the log posterior odds for the infinite case is given by
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log
P(sml = 1 | S−(ml),D,P,X; Ψ)

P(sml = 0 | S−(ml),D,P,X; Ψ)
∝ log

∑V
i6=m sil

V −
∑V
i 6=m sil

+
F∑
j=1

log
[
plj +

∑
k 6=l smkpkj

]

− log
[∑

k 6=l smkpkj
]

+plj log dmj

Finally, note that the log posterior odds is equivalent to the acceptance proba-

bility since the only reasonable proposal distribution (up to isomorphism), Bernoulli(1−

sold
ml ), will always cancel out.
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