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Improving wheat grain yield potential is imperative to match the increasing food 

demand associated with a fast growing population. Genetic and modeling approaches 

were employed to investigate the genetic basis and phenotype network regarding 

grain yield and yield related traits in a soft red winter wheat doubled haploid 

population. The population and two parents were evaluated in five year-location trials 

in the USA and genotyped by high throughput DNA markers including simple 

sequence repeat (SSR) and single nucleotide polymorphism (SNP). Bi-parental 

linkage mapping identified a number of QTLs for grain yield and yield related traits 

among which sixty were for grain yield components (GYLD, grain yield; SPSM, 

spikes per square meter; TGW, thousand grain weight; GPS, grains per spike; GWPS, 

grain weight per spike), seventy four were for plant architecture (PHT, plant height; 

FLL, flag leaf length; FLW, flag leaf width; FLA, flag leaf area; FLS, flag leaf shape 



  

or length/width ratio), and one hundred and nine were for spike morphology (SL, 

spike length; TSN, total spikelet number per spike;  FSN, fertile spikelet number per 

spike; SSN, sterile spikelet number per spike; SC, spike compactness; GSP, grains 

per spikelet). In addition, structural equation modeling is described to construct a 

phenotype network. It revealed that GSP and FSN may mediate yield component 

compensation. Furthermore, doubled haploid lines DH96 and DH84 may have 

potential as new high-yielding cultivars for the Mid-Atlantic region.    
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Chapter 1: Literature review 

Introduction 

Improving grain production is the key to ensuring food supply and social stability across 

the globe. In the last century, the great success of Green Revolution featuring high-

yielding dwarf rice and wheat plants under heavy nitrogen fertilizers helped to feed an 

increasing population. However, it has come to a point where continuous yield increases 

driven by successful breeding management might be approaching a ceiling. This review 

aims to provide the most current developments in wheat grain yield improvement by 

examining the yield and yield contributing traits from a physiological and genetic 

perspective and by describing state-of-art technologies in current breeding practice. 

Increasing population and food supply  

According to the official estimates and projections from United Nations, the world 

population will reach 8.1 billion in 2025, and further increase to 9.6 billion in 2050 and 

10.9 billion by 2100 (UN DESA, 2013). Meanwhile, global crop production needs to 

double by 2050 to meet the demands from the rising population, changing diets, and 

increasing biofuel consumption (FAO, 2012; Tilman et al., 2011). Yields of major crops 

like maize, rice, wheat, and soybean, however, are increasing at only 1.6%, 1.0% 0.9% 

and 1.3% per year, which is far slower than the 2.4% per year rate required to double 

global production by 2050 (Ray et al., 2013). Yield potential improvement is critical to 

meet this challenge.  
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Wheat evolution 

The allohexaploid bread wheat (Triticum aestivum L.; 2n = 6x = 42 chromosomes; 

genomic code AABBDD) is the product of two hybridization events involving three 

diploid (2x; 2n = 14) grass species within the tribe Triticeae: Triticum urartu (AA), an 

unknown close relative of Aegilops speltoides (BB), and Aegilops tauschii (DD) 

(Marcussen et al., 2014). The first hybridization is hypothesized to happen between the A 

and B genome donors 300,000–500,000 years ago, resulting in the wild tetraploid emmer 

wheat (Triticum turgidum; AABB) (Marcussen et al., 2014; Peng et al., 2011). About 

10,000 years ago, emmer wheat cultivation began and expanded eastwards from the 

Fertile Crescent to the natural habitat of wild grass Aegilops tauschii during which 

cultivated emmer wheat hybridized with this D genome donor to form modern hexaploid 

bread wheat (AABBDD) (Peng et al., 2011; Shewry, 2009). 

Brief overview of quantitative genetics  

Phenotype classification 

Phenotype or the expression of a trait is an observable characteristic of an individual and 

varies between individuals. Phenotypes of organisms are classified into three different 

forms: qualitative, quantitative and threshold traits (Birnbaum, 1972). A qualitative trait 

is expressed discretely and individual phenotypes fall into discrete categories, as opposed 

to a quantitative trait, where phenotypes show a continuous range of values such as 

weight and height (Abiola et al., 2003). Threshold traits are dimorphic traits with 

polygenic bases but show a limited number of phenotypes such as molting in insects 

which is controlled by the levels of juvenile hormones (Moorad and Linksvayer, 2008; 
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Roff, 2008).  In agricultural production, most agronomic traits of economic importance 

are quantitative traits. 

Genetic and environment values  

Quantitative traits have been extensively studied since the 1920s, after the establishment 

of quantitative genetics, which, in conjunction with statistics and Mendelian genetics, 

provided the scientific framework for modern plant breeding (Lamkey and Lee, 1993). 

Usually, quantitative traits show phenotypic variation among individuals and have a 

complicated genetic architecture, involving many genes throughout the genome with 

variable contributions to the overall phenotype (Holland, 2007). The genes controlling 

quantitative traits are affected by gene-by-gene and gene-by-environment interactions 

(Xu and Zhu, 2012). The environment, defined as the integrated influence of all 

nongenetic variables affecting phenotype, adds more complexity to quantitative traits (Xu 

and Zhu, 2012).  

 

One of the fundamental principles of quantitative genetics is that the phenotypic value P 

of an individual for a given trait can be considered as the sum of that individual’s 

genotypic value G plus the environmental value E, thus, in linear format:  P=G+E, where 

G can be divided into additive (A), dominant (D) and epistatic (I) values (Walsh, 2001). 

To better account for quantitative traits, especially in breeding, the additive model needs 

to be extended to include G× E, which is known as genotype-by-environment interaction 

(Eeuwijk, 2008). In natural populations, the variation of a quantitative trait often 

approximates a statistical normal distribution as it is the sum of small effects caused by 

genes and the environment (Xu, 2010). Most important agronomic traits that constitute 
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the primary focus of plant breeding such as grain yield are quantitative in nature, usually 

referred to as complex traits, with variation believed to be attributable to dozens if not 

hundreds of underlying genes (Crosbie et al., 2008). A region of the genome containing 

one or more genes that affect variation in a quantitative trait is known as quantitative trait 

locus (QTL). QTL identification and diagnostic marker development for desired traits are 

crucial so that modern breeders can deliver superior new cultivars with efficiency and 

accuracy. 

Yield-related quantitative traits in wheat 

Grain yield 

Improving the grain yield potential of wheat has been the principal aim of wheat breeding 

programs worldwide and has helped to maintain the viability of agricultural systems in 

both developed and developing countries (Kuchel et al., 2007b). Although, genetic 

improvement in yield potential, resistance to diseases, and adaptation to abiotic stresses 

have contributed to the increases of grain production in the last three decades, it is widely 

accepted that the rates of progress and genetic gains from wheat breeding have slowed 

down and even decreased (Reynolds et al., 2012; Reynolds et al., 2009). Part of the 

reason is due to the lack of sufficient knowledge about the mechanisms, complex 

biological pathways, and their corresponding genetic basis underlying the responses of 

wheat in specific environments (Henry and Prasanta, 2004). In recent years, the rapid 

advances in biotechnology and molecular biology, as well as research on model 

organisms, have provided powerful tools and references for crop genetic improvement.   
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Our current understanding of grain yield and its genetic constraints can be expressed by 

the following three perspectives:  

1) The classical view:  Grain yield= Spikes/m2 × Grains/spike × Grain Weight; 

2) The carbon-economy-based view: Grain yield= Light intercepted (LI) × 

Radiation use efficiency (RUE) × Harvest index (HI); 

3) The water-use-based view: Grain yield= W × Water use efficiency (WUE) × 

Harvest Index (HI); 

where RUE is the overall photosynthetic efficiency of the crop; W is the water transpired 

by the crop plus direct evaporation from the soil; WUE is the ability of the crop to 

produce biomass per unit of water evapotranspired (Matthew et al., 2004). 

 

A new strategy to boost wheat productivity through genetic intervention has been 

proposed, combining these three views. It features higher photosynthetic capacity, 

improved partitioning of assimilates and genetic tools to improve breeding efficiency 

(Reynolds et al., 2012). 

 

Grain yield is the end product of the interaction of a large number of physiological and 

biochemical processes, genetically complex, and determined concurrently by multiple 

plant characteristics (Marza et al., 2006; Sharma et al., 2003). The conventional method 

to explore complex traits is to deconstruct them into simpler components for further 

exploration and characterization. In the case of wheat grain yield, these include grains per 

spike, spikes per unit area and grain weight (1000-grain-weight) (Mengistu et al., 2012). 

Breeding efforts focused on partitioning more assimilates to reproductive development 
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and less to vegetative dry matter production have resulted in modern wheat cultivars with 

more grains per spike and more grains per square meter (Frederick and Bauer, 1999). 

Wheat genetics studies have located QTLs for grain yield and yield components on all 21 

chromosomes of bread wheat (Bennett et al., 2012a; Heidari et al., 2011; Wu et al., 

2012). However, the quantitative nature of QTLs and their strong interaction with the 

environment make constant and stable QTL detection difficult and their applicability 

limited to a very specific environment even though a number of them are major QTLs 

accounting for more than 10% of the phenotypic variation, as was verified by Heidari et 

al. (2011). Furthermore, the unstable correlation between grain yield and yield 

components reported from separate studies indicates its underlying complexity (Bennett 

et al., 2012a; Heidari et al., 2011; Mengistu et al., 2012). Availability of large sets of 

phenotypic data, genomic data from SNP arrays and new QTL mapping methods will 

help to detect more QTLs and elucidate the relationships between grain yield and its 

related traits with more precision. 

Plant architecture  

Canopy architecture of higher plants is defined by the degree of branching, internodal 

elongation, and shoot determinacy or, simply, as the spatial configuration of the 

aboveground plant organs (Fageria et al., 2006; Wang and Li, 2008). Some of the detailed 

characteristics of plant architecture involve plant height, tillering, branching patterns, leaf 

size and shape, configuration of leaf relative to the sun and spatial arrangement of leaves 

(Fageria et al., 2006). Plant architecture has been a focus of research because of its close 

association with photosynthesis and grain yield (Hedden, 2003). 
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Plant height, mainly determined by stem elongation, is an important agronomic trait in 

cereal crops influencing plant architecture and contributing to grain yield (Wang and Li, 

2008; Wang et al., 2010). In high soil fertility conditions, the stems of tall cultivars are 

unable to support the resultant weight of plump grains. High-yielding cultivars fall over 

in the field before maturity, a process known as lodging, with consequent large yield 

losses (Hedden, 2003). Introduction of dwarfing genes into cereal crops, such as Rht-B1b 

and Rht-D1b in wheat and sd1 in rice, produced semi-dwarf plants with short strong 

stalks as well as more assimilate partitioned into the grain leading to the great increases 

of wheat and rice yield, known as the Green Revolution (Hedden, 2003). Since then, the 

semi-dwarf phenotype has been extensively selected as the ideal trait for high-yielding 

cultivars in modern crop breeding programs. However, extremely short plants are 

disadvantageous because leaves are very closely spaced on a short stem causing increased 

shading within the canopy, as well as poor ventilation and light transmission in the lower 

canopy, which affects seed-filling and ultimately decreases yield (Yoshida, 1972; Zhang 

et al., 2011). Thus, breeding a cultivar with optimum plant height for a target 

environment is necessary. As with grain yield, QTLs for plant height have been mapped 

on all 21 chromosomes of wheat (Wu et al., 2010). 

 

Leaves are responsible for photosynthesis that provides photosynthetic products in plants. 

The flag leaf is the last leaf to emerge before the spike and plays a dominant role in 

determining grain yield (Yoshida, 1972). Translocation of carbohydrates from the flag 

leaf is almost entirely directed towards the grain while that from the second and third 

leaves is only partly directed towards the grain which underscores the important influence 
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of shape and size of flag leaves on yield performance (Monyo and Whittington, 1973). 

Both Dere and YIildirim (2006) and Monyo and Whittington (1973) found a positive 

correlation between the flag leaf length and width with grain yield in bread wheat. 

Among the few QTL studies on leaf morphology in wheat, Jia et al. (2013a) reported a 

major QTL explaining 28.7-35.6% of the phenotypic variation of flag leaf width and that 

the Wangshuibai allele reduced flag leaf width up to 3 mm. This QTL was inherited as a 

semi-dominant gene, designated as TaFLW1, and was fine-mapped to a 0.2 cM interval 

on chromosome 5A (Xue et al., 2013).  

Spike morphology  

The morphology of wheat spike is characterized by its spike length, fertile spikelet 

number per spike, sterile spikelet number per spike, and spikelet compactness. The wheat 

spike harbors spikelets where florets develop and produce grains. Spike morphology is 

relevant to grain yield because it determines the number of grains. Since the 1960s, 

genetic gains in grain yield of wheat have generally been achieved by improvements in 

grain number per spike and spikes per square meter, with little change in individual grain 

weight (Gaju et al., 2009). Thus, increasing grain number per se by modifying the spike 

morphology may open new opportunities for higher grain yield potential. 

 

In bread wheat, Q, C, and S1 are the three major domestication genes affect the gross 

morphology of the spike. The Q gene is located on chromosome arm 5AL and 

pleiotropically influences not only spike length and shape, but also other domestication 

related traits including seed threshability, glume keeledness, rachis fragility, plant height, 

and spike emergence time (Faris et al., 2014). The C gene is located on chromosome 2D 
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and defines a subspecies of hexaploid wheat known as T. aestivum ssp. compactum 

(Host) MacKey, or club wheat, which has a characteristic compact spike due to a 

dominant C allele (Faris et al., 2014). The S1 gene on chromosome 3D defines another 

subspecies known as T. aestivum ssp. sphaerococcum (Percival) MacKey, or shot wheat, 

which is characterized by having round seed, round glumes, and a short dense spike 

(Faris et al., 2014; McIntosh et al., 2013). Therefore, common wheat (ssp. aestivum) has 

the genotype QcS1, club wheat (ssp. compactum) is QCS1, and shot wheat (ssp. 

sphaerococcum) is Qcs1 (McIntosh et al., 2013). In addition to these loci, all twenty one 

wheat chromosomes have been associated with spike related traits (Borner et al., 2002; 

Cui et al., 2012; Deng et al., 2011; Kumar et al., 2007; Ma et al., 2007b; Marza et al., 

2006; Wang et al., 2011). Furthermore, mapping QTL as Mendelian factors was first 

reported by Deng et al. (2011) who investigated wheat spike traits in a F2 population. 

This population showed a clear 3:1 segregation ratio for spike number per plant, spike 

length, and grain number per spike. The underlying QTL was mapped to the chromosome 

4B and explained 30.1 to 67.6% of the phenotypic variation across environments. Further 

fine mapping and molecular characterization of this region has not been reported yet. 

Cloned QTL/genes related to grain yield in cereal crops 

Grain related traits  

Grain morphology and grain filling rate determine grain weight and thus, grain yield. The 

first cloned major QTL related to grain morphology was GS3 which explained 80-90% of 

the variation for grain weight and length in a rice BC3F2 population derived from a cross 

between Minghui 63 (large grain) and Chuan 7 (small grain) (Fan et al., 2006). Initial 

QTL analysis mapped GS3 on chromosome 3. Fine mapping narrowed down the 
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candidate region to a DNA fragment of 7.9 kb in length where a full-length cDNA was 

identified. GS3 encodes a transmembrane protein consisting of a putative PEBP-like 

domain, a putative TNFR/NGFR family cysteine-rich domain and a VWFC module. A C 

to A mutation in its second exon changed a cysteine codon (TGC) in Chuan 7 to a 

termination codon (TGA) in Minghui 63 which yields a premature termination and a 178-

aa truncation in the C-terminus. Overexpression of GS3 not only produces short grains 

but also results in reduced plant size, including shortened height, leaves, and panicles, 

suggesting its role as a negative regulator with pleiotropic effects (Mao et al., 2010). 

 

GW2 was the second cloned major QTL for grain size in rice (Song et al., 2007). This 

QTL was identified and molecularly characterized from a F2 population derived from a 

japonica × indica cross (WY3 × Fengaizhan-1). GW2 encodes a RING protein with E3 

ubiquitin ligase activity. Compared with the Fengaizhan-1 allele at locus GW2, the WY3 

allele has a 1-bp deletion in exon 4, resulting in a premature stop codon which leads to 

truncation of 310 amino acid residues. This loss-of-function mutation produces 

substantially more and longer cells in outer parenchyma cell layer of the spikelet as well 

as larger endosperm cells and accelerated grain filling. Additionally, the WY3 allele 

increases grain size and yield with little influence on eating or cooking quality making it 

a useful QTL in breeding. 

 

GS5, the first cloned positive regulator, controls grain size by regulating grain width, 

filling and weight in rice (Li et al., 2011). Primary QTL mapping detected this QTL on 

the short arm of chromosome 5 in a doubled haploid (DH) population derived from the 
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cross between Zhenshan 97 (large grain size) and H94 (small grain size). Fine mapping 

resolved GS5 to a candidate region of 11.6-kb in length where there was only one 

predicted open reading frame (ORF). This ORF has ten exons and encodes a putative 

serine carboxypeptidase. GS5 positively regulates grain size by increasing cell number in 

the inner parenchyma cell layer and the cell size of palea and GS5 is further shown to be 

a positive modulator upstream of cell cycle genes whose expression is significantly 

elevated when GS5 is overexpressed. The observed grain size and yield difference 

between Zhengshan 97 (large grain size) and H94 (small grain size) was due to the 

polymorphisms in the GS5 promoter region where strong/weak promoters were 

associated with high/low yield. The Zhengshan 97 allele was expressed with more 

abundance in the palea/lemma at 2, 4 and 5 day before heading and in the endosperm at 

10 days after fertilization which corresponded well with critical stages for grain width 

and grain filling.  

 

GRAIN INCOMPLETE FILLING 1 (GIF1) was the first cloned and functionally analyzed 

QTL for grain-filling (Wang et al., 2008). GIF1 is located on chromosome 4 and encodes 

a cell-wall invertase required for carbon partitioning during early grain-filling. 

Specifically, GIF1 unloads sucrose in the ovular and stylar vascular tissues for starch 

synthesis in the endosperm during grain-filling. The gif1 mutant has a 1-nt deletion in the 

coding region which results in a premature stop and reduced grain weight. During grain 

filling, the wild-type GIF1 allele is expressed in the ovular vascular trace, pericarp and 

endosperm tissues. In contrast, the cultivated GIF1 allele is mainly confined to the ovular 

trace which leads to a higher accumulation level of glucose, fructose and sucrose and, 
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hence, increased grain weight. This restricted expression pattern of cultivated GIF1 gene 

is caused by accumulated mutations in its promoter region during rice domestication both 

in japonica and indica.  

Plant architecture 

The generalization of dwarfing genes in wheat and rice cultivars was crucial to the 

success of the Green Revolution. Reduced height-B1b (Rht-B1b) and Reduced height-

D1b (Rht-D1b) are known as the green revolution genes in wheat (Peng et al., 1999). 

Their wild-type alleles Rht-B1a and Rht-D1a encode DELLA proteins which are 

transcriptional regulators that repress gibberellin (GA)-responsive growth. Rht-B1b and 

Rht-D1b both contain single nucleotide substitutions causing premature stop codons in 

the N-terminal coding region leading to truncated proteins with increased repression of 

GA signal transduction. semidwarf-1 (sd-1) is known as the green revolution gene in rice 

and encodes gibberellin 20-oxidase (GA20ox) which is an enzyme catalyzing three 

intermediate steps of reactions converting GA precursors to GA (GA53 → GA44→ 

GA19→ GA20) (Monna et al., 2002; Sasaki et al., 2002). Its widely-used allele is from the 

Chinese cultivar, Dee-geo-woo-gen that contains a 383-bp deletion in the GA20ox gene 

(known as OsGA20ox2) resulting in a premature stop codon and a highly truncated 

inactive enzyme (Hedden, 2003). 

 

MONOCULM 1 (MOC1) is the first cloned key regulator of rice tiller number (Li et al., 

2003). A screen of mutants with altered tiller numbers identified a rice plant with only 

one main culm, named monoculm 1 (moc1). moc1 is caused by a recessive mutation at a 

single locus and was mapped to the chromosome 6 of rice. MOC1 encodes a plant-
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specific GRAS family nuclear protein and is mainly expressed in the axillary buds to 

initiate axillary buds and to promote their outgrowth. Rice plants with enhanced 

expression of MOC1 produced more tillers as expected. In contrast, moc1 is not able to 

initiate axillary meristem and therefore, has only one main culm.  

 

Rice Narrow leaf 1(Nal1) encodes a plant specific protein preferentially expressed in 

vascular tissues with rich abundance (Qi et al., 2008). A 30-bp deletion in its coding 

region is significantly associated with reduced polar auxin transport capacity and affects 

the distribution pattern of vascular bundles leading to narrower leaves with fewer 

longitudinal veins. NARROW AND ROLLED LEAF 1 (NRL1) was mapped to 

chromosome 12 in rice. It encodes the cellulose synthase-like protein D4 (OsCsID4) 

which plays a crucial role in leaf expansion in rice (Hu et al., 2010). Its three mutants 

(single base substitutions at three different loci) nrl1-1, nrl1-2, and nrl1-2 are smaller and 

show erect, narrow and semi-rolled leaves compared to the NRL1 genotype. 

Spike morphology 

Grain number per panicle is one of the most important yield components in cereals. The 

first cloned QTL for grain number per panicle was Gn1a in rice (Ashikari et al., 2005). 

This QTL was mapped by using 96 backcross inbred lines derived from the cross 

between Habtaki (higher grain number) and Koshihikari (lower grain number). A major 

QTL contributed by Habataki explained 44% of the grain number variation and was 

identified on chromosome 1. This QTL was further fine-mapped to a region of 6.3 kb, 

where there was only one predicted open reading frame. Molecular characterization of 

Gn1a showed that it encodes a cytokinin oxidase/dehydrogenase (OsCKX2) whose 
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reduced expression causes cytokinin accumulation in the inflorescence meristem and 

increases the number of reproductive organs which leads to higher grain number per 

panicle enhancing grain yield. Based on comparative genomics, TaCKX6-D1 a wheat 

ortholog of the rice OsCKX, was cloned and located on the wheat chromosome 3D 

(Zhang et al., 2012). This gene was mapped by using a set of 199 RILs derived from a 

cross between two Chinese Spring cultivars Yanzhan1 and Neixiang188. The Yanzhan1 

allele, named TaCKX6-D1a, has an 18-bp indel in its second intron where the 

Neixiang188 allele, named TaCKX6-D1b, has an insertion in this region. TaCKX6-D1a is 

associated with higher 1000-grain weight and its additive effect is 1.3~1.4 g per 1000 

grains. Four more alleles of TaCKX6-D1 were found and named TaCKX6-

D1c─TaCKX6-D1e. Evolutionary analysis showed that alleles c, e and d are ancient 

haplotypes occurring only in the wild species, whereas alleles a and b are newly derived, 

present most commonly in both modern cultivars and landraces. 

 

Quantitative trait loci WFP (WEALTHY FARMER’S PANICLE) and IPA1 (IDEAL 

PLANT ARCHITECTURE) were cloned in the same year by two research groups 

independently and were found to share the same underlying gene OsSPL14 (Jiao et al., 

2010; Miura et al., 2010). OsSPL14 is located on the chromosome 8 of rice and encodes a 

plant-specific transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-

LIKE (OsSPL14) which is conserved in sorghum, wheat, maize and Arabidopsis 

thalinana (Miura et al., 2010). Higher expression of OsSPL14 promotes panicle 

branching in the reproductive stage. Sequence analysis showed that OsSPL14 contains a 

microRNA-targeted sequence in the third exon (targeted by OsmiR156). OsmiR156 is 
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highly expressed in the vegetative stage and cleaves the OsSPL14 mRNA suppressing the 

expression of OsSPL14. In the reproductive stage, OsmiR156 disappears leading to a 

higher expression level of OsSPL14 and the subsequent enhanced primary branching on 

the panicle. 

 

DEP1 is the first cloned QTL that acts through the determination of panicle architecture 

(Huang et al., 2009). DEP1 is located on chromosome 9 of rice and encodes a 

phosphatidylethanolamine-binding protein-like domain protein. Its dominant loss-of-

function allele dep1 from cultivars such as Nanjing 11 and Nipponbare produces erect 

panicles with a shorter inflorescence internode, increased number of both primary and 

secondary panicle branches and increased number of grains. Although the 1000-grain 

weight of NIL-dep1 was slightly lower than that of NIL-DEP1 plants, the overall grain 

yield of NIL-dep1 was 40.9% higher. Moreover, the downregulation of TaDEP1, a 

homolog of DEP1 in wheat, showed a longer panicle with fewer spikelets suggesting that 

this locus and its homologs in other small grain cereals may provide an option for 

increasing grain yield. 

 

Ghd7 is the first cloned quantitative trait locus that controls grain numbers per panicle, 

plant height and heading date simultaneously (Xue et al., 2008b).  Ghd7 was mapped on 

chromosome 7 of rice using both F2:3 and RIL populations derived from a cross between 

Zhenshan 97 (lower grain number and days to heading) and Minghui 63 (higher grain 

number and days to heading). Ghd7 encodes a CCT (CO, CO-LIKE and TOC1) domain 

protein. However, comparison with other CCT domain-containing proteins showed that t 
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GHD7 is distinct from all other members of the CCT domain protein family and is 

considered to be an evolutionary new gene in the lineage. Ghd7 is a key upstream 

transcription factor in the photoperiod flowering pathway and its Minghui 63 allele allow 

rice plants to fully utilize light and temperature by delaying flowering under long-day 

conditions. As a result, larger panicles with more grain numbers occur. Furthermore, the 

Minghui 63 allele is mainly expressed in young tissues and also has a positive effect on 

stem growth by producing more nodes, a longer upper-most internode and thicker stems 

with improved lodging resistance. All these pleiotropic effects contribute to a high grain 

yield. Ghd8 is a major QTL on chromosome 8 with similar pleiotropic effects as Ghd7 

(Yan et al., 2011). Ghd8 encodes the OsHAP3 subunit of the HAP complex and acts 

upstream of rice florigen genes Fhd1, Hd3a, and RFT1. In addition, Ghd8 has a positive 

effect on rice tiller number, primary and secondary branches, by up-regulating MOC1 

which is a key gene controlling tillering and branching. 

QTL mapping and cloning in breeding programs 

Basics of QTL Mapping 

Historically, genetics relied entirely on phenotypic information to determine the relative 

importance of genetic versus environmental factors through techniques such as analysis 

of variance and heredity analysis (Walsh, 2001). However, merely based on phenotypic 

evaluation, it is generally not possible to identify relevant loci influencing a trait. The 

development and combination of genetic marker technologies, molecular biology and 

biometric methods has made QTL mapping possible in complex traits studies. 
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QTL mapping is a set of statistical methods attempting to explore the relationship 

between DNA sequence variation and natural phenotypic variation for quantitative or 

complex traits and is widely utilized in modern genetics (Haley, 2002; Kearsey and 

Farquhar, 1998 ; Majumder and Ghosh, 2005; Myles et al., 2009). By combining 

phenotypic data (trait measurements) and genotypic data (usually molecular markers), 

QTL mapping allows researchers to link certain complex phenotypes to specific regions 

of chromosomes (Miles and Wayne, 2008). Although the principles of QTL mapping 

have been known since the early twentieth century, genetic dissection of complex traits 

was limited to a few model organisms due to the lack of polymorphic markers (Mackay 

et al., 2009). Since the discovery of abundant molecular markers in late 1980s, advances 

in rapid and cost-effective genotyping methods and the employment of statistical 

methods have revolutionized the field of QTL mapping (Mackay et al., 2009). Statistical 

methods developed for QTL mapping are based on homologous recombination at 

meiosis, during which the genetic material is exchanged by crossing over (Myles et al., 

2009; Nordborg and Weigel, 2008). 

 

To perform QTL mapping for a measurable quantitative trait, a mapping population and 

linkage map are needed. Coupling this map with phenotypic data for the trait (e.g. yield) 

allows the region of the genome associated with the phenotype to be identified.  

Therefore, the three requirements for QTL mapping are: 1) a mapping population where 

individuals differ genetically with regard to traits of interest; 2) genetic markers that 

distinguish these lines; and 3) quantitative data for the traits to be explored; (Miles and 

Wayne 2008).  
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Mapping population 

In plant breeding, the most common mapping populations include F2, recombinant inbred 

lines (RILs), and doubled haploids (DH). The simplest form of a mapping population is a 

collection of F2 plants derived directly by selfing a F1 plant. In this case, the expected 

segregation ratio for each codominant marker is 1:2:1 (homozygous like 

P1:heterozygous:homozygous like P2) (Schneider, 2005). However, an F2 populations 

can only be used once since they are not immortal and generally cannot be clonally 

propagated (Schneider, 2005). This makes phenotypic evaluation in multi-location/year 

difficult to perform.  

 

Recombinant inbred lines (RILs) are generated by repeated selfing of F2 individuals for at 

least six generations using the single seed descent method (Snape and Riggs, 1975). Once 

established, RILs can be propagated eternally and shared by other groups in the research 

community (Broman, 2005). A second advantage of RILs is that after several rounds of 

meiosis before homozygosity is reached, the degree of recombination and the resolution 

of the linkage map are both higher compared to that of F2 populations and the map 

positions of even tightly linked markers can be determined (Schneider, 2005). Despite the 

fact that RILs are among the most effective population designs, it is time consuming to 

construct homozygous RIL populations, typically requiring at least six generations of 

self-fertilization starting from a heterozygous F1 (Seymour et al., 2012).  

 

Another option for mapping is to develop a doubled haploid (DH) population. Haploid 

gametes produced from F1 meiosis contain all recombination information but only half 
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the number of chromosomes. To make a DH population in plants, F1 flowers are 

pollinated with incompatible pollen, leaving a haploid embryo. After embryo rescue and 

tissue culture, haploid seedlings are treated with colchicine, preventing cytokinesis after 

mitosis and leading to doubled haploids (Schneider, 2005). Each DH contains two 

identical sets of chromosomes in each cell and is completely homozygous at every locus. 

This time-efficient process can be finished in only two steps and has been widely used in 

QTL mapping in a variety of species, especially in grasses (Seymour et al., 2012). 

Genetic markers 

Genetic markers are heritable biological features that are determined by allelic forms of 

genes or genetic loci and can be measured in one or more populations (Davey et al., 

2011; Xu, 2010). Thus, they can be used as experimental probes or tags to keep track of 

an individual, a tissue, a cell, a nucleus, a chromosome or a gene and are the cornerstone 

of modern genetics (Davey et al., 2011; Xu, 2010). As Xu (2010) summarized, genetic 

markers fall into two categories: 1) classical markers and 2) DNA markers. Classical 

markers include morphological markers, cytological markers and biochemical markers. 

DNA markers include randomly amplified polymorphic DNA (RAPD), simple sequence 

repeats (SSR) or microsatellites, amplified fragment length polymorphisms (AFLP), 

single nucleotide polymorphisms (SNP), and diversity arrays technology markers (DarT). 

 

After the first identification and use of DNA-based molecular markers in 1980s, such as 

restriction fragment length polymorphism (RFLP), the development and use of molecular 

markers has increased explosively in human genetics, plant breeding and genetics, animal 

breeding and genetics, and germplasm characterization and management (Botstein et al., 
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1980; Jiang, 2013). This technological revolution began with low-throughput RFLP and 

culminated with SNPs in recent years (Gupta et al., 2008). First identified in the human 

genome, SNPs make up about 90% of all human genetic variation, happen every 100–300 

bases, and have been proven to be universal in plant and animal systems as well (Wang, 

1998; Xu, 2010). SNP identification is usually achieved by aligning genomic or 

expressed sequence tag (EST) sequences available in databases, or via next-generation 

sequencing (NGS)-based sequencing or resequencing of candidate genes/ PCR products 

and even whole genomes in more than one genotype (Gupta et al., 2008). Once 

discovered, many platforms are available to carry out SNP genotyping, such as Genechip, 

Infinium II and Goldengate (Kumar et al., 2012). 

 

In crop plants, abundant and high-density SNPs can accelerate high-density genetic 

mapping and identification of genes/QTLs for traits of economic and agronomic 

importance as well as the application of marker-assisted breeding and genomic selection 

(Trebbi et al., 2011). Recently, SNP discovery has been reported in many crop plants 

such as rice, maize, barley, wheat, and sunflower (Bachlava et al., 2012; Cavanagh et al., 

2013; Close et al., 2009; Ganal et al., 2011; Hu et al., 2013; McCouch et al., 2010). For 

example, Trebbi et al. (2011) discovered and validated a set of 275 SNPs in durum wheat 

using 12 durum cultivars through complexity reduction of polymorphic sequences 

(CroPS) technology and Illumina Golden Gate technology. Ganal et al. (2011) developed 

a large maize SNP array containing 57,838 markers across the genome, out of which 

49,585 markers, representing 17,520 genes were storable and of good quality for further 
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genotyping. Additionally, using the RICE6K SNP array, Hu et al. (2013) mapped 5 novel 

QTLs for rice grain shape for marker-assisted selection in rice.  

Genotyping by sequencing 

The decreasing cost of next-generation sequencing (NGS) makes high-throughput 

genome-wide genetic marker discovery applicable not only to model organisms with 

reference genome sequences but also to non-model species without genome data (Davey 

et al., 2011). Recently, genotyping by sequencing (GBS), a low coverage genotyping 

method suitable for high diversity and large genome species, was proposed. It is reported 

to be “simple, quick, extremely specific, highly reproducible, and may reach important 

regions of the genome that  are inaccessible to sequence capture approaches” (Elshire et 

al., 2011). Compared with restriction-site-associated DNA sequencing (RAD-seq), GBS 

has simpler library preparation protocols but produces equivalent results at a very low 

cost per sample (Davey et al., 2011).  After the digestion of genomic DNA with 

restriction enzymes, barcode and common adapters are ligated to sticky ends of digested 

DNA fragments after which samples can directly go to PCR amplification followed by 

DNA sequencing (Elshire et al., 2011). Since no fragment size selection and few 

enzymatic and purification steps are involved, this protocol is time and cost efficient 

(Elshire et al., 2011). In maize, for example, 200,000 markers were identified and 

mapped in a very short time at a cost of $8,000 (Elshire et al., 2011). During this study, 

GBS was coupled with multiplex technology and simultaneously processed up to 2,688 

samples per sequencing run (384 samples per channel ×7 channels) (Elshire et al., 2011).  
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Statistical models for linkage mapping 

Traditionally, QTL detection is achieved by linkage mapping, where two homozygous 

inbred parental lines are crossed to create a mapping population/family and attempts are 

made to identify cosegregation of genetic markers and phenotypes within this family 

(Myles et al., 2009).  

 

In the late 1980s, markers and advances in genotyping technology led to the development 

of statistical methods for use in QTL mapping of complex quantitative traits. A landmark 

method for QTL mapping is interval mapping (IM) (Lander and Botstein, 1989).This 

method established a statistical framework for most methods that are currently used to 

analyze QTLs of complex traits (Xu and Zhu, 2012). In IM, phenotypic data is used to 

compute a log likelihood (LOD) value at a DNA marker interval. As the marker interval 

slides along the chromosome (genome scanning), LOD values change accordingly. A 

QTL associated with a quantitative trait is assumed to be located on the genome under the 

peak where the LOD is higher than a specified threshold. The precision of IM was 

improved by including associated markers as covariant variables (Zeng, 1994). This 

method is known as composite interval mapping (CIM). Under the assumption of no 

QTL× environment interaction, CIM can produce unbiased estimations of QTL positions 

and effects. The IM and CIM methods have been widely applied in experimental 

populations, such as F2, recombinant inbred lines (RIL), and doubled haploids (DH) (Xu 

and Zhu, 2012). Other well-recognized mapping models include multiple interval 

mapping (MIM) (Kao et al., 1999), inclusive composite interval mapping (ICIM) (Li et 
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al., 2007a), conditional QTL mapping (Wen and Zhu, 2005; Zhu, 1995), and QTL 

mapping based on mixed linear model (Wang et al., 1999; Yang et al., 2007).  

 

Linkage mapping, however, has its own drawbacks. It is based on a highly controlled 

population structure that goes through relatively few meiosis events. Therefore, 

recombination has not had sufficient time to shuffle and rearrange the genome and QTLs 

may end up in large chromosomal regions making it difficult to capture the precise 

location of promising QTLs and to distinguish pleiotropic effects of a single QTL from 

multiple independent linked QTLs (Xu, 2010). The resulting low precision can be 

partially improved by using a larger mapping population with more recombination events 

and a high-density marker coverage across the genome. Lastly, due to this rigid 

population structure, QTLs identified in linkage mapping populations are usually limited 

to specific crosses and may not be generalized to other populations. 

Association mapping 

In association mapping, genotype data and phenotype data are collected from a natural 

population (assuming random mating) where the experimenter has no control over the 

structure of the mapping population (Myles et al., 2009). This advantage leads to its 

enormous success in human disease research, for which obtaining a controlled population 

is almost impossible (Collins, 2007). Association mapping employs historical 

recombination events that have happened between QTLs and marker alleles providing 

higher mapping resolution and thus requires a smaller number of individuals compared 

with linkage mapping (Mackay et al., 2009). The application of association mapping 

expanded enormously with the advent of next generation sequencing technology which 
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has the capacity of discovering, sequencing and genotyping large numbers of molecular 

markers, mostly SNP, across almost any genome of interest in a short time and in a cost-

effective manner (Davey et al., 2011). Having the whole genome covered with molecular 

markers enables researchers to conduct genome-wide association studies with 

revolutionary resolution.  

 

A randomly mating population, however, almost does not exist in practice and this 

nonrandom mating population structure can generate complex patterns of population 

structure  and relatedness in plants which is a strong confounding factor, especially for 

the traits that are to be introgressed into local cultivars (Myles et al., 2009; Nordborg and 

Weigel, 2008). Despite the fact that statistical methods have been developed to correct 

for various types of relatedness, one should recognize that these methods are still subject 

to further improvement (Myles et al., 2009). In addition, association mapping cannot 

detect alleles with low frequency in the population, even if they have a large effect on the 

phenotype (Davey et al., 2011). However, population genetics suggests that, in the 

majority of species, most alleles are rare, which makes it difficult to explain phenotypic 

variation via association mapping. (Myles et al., 2009). Thus, biparental mapping is still 

an important tool.             

 

The power of association mapping highly depends on the strength of the association 

between molecular markers and the corresponding functional variants/QTLs, which is 

known as linkage disequilibrium (LD). LD happens, considering two separate loci 

located on the same chromosome, when the presence of the genotype at one locus is not 
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independent of the other. In other words, they are linked and tend to occur together. Since 

it is described through DNA recombination, the strength of LD is a function of the 

distance between two loci: the closer they are, the stronger the LD (Mackay and Powell, 

2007). In association analysis, the final mapping resolution relies on the decay of LD 

over distance, which differs both between and within species (Collins, 2007). Therefore, 

association mapping may have less power when performed on a bi-parental mapping 

population where LD is higher.  

Cloning QTLs in wheat 

To breeders, QTL cloning is not a routine option and is economical only for those loci 

with clear added value (Salvi and Tuberosa, 2007). Only a very few QTLs in bread wheat 

have been cloned through map-based cloning and the underlying gene characterized (Liu 

et al., 2013; Uauy et al., 2006). QTL cloning in wheat is challenging partly because of its 

large and complex genome and the lack of a high quality reference sequence. This issue 

could be addressed by synteny. 

 

Cereal genomes show substantial conservation in gene order, known as synteny or 

colinearity (Akhunov et al., 2013; Dubcovsky et al., 2001; Qi et al., 2013; Sorrells et al., 

2003). This has great important applications. For example, Akhunov et al. (2013) used 

the syntenic relationships between wheat and Brachypodium distachyon, rice, and 

sorghum to order contigs and scaffolds of wheat chromosome 3A. Salse et al. (2008) 

studied the evolution of grasses through comprehensive analysis of intragenomic 

duplications and comprehensive synteny. However, macro-collinearity does not always 

predict micro-colinearity (Sorrells et al., 2003). An abundance of rearrangements, 
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insertions, deletions, and duplications exist when grass genomes are compared (La Rota 

and Sorrells, 2004). Therefore, for QTL cloning, synteny is mostly reliable when a 

relatively small genomic region is examined.  

 

In general, four steps are generally involved in cloning a QTL in wheat. First, a bi-

parental population is used to locate a QTL and its flanking markers on a certain 

chromosome. Second, a fine-mapping population derived from a cross between two 

parents differing only in the flanking marker-defined region is used to construct a precise 

genetic map indicating the position of the QTL of interest. In this step, the QTL is 

physically mapped to one of wheat’s deletion bins based on the physical position of its 

flanking markers (Abeysekara et al., 2010; Hua et al., 2009). Wheat geneticists have 

developed a collection of deletion stocks that physically dissect wheat chromosomes into 

bins (Endo and Gill, 1996). A number of simple sequence repeats (SSRs) and expressed 

sequence tag (ETSs) are also physically mapped to these deletion bins through Southern 

hybridization experiments (Qi et al., 2004; Sourdille et al., 2004). Thirdly, the sequences 

of the ESTs that mapped to the same deletion bin with the QTL of interest are used as 

query sequences to search the rice and Brachypodium distachyon genome sequences to 

identify a collinear region. Namely, saturation mapping via synteny (Zhang et al., 2013). 

Rice and Brachypodium distachyon genes residing within a colinear region are used to 

search the wheat ESTs database to identify previously unmapped ESTs to saturate the 

flanking marker-defined region. The fourth step involves sequencing BAC clones (Liu et 

al., 2013). After saturation mapping, the QTL region is narrowed down. The two closest 

flanking markers are used to screen BAC libraries and chromosome walking as well as 



 

 
 

27 
 

sequencing of the target interval leads to the identification of candidate genes (Krattinger 

et al., 2009).  

Trends in wheat breeding 

High-throughput phenotyping  

Linking genotypic variation to observed traits/phenotypes is essential for marker assisted 

selection and breeding by design in breeding practice (Peleman and van der Voort, 2003; 

Tester and Langridge, 2010). The rapid development of genomics-based genotyping 

technologies in the past decade, especially sequencing capability, has offered breeders 

powerful tools and resources to access a wealth of genomic information on a breeding 

population at a relatively low cost (Davey et al., 2011). In contrast, phenotyping a large 

breeding population for multiple traits at multiple environments is still technically 

challenging and laborious (Furbank and Tester, 2011). The lack of access to high-

throughput and high-dimensional phenotypic data on organism-wide scale has become a 

new bottleneck that limits our ability to dissect the genetics of quantitative traits in both 

crop improvement and basic research (Houle et al., 2010).  

 

Interest in developing high-throughput phenotyping platforms (HTPPs) has arisen from 

both private and public sectors to address the issue (Araus and Cairns, 2014). 

Collaborative networks have formed to build HTPPs. Some of the most advanced and 

fully automated public facilities for indoor experimentation include the Australian Plant 

Phenomics Facility and the European Plant Phenotyping Network. These platforms are 

equipped with robotics, conveyor systems, imaging stations, watering stations, and 

computing infrastructure and are able to operate automatically to collect data for 3D plant 
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canopy architecture, canopy temperature, leaf color and morphology, and photosynthesis 

at different developmental stages (http://www.plantphenomics.org.au; http://www.plant-

phenotyping-network.eu). Under field conditions, HTPPs employs, mostly, remote 

sensing and imaging and near-infrared reflectance spectroscopy analysis to finish rapid 

assessment of traits such as vegetation indices at more or less frequent intervals during 

the crop cycle (Araus and Cairns, 2014). Field HTPPs carry multiple sets of sensors and 

often use high-clearance tractors, cable robots, helicopters, aerostats, and drones as 

sensor carriers (White et al., 2012). Accurate and rapid phenotypic data produced on 

HTTPs (indoor and outdoor) helps breeders and crop scientists to exploit genomic 

information and gain new insights that are hard or unable to access before. For example, 

rice researchers built a high-throughput rice phenotyping facility and demonstrated that, 

when combined with genome wide association studies, high-throughput phenotyping 

better dissected the genetic architecture of rice complex traits such as shoot weight and 

green leaf area than traditional manual measurements (Yang et al., 2014). In addition, an 

image-based high-throughput field phenotyping system for crop roots was developed and 

identified 13 new plant root traits that differentiated nine maize genotypes 8 weeks after 

planting (Bucksch et al., 2014). High-throughput genotyping is emerging as a new crop 

breeding frontier and is revolutionizing many areas of plant science (Araus and Cairns, 

2014; Kloth et al., 2015; Klukas et al., 2014).   

Genomic selection 

Prediction of crop performance as a function of genetic architecture is a major challenge 

for crop research (White et al., 2012). Marker-assisted selection (MAS) has been 

successfully and efficiently used to select elite cultivars with desired qualitative 
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characters such as enhanced disease resistance. However, since MAS has traditionally 

relied on markers linked to large-effect quantitative trait loci (QTL), it has been less 

effective for quantitative traits that are complex and controlled by many genes with small 

effects (Jannink et al., 2010). Genomic selection has been proposed and implemented as a 

new breeding approach to address the deficiency of MAS and to accelerate genetic gains 

in plant and animal breeding (Crossa et al., 2014; Meuwissen et al., 2001). In contrast to 

MAS, genomic selection simultaneously estimates the allelic effects of all available 

markers spread across the genome to predict phenotypic performance and does not test 

the significance of a link between a marker and a QTL (Massman et al., 2013).  

 

Genomic selection first uses a ‘training population’ of individuals that have been both 

genotyped and phenotyped to produce genomic estimated breeding values (GEBVs) for 

each marker which are further used by a prediction model to predict the performance of a 

‘candidate population’ from which individuals are only genotyped and, then, selected 

based on their GEBVs for advancement in the breeding cycle (Jannink et al., 2010). 

Genomic selection has been evaluated with simulation data and real data in dairy cattle 

(Hayes et al., 2009), mice (Legarra et al., 2008), rye (Wang et al., 2014), sugar beet 

(Wurschum et al., 2013), rice (Xu et al., 2014), wheat (Poland et al., 2012), and maize 

(Crossa et al., 2013). The correlation between true breeding value and the estimated 

breeding value has reached levels of 0.85 even for polygenic low heritability traits 

(Heffner et al., 2009). With its continuously improved prediction accuracy, genomic 

selection could dramatically change the role of phenotyping from selecting lines to 

updating prediction models and substantially accelerate the breeding cycle (Heffner et al., 
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2009; Morrell et al., 2012). It is expected that genomic selection will revolutionize plant 

and animal breeding in the next decade (Henryon et al., 2014; Morrell et al., 2012). 

Synthetic wheat 

Hexaploid wheat evolved from the hybridization between T. turgidum (AABB) and Ae. 

tauschii (DD). It is believed that only a limited number of these two donor species were 

involved in the speciation process and, thus, the genetic diversity of hexaploid wheat was 

largely reduced (Yang et al., 2009). To address this evolutionary bottleneck and introduce 

favorable alleles into hexaploid wheat from its wild relatives, synthetic wheats have been 

made via artificial synthesis of hexaploid wheat (T.turgidum × Ae. tauschii) in a manner 

analogous to the natural evolution of hexaploid wheat (Trethowan and van Ginkel, 2009). 

Many of these wild species, especially Ae. tauschii, possess novel and elite genes for 

biotic and abiotic stresses which can provide synthetic wheat with exceptional disease 

resistance and stress tolerance (Dreisigacker et al., 2008; Jia et al., 2013b). In addition, 

synthetic wheat is also a valuable source of alleles to improve grain yield and yield 

components (del Blanco et al., 2001). Since the early 1990s, the International Maize and 

Wheat Improvement Center (CIMMYT) has started making synthetic wheat and 

transferring favorable traits to CIMMYT elite breeding lines (Dreisigacker et al., 2008). 

To date, more than 1000 syntheitc wheats have been produced by CIMMYT and are 

being used by breeding programs worldwide (Dreisigacker et al., 2008; Yang et al., 

2009). Synthetic wheat and synthetic wheat-derived cultivars have great potential for 

enhancing grain yield and adaptation of modern hexaploid wheat (Li et al., 2014; 

Trethowan and van Ginkel, 2009). Thus, a new generation of wheat varieties produced 

from synthetic wheats is on the horizon (van Ginkel and Ogbonnaya, 2007). 
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Chapter 2: Quantitative trait loci mapping of grain yield in a 
doubled haploid population of soft red winter wheat 
Abstract 

Understanding the genetic basis of grain yield and yield components is the key to 

improving grain yield potential in common wheat (Triticum aestivum L.). My objective 

was to identify quantitative trait loci (QTL) associated with grain yield (GYLD), spikes 

m-2 (SPSM), grain weight per spike (GWPS), grains per spike (GPS) and thousand-grain-

weight (TGW) using a doubled haploid (DH) population. The DH population was 

evaluated in five environments and was genotyped with single nucleotide polymorphism 

(SNPs), simple sequence repeats (SSRs), and a morphological marker. The linkage map 

spanned 1977.6 cM with an average interval length of 2.3 cM. Sixty four putative QTLs 

for GYLD, SPSM, GWPS, and GPS were detected on eighteen wheat chromosomes. The 

phenotypic variance explained by these QTLs ranged from 3.7% for GWPS to 71.2% for 

TGW. The major GYLD QTL (QYld.cz-3B.2) and TGW QTL (QTgw.cz-7A.5) identified 

in the present study explained 21.2% and 71.2% of the phenotypic variation, respectively. 

GYLD QTLs closely linked to Fhb1 and Ppd-D1 genes were identified. Eleven QTLs 

exhibited pleiotropic effects. A genomic region with significant pleiotropic effects for 

GYLD, SPSM, GWPS, and GPS was located on 1A. In addition, QTL × environment 

interaction, epistasis and epistasis × environment interactions were detected. Major QTLs 

identified in this study could be used in marker-assisted breeding to increase grain yield 

or QTL fine mapping. 
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Introduction 

Wheat (Triticum aestivum L.) is the staple food for more than 40% of the world’s 

population. Increasing wheat production is essential to meet the demand of wheat 

consumption from an increasing population worldwide. As one of the key economic 

drivers behind the wheat cropping enterprise, improving grain yield potential is a major 

goal in both public and private breeding programs (Kuchel et al., 2007b). Grain yield is a 

resultant complex trait influenced by many processes that involve vegetative and 

reproductive growth and developmental stages (Yoshida, 1972). Grain yield is 

determined by yield component traits, such as grains per spike (GPS), spikes m-2 (SPSM), 

grain weigh per spike (GWPS), thousand-grain-weight (TGW) and affected by other 

yield related traits, e.g. plant architecture. Yield and yield component traits are 

genetically controlled by multiple quantitative trait loci (QTL) with major and minor 

effects that are highly influenced by environmental conditions (Deng et al., 2011; Kumar 

et al., 2007).  

 

Identification of QTLs on specific chromosomes for yield and yield components can 

facilitate incorporating these traits into regionally adapted cultivars in an effective 

manner through marker assisted selection (MAS) (Carter et al., 2011). This allows 

breeders to test for the presence and to track down the proven QTL by targeting its 

closely linked markers for a more efficient and accurate selection of superior cultivars 

(Kuchel et al., 2007b). A large number of QTL studies have been reported in wheat 

(Heidari et al., 2011; Kuchel et al., 2007b; Kumar et al., 2007; Wu et al., 2012) and QTLs 

for grain yield and yield components have been identified in all wheat chromosomes 
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mostly with minor genetic effects (Wu et al., 2012; Zhang et al., 2010). For example, 

using two wheat mapping populations, Kumar et al. (2007) detected eighty-six QTLs out 

of which six were pleiotropic/coincident involving more than one yield related trait. 

Kuchel et al. (2007b) found in a DH population that although the higher yielding parent 

contributed most of the favorable alleles, the lower yielding parent also possessed higher 

yielding QTLs based on the data from eighteen environments. Li et al. (2007b) identified 

five environment-specific QTLs for GYLD on chromosome 1D, 2D, and 3B explaining 

10.4-23.0% of the phenotypic variation. Groos et al. (2003) reported a stable QTL for 

TGW on chromosome 2B which explained up to 20% of the phenotypic variation in 

seven trials. Interestingly, the favorable allele was from Récital, the parental line with 

lower TGW. Heidari et al. (2011) identified a genomic region on chromosome 1A for 

GPS explaining up to 22.4% of the phenotypic variation in two environments and three 

QTLs for SPSM on chromosome 1A, 7A, and 2D explaining up to 21.4% of the 

phenotypic variation. Several large-effect loci affecting grain yield per se such as Rht1 

and Ppd-D1 have been cloned and molecularly characterized (Boden et al., 2015; Pearce 

et al., 2011). One locus, TaCKX6-D1, significantly associated with TGW in wheat was 

isolated and shown to be orthologus to rice gene OsCK2. Moreover, yield component 

traits are less environmentally sensitive and generally exhibit higher heritability than 

grain yield, as a result of which, indirect selection on yield component traits tends to 

result in higher stable genetic gain than direct selection for grain yield (Kumar et al., 

2007; Wu et al., 2012). Therefore, examining yield components when evaluating grain 

yield per se is necessary for sustained yield potential improvement (Wu et al., 2012). 
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Additionally, additive main effects, digenic epistasis, QTL × environment interactions 

(additive × environment interaction and epistasis × environment interactions) also are 

crucial factors determining the expression of quantitative traits (Mackay, 2001). In 

classical Mendelian genetics, the masking of genotypic effects at one locus by genotypes 

of another is called epistasis which is also broadly used to indicate any statistical 

interaction between genotypes at two (or more) loci in quantitative genetics (Mackay et 

al., 2009). Epistasis can be synergistic or antagonistic depending on whether the effect of 

one locus is enhanced or suppressed by the second locus (Mackay, 2001). As a result, the 

phenotype of a certain genotype would not be a simple sum of the additive effects of all 

loci involved. When plants are challenged by fluctuations in environmental conditions, 

both additive and epistatic effects of the same loci are modified to some extent so that 

plants can adapt to new situations by changing its phenotypic expression, known as 

phenotypic plasticity (El-Soda et al., 2014). A thorough understanding of the interactions 

mentioned above in breeding populations would help breeders predict the performance of 

genotypes across years and locations with more confidence. However, due to the lack of 

appropriate methodology and easy-to-use statistical software, QTL detection was 

typically conducted under the assumption of additive main effects only until the mixed-

model based composite interval mapping (MCIM) was developed (Wang et al., 1999). 

MCIM showed high accuracy and power in mapping QTLs with epistatic effects and 

QTL × environment interactions by using the-best-linear-unbiased prediction (BLUP) 

method (Wang et al., 1999) and has been well accepted ever since (Li et al., 2007b; Xing 

et al., 2002; Zhang et al., 2009). Another big constraint in accurate QTL mapping and 

subsequent application of MAS was the lack of fast and large-scale genotyping platform 
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as the cost of initial genotyping approaches were high. A recent development in DNA 

marker technology is single nucleotide polymorphisms (SNPs). In contrast to traditional 

simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs), 

SNPs are more abundant across genomes of many species and constitute ~90% of the 

genetic variation in virtually all organisms (Gupta et al., 2008). Recently, SNP discovery 

and QTL mapping using SNPs have been reported in many crop plants such as rice, 

maize, barley, wheat, and sunflower (Bachlava et al., 2012; Cavanagh et al., 2013; Close 

et al., 2009; Ganal et al., 2011; Hu et al., 2013; McCouch et al., 2010). Trebbi et al. 

(2011) discovered and validated a set of 275 SNPs in durum wheat using 12 durum 

cultivars through complexity reduction of polymorphic sequences (CroPS) technology 

and Illumina Golden Gate technology. Ganal et al. (2011) developed a large maize SNP 

array containing 57,838 markers across the genome, out of which 49,585 markers, 

representing 17,520 genes were storable and of good quality for further genotyping. This 

SNP array was then used to genotype two recombinant inbred line populations and two 

high density linkage maps were also established with 20,913 and 14,524 markers 

respectively. Moreover, using the RICE6K SNP array, Hu et al. (2013) mapped five 

novel QTLs for rice grain shape. Furthermore, genotyping by sequencing (GBS) is a new 

SNP genotyping method suitable for high diversity and large genomes and has shown to 

be “simple, quick, extremely specific, highly reproducible, and may reach important 

regions of the genome that are inaccessible to sequence capture approaches” (Elshire et 

al., 2011). Compared with other sequencing-based genotyping method such as restriction-

site-associated DNA sequencing (RAD-seq), GBS has simpler library preparation 

protocols but produces equivalent results at very low cost per sample (Davey et al., 
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2011). Coupling GBS with multiplex technology, up to 2,688 samples/breeding lines can 

be processed simultaneously per sequencing run (Elshire et al., 2011). In maize, for 

example, 200,000 markers were identified and mapped in a very short time at a cost of 

$8,000 (Elshire et al., 2011).  

 

High grain yield of any crop can be achieved only when a proper combination of cultivar, 

environment, and agronomic practices is obtained (Yoshida, 1972). Understanding the 

genetic effects of QTLs, how QTLs interact with each other, and how these QTLs and 

their interactions are affected in different environments is important for breeders. In the 

present study, quantitative trait loci mapping in a DH population of soft red winter wheat 

was attempted (1) to identify QTLs affecting grain yield and yield components mostly 

with SNP makers, (2) to determine the additive genetic effects, digenic epistasis effects 

and their interactions with environments. 

Materials and Methods 

Genetic resources 

 
A doubled haploid (DH) population was established from the cross of the soft red winter 

wheat germplasm line MD01W233-06-1 (MDW233) (Costa et al., 2010) and soft red 

winter wheat cultivar Southern States 8641 (SS8641) (Johnson et al., 2007b). The 

population consists of 124 DH lines and shows a wide range of phenotypic variation for 

yield and yield components. MDW233 was produced by crossing the soft red winter 

wheat cultivar ‘McCormick’ (VA92–51–39 (IN71761A4–31–5-48//VA71–54–

147/‘McNair 1813’)/AL870365 (‘Coker 747*2/‘Amigo’)) (PI632691) (Griffey et al., 

2005) with ‘Choptank’ (‘Coker 9803’/‘Freedom’) (PI 639724) (Costa et al., 2006) and 
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was released by the Maryland Agricultural Experiment Station in 2009 with enhanced 

Fusarium Head Blight (FHB) resistance. MDW233 carries the Rht-D1b dwarfing gene 

and the Ppd-D1b photoperiod sensitive allele. SS8641 was photoperiod insensitive and 

was released by the University of Georgia Experiment Station in 2007, with high yield 

and multiple disease resistance (Johnson et al., 2007b). It is a medium-maturing, white-

chaffed, medium-tall line derived from the cross 'GA 881130 / 2* GA 881582'. The 

pedigree of GA 881130 is 'KSH8998 / FR81-10 // Gore'. KSH8998 was developed from 

the cross of a hard wheat with Ae. tauschii to transfer Hessian fly resistance gene H13. 

FR81-10 was selected because of its resistance to leaf rust (Lr37 and Yr17) from the cross 

'Novisad 138 /4/Ae.ventricosa/T.persicum/2/ Marve*3/3/Moisson'.   

Field experiments  

 
The DH mapping population and parents were grown in five environments: Clarksville, 

MD and Queenstown, MD in 2013 and 2014 and at Kinston, NC in 2014. The entries 

were evaluated in field trials with two replications in a randomized complete block 

design. Yield plots at Maryland consisted of seven rows 15.2 cm apart. Seed density was 

22 seeds per 0.305 m in each row. The length of rows harvested was 4.17 m, making the 

harvest area 3.8 m2. Yield plots at North Carolina had seven rows 19.1 cm apart with a 

seed density of 24 seeds per 0.305 m in each row. The length of rows harvested was 

3.35m, making the harvest area 3.8 m2. Growing season rainfall and temperature data 

were obtained from respective research farms for Clarksville, MD and Queenstown, MD 

and the National Oceanic and Atmospheric Administration (NOAA) measurements for 

Kinston, NC (National Climatic Data Center 2014) (Table 2.1). Soil fertility management 

followed recommended management practices for each location. All trials were sprayed 
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with the metconazole fungicide (Caramba®, BASF) at anthesis to reduce potential 

infection by Fusarium graminearum. 

Phenotypic data collection 

At maturity, plots were mechanically harvested using a small plot combine (Wintersteiger 

Nurserymaster Elite, Ried, Austria). Plot weight and moisture-content data of the wheat 

trials were obtained with a HarvestMaster HM1000b (Juniper Systems, Logan, UT) 

attached to the plot combine. Gain yield was measured from seed collected from the 

combine as pounds per plot and reported as grams per square meter. Grains per spike was 

recorded as the mean of the number of grains of ten random spikes from each plot. Grain 

weight per spike was measured using ten random spikes harvested from each plot. Spikes 

per square meter was calculated by dividing grain yield by grain weight per spike. 

Thousand-grain-weight was computed from the weight of 200 random grains from a 

sample harvested from each plot. 

Statistical analysis of traits 

 
Analysis of variance (ANOVA) for GYLD, GPS, GWPS, SPSM, and TGW was 

performed separately for each environment and for the five environments combined using 

the PROC GLM procedure of SAS version 9.3 (SAS Institute, Raleigh, NC 2013). The 

ANOVA model for single environment analysis was Y= replication + genotype + error, 

where replication and genotype were fixed and error was random. Combined ANOVA 

was performed to examine the effects of environments and the model was Y = 

environment + replication within environment + genotype + genotype × environment + 

error, where error was considered random and all others were fixed. Pearson’s correlation 
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coefficients were calculated using the PROC CORR procedure of SAS. Broad-sense 

heritability (h2) (defined as h2= ��
�/(��

�+(���
� /�)+ (��

�/
�)), where ��
� is the variance of 

genotypic effect, ���
�  is the genotype × environment variance, and � and 
 are the number 

of environments and replicates, respectively) was calculated on a family mean basis using 

the PROC MIXED procedure of SAS, as described by Holland et al. (2003). The 

descriptive statistics of all traits were calculated using the PROC MEANS procedure of 

SAS (Table 2.2). 

Genotyping  

 
SSR genotyping was performed at the USDA-ARS Eastern Regional Small Grain 

Genotyping Lab at Raleigh, NC, USA. Approximately 25 mg of leaf tissue of the parents 

and 124 doubled haploid lines were collected from 2-3 week-old seedlings for genomic 

DNA extraction which was performed according to the protocol of Pallotta et al. (2003). 

For all SSR markers, the polymerase chain reaction (PCR) master mix consisted of 2 μL 

of 20 ng μL–1 genomic DNA template, 0.40 μL of a 10 μM mixture of forward and 

reverse primers, 0.18 μL (0.9 U) of Taq polymerase, 1.20 μL of 10x buffer (10 mM Tris-

HCL, 50 mM KCl, and 1.5 mM MgCl2, pH 8.3), 0.96 μL of a 100 μM mixture of 

deoxyribonucleotide triphosphates (dNTPs), and 7.26 μL of water, bringing the total 

reaction volume to 12 μL. A  touchdown profile was used that consisted of an initial 

denaturation at 95°C followed by 15 cycles of 95°C for 45s, 65°C for 45s decreasing by 

1°C each cycle, and 72°C for 60s, followed by 25 cycles of 50°C annealing temperature. 

The forward primers were 5'-modified to include one of the following fluorescent dyes: 

6-FAM, VIC, NED, or PET. Amplifications were performed using an Eppendorf 

Mastercycler (Eppendorf AG, Hamburg, Germany). Sizing of PCR products was 
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performed by capillary electrophoresis using an ABI3130xl Genetic Analyzer (Applied 

BioSystems, Foster City, CA). Analysis of PCR fragments was performed using 

GeneMarker 1.60 software (SoftGenetics, LLC, State College, PA) 

 

SNP genotyping was performed on the 9K iSelect SNP genotyping array containing 

9,000 wheat SNP markers developed by Illumina Inc. (San Diego, CA, USA). This assay 

was designed under the protocols of the International Wheat SNP Consortium (Cavanagh 

et al., 2013). Additionally, genotyping-by-sequencing (GBS) was also employed for SNP 

genotyping as was described by Elshire et al. (2011). The SNP array was conducted at the 

USDA-ARS Small Grains Genotyping Lab at Fargo, ND, USA and GBS assay at the 

USDA-ARS Central Small Grain Genotyping Lab at Manhattan, KS, USA.  

Map construction and QTL analysis 

 
Markers with more than 20% missing rate and those that were monomorphic and 

distorted (differing significantly from the expected 1:1 segregation ratio) were eliminated 

from the analyses. The remaining polymorphic markers were used to construct linkage 

groups using the MAP function in software IciMapping version 4.0 with a LOD value of 

10 (Li et al., 2008). Recombination frequencies were converted to centimorgans (cM) 

using the Kosambi mapping function. Assignment of linkage groups to chromosomes was 

based on the SNP consensus map (Cavanagh et al., 2013) and on the SSR consensus map 

(Somers et al., 2004), and as well as with wheat POPSEQ data (http://wheat-

urgi.versailles.inra.fr/), after which, genetic distance of markers on the same chromosome 

was recalculated with RECORD and COUNT algorithm in IciMapping version 4.0.  
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Detecting QTL with additive effects was performed by IciMapping version 4.0 using the 

additive module (ICIM-ADD). The walking speed for all traits was 1 cM. Reference 

LOD values were determined by 1,000 permutations (Doerge, 2002). Type I error to 

determine the LOD from the permutation test was 0.05. The LOD threshold to declare the 

presence of a significant QTL was 3.0. The position at which the LOD score curve 

reaches its maximum was used as the estimate of the QTL location. Further QTL analysis 

for digenetic QTL epistasis (A×A or Q×Q), additive × environment (A×E or Q×E) and 

epistasis × environment (QQ×E) interactions was performed with QTLNetwork version 

2.1 using mixed-model based composite interval mapping (MCIM) (Wang et al., 1999; 

Yang et al., 2007).  All effects mentioned above were estimated by Monte Carlo Markov 

Chain method with a scanning speed of 1 cM step with a 0.05 experiment-wise type I 

error. 

Results 

Environment conditions 

Phenotypic data for QTL analysis was collected from five environments (Table 2.1, 

Appendix C). The conditions at five environments varied for rainfall and average 

monthly temperature during each growing season. In 2013 and 2014, Queenstown had 

more precipitation and higher average temperature than that of Clarksville. However, 

both of these two locations had less precipitation and lower average monthly temperature 

than that at Kinston 2014. In 2013, the precipitation at Clarksville was lower than that of 

2014 but the average temperature was higher implying that 2013 was a relatively warmer 

and drier growing season. At Queenstown, the 2013 season had more precipitation and 

higher average monthly temperature than that of 2014.  
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Table 2.1 Growing season precipitation (cm) and average monthly temperature (°C) at five environments 
during 2013 and 2014. 

Phenotypic performance  

Analysis of variance (ANOVA) performed separately for each environment indicated 

significant differences (P<0.001) among all traits (data not shown). Combined ANOVA 

showed that genotype × environment interaction was significant (P<0.001) for GYLD, 

GWPS, SPSM, TGW, and GPS (Table 2.2). MDW233 had more SPSM while SS8641 

had higher GPS, GWPS, and TGW across all five environments except for Clarksville 

2014 where MDW233 produced slightly higher TGW than SS8641 (Table 2.2). For grain 

yield, MDW233 performed better in all four Maryland environments but not as well as 

SS8641 in Kinston 2014. Furthermore, SPSM had the most variation (measured by 

coefficient of variation) among all traits across five environments (Table 2.2). The DH 

lines showed transgressive segregation for all traits (Figure 2.1, Table 2.2). The 

heritability estimates were highest for thousand-grain-weight (0.92) and grain weight 

spike-1 (0.90) followed by spikes m-2 (0.84) and grains spike-1 (0.81), but was lowest for 

grain yield (0.74) (Table 2.4). 

 

Correlation analysis (Table 2.3) showed consistently that grain yield was positively 

correlated with SPSM and TGW (P<0.001). The correlation between GYLD and GPS 

was positive at Queenstown 2014 but was negative at Clarksville 2013 and Clarksville 

Environments Precipitation (cm)     Temperature (°C)   

  Feb. Mar. Apr. May Jun. Total Feb. Mar. Apr. May Jun. Average 

Queenstown  2013 6.1 9.3 11.8 4.9 24.9 57.1 2.0 5.1 12.7 17.7 23.0 12.1 

Queenstown  2014 11.3 11.9 13.2 9.3 7.0 52.7 0.9 3.8 11.7 18.2 22.2 11.4 

Clarksville 2013 5.0 6.5 4.7 9.0 12.7 37.9 0.6 3.8 11.8 16.5 21.9 10.9 

Clarksville 2014 6.1 9.9 17.1 10.4 8.4 51.9 -1.2 2.4 10.7 17.2 22.2 10.3 

Kinston 2014 6.5 14.2 11.0 8.9 26.3 67.0 8.4 9.8 17.9 22.9 25.4 16.9 
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2014. In general, GYLD showed the strongest positive correlation with SPSM followed 

by TGW. SPSM was negatively correlated with GPS and GWPS in all five environments. 

TGW was positively correlated with GWPS and was negatively correlated with GPS in 

all five environments. 

 

 
Table 2.2 Phenotypic summary of grain yield (GYLD, g m-2), grains per spike (GPS), grain weight per 
spike (GWPS, g), spikes per square meter (SPSM), and thousand-grain-weight (TGW, g) evaluated in five 
environments during 2013 and 2014. 
 

Environments Traits 
Parents DHs 

MDW233 SS8641   Mean SD† Minimum Maximum CV‡ 

Clarksville 2013 GYLD 671.4 598.6 566.7 110.9 268.7 1091.6 19.6% 

GPS 38.4 45.8 39.9 5.2 27.2 54.8 12.9% 

GWPS  1.2 1.5 1.2 0.2 0.9 1.7 15.0% 

SPSM  565.8 393.9 473.6 110.9 182.9 863.0 23.4% 

TGW 33.4 34.8 31.5 2.3 25.7 37.4 7.3% 

Queenstown 2013 GYLD 712.0 664.8 736.6 144.4 363.4 1071.2 19.6% 

GPS 45.7 52.4 43.5 5.5 30.9 58.2 12.7% 

GWPS  1.5 1.8 1.4 0.2 1.0 2.0 12.9% 

SPSM  474.2 372.5 529.3 124.2 222.9 951.3 23.5% 

TGW 33.1 33.9 32.2 2.1 25.5 38.6 6.6% 

Clarksville 2014 GYLD 830.2 740.0 787.3 106.1 473.2 1098.1 13.5% 

GPS 34.7 41.4 35.7 4.0 25.0 48.0 11.1% 

GWPS  1.0 1.3 1.0 0.1 0.6 1.4 14.3% 

SPSM  794.3 572.9 806.0 160.4 490.3 1257.7 19.9% 

TGW 30.7 30.3 29.4 2.5 15.8 36.6 8.4% 

Queenstown 2014 GYLD 614.9 594.5 614.2 73.9 379.3 769.0 12.0% 

GPS 34.8 39.2 39.6 4.8 26.8 55.8 12.0% 

GWPS  1.0 1.2 1.1 0.1 0.8 1.5 13.0% 

SPSM  622.8 487.6 553.1 83.5 351.9 774.5 15.1% 

TGW 29.7 31.8 29.2 2.1 23.5 35.2 7.1% 

Kinston 2014 GYLD 615.0 679.4 555.1 92.8 228.7 837.8 16.7% 

GPS 35.2 46.0 42.4 5.2 32.0 59.3 12.2% 

GWPS  1.1 1.5 1.2 0.1 0.7 1.6 12.5% 

SPSM  534.8 449.3 474.6 82.7 274.9 737.9 17.4% 

  TGW 30.3 31.5   27.5 2.9 18.3 35.5 10.7% 

 
† Standard deviation 
‡ Coefficient of variation 
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Table 2.3 Pearson correlation coefficients among grain yield (GYLD), grains per spike (GPS), grain weight 
per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW) in five 
environments during 2013 and 2014. 
 

Environments  Traits  GPS GWPS SPSM TGW 

Clarksville 2013 GYLD -0.20*** 0.05 0.79*** 0.33*** 

 
GPS 

 
0.75*** -0.62*** -0.15* 

 
GWPS 

  
-0.54*** 0.36*** 

 
SPSM 

   
0.06 

Queenstown 2013 GYLD -0.06 0.06 0.83*** 0.21*** 

 
GPS 

 
0.82*** -0.50*** -0.22*** 

 
GWPS 

  
-0.48*** 0.22*** 

 
SPSM 

   
0.09 

Clarksville 2014 GYLD -0.16*** -0.03 0.69*** 0.29*** 

 
GPS 

 
0.64*** -0.57*** -0.24*** 

 
GWPS 

  
-0.70*** 0.34*** 

 
SPSM 

   
-0.07 

Queenstown 2014 GYLD 0.13* 0.22*** 0.60*** 0.21*** 

 
GPS 

 
0.77*** -0.52*** -0.30*** 

 
GWPS 

  
-0.62*** 0.22*** 

 
SPSM 

   
-0.03 

Kinston 2014 GYLD -0.07 0.33*** 0.74*** 0.44*** 

GPS 
 

0.61*** -0.49*** -0.39*** 

GWPS 
  

-0.36*** 0.36*** 

SPSM 
   

0.17** 

* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
 
 
 
 
 
Table 2.4 Pooled analyses of variance over five environments and heritability estimates for grain yield 
(GYLD), grains per spike (GPS), grain weight per spike (GWPS), spikes per square meter (SPSM), and 
thousand-grain-weight (TGW) in five environments during 2013 and 2014. 

    Mean squares         

Source of Variation  df GYLD GPS GWPS SPSM TGW 

Environment  4 2697855.85* 2260.17* 5.64* 4679695.46* 841.21* 

Rep (environment) 5 100996.06* 179.67* 0.45* 429149.39* 8.00* 

Genotype 123 40596.54* 136.50* 0.11* 47696.44* 38.96* 

Genotype × environment 492 10475.85* 13.18* 0.02* 8954.60* 3.29* 

R2  0.85 0.85 0.86 0.88 0.95 

Heritability (h2) †  0.74 (0.04) 0.81 (0.03) 0.90 (0.01) 0.84 (0.02) 0.92 (0.01) 

* Significant at the 0.001 probability level. 
† Values in parenthesis are standard errors for h2  
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Linkage map construction  

The DH population was analyzed with 4981 markers that were polymorphic between the 

two parents (4956 SNPs, 24 SSRs and 1 morphological marker). A total of 4972 markers 

(99.8%) were assigned to 39 linkage groups representing all 21 wheat chromosomes 

(Table 2.5). After excluding co-segregating markers, the final genetic linkage map was 

constructed with 859 unique makers that spanned 1977.62 cM in length (Appendix A). 

The average interval length was 2.3 cM. Since the recommended map distance for QTL 

analysis is ten re-combinations per 100 meiotic events, or an interval length less than 10 

cM (Doerge, 2002), the map is suitable for QTL analysis in this study. 

  

Table 2.5 Distribution of markers and length of linkage maps for twenty one wheat chromosomes. 
 

Chromosome Number of markers Length (cM) 

1A 521 67.71 

2A 298 112.3 

3A 333 216.84 

4A 272 158.28 

5A 218 190.04 

6A 242 95.05 

7A 365 171.5 

1B 257 144.13 

2B 516 139.83 

3B 488 134 

4B 121 134.51 

5B 430 123.21 

6B 286 112.39 

7B 245 177.83 

1D 55  85.55 

2D 116 125.93  

3D 29  72.74 

4D 8 76.77  

5D 36  179.45 

6D 81  144.64 

7D 55  259.8 
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Table 2.6 Quantitative trait loci (QTLs), LOD score, percentage of variation explained (PVE), and additive 
effects of each QTL for grain yield (GYLD, g m-2), grains per spike (GPS), grain weight per spike (GWPS, 
g), spikes per square meter (SPSM), and thousand-grain-weight (TGW, g) in five environments during 
2013 and 2014. 
 

QTL Trait Environment  
Position 

 (cM) 
Marker interval 

LOD 
score 

PVE 
(%) 

Additive 
effect 

Qyld.cz-1A GYLD Clarksville 2013 0 Xwmc496-Xsnp1970 3.4128 7.4686 -25.6006 

Qyld.cz-2A GYLD Kinston 2014 0 Xsnp2477-Xsnp2432 4.2968 9.9008 25.211 

Qyld.cz-3A GYLD Clarksville 2014 0 Xsnp3027-Xsnp3744 3.0403 8.6136 -24.2575 

Qyld.cz-6A GYLD Queenstown2014 75 Xsnp4211-Xsnp4186 3.455 9.7424 19.1153 

Qyld.cz-1B GYLD Clarksville 2013 74 Xsnp4928-Xsnp2107 5.6376 13.2401 -35.0708 

Qyld.cz-3B.1 GYLD Kinston 2014 7 Xbarc147-Xsnp3328 4.5878 10.9125 -26.2832 

Qyld.cz-3B.2 GYLD Clarksville 2014 60 Xsnp3382-Xsnp3372 6.7965 21.2499 -38.2413 

Qyld.cz-5B.1 GYLD Clarksville 2013 66 Xsnp4059-Xsnp4061 5.5119 12.7278 -33.4221 

Qyld.cz-5B.2 GYLD Kinston 2014 115 Xsnp4011-Xsnp4073 4.4601 10.2934 25.6696 

Qyld.cz-6B GYLD Kinston 2014 6 Xsnp4444-Xsnp4453 4.6423 10.9935 26.3474 

Qyld.cz-2D GYLD Queenstown2013 54 Xsnp2862-XPpdD1 4.5148 17.7026 52.6542 

Qyld.cz-6D GYLD Clarksville 2013 137 Xsnp4465-Xsnp4487 6.677 15.5547 -37.1149 

QGps.cz-1A.1 GPS Kinston 2014 1 Xsnp1970-Xbarc28 14.2219 26.511 2.439 

QGps.cz-1A.2 GPS Clarksville 2013 2 Xbarc28-Xsnp2005 21.1713 44.118 2.9461 

QGps.cz-1A.2 GPS Clarksville 2014 2 Xbarc28-Xsnp2005 11.0378 22.5923 1.6195 

QGps.cz-1A.2 GPS Queenstown2013 2 Xbarc28-Xsnp2005 12.5949 29.3932 2.681 

QGps.cz-1A.2 GPS Queenstown2014 2 Xbarc28-Xsnp2005 8.5734 18.1522 1.7105 

QGps.cz-2A GPS Queenstown2014 40 Xsnp2448-Xsnp2475 4.6006 8.99 -1.2111 

QGps.cz-3A.1 GPS Kinston 2014 2 Xsnp3048-Xsnp1466 4.4227 6.9464 1.2484 

QGps.cz-3A.2 GPS Clarksville 2013 5 Xsnp3049-Xsnp3021 24.1227 51.9916 -3.1986 

QGps.cz-3A.3 GPS Clarksville 2013 124 Xsnp3037-Xsnp3023 5.1633 8.0188 1.264 

QGps.cz-3A.4 GPS Clarksville 2014 126 Xsnp3023-Xsnp3383 3.4903 6.0965 0.8454 

QGps.cz-3A.4 GPS Kinston 2014 126 Xsnp3023-Xsnp3383 5.269 8.2402 1.3662 

QGps.cz-4A GPS Queenstown2014 138 Xsnp3464-Xsnp3547 3.2552 6.2726 1.0236 

QGps.cz-2B GPS Queenstown2013 62 Xsnp2752-Xsnp2786 3.9483 7.8456 -1.3878 

QGps.cz-3B.1 GPS Kinston 2014 34 Xsnp3344-Xsnp3253 6.3159 10.277 1.5188 

QGps.cz-3B.2 GPS Queenstown2013 36 Xsnp3253-Xsnp3349 4.5431 9.3033 1.5085 

QGps.cz-3B.3 GPS Clarksville 2014 47 Xsnp3119-Xsnp3395 7.0831 13.3475 1.2462 

QGps.cz-5B.1 GPS Clarksville 2013 45 Xsnp3973-Xsnp4062 4.5948 6.7766 -1.1547 

QGps.cz-5B.2 GPS Queenstown2014 48 Xsnp4083-Xsnp3988 7.6516 15.9459 -1.6031 

QGps.cz-5B.3 GPS Clarksville 2014 58 Xsnp3988-Xsnp1006 5.6091 10.3121 -1.0956 

QGps.cz-5B.4 GPS Kinston 2014 68 Xsnp4061-Xsnp4027 6.9909 11.3158 -1.5936 

QGps.cz-3D GPS Queenstown2014 72 Xsnp3422-Xsnp3187 3.8018 7.4961 -1.1211 

QGws.cz-1A.1 GWPS Clarksville 2013 0 Xwmc496-Xsnp1970 12.1722 28.5671 0.079 

QGws.cz-1A.2 GWPS Clarksville 2014 1 Xsnp1970-Xbarc28 11.5142 33.1833 0.0641 

QGws.cz-1A.2 GWPS Kinston 2014 1 Xsnp1970-Xbarc28 7.284 20.32 0.0599 

QGws.cz-1A.2 GWPS Queenstown2013 1 Xsnp1970-Xbarc28 11.28 32.2485 0.0937 

QGws.cz-1A.3 GWPS Queenstown2014 2 Xbarc28-Xsnp2005 5.0104 15.4379 0.0446 

QGws.cz-3A GWPS Clarksville 2014 188 Xsnp2984-Xsnp2934 3.1047 7.4815 -0.0306 

QGws.cz-5A GWPS Clarksville 2013 87 Xsnp3843-Xsnp3820 4.6284 9.4469 0.046 

QGws.cz-5B GWPS Clarksville 2013 20 Xsnp4130-Xsnp3884 3.602 7.2761 -0.0398 

QGws.cz-6B GWPS Kinston 2014 63 Xsnp4421-Xsnp4451 4.8634 13.2328 0.0483 

QGws.cz-7B GWPS Clarksville 2014 58 Xsnp4927-Xsnp489 3.1066 7.472 0.0305 
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Table 2.6 Continued  
 

QTL Trait Environment  
Position 

 (cM) 
Marker interval 

LOD 
score 

PVE (%) 
Additive 

effect 

QSsm.cz-1A.1 SPSM Clarksville 2013 0 Xwmc496-Xsnp1970 13.8851 30.1443 -50.8488 

QSsm.cz-1A.1 SPSM Clarksville 2014 0 Xwmc496-Xsnp1970 4.434 10.2247 -35.3148 

QSsm.cz-1A.2 SPSM Kinston 2014 1 Xsnp1970-Xbarc28 15.5894 22.0811 -34.0394 

QSsm.cz-1A.3 SPSM Queenstown2013 3 Xbarc28-Xsnp2005 8.2625 22.9784 -51.5593 

QSsm.cz-1A.3 SPSM Queenstown2014 2 Xbarc28-Xsnp2005 6.9139 15.2758 -25.0824 

QSsm.cz-2A.1 SPSM Kinston 2014 0 Xsnp2477-Xsnp2432 3.3285 3.7029 14.0568 

QSsm.cz-2A.2 SPSM Queenstown2014 75 Xsnp2382-Xsnp2401 4.8376 10.2491 20.7007 

QSsm.cz-3A SPSM Kinston 2014 1 Xsnp3744-Xsnp3048 3.5396 3.9658 -14.4323 

QSsm.cz-6A SPSM Clarksville 2014 81 Xsnp4197-Xsnp473 3.6434 8.2722 31.9406 

QSsm.cz-1B.1 SPSM Kinston 2014 8 Xsnp2205-Xsnp4503 3.241 3.6256 -13.836 

QSsm.cz-1B.2 SPSM Clarksville 2013 72 Xsnp4928-Xsnp2107 3.362 6.142 -23.355 

QSsm.cz-3B.1 SPSM Queenstown2014 24 Xsnp3405-Xsnp3389 5.7956 12.7812 -23.0253 

QSsm.cz-3B.2 SPSM Kinston 2014 31 Xsnp3389-Xsnp3344 5.9097 6.9082 -19.0795 

QSsm.cz-3B.3 SPSM Clarksville 2014 46 Xsnp3335-Xsnp3119 3.8828 8.9779 -33.1306 

QSsm.cz-3B.4 SPSM Kinston 2014 129 Xsnp3401-Xsnp3358 3.3933 3.8222 -14.2074 

QSsm.cz-5B.1 SPSM Clarksville 2013 75 Xsnp4072-Xsnp4085 3.1264 5.6471 -22.0261 

QSsm.cz-5B.2 SPSM Kinston 2014 116 Xsnp4011-Xsnp4073 5.1611 6.03 17.9303 

QSsm.cz-6B SPSM Kinston 2014 3 Xsnp4456-Xsnp107 10.2874 13.4102 26.5311 

QSsm.cz-2D SPSM Queenstown2013 57 Xsnp2862-XPpdD1 4.7473 12.6431 38.5899 

QSsm.cz-3D SPSM Queenstown2014 57 Xsnp3422-Xsnp3187 4.858 10.5722 21.1958 

QSsm.cz-6D SPSM Clarksville 2013 137 Xsnp4465-Xsnp4487 3.2886 5.8034 -22.4133 

QTgw.cz-3A.1 TGW Clarksville 2013 126 Xsnp3023-Xsnp3383 5.3262 8.2592 -0.6336 

QTgw.cz-3A.2 TGW Queenstown2013 136 Xsnp1758-Xsnp1485 6.4554 11.2965 -0.6975 

QTgw.cz-3A.3 TGW Queenstown2014 137 Xsnp1485-Xsnp2964 4.5797 9.3414 -0.6078 

QTgw.cz-3A.4 TGW Clarksville 2014 143 Xsnp2885-Xsnp2987 3.0018 4.914 -0.514 

QTgw.cz-3A.5 TGW Kinston 2014 147 Xsnp2937-Xsnp4728 4.9325 12.6304 -1.0067 

QTgw.cz-3A.6 TGW Clarksville 2013 208 Xsnp2951-Xsnp2971 4.2346 6.7403 -0.5712 

QTgw.cz-5A.1 TGW Kinston 2014 53 Xsnp218-Xsnp49 3.5745 8.8337 0.8469 

QTgw.cz-5A.2 TGW Clarksville 2013 58 Xsnp3838-Xbarc100 7.3695 11.6843 0.7601 

QTgw.cz-5A.3 TGW Clarksville 2014 60 Xbarc100-Xsnp4843 5.4004 9.237 0.7158 

QTgw.cz-5A.3 TGW Queenstown2013 61 Xbarc100-Xsnp4843 5.7471 10.1805 0.6715 

QTgw.cz-7A.1 TGW Queenstown2013 18 Xsnp4718-Xsnp4759 4.8786 8.2581 -0.5963 

QTgw.cz-7A.2 TGW Clarksville 2013 105 Xsnp4637-Xsnp4567 5.1786 8.0243 0.6267 

QTgw.cz-7A.3 TGW Queenstown2014 107 Xsnp4946-Xsnp4546 6.7631 14.7144 0.7671 

QTgw.cz-7A.4 TGW Clarksville 2014 115 Xsnp4935-Xsnp4622 5.7396 9.8599 0.7303 

QTgw.cz-7A.5 TGW Queenstown2013 123 Xsnp4588-Xsnp4620 26.7529 71.1913 -1.7692 

QTgw.cz-1B.1 TGW Clarksville 2013 85 Xsnp2084-Xsnp2113 6.3088 9.8591 -0.6978 

QTgw.cz-1B.1 TGW Clarksville 2014 86 Xsnp2084-Xsnp2113 3.6645 6.0751 -0.5787 

QTgw.cz-1B.2 TGW Queenstown2014 87 Xsnp2113-Xsnp2091 3.6309 7.2769 -0.5424 

QTgw.cz-2B TGW Clarksville 2014 58 Xbarc10-Xsnp2744 6.1855 10.8214 0.7626 

QTgw.cz-2B TGW Kinston 2014 58 Xbarc10-Xsnp2744 4.7936 12.1618 0.9873 

QTgw.cz-4B TGW Queenstown2013 75 Xsnp3721-Xsnp1656 4.2407 7.1261 0.5646 

QTgw.cz-7B.1 TGW Clarksville 2014 58 Xsnp4927-Xsnp489 5.7036 10.3833 0.747 

QTgw.cz-7B.1 TGW Queenstown2013 58 Xsnp4927-Xsnp489 3.0727 5.3189 0.4786 

QTgw.cz-7B.2 TGW Clarksville 2013 63 Xsnp838-Xsnp4852 7.3537 11.8238 0.7572 

QTgw.cz-7B.3 TGW Queenstown2014 65 Xsnp4852-Xsnp4943 4.2808 9.5333 0.6163 

QTgw.cz-5D TGW Clarksville 2013 95 Xsnp4170-Xsnp4157 3.6356 5.4776 0.5138 
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QTL with additive and additive × environment interaction effects 

ICIM-ADD mapping detected a total of 64 putative QTLs for grain yield and yield 

components at five environments (Table 2.6). Significant QTLs were detected on all 

chromosomes except 1D, 4D, and 7D. QTLs were unevenly distributed across the three 

homoeologous groups and twenty one chromosomes of wheat. Thirty QTLs (46.9%) 

were in the A genome, also 30 QTLs (46.9%) were in the B genome, and only 4 (6.3%) 

were in the D genome. Distribution of QTLs was also unbalanced on chromosomes 

among homologous chromosome groups as follows: 7 on chromosomes 1 (11.1%), 6 on 

chromosomes 2 (9.4%), 22 on chromosomes 3 (34.4%), 2 on chromosomes 4 (3.1%), 13 

on chromosomes 5 (20.3%), 6 on chromosomes 6 (9.4%), and 8 on chromosomes 7 

(12.5%). 

 

The number of QTL for individual traits ranged from 8 to 22. Specifically, 12 QTL were 

identified for grain yield and each of them explained 7.5% to 21.3% of the phenotypic 

variation; 17 QTL were identified for grains spike-1 explaining 6.1 % to 44.1% of the 

phenotypic variation; 19 QTL were detected for spikes m-2 and 8 QTL were for grain 

weight spike-1 accounting for 3.7% to 15.6% and 7.3% to 33.2% of the phenotypic 

variation respectively; 22 significant QTL were found to explain 5.5% to 71.2% of the 

phenotypic variation of thousand grain weight. In addition, 11 marker intervals where 

QTL co-location existed were estimated to have pleiotropic effects. Among all QTL 

identified, 6 QTL were repeatedly detected in more than one environment. 
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Additive × environment interaction effects were detected for all traits evaluated except 

for TGW. Of the five significant QTLs, three were detected with additive main effects in 

previous single environment mapping and the other two were insignificant (LOD<3) for 

additive main effects, hence, were environment-specific QTLss (Table 2.7). The 

heritability of additive × environment interactions ranged from 0.2% to 27.4%. 

Clarksville 2013 had the most additive × environment interactions, followed by 

Queenstown 2014. One additive × environment interaction was detected for Clarksville 

2014 and Kinston 2014 and none were detected for Clarksville 2013. 

QTL with epistatic and epistasis × environment interaction effects  

 
A total of 7 pairs of significant epistatic interactions (P<0.001) were identified across 

five environments for yield and yield components except for SPSM (Table 2.8). The 

epistatic interactions were observed within and across chromosomes (mostly in the A and 

B genome) with heritability ranging from 0.2% to 6% and 0.1% to 2.7% for epistatic and 

epistatic × environment interaction effects, respectively. The only significant epistatic × 

environment interaction identified in this study was in Queenstown 2013. Furthermore, 

two marker intervals Xbarc28-Xsnp2005 and Xsnp3253-Xsnp3349, had already been 

detected for significant additive effects (Table 2.6) while the rest were detected only for 

epistatic interactions.  
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Figure 2.1 Genetic linkage map and position of quantitative trait loci (QTLs) detected in a doubled haploid mapping population 
derived from MD01W233-06-1 × SS8641. Locus marker names are shown on the right side of the chromosomes and values to the left 
of chromosomes show the genetic distance (cM) for each marker. QTLs are labeled with trait abbreviations and the QTL number for 
each trait. QTLs for the same trait are in the same color. 

 
 
Table 2.7 QTL × Environment interactions influencing grain yield (GYLD), grains per spike (GPS), grain 
weight per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW) in five 
environments during 2013 and 2014. 
 

Trait Chr. Position Interval AE1† AE2 † AE3 † AE4† AE5† h 2(ae) ‡ 

GYLD 2A 23.6 Xsnp2427-Xsnp2479 -15.27* 12.78* 0.002 

GYLD 2A 88.8 Xsnp2406-Xsnp2363 19.00** 0.030 

GPS 1A 3.7 Xbarc28-Xsnp2005§ 0.52* -0.66** 0.274 

SPSM 1A 1.7 Xbarc28-Xsnp2005§ 12.87* 0.217 

SPSM 3B 46.2 Xsnp3119-Xsnp3395§   -14.30*       0.099 
 
† AE is the additive × environment interaction effect at each environment. E1: Clarksville 2013; E2: Clarksville 2014; E3:  
Queenstown 2013; E4: Queenstown 2014; E5: Kinston 2014. 
‡ h2 (ae) is heritability estimate of the additive × environment interaction effect across five environments. 
§ Interval with significant additive effect. 
* Significantly different from zero at the 0.05 probability level. 
** Significant difference from zero at the 0.01 probability level.
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Table 2.8 Chromosome locations of digenetic epistatic QTLs for grain yield (GYLD), grains per spike (GPS), grain weight per spike (GWPS), spikes per square 
meter (SPSM), and thousand-grain-weight (TGW) in five environments in 2013 and 2014. 

 Trait Interval† Chr† Position† Interval‡ Chr‡ Position‡ AA§ E1¶ E2¶ E3 ¶ E4 ¶ E5¶ h2(aa) # h2(aae) †† 

GYLD Xsnp4749-Xsnp324 7A 53.6 Xsnp3312-Xsnp1697 3B 76.2 23.79*** 0.2% 2.7% 

GYLD Xsnp4171-Xsnp876 5D 83.9 Xsnp4518-Xsnp4482 6D 56.4 17.11*** 2.5% 0.9% 

GPS Xbarc28-Xsnp2005‡‡ 1A 3.7 Xsnp1006-Xsnp823 5B 58.3 -0.50*** 1.5% 0.5% 

GPS Xsnp4715-Xsnp4722 7A 49.3 Xsnp2780-Xsnp3734 2B 17.3 -0.46*** 1.5% 0.6% 

GWPS Xsnp2956-Xsnp2950 3A 155.9 Xsnp2571-Xsnp2667 2B 86.4 0.03*** 3.5% 0.9% 

TGW Xsnp4050-Xsnp4020 5B 80.9 Xsnp4451-Xsnp1683 6B 64.2 0.29*** 3.1% 0.1% 

TGW Xsnp3253-Xsnp3349‡‡ 3B 35.3 Xsnp3175-Xsnp3401 3B 120 0.65*** 6.0% 0.1% 

TGW Xsnp3645-Xsnp3716 4B 114.4 Xsnp4948-Xsnp420 7D 256.4 -0.58***           4.3% 0.1% 

 
† The flanking markers, chromosome and position of the first interval involved in the epistasis.  
‡ The flanking markers, chromosome and position of the second interval involved in the epistasis.  
§ The additive × additive effect.  
¶ The epistasis × environment effect at each environment. E1: Clarksville 2013; E2: Clarksville 2014; E3: Queenstown 2013; E4: Queenstown 2014; E5: Kinston 2015. 
# The heritability estimates for additive × additive interaction effects across five environment. 
†† The heritability estimates for epistasis × environment interaction effects across five environments. 
‡‡ Interval with significant additive effect.  
*** Significantly different from zero at the 0.001 probability level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

► 
Figure 2.2 Distribution of genetic and non-genetic components for grain yield and yield 
related traits: grain yield (GYLD), spikes m-2 (SPSM), grains per spike (GPS), grain weight 
per spike (GWPS), thousand-grain-weight (TGW). a) total number of QTLs detected for 
additive (a), additive × environment (ae), epistasis (aa), and epistasis × environment 
interactions (aae) effects. b) relative magnitude of a, ae, aa, and aae effects. 
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Discussion  

Grain yield and yield components are complex quantitative traits determined by 

genetic components, environmental factors, and the interaction between them 

(Cooper et al., 2009; Eeuwijk, 2008; Holland, 2007; Mackay, 2001). In this study, I 

used a mixed linear model to investigate the genetic basis of grain yield and yield 

components in a DH population of 124 lines by dividing genetic effects into additive 

main effect (A), additive × additive epistatic main effects (A×A or Q×Q), and their 

environmental interaction effects (A×E, AA×E or Q×E, QQ×E) (Wang et al., 1999; 

Yang et al., 2007). As single environment experiment could underestimate the 

number of QTL controlling a certain trait, whereas repeated experiments are useful in 

detecting stable QTL over environments (Paterson et al., 1991), I evaluated the DH 

population and parents in five environments in the US East Coast. For genotyping, I 

relied mostly on SNPs by using the 9K SNP array and GBS in addition to SSRs to get 

more coverage of the wheat genome. The map contained 4972 polymorphic markers 

and is highly consistent with the previously published 9K SNP consensus map 

(Cavanagh et al., 2013). The rank correlation coefficient between them was as high as 

0.99 for most chromosomes in terms of SNP order (data not shown). Furthermore, the 

average interval length of the map (2.3 cM) was much smaller than that observed in 

previous studies (Carter et al., 2011; Heidari et al., 2011; Li et al., 2013), indicating a 

better resolution. 
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QTLs for grain yield 

In this study, grain yield was defined as yield m-2 as reported by previous researchers 

(Heidari et al., 2011; Lopes et al., 2013). Twelve grain yield QTLs were detected 

(Table 2.6). Both parents carried favorable QTL alleles. Seven loci of MDW233 

alleles increased grain yield on 1A, 3A, 3B, 5B, 6D, accounting for 7.5 to 21.3% of 

the phenotypic variation. The SS8641 alleles were associated greater grain yield at 

the other five loci on 2A, 6A, 5B, 6B, 2D, accounting for 9.7 to 17.7% of the 

phenotypic variation. Grain yield was the only trait that had no stable QTL detected 

over five environments in this study. This was expected as similar results were 

obtained by Kumar et al. (2007) and Li et al. (2007b), verifying that grain yield is 

strongly influenced by environment. Furthermore, QTL is a genomic region that may 

contain several functional genes or sub-QTLs that are closely linked and may have 

opposite genetic effects and as well as being subject to environmental influences 

(Mackay et al., 2009). The detection of a QTL indicates that the net effects of all sub-

QTLs within it are significant whereas a non-significant QTL may still contain 

significant sub-QTLs (Mackay et al., 2009).  Therefore, increasing marker density 

and population size would allow for the discovery of more QTLs as well as develop 

more detailed insights into the genetic basis of quantitative traits in this DH 

population. 

 

Eight QTL (QYld.cz-1B, QYld.cz-3B.1, QYld.cz-3B.2, QYld.cz-5B.1, QYld.cz-5B.2, 

QYld.cz-6B, QYld.cz-2D, QYld.cz-6D) explained more than 10 % of the phenotypic 

variation of grain yield (Table 2.6). The QTL QYld.cz-3B.2 was detected at 
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Clarksville 2014 with LOD=6.8 and the effect of MDW233 allele was very large 

accounting for the highest genetic variation for gain yield (PVE=21.3%). In this 

region, Bennett et al. (2012a) and Bennett et al. (2012b) also reported QTLs for grain 

yield, spike length, thousand grain weight repeatedly in heat, drought and high yield 

potential environments and Zhang et al. (2010) identified two meta-QTLs for grain 

yield and yield associated traits in a meta-QTL analysis based on 59 independent 

studies.  Other studies also identified QTLs for plant height, harvest index, isotope 

discrimination, and canopy temperature in this region (Bennett et al., 2012b; Cuthbert 

et al., 2008; Kumar et al., 2007; Rebetzke et al., 2008). To date, the region where 

QYld.cz-3B.2 resides appears to have pleiotropic effect on grain yield and should be 

given high priority for fine mapping and candidate gene identification, so that 

diagnostic gene-specific markers can be developed and utilized within breeding 

programs. 

 

QYld.cz-2D (LOD=4.5148, PVE=17.7%) was flanked by Xsnp2862 and Ppd-D1. 

Ppd-D1 is a photoperiod-sensitivity gene that largely confers wheat dominant 

insensitivity to short day length. It enhances grain yield by allowing earlier heading 

under the short days of spring so that grain-filling can occur before heat and drought 

stress often associated with late summer (Nelson et al., 2006). Moreover, a recent 

study showed that Ppd-D1 controlled photoperiod dependent floral induction in wheat 

and had a major inhibitory effect on paired spikelet formation by regulating the 

expression of FLOWERING LOCUS T (FT) (Boden et al., 2015). The yield-

increasing effect of QYld.cz-2D may be due to the pleiotropic effect of Ppd-D1. 
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QYld.cz-3B.1 (LOD=4.6, PVE=10.9%) was mapped on the short arm of chromosome 

3B and may be related to the one detected by Li et al. (2007b). Another well-known 

QTL, Qfhs.ndsu-3BS (also known as resistance gene Fhb1), is located in the same 

region (Schweiger et al., 2013). This suggests a possible new way to improve wheat 

disease resistance and grain yield by deploying this genomic region in breeding lines. 

Additionally, QTL QYld.cz-1A was in a region similar to that identified by Heidari et 

al. (2011) which controlled the expression of both grains per spike and grain weight 

per spike. Previous studies also detected QTL for grain yield in similar regions for 

QYld.cz-3A (Campbell et al., 2003; Mengistu et al., 2012), QYld.cz-1B (Huang et al., 

2003), QYld.cz-5B.1 (Bennett et al., 2012b), QYld.cz-6A (Kuchel et al., 2007b; 

Simmonds et al., 2014), QYld.cz-6B (Marza et al., 2006), and QYld.cz-6D (Kumar et 

al., 2007). Yield QTLs reported by Kumar et al. (2007) and Groos et al. (2003) were 

located in a region more than 10 cM away from QYld.cz-2A and QYld.cz-5B.2, 

respectively. This suggests that QYld.cz-2A and QYld.cz-5B.2 may be new QTLs or 

this could be due to the difference in linkage map resolution. 

QTLs for yield components  

 
In this study, TGW had the highest heritability and number of QTLs among all traits 

evaluated (Table 2.4 and 2.6). Of the twenty-two QTLs identified, four were detected 

in more than one environment. They were located on chromosomes 5A, 1B, 2B, and 

7B. However, the strongest QTL was on chromosome 7A, designated as QTgw.cz-

7A.5, and explained up to 71.2% of the variation of TGW in Queenstown 2013. The 

positive allele for this QTL was from MDW233, the parental line with the lower 
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TGW. Similarly, Groos et al. (2003) also reported a stable QTL in this region for 

TGW explaining 5.2 to 10.3% of the phenotypic variation across seven trials. Thus, 

QTgw-7A.5 may be the underlying QTL in both studies. Four QTL clusters were 

found on 3A, 1B, 5A and 7B as QTLs on those chromosomes were detected in 

proximity to each other and exhibited the same direction of genetic effects (Cai and 

Morishima, 2002). Specifically, favorable allelic clusters on 3A and 1B came from 

MDW233 while those alleles from SS8641 were associated with higher TGW for the 

allelic clusters on 5A and 7B. Extensive studies have focused on 3A, which is known 

to contain QTL/genes controlling grain yield and associated traits, and several loci for 

TGW were identified  (Dilbirligi et al., 2006; Mengistu et al., 2012; Rustgi et al., 

2013). However, after a close comparison of previous results, I found that QTgw.cz-

3A.6 appeared to be a new QTL for TGW since no TGW QTLs were reported in this 

region before. Clusters/QTL have also been reported in similar regions for the ones 

on 3A (Huang et al., 2004), 5A (Cuthbert et al., 2008), 7B (Hai et al., 2008; Huang et 

al., 2003),1B (Huang et al., 2004), QTgw.cz-2B (Hai et al., 2008), QTgw.cz-5D (Li et 

al., 2007b).  

 

QTLs for GPS have been identified on all wheat chromosomes (Tang et al., 2011; Wu 

et al., 2012; Zhang et al., 2010). In the present study, several major GPS QTLs on 1A, 

3A and 5B were detected and formed QTL clusters. The QTL cluster on 1A was 

detected in all five environments and explained 18.2 to 44% of the phenotypic 

variation. Heidari et al. (2011) found the same region significantly associated with 

GPS but with less PVE. The QTL cluster (QGps.cz-3A.1 and QGps.cz-3A.2) at the 
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distal end short arm of 3A is comparable with the region identified for GPS, GYLD, 

and TGW by Campbell et al. (2003). QGps.cz-3A.2 had the most influence on GPS 

(PVE=52%) and its SS8641 allele decreased GPS, which was opposite to the effect of 

QGps.cz-3A.1. This may be due to environmental difference and Q × E interaction 

where QGps.cz-3A.1 was detected in a warmer location with more precipitation 

whereas QGps.cz-3A.2 was detected in a cooler location with less precipitation. The 

other cluster on 3A was located next to Xbarc45, a marker 8 cM away from Xwmc664 

according to the high-density microsatellite consensus map (Somers et al., 2004). 

Mengistu et al. (2012) found Xwmc664 to be the most significant marker for GPS 

QTL QKps.neb-3A.1 in a recombinant inbred line population derived from cultivar 

Cheyenne and its 3A substitution line and that QKps.neb-3A.1 was in a cluster with 

nearby QTL. Therefore, it is supposed that the cluster on 3A may represent the same 

cluster identified by Mengistu et al. (2012). Moreover, Li et al. (2007b) detected two 

QTLs at the distal end of 3AS. Its estimated position on the microsatellite consensus 

map was approximately 40 cM based on the information of Xgwm77 (Somers et al., 

2004). The cluster identified in this study (QGps.cz-3B.1, QGps.cz-3B.2, and 

QGps.cz-3B.3) was positioned in the same region, suggesting those two clusters may 

be the same. Another cluster of QTLs with similar influence on GPS was on 5B and 

the genetic effects of those QTLs were in the same direction. Marza et al. (2006) 

detected the same region in six environments explaining 18.5% of the phenotypic 

variation of GYLD. These findings suggested that this cluster improved grain yield 

by modifying GPS. Additionally, QTLs for GPS or other yield traits have been 

reported in or close to QGps.cz-2A (Li et al., 2007b), QGps.cz-2B (Marza et al., 
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2006), QGps.cz-4A (Kirigwi et al., 2007), QGps.cz-4A(Huang et al., 2004), and 

QGps.cz-3D (Quarrie et al., 2005). 

 

Multiple environment experiments allowed the identification of eight QTLs for 

GWPS in five environments (Table 2.6). Three closely linked QTLs in which SS8641 

alleles increased GWPS were located on 1A and were the strongest QTL associated 

with GWPS explaining 15.4 to 33.2% of the phenotypic variation. Additional 

evidence of QTL for GWPS was reported in 3A, 5A and 6B (Zhang et al., 2010). A 

summary of preceding studies showed that chromosomes 5B and 7B had the fewest 

number of QTL for yield and yield associated traits (Zhang et al., 2010). Thus, it was 

not surprising to find no QTLs previously reported in the region of QGws.cz-5B and 

QGws.cz-7B. 

 

Under current agricultural production systems, improving spikes m-2 or grains m-2 

rather than other yield components has been generally agreed to be the key to raising 

grain yield potential worldwide (Gaju et al., 2009). Therefore, QTL analysis for 

SPSM has been the target of many studies. Heidari et al. (2011) reported QTLs for 

SPSM on 1A, 7A, and 2D in a DH population. The QTLs they reported on 1A are 

comparable to the ones identified at the distal end of 1AS in this study. Marza et al. 

(2006) found 1B, 4A, 7B and 7D to be associated with SPSM in a wheat population 

derived from Ning7840 × Clark, where the QTL on 1B was located in the similar 

region of Qsm.cz-1B.1 I detected in this study. Similarly, additional SPSM QTLs 

were located in the region previously described by Huang et al. (2004) on 
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chromosome 1B, Groos et al. (2003) on chromosome 3B, Bennett et al. (2012b) on 

chromosomes 3B and 5B, Campbell et al. (2003) on chromosome 3A, Huang et al. 

(2003) on chromosomes 2A, 2D, and 6D. 

Pleiotropic effects of QTLs  

 
Correlated traits are often affected by pleiotropic effects of the same QTL/gene(s) or 

closely linked QTL/gene(s), which would enable the selection of a complex trait via a 

closely correlated single trait (Hai et al., 2008). In the present study, a significant 

positive correlation was observed between GYLD and SPSM in all five environments 

(Table 2.3) and five loci with genetic effect of same direction were detected for 

GYLD and SPSM (Table 2.6). Favorable alleles came from both parents. The 

MDW233 allele increased GYLD and SPSM at QYld.cz-1A/QSsm.cz.-1A.1, QYld.cz-

1B/QSsm.cz.-1B.2, and QYld.cz-6D/QSsm.cz.-6D while the SS8641 allele improved 

GYLD and SPSM jointly at QYld.cz-2A/QSsm.cz.-2A.1 and QYld.cz-2D/QSsm.cz.-2D. 

The negative correlation between SPSM and both GWPS and GPS may be due to the 

pleiotropic effects of loci flanked by Xbar28-Xsnp2005 which  increased SPSM but 

decreased GWPS and GPS or vice versa. These findings supported the existence of a 

QTL with pleiotropic effect and provided a genetic explanation of observed 

phenotypic correlation. Although a significant positive correlation was also observed 

between GYLD and TGW, no pleiotropic QTL was detected. This may indicate that 

the expression of GYLD was through TGW and conditional mapping was needed to 

investigate the underlying mechanism (Zhu, 1995).  
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Q×E and QQ×E interactions  

Generally, a QTL with low or no Q × E interaction can be utilized in a broad range of 

environments, whereas a QTL with significant Q × E interaction can only be used in 

the specific environment in which it is detected (Zhao and Xu, 2012). In this study, 

the DH population was evaluated in five environments spanning two crop years. Two 

loci for SPSM, Two for GY and 1 for GPS showed significant additive × environment 

interaction. The majority of the significant Q × E effects were found in Queenstown 

2013 and Queenstown 2014. Those two environments had relative higher 

precipitation and average monthly temperature during the growing season indicating 

that high rainfall and temperature may contribute to Q × E expression in this study. 

The intervals Xsnp2427-Xsnp2479 and Xbar28-Xsnp2005 were detected for Q × E 

interactions in two environments with opposite effects confirming that the QTL 

effects were subject to change due to environments and that the environment suitable 

for the expression of one QTL may not be suitable for another QTL. The SS8641 

allele of the locus located in Xbar28-Xsnp2005 was found to be pleiotropic in 

Queenstown 2014. It increased GPS but decreased SPSM. However, its Q × E 

interaction effects were opposite which decreased GPS and increased SPSM, 

suggesting that the additive effect alone was not enough to characterize the genetic 

effect of this QTL. It was also apparent that only a small portion of QTL with 

additive main effect was involved in Q × E interaction. This suggests that a QTL with 

no main effects can exercise its effect through interaction with the environment. 

Therefore, to develop genotypes for target environments or genotypes with broad 
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adaptation, the Q × E interaction should be investigated and assessed in plant 

breeding programs (Basford and Cooper, 1998; El-Soda et al., 2014). 

 

Epistasis has long been recognized to describe a situation where the effect of a 

particular genotype depends on the genetic background or generally as an interaction 

between a pair of loci, in which the phenotypic effect of one locus depends on the 

genotype at the second locus (Bocianowski, 2013; Carlborg and Haley, 2004).  

Understanding epistasis has been regarded as a necessity to characterize the genetic 

basis of complex traits (Carlborg and Haley, 2004; Phillips, 2008).  Although 

epistasis was not well investigated in most previous QTL-mapping studies in wheat 

and its effect may not be as significant (Bennett et al., 2012a; Carter et al., 2011; 

Heidari et al., 2011; Marza et al., 2006; Mengistu et al., 2012), ignoring epistasis 

could affect the efficiency and accuracy of MAS as a result of overestimating or 

underestimating QTL effects (Bocianowski, 2013; Carlborg and Haley, 2004). Also, a 

simulation study showed that the genetic advance of selection on additive effects 

became fixed after several cycles of selection when epistasis was present (Wang et 

al., 2004). In this study, 7 pairs of significant epistatic interactions influencing grain 

yield and yield components were detected (Table 2.8). However, only two 

intervals/loci were detected by ICIM-ADD. This suggested many intervals in two 

locus analysis may escape detection by ICIM-ADD. Kumar et al. (2007) reported 

similar results and pointed out that this phenomena was more conspicuous in some 

populations and was perhaps also due to density of map used for QTL analysis. The 

fact that most epistasis involved only QTL with no main effects indicated that 
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epistasis between non-significant loci may be an important genetic basis of grain 

yield and yield components in wheat. This has also been found in maize and rice (Li 

et al., 1997; Ma et al., 2007a; Xing et al., 2014). Besides, it should be noted that the 

effects of some significant locus (e.g. the one located in Xbarc28-Xsnp2005) was 

completely changed to the opposite direction through interaction with another locus 

(e.g. the one located in Xsnp1006-Xsnp823), implying the need to account for 

epistasis to avoid an inflated estimate of the net QTL effect. In contrast, the genetic 

effect of QTL located in Xsnp3253-Xsnp3349 was enhanced by interacting with the 

one in Xsnp3175-Xsnp3401 suggesting that pyramiding QTL/genes could further 

improve the trait of interest when the direction of epistatic effect among QTL/genes is 

in the same direction with the additive effects of each QTL/gene involved.  

 

Although both additive and epistatic effects contributed to the phenotypic 

performance of grain yield and yield components, the contribution from significant 

epistasis was much smaller compared to that from additive loci for all traits 

investigated in this study (Figure 2.2), suggesting the essential role of additive main 

effects in determining yield and yield components in the current DH population and 

potential targets for MAS. This agreed with recent studies on rice, barley and wheat, 

where significant epistatic effects for yield and yield components were small in 

magnitude relative to the additive effects (Wu et al., 2012; Xing et al., 2002; Xu and 

Jia, 2007; Zhuang et al., 2002). And the low percentage of phenotypic variance 

explained by epistasis is largely due to a large number of QTLs with small effects 

(Wu et al., 2012). This might also explain why Q×E and QQ×E interactions were not 
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examined by researchers in some recent studies in wheat (Carter et al., 2011; Heidari 

et al., 2011; Kato et al., 2000; Marza et al., 2006).  

Conclusion 

In the current study the genetic basis of grain yield and yield components in a DH 

population was investigated by QTL mapping. Significant QTLs for GYLD, GWPS, 

GPS, SPSM, and TGW were detected almost on every wheat chromosome 

confirming the general involvement of loci (major QTL clusters and scattered minor 

QTLs) across the whole genome in the expression of yield and yield components. 

Although additive main effects, additive × additive epistatic main effects, and their 

interactions with environments all served as genetic determinants of grain yield and 

yield components, the additive main effects were the major contributors in this DH 

population and the magnitude and directions of QTL effects may change due to 

epistasis and QTL× environment interactions. Additionally, the observed phenotypic 

correlations between yield and yield components in this study were possibly caused 

by pleiotropy from QTLs located on 1A, 2A, 2D and 6D. Moreover, a major gene 

such as Ppd-D1 was involved in the expression of grain yield per se. Finally, major 

QTLs identified in this study such as QYld.cz-3B.2 for GYLD and QTgw.cz-7A.5 for 

TGW could be utilized by breeders for MAS and QTL fine mapping. 
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Chapter 3: Quantitative trait loci mapping of plant architecture 
traits in a doubled haploid population of soft red winter wheat 

Abstract 

Higher wheat grain yields are required to feed an increasing population. An optimized 

plant architecture may play a crucial role in increasing grain yield. Quantitative trait 

loci (QTLs) analysis was conducted in a doubled haploid (DH) population to study 

the genetic basis of plant architecture traits (plant height, PHT; flag leaf length, FLL; 

flag leaf width, FLW; flag leaf area, FLA; Flag leaf shape (length/width ratio), FLS) 

across six year-location trials. The DHs showed normal distribution with 

transgressive segregation, suggesting that plant architecture traits are controlled by 

polygenes. Seventy four QTLs were detected on all wheat chromosomes. Twenty 

were for PHT, thirteen were for FLL, sixteen were for FLW, twelve were for FLA, 

and eleven were for FLS. Major QTLs such as QPht.cz-2D.2 and QTL clusters on 

chromosome 2D, 3B, 6A etc. are first reports for plant architecture traits. These QTLs 

provide useful information for understanding the genetic mechanisms regulating plant 

architecture in wheat and for marker-assisted selection in designing desirable plant 

height and flag leaf morphology to increase yield. 

Introduction 

Plant architecture involves several traits, such as plant height, tillering, branching 

patterns, leaf size and shape, configuration of leaf relative to the sun and spatial 

arrangement of leaves (Fageria et al., 2006) and is closely associated with 

photosynthetic ability and grain yield in wheat (Triticum aestivum L.) (Hedden, 

2003). Under high soil fertility conditions, the stems of tall plants are generally 
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unable to support the resultant weight of plump grains and fall over in the field before 

maturity, a process known as lodging, with consequent large yield losses (Hedden, 

2003). This situation was greatly improved after the introduction of dwarfing genes 

into cereal crops, such as Rht-B1b and Rht-D1b in wheat and sd1 in rice which 

produce semi-dwarf plants with short strong stalks as well as more assimilate 

partitioned into the grain, leading to large yield increases in wheat and rice known as 

Green Revolution (Hedden, 2003). However, extremely short plants are 

disadvantageous because leaves are very closely spaced on a short stem causing 

increased shading within the canopy, as well as poor ventilation and light 

transmission in the lower canopy, which affects grain filling and decreases grain yield 

(Yoshida, 1972; Zhang et al., 2011). Thus, appropriate plant height is a requirement 

for achieving the desired yield level in wheat breeding programs. The closest leaf 

from the spike, the flag leaf, is the primary source of assimilates for grain filling and 

thus grain yield and it also stays green longer than other leaves (Ali et al., 2010). 

Translocation of carbohydrates from the flag leaf is almost entirely directed towards 

the grain while that from the lower leaves is only partly directed towards the grain 

and the detachment of flag leaf considerably decreases grain yield (Ali et al., 2010; 

Monyo and Whittington, 1973)  

 

Plant height and leaf morphology (flag leaf length, width, and area) are generally 

considered quantitative traits and influenced by the environment. Understanding the 

genetic bases of these traits is useful in wheat improvement. To date, more than 

twenty reduced height genes have been named and some are molecularly 
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characterized (McIntosh et al., 2013). Height-reducing genes fall into two groups 

depending on their reaction to endogenous gibberellic acid (GA). Firstly, GA-

insensitive genes such as Rht-B1b and Rht-D1b encode mutant proteins that belong to 

the DELLA subfamily of GRAS regulatory proteins which repress GA responsive 

growth  by decreasing the sensitivity of vegetative and reproductive tissues to 

endogenous GA, leading to reduced stem internode length and overall plant height 

(Tan et al., 2013). Secondly, plants carrying GA-responsive genes, such as Rht4 and 

Rht8, retain GA responsiveness but show decreased levels of endogenous bioactive 

GA not due to defective gibberellin biosynthesis or signaling, but possibly to a 

reduced sensitivity to brassinosteroids (Chen et al., 2015; Gasperini et al., 2012). It 

should be noted that unfavorable effects such as reduced seedling vigor associated 

with GA-insensitive genes and delayed anthesis date associated with GA-responsive 

genes do occur (Chen et al., 2013). Therefore, breeders may need new alternative 

dwarfing genes to achieve the appropriate height reduction without introducing too 

much of a negative effect.  

 

In wheat, studies on flag leaf characteristics have focused on their relationship with 

grain yield and plant adaptation (Blake et al., 2007; Dere and YIildirim, 2006; 

Monneveux et al., 2004) and few on QTL analysis. A previous report from Jia et al. 

(2013a) detected six QTLs for flag leaf length and width among which a major QTL 

named QFlw.nau-5A.1 explained 28.7 to 35.6% of the phenotypic variation. 

QFlw.nau-5A.1 was inherited like a semidominant gene, designated as TaFLW1, and 

fine mapped in a 0.2 cM interval on chromosome 5A (Xue et al., 2013). The 
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Wangshuibai TaFLW1 allele reduced flag leaf width up to 3 mm and was closely 

linked to the type I Fusarium head blight resistance gene Fhb5 (Wu et al., 2014; Xue 

et al., 2013). QTLs controlling leaf morphology have been cloned in rice. A 30-bp 

deletion in the coding region of rice Narrow leaf 1(Nal1) was significantly associated 

with reduced polar auxin transport capacity which affected the distribution pattern of 

vascular bundles leading to narrower leaves with fewer longitudinal veins. NARROW 

AND ROLLED LEAF 1 (NRL1), on rice chromosome 12, encodes the cellulose 

synthase-like protein D4 (OsCsID4) which plays a crucial role in leaf expansion in 

rice (Hu et al., 2010). Its three mutants (single base substitutions at three different 

loci) nrl1-1, nrl1-2, and nrl1-2 are shorter and show erect, narrow and semi-rolled 

leaves compared with the NRL1 carrying plant (Hu et al., 2010). 

 

QTL mapping studies of plant architecture, especially of flag leaf morphology at the 

whole genome level, have rarely been reported in wheat. To further explore QTLs for 

plant architecture and provide information for QTL pyramiding, I conducted 

experiments to map QTLs for plant architecture in a doubled haploid (DH) population 

of soft red winter wheat. The objective of this study was to identify QTLs with 

additive effects, epistatic effects, and Q×E interactions for wheat plant height, flag 

leaf width, length, area, and shape to help design strategies for attaining the desired 

plant architecture in wheat breeding programs. 
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Material and Methods 

Genetic resources and field experiments 

A doubled-haploid population of 124 lines derived from a cross between a soft red 

winter wheat germplasm line MD01W233-06-1 (MDW233) (Costa et al., 2010) and a 

soft red winter wheat cultivar SS8641 (Johnson et al., 2007b) was used for this study. 

MDW233 carries the Rht-D1b dwarfing gene the Ppd-D1b photoperiod sensitive 

allele as well as the 1RS/1AL translocation. A genetic linkage map with single 

nucleotide polymorphism (SNPs), simple sequence repeats (SSRs), and a 

morphological marker (coleoptile color) was constructed with an average interval 

length of 2.3 cM (Chapter 2 of this dissertation).  

 

The 124 DH lines, together with the parents MDW233 and SS8641, were planted in 

the greenhouse and research fields at the University of Maryland. The greenhouse 

evaluation was carried out in the 2011-2012 and 2012-2013 crop seasons. The 

population was germinated at room temperature and placed in a growth chamber 

(4°C, 16 hour light and 8 hour darkness) for eight weeks for vernalization and then 

transferred to to greenhouse (20°C, 16 hour light and 8 hour darkness) with each line 

planted in a one-gallon pot. Regular irrigation was used to keep soil moist. Fertilizers 

were applied directly to each pot in seedling stage. Pots were randomized with three 

replications in the 2011-2012 season and four replications in the 2012-2013 season. 

Field tests were conducted in research fields at Clarksville, MD and Queenstown, MD 

for the 2012-2013 and 2013-2014 crop seasons. The DH lines and two parents 

evaluated in field plots which were arranged in a randomized complete block design 
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with two replications. Each field plot consisted of seven rows separated by 15.2 cm. 

Seed density was 22 seeds per 0.305 m in each row. Growing season rainfall and 

temperature data were obtained from respective research farms for Clarksville, MD 

and Queenstown, MD (Figure 3.1). Soil fertility management followed recommended 

management practices for each location. All trials were sprayed with the metconazole 

fungicide (Caramba®, BASF Corporation) at anthesis to reduce potential infection by 

Fusarium graminearum. 

Traits and measurements 

At maturity, five plants were randomly chosen from each plot of the field study for 

plant architecture traits evaluation. Plants likely affected by the border effect were 

avoided. A total of five traits were measured including plant height (PHT, cm), flag 

leaf length (FLL, cm), flag leaf width (FLW, cm), and flag leaf area (FLA, cm2). 

FLW was taken at the widest part of the flag leaf. Flag leaf length was measured from 

the auricle to the apex. Flag leaf area (FLA) was derived (FLA=FLL×FLW×0.79) as 

previously described (Simpson, 1968; Spagnoletti Zeuli and Qualset, 1990). In the 

greenhouse study, PHT, FLL, FLW, FLA values were collected from each replication 

from three individual plants for 2011-2012 and four individual plants for 2012-2013 

and averaged for further analyses.  

Data analysis 

 
An analysis of variance (ANOVA) for PHT, FLL, FLW, FLA, and FLS was 

performed separately for each environment and for six environments combined using 

the PROC GLM procedure of SAS version 9.3 (SAS Institute, Raleigh, NC 2013). 
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The ANOVA model for single environment analysis was Y= replication + genotype + 

error, where replication and genotype were fixed and error was random. The ANOVA 

model for combined analysis was Y = environment + replication within environment 

+ genotype + genotype × environment + error, where error was considered random 

and all others were fixed. Pearson’s correlation coefficients were calculated using the 

PROC CORR procedure of SAS to detect the association among plant architecture 

traits. Broad-sense heritability (h2) (defined as h2= ��
�/(��

�+(���
� /�)+ (��

�/
�)), where 

��
� is the variance of genotypic effect, ���

�  is the genotype × environment variance, 

and � and 
 are the number of environments and replicates, respectively) for each trait 

was calculated on a family mean basis using the PROC MIXED procedure of SAS, as 

described by Holland et al. (2003). The distributions of all evaluated traits were 

produced using the JMP® Pro, Version 11 (SAS Institue, Cary, NC 2014) (Figure 

3.2).  

QTL analysis 

 
In this study, QTL analysis was performed using IciMapping version 4.0 (Li et al., 

2008) for additive effects and QTLNetwork version 2.1 for digenetic QTL epistasis 

(A×A or Q×Q), additive × environment (A×E or Q×E) and epistasis × environment 

(QQ×E) interactions (Wang et al., 1999; Yang et al., 2007). For IciMapping version 

4.0, inclusive composite interval mapping of additive module (ICIM-ADD) was used 

and the walking speed for all traits was 1 cM. Reference LOD values were 

determined by 1, 000 permutations (Doerge, 2002). Type I error to determine the 

LOD from the permutation test was 0.05. The LOD threshold to declare the presence 

of a significant QTL was 3.0. The position at which the LOD score curve reached its 
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maximum was used as the estimate of the QTL location. For QTLNetwork version 

2.1, mixed-model based composite interval mapping (MCIM) was used and Q×E, 

Q×Q, and QQ×E effects were estimated by the Monte Carlo Markov Chain method 

with a scanning speed of 1 cM step and the experiment-wise type I error for putative 

QTL detection of 0.05. 

Results 

Phenotypic data analysis 

The performance of the two parents and the DH lines is shown in Figure 3.2. In all six 

environments, plant architecture traits segregated continuously as typical quantitative 

traits. Transgressive segregation, progenies with higher or lower phenotype values 

than the respective parents, was observed for all traits investigated. The ANOVA 

revealed that the difference between DH lines for all plant architecture traits was 

highly significant (Table 3.1). Pairwise correlation between plant architecture traits 

are shown in Table 3.2. Four traits related to flag leaf morphology (FLL, FLW, FLA, 

and FLS) were significantly intercorrelated across all six environments. Positive 

correlations were found between FLL and FLW, FLA, and FLS whereas FLW was 

negatively correlated with FLS. An additional significant negative correlation was 

identified between PHT and FLW in two of the six environments. The direction of the 

correlation between FLL and PHT varied among environments.  
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Figure 3.1 Precipitation (unit: cm) and monthly average temperature (unit: °C) during growing season 
at four field environments: E1, Clarksville, 2013; E2, Clarksville, 2014; E3, Queenstown 2013; E4, 
Queenstown 2014. 
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Figure 3.2 Frequency distribution of plant height (PHT, cm), flag leaf length (FLL, cm), flag leaf width (FLW, cm), flag leaf area (FLA, cm2), and flag leaf shape 
(FLS) of the double haploid lines in a) Clarksville 2013, b) Clarksville 2014, c) Queenstown 2013, d) Queenstown 2014, e) Greenhouse 2012, f) Greenhouse 
2013. 
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Table 3.1 Pooled analyses of variance and heritability estimates for plant height (PHT, cm), flag leaf 
length (FLL, cm), flag leaf width (FLW, cm), flag leaf area (FLA, cm2), and flag leaf shape (FLS) in 
four field trials from 2013 to 2014 

 
* Significant at the 0.001 probability level. 
† Values in parenthesis are standard errors for h2  
 
 
 
 
Table 3.2 Pearson correlation coefficients among plant height (PHT, cm), flag leaf length (FLL, cm), 
flag leaf width (FLW, cm), flag leaf area (FLA, cm2), and flag leaf shape (FLS, cm) in six trials from 
2012 to 2014. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 

    Mean Squares    
Source of Variation  df PH FLL FLW FLA FLS 
Environment 3 20508.86* 578.47* 3.92* 2648.79* 107.89* 
Rep(environment) 4 312.84* 23.69* 0.06* 65.26* 3.73* 
Genotype 123 212.04* 11.22* 0.08* 38.38* 6.41* 
genotype × environment 369 14.70* 1.65* 0.01* 5.42* 0.72* 
R2 0.95 0.88 0.89 0.90 0.86 

Heritability (h2) †    0.93(0.01)  0.85(0.02)  0.90(0.2) 
 0.86 
(0.02)  0.89(0.02) 

Environments Traits   FLL FLW FLA FLS 

Clarksville 2013 PHT 0.24*** -0.07 0.14 0.28*** 

FLL 0.26*** 0.87*** 0.76*** 

FLW 0.70*** -0.41*** 

FLA 0.35 

Clarksville 2014 PHT 0.03 -0.27*** -0.13 0.22* 

FLL 0.29*** 0.82*** 0.67*** 

FLW 0.78*** -0.51*** 

FLA 0.12 

Queenstown 2013 PHT 0.14 -0.19* -0.01 0.29*** 

FLL 0.38*** 0.85*** 0.65*** 

FLW 0.81*** -0.44*** 

FLA 0.16 

Queenstown 2014 PHT 0.30*** -0.06 0.16 0.31*** 

FLL 0.37*** 0.84*** 0.60*** 

FLW 0.82*** -0.51*** 

FLA 0.06 

Greenhouse 2012 PHT -0.19* -0.13 -0.19* -0.13 

FLL 0.35*** 0.90*** 0.81*** 

FLW 0.71*** -0.25*** 

FLA 0.48*** 

Greenhouse 2013 PHT 0.21* -0.06 0.07 0.25*** 

FLL 0.50*** 0.81*** 0.36*** 

FLW 0.90*** -0.60*** 

  FLA         -0.19* 
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QTLs with additive and additive × environment interaction effects 

Significant QTLs were detected for all traits evaluated, as summarized in Table 3.3. A 

total of seventy-four QTLs with additive effects were identified including twenty 

QTLs for PHT, thirteen for FLL, eighteen for FLW, twelve for FLA, and eleven for 

FLS. These QTLs were unevenly distributed in the wheat genome. Among them, 35 

(47.3%) were in the A genome, 21 (28.4%) were in the B genome, and 18 (24.3%) 

were in the D genome. The phenotypic variance explained by each QTL ranged from 

5.7 to 22% for PHT, 6.4 to 20.7% for FLL, 5.4 to 31.2% for FLW,  6.8 to 24.1% for 

FLA, and 7.3 to 19.6% for FLS. Both parents contributed favorable alleles (35 from 

MDW233 and 39 from SS8641).  In general, these QTLs had low to moderate genetic 

effects common for quantitative traits. Additionally, QTL co-localization was found 

in nine marker intervals suggesting the possible presence of pleiotropy. Mapping 

QTLs with additive × environment interaction effects was conducted based on the 

data from the four field trials only. A total of four intervals were detected with 

significant Q×E interaction for PHT, FLL, and FLA (Table 3.4). Among them, the 

loci flanked by XPpdD1-Xsnp2869 and Xsnp1970-Xbarc28 were detected with 

significant additive effects and other two marker intervals were insignificant for 

additive effects. The heritability of Q×E interaction ranged from 1% to 2%. 

Queenstown 2013 had three Q×E interactions and the other three environments each 

had one. 

QTLs with epistatic and epistatic × environment interaction effects 

 
A total of 12 pairs of significant epistatic interactions (p<0.001) were detected for all 

five plant architecture traits (Table 3.5). These epistatic interactions involved loci 
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from within and across chromosomes with heritability values ranging from 0.6% to 

4.3%. Among the twenty four epistatic intervals/loci, five were significant for 

additive effects and the rest were significant only in digenic epistatic interactions. 

Additionally, an epistatic × environment interaction was detected between 

chromosome regions flanked by Xsnp4061-Xsnp4027 on 5B and Xsnp4860-Xsnp4831 

on 7B at Queenstown 2013 for FLW. However, none of these two intervals were 

significant for additive main effects. 
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Figure 3.3 Position of quantitative trait loci (QTLs) detected in a doubled haploid mapping population 
derived from MD01W233-06-1 × SS8641. Locus marker names are shown on the right side of the 
chromosomes and values to the left of chromosomes show the genetic distance (cM) for each marker. 
QTLs are labeled with trait abbreviations and the QTL number for each trait. QTLs for the same trait 
are in the same color. 
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Table 3.3 Quantitative trait loci (QTLs) for plant height (PHT, cm), flag leaf length (FLL, cm), flag 
leaf width (FLW, cm), flag leaf area (FLA, cm2), and flag leaf shape (FLS, cm) in six environments 
from 2012 to 2014. 

QTL Trait Environment 
Position 

(cM) 
Marker interval 

LOD 
score 

PVE 
(%) 

Additive 
effect 

QPht.cz-2A.1 PHT Clarksville 2013 7 Xsnp4490-Xsnp2445 3.9 5.7 -1.35 
QPht.cz-2A.2 PHT Queenstown 2014 51 Xsnp768-Xsnp2400 3.8 7.6 -1.46 
QPht.cz-4A PHT Clarksville 2013 48 Xsnp3614-Xsnp3636 4.6 7.0 1.49 
QPht.cz-5A.1 PHT Greenhouse 2012 122 Xsnp3845-Xsnp3865 4.6 10.5 -2.06 
QPht.cz-5A.2 PHT Queenstown 2014 183 Xsnp3849-Xsnp3841 3.3 7.1 1.40 
QPht.cz-7A.1 PHT Clarksville 2013 92 Xsnp4757-Xsnp4761 6.2 9.6 -1.79 
QPht.cz-7A.1 PHT Clarksville 2014 92 Xsnp4757-Xsnp4761 4.6 11.1 -1.95 
QPht.cz-7A.2 PHT Queenstown 2014 94 Xsnp4761-Xsnp4772 5.3 10.8 -1.78 
QPht.cz-2B.1 PHT Clarksville 2013 58 Xbarc10-Xsnp2744 5.2 7.9 1.58 
QPht.cz-2B.2 PHT Queenstown 2013 83 Xsnp2698-Xsnp2571 4.1 9.8 1.86 
QPht.cz-3B.1 PHT Clarksville 2014 50 Xsnp3415-Xsnp1539 6.5 16.0 -2.29 
QPht.cz-3B.2 PHT Clarksville 2013 52 Xsnp1539-Xsnp3408 9.3 15.2 -2.20 
QPht.cz-3B.3 PHT Queenstown 2014 55 Xbarc164-Xsnp3205 4.1 8.0 -1.50 
QPht.cz-3B.4 PHT Greenhouse 2013 61 Xsnp3372-Xsnp611 5.1 13.8 -2.07 
QPht.cz-3B.5 PHT Queenstown 2013 62 Xsnp611-Xsnp3192 4.6 11.1 -1.98 
QPht.cz-5B.1 PHT Greenhouse 2012 84 Xsnp4068-Xsnp4012 9.3 20.1 2.86 
QPht.cz-5B.2 PHT Greenhouse 2012 122 Xsnp3970-Xsnp4753 3.9 7.7 -1.77 
QPht.cz-2D.1 PHT Queenstown 2014 59 Xsnp2862-XPpdD1 7.4 16.6 -2.16 
QPht.cz-2D.1 PHT Clarksville 2013 60 Xsnp2862-XPpdD1 4.9 7.8 -1.58 
QPht.cz-2D.2 PHT Greenhouse 2012 119 Xsnp2795-Xsnp708 9.1 19.5 2.81 
QPht.cz-2D.2 PHT Queenstown 2013 119 Xsnp2795-Xsnp708 8.4 22.0 2.79 
QPht.cz-2D.2 PHT Clarksville 2013 119 Xsnp2795-Xsnp708 6.5 10.2 1.80 
QPht.cz-2D.2 PHT Clarksville 2014 119 Xsnp2795-Xsnp708 3.6 8.6 1.68 
QPht.cz-2D.3 PHT Queenstown 2014 120 Xsnp708-Xsnp1745 7.9 17.1 2.17 
QPht.cz-2D.3 PHT Greenhouse 2013 120 Xsnp708-Xsnp1745 5.8 15.8 2.21 
QPht.cz-3D PHT Greenhouse 2013 64 Xsnp3422-Xsnp3187 3.3 9.6 1.75 
QFlw.cz-2A.1 FLW Greenhouse 2012 0 Xsnp2477-Xsnp2432 4.3 9.5 0.06 
QFlw.cz-2A.2 FLW Greenhouse 2013 16 Xsnp2471-Xsnp2461 13.3 31.2 0.13 
QFlw.cz-2A.3 FLW Queenstown 2013 24 Xsnp2427-Xsnp2479 4.8 11.2 0.04 
QFlw.cz-2A.3 FLW Clarksville 2014 24 Xsnp2427-Xsnp2479 3.8 7.1 0.03 
QFlw.cz-2A.3 FLW Queenstown 2014 24 Xsnp2427-Xsnp2479 3.6 7.0 0.03 
QFlw.cz-2A.3 FLW Clarksville 2013 24 Xsnp2427-Xsnp2479 3.4 7.3 0.03 
QFlw.cz-3A FLW Greenhouse 2012 122 Xbarc45-Xsnp3037 5.8 13.4 -0.07 
QFlw.cz-5A FLW Clarksville 2014 105 Xsnp3833-Xsnp3863 5.2 10.4 0.04 
QFlw.cz-6A.1 FLW Clarksville 2014 42 Xsnp4245-Xsnp367 3.0 5.4 -0.03 
QFlw.cz-6A.2 FLW Queenstown 2014 46 Xsnp4183-Xsnp4216 4.7 9.1 -0.03 
QFlw.cz-6A.3 FLW Clarksville 2013 52 Xsnp4211-Xsnp4186 4.4 9.5 -0.03 
QFlw.cz-6A.4 FLW Queenstown 2013 78 Xsnp4186-Xsnp4222 5.0 11.9 -0.05 
QFlw.cz-6A.5 FLW Greenhouse 2013 81 Xsnp4197-Xsnp473 3.3 6.4 -0.06 
QFlw.cz-6A.6 FLW Clarksville 2014 84 Xsnp4228-Xsnp4219 3.4 6.4 -0.03 
QFlw.cz-3B.1 FLW Clarksville 2014 31 Xsnp3389-Xsnp3344 5.9 11.3 0.04 
QFlw.cz-3B.2 FLW Queenstown 2014 35 Xsnp3344-Xsnp3253 3.6 6.9 0.03 
QFlw.cz-3B.3 FLW Queenstown 2013 46 Xsnp3335-Xsnp3119 3.0 6.9 0.03 
QFlw.cz-2D.1 FLW Clarksville 2013 57 Xsnp2862-XPpdD1 7.0 17.2 -0.05 
QFlw.cz-2D.1 FLW Greenhouse 2013 59 Xsnp2862-XPpdD1 6.5 13.6 -0.09 
QFlw.cz-2D.2 FLW Queenstown 2013 80 Xsnp2848-Xsnp634 3.3 7.5 -0.04 
QFlw.cz-2D.3 FLW Queenstown 2014 90 Xsnp2804-Xsnp1766 9.3 19.9 -0.05 
QFlw.cz-2D.3 FLW Clarksville 2014 91 Xsnp2804-Xsnp1766 4.2 7.7 -0.03 
QFlw.cz-2D.4 FLW Greenhouse 2012 92 Xsnp1766-Xsnp2809 4.5 9.9 -0.06 
QFls.cz-2A FLS Greenhouse 2013 59 Xsnp2377-Xsnp81 4.5 11.1 -0.44 
QFls.cz-5A FLS Queenstown 2013 60 Xbarc100-Xsnp4843 4.7 11.7 -0.35 
QFls.cz-5A FLS Clarksville 2014 61 Xbarc100-Xsnp4843 6.6 19.6 -0.49 
QFls.cz-6A FLS Greenhouse 2013 46 Xsnp4183-Xsnp4216 4.9 12.3 0.46 
QFls.cz-7A.1 FLS Queenstown 2014 74 Xsnp4675-Xsnp4776 6.3 17.4 -0.41 
QFls.cz-7A.2 FLS Clarksville 2013 91 Xsnp4758-Xsnp4757 7.0 18.2 -0.46 
QFls.cz-7A.2 FLS Queenstown 2013 91 Xsnp4758-Xsnp4757 5.4 13.7 -0.38 
QFls.cz-2B FLS Greenhouse 2013 66 Xsnp2773-Xgwm319 5.0 12.8 -0.47 
QFls.cz-2B FLS Clarksville 2013 66 Xsnp2773-Xgwm319 3.4 8.3 -0.30 
QFls.cz-5B FLS Greenhouse 2012 73 Xsnp4090-Xsnp4060 3.8 11.3 -0.75 
QFls.cz-1D FLS Queenstown 2013 85 Xsnp2234-Xsnp2232 4.6 11.5 0.35 
QFls.cz-2D FLS Greenhouse 2013 119 Xsnp2795-Xsnp708 3.0 7.3 0.35 
QFls.cz-3D FLS Queenstown 2014 50 Xsnp3419-Xsnp3422 3.2 8.5 0.29 
QFls.cz-3D FLS Greenhouse 2012 56 Xsnp3419-Xsnp3422 3.8 11.1 0.76 
QFls.cz-5D FLS Clarksville 2014 25 Xsnp4156-Xsnp4173 4.7 12.7 0.39 
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Table 3.3 Continued 
 

QTL Trait Environment 
Position 

(cM) 
Marker interval 

LOD 
score 

PVE 
(%) 

Additive 
effect 

QFll.cz-1A.1 FLL Queenstown 2013 1 Xsnp1970-Xbarc28 7.5 18.5 0.69 
QFll.cz-1A.1 FLL Greenhouse 2013 1 Xsnp1970-Xbarc28 4.5 10.0 0.76 
QFll.cz-1A.1 FLL Clarksville 2014 1 Xsnp1970-Xbarc28 3.9 11.5 0.46 
QFll.cz-1A.2 FLL Queenstown 2014 2 Xbarc28-Xsnp2005 6.4 16.0 0.51 
QFll.cz-1A.3 FLL Clarksville 2013 59 Xsnp1996-Xsnp1950 3.1 6.4 0.36 
QFll.cz-2A FLL Greenhouse 2013 15 Xsnp2471-Xsnp2461 5.2 11.7 0.83 
QFll.cz-2A FLL Queenstown 2013 16 Xsnp2471-Xsnp2461 3.5 8.2 0.46 
QFll.cz-4A FLL Greenhouse 2012 0 Xsnp3634-Xsnp3632 3.3 10.2 1.26 
QFll.cz-6A FLL Greenhouse 2013 25 Xsnp4271-Xsnp4435 4.4 9.7 0.75 
QFll.cz-7A FLL Clarksville 2013 75 Xsnp4675-Xsnp4776 6.4 14.5 -0.54 
QFll.cz-1B FLL Queenstown 2014 87 Xsnp2113-Xsnp2091 3.9 9.2 0.39 
QFll.cz-5B.1 FLL Greenhouse 2012 32 Xsnp4092-Xsnp725 5.0 16.3 -1.58 
QFll.cz-5B.2 FLL Clarksville 2013 44 Xsnp3891-Xsnp3973 5.4 12.0 -0.49 
QFll.cz-1D FLL Greenhouse 2013 1 Xsnp1304-Xsnp2252 3.8 8.5 0.71 
QFll.cz-2D FLL Queenstown 2013 63 XPpdD1-Xsnp2869 6.2 15.3 -0.63 
QFll.cz-2D FLL Clarksville 2013 66 XPpdD1-Xsnp2869 7.8 19.6 -0.63 
QFll.cz-2D FLL Queenstown 2014 70 XPpdD1-Xsnp2869 7.5 20.7 -0.58 
QFll.cz-5D FLL Clarksville 2014 1 Xsnp4177-Xsnp4179 4.7 14.6 0.53 
QFla.cz-1A.1 FLA Queenstown 2013 1 Xsnp1970-Xbarc28 8.3 16.8 1.36 
QFla.cz-1A.2 FLA Queenstown 2014 2 Xbarc28-Xsnp2005 4.3 9.1 0.70 
QFla.cz-2A.1 FLA Greenhouse 2013 17 Xsnp2471-Xsnp2461 13.1 28.7 4.18 
QFla.cz-2A.2 FLA Queenstown 2013 20 Xsnp2461-Xsnp2466 6.5 13.4 1.23 
QFla.cz-6A FLA Clarksville 2014 83 Xsnp473-Xsnp4228 3.2 10.1 -0.76 
QFla.cz-1B FLA Queenstown 2014 17 Xsnp4503-Xsnp2181 4.1 9.4 0.71 
QFla.cz-3B FLA Greenhouse 2013 5 Xsnp3407-Xbarc147 3.8 6.8 2.03 
QFla.cz-5B.1 FLA Clarksville 2013 0 Xsnp4140-Xsnp4114 3.3 7.9 -0.63 
QFla.cz-5B.2 FLA Greenhouse 2012 48 Xsnp4083-Xsnp3988 3.2 11.4 -2.47 
QFla.cz-2D.1 FLA Queenstown 2013 59 Xsnp2862-XPpdD1 9.5 20.9 -1.53 
QFla.cz-2D.2 FLA Greenhouse 2013 62 XPpdD1-Xsnp2869 5.2 9.7 -2.43 
QFla.cz-2D.2 FLA Queenstown 2014 62 XPpdD1-Xsnp2869 5.0 10.6 -0.77 
QFla.cz-2D.2 FLA Clarksville 2013 63 XPpdD1-Xsnp2869 8.7 24.1 -1.10 
QFla.cz-2D.3 FLA Queenstown 2014 90 Xsnp2804-Xsnp1766 4.6 9.6 -0.72 

 
 
 
Table 3.4 QTL × Environment interactions influencing plant height (PHT, cm), flag leaf length (FLL, cm), flag 
leaf width (FLW, cm), flag leaf area (FLA, cm2), and flag leaf shape (FLS, cm) in four field environments during 
2013 and 2014. 
 

 
† AE is the additive × environment interaction effect at each environment. E1: Clarksville 2013; E2: Clarksville 2014; E3:  
Queenstown 2013; E4: Queenstown 2014. 
‡  h2(ae) is heritability estimate of the additive × environment interaction effect across four field trails. 
§ Interval with significant additive effect. 
* Significant at 0.05 probability level. 
***Significant at 0.001 probability level. 

 

Trait Chr. Position Interval AE1† AE2† AE3† AE4† h 2(ae) ‡ 

PHT 3B 49.9 Xsnp3415-Xsnp1539 0.61* 1.0% 

FLL 1A 0.9 Xsnp1970-Xbarc28§ 0.16* 1.1% 

FLL 2D 66.7 XPpd-D1-Xsnp2869§ 0.23* 1.4% 

FLA 1A 0 Xwmc496-Xsnp1970§ -0.31* 0.45*** 2.0% 

FLA 2D 65.7 XPpd-D1-Xsnp2869     -0.33*   1.2% 
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Table 3.5 Digenetic epistatic QTLs for plant height (PHT, cm), flag leaf length (FLL, cm), flag leaf width (FLW, cm), flag leaf area (FLA, cm2), and flag leaf 
shape (FLS) in four field trails during 2013 and 2014. 

 Trait Interval† Chr.† Position† Interval‡ Chr.‡ Position‡ AA§ E1¶ E2¶ E3 ¶ E4 ¶ h2(aa) # h2(aae) †† 

PHT Xsnp4757-Xsnp4761‡‡ 7A 91.2 Xsnp3754-Xsnp4981 4D 28 0.72*** 1.3% 0.2% 

PHT Xsnp3064-Xsnp3040 3A 31.4 Xsnp849-Xsnp4775 7A 80.5 -1.05*** 4.3% 0.1% 

PHT Xsnp3734-Xsnp2743 2B 19.9 Xsnp786-Xsnp3419 3D 39.1 -0.99*** 4.7% 0.3% 

PHT Xsnp3389-Xsnp3344‡‡ 3B 30.2 Xsnp3417-Xsnp3418 3B 102.4 1.04*** 4.8% 0.2% 

FLL Xsnp2362-Xsnp494 2A 104.7 Xsnp3444-Xsnp318 4A 73.3 -0.30*** 3.4% 0.7% 

FLW Xsnp4763-Xsnp4746 7A 71.6 Xsnp2117-Xsnp2080 1B 63.1 0.02*** 2.7% 0.2% 

FLW Xsnp4061-Xsnp4027 5B 66.4 Xsnp4860-Xsnp4831 7B 137.3 0.02*** 0.012* 3.5% 0.9% 

FLA Xwmc496-Xsnp1970 1A 0 Xsnp2471-Xsnp2461‡‡ 2A 15.9 0.27*** 0.8% 0.6% 

FLA Xsnp2471-Xsnp2461‡‡ 2A 15.9 Xsnp4177-Xsnp4179‡‡ 5D 1 0.29*** 1.0% 0.3% 

FLA Xsnp1995-Xsnp2227 1A 63.2 Xsnp2885-Xsnp2987 3A 142.1 -0.41*** 2.3% 0.3% 

FLS Xsnp2351-Xsnp2277 2A 62.6 Xsnp4444-Xsnp4453 6B 5.6 0.14*** 0.6% 1.4% 
FLS Xsnp2401-Xsnp2339 2A 75.6 Xsnp4444-Xsnp4453 6B 5.6 -0.29*** 2.7% 1.0% 
† The flanking markers, chromosome and position of the first interval involved in the epistasis.  
‡ The flanking markers, chromosome and position of the second interval involved in the epistasis.  
§ The additive × additive effect.  
¶ The epistasis × environment effect at each environment. E1: Clarksville 2013; E2: Clarksville 2014; 
 E3: Queenstown 2013; E4: Queenstown 2014;  
# The heritability estimate for additive × additive interaction effects across five environment. 
†† The heritability estimate for epistasis × environment interaction effects across four field trials. 
‡‡ Interval with significant additive effect.  
* Significant at the 0.05 probability level 
*** Significant at the 0.001 probability level 
 
 
 
 
 
 
 
 
 
 

► 
Figure 3.4 Distribution of genetic and non-genetic components for yield and yield related 
traits: plant height (PHT, cm), Flag leaf length (FLL, cm), Flag leaf width (FLW, cm), Flag 
leaf area (FLA, cm2), Flag leaf shape (FLS). a) total number of QTLs detected for additive 
(a), additive × environment (ae), epistasis (aa), and epistasis × environment interactions 
(aae) effects. b) relative magnitude of a, ae, aa, aae effects. 

 



 

 
 

87 
 

Discussion  

Plant architecture is important for grain yield potential in cereal crops. Understanding 

the genetic control of plant architecture can lay the foundation for further genetic 

improvement. In this study, a winter wheat DH population was used to study plant 

architecture traits including PHT, FLL, FLW, FLA, and FLS with the aim of locating 

the underlying QTLs and to provide targets for marker-assisted selection (MAS) in 

breeding programs.  

QTLs for plant architecture traits 

 
Twenty QTLs for plant height were mapped to chromosomes 2A, 4A, 5A, 7A, 1B, 

2B, 5B, 2D, and 3D. A major QTL (QPht.cz-2D.1) flanked by Xsnp2862 and Ppd-D1 

was detected in two environments with high LOD score and PVE (Table 3.3). This 

region also co-localized with QTLs for FLW and FLA and was closely linked with 

QTLs for FLL (Figure 3.3). The multiple effects of this region were possibly due to 

the pleiotropic effects of Ppd-D1 which is one of the two major genes controlling 

photoperiod-sensitivity in wheat. Among all alleles of the Ppd-D1 gene, Ppd-D1b is 

the intact allele and is photoperiod sensitive (Guo et al., 2010) which is also carried 

by MDW233. Ppd-D1b is known to reduce the dates to heading and plant height in 

many wheat cultivars worldwide (Wilhelm et al., 2013). Similarly, the MDW233 

allele of QPht.cz-2D.1 reduced plant height by an average of 1.87 cm in Queenstown 

2014 and Clarksville 2013. Additionally, two other major QTLs (QPht.cz-2D.2 and 

QPht.cz-2D.3) were detected for PHT, which were about 60 cM downstream of Ppd-

D1b on chromosome 2D (Table 3.3). QPht.cz-2D.2 was detected in four 
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environments with an average PVE=10.2%. QPht.cz-2D.3 was detected in two 

environments with an average PVE of 16.5%. The favorable alleles for these were 

contributed by SS8641 and both of their additive effects were greater than that of 

QPht.cz-2D.1. In previous studies, Wang et al. (2010) reported a QTL for PHT on 

2DS using a winter wheat population and McCartney et al. (2005) detected a QTL on 

2DS for PHT using a population generated from the spring wheat cross RL4452 × 

‘AC Domain’ to study the inheritance of multiple agronomic traits. The location of 

these two QTLs was very close to the well-known Rht8 gene which is upstream of 

Ppd-D1(Gasperini et al., 2012). Thus, it is possible that QTLs QPht.cz-2D.2 and 

QPht.cz-2D.2, identified in the present study, are novel loci for PHT. Moreover, 

QPht.cz-2D.2 was found to co-localize with QFll.cz-2D, a QTL detected for FLS with 

LOD=4.7 and PVE=12.7 in the 2013 greenhouse study, suggesting the presence of 

pleiotropy in this loci. Based on these results, QPht.cz-2D.2 and QPht.cz-2D.3 are 

good candidates for fine mapping and gene cloning to get further understanding of 

their genetic function and develop gene-specific markers for MAS. Additionally, a 

cluster of five PHT QTLs was detected in a 12.6 cM region on chromosome 3B. Four 

of them were major QTLs explaining an average of 14% of the phenotypic variation 

and all their favorable alleles were from MDW233. In this region, QTLs for 

agronomic traits such as grain yield, thousand grain weight and plant height as well as 

QTL co-localizations have been reported by several independent studies (Bennett et 

al., 2012a; Cuthbert et al., 2008; Kumar et al., 2007; Rebetzke et al., 2008). 

Furthermore, a 2 cM region that contained two QTLs (QPht.cz-7A.1 and QPht.cz-

7A.2) on chromosome 7A was significant for PHT. QPht.cz-7A.1 was detected in 
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Clarksville 2013 and Clarksville 2014 with an average PVE=10.35%. The interaction 

of QPht.cz-7A.1 with another loci flanked by Xsnp3754-Xsnp4981 on chromosome 

4D explained 1.3% of the phenotypic variation of PHT. QPht.cz-7A.2 was detected in 

Queenstown 2014 explaining 10.8% of the phenotypic variation. Both favorable 

alleles in these two loci were from MDW233. McCartney et al. (2005) mapped a 

QTL, QHt.crc-7A, in the same region for PHT but with a smaller PVE and LOD 

score. All three QTLs were located around 30 cM downstream of SSR marker 

barc127 suggesting that QHt.crc-7A may be QPht.cz-7A.1 or QPht.cz-7A.2. Another 

major QTL, QPht.cz-5B.1 (LOD=9.3, PVE=20.1%), detected in the present study was 

comparable to the one identified by Zanke et al. (2014) in a whole genome 

association mapping of plant height. Previous studies also identified QTLs for plant 

height or other agronomic traits in the same or nearby region with QPht.cz-2A.1 (Jia 

et al., 2013a; Zanke et al., 2014)  QPht.cz-2A.2 (Li et al., 2007b; McCartney et al., 

2005), QPht.cz-2B.1 (Jia et al., 2013a), QPht.cz-2B.2 (McCartney et al., 2005), 

QPht.cz-3D (Hai et al., 2008), QPht.cz-4A (Hai et al., 2008), QPht.cz-5A.1 (Jia et al., 

2013a), QPht.cz-5A.2 (Huang et al., 2006), QPht.cz-5B.2 (Zanke et al., 2014). 

 

Although considerable progress has been made in the genetic understanding of grain 

yield and yield components, reports of QTLs for flag leaf morphology in wheat are 

still limited. In this study, FLW data was collected from six environments for QTL 

analysis. QFlw.cz-2A.2 on chromosome 2A associated with FLW had the largest 

effect and explained 31.2% of the phenotypic variation in the 2013 greenhouse study. 

In addition, QFlw.cz-2A.2 had significant large effects on FLL and FLA with PVE 
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ranging from 8.2% to 28.7% and also interacted with the loci flanked by Xsnp4177-

Xsnp4179 on chromosome 5D to increase FLA. The favorable alleles for FLW, FLL, 

and FLA at this locus came from SS8641. Given its significant pleiotropic effects, 

additional markers are needed in order to resolve the QTL position more precisely 

and to develop reliable diagnostic markers for MAS. In a previous study, Jia et al. 

(2013a) found this region to be involved in epistatic interactions and contributed to 

FLL in the Nanda2419×Wangshuibai population. Similarly, in my study, QFlw.cz-

2A.2 interacted with locus Xsnp4177-Xsnp4179 on chromosome 5D and locus 

Xwmc496-Xsnp1970 on chromosome 1A to contribute to the expression of FLA. In 

the nearby region of QFlw.cz-2A.2, a consistent QTL QFlw.cz-2A.3 was detected. 

QFlw.cz-2A.3 was significant for FLW in all four field environments with LOD score 

ranging from 3.4 to 4.8 and was related to the QTLs associated with plant height 

(Kulwal et al., 2003) and yield components (Zhang et al., 2010). On chromosome 2D, 

there were two major QTLs: QFlw.cz-2D.1 and QFlw.cz-2D.3. QFlw.cz-2D.1 co-

localized with QPht.cz-2D.1. QFlw.cz-2D.3 was co-located with QFla.cz-2D.3 for 

FLA with favorable alleles from MDW233. In the same region with QFlw.cz-2D.3/ 

QFla.cz-2D, a QTL with additive effects for FLL, FLW, and heat susceptibility index 

(HIS) was reported by Mason et al. (2013) where its Halberd allele was favorable for 

a longer or wider flag leaf and also improved heat tolerance. It was noticeable that 

FLW QTLs on chromosome 6A had same direction additive effects as well as the 

ones on 3B but the direction associated with QTLs on 6A was opposite to that of 

QTLs on 3B suggesting an antagonistic relationship. Other major QTLs associated 

with FLW, such as QFlw.cz-3A and QFlw.cz-5A, were related to grain yield, grains 
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m-2, spikes m-2, and grains per spike as reported by Dilbirligi et al. (2006) and Kato et 

al. (2000).  

 

Thirteen QTLs were detected for FLL. The MDW233 alleles increased FLL at four 

loci located on chromosomes 7A, 5B, and 2D accounting for 14.4-20.7% of the 

phenotypic variation whereas SS8641 increased FLL at the other nine loci on 1A, 2A, 

4A, 6A, 1B, 1D, and 5D, accounting for 6.4-18.5% of the phenotypic variation. 

Among them, two QTLs (QFll.cz-1A.1 and QFll.cz-1A.2) on chromosome 1A 

overlapped at Xbarc28 which also flanked QFla.cz-1A.1 and QFla.cz-1A.2 for FLA. 

At these four loci, favorable alleles were from SS8641 and explained 9.1-18.5% of 

the phenotypic variation. In previous studies, Xbarc28 was also linked to QTLs for 

spike length (Marza et al., 2006). Additionally, the same region was also associated 

with QTLs and meta-QTLs for yield components (Zhang et al., 2010). These results 

suggested the existence of important genes/QTLs and that high resolution mapping 

would be necessary to determine if the effects were due to pleiotropy or closely 

linked QTLs. Two major QTLs on chromosome 4A and 5B contributed more than 1 

cm to FLL in the 2012 greenhouse study. The SS8641 allele increased FLL at 

QFll.cz-4A but decreased FLL at QFll.cz-5B.1. Both of these two QTLs were located 

in the same region associated with agronomic traits such as spike length, spike 

compactness, and plant height (Sourdille et al., 2003). Moreover, major QTL QFll.cz-

5D was significant for both additive and epistatic interaction effects. This same 

region was also reported to contain QTLs for grain quality traits related to dough 

physical properties (Huang et al., 2006) and epistatic QTLs for yield related traits 
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such as grains spike-1 and 100-grain weight (Jia et al., 2013a). Furthermore, a PHT 

QTL on chromosome 7A (McCartney et al., 2005) was located in the same region as 

QFll.cz-7A identified in this study. This region, flanked by Ppd-D1-Xsnp2869, was 

associated with both FLL and FLA explaining an average of 16.6% of the phenotypic 

variation across four environments. This is possibly due to the pleiotropic effects of 

Ppd-D1 which accelerates wheat development in long days and affects the number of 

leaf and spikelet primordia number (Borràs-Gelonch et al., 2012; Foulkes et al., 

2004).  

 

QTLs for the derived traits FLS and FLA were also identified. Of the eleven QTLs 

detected for FLS, nine (81.8%) explained more than 10% of the phenotypic variation 

and QTLs on 5A, 7A, 2B, and 3D were detected in more than one environment. In 

addition, the twelve QTLs identified for FLA explained, on average, 13.5% of the 

phenotypic variation. To my knowledge, these are some of the first QTLs reported for 

these leaf morphology traits in wheat. 

Genetic complexity of plant architecture 

 
Compared with studies involving only additive QTLs (Bian et al., 2014; Xue et al., 

2008a), I also examined epistatic effects and their interactions with environment 

revealing additional information on the genetic composition of plant architecture 

traits. In the six environments included in this study, seventy four additive QTLs and 

twelve pairs of epistatic QTLs were identified. Among them four additive QTLs and 

one pair of epistatic QTLs interacted with the environment. The results showed that 

both additive and epistatic effects were essential genetic bases of wheat plant 
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architecture and their effects were subject to environment modifications. The relative 

magnitude of these effects is shown in Figure 3.4. This indicated that, among all 

genetic effects, additive effects were the main contributors (>70%) to plant 

architecture variation in this DH population. It is interesting to note that only four 

significant additive QTLs were involved in epistatic interactions suggesting that 

epistasis can contribute to quantitative traits expression through the interactions of 

non-significant loci. Similarly, Zhang et al. (2008) found that 25% of additive-effect 

QTLs were involved in the epistatic interactions in wheat plant height.  Additionally, 

I found that the locus flanked by Xsnp3389-Xsnp3344 (significant additive effect for 

FLW) on 2B and the locus flanked by Xsnp4177-Xsnp4179 (significant additive 

effect for FLL) on 5D, contributed to PHT and FLA respectively, when they were 

involved in epistatic interactions. This suggests that QTLs may express pleiotropic 

effects through their interactions with other loci. Furthermore, the additive effect of 

QPht.cz-7A.1 was reduced after taking into account its epistatic interaction with the 

locus flanked by Xsnp3754-Xsnp4981 and that the additive effect of QFla.cz-2A.1 

was enhanced by interacting with QFll.cz-5D. These antagonistic and synergistic 

epistatic interactions not only added complexity to the genetic control of plant 

architecture traits but also provides important information for designing schemes to 

pyramid beneficial alleles in breeding programs.  

Conclusion 

This study is one of the few dedicated to QTL mapping of plant architecture traits in 

hexaploid wheat. I identified several new QTLs and QTL clusters that were shown to 

affect the expression of PHT, FLL, FLW, FLA, and FLS such as QPht.cz-2D.2 for 
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PHT, QFll.cz-1A.1 for FLL, and the QTL clusters on chromosome 6A and 3B for 

FLW. Those QTLs could be used for marker assisted selection in breeding programs 

to modify plant architecture traits. 
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Chapter 4: Quantitative trait loci mapping of spike 
characteristics in a doubled haploid population of soft red winter 
wheat 

Abstract 

Understanding the genetic basis of spike characteristics in wheat is important for 

breeding wheat cultivars with higher yield potential. In this study, a doubled haploid 

population of 124 lines was used to evaluate six spike traits 1) spike length (SL), 2) 

fertile spikelet number per spike (FSN), 3) sterile spikelet number per spike (SSN), 4) 

total spikelet number per spike (TSN), 5) spike compactness (SC), and 6) grains per 

spikelet (GSP). Quantitative trait loci (QTL) mapping was conducted based on the 

data collected from five year-location trials. A total of 109 QTLs were detected for all 

traits. In addition, 13 QTL-by-environment and 20 epistatic interactions were also 

identified. Major QTLs QSl.cz-1A/ QFsn.cz-1A for SL and FSN explained up to 

30.9% of the phenotypic variation, QGsp.cz-2B.1 for GSP explained up to 15.6% of 

the phenotypic variation, and QSc.cz-5A.3 for SC explained up to 80.2% of the 

phenotypic variation. When combining the digenic interaction effect, the average 

contribution of QFsn.cz-1A to FSN in each environment was enhanced by 19%. QTLs 

for correlated traits in the same genomic region formed QTL clusters on 

chromosomes 1A, 5A, 2B, 3B, 5B, 1D, and 5D.The findings of this study will aid in 

the improvement of wheat spike characteristics and hence the grain yield potential in 

breeding programs.  
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Introduction 

Wheat (Triticum aestivum L.) is a major food crop across the globe. Improving its 

yield potential has irrefutable importance in meeting the food demand from 

increasing population worldwide. The grain yield of wheat is largely determined by 

yield components out of which the three most important are spikes per unit area, 

grains per spike, and grain weight (Dilbirligi et al., 2006; Mengistu et al., 2012). 

Previous studies have shown that grain yield variation is mostly associated with grain 

number changes where grain number, expressed as grains m-2, is the product of spikes 

m-2 and grains per spike and that there appears to be less opportunity for genetic yield 

improvement by selecting heavier grains (Fischer, 2011; Frederick and Bauer, 1999). 

Increases in grains per spike or/and spikes m-2 have contributed to wheat yield 

improvement in the past decades (Ma et al., 2007b). Spike characteristics including 

spike length (SL), total spikelet number per spike (TSN), fertile spikelet number per 

spike (FSN), sterile spikelet number per spike (SSN), spike compactness (SC), and 

grains per spikelet (GSP) determine the number of grains per spike, and thus, to a 

certain extent, determine the yield potential.  

 

Spike characteristics are quantitative traits under quantitative trait loci (QTL) control 

and subject to environmental influence (Cui et al., 2012; Ma et al., 2007b). Genetic 

dissection of spike characteristics could facilitate improving grain yield potential of 

wheat. Several domestication genes, such as Q, compactum (C), and sphaerococcum 

(S1) are related to wheat spike morphology and have been identified on chromosomes 

5A, 2D, and 3D respectively (Faris et al., 2003; Faris and Gill, 2002; Johnson et al., 
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2007a; Rao, 1977). The Q gene confers a free-threshing spike and pleiotropically 

influences many other domestication related traits, including plant height, glume 

keeledness, rachis toughness, spike type and spike emergence time, resulting in 

tougher stems and higher yields (Faris et al., 2003; Simons et al., 2006; Sormacheva 

et al., 2014). The C gene is located on the long arm of chromosome 2D near the 

centromere and affects spike compactness, grain size, grain shape, and grain number 

per spike (Johnson et al., 2007a). The S1 gene confers rigid short culms, straight flag 

leaves, dense spikes, hemispherical glumes, and small spherical grains (Rao, 1977). 

In addition to these loci, previous studies have identified genomic regions associated 

with spike-related traits on all twenty one wheat chromosomes (Borner et al., 2002; 

Cui et al., 2012; Deng et al., 2011; Kumar et al., 2007; Ma et al., 2007b; Marza et al., 

2006; Wang et al., 2011). For example, Cui et al. (2012) detected 190 QTLs across all 

wheat chromosomes for seven spike-related traits in two recombinant inbred line 

populations. Eighteen of the detected QTLs were major QTLs and were significant 

across multiple environments. Ma et al. (2007b) investigated the additive, dominant 

and epistatic effects of QTLs for SL, FSN, SSN, TSN, and SC in a recombinant 

inbred line population and also from an immortalized F2 population derived from the 

same parents and found 18 genomic regions on chromosomes 1A, 1B, 2D, 3B, 4A, 

5A, 5B, and 7A to be associated with spike characteristics. Additionally, Kumar et al. 

(2007) identified QTLs for SL on chromosomes 1A, 1B, 1D, 2B, 2D, 4A, 5A, and 5D 

and QTLs for TSN on 2D, 4A, 4D, 5A, and 6A. These results demonstrated that 

multiple loci with unequal effects can affect spike traits and that epistasis and 

dominance effects are also indisputable components of genetic architecture of spike 
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characteristics. Furthermore, mapping agronomically important QTLs as Mendelian 

factors in wheat was also reported by Uauy et al. (2006) after rice (Ashikari et al., 

2005) and tomato (Frary et al., 2000). Similarly, Deng et al. (2011) investigated 

wheat spike traits  in a F2 population, derived from the cross between an elite cultivar 

Laizhou953 and an introgression line 05210 (in Laizhou953 background). This 

population showed a clear 3:1 segregation ratio for spike number per plant, spike 

length, and grain number per spike. The underlying QTL was mapped to chromosome 

4B and explained 30.1 to 67.6% of the phenotypic variation in two environments. 

Fine mapping and molecular characterization of this region have not been reported 

yet. 

 

In this study, I used a doubled haploid population derived from two soft red winter 

wheat cultivars that showed a wide range of phenotypic variation for spike 

characteristics. A previously constructed linkage map that spanned 1978 cM was used 

to study the genetic basis of six spike traits (Chapter 2 of this dissertation). The 

objectives of this study were to identify QTLs affecting spike characteristics as well 

as their closely linked markers for use by breeding programs and future fine mapping. 

Materials and Methods  

Genetic resources and phenotypic traits evaluation 

A doubled-haploid (DH) population derived from a cross between a soft red winter 

wheat germplasm line MD01W233-06-1 (MDW233) (Costa et al., 2010) and a soft 

red winter wheat cultivar SS8641 (Johnson et al., 2007b) was used. MDW233 carries 

the Rht-D1b dwarfing gene the Ppd-D1b photoperiod sensitive allele as well as the 



 

 
 

99 
 

1RS/1AL translocation. A genetic linkage map with single nucleotide polymorphism 

(SNPs), simple sequence repeats (SSRs), and a morphological marker (coleoptile 

color) was previously constructed with an average interval length of 2.3 cM .  

 

The DH population, comprised of 124 lines, and its two parents were evaluated at five 

year-location environments in Maryland and North Carolina: Clarksville, MD 2013 

(E1), Clarksville, MD 2014 (E2), Queenstown, MD 2013 (E3), Queenstown, MD 

2014 (E4), and Kinston, NC 2014 (E5). The population was grown in field plots 

arranged in a randomized complete block design with two replications. Each field 

plot consisted of seven rows separated by 15.2 cm. Seed density was 22 seeds per 

0.305 m in each row. Soil fertility management followed recommended management 

practices for each location. All trials were sprayed with the metconazole fungicide 

(Caramba®, BASF Corporation) at anthesis to reduce potential infection by Fusarium 

graminearum and other diseases. 

 

Ten plants in the middle rows from each plot were randomly selected for spike traits 

evaluation. Traits examined included spike length (SL) in centimeters, measured from 

the base of the rachis to the top of the uppermost spikelet, fertile spikelet number per 

spike (FSN), and sterile spikelet number per spike (SSN). Total spikelet number per 

spike (TSN) was equal to FSN plus SSN. Spike compactness (SC) was derived by 

dividing TSN by SL and grains per spikelet (GSP) was derived by dividing grain 

number per spike by FSN. 
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Phenotypic data analysis 

Phenotypic data analysis was performed using SAS version 9.3 (SAS Institute, 

Raleigh, NC 2013) to compare differences among DH lines and environments. 

Phenotypic value for SL, FSN, SSN, TSN, SC, and GSP for 10 plants from each DH 

line in each replication was averaged before analyses. Simple summary statistics for 

six spike traits were calculated by the PROC MEANS procedure of SAS. Analysis of 

variance (ANOVA) for SL, FSN, SSN, TSN, SC, and GSP was performed separately 

for each environment and for five environments combined by the PROC GLM 

procedure. The linear model for ANOVA for single environment analysis was Yij=µ 

+ gi+ rj+ɛij, where µ is the overall mean, Yij is the phenotypic value of the ith DH line 

in jth replication, gi is the fixed effect of the ith DH line, rj is the fixed effects of jth 

replication, and ɛij is the random effects of error associated with Yij and for combined 

analysis Yijk=µ + gi+ rjk + ek + ɛijk, where µ is the overall mean, Yijk is the phenotypic 

value of the ith DH line in jth replication of kth environment, gi is the fixed effect of the 

ith DH line, rjk is the fixed effects of jth replication of kth environment, ek is the fixed 

effect of the kth environment, and ɛijk is the random effect of error associated with 

Yijk. Pearson’s correlation coefficients were calculated by the PROC CORR 

procedure to detect the association among spike traits. Broad-sense heritability (h2) 

(defined as h2= ��
�/(��

�+(���
� /�)+ (��

�/
�)), where ��
� is the variance of genotypic 

effect, ���
�  is the genotype × environment variance, and � and 
 are the number of 

environments and replicates, respectively) for each trait was calculated on a family 

mean basis by the PROC MIXED procedure, as described by Holland et al. (2003).  
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QTL detection 

Mapping QTLs for spike characteristics was performed using two methods. First, 

inclusive composite interval mapping (ICIM) was conducted to detect QTLs with 

additive effects by the ICIM-ADD module of IciMapping version 4.0 (Li et al., 

2008). The walking speed for all traits was 1 cM. Reference LOD values were 

determined by 1, 000 permutations (Doerge, 2002). Type I error to determine the 

LOD from the permutation test was 0.05 and the LOD threshold to declare the 

presence of a significant QTL was 3.0. Secondly, QTL epistasis (Q×Q), QTL× 

environment (Q×E) and epistasis × environment (QQ×E) interaction effects were 

detected by QTLNetwork version 2.1 using a mixed-model based composite interval 

mapping (MCIM) (Wang et al., 1999; Yang et al., 2007). Q×E, Q×Q, and QQ×E 

effects were estimated by the Monte Carlo Markov Chain method with a scanning 

speed of 1 cM step with the experiment-wise type I error for putative QTL detection 

of 0.05. In both methods, the position at which the LOD score curve reached its 

maximum was used as the estimate of the QTL location. 

Results 

Phenotypic analysis 

Five different field trials were conducted at three locations over two years to evaluate 

spike characteristics of the DH population as well as the parental genotypes 

MDW233 and SS8641. Mean values of traits at each trial are shown in Table 4.1. 

SS8641 had longer spikes, also more fertile and total spikelets per spike as well as 

more grains per spikelet; MDW233 had more sterile spikelets per spike. The 

compactness was similar between the parents.  In all trials, the DH population showed 
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significant variation and transgressive segregation was obvious with data distributed 

beyond the parental values, suggesting polygenic inheritance of the investigated traits 

(Table 4.1). ANOVA results showed that significant differences existed between DH 

lines and between environments at p<0.001 level in the performance of six spike 

traits (Table 4.2). Estimates of heritability (on a family mean basis) of the traits varied 

from trait to trait, ranging from 88% to 95%. The TSN had the highest heritability of 

95% whereas GSP had the lowest (Table 4.2). Correlation coefficients among the 

spike traits in different trials are presented in Table 4.3. SL showed a significant 

positive correlation with FSN and TSN but a negative correlation with SC across all 

five environments. There was a positive correlation between TSN and FSN. A 

positive correlation was also found between TSN and SC. SC was positively 

correlated with SSN, FSN and TSN in almost all of the environments. GSP was 

negatively correlated with SSN and had no significant relationships with both SL and 

FSN except in E3.  Significant negative correlations were also observed between GSP 

and TSN in E1 and E2 so was GSP and SC in E1, E2, and E3.  The strongest 

correlation was observed between TSN and FSN. 
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Table 4.1 Phenotypic values for spike characteristics: spike length (SL, cm), sterile spikelet number 
per spike (SSN), fertile spikelet number per spike (FSN), total spikelet number per spike (TSN), 
spikelet compactness (SC), and grain number per spikelet (GSP) in the MD01W233-06-1 × SS8641 
doubled haploid population evaluated in five field trials from 2013 to 2014: Clarksville 2013 (E1), 
Clarksville 2014 (E2), Queenstown 2013 (E3), Queenstown 2014 (E4), Kinston 2014 (E5).  
 

    Parents     DH lines         

Traits Environments  MDW233 SS8641   Mean Std. Dev. Minimum Maximum CV§ 

SL E1 6.6 7.3 7.0 0.5 5.7 8.4 7.5% 

E2 6.9 7.7 7.3 0.5 6.3 8.5 6.9% 

E3 7.0 8.0 7.2 0.5 6.0 8.6 7.3% 

E4 6.1 6.9 6.8 0.5 5.6 8.3 7.5% 

E5 7.1 8.4 7.5 0.5 6.2 9.0 7.1% 

FSN E1 13.0 15.7 14.3 1.1 11.8 17.3 7.6% 

E2 14.4 16.5 15.2 0.9 13.0 17.6 6.0% 

E3 14.6 16.3 14.9 1.0 12.5 17.4 6.8% 

E4 12.5 13.8 14.0 0.9 11.5 16.2 6.3% 

E5 14.8 17.0 16.1 1.2 13.7 20.2 7.4% 

SSN E1 2.1 1.8 1.8 0.5 0.8 3.1 25.4% 

E2 1.9 1.8 2.2 0.4 1.3 3.6 20.3% 

E3 1.6 1.1 1.7 0.5 0.3 3.5 31.8% 

E4 1.6 1.5 1.2 0.4 0.3 2.5 34.1% 

E5 2.5 1.8 2.4 0.6 1.2 4.1 23.0% 

TSN E1 15.1 17.5 16.2 1.1 14.1 19.2 6.6% 

E2 16.2 18.3 17.4 1.0 15.2 20.2 5.6% 

E3 16.1 17.4 16.6 1.1 14.3 19.4 6.5% 

E4 14.0 15.3 15.2 0.9 13.0 17.7 6.0% 

E5 17.2 18.8 18.5 1.3 16.1 22.3 6.9% 

SC E1 2.3 2.4 2.3 0.2 2.0 2.9 6.5% 

E2 2.4 2.4 2.4 0.1 2.0 2.8 5.5% 

E3 2.3 2.2 2.3 0.1 1.9 2.7 6.4% 

E4 2.3 2.2 2.3 0.1 2.0 2.6 5.3% 

E5 2.4 2.2 2.5 0.2 2.1 3.0 6.7% 

GSP E1 2.7 2.9 2.8 0.2 2.1 3.3 8.5% 

E2 2.3 2.4 2.2 0.2 1.8 2.6 8.1% 

E3 3.0 3.1 2.8 0.3 2.2 3.4 9.2% 

E4 2.8 2.8 2.8 0.2 2.3 3.3 7.1% 
  E5 2.4 2.7   2.6 0.2 2.3 3.2 7.2% 

        § coefficient of variation  
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Table 4.2 Pooled analysis of variance and heritability estimates for spike characteristics: spike length 
(SL, cm), sterile spikelet number per spike (SSN), fertile spikelet number per spike (FSN), total 
spikelet number per spike (TSN), spikelet compactness (SC), and grain number per spikelet (GSP) in 
the MD01W233-06-1 × SS8641 doubled haploid population evaluated in five field trials from 2013 to 
2014. 

  
Mean square 

    
Source of Variation df SL SSN FSN TSN SC SSP 

Environment 4 20.82*** 55.20*** 161.70*** 388.27*** 1.71*** 17.08*** 

Rep (environment) 5 0.89*** 2.74*** 4.41*** 4.68*** 0.05*** 3.62*** 

Genotype 123 2.25*** 1.65*** 7.94*** 8.92*** 0.17*** 0.31*** 

Genotype × environment 492 0.11*** 0.18*** 0.64*** 0.63*** 0.01*** 0.04*** 

R2 
 

0.91 0.87 0.89 0.95 0.91 0.91 

Heritability (h2) 
 

0.95 (0.01) 0.89 (0.02) 0.92 (0.01) 0.92 (0.01) 0.94 (0.01) 0.88 (0.02) 

 
* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
 
Table 4.3 Pearson correlation coefficients among spike characteristics: spike length (SL, cm), sterile 
spikelet number per spike (SSN), fertile spikelet number per spike (FSN), total spikelet number per 
spike (TSN), spikelet compactness (SC) in the MD01W233-06-1 × SS8641 the doubled haploid 
population evaluated in five field trials from 2013 to 2014. 

* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 

Environments   SSN FSN TSN SC GSP 

Clarksville 2013 SL -0.26** 0.68*** 0.58*** -0.55*** 0.14 

SSN -0.26** 0.17 0.47*** -0.39*** 

FSN 0.91*** 0.15 -0.05 

TSN 0.36*** -0.22* 

SC -0.38*** 

Clarksville 2014 SL 0.00 0.66*** 0.61*** -0.60*** 0.07 

SSN -0.09 0.37*** 0.36*** -0.62*** 

FSN 0.89*** 0.10 0.05 

TSN 0.25** -0.23* 

SC -0.31*** 

Queenstown 2013 SL -0.18* 0.71*** 0.58*** -0.56*** 0.25** 

SSN -0.14 0.37*** 0.56*** -0.62*** 

FSN 0.87*** 0.07 0.23** 

TSN 0.35*** -0.09 

SC -0.36*** 

Queenstown 2014 SL 0.03 0.71*** 0.71*** -0.60*** 0.06 

SSN -0.19* 0.27** 0.27** -0.39*** 

FSN 0.90*** 0.01 0.15 

TSN 0.13 -0.03 

SC -0.12 

Kinston 2014 SL -0.05 0.62*** 0.55*** -0.50*** 0.13 

SSN -0.06 0.38*** 0.45*** -0.40*** 

FSN 0.90*** 0.27** 0.16 

TSN 0.44*** -0.03 

  SC         -0.16 
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QTL detection 

Up to 109 putative additive QTLs for the six spike traits were detected by ICIM 

(Table 4.4) and their map positions are shown in Figure 4.1. The number of QTLs 

detected for each trait ranged from 16 to 22, specifically, 20 for FSN, 12 for SC, 20 

for SL, 19 for SSN, 16 for GSP, and 22 for TSN. These QTLs were located on 15 

chromosomes and formed QTL clusters.  In addition, 21 regions were detected to be 

associated with more than one trait.  

Spike length  

 

Twenty chromosome regions were identified to govern SL in the present study. 

Chromosome 1A and 1D each had one QTL. Chromosome 3A and 6A each had two 

QTLs. Three QTLs were detected on each of the chromosomes 3B, 2D, and 5D, and 

five QTLs were detected on 5A.  Major QTLs (PVE >10%) for SL were identified on 

chromosomes 1A, 5A, 6A, 3B, and 5D. SS8641 alleles were associated with longer 

spikes at seventeen (85%) loci whereas MDW233 alleles were associated with longer 

spike at the other three loci on chromosome 2D. QTL QSl.cz-1A was detected in four 

environments (E1, E2, E3, and E5) and mapped to the interval Xsnp1970- Xbarc28 on 

chromosome 1A (Figure 4.1), explaining 9.2-23.6% of the phenotypic variation of 

SL. This QTL was also significantly associated with FSN and TSN explaining 16.7 to 

30.9% and 8.4 to 20.2% of the phenotypic variation of FSN and TSN, respectively. In 

all cases, the favorable alleles were contributed by SS8641 and the additive effects of 

QSl.cz-1A were the largest among all QTLs for SL, FSN, and TSN suggesting an 

essential region for spike characteristics. Major SL QTL QSl.cz-3B.1 localized in the 
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same interval with FSN QTL QFsn.cz-3B.1. QTLs formed clusters on chromosomes 

5D, 3B, and 5A. 

Spike compactness  

Twelve QTLs, distributed on six chromosomes, were significantly associated with 

SC. The major QTL QSc.cz-5A.3 was detected in E2, E3, and E5 and had mostly 

large additive effects explaining up to 80.2% of the phenotypic variation. QSc.cz-5A.1 

also explained a large portion of the observed variation (26.7%) in E1. Additionally, 

QSc.cz-5A.3 clustered with QSc.cz-5A.1 and QSc.cz-5A.2. Clustering of consistent 

major QTLs was also identified on chromosome 2B and 5D. MDW233 contributed 

positive alleles at clusters on 5A and 5D whereas SS8641 increased SC at loci on 

chromosome 3A, 2B, 5B, and 6D. 

Grains per spikelet 

 

Sixteen QTLs were detected for GSP. They were distributed on chromosomes 1A, 

5A, 6A, 7A, 2B, 3B, 5B, 6B, 1D, and 2D. QTL QGsp.cz-2B.1 was detected in E1, E3, 

E4, and E5 accounting for 6.0-15.6% of the phenotypic variation and mapped to a 

position close to the major QTL QGsp.cz-2B.2 (LOD=7.4, PVE=13.7%). Four major 

QTLs mapped to similar positions and overlapped along the short arm of 

chromosome 5B explaining 11.6 to 14.5% of the phenotypic variation. Another two 

major QTLs QGsp.cz-1A.2 and QGsp.cz-2D explained 14.2 to 15.5% of the 

phenotypic variation, respectively. SS8641 contributed favorable alleles for QTLs on 

chromosomes 1A, 3B, 6B, and 2D. 
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Fertile spikelet number per spike 

 

Twenty QTLs significantly influenced FSN and mapped to nine chromosomes. QTLs 

on chromosomes 2D and 2A favored high FSN through MDW233 alleles and the rest 

were associated with high FSN through SS8641 alleles except for QTL QFsn.cz-

5A.1.The QTL on chromosome 1A, mapped to the interval Xsnp1970-Xbarc28, 

consistently showed a large effect on FSN. Another consistent QTL QFsn.cz-2D.2 

was mapped to chromosome 2D with a LOD score of 3.3 to 5.3. For QFsn.cz-2D.2, 

the MDW233 allele increased FSN. The remaining QTLs were detected in only one 

environment. There were six major QTLs for FSN and the phenotypic variation 

explained by each individual QTL ranged from 10.4 to 30.9%. 

Sterile spikelet number per spike  

 

Nineteen QTLs were associated with SSN. For the QTLs located on chromosome 2A, 

2B, 5B, and 3D, the SS8641 allele increased SSN, whereas for the QTLs on 1A, 3A, 

2D, and 6D, the MDW233 alleles increased SSN. The phenotypic variation explained 

by these individual QTLs ranged from 3.7 to 30%. QTL QSsn.cz-2B.2 was identified 

in E1, E2, E3, and E4 as a major QTL, sharing this interval with QTsn.cz-2B.3 and 

QSc.cz-2B.3. QTL QSsn.cz-1A was coincident with QGsp.cz-1A.2. At locus Ppd-D1, 

QSsn.cz-2D.1 and QSsn.cz-2D.2 overlapped, each explaining 30% and 7.5% of the 

phenotypic variation, respectively. 

Total spikelet number per spike 

Twenty-two chromosome regions were associated with TSN. However, seventeen of 

them were only detected once. Consistent QTLs included QTsn.cz-1A, QTsn.cz-2D.2, 

QTsn.cz-2D.3, QTsn.cz-2D.4 and QTsn.ca-5D.1 explaining 8.4 to 20.9% of the 
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phenotypic variation.  For QTLs detected on chromosome 2A, 6B, and 2D, MDW233 

alleles decreased TSN. SS8641alleles increased TSN at the remaining loci. QTL 

clusters were found on chromosomes 2B, 2D, and 5D and the genetic effects of QTLs 

in each cluster were in the same direction.   

QTL× environment, epistasis, and epistasis× environment interactions  

 

In this study, I used a mixed-model based composite interval mapping method to 

estimate the QTL× environment (Q×E), epistasis (Q×Q), and epistasis× environment 

(QQ×E) interactions. Thirteen Q×E interactions were detected for SSN, FSN, and 

TSN, out of which eleven involved intervals associated with significant additive 

effects. The other two were non-significant QTLs (LOD<3) for additive effects. E4, 

E5, and E3 each had six, five, and two Q×E interactions, respectively. No Q×E 

interaction was detected in E1 and E2. The contribution of Q×E interactions ranged 

from 0.6-2.2%. Twenty pairs of Q×Q interactions were detected for all six traits in the 

DH population and three QQ×E interactions were also identified (Table 4.6). Twelve 

intervals involved in Q×Q interactions were significant for additive effects. The 

heritability estimates of Q×Q and QQ×E interactions ranged from 0.3 to 4.9% and 0.9 

to 1.4%. 
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Figure 4.1 Position of quantitative trait loci (QTLs) detected in a doubled haploid mapping population 
derived from MD01W233-06-1 × SS8641. Locus marker names are shown on the right side of the 
chromosomes and values to the left of chromosomes show the genetic distance (cM) for each marker. 
QTLs are labeled with trait abbreviations and the QTL number for each trait. QTLs for the same trait 
are in the same color. 
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Table 4.4 Quantitative trait loci (QTLs) for spike characteristics: spike length (SL, cm), sterile spikelet 
number per spike (SSN), fertile spikelet number per spike (FSN), total spikelet number per spike 
(TSN), spikelet compactness (SC), and grain number per spikelet (GSP) in the MD01W233-06-1 × 
SS8641 doubled haploid population evaluated in five field trials from 2013 to 2014. 
 

QTL Trait Environment 
Position 

(cM) 
Marker interval 

LOD 

score 

PVE 

(%) 

Additive 

effect 

QSl.cz-1A SL Clarksville 2013 1 Xsnp1970-Xbarc28 11.6 23.6 0.25 
QSl.cz-1A SL Clarksville 2014 1 Xsnp1970-Xbarc28 5.7 11.1 0.17 
QSl.cz-1A SL Kinston 2014 1 Xsnp1970-Xbarc28 6.1 9.2 0.16 
QSl.cz-1A SL Queenstown 2013 1 Xsnp1970-Xbarc28 9.3 22.4 0.25 
QSl.cz-3A.1 SL Clarksville 2013 1 Xsnp3744-Xsnp3048 3.7 6.5 0.13 
QSl.cz-3A.2 SL Kinston 2014 4 Xsnp1466-Xsnp3049 5.0 7.3 0.15 
QSl.cz-5A.1 SL Kinston 2014 70 Xsnp3819-Xsnp3789 8.2 13.0 0.20 
QSl.cz-5A.1 SL Queenstown 2013 71 Xsnp3819-Xsnp3789 5.0 11.0 0.18 
QSl.cz-5A.2 SL Clarksville 2014 72 Xsnp3789-Xsnp3844 6.2 12.5 0.18 
QSl.cz-5A.3 SL Queenstown 2014 82 Xsnp3812-Xsnp3856 4.0 9.7 0.16 
QSl.cz-5A.4 SL Clarksville 2013 86 Xsnp3852-Xsnp3843 7.0 13.1 0.19 
QSl.cz-5A.5 SL Queenstown 2014 186 Xsnp3849-Xsnp3841 2.8 6.7 0.13 
QSl.cz-6A.1 SL Queenstown 2013 87 Xsnp4228-Xsnp4219 3.4 7.8 0.15 
QSl.cz-6A.2 SL Clarksville 2013 93 Xsnp4219-Xsnp70 6.0 11.0 0.17 
QSl.cz-3B.1 SL Queenstown 2014 21 Xsnp3399-Xsnp3070 5.5 13.9 0.19 
QSl.cz-3B.2 SL Clarksville 2013 44 Xsnp3320-Xsnp3335 5.3 9.5 0.16 
QSl.cz-3B.2 SL Kinston 2014 44 Xsnp3320-Xsnp3335 6.6 9.9 0.17 
QSl.cz-3B.3 SL Clarksville 2014 45 Xsnp3335-Xsnp3119 3.0 6.0 0.12 
QSl.cz-3B.3 SL Queenstown 2013 45 Xsnp3335-Xsnp3119 5.4 12.1 0.18 
QSl.cz-1D SL Kinston 2014 59 Xsnp2235-Xsnp2231 4.4 6.5 0.14 
QSl.cz-2D.1 SL Kinston 2014 28 Xsnp2810-Xsnp2875 2.7 3.7 -0.11 
QSl.cz-2D.2 SL Clarksville 2013 39 Xsnp2850-Xsnp2862 2.9 5.5 -0.12 
QSl.cz-2D.3 SL Clarksville 2014 105 Xsnp179-Xsnp2790 3.0 5.6 -0.12 
QSl.cz-5D.1 SL Clarksville 2014 37 Xsnp4178-Xgdm136 6.1 13.5 0.18 
QSl.cz-5D.2 SL Queenstown 2014 93 Xsnp876-Xsnp4170 4.7 12.0 0.17 
QSl.cz-5D.3 SL Kinston 2014 95 Xsnp4170-Xsnp4157 4.0 5.8 0.13 
QFsn.cz-1A FSN Clarksville 2013 1 Xsnp1970-Xbarc28 14.2 30.9 0.60 
QFsn.cz-1A FSN Clarksville 2014 1 Xsnp1970-Xbarc28 9.4 16.7 0.37 
QFsn.cz-1A FSN Kinston 2014 1 Xsnp1970-Xbarc28 20.6 30.0 0.65 
QFsn.cz-1A FSN Queenstown 2013 1 Xsnp1970-Xbarc28 11.2 23.9 0.49 
QFsn.cz-2A FSN Clarksville 2014 43 Xsnp2448-Xsnp2475 4.2 7.2 -0.25 
QFsn.cz-3A.1 FSN Kinston 2014 2 Xsnp3048-Xsnp1466 3.9 4.1 0.24 
QFsn.cz-3A.2 FSN Clarksville 2013 112 Xsnp2988-Xsnp3065 6.1 12.4 0.39 
QFsn.cz-3A.3 FSN Kinston 2014 148 Xsnp4728-Xsnp2968 5.0 5.3 0.27 
QFsn.cz-5A.1 FSN Kinston 2014 0 Xsnp3874-Xsnp3872 4.3 4.5 -0.25 
QFsn.cz-5A.2 FSN Clarksville 2014 97 Xsnp2008-Xsnp4472 2.8 4.5 0.20 
QFsn.cz-5A.3 FSN Queenstown 2014 100 Xsnp856-Xsnp3867 3.2 9.3 0.27 
QFsn.cz-7A FSN Clarksville 2014 29 Xsnp4773-Xsnp4777 4.1 6.9 0.24 
QFsn.cz-3B.1 FSN Queenstown 2014 21 Xsnp3399-Xsnp3070 2.8 8.1 0.25 
QFsn.cz-3B.2 FSN Kinston 2014 31 Xsnp3389-Xsnp3344 4.1 4.3 0.25 
QFsn.cz-3B.3 FSN Queenstown 2013 35 Xsnp3344-Xsnp3253 4.7 8.9 0.30 
QFsn.cz-1D.1 FSN Clarksville 2013 50 Xsnp2251-Xsnp2255 3.6 6.3 0.27 
QFsn.cz-1D.2 FSN Kinston 2014 53 Xsnp2244-Xsnp2229 10.4 12.4 0.41 
QFsn.cz-2D.1 FSN Kinston 2014 28 Xsnp2810-Xsnp2875 3.2 3.3 -0.22 
QFsn.cz-2D.2 FSN Clarksville 2013 50 Xsnp2862-XPpdD1 3.3 6.3 -0.28 
QFsn.cz-2D.2 FSN Queenstown 2013 56 Xsnp2862-XPpdD1 5.3 10.4 -0.33 
QFsn.cz-2D.3 FSN Clarksville 2014 104 Xsnp179-Xsnp2790 6.7 11.6 -0.31 
QFsn.cz-2D.4 FSN Kinston 2014 119 Xsnp2795-Xsnp708 3.6 3.7 -0.23 
QFsn.cz-5D.1 FSN Queenstown 2014 25 Xsnp4156-Xsnp4173 2.7 7.7 0.25 
QFsn.cz-5D.2 FSN Clarksville 2014 28 Xsnp4173-Xsnp4178 7.4 12.6 0.33 
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Table 4.4 Continued 
 

QTL Trait Environment 
Position 

(cM) 
Marker interval 

LOD 
score 

PVE 
(%) 

Additive 
effect 

QSsn.cz-1A SSN Clarksville 2013 5 Xbarc28-Xsnp2005 2.6 7.0 -0.12 
QSsn.cz-2A.1 SSN Kinston 2014 13 Xsnp2445-Xsnp2480 3.8 5.4 0.13 
QSsn.cz-2A.2 SSN Queenstown 2014 31 Xsnp1327-Xsnp2481 4.8 7.7 0.11 
QSsn.cz-3A.1 SSN Queenstown 2014 170 Xsnp2983-Xsnp2990 8.1 13.8 -0.15 
QSsn.cz-3A.2 SSN Clarksville 2013 177 Xsnp2990-Xsnp2905 3.9 9.8 -0.15 
QSsn.cz-5A.1 SSN Kinston 2014 99 Xsnp3855-Xsnp856 5.8 8.4 -0.16 
QSsn.cz-5A.2 SSN Kinston 2014 162 Xsnp3835-Xsnp3761 3.2 4.8 0.12 
QSsn.cz-2B.1 SSN Kinston 2014 69 Xsnp2767-Xsnp2591 8.5 13.0 0.20 
QSsn.cz-2B.2 SSN Clarksville 2014 73 Xsnp2697-Xsnp2598 5.3 14.4 0.17 
QSsn.cz-2B.2 SSN Clarksville 2013 74 Xsnp2697-Xsnp2598 5.2 12.9 0.17 
QSsn.cz-2B.2 SSN Queenstown 2013 74 Xsnp2697-Xsnp2598 6.3 18.3 0.23 
QSsn.cz-2B.2 SSN Queenstown 2014 74 Xsnp2697-Xsnp2598 3.2 5.1 0.09 
QSsn.cz-5B.1 SSN Clarksville 2014 58 Xsnp3988-Xsnp1006 2.9 7.5 0.12 
QSsn.cz-5B.2 SSN Queenstown 2014 74 Xsnp4060-Xsnp4072 4.5 7.5 0.11 
QSsn.cz-5B.3 SSN Kinston 2014 117 Xsnp4011-Xsnp4073 4.8 6.8 0.15 
QSsn.cz-5B.4 SSN Queenstown 2014 119 Xsnp3970-Xsnp4753 6.0 10.0 0.13 
QSsn.cz-2D.1 SSN Kinston 2014 60 Xsnp2862-XPpdD1 16.3 30.0 -0.31 
QSsn.cz-2D.2 SSN Queenstown 2014 63 XPpdD1-Xsnp2869 4.5 7.5 -0.11 
QSsn.cz-2D.3 SSN Clarksville 2013 78 Xsnp2844-Xsnp2877 5.6 14.4 -0.18 
QSsn.cz-2D.3 SSN Queenstown 2013 78 Xsnp2844-Xsnp2877 3.6 10.2 -0.17 
QSsn.cz-3D.1 SSN Kinston 2014 19 Xsnp3434-Xsnp3425 2.7 3.7 0.11 
QSsn.cz-3D.2 SSN Clarksville 2014 35 Xsnp3427-Xsnp3430 2.7 6.8 0.12 
QSsn.cz-6D SSN Queenstown 2014 0 Xsnp4521-Xsnp4501 3.1 4.8 -0.09 
QTsn.cz-1A TSN Clarksville 2013 1 Xsnp1970-Xbarc28 9.5 19.7 0.47 
QTsn.cz-1A TSN Clarksville 2014 1 Xsnp1970-Xbarc28 5.9 8.4 0.28 
QTsn.cz-1A TSN Kinston 2014 1 Xsnp1970-Xbarc28 13.2 20.0 0.57 
QTsn.cz-1A TSN Queenstown 2013 1 Xsnp1970-Xbarc28 9.3 14.1 0.40 
QTsn.cz-2A TSN Clarksville 2014 49 Xsnp87-Xsnp2323 6.2 8.8 -0.29 
QTsn.cz-3A TSN Clarksville 2013 115 Xsnp2988-Xsnp3065 5.4 10.3 0.34 
QTsn.cz-5A TSN Queenstown 2014 100 Xsnp856-Xsnp3867 2.8 7.4 0.25 
QTsn.cz-7A TSN Clarksville 2014 38 Xsnp4768-Xsnp1302 5.2 7.4 0.27 
QTsn.cz-2B.1 TSN Clarksville 2014 62 Xsnp2752-Xsnp2786 2.8 3.8 0.19 
QTsn.cz-2B.2 TSN Queenstown 2013 71 Xsnp2569-Xsnp2688 3.5 4.8 0.24 
QTsn.cz-2B.3 TSN Clarksville 2013 73 Xsnp2697-Xsnp2598 3.5 6.4 0.27 
QTsn.cz-3B TSN Queenstown 2013 42 Xsnp3349-Xsnp3367 3.5 4.6 0.23 
QTsn.cz-5B TSN Kinston 2014 11 Xsnp4114-Xsnp4142 2.9 3.6 0.24 
QTsn.cz-6B TSN Queenstown 2013 106 Xsnp4326-Xsnp4360 3.2 4.4 -0.23 
QTsn.cz-1D.1 TSN Clarksville 2013 50 Xsnp2251-Xsnp2255 3.1 5.7 0.25 
QTsn.cz-1D.2 TSN Kinston 2014 53 Xsnp2244-Xsnp2229 5.7 7.4 0.35 
QTsn.cz-2D.1 TSN Kinston 2014 33 Xsnp2850-Xsnp2862 3.8 5.2 -0.29 
QTsn.cz-2D.2 TSN Clarksville 2013 53 Xsnp2862-XPpdD1 5.4 11.2 -0.36 
QTsn.cz-2D.2 TSN Queenstown 2013 59 Xsnp2862-XPpdD1 9.4 14.7 -0.42 
QTsn.cz-2D.3 TSN Clarksville 2014 62 XPpdD1-Xsnp2869 4.2 5.9 -0.24 
QTsn.cz-2D.3 TSN Kinston 2014 63 XPpdD1-Xsnp2869 8.1 11.5 -0.43 
QTsn.cz-2D.3 TSN Queenstown 2014 68 XPpdD1-Xsnp2869 6.5 20.9 -0.41 
QTsn.cz-2D.4 TSN Clarksville 2014 103 Xsnp179-Xsnp2790 4.9 7.4 -0.27 
QTsn.cz-2D.4 TSN Queenstown 2013 105 Xsnp179-Xsnp2790 3.8 5.1 -0.24 
QTsn.cz-2D.5 TSN Kinston 2014 120 Xsnp708-Xsnp1745 4.8 6.5 -0.33 
QTsn.cz-5D.1 TSN Clarksville 2013 11 Xsnp1751-Xsnp4175 2.6 5.0 0.24 
QTsn.cz-5D.1 TSN Kinston 2014 12 Xsnp1751-Xsnp4175 3.6 5.0 0.28 
QTsn.cz-5D.2 TSN Queenstown 2014 26 Xsnp4156-Xsnp4173 4.6 12.6 0.32 
QTsn.cz-5D.3 TSN Clarksville 2014 28 Xsnp4173-Xsnp4178 11.6 18.4 0.42 
QTsn.cz-5D.4 TSN Queenstown 2013 29 Xsnp4178-Xgdm136 5.0 7.1 0.29 
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Table 4.4 Continued 

 
 
 
 
 
 
 
 
 
 
 
 

QTL Trait Environment 
Position 

(cM) 
Marker interval 

LOD 
score 

PVE 
(%) 

Additive 
effect 

QSc.cz-3A.1 SC Clarksville 2013 131 Xsnp310-Xsnp4288 4.1 7.7 0.04 
QSc.cz-3A.2 SC Clarksville 2014 142 Xsnp2964-Xsnp2885 5.0 8.8 0.04 
QSc.cz-3A.2 SC Queenstown 2013 142 Xsnp2964-Xsnp2885 3.6 7.4 0.04 
QSc.cz-3A.3 SC Kinston 2014 216 Xsnp2971-Xsnp2909 3.7 6.5 0.04 
QSc.cz-5A.1 SC Kinston 2014 48 Xsnp279-Xsnp3878 12.7 26.7 0.09 
QSc.cz-5A.2 SC Clarksville 2013 54 Xsnp49-Xgwm304 6.3 12.7 -0.05 
QSc.cz-5A.2 SC Queenstown 2014 54 Xsnp49-Xgwm304 3.8 9.3 -0.04 
QSc.cz-5A.3 SC Clarksville 2014 55 Xgwm304-Xsnp996 10.9 21.9 -0.06 
QSc.cz-5A.3 SC Kinston 2014 55 Xgwm304-Xsnp996 27.7 80.2 -0.15 
QSc.cz-5A.3 SC Queenstown 2013 55 Xgwm304-Xsnp996 6.0 13.0 -0.05 
QSc.cz-2B.1 SC Queenstown 2014 65 Xsnp2773-Xgwm319 5.8 15.4 0.05 
QSc.cz-2B.1 SC Clarksville 2013 66 Xsnp2773-Xgwm319 8.7 18.3 0.06 
QSc.cz-2B.1 SC Queenstown 2013 66 Xsnp2773-Xgwm319 9.3 21.6 0.07 
QSc.cz-2B.2 SC Kinston 2014 71 Xsnp2569-Xsnp2688 9.4 18.2 0.07 
QSc.cz-2B.3 SC Clarksville 2014 74 Xsnp2697-Xsnp2598 7.2 13.2 0.05 
QSc.cz-5B SC Clarksville 2014 11 Xsnp4114-Xsnp4142 3.1 5.3 0.03 
QSc.cz-5D SC Clarksville 2014 95 Xsnp4170-Xsnp4157 3.3 5.7 -0.03 
QSc.cz-5D SC Kinston 2014 95 Xsnp4170-Xsnp4157 7.4 13.9 -0.06 
QSc.cz-5D SC Queenstown 2014 95 Xsnp4170-Xsnp4157 6.6 16.8 -0.05 
QSc.cz-5D SC Clarksville 2013 99 Xsnp4170-Xsnp4157 2.8 5.6 -0.04 
QSc.cz-5D SC Queenstown 2013 100 Xsnp4170-Xsnp4157 3.5 8.1 -0.04 
QSc.cz-6D SC Clarksville 2013 131 Xsnp4484-Xsnp4488 3.1 5.8 0.04 
QGsp.cz-1A.1 GSP Clarksville 2013 0 Xwmc496-Xsnp1970 3.6 6.7 0.06 
QGsp.cz-1A.2 GSP Queenstown 2013 3 Xbarc28-Xsnp2005 5.6 14.2 0.10 
QGsp.cz-1A.2 GSP Clarksville 2014 5 Xbarc28-Xsnp2005 6.1 13.3 0.06 
QGsp.cz-5A GSP Queenstown 2014 63 Xbarc100-Xsnp4843 3.8 9.7 -0.06 
QGsp.cz-6A GSP Kinston 2014 95 Xsnp4364-Xsnp4207 2.9 7.4 -0.05 
QGsp.cz-7A GSP Queenstown 2014 129 Xsnp4563-Xsnp4936 3.8 9.0 -0.06 
QGsp.cz-2B.1 GSP Clarksville 2013 64 Xsnp2777-Xsnp2773 3.2 6.0 -0.06 
QGsp.cz-2B.1 GSP Kinston 2014 64 Xsnp2777-Xsnp2773 5.8 15.6 -0.08 
QGsp.cz-2B.1 GSP Queenstown 2013 64 Xsnp2777-Xsnp2773 5.4 12.9 -0.09 
QGsp.cz-2B.1 GSP Queenstown 2014 64 Xsnp2777-Xsnp2773 4.2 9.9 -0.06 
QGsp.cz-2B.2 GSP Clarksville 2014 72 Xsnp2688-Xsnp2697 7.4 13.7 -0.07 
QGsp.cz-3B GSP Clarksville 2014 66 Xsnp3393-Xsnp3368 4.3 7.7 0.05 
QGsp.cz-5B.1 GSP Queenstown 2014 47 Xsnp446-Xsnp4083 4.8 11.6 -0.07 
QGsp.cz-5B.2 GSP Clarksville 2013 49 Xsnp4083-Xsnp3988 5.7 12.0 -0.08 
QGsp.cz-5B.3 GSP Clarksville 2014 58 Xsnp3988-Xsnp1006 7.7 14.5 -0.07 
QGsp.cz-5B.4 GSP Kinston 2014 59 Xsnp1006-Xsnp823 4.7 12.5 -0.07 
QGsp.cz-5B.4 GSP Queenstown 2013 59 Xsnp1006-Xsnp823 3.4 7.9 -0.07 
QGsp.cz-6B GSP Clarksville 2013 63 Xsnp4421-Xsnp4451 2.7 5.3 0.05 
QGsp.cz-1D.1 GSP Queenstown 2013 53 Xsnp2244-Xsnp2229 2.7 6.0 -0.06 
QGsp.cz-1D.2 GSP Clarksville 2014 85 Xsnp2234-Xsnp2232 4.1 7.1 -0.05 
QGsp.cz-2D GSP Clarksville 2013 125 Xsnp708-Xsnp1745 7.5 15.5 0.09 
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Table 4.5 QTL × Environment interactions influencing spike characteristics: spike length (SL, cm), sterile spikelet 
number per spike (SSN), fertile spikelet number per spike (FSN), total spikelet number per spike (TSN), spikelet 
compactness (SC) and grain number per spikelet (GSP) in the MD01W233-06-1 × SS8641 doubled haploid 
population evaluated in five field trials from 2013 to 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
† AE is the additive × environment interaction effect at each environment. E1: Clarksville 2013; E2: Clarksville 2014; E3:  
Queenstown 2013; E4: Queenstown 2014. 
‡ h2(ae) is heritability estimate of the additive × environment interaction effect across four field trails. 
§ Interval with significant additive effect. * Significant at the 0.05 probability level  **Significant at the 0.01 probability level    
** *Significant at the 0.001 probability level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Trait QTL Interval Position AE1† AE2† AE3† AE4† AE5† h2(ae)‡ 

SSN 5A Xsnp3820-Xsnp2008 92.5 
   

0.05* 
 

0.9% 

SSN 2B Xsnp2591-Xsnp2569 69 
   

-0.05* 
 

0.7% 

SSN 2D Ppd-D1-Xsnp2869§ 67.7 
    

-0.12*** 2.0% 

FSN 1A Xsnp1970-Xbarc28§ 0.9 
   

-0.22*** 0.14** 2.2% 

FSN 2A Xsnp2448-Xsnp2475§ 44.8 
  

0.10* 
  

0.6% 

FSN 1D Xsnp2244-Xsnp2229§ 52.6 
   

-0.10* 0.11* 0.9% 

TSN 1A Xsnp1970-Xbarc28§ 0.9 
   

-0.15*** 0.13* 1.2% 

TSN 2D Xsnp2850-Xsnp2862§ 34.4 
  

-0.12* 0.19** -0.16** 1.8% 

Figure 4.2 Distribution of genetic and non-genetic components for yield and yield related traits: spike length (SL, 
cm), sterile spikelet number per spike (SSN), fertile spikelet number per spike (FSN), total spikelet number per 
spike (TSN), spikelet compactness (SC), and grain number per spikelet (GSP). a) total number of QTLs detected for 
additive (a), additive × environment (ae), epistasis (aa), and epistasis × environment interactions (aae) effects. b) 
relative magnitude of a, ae, aa, aae effects. 
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Table 4.6 Digenic epistatic QTLs for spike characteristics: spike length (SL, cm), sterile spikelet number per spike (SSN), fertile spikelet number per spike 
(FSN), total spikelet number per spike (TSN), spikelet compactness (SC) and grain number per spikelet (GSP) in the “MD01W233-06-1 × SS8641” doubled 
haploid population evaluated in five field trials from 2013 to 2014. 

 
† The flanking markers, chromosome and position of the first interval involved in the epistasis.  
‡ The flanking markers, chromosome and position of the second interval involved in the epistasis.  
§ The additive × additive effect.  
¶ The epistasis × environment effect at each environment. E1: Clarksville 2013; E2: Clarksville 2014; E3: Queenstown 2013; E4: Queenstown 2014;  
# The heritability estimate for additive × additive interaction effects across five environment. 
†† The heritability estimate for epistasis × environment interaction effects across four field trials. 
‡‡ Interval with significant additive effect.  
* Significantly different from zero at the 0.05 probability level  
 **Significant different from zero at the 0.01 probability level     
** *Significant different from zero at the 0.001 probability level 
 
 

Trait Chr† Position† Interval† Chr‡ Position‡ Interval‡ AA§ E1¶ E2¶ E3¶ E4¶ E5¶ h2(aa)# h2(aae)†† 

SL 1A 0 Xwmc496-Xsnp1970‡‡ 5A 78.9 Xsnp4167-Xsnp3760 0.07*** 
     

2.0% 0.2% 

SL 5A 78.9 Xsnp4167-Xsnp3760 2D 118.5 Xsnp2795-Xsnp708‡‡ -0.04** 
     

0.9% 0.2% 

SL 5A 78.9 Xsnp4167-Xsnp3760 5D 44.1 Xsnp4178-Xgdm136‡‡ 0.07*** 
     

2.3% 0.0% 

SL 2D 28.5 Xsnp2875-Xsnp2850 2D 118.5 Xsnp2795-Xsnp708§ 0.05*** 
     

0.6% 0.1% 

SL 3A 148.9 Xsnp2968-Xsnp443 3A 58.8 Xsnp4745-Xsnp4774 -0.07*** 
     

3.1% 0.4% 

SL 3B 93.1 Xsnp3345-Xsnp3289 3B 64.2 Xsnp3737-Xsnp3751 0.07*** 
     

2.9% 0.2% 

SSN 3A 169.8 Xsnp2983-Xsnp2990‡‡ 2B 69 Xsnp2591-Xsnp2569 -0.05*** 
     

1.0% 0.1% 

SSN 1A 51.3 Xsnp1862-Xsnp1823 2D 101.7 Xsnp179-Xsnp2790§ -0.07*** 
     

2.5% 0.3% 

SSN 5A 1 Xsnp3874-Xsnp3872‡‡ 1B 87.1 Xsnp2091-Xsnp2052 0.01 0.07* 
    

0.0% 1.4% 

SSN 7A 169.4 Xwmc273-Xsnp4655 5D 0 Xsnp4177-Xsnp4179 -0.08*** 
     

2.6% 0.2% 

FSN 1A 0.9 Xsnp1970-Xbarc28‡‡ 5D 28.1 Xsnp4178-Xgdm136‡‡ 0.10*** 
     

1.8% 0.0% 

FSN 2A 44.8 Xsnp2448-Xsnp2475‡‡ 3A 173.9 Xsnp2990-Xsnp2905‡‡ 0.08*** 
     

0.7% 0.2% 

FSN 3A 173.9 Xsnp2990-Xsnp2905‡‡ 5D 28.1 Xsnp4178-Xgdm136‡‡ -0.12*** 
     

0.6% 0.3% 

FSN 1A 38.7 Xsnp1993-Xsnp1316 6D 60.4 Xsnp4482-Xsnp814 0.12*** 
   

-0.12** 0.10* 1.6% 0.9% 

FSN 1B 137.2 Xsnp2067-Xsnp2127 2B 88.3 Xsnp2668-Xsnp2696 0.21*** 
     

4.9% 0.3% 

TSN 2B 49.8 Xsnp2323-Xsnp768 2D 119.4 Xsnp708-Xsnp1745‡‡ -0.08** 
     

0.3% 0.2% 

TSN 5B 81.9 Xsnp4050-Xsnp4020 1D 52.6 Xsnp2244-Xsnp2229‡‡ -0.11*** 
     

0.8% 0.0% 

TSN 2D 34.4 Xsnp2850-Xsnp2862‡‡ 2D 119.4 Xsnp708-Xsnp1745‡‡ 0.15*** 
     

1.3% 0.1% 

SC 6A 0 Xsnp4296-Xsnp4276 5B 103.2 Xsnp4086-Xsnp4089 0.02*** 
     

2.0% 0.0% 

GSP 7A 15.5 Xsnp4718-Xsnp4759 5B 12.2 Xsnp48-Xsnp4152 0.05*** 
     

4.2% 0.4% 
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Discussion 

There are very few QTL mapping studies on wheat spike characteristics that integrate 

additive, epistasis, additive × environment interaction, and epistasis × environment 

interaction effects. In this study, I evaluated a soft red winter wheat DH population to 

identify QTLs influencing six spike traits and to investigate their interactions.  

QTLs for spike characteristics 

In the present study, major QTLs for SL, FSN, TSN, and GSP were co-localized and 

clustered in the 5cM- region on chromosome 1A in three marker intervals: Xwmc496-

Xsnp1970, Xsnp1970-Xbarc28 and Xbarc28-Xsnp2005. In previous studies, Xbarc28 

was also found to flank QTLs for spike length that explained 10.8% of the phenotypic 

variation (Marza et al., 2006). Similarly, QTLs for canopy temperature (Shukla et al., 

2014), QTLs for pre-harvest sprouting (Munkvold et al., 2009) and QTLs and meta-

QTLs for yield components (Zhang et al., 2010) have also been detected in this 

region. These results indicate the existence of large-effect genes in this interval and 

thus, high resolution mapping would be recognized to determine if the effects are due 

to pleiotropy or closely linked QTLs. Five QTLs for SL were identified on 

chromosomes 5A. Among them, two QTLs with large effects, QSl.cz-5A.1 and 

QSl.cz-5A.2, overlapped at Xsnp3789. At 10 cM downstream were QSl.cz-5A.2 and 

QSl.cz-5A.3. QTL QSl.cz-5A.5 was at the distal end of the long arm of 5A. Previous 

studies have reported vernalization response genes (Vrn genes) and the major wheat 

domestication gene Q on chromosome 5A (Kato et al., 1998). Vrn genes together with 

photoperiod response genes (Ppd genes) and earliness per se genes (Eps genes) 
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determine flowering time of wheat and hence, in part, confer wheat wide adaptation 

to diverse regions around the world (Snape et al., 2001). The Q gene is a well-known 

domestication locus conferring the free-threshing character and is responsible for 

many other domestication-related traits such as rachis fragility, glume shape and 

tenacity, spike length, plant height, and spike emergence time (Faris et al., 2003; 

Simons et al., 2006; Sormacheva et al., 2014). The five SL QTLs on chromosome 5A 

were in the same regions where Vrn-A1 and Q are located. Diagnostic markers will be 

employed to further verify the existence of Vrn-A1 and Q in this DH population. QTL 

fine mapping is also necessary to determine if one or both of these two genes 

contributed to SL in this study and if new locus other than Vrn-A1 and Q was 

detected. Additionally, consistent QTLs for SL (QSl.cz-3B.2 and QSl.cz-3B.3) were 

identified on chromosome 3B in E1, E2, E4, and E5. QSl.cz-3B.2 and QSl.cz-3B.3 

overlapped at locus Xsnp3335 and were located in a region harboring QTLs for FSN, 

TSN, and GSP. In the same region, Li et al. (2007b) detected QTLs for grain yield 

and grain number per spike in two environments using a population of recombinant 

inbred lines derived from two winter wheat cultivars. Wang et al. (2009) also found 

this region significant for grain filling rate and yield-related traits over multiple 

environments. Three QTLs on 2D (Table 4.4) were of special interest because these 

were the only three loci where MDW233 alleles were associated with a longer spike. 

In a QTL mapping study for spike-related traits, Ma et al. (2007b) detected two QTLs 

on chromosome 2B flanked by marker Xgwm261 for SL and SC in the cross of winter 

genotypes Nanda 2419 and Wangshuibai where the QTLs linked to Xgwm261 

explained 8.8 to 23.2% of the phenotypic variation. In my study, Xgwm261 was 2.3 
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cM and 13.3 cM away from QSl.cz-2D.1/QFsn.cz-2D.1 and QSl.cz-2D.2, 

respectively. In addition, Xgwm261 was reported to flank  co-localized QTLs and a 

QTL cluster for yield related traits including plant height, harvest index, days to 

maturity, thousand grain weight, and grain weight per spike (Mason et al., 2013). 

These results suggest that these regions on chromosome 2D may be the same. 

Furthermore, QSl.cz-2D.3 mapped to the long arm of chromosome 2D and shared the 

same interval with major QTL QFsn.cz-2D.3 and QTsn.cz-2D.4 which coincided with 

the QTLs for FSN and TSN in Ma et al. (2007). The same position and genetic effects 

suggested the possibiligy of similar underlying QTLs.  

 

A few studies have documented QTLs/genes for SSN, FSN, and TSN (Cui et al., 

2012; Ma et al., 2007b). Some previously reported QTLs were confirmed in the 

present study.  A minor QTL, QSsn.cz-6D, is consistent with the QTL detected by Cui 

et al. (2012) who also located a cluster of QTLs for spike characteristics on 

chromosome 2B corresponding with the major QTL clusters identified in the present 

study. QTLs in this cluster were repeatedly detected in almost all environments 

evaluated. At these loci, SS8641 contributed positive additive effects for SSN, TSN, 

and SC, whereas MDW233 was associated with positive GSP suggesting that the 

SS8641 allele of this cluster may lower spikelet fertility and increase TSN and SC by 

increasing the number of sterile spikelets. The SS8641 allele of this region should be 

avoided in breeding programs. In addition, a QTL cluster for FSN and TSN was 

identified on chromosome 5D flanked by Xsnp4156-Xgdm136 and was located in the 

same region of previously reported QTLs detected by Li et al. (2007b) and Cui et al. 
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(2012). Cuthbert et al. (2008) reported a QTL cluster for grain numbers per spike, 

grain yield, thousand grain weight, grain filling time, and days to heading on 

chromosome 2D which may correspond to the region of major QTL QSsn.cz-2D.3 

identified in this study (Table 4.4). At the distal end of chromosome 2D, I detected 

three closely linked QTLs QFsn.cz-2D.4, QTsn.cz-2D.5, and QGsp.cz-2D. These 

QTLs were not located at the region of the compactum (C) locus, a spike-compacting 

gene on the long arm of chromosome 2D (Johnson et al., 2007a). The SS8641 alleles 

in this region decreased FSN and TSN but increased GSP. The association of this 

region with spike traits has not been reported elsewhere. Furthermore, I found that the 

major QTL QFsn.cz-2D.2 shared the interval with QTsn.cz-2D.2 and QSsn.cz-2D.1 

and overlapped with QSn.cz-2D.2 and QTsn.cz-2D.3 at the locus Ppd-D1. The effects 

of these QTLs were possibly caused by the locus Ppd-D1 which is a member of the  

Ppd1 genes known to confer photoperiod sensitivity and influence agronomic traits 

such as plant height, days to heading and thousand grain weight (Guo et al., 2010). 

Recently, the Ppd-D1 locus was shown to control photoperiod-dependent floral 

induction and that it has a major inhibitory effect on paired spikelet formation by 

regulating the expression of the FLOWERING LOCUS T (FT) (Boden et al., 2015).    

 

The QTL cluster on chromosome 5A for SC included the locus Xgwm304 that is 

neither close to the Q gene nor the Vrn-A1 gene but it has been related to grain yield 

and thousand grain weight by Cuthbert et al. (2008) and SL and SC by Ma et al. 

(2007b). In these two studies, this region was identified as harboring major QTLs 

because of high PVE values similar to my results. Thus, it is possible that this region 
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may contribute to grain yield by increasing spikelet numbers and grain weight. 

Sourdille et al. (2003) used a DH population derived from the cross Courtot × 

Chinese Spring to study wheat development traits and detected one QTL on the long 

arm of chromosome 5D for SC. This QTL explained 13.6% of the phenotypic 

variation and was similar to the genomic region Xsnp876-Xsnp4157 where two major 

QTLs for SL and SC were identified in the present study. Another QTL cluster 

comprising of four major QTLs for GSP on chromosome 5B (Table 4.4) coincided 

with the interval of the SL QTL QSl.ccsu-5B.2 identified by Kumar et al. (2007). 

 

Chromosome 3A of wheat is known to contain QTLs for grain yield and other 

important agronomic traits. Using a recombinant inbred line population derived from 

the winter wheat cultivar Cheyenne (CNN) and its single chromosome substitution 

line CNN (WI3A) where chromosome 3A of CNN was substituted for Wichita (WI) 

chromosome 3A, Mengistu et al. (2012) and Dilbirligi et al. (2006) detected QTLs for 

grain yield, plant height, spikes per square meter, and grain number per spike and 

found that most of the detected QTLs on 3A were co-localized in two regions. In the 

present study, I detected five QTLs on chromosome 3A for SC and SSN among 

which QSsn.cz-3A.1 explained 13.8% of the phenotypic variation while the rest were 

minor QTLs. Based on the mapping positions of SSR markers used in the current and 

previous studies (Somers et al., 2004), these five QTLs were similar to the QTLs 

previously identified by Dilbirligi et al. (2006) and Mengistu et al. (2012). 
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Genetic complexity of spike characteristics 

Most important agronomic traits are quantitative in nature controlled by polygenes 

and influenced by the environment. Understanding the genetic and environmental 

factors causing the phenotypic variation of quantitative traits is essential for the 

genetic improvement of crops via knowledge-based breeding (Mackay, 2001; 

Würschum, 2012). In the present study, the effects of major, minor, and epistatic 

QTLs as well as their interactions with the environment and their relative 

contributions to spike characteristics were estimated (Figure 4.2). The QTLs with 

additive effects were the largest in total number and had the largest genetic 

contribution to phenotypic variation. This agreed with previous QTL studies 

involving epistasis, Q×E and QQ×E interactions (Kuchel et al., 2007a; Wu et al., 

2012; Xing et al., 2002; Zhang et al., 2014). In addition, QTLs for spike 

characteristics were not evenly distributed within and across chromosomes and 

tended to cluster (Figure 4.1). I identified QTL clusters on chromosome 1A, 5A, 2B, 

3B, 5B, 1D, 2D, and 5D where QTLs for multiple spike characteristics were co-

localized or closely linked within a 10-cM region. In most cases, each cluster 

contained at least one major QTL. The clustering of QTLs also partially explained the 

correlation between spike characteristics. In this study, SL was highly correlated with 

FSN across environments (Table 4.3). This could be caused by the co-localization of 

QSl.cz-1A and QFsn.cz-1A plus the effects of closely linked QTLs QSl.cz-3A.1, 

QSl.cz-3A.2 and QFsn.cz-3A.1. Despite of the slight difference in interpretation, 

characterizing the interaction at two or more loci or epistasis is as important in 

quantitative genetics as in classical genetics. I found that interactions (Q×E, Q×Q and 
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QQ×E) served as modifiers for spike characteristics determination in my DH 

population. For example, the interval Xsnp4167-Xsnp3760 on chromosome 5A was 

not detected with significant additive effects but contributed to SL through its 

interactions with Xsnp2795-Xsnp708, Xwmc496-Xsnp1970, and Xsnp4178-Xgdm136, 

which were associated with significant additive effects for FSN, GSP, and SL, 

respectively. Significant epistasis was also detected between non-significant intervals 

such as Xsnp2067-Xsnp2127 and Xsnp2668-Xsnp2696 which increased FSN and 

accounted for 4.9% of the phenotypic variation. Similar results were reported by Ma 

et al. (2007b) where the interaction of two non-significant loci on chromosome 3D 

decreased TSN and FSN. These results confirmed that loci without main effects may 

contribute to trait determination through epistasis (Li et al., 2001). Additionally, I 

found that the SS8641 allele at the interval Xsnp1970-Xbarc28 increased FSN and 

TSN in E5 and these effects was enhanced by 21.5% through the Q×E interaction. 

Although the effects and contribution from Q×E, Q×Q and QQ×E interactions were 

relatively smaller compared to additive main effects, they were important terms fine-

tuning the expression of spike traits. This is valuable information for pyramiding 

QTLs in breeding programs.  

Conclusion 

Spike characteristics determine the number of grains produced on each spike. 

Genetically improving grain number per spike is widely accepted as one of the key 

paths towards higher grain yield. In this study, QTL mapping in a bi-parental 

population was performed and detected a total of 109 QTLs among which consistent 

QTLs such as QSl.cz-1A or QFsn.cz-1A for SL and FSN, QGsp.cz-2B.1 for GSP, and 
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QSc.cz-5A.3 for SC, explained up to 30.9%, 15.6%, and 80.2% of the phenotypic 

variation, respectively. I also found that the average contribution of QFsn.cz-1A to 

FSN at each trial was enhanced by 19% via interaction with the interval Xsnp4178-

Xgdm136. In addition, QTLs clusters on chromosomes 1A, 5A, 2B, 3B, 5B, 1D, and 

5D with synergistic or antagonistic genetic effects partially explained the phenotypic 

correlation between spike traits. These results provide valuable information for 

manipulating spike morphology for breeding purposes.  
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Chapter 5:  Multivariate analysis of grain yield and yield related 
traits in a doubled haploid population of soft red winter wheat 

Abstract 

To study the interrelationships among grain yield and yield contributing traits, a 

series of statistical analyses including correlation, multiple linear regression, cluster 

analysis, principal component analysis and structural equation modeling were 

conducted in a soft red winter wheat doubled haploid population derived from the 

cross MD01W233-06-1 by SS8641. Six structural equation models with feedback 

loops were constructed and showed that spikes per square meter had the highest 

positive contribution to grain yield followed by grain weight per spike and that grains 

per spikelet and fertile spikelet number per spike were compensatory targets that 

mediate yield component compensation. In addition, DH84 and DH96 which yielded 

24.13% and 22.64% higher than the mean performance of the whole population, 

respectively, may have potential as new cultivars. 

Introduction 

Wheat (Triticum aestivum L.) is one of the most important food crops, occupying 

17% of the world’s crop acreage, feeding about 40% of the world’s population and 

providing 20% of total food calories and protein in human nutrition (Gupta et al., 

2005). Continuous genetic improvement of wheat yield potential via breeding is 

essential to securing a stable food supply. In a wheat breeding program, a breeder 

usually records a number of agronomic characters on which statistical analyses are 

made to get a better understanding of the germplasm. The information is then utilized 

to make selections. Therefore, analytical methods that can extract the most 
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information from large datasets and provide insights into the nature and magnitude of 

association of plant traits are needed, especially when clear experimental control of 

the inter-correlated traits is difficult. 

 

Several statistical methods have been utilized to investigate wheat grain yield and its 

related characters. For example, phenotypic correlation analysis is an important way 

to evaluate the association between plant characters. However, simple correlation 

does not necessarily imply a cause-and-effect relationship. The observed correlation 

could be due to unknown environmental or genetic factors. Genetic correlation is a 

measure of the extent to which plant characters are associated at the genetic level 

(Waitt and Levin, 1998) and is used as a supplement to phenotypic correlation when 

making selection decisions (Holland, 2006). Alternatively, multiple regression 

analysis can be useful when the main interest is the prediction of the response 

variable from a set of predictor variables or to select candidate variables for further 

analyses. Using multiple linear regression analysis, Leilah and Al-Khateeb (2005) 

reported that grain weight per spike, harvest index, biological yield, spike number per 

square meter and spike length were major contributors to wheat grain yield. 

Additionally, cluster and principal component analyses are often used separately or 

combined to group cultivars or agronomic variables into main groups or subgroups 

based on similarity, which is also useful for parental selection in breeding programs 

and crop modeling (Khodadadi et al., 2011; Leilah and Al-Khateeb, 2005). 

Furthermore, path analysis divides the correlation coefficients into direct and indirect 

effects and has been employed to study yield formation in cereal crops by separating 
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the direct influence of each yield component on grain yield from the indirect effects 

caused by mutual relationships among yield components themselves (Kashif and 

Khaliq, 2003; Li et al., 2006; Moral et al., 2003). Most path analysis studies on yield 

formation, however, have two main general limitations: 1) researchers assume 

bidirectional causal pathways between yield components and yield related traits; and 

2) grain yield is modeled as a resultant variable and all other traits as causal variables 

with direct path toward grain yield (Kashif and Khaliq, 2003; Li et al., 2006). 

Additionally, whether a yield component can influence others that develop earlier is 

questionable given that yield components develop sequentially (Dofing and Knight, 

1992). Furthermore, path analysis assumes that all variables are measured without 

error and that no correlation between the error terms and causal loops exist (Meehl 

and Waller, 2002). 

 

Structural equation modeling (SEM) is a powerful multivariate approach to model 

complex relationships between latent and measured variables while accounting for 

measurement error (Ullman, 2006). SEM is an extension of general linear modeling 

(GLM) procedures, such as the ANOVA and multiple regression analysis. Its main 

goal is to determine if a specified theory about the causal pattern of multiple inter-

correlated variables, usually represented by a path diagram, is consistent with 

empirical data. This consistency is evaluated through data-model fit indices that 

measure the extent to which the proposed network of relations is plausible. Four most 

commonly used fit indices are 1) standardized root mean squared residual (SRMR), 

2) root mean squared error of approximation (RMSEA), 3) normed fit index (NFI), 
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and 4) nonnormed fit index (NNFI) (Hooper et al., 2008). Similar to classic path 

analysis, SEM is capable of conveying casual relationships among mutually inter-

correlated dependent and independent variables (Kline, 2011). One of the primary 

advantages of SEM (vs. other applications of GLM such as ANOVA and path 

analysis) is that less restrictive assumptions exist in SEM which makes SEM a 

popular confirmatory and exploratory approach in social sciences (Marsh et al., 

2014). SEM has been adapted to the quantitative genetics mixed-effects models 

settings by Gianola and Sorensen (2004) and promoted by Lamb et al. (2011) in plant 

sciences to study yield components, complex multi-site field trails etc. However, no 

applications have been reported in major crop plants.  

 

The present study was undertaken to investigate and model the phenotype network 

regarding wheat grain yield formation through multivariate analyses. The novelty of 

this research is twofold: 1) it provides an overall view on grain yield formation by 

including yield components, spike morphology and plant architecture traits and 2) it 

introduces SEM as a supplement to traditional multivariate approaches to resolve the 

interrelationships among yield contributing traits. Data used in this study was 

collected at the end of growing seasons and, thus, phenotype network constructed in 

this study did not represent dynamic regulating network or mimic any developmental 

processes. 
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Materials and Methods 

Field trials and data collection 

Data used in this chapter was collected from a doubled haploid population of soft red 

winter evaluated in five field environments (refer to the chapter 2, 3, and 4 of this 

dissertation for details). 

Statistical analyses 

 
Phenotypic correlation analysis was performed by PROC CORR procedure of SAS, 

Version 9.3 (SAS Institute, Cary, NC 2013). Genetic correlation coefficients were 

estimated using MANOVA method (Liu et al., 1997) by PROC GLM procedure of 

SAS. Multiple linear regression and stepwise multiple linear regression was 

conducted using PROC REG procedure of SAS. Cluster analysis (using standardized 

data and Ward method) and principal component analysis (using correlation matrix 

and REML method) were performed by JMP® Pro, Version 11 (SAS Institute, Cary, 

NC, 2014). Structural equation modeling was based on correlation matrix and 

performed using LISREL, Version 9.1 (Joreskog and Sorbom, 2012). 

Results and Discussion  

Phenotypic and genetic correlation analyses 

According to quantitative genetics theory, genetic and environmental causes of 

correlation combine together to produce phenotypic correlations. The magnitude and 

sign of phenotypic and genetic correlations, however, are not necessarily related 

(Waitt and Levin, 1998). It is important to know for breeders if the phenotypic 

correlation is due to heritable genetic factors or external environmental conditions. In 
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this study, a matrix of pairwise phenotypic and genetic correlation coefficients were 

computed and are presented in Table 5.1. GYLD was positively associated with 

SPSM and TGW but was negatively correlated with FLL, FLW, FLA, SL, FSN, TSN, 

and HD. SPSM and TGW had the highest positive phenotypic and genotypic 

association with GYLD implying that improving these traits could result in higher 

grain yield and this effect would be highly heritable. A significant positive correlation 

between GWPS and GYLD was not found in pooled correlation analysis but was 

detected in two environments: E4 and E5, which was similar with the results reported 

by Marza et al. (2006) and Heidari et al. (2011). The negative correlations between 

GYLD and FLL, FLW, FLA, SL, FSN, TSN, and HD suggested that early heading 

genotypes with smaller flag leaves, shorter spikes, and less fertile spikelets, and thus 

with lower grain number and lighter grain weight would contribute to higher grain 

yield. This was true in E1, E2, E3, and E4 where these unfavorable traits were 

compensated by higher SPSM but not in E5 where the compensation from SPSM was 

not enough, probably due to higher temperatures during the growing season. In a 

study to evaluate wheat yield formation under Mediterranean conditions, Moral et al. 

(2003) reported that durum wheat yielded less in warmer environments than in cooler 

regions mainly due to reduced SPSM and TGW. Similarly, Hou et al. (2012) found 

that winter wheat grew faster and produced more tillers but tended to decrease SPSM 

under warmer conditions also resulting in lower grain yield. 

Cluster and principal component analysis  

 
Cluster analysis has been used to classify wheat ecotypes and to evaluate genetic 

diversity in wheat germplasm collections. Cluster analysis groups genotypes into 
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clusters where genotypes in the same cluster exhibit high homogeneity but have high 

heterogeneity among clusters. In this study, I clustered the 124 DH lines into five 

clusters (Figure 5.21~5.26). Membership of each line is presented in Appendix D. 

The means of dendrogram clusters at each environment are presented in Table 5.6. 

The cluster with the highest grain yield at each environment was consistently 

associated with higher SPSM, smaller FLA, less GPS, lighter GWPS, shorter SL, 

fewer FSN and TSN, which also agreed with the results from phenotypic and genetic 

correlation analysis of this study. 

  

Principal component analysis (PCA) is a standard multivariate technique for complex 

dataset analysis where observations are described by multiple inter-correlated 

variables. Its objective is to extract the most important information from the original 

inter-correlated variables by maximizing the variance of a set of new orthogonal 

variables called principal components, and to display the pattern of similarity of the 

observations and of the variables in maps (Abdi and Williams, 2010). Principal 

components are linear combinations of original variables. The first principal 

component has the maximal variance. The second principal component has maximal 

variance in a direction orthogonal to the first principal component, and so on. In this 

study, PCA grouped the investigated wheat variables into five main components 

explaining more than 80% of the total variation (Table 5.4). Specifically, the first two 

principal components explained more than half of the total variance. The first 

principal component accounted for 30.6%, 27.1%, 32.5%, 30.7%, 34.5%, and 33.1% 

of the total variation and second principal component for 20.2%, 18.1%, 22%, 18.7%, 
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and 23.7% of the total variation at E1, E2, E3, E4, and E5 trials, respectively. The 

first principal component was related to yield components and yield contributing 

traits whereas the second principal component was related to vegetative growth and 

spikelet fertility across trials (Table 5.5). The traits with largest loadings to the first 

principal component were GWPS, GPS, SPSM, SL and FSN, suggesting these were 

indicative of yield potential. The first two principal components and wheat variables 

were plotted in biplots (Figure 5.1). From the biplots, vectors representing 

uncorrelated traits formed right angles (90°) (e.g. GPS vs. HD, SSN vs. FSN), 

whereas highly correlated traits formed either acute (positive correlation; e.g. SPSM 

vs. GYLD) or obtuse (negative correlation; e.g. GYLD vs. FLA) angles. In general, 

three observations were made from the biplots: 1) SPSM and TGW were mostly 

positively associated with GYLD, 2) SSN, SC, GSP, and FLS were independent of 

GYLD, 3) HD, FLW, FSN, FLA, FLL, and GPS were negatively associated with 

GYLD. GWPS showed a slightly positive to no correlation with GYLD, which agreed 

with the results of previous phenotypic correlation analyses. 

 

Additionally, cluster analysis coupled with PCA was used to select high yielding DH 

lines in this study. The first two principal components from each environment were 

plotted with DH cluster membership as labels (Figure 5.21~5.26). At E1, the highest 

yielding cluster (Cluster 1) was separated from the lowest yielding cluster (Cluster 4) 

as was Cluster 2 from Cluster 4 at E2, Cluster 5 from Cluster 3 at E3, Cluster 1 from 

Cluster 4 at E4, and Cluster 1 from Cluster 4 at E5. The extracted principal 

components were able to distinguish different clusters and, thus, largely confirmed 
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the generated cluster membership. Two DH lines, DH96 and DH84, stayed in the 

highest yielding clusters across all five environments. Furthermore, when data from 

the five environments were averaged, DH96 and DH84 ranked second and third 

among all lines, increasing grain yield by 24.13% and 22.64% respectively. Thus, 

DH96 and DH84 could be candidates to be new cultivars with a stable performance 

across these environments. 

Multiple linear regression analysis 

 
Regression coefficients and the associated probability values for each variable in 

predicting wheat grain yield are presented in Table 5.2 and 5.3. The final models 

from stepwise linear regression analyses explained more than 95% of the total 

variation in grain yield. Although the variables remaining in the models varied at 

different environments, GWPS and SPSM were shared by all, suggesting the 

importance of SPSM and GWPS as selection criteria in wheat breeding for grain 

yield. Similarly, Leilah and Al-Khateeb (2005) also observed that SPSM and GWPS 

were the most effective variables influencing wheat grain yield.  

Structure equation modeling (SEM) 

 
Phenotypic traits can have causal effects on each other (Rosa et al., 2011). 

Information regarding phenotype networks describing the cause-and-effect 

relationships and feedback between traits is very helpful to predict the performance of 

biological systems. In this study, a phenotype network regarding grain yield and yield 

contributing traits was modeled under the frame of SEM. The purpose was to quantify 

the relative contributions of correlated causal sources of variation once a certain 
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network of interrelated variables with biological significance has been accepted 

(Shipley, 2004). Initial models were constructed separately for grain yield and yield 

components and spike characteristics based on the results obtained from previous 

multivariate analyses and published results on the interrelationships among grain 

yield and yield contributing traits (Dofing and Knight, 1992; Moral et al., 2003). The 

initial models were then integrated into one. I included paths from GPS and TGW to 

GYLD at my first attempt to integrate initial models. The path coefficients were not 

significant and overall model fitting failed although this seemed meaningful 

biologically. LISREL suggested a list of paths that could improve fit indices. Based 

this list, the modification of paths was performed to obtain the best combination of 

four fit indices. Final models are shown in Figure 5.3.  

 

All the path coefficients in the phenotype network were highly significantly different 

from zero (Figure 5.3). Across six models, GWPS and SPSM had direct causal 

influence on GYLD. The loadings for the path from SPSM to GYLD were higher 

than that for the path from GWPS suggesting that SPSM had a relatively more direct 

contribution to GYLD. No direct contribution from GPS or TGW to GYLD was 

established. However, GPS and TGW had an indirect effect on GYLD via GWPS. 

Additionally, FSN and GSP were feedback targets where depressing effect from 

GWPS, SPSM, TGW and GYLD were observed. GSP had more feedback effect than 

FSN. Previous studies found that SPSM had a direct negative effect on GPS and 

TGW (Moral et al., 2003) and that this compensation arose from the fact that these 

traits develop sequentially with later-developing traits under control of earlier-
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developing ones (Slafer, 2007). However, in this study, a direct negative effect on 

GWPS from SPSM was significant only in Clarksville 2014 and Queenstown 2014. 

Although a direct path from SPSM to GWPS was absent in the other three trials, 

SPSM negatively affected GWPS by depressing GSP and FSN and hence GPS 

(Figure 5.3) suggesting GSP and FSN as mediators in yield component compensation. 

To my knowledge, this is the first report of GSP and FSN as direct feedback 

regulating targets in wheat. 

Direct genetic evidence of feedback paths in SEM 

 
The results of the QTL analyses of the set of agronomic traits involved in the present 

study (Chapter 2, 3, and 5 of this dissertation) were used to evaluate the validity of 

feedback paths in the structural equation models at each trial. The feedback path from 

SPSM to GSP in the model at Clarksville 2013 and Queenstown 2013 could be 

partially explained by the interval Xwmc496-Xsnp1970 where QTL QSsm.cz-1A.1 and 

QTL QGsp.cz-1A.1 co-localized and the interval Xbar28-Xsnp2005 where QTL 

QSsm.cz-1A.3 and QTL QGsp.cz-1A.2 also co-localized. The MDW233 allele at these 

two loci increased SPSM but decreased GSP. The feedback path from GYLD to GSP 

in the model at Clarksville 2014 could be associated with the region Xsnp3382- 

Xsnp3368 on chromosome 3B where QTLs with opposite genetic effects on GYLD 

and GSP were located closely. The feedback path from GYLD to FSN in the model 

at Clarksville 2013 could be supported by the genomic region Xwmc496-Xbar28 on 

chromosome 1A where QTL QGld.cz-1A and QTL QFsn.cz-1A co-localized but 

showed opposite genetic effects on GYLD and FSN. Another genetic evidence might 

be the interval Xsnp2862-XPpd1 on chromosome 2D where its SS8641 allele 
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increased grain yield but decreased FSN. Additionally, the interval Xsnp1970-Xbar28 

on chromosome 1A and Xsnp3389-Xsnp3344 on chromosome 3B may be the 

underlying genetic factors for the feedback path from SPSM to FSN in the model at 

Kinston 2014, where the MDW233 allele increased SPSM but decreased FSN. No 

QTLs were found to directly support the feedback paths from GWPS to GSP and 

FSN and from TGW to FSN. This could be due to two reasons: 1) the threshold level 

set to detect a significant QTL was too high so that QTLs with minor effects were 

overlooked. A consequence of this is that researchers would miss QTLs that could 

explain the feedback paths and 2) the causal relations could be due to methylation 

quantitative trait loci (meQTLs) in addition to DNA sequence changes (Koch, 2014) 

which are not detected in conventional QTL analyses.  

Conclusion 

Multivariate analyses were used to construct a phenotype network involving grain 

yield and yield related traits. Results showed that SPSM (spikes per square meter) 

was the most important trait that directly and positively contributed to grain yield 

followed by GWPS (grain weight per spike). In addition, GPS (grains per spike) had 

more weight on GWPS (grain weight per spike) than TGW (thousand grain weight) 

and GSP (grains per spikelet) had more weight on GPS (grains per spike) than FSN 

(fertile spikelet number). Therefore, high SPSM and GSP and moderate TGW and 

FSN could be the targets for breeding for higher grain yield in the Mid-Atlantic 

region.  
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Table 5.1 Genotypic (rg) and phenotypic (rp) correlation coefficients among the grain yield and yield contributing traits in the MD01W233-06-1 × SS8641 
doubled haploid population. rp is shown in the upper triangular and rg in the lower triangular. Traits evaluated  include grain yield (GYLD), grains per spike 
(GPS), grain weight per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW), plant height (PHT), flag leaf length (FLL), flag leaf 
width (FLW), flag leaf area (FLA), flag leaf shape (FLS), spike length (SL), sterile spikelet number per spike (SSN), fertile spikelet number per spike (FSN), 
total spikelet number per spike (TSN), spike compactness (SC), grain number per spikelet (GSP), and dates to heading (HD). rg and rp were estimated from all 
five trials’ data.  Significance was not tested for rg. 

 
  GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 

GYLD 
 

-0.17 0.12 0.70*** 0.37*** 0.13 -0.25** -0.43*** -0.41*** 0.09 -0.24** -0.14 -0.40*** -0.44*** -0.15 0.11 -0.46*** 

GPS -0.15 
 

0.66*** -0.58*** -0.38*** 0.06 0.45*** 0.19* 0.40*** 0.26** 0.49*** -0.36*** 0.71*** 0.51*** -0.06 0.76*** 0.03 

GWPS 0.14 0.66 
 

-0.60*** 0.36*** 0.29*** 0.36*** 0.16 0.33*** 0.21* 0.56*** -0.25** 0.41*** 0.28** -0.36*** 0.56*** -0.24*** 

SPSM 0.69 -0.59 -0.63 
 

0.02 -0.11 -0.45*** -0.45*** -0.56*** -0.08 -0.56*** 0.07 -0.58*** -0.52*** 0.13 -0.30*** -0.19* 

TGW 0.36 -0.37 0.38 -0.01 
 

0.36*** -0.11 0.02 -0.05 -0.12 0.08 0.21* -0.35*** -0.24*** -0.34*** -0.24** -0.29** 

PHT 0.08 0.08 0.31 -0.17 0.33 
 

0.24** -0.21* 0.04 0.37*** 0.12 0.18* -0.01 0.07 -0.07 0.07 0.01 

FLL -0.36 0.47 0.40 -0.57 -0.10 0.27 
 

0.31*** 0.82*** 0.66*** 0.42** 0.19* 0.45*** 0.50*** 0.02 0.22* 0.36*** 

FLW -0.59 0.17 0.20 -0.59 0.08 -0.23 0.30 
 

0.79*** -0.51*** 0.30*** 0.18* 0.39*** 0.45*** 0.09 -0.09 0.54*** 

FLA -0.57 0.40 0.38 -0.72 -0.01 0.05 0.82 0.80 
 

0.12 0.45*** 0.23* 0.52** 0.59** 0.06 0.09 0.55*** 

FLS 0.12 0.28 0.20 -0.07 -0.15 0.41 0.65 -0.52 0.10 
 

0.16 0.01 0.11 0.10 -0.06 0.27** -0.11 

SL -0.30 0.47 0.56 -0.62 0.12 0.13 0.45 0.31 0.48 0.17 
 

-0.03 0.65*** 0.60*** -0.58*** 0.10 0.08 

SSN -0.26 -0.38 -0.27 -0.02 0.23 0.20 0.21 0.17 0.23 0.04 -0.02 
 

-0.09 0.34*** 0.38*** -0.47*** 0.51*** 

FSN -0.42 0.69 0.42 -0.61 -0.31 -0.03 0.47 0.44 0.57 0.09 0.64 -0.12 
 

0.90*** 0.15 0.09 0.35*** 

TSN -0.51 0.49 0.28 -0.59 -0.20 0.06 0.54 0.49 0.64 0.10 0.61 0.32 0.90 
 

0.30*** -0.11 0.55*** 

SC -0.13 -0.08 -0.39 0.16 -0.34 -0.09 -0.01 0.10 0.05 -0.09 -0.62 0.33 0.10 0.24 
 

-0.22* 0.46*** 

GSP 0.15 0.78 0.55 -0.29 -0.26 0.11 0.22 -0.15 0.06 0.31 0.07 -0.47 0.09 -0.12 -0.20 
 

-0.28** 

HD -0.58 0.02 -0.25 -0.27 -0.29 -0.01 0.41 0.61 0.63 -0.12 0.12 0.47 0.39 0.58 0.41 -0.31 
 

 
* Significant at 0.05 probability level 
** Significant at 0.01 probability level 
*** Significant at 0.001 probability level 
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Table 5.2 Multiple linear regression of the MD01W233-06-1 × SS8641 doubled haploid population. Grain yield (GYLD) as dependent variable and grains per 
spike (GPS), grain weight per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW), plant height (PHT), flag leaf length (FLL), 
flag leaf width (FLW), flag leaf area (FLA), flag leaf shape (FLS), spike length (SL), sterile spikelet number per spike (SSN), fertile spikelet number per spike 
(FSN), spike compactness (SC), grain number per spikelet (GSP), and heading date (HD) as independent variables. Total spikelet number per spike (TSN) was 
not included in the analysis because of its multicollinearity with SSN and FSN. Estimates of regression coefficients and the associated p values are shown.  

 
† PHT, FLL, FLW, FLA, FLS were not evaluated in Kinston 2014. 
 
 
 

 
Clarksville 2013 Clarksville 2014 Queenstown 2013 Queenstown 2014 Kinston 2014† Overall 

Variable Estimate P value Estimate P value Estimate P value Estimate P value Estimate P value Estimate P value 

Intercept -1233.71 0.0213 -520.30 0.2398 221.20 0.5448 -994.20 <.0001 -232.08 0.3173 -188.71 0.6140 

GPS -13.60 0.0472 -10.51 0.0213 1.28 0.5790 -13.96 <.0001 -2.15 0.5470 -9.94 0.0340 

GWPS 412.69 <.0001 767.35 <.0001 484.42 <.0001 483.40 <.0001 446.89 <.0001 517.05 <.0001 

SPSM 1.19 <.0001 0.93 <.0001 1.29 <.0001 1.05 <.0001 1.10 <.0001 1.08 <.0001 

TGW 0.97 0.5116 1.20 0.3731 -0.56 0.6868 2.01 0.0092 0.64 0.4663 1.49 0.3043 

PHT 0.83 0.0184 0.05 0.8966 0.05 0.8722 0.46 0.0145 -- -- -83.71 0.0132 

FLL 23.39 0.2645 8.59 0.6147 5.08 0.7402 20.00 0.0318 -- -- 32.65 0.0294 

FLW 156.64 0.2374 117.05 0.3538 -68.27 0.6104 130.07 0.0648 -- -- 58.11 0.0051 

FLA -16.81 0.2006 -8.48 0.3928 0.74 0.9313 -13.88 0.0077 -- -- -234.26 0.0212 

FLS -2.62 0.8495 1.55 0.9075 -10.10 0.4558 -4.00 0.6037 -- -- -0.16 0.5415 

SL -45.07 0.2789 -100.51 0.0319 -87.00 0.0218 -52.81 0.0168 -50.26 0.0380 12.11 0.3927 

SSN 16.84 0.3571 39.68 0.0487 25.74 0.1169 17.15 0.1000 16.35 0.1014 -116.24 0.3442 

FSN 55.92 0.0164 66.72 0.0030 33.69 0.0585 62.31 <.0001 24.84 0.0949 -0.33 0.9676 

SC -149.28 0.2291 -290.59 0.0411 -240.23 0.0370 -158.32 0.0166 -141.71 0.0524 -14.75 0.2511 

GSP 208.35 0.0403 151.10 0.0367 -24.48 0.4378 202.47 <.0001 27.72 0.6457 144.65 0.0406 

HD 1.25 0.3804 -0.32 0.8399 -0.59 0.4884 -0.10 0.8936 0.25 0.5540 -0.22 0.8005 

R sq 0.9669 0.9620 0.9838 0.9848 0.9827 0.9722 

R sq (adj) 0.9623 0.9568 0.9815 0.9827 0.9812 0.9683 
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Table 5.3 Stepwise multiple linear regression of the MD01W233-06-1 × SS8641 doubled haploid population. Grain yield (GYLD) as dependent variable and 
grains per spike (GPS), grain weight per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW), plant height (PHT), flag leaf length 
(FLL), flag leaf width (FLW), flag leaf area (FLA), flag leaf shape (FLS), spike length (SL), sterile spikelet number per spike (SSN), fertile spikelet number per 
spike (FSN), spikelet compactness (SC), grain number per spikelet (GSP), and heading date (HD) as independent variables. Total spikelet number per spike 
(TSN) was not included in the analysis because of its multicollinearity with SSN and FSN. Variables kept in the final model, their regression coefficients, and the 
associated p values are shown.  
 

 
Clarksville 2013 Clarksville 2014 Queenstown 2013 Queenstown 2014 Kinston 2014† Overall 

Variable Estimate P value Estimate P value Estimate P value Estimate P value Estimate P value Estimate P value 

Intercept -613.72 <.0001 -732.93 <.0001 -662.59 <.0001 -599.60 <.0001 -497.80 <.0001 -518.98 <.0001 

GPS 
            

GWPS 436.68 <.0001 769.62 <.0001 475.04 <.0001 493.77 <.0001 430.65 <.0001 520.18 <.0001 

SPSM 1.19 <.0001 0.93 <.0001 1.30 <.0001 1.08 <.0001 1.10 <.0002 1.10 <.0001 

TGW 
      

1.18 0.0171 0.85 0.0436 
  

PHT 0.95 0.0031 
    

0.49 0.0131 
    

FLL 
            

FLW 
            

FLA 
            

FLS 
            

SL 
            

SSN 
    

-9.71 0.0083 -7.82 0.0029 
    

FSN 
          

-4.62 0.0019 

SC 
    

25.42 0.0447 
      

GSP 
            

HD 
            

R sq 0.9607 0.9545 0.9825 0.9783 0.9816 0.9676 

R sq (adj) 0.9598 0.9537 0.9819 0.9774 0.9812 0.9668 

 
† PHT, FLL, FLW, FLA, FLS were not evaluated in Kinston 2014. 
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Table 5.4 Principal component analysis of the MD01W233-06-1 × SS8641 doubled haploid population based on sixteen agronomic traits including grain 
yield (GYLD), grains per spike (GPS), grain weight per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW), plant height (PHT), 
flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), flag leaf shape (FLS), spike length (SL), sterile spikelet number per spike (SSN), fertile 
spikelet number per spike (FSN), total spikelet number per spike (TSN), spikelet compactness (SC), and grain number per spikelet (GSP). Eigen values for each 
extracted principle component (PC), percentage (Per.) explained by each PC and cumulative percentage (Cum. Per.) are shown. 
 

  Clarksville 2013 Clarksville 2014 Queenstown 2013 Queenstown 2014 Kinston 2014† Overall 

 
Eigen 
value 

Per. 
Cum.  
Per. 

Eigen 
value 

Per. 
Cum.  
Per. 

Eigen 
value 

Per. 
Cum.  
Per. 

Eigen 
value 

Per. 
Cum.  
Per. 

Eigen 
value 

Per. 
Cum. 
 Per. 

Eigen 
value 

Per. 
Cum. 
 Per. 

PC1 5.21 30.62 30.62 4.61 27.13 27.13 5.52 32.49 32.49 5.22 30.68 30.68 4.14 34.53 34.53 5.62 33.07 33.07 

PC2 3.44 20.22 50.84 3.08 18.13 45.26 3.74 21.98 54.46 3.18 18.71 49.40 2.85 23.71 58.24 3.35 19.71 52.78 

PC3 2.06 12.13 62.97 2.30 13.55 58.80 1.83 10.74 65.20 2.19 12.88 62.28 1.87 15.57 73.80 2.02 11.87 64.65 

PC4 1.70 9.99 72.96 1.98 11.64 70.44 1.55 9.12 74.32 1.73 10.19 72.46 1.36 11.30 85.11 1.85 10.91 75.56 

PC5 1.30 7.67 80.62 1.41 8.29 78.73 1.20 7.08 81.40 1.23 7.24 79.70 0.84 7.03 92.14 1.08 6.34 81.89 

PC6 0.99 5.81 86.43 1.06 6.24 84.97 1.02 6.02 87.42 1.15 6.77 86.47 0.54 4.53 96.67 0.98 5.77 87.67 

PC7 0.88 5.16 91.60 0.95 5.59 90.56 0.92 5.41 92.83 0.87 5.13 91.61 0.32 2.68 99.35 0.86 5.06 92.72 

PC8 0.52 3.07 94.67 0.78 4.57 95.12 0.48 2.83 95.67 0.62 3.67 95.27 0.07 0.56 99.90 0.52 3.05 95.77 

PC9 0.44 2.61 97.27 0.41 2.40 97.52 0.35 2.06 97.73 0.42 2.50 97.77 0.01 0.06 99.96 0.44 2.56 98.33 

PC10 0.34 1.98 99.26 0.27 1.57 99.09 0.28 1.62 99.35 0.28 1.63 99.40 0.00 0.03 99.99 0.21 1.21 99.54 

PC11 0.10 0.59 99.84 0.13 0.75 99.84 0.08 0.49 99.83 0.08 0.50 99.90 0.00 0.01 100.00 0.06 0.35 99.89 

PC12 0.01 0.08 99.92 0.01 0.07 99.91 0.01 0.07 99.91 0.01 0.04 99.94 0.00 0.00 100.00 0.01 0.06 99.94 

PC13 0.01 0.05 99.97 0.01 0.04 99.94 0.01 0.04 99.95 0.01 0.03 99.97 
   

0.00 0.02 99.96 

PC14 0.00 0.02 99.98 0.01 0.03 99.98 0.01 0.03 99.98 0.00 0.01 99.98 
   

0.00 0.02 99.98 

PC15 0.00 0.01 99.99 0.00 0.01 99.99 0.00 0.02 99.99 0.00 0.01 99.99 
   

0.00 0.01 99.99 

PC16 0.00 0.01 100.00 0.00 0.01 100.00 0.00 0.01 100.00 0.00 0.01 100.00 
   

0.00 0.01 100.00 

PC17 0.00 0.00 100.00 
   

0.00 0.00 100.00 0.00 0.00 100.00 
   

0.00 0.00 100.00 

 

† PHT, FLL, FLW, FLA, FLS were not evaluated in Kinston 2014. 
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Table 5.5 Principle component analysis of the MD01W233-06-1 × SS8641 doubled haploid population based on sixteen agronomic traits including grain yield 
(GYLD), grains per spike (GPS), grain weight per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW), plant height (PHT), flag 
leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), flag leaf shape (FLS), spike length (SL), sterile spikelet number per spike (SSN), fertile spikelet 
number per spike (FSN), total spikelet number per spike (TSN), spike compactness (SC), grain number per spikelet (GSP), and heading date (HD). Eigenvectors 
of the first two principle components (PC) are shown. 
 

 
Clarksville 2013 Clarksville 2014 Queenstown 2013 Queenstown 2014 Kinston 2014† Overall 

 
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

GYLD -0.197 -0.293 -0.086 -0.042 -0.241 -0.196 -0.045 -0.303 -0.187 -0.152 -0.230 0.227 

GPS 0.374 -0.118 0.349 -0.262 0.298 -0.302 0.343 -0.227 0.439 -0.149 0.311 0.255 

GWPS 0.315 -0.254 0.302 -0.250 0.215 -0.375 0.302 -0.321 0.250 -0.314 0.230 0.367 

SPSM -0.355 -0.081 -0.312 0.174 -0.332 0.039 -0.286 0.013 -0.356 0.075 -0.338 -0.080 

TGW -0.046 -0.264 0.046 0.095 -0.135 -0.109 -0.079 -0.098 -0.215 -0.172 -0.094 0.114 

PHT 0.086 -0.165 -0.013 0.010 -0.003 0.029 0.149 -0.070 -- -- 0.043 0.138 

FLL 0.277 -0.025 0.277 0.148 0.307 0.099 0.317 0.119 -- -- 0.311 0.029 

FLW 0.156 0.177 0.262 0.207 0.246 0.172 0.189 0.378 -- -- 0.247 -0.233 

FLA 0.281 0.075 0.339 0.220 0.335 0.162 0.309 0.293 -- -- 0.347 -0.119 

FLS 0.166 -0.140 0.046 -0.028 0.098 -0.045 0.132 -0.217 -- -- 0.089 0.212 

SL 0.341 -0.060 0.354 -0.012 0.299 -0.183 0.344 -0.063 0.321 -0.163 0.295 0.163 

SSN -0.144 0.291 -0.051 0.449 -0.011 0.413 -0.019 0.273 -0.046 0.423 0.031 -0.346 

FSN 0.334 0.191 0.361 0.087 0.363 -0.046 0.375 0.001 0.450 0.101 0.356 -0.016 

TSN 0.279 0.322 0.314 0.283 0.336 0.161 0.359 0.125 0.397 0.279 0.349 -0.164 

SC -0.104 0.394 -0.114 0.301 -0.002 0.365 -0.078 0.234 0.070 0.462 0.005 -0.351 

GSP 0.192 -0.322 0.158 -0.445 0.137 -0.402 0.154 -0.327 0.218 -0.335 0.112 0.379 

HD 0.076 0.433 0.152 0.369 0.221 0.347 0.108 0.439 0.137 0.449 0.196 -0.396 

 
† PHT, FLL, FLW, FLA, FLS were not evaluated in Kinston 2014. 
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Clarksville 2013                                                                  Clarksville 2014                                                                        Queenstown 2013 

 
                                        Queenstown 2014                                                                       Kinston 2014                                                                           Overall  
Figure 5.1 Principal component analysis: biplot summarizing the relationship among grain yield components, plant architecture, and spike morphology for the 
MD01W233-06-1 × SS8641doubled haploid population evaluated in five trials from 2013 to 2014. Traits are grain yield (GYLD), grains per spike (GPS), grain 
weight per spike (GWPS), spikes per square meter (SPSM), and thousand-grain-weight (TGW), plant height (PHT), flag leaf length (FLL), flag leaf width 
(FLW), flag leaf area (FLA), flag leaf shape (FLS), spike length (SL), sterile spikelet number per spike (SSN), fertile spikelet number per spike (FSN), total 
spikelet number per spike (TSN), spikelet compactness (SC), and grain number per spikelet (GSP). PHT, FLL, FLW, FLA, FLS were not evaluated at Kinston 
2014.
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Figure 5.21 Dendrogram of cluster analysis and scatter diagram of the doubled-haploid lines for the 
first two principal components at Clarksville 2013 (E1). 

 
 
 
 
 
 
 
 
 
 
 

 

C
o

m
p

o
n

e
n

t 
2
  
(2

0
.2

 %
)



 

 
 

144 
 

 
 
 

 
 
 
 
 

Figure 5.22 Dendrogram of cluster analysis and scatter diagram of the doubled-haploid lines for the 
first two principal components at Clarksville 2014 (E2).  
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Figure 5.23 Dendrogram of cluster analysis and scatter diagram of the doubled-haploid lines for the 
first two principal components at Queenstown 2013 (E3). 
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Figure 5.24 Dendrogram of cluster analysis and scatter diagram of the doubled-haploid lines for the 
first two principal components at Queenstown 2014 (E4). 
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Figure 5.25 Dendrogram of cluster analysis and scatter diagram of the doubled-haploid lines for the 
first two principal components at Kinston 2014 (E5). 
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Figure 5.26 Dendrogram of cluster analysis and scatter diagram of the doubled-haploid lines for the 
first two principal components based on the average of E1, E2, E3, and E4. 
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Table 5.6 Mean and standard error for five clusters based on seventeen yield related traits evaluated at 
Clarksville 2013 (E1), Clarksville 2014 (E2), Queenstown 2013 (E3), Queenstown 2014 (E4), Kinston 
2014 (E5), and average of five environments. 
 
Environments Traits Cluster  1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

E1 GYLD 639.64 ± 6.40 561.74 ± 4.83 493.13 ± 6.07 484.99 ± 7.49 578.20 ± 8.01 

 GPS 38.15 ± 0.26 35.19 ± 0.20 40.82 ± 0.26 45.10 ± 0.24 43.81 ± 0.30 

 GWPS 1.19 ± 0.01 1.08 ± 0.01 1.16 ± 0.01 1.38 ± 0.01 1.37 ± 0.01 

 SPSM 540.92 ± 6.65 527.62 ± 5.15 428.18 ± 5.67 359.14 ± 6.16 426.97 ± 5.01 

 TGW 32.34 ± 0.18 31.29 ± 0.16 29.19 ± 0.14 31.31 ± 0.14 32.36 ± 0.18 

 PHT 87.82 ± 0.41 83.68 ± 0.54 85.28 ± 0.37 87.12 ± 0.45 89.57 ± 0.57 

 FLL 13.52 ± 0.09 12.45 ± 0.09 14.51 ± 0.13 14.54 ± 0.10 13.59 ± 0.13 

 FLW 1.44 ± 0.01 1.46 ± 0.01 1.53 ± 0.01 1.54 ± 0.01 1.44 ± 0.01 

 FLA 15.47 ± 0.17 14.46 ± 0.14 17.55 ± 0.18 17.77 ± 0.13 15.53 ± 0.19 

 FLS 9.48 ± 0.06 8.61 ± 0.08 9.61 ± 0.12 9.56 ± 0.08 9.54 ± 0.10 

 SL 6.66 ± 0.03 6.67 ± 0.04 7.02 ± 0.03 7.64 ± 0.04 7.41 ± 0.04 

 SSN 1.81 ± 0.04 2.18 ± 0.04 1.99 ± 0.03 1.70 ± 0.04 1.40 ± 0.03 

 FSN 13.38 ± 0.05 13.96 ± 0.07 14.80 ± 0.08 15.84 ± 0.07 14.90 ± 0.04 

 TSN 15.19 ± 0.05 16.14 ± 0.07 16.80 ± 0.08 17.54 ± 0.07 16.30 ± 0.05 

 SC 2.29 ± 0.01 2.43 ± 0.01 2.40 ± 0.01 2.31 ± 0.01 2.21 ± 0.01 

 GSP 2.85 ± 0.02 2.52 ± 0.01 2.76 ± 0.01 2.85 ± 0.01 2.94 ± 0.02 

 HD 132.22 ± 0.13 133.90 ± 0.11 135.11 ± 0.11 134.47 ± 0.06 131.57 ± 0.11 

E2 GYLD 789.07 ± 7.10 888.68 ± 5.20 770.68 ± 6.44 756.12 ± 5.43 797.80 ± 9.01 

 GPS 32.94 ± 0.18 33.31 ± 0.15 38.17 ± 0.21 38.13 ± 0.22 35.97 ± 0.33 

 GWPS 0.91 ± 0.01 1.06 ± 0.01 1.08 ± 0.01 1.05 ± 0.01 0.97 ± 0.01 

 SPSM 882.49 ± 8.33 852.99 ± 6.89 722.89 ± 6.07 729.60 ± 6.08 844.23 ± 9.17 

 TGW 28.79 ± 0.18 33.14 ± 0.07 29.03 ± 0.16 30.59 ± 0.19 28.30 ± 0.23 

 PHT 87.62 ± 0.45 95.30 ± 0.49 88.50 ± 0.60 89.37 ± 0.42 88.67 ± 0.29 

 FLL 14.58 ± 0.09 15.38 ± 0.06 15.28 ± 0.12 16.10 ± 0.07 17.21 ± 0.08 

 FLW 1.40 ± 0.01 1.42 ± 0.01 1.40 ± 0.01 1.59 ± 0.01 1.39 ± 0.01 

 FLA 16.21 ± 0.14 17.35 ± 0.11 17.06 ± 0.21 20.33 ± 0.17 18.97 ± 0.18 

 FLS 10.44 ± 0.07 10.89 ± 0.07 10.94 ± 0.09 10.18 ± 0.06 12.47 ± 0.08 

 SL 6.95 ± 0.03 7.33 ± 0.04 7.33 ± 0.05 7.56 ± 0.03 7.52 ± 0.05 

 SSN 2.23 ± 0.03 2.40 ± 0.03 1.84 ± 0.03 2.48 ± 0.04 2.42 ± 0.03 

 FSN 14.68 ± 0.06 14.35 ± 0.08 15.36 ± 0.06 16.14 ± 0.05 15.97 ± 0.08 

 TSN 16.91 ± 0.06 16.75 ± 0.07 17.20 ± 0.06 18.62 ± 0.06 18.39 ± 0.07 

 SC 2.44 ± 0.01 2.29 ± 0.01 2.36 ± 0.01 2.47 ± 0.01 2.46 ± 0.01 

 GSP 2.09 ± 0.01 2.14 ± 0.01 2.34 ± 0.01 2.19 ± 0.01 2.08 ± 0.02 

 HD 141.42 ± 0.11 141.50 ± 0.07 140.92 ± 0.12 143.59 ± 0.13 142.00 ± 0.10 
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Table 5.6 Continued 
 
Environments Traits Cluster  1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

E3 GYLD 804.35 ± 5.83 672.72 ± 8.33 612.83 ± 8.42 659.55 ± 8.19 825.29 ± 9.62 

 GPS 49.36 ± 0.27 41.67 ± 0.24 43.34 ± 0.39 47.65 ± 0.30 39.51 ± 0.27 

 GWPS 1.61 ± 0.01 1.33 ± 0.01 1.39 ± 0.02 1.51 ± 0.01 1.33 ± 0.01 

 SPSM 506.02 ± 4.75 507.85 ± 5.63 446.12 ± 6.34 438.93 ± 4.67 629.89 ± 9.94 

 TGW 32.2 ± 0.17 31.32 ± 0.15 31.92 ± 0.20 31.66 ± 0.16 33.22 ± 0.19 

 PHT 96.11 ± 0.50 94.86 ± 0.47 104.28 ± 0.41 98.66 ± 0.53 100.31 ± 0.43 

 FLL 16.87 ± 0.11 17.11 ± 0.09 19.57 ± 0.12 18.96 ± 0.09 16.22 ± 0.10 

 FLW 1.64 ± 0.01 1.71 ± 0.01 1.59 ± 0.01 1.87 ± 0.01 1.62 ± 0.01 

 FLA 21.89 ± 0.20 23.21 ± 0.18 24.73 ± 0.26 28.08 ± 0.21 20.78 ± 0.18 

 FLS 10.37 ± 0.07 10.06 ± 0.06 12.41 ± 0.07 10.22 ± 0.08 10.09 ± 0.07 

 SL 7.48 ± 0.04 7.20 ± 0.03 7.35 ± 0.04 7.69 ± 0.03 6.70 ± 0.03 

 SSN 1.11 ± 0.04 1.92 ± 0.04 1.62 ± 0.05 1.84 ± 0.05 1.75 ± 0.04 

 FSN 15.26 ± 0.05 14.88 ± 0.05 14.99 ± 0.06 16.26 ± 0.05 13.96 ± 0.07 

 TSN 16.38 ± 0.06 16.80 ± 0.06 16.61 ± 0.04 18.09 ± 0.07 15.71 ± 0.08 

 SC 2.20 ± 0.01 2.34 ± 0.01 2.27 ± 0.01 2.36 ± 0.01 2.36 ± 0.01 

 GSP 3.13 ± 0.01 2.66 ± 0.01 2.76 ± 0.02 2.79 ± 0.02 2.66 ± 0.02 

 HD 124.84 ± 0.21 128.91 ± 0.18 129.41 ± 0.17 130.5 ± 0.21 125.96 ± 0.22 

E4 GYLD 657.02 ± 3.15 601.17 ± 3.10 595.94 ± 6.01 553.28 ± 2.13 655.64 ± 4.44 

 GPS 39.42 ± 0.20 34.50 ± 0.21 39.97 ± 0.24 42.94 ± 0.28 44.83 ± 0.36 

 GWPS 1.12 ± 0.01 1.00 ± 0.01 1.11 ± 0.01 1.20 ± 0.01 1.32 ± 0.01 

 SPSM 591.24 ± 5.10 603.86 ± 2.58 539.76 ± 4.95 465.42 ± 3.43 500.91 ± 4.10 

 TGW 28.97 ± 0.16 30.14 ± 0.20 28.57 ± 0.15 29.02 ± 0.21 30.16 ± 0.17 

 PHT 76.85 ± 0.34 73.53 ± 0.36 75.55 ± 0.52 78.16 ± 0.34 79.49 ± 0.49 

 FLL 13.99 ± 0.08 13.93 ± 0.08 15.25 ± 0.10 16.66 ± 0.09 15.59 ± 0.08 

 FLW 1.32 ± 0.00 1.41 ± 0.01 1.44 ± 0.01 1.61 ± 0.01 1.36 ± 0.01 

 FLA 14.60 ± 0.09 15.65 ± 0.17 17.47 ± 0.15 21.39 ± 0.22 16.86 ± 0.13 

 FLS 10.67 ± 0.07 9.92 ± 0.06 10.64 ± 0.09 10.35 ± 0.05 11.55 ± 0.09 

 SL 6.47 ± 0.03 6.38 ± 0.03 6.84 ± 0.04 7.19 ± 0.03 7.47 ± 0.04 

 SSN 1.02 ± 0.03 1.51 ± 0.04 1.14 ± 0.03 1.51 ± 0.04 1.13 ± 0.03 

 FSN 13.58 ± 0.05 13.09 ± 0.05 14.15 ± 0.05 15.21 ± 0.05 15.07 ± 0.07 

 TSN 14.61 ± 0.06 14.60 ± 0.06 15.29 ± 0.06 16.72 ± 0.04 16.20 ± 0.06 

 SC 2.26 ± 0.01 2.30 ± 0.01 2.25 ± 0.01 2.33 ± 0.01 2.18 ± 0.01 

 GSP 2.90 ± 0.01 2.62 ± 0.01 2.81 ± 0.02 2.81 ± 0.01 2.96 ± 0.02 

 HD 138.46 ± 0.10 140.07 ± 0.13 140.30 ± 0.12 142.25 ± 0.09 138.54 ± 0.12 
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Table 5.6 Continued 
 
Environment Traits Cluster  1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
E5 GYLD 591.65 ± 5.44 585.89 ± 5.01 545.90 ± 4.71 400.65 ± 6.28 544.87 ± 5.99 

 GPS 40.11 ± 0.22 37.55 ± 0.15 45.84 ± 0.35 40.47 ± 0.20 48.73 ± 0.19 

 GWPS 1.17 ± 0.01 1.10 ± 0.01 1.20 ± 0.01 1.03 ± 0.01 1.35 ± 0.01 

 SPSM 508.88 ± 5.51 534.13 ± 3.68 458.08 ± 4.65 388.77 ± 5.29 404.32 ± 3.96 

 TGW 28.91 ± 0.23 29.26 ± 0.20 25.74 ± 0.14 24.52 ± 0.26 27.27 ± 0.21 

 SL 7.46 ± 0.04 7.07 ± 0.03 7.76 ± 0.04 7.42 ± 0.03 8.05 ± 0.05 

 SSN 2.21 ± 0.04 2.96 ± 0.04 2.74 ± 0.04 2.30 ± 0.04 1.82 ± 0.03 

 FSN 15.40 ± 0.08 15.09 ± 0.05 17.25 ± 0.08 16.15 ± 0.05 16.70 ± 0.08 

 TSN 17.61 ± 0.09 18.05 ± 0.05 19.99 ± 0.08 18.45 ± 0.05 18.52 ± 0.09 

 SC 2.37 ± 0.01 2.56 ± 0.01 2.59 ± 0.01 2.50 ± 0.01 2.31 ± 0.01 

 GSP 2.60 ± 0.01 2.48 ± 0.01 2.65 ± 0.01 2.51 ± 0.02 2.92 ± 0.01 

 HD 113.25 ± 0.23 116.81 ± 0.12 119.03 ± 0.22 114.95 ± 0.17 112.26 ± 0.32 

All five trials GYLD 692.85 ± 5.00 654.56 ± 4.01 677.91 ± 3.08 589.85 ± 5.71 627.68 ± 5.26 

 GPS 38.68 ± 0.18 37.06 ± 0.19 44.33 ± 0.23 42.53 ± 0.27 40.68 ± 0.30 

 GWPS 1.15 ± 0.00 1.1 ± 0.01 1.34 ± 0.01 1.22 ± 0.01 1.18 ± 0.01 

 SPSM 617.91 ± 5.00 612.58 ± 4.18 519.57 ± 3.94 497.52 ± 4.10 547.24 ± 3.53 

 TGW 30.1 ± 0.18 29.9 ± 0.15 30.56 ± 0.19 29.43 ± 0.14 29.56 ± 0.23 

 PHT 88.28 ± 0.30 84.37 ± 0.43 89.45 ± 0.46 85.89 ± 0.48 91.36 ± 0.31 

 FLL 14.65 ± 0.08 14.66 ± 0.07 15.73 ± 0.07 15.8 ± 0.11 16.39 ± 0.10 

 FLW 1.44 ± 0.01 1.49 ± 0.01 1.47 ± 0.01 1.64 ± 0.01 1.46 ± 0.01 

 FLA 16.86 ± 0.14 17.43 ± 0.11 18.44 ± 0.12 20.72 ± 0.22 19.12 ± 0.17 

 FLS 10.22 ± 0.06 9.89 ± 0.06 10.77 ± 0.06 9.7 ± 0.06 11.31 ± 0.08 

 SL 6.67 ± 0.03 7.03 ± 0.03 7.52 ± 0.03 7.44 ± 0.03 7.36 ± 0.04 

 SSN 1.73 ± 0.03 2.04 ± 0.03 1.51 ± 0.02 1.93 ± 0.04 2.11 ± 0.03 

 FSN 14.09 ± 0.04 14.52 ± 0.05 15.31 ± 0.06 15.8 ± 0.06 15.41 ± 0.07 

 TSN 15.82 ± 0.05 16.56 ± 0.05 16.81 ± 0.05 17.73 ± 0.07 17.51 ± 0.06 

 SC 2.38 ± 0.01 2.36 ± 0.01 2.24 ± 0.01 2.39 ± 0.01 2.39 ± 0.01 

 GSP 2.69 ± 0.01 2.49 ± 0.01 2.84 ± 0.01 2.63 ± 0.01 2.57 ± 0.01 

 HD 130.29 ± 0.14 131.92 ± 0.16 129.42 ± 0.12 133.44 ± 0.16 132.94 ± 0.12 
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a) Phenotype network at 2013 
Clarksville, MD (E1).   
 
Model fit indices: 
SRMR=0.04 
RMSEA=0.06 
NNFI=0.97 
CFI=0.98 

b) Phenotype network at 2014 
Clarksville, MD (E2).   
 
Model fit indices: 
SRMR=0.03 
RMSEA=0.05 
NNFI=0.98 
CFI=0.99 
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c) Phenotype network at  2013 
Queenstwon, MD (E3).   
 
Model fit indices: 
SRMR=0.03 
RMSEA=0.06 
NNFI=0.97 
CFI=0.98 

d) Phenotype network at  2014 
Queenstwon, MD (E4).   
 
Model fit indices: 
SRMR=0.03 
RMSEA=0.07 
NNFI=0.96 
CFI=0.98 
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Figure 5.3 Graphical representaion of the structural equation modeling for the phenotypic network 
based on data from a) Clarksville 2013, b) Clarksville 2014, c) Queenstown 2013, d) Queenstown 
2014, f) Kinston 2014, and g) First four environments averaged. Red arrows indicate negative 
contribution. Green arrows indicate error covariance.  

e) Phenotype network at  2014 
Kinston, NC (E4).   
 
Model fit indices: 
SRMR=0.08 
RMSEA=0.06 
NNFI=0.98 
CFI=0.99 
 
Plant architecture traits were not 
evaluated in E4. 

f) Phenotype network based on E1, 
E2, E3, and E4. 
 
Model fit indices: 
SRMR=0.04 
RMSEA=0.07 
NNFI=0.96 
CFI=0.98 



 

 
 

155 
 

Appendix A.  

 

Table A.1 Source of simple sequence repeats (SSRs) on the linkage map constructed in this study 
 

SSR Marker Source Reference 

Xbarc100 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc101 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc10 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc127 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc12 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc147 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc163 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc164 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc170 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc28 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc45 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc59 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xbarc80 USDA-ARS Beltsville Agricultural Research Center (Song et al., 2005) Theor Appl Genet  110: 550–560 

Xgdm136 Gatersleben D-genome Microsatellite (Pestsova et al.,2000) Genome 43: 689–697 

Xgwm111 Gatersleben wheat microsatellite (Roder et al., 1998) Genetics 149: 2007–2024 

Xgwm11 Gatersleben wheat microsatellite (Roder et al., 1998) Genetics 149: 2007–2025 

Xgwm261 Gatersleben wheat microsatellite (Roder et al., 1998) Genetics 149: 2007–2026 

Xgwm282 Gatersleben wheat microsatellite (Roder et al., 1998) Genetics 149: 2007–2027 

Xgwm304 Gatersleben wheat microsatellite (Roder et al., 1998) Genetics 149: 2007–2028 

Xgwm319 Gatersleben wheat microsatellite (Roder et al., 1998) Genetics 149: 2007–2029 

Xwmc273 Wheat Microsatellite Consortium Somers and Isaac, 2004. SSRs from the  
Wheat Microsatellite Consortium 
http://wheat.pw.usda.gov/ggpages/SSR/WMC/ Xwmc496 Wheat Microsatellite Consortium 
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Appendix B. 
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Appendix C. 

 
Table C.1 Summary of major and possible new QTLs identified in the present study. QTLs detected in 
multiple environments were indicated by asterisk. 

 
 

QTL Trait Marker interval LOD PVE 
Additive 

effect 
  

QFlw.cz-2A.2 FLW Xsnp2471-Xsnp2461 13.3 31.2% 0.13 Major 
 

QFsn.cz-1A FSN Xsnp1970-Xbarc28 20.6 30.0% 0.65 Major * 
QGps.cz-1A.1 GPS Xsnp1970-Xbarc28 14.2 26.5% 2.44 Major 

QGps.cz-1A.2 GPS Xbarc28-Xsnp2005 21.2 44.1% 2.95 Major * 
QGps.cz-3A.2 GPS Xsnp3049-Xsnp3021 24.1 52.0% -3.20 Major 

QGws.cz-1A.1 GWPS Xwmc496-Xsnp1970 12.2 28.6% 0.08 Major 

QGws.cz-1A.2 GWPS Xsnp1970-Xbarc28 11.5 33.2% 0.06 Major * 
QPht.cz-5B.1 PHT Xsnp4068-Xsnp4012 9.3 20.1% 2.86 Major 

QSc.cz-5A.3 SC Xgwm304-Xsnp996 27.7 80.2% -0.15 Major * 
QSc.cz-2B.1 SC Xsnp2773-Xgwm319 9.3 21.6% 0.07 Major * 
QSc.cz-5A.1 SC Xsnp279-Xsnp3878 12.7 26.7% 0.09 Major 

QSl.cz-1A SL Xsnp1970-Xbarc28 9.3 22.4% 0.25 Major * 
QSsm.cz-1A.1 SPSM Xwmc496-Xsnp1970 13.9 30.1% -50.85 Major * 
QSsm.cz-1A.2 SPSM Xsnp1970-Xbarc28 15.6 22.1% -34.04 Major 

QSsm.cz-1A.3 SPSM Xbarc28-Xsnp2005 8.3 23.0% -51.60 Major * 
QSsn.cz-2D.1 SSN Xsnp2862-XPpdD1 16.3 30.0% -0.31 Major 

QTgw.cz-7A.5 TGW Xsnp4588-Xsnp4620 26.8 71.2% -1.77 Major 

QTsn.cz-1A TSN Xsnp1970-Xbarc28 13.2 20.0% 0.57 Major 

QTsn.cz-2D.3 TSN XPpdD1-Xsnp2869 6.5 20.9% -0.41 Major 

QFla.cz-1A.1 FLA Xsnp1970-Xbarc28 8.3 16.8% 1.36 New 

QFla.cz-1A.2 FLA Xbarc28-Xsnp2005 4.3 9.1% 0.70 New 

QFla.cz-1B FLA Xsnp4503-Xsnp2181 4.1 9.4% 0.71 New 

QFla.cz-2A.1 FLA Xsnp2471-Xsnp2461 13.1 28.7% 4.18 New 

QFla.cz-2A.2 FLA Xsnp2461-Xsnp2466 6.5 13.4% 1.23 New 

QFla.cz-2D.1 FLA Xsnp2862-XPpdD1 9.5 20.9% -1.53 New 

QFla.cz-2D.2 FLA XPpdD1-Xsnp2869 8.7 24.1% -1.10 New * 
QFla.cz-2D.3 FLA Xsnp2804-Xsnp1766 4.6 9.6% -0.72 New 

QFla.cz-3B FLA Xsnp3407-Xbarc147 3.8 6.8% 2.03 New 

QFla.cz-5B.1 FLA Xsnp4140-Xsnp4114 3.3 7.9% -0.63 New 

QFla.cz-5B.2 FLA Xsnp4083-Xsnp3988 3.2 11.4% -2.47 New 

QFla.cz-6A FLA Xsnp473-Xsnp4228 3.2 10.1% -0.76 New 

QFll.cz-1A.1 FLL Xsnp1970-Xbarc28 4.5 10.0% 0.76 New * 
QFll.cz-2D FLL XPpdD1-Xsnp2869 7.5 20.6% -0.58 New * 
QGws.cz-5B GWPS Xsnp4130-Xsnp3884 3.6 7.3% -0.04 New 

QGws.cz-7B GWPS Xsnp4927-Xsnp489 3.1 7.5% 0.03 New 

Qyld.cz-2A GYLD Xsnp2477-Xsnp2432 4.3 9.9% 25.21 New 

QYld.cz-5B.2 GYLD Xsnp4011-Xsnp4073 4.5 10.3% 25.67 New 

QPht.cz-2D.2 PHT Xsnp2795-Xsnp708 8.4 22.0% 2.79 New 

QSl.cz-5A.1 SL Xsnp3819-Xsnp3789 8.2 13.0% 0.20 New 

QSl.cz-5A.2 SL Xsnp3789-Xsnp3844 6.2 12.5% 0.18 New 

QSl.cz-5A.3 SL Xsnp3812-Xsnp3856 4.0 9.7% 0.16 New 

QSl.cz-5A.4 SL Xsnp3852-Xsnp3843 7.0 13.1% 0.19 New 

QSl.cz-5A.5 SL Xsnp3849-Xsnp3841 2.8 6.7% 0.13 New 

QTgw.cz-3A.6 TGW Xsnp2951-Xsnp2971 4.2 6.7% -0.57 New 
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Appendix D. 

 
Table D.1 Cluster membership of 124 doubled haploid lines based on data from: Clarksville 2013 (E1), 
Clarksville 2014 (E2), Queenstown 2013 (E3), Queenstown 2014 (E4), Kinston 2014 (E5), and 
average of five environments. 
No. Name E1 E2 E4 E4 E5 five average 
1 DH1 1 1 1 1 1 1 
2 DH3 2 3 2 3 2 1 
3 DH4 2 1 2 2 2 2 
4 DH5 3 3 2 3 1 2 
5 DH6 1 3 1 1 1 3 
6 DH7 2 4 2 2 3 2 
7 DH8 5 3 1 3 5 3 
8 DH9 3 4 4 4 3 4 
9 DH11 5 3 3 5 1 3 
10 DH12 4 3 2 3 4 4 
11 DH13 3 5 4 4 3 5 
12 DH14 2 5 2 5 2 5 
13 DH15 1 1 5 1 1 1 
14 DH16 1 1 5 3 1 1 
15 DH17 5 3 1 5 1 3 
16 DH18 4 4 4 4 3 4 
17 DH19 1 1 5 2 1 1 
18 DH20 3 4 4 4 3 4 
19 DH21 1 2 3 3 2 5 
20 DH22 4 4 4 5 3 4 
21 DH23 1 3 5 1 5 1 
22 DH24 1 1 5 3 1 1 
23 DH25 5 1 5 2 1 2 
24 DH26 2 1 2 3 4 2 
25 DH27 1 1 3 3 2 1 
26 DH28 1 1 1 1 2 1 
27 DH29 2 1 1 2 3 2 
28 DH30 1 5 4 3 4 5 
29 DH31 3 1 2 3 1 2 
30 DH32 3 1 2 2 3 2 
31 DH33 3 4 4 4 3 4 
32 DH34 5 3 4 5 5 3 
33 DH35 2 1 2 2 2 2 
34 DH36 4 5 4 3 3 4 
35 DH37 3 5 2 3 3 5 
36 DH38 5 1 1 3 4 3 
37 DH39 2 5 5 1 3 1 
38 DH40 5 3 3 3 4 5 
39 DH41 1 1 5 3 2 2 
40 DH42 3 5 5 3 3 5 
41 DH43 1 3 2 1 4 1 
42 DH44 5 2 3 3 5 5 
43 DH45 1 2 2 2 1 2 
44 DH46 4 5 4 3 3 4 
45 DH47 1 1 2 1 2 2 
46 DH49 5 4 4 3 5 4 
47 DH50 1 1 5 2 2 2 
48 DH51 3 5 4 3 3 5 
49 DH52 1 1 1 1 1 1 
50 DH53 2 1 2 3 2 2 
51 DH54 4 3 1 3 5 3 
52 DH55 2 3 5 1 2 1 
53 DH56 2 1 5 1 1 1 
54 DH57 2 1 5 3 4 1 
55 DH58 1 1 5 1 1 1 
56 DH59 1 3 5 1 1 1 
57 DH60 1 3 1 3 5 3 
58 DH61 2 1 2 2 1 2 
59 DH62 1 3 1 1 4 1 
60 DH63 5 3 1 5 5 3 
61 DH64 5 2 5 3 1 3 
62 DH65 5 5 1 5 5 3 



 

 
 

160 
 

Table D.1 Continued. 

 

 

No. Name E1 E2 E4 E4 E5 five average 
63 DH66 4 4 4 4 3 4 
64 DH67 2 1 2 2 1 2 
65 DH68 3 1 2 3 4 4 
66 DH69 1 3 5 3 5 1 
67 DH70 4 4 2 3 3 5 
68 DH71 4 3 4 3 3 4 
69 DH72 3 4 2 3 3 4 
70 DH73 3 4 2 3 3 4 
71 DH75 1 2 5 5 1 1 
72 DH76 1 1 5 2 2 2 
73 DH77 2 5 3 5 1 5 
74 DH78 5 3 1 5 5 3 
75 DH79 1 3 1 5 1 3 
76 DH80 4 3 3 5 1 3 
77 DH81 5 4 5 3 4 4 
78 DH82 5 1 1 1 1 1 
79 DH83 1 2 5 2 2 5 
80 DH84 1 2 5 1 1 1 
81 DH85 1 1 5 3 1 2 
82 DH86 5 1 5 1 1 1 
83 DH87 5 3 1 1 5 3 
84 DH89 2 1 5 2 2 2 
85 DH90 1 3 2 3 1 2 
86 DH91 1 3 5 1 1 1 
87 DH92 1 1 5 2 1 2 
88 DH93 5 5 1 5 5 3 
89 DH94 2 1 5 1 2 2 
90 DH95 1 2 5 2 1 1 
91 DH96 1 2 5 1 1 1 
92 DH97 5 1 5 3 1 3 
93 DH98 5 3 1 1 5 3 
94 DH99 3 3 4 3 3 4 
95 DH100 2 3 1 3 3 4 
96 DH101 5 3 1 1 5 3 
97 DH102 4 4 4 3 3 5 
98 DH103 3 3 2 2 3 4 
99 DH104 3 4 3 3 3 5 
100 DH105 3 3 5 3 2 1 
101 DH106 3 4 4 3 3 4 
102 DH107 1 1 5 1 1 1 
103 DH108 2 1 5 1 2 2 
104 DH109 3 1 2 3 3 2 
105 DH110 5 3 2 5 5 5 
106 DH111 4 3 2 3 5 3 
107 DH112 5 3 2 3 4 4 
108 DH113 1 3 5 2 1 1 
109 DH114 2 3 2 3 1 2 
110 DH115 2 1 2 3 2 2 
111 DH116 2 1 5 2 1 2 
112 DH117 2 1 5 3 1 2 
113 DH119 4 4 4 4 1 4 
114 DH120 2 5 5 2 2 2 
115 DH121 2 1 2 2 3 2 
116 DH122 4 1 3 3 3 5 
117 DH123 3 5 3 3 1 5 
118 DH124 1 5 2 3 3 2 
119 DH125 1 1 5 2 2 1 
120 DH126 4 3 4 3 3 4 
121 DH128 3 5 3 3 3 5 
122 DH129 1 3 1 1 1 3 
123 DH130 3 1 2 3 1 2 
124 DH131 3 4 4 4 3 4 
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Appendix E. 

Table E.1 Phenotypic data for yield contributing traits evaluated at Clarksville 2013 (E1), Clarksville 
2014 (E2), Queenstown 2013 (E3), Queenstown 2014 (E4), and Kinston 2014 (E5). Two replications 
at each environment. Missing data is indicated by dot.  
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
1 E1 1 DH1 658.7 34.7 1.0 646.4 29.6 86.5 10.9 1.2 10.2 9.3 6.2 1.5 13.3 14.8 2.4 2.6 131 
2 E1 1 DH3 696.5 35.3 1.1 636.7 32.7 91.2 15.5 1.6 19.7 9.6 6.1 2.0 12.8 14.8 2.4 2.8 134 
3 E1 1 DH4 494.4 31.9 1.0 477.2 33.5 78.2 12.9 1.6 16.0 8.3 6.5 2.2 14.3 16.5 2.6 2.2 136 
4 E1 1 DH5 499.8 35.1 1.0 483.8 30.3 74.5 15.6 1.6 20.3 9.6 6.9 2.1 13.5 15.6 2.3 2.6 136 
5 E1 1 DH6 697.4 40.4 1.3 543.6 32.7 90.0 13.7 1.4 15.2 9.7 6.8 1.3 14.2 15.5 2.3 2.8 129 
6 E1 1 DH7 564.1 32.5 1.0 560.1 29.9 81.2 13.4 1.5 16.1 8.9 6.3 2.9 13.9 16.8 2.7 2.3 135 
7 E1 1 DH8 640.2 42.3 1.2 520.5 30.5 93.9 14.2 1.5 17.1 9.5 7.3 2.2 14.4 16.6 2.3 2.9 132 
8 E1 1 DH9 354.9 39.4 1.1 335.4 29.9 79.6 15.9 1.6 20.4 9.9 7.2 2.3 15.8 18.1 2.5 2.5 133 
9 E1 1 DH11 720.7 44.8 1.5 475.4 35.1 110.9 16.1 1.4 18.4 11.2 8.4 1.7 15.0 16.7 2.0 3.0 131 

10 E1 1 DH12 416.1 41.3 1.2 341.6 30.7 82.3 13.0 1.4 15.0 9.0 7.1 1.8 14.6 16.4 2.4 2.8 132 
11 E1 1 DH13 482.5 42.5 1.2 389.5 28.0 88.5 15.0 1.4 16.8 10.6 7.1 2.0 15.8 17.8 2.5 2.7 137 
12 E1 1 DH14 632.4 38.7 1.3 503.1 32.7 87.0 12.6 1.6 15.9 8.1 6.7 2.0 14.7 16.7 2.5 2.6 137 
13 E1 1 DH15 640.0 35.3 1.1 579.1 31.8 80.7 12.9 1.4 14.1 9.3 6.6 1.5 13.3 14.8 2.2 2.7 130 
14 E1 1 DH16 601.1 39.7 1.2 513.8 31.6 87.5 13.2 1.5 16.0 8.6 6.4 1.8 13.5 15.3 2.4 2.9 133 
15 E1 1 DH17 596.6 40.7 1.4 417.2 34.7 87.4 15.2 1.4 16.4 11.3 7.5 1.3 14.0 15.3 2.0 2.9 130 
16 E1 1 DH18 424.7 43.8 1.4 307.7 31.0 81.3 13.8 1.7 18.7 8.0 7.4 1.7 16.1 17.8 2.4 2.7 135 
17 E1 1 DH19 660.7 35.3 1.2 573.5 33.4 91.7 13.5 1.5 16.2 9.0 6.2 1.9 12.4 14.3 2.3 2.8 133 
18 E1 1 DH20 500.7 47.7 1.3 371.2 28.8 73.8 13.7 1.6 17.2 8.7 6.7 1.3 15.0 16.3 2.4 3.2 134 
19 E1 1 DH21 583.2 37.1 1.2 488.4 33.1 93.7 15.2 1.5 18.1 10.3 6.9 2.8 13.4 16.2 2.3 2.8 134 
20 E1 1 DH22 611.5 39.5 1.2 500.0 33.4 95.3 14.6 1.6 18.4 9.2 7.1 2.5 15.7 18.2 2.6 2.5 134 
21 E1 1 DH23 663.0 41.2 1.3 522.5 31.1 87.4 16.1 1.4 17.4 11.8 6.3 1.2 13.2 14.4 2.3 3.1 131 
22 E1 1 DH24 748.8 33.4 1.0 744.3 31.0 93.6 12.1 1.5 14.6 7.9 6.0 1.8 12.4 14.2 2.4 2.7 132 
23 E1 1 DH25 672.5 44.1 1.3 515.4 33.8 79.2 13.7 1.4 15.4 9.6 7.4 1.9 14.8 16.7 2.3 3.0 130 
24 E1 1 DH26 644.8 33.1 1.1 609.4 33.1 79.5 12.7 1.5 15.4 8.4 6.6 2.4 13.7 16.1 2.4 2.4 132 
25 E1 1 DH27 586.9 41.1 1.2 479.5 30.5 91.3 15.0 1.4 16.9 10.5 6.3 1.4 12.9 14.3 2.3 3.2 134 
26 E1 1 DH28 602.4 38.7 1.2 514.8 32.0 93.5 13.2 1.5 15.9 8.8 6.4 2.2 14.1 16.3 2.6 2.7 133 
27 E1 1 DH29 442.6 30.9 1.0 428.0 33.7 70.8 12.1 1.4 13.3 8.9 6.9 1.8 13.6 15.4 2.2 2.3 135 
28 E1 1 DH30 601.2 34.1 1.2 520.9 32.8 86.0 15.1 1.6 19.1 9.4 6.5 2.4 13.3 15.7 2.4 2.6 133 
29 E1 1 DH31 488.3 36.8 1.0 487.3 29.0 83.2 14.5 1.5 17.1 9.7 6.9 2.0 13.7 15.7 2.3 2.7 136 
30 E1 1 DH32 421.5 38.4 1.0 435.5 25.7 81.1 13.9 1.6 17.7 8.6 7.4 1.2 16.4 17.6 2.4 2.3 137 
31 E1 1 DH33 415.1 48.6 1.0 400.7 28.9 90.0 16.0 1.7 21.6 9.4 7.1 2.0 16.3 18.3 2.6 3.0 137 
32 E1 1 DH34 574.3 45.6 1.3 444.5 30.7 92.2 15.2 1.5 17.7 10.3 7.3 1.2 15.2 16.4 2.3 3.0 132 
33 E1 1 DH35 576.1 37.9 1.2 480.1 33.7 85.8 11.4 1.9 17.0 6.1 7.1 1.9 13.6 15.5 2.2 2.8 134 
34 E1 1 DH36 418.7 40.8 1.3 330.5 31.5 81.9 14.7 1.5 17.3 10.1 8.1 1.4 17.0 18.4 2.3 2.4 135 
35 E1 1 DH37 553.4 42.1 1.1 504.0 29.7 92.2 15.6 1.6 19.4 10.1 7.1 2.4 14.4 16.8 2.4 2.9 134 
36 E1 1 DH38 533.9 41.7 1.2 445.7 29.4 82.3 13.8 1.4 15.3 9.8 7.1 1.2 14.4 15.6 2.2 2.9 129 
37 E1 1 DH39 576.6 39.7 1.2 499.6 30.1 89.7 10.4 1.1 9.4 9.2 6.1 2.1 15.4 17.5 2.9 2.6 137 
38 E1 1 DH40 547.8 37.1 1.2 450.5 32.8 94.0 12.1 1.4 13.4 9.1 7.7 1.1 14.7 15.8 2.1 2.5 132 
39 E1 1 DH41 601.8 39.5 1.1 544.1 30.3 86.3 16.6 1.4 18.4 12.0 6.6 1.3 13.5 14.8 2.2 2.9 130 
40 E1 1 DH42 571.0 44.6 1.4 417.1 30.7 85.8 16.5 1.4 18.1 11.9 7.5 1.5 16.8 18.3 2.5 2.7 134 
41 E1 1 DH43 615.0 34.9 1.0 608.3 31.9 89.7 13.7 1.5 16.6 9.0 6.1 2.3 12.3 14.6 2.4 2.8 134 
42 E1 1 DH44 765.9 34.8 1.3 612.2 36.0 106.0 16.0 1.6 20.7 9.8 7.6 1.9 13.9 15.8 2.1 2.5 136 
43 E1 1 DH45 641.7 35.9 1.3 505.7 35.3 90.6 11.5 1.5 13.5 7.7 7.1 1.9 13.9 15.8 2.2 2.6 133 
44 E1 1 DH46 478.0 41.8 1.1 416.4 29.4 87.4 15.8 1.6 19.4 10.2 7.8 2.3 14.2 16.5 2.1 2.9 134 
45 E1 1 DH47 699.0 37.0 1.1 618.6 32.3 86.7 13.8 1.4 15.8 9.6 6.8 2.1 13.5 15.6 2.3 2.7 135 
46 E1 1 DH49 599.8 46.2 1.4 435.6 30.9 88.7 14.4 1.5 17.4 9.4 7.6 1.8 14.6 16.4 2.2 3.2 134 
47 E1 1 DH50 669.3 34.4 1.1 585.6 34.4 88.7 15.1 1.6 19.5 9.3 6.2 2.1 12.5 14.6 2.3 2.8 131 
48 E1 1 DH51 507.0 42.6 1.0 507.5 29.2 90.7 16.5 1.6 21.5 10.0 7.2 2.6 15.1 17.7 2.5 2.8 134 
49 E1 1 DH52 748.9 37.9 1.1 709.9 28.6 78.4 13.3 1.4 15.2 9.5 6.5 1.5 14.1 15.6 2.4 2.7 131 
50 E1 1 DH53 517.6 38.0 1.1 460.9 29.0 73.7 12.8 1.4 14.9 8.8 6.6 1.4 14.6 16.0 2.4 2.6 134 
51 E1 1 DH54 487.7 41.0 1.3 370.0 33.7 77.2 14.7 1.6 18.3 9.6 7.3 1.9 13.8 15.7 2.2 3.0 133 
52 E1 1 DH55 409.0 41.3 0.9 431.8 25.7 84.8 12.4 1.8 18.0 6.7 6.4 2.1 13.5 15.6 2.4 3.1 135 
53 E1 1 DH56 447.3 34.6 1.0 470.4 29.5 85.3 12.1 1.5 14.8 8.0 6.1 2.1 12.7 14.8 2.4 2.7 132 
54 E1 1 DH57 596.6 32.9 1.0 590.6 30.0 78.1 12.8 1.4 14.7 8.9 5.6 1.8 13.1 14.9 2.7 2.5 132 
55 E1 1 DH58 595.2 38.0 1.1 528.2 32.5 90.7 14.8 1.5 17.7 9.9 6.4 2.0 12.7 14.7 2.3 3.0 132 
56 E1 1 DH59 807.9 33.7 1.0 791.2 29.6 88.0 13.7 1.4 15.4 9.6 6.0 1.3 12.5 13.8 2.3 2.7 131 
57 E1 1 DH60 653.8 39.8 1.2 536.8 31.2 81.8 14.3 1.4 16.4 10.0 6.7 2.0 12.9 14.9 2.2 3.1 132 
58 E1 1 DH61 533.8 34.2 1.1 496.1 31.6 81.3 12.5 1.7 16.6 7.6 6.9 1.8 13.8 15.6 2.3 2.5 135 
59 E1 1 DH62 507.1 41.8 1.2 437.1 28.5 81.9 14.2 1.5 17.4 9.3 6.6 0.7 13.3 14.0 2.1 3.1 132 
60 E1 1 DH63 507.0 47.1 1.6 313.6 32.1 84.0 14.1 1.4 15.6 10.1 7.6 1.1 14.9 16.0 2.1 3.2 131 
61 E1 1 DH64 586.2 39.4 1.4 428.9 36.3 91.1 14.4 1.5 16.9 9.8 7.4 0.9 13.7 14.6 2.0 2.9 131 
62 E1 1 DH65 595.4 43.8 1.3 460.5 29.8 81.6 14.1 1.3 14.7 10.9 7.3 1.1 14.9 16.0 2.2 2.9 130 
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No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
63 E1 1 DH66 354.2 40.0 1.4 250.2 34.0 87.6 14.8 1.7 19.5 8.9 7.8 2.9 16.5 19.4 2.5 2.4 134 
64 E1 1 DH67 560.6 37.2 1.1 511.5 . 84.1 12.0 1.3 12.1 9.4 6.8 1.8 14.1 15.9 2.3 2.6 133 
65 E1 1 DH68 455.1 37.5 1.1 428.2 28.5 80.5 15.2 1.6 18.7 9.8 6.7 2.0 13.1 15.1 2.3 2.9 133 
66 E1 1 DH69 649.4 38.9 1.1 608.7 30.8 83.4 12.5 1.4 13.6 9.1 6.2 1.5 12.5 14.0 2.3 3.1 132 
67 E1 1 DH70 633.5 36.6 1.2 544.2 32.5 89.7 15.5 1.5 18.6 10.3 6.9 2.0 14.2 16.2 2.3 2.6 136 
68 E1 1 DH71 573.9 44.8 1.3 427.3 30.7 82.1 14.3 1.5 17.3 9.4 7.7 1.5 15.6 17.1 2.2 2.9 135 
69 E1 1 DH72 578.3 43.3 1.2 469.4 30.5 87.0 14.8 1.6 18.4 9.4 7.2 1.6 15.8 17.4 2.4 2.7 137 
70 E1 1 DH73 498.6 38.2 1.0 492.2 28.7 80.2 12.7 1.8 18.0 7.1 6.8 2.0 15.0 17.0 2.5 2.5 136 
71 E1 1 DH75 614.6 36.6 1.2 500.1 34.3 89.9 12.2 1.3 12.6 9.7 6.8 1.9 12.9 14.8 2.2 2.8 130 
72 E1 1 DH76 630.3 36.8 1.2 531.0 30.7 81.9 13.0 1.4 14.3 9.3 6.7 1.5 13.7 15.2 2.3 2.7 134 
73 E1 1 DH77 688.1 35.1 1.2 556.7 33.7 89.9 16.1 1.4 18.5 11.1 8.1 2.1 16.0 18.1 2.2 2.2 133 
74 E1 1 DH78 535.2 41.0 1.2 459.8 30.9 83.8 12.3 1.3 13.1 9.1 7.2 2.1 14.2 16.3 2.3 2.9 131 
75 E1 1 DH79 562.7 42.6 1.3 432.2 30.3 89.5 14.2 1.5 17.1 9.3 7.0 2.0 13.9 15.9 2.3 3.1 133 
76 E1 1 DH80 657.8 42.4 1.3 502.1 30.6 90.5 14.2 1.5 17.4 9.4 6.6 1.9 14.9 16.8 2.5 2.8 135 
77 E1 1 DH81 400.0 27.2 0.9 433.4 32.6 88.6 11.8 1.5 13.7 8.1 6.6 0.9 16.0 16.9 2.6 1.7 132 
78 E1 1 DH82 644.4 36.6 1.0 626.9 31.8 84.9 11.9 1.6 14.9 7.6 6.9 1.9 13.8 15.7 2.3 2.7 130 
79 E1 1 DH83 646.3 39.5 1.3 499.9 35.1 99.7 13.8 1.4 15.5 9.8 6.9 2.2 12.6 14.8 2.1 3.1 133 
80 E1 1 DH84 669.3 34.7 1.2 568.2 37.4 90.5 11.5 1.2 11.1 9.5 6.8 1.8 12.4 14.2 2.1 2.8 130 
81 E1 1 DH85 658.5 32.0 1.1 617.7 31.9 74.4 12.9 1.2 12.3 10.8 6.2 2.4 12.4 14.8 2.4 2.6 133 
82 E1 1 DH86 648.8 43.0 1.3 500.2 32.4 92.6 13.3 1.5 15.4 9.2 6.2 1.4 13.9 15.3 2.5 3.1 131 
83 E1 1 DH87 435.7 41.7 1.1 383.2 27.8 85.5 14.1 1.3 14.3 12.3 6.6 1.6 14.5 16.1 2.4 2.9 133 
84 E1 1 DH89 630.0 34.6 1.1 570.1 32.3 89.7 11.4 1.6 14.1 7.4 6.5 2.5 14.2 16.7 2.6 2.4 134 
85 E1 1 DH90 553.3 35.3 1.1 484.9 32.2 82.7 14.7 1.5 17.9 9.5 6.6 2.0 13.1 15.1 2.3 2.7 131 
86 E1 1 DH91 668.0 36.0 1.1 604.0 31.5 95.6 14.3 1.6 17.9 9.3 6.6 2.5 14.1 16.6 2.5 2.6 131 
87 E1 1 DH92 612.1 37.6 1.2 518.3 32.2 84.9 14.8 1.5 18.1 9.7 6.6 1.7 13.0 14.7 2.2 2.9 132 
88 E1 1 DH93 539.2 46.4 1.3 406.0 30.1 76.9 12.3 1.4 13.3 9.1 7.0 1.5 14.6 16.1 2.3 3.2 130 
89 E1 1 DH94 698.3 31.1 0.9 759.9 30.9 88.7 10.6 1.3 11.0 8.1 6.8 2.8 13.5 16.3 2.4 2.3 134 
90 E1 1 DH95 751.8 35.3 1.3 581.9 36.1 85.9 11.3 1.3 11.5 8.9 7.2 1.8 13.5 15.3 2.1 2.6 130 
91 E1 1 DH96 646.4 30.9 1.1 610.4 34.5 92.0 13.6 1.2 13.2 11.3 5.8 2.6 11.0 13.6 2.3 2.8 133 
92 E1 1 DH97 515.6 40.8 1.2 418.9 34.6 91.9 11.5 1.5 13.2 7.9 6.8 1.6 14.5 16.1 2.4 2.8 133 
93 E1 1 DH98 573.3 41.4 1.4 402.9 34.5 81.1 12.6 1.6 16.2 7.8 7.3 1.0 13.3 14.3 2.0 3.1 130 
94 E1 1 DH99 495.0 38.5 1.1 457.9 29.5 80.6 14.5 1.6 18.1 9.2 6.4 1.1 13.7 14.8 2.3 2.8 133 
95 E1 1 DH100 624.2 40.8 1.0 611.3 27.9 75.1 11.5 1.4 12.5 8.4 6.7 2.1 14.8 16.9 2.5 2.7 132 
96 E1 1 DH101 525.2 44.8 1.3 408.1 29.5 84.1 13.3 1.3 13.4 10.5 7.3 1.0 14.6 15.6 2.1 3.1 130 
97 E1 1 DH102 620.0 42.5 1.2 518.4 29.5 89.8 14.5 1.4 16.7 10.0 7.6 2.4 16.0 18.4 2.4 2.7 133 
98 E1 1 DH103 461.5 36.1 1.1 436.2 29.7 78.9 13.7 1.7 18.0 8.3 6.6 2.1 13.6 15.7 2.4 2.7 137 
99 E1 1 DH104 713.4 41.1 1.2 617.1 27.9 90.3 14.6 1.3 15.7 10.9 6.8 1.9 15.6 17.5 2.6 2.6 136 
100 E1 1 DH105 622.2 41.6 1.1 581.5 28.2 81.3 16.4 1.6 20.9 10.3 6.0 2.4 13.5 15.9 2.6 3.1 135 
101 E1 1 DH106 448.2 39.5 1.2 372.6 29.8 85.4 14.3 1.6 18.8 8.7 7.0 2.1 15.5 17.6 2.5 2.5 135 
102 E1 1 DH107 590.7 37.0 1.1 556.2 . 84.7 11.5 1.4 12.6 8.6 6.8 1.6 13.2 14.8 2.2 2.8 130 
103 E1 1 DH108 457.5 33.0 1.0 475.6 29.4 92.2 12.5 1.4 13.7 9.1 6.3 2.4 13.1 15.5 2.5 2.5 132 
104 E1 1 DH109 529.5 36.6 1.0 507.7 27.9 80.9 12.8 1.4 14.6 8.9 6.8 2.4 13.5 15.9 2.3 2.7 134 
105 E1 1 DH110 361.3 37.3 0.9 393.1 29.4 92.3 13.1 1.5 15.4 9.1 7.7 2.0 14.7 16.7 2.2 2.5 133 
106 E1 1 DH111 453.8 46.6 1.3 361.9 28.9 85.5 16.6 1.5 20.0 10.9 7.8 1.8 15.1 16.9 2.2 3.1 133 
107 E1 1 DH112 621.1 38.9 1.1 561.6 30.5 87.7 11.7 1.3 11.6 9.5 7.1 2.0 14.3 16.3 2.3 2.7 133 
108 E1 1 DH113 557.5 36.8 1.2 446.7 34.2 91.2 12.9 1.4 14.1 9.4 6.2 1.9 12.9 14.8 2.4 2.8 133 
109 E1 1 DH114 571.5 36.2 1.1 521.4 31.7 68.0 12.5 1.4 14.4 8.6 7.0 1.3 14.1 15.4 2.2 2.6 133 
110 E1 1 DH115 525.9 31.8 0.9 567.3 29.3 87.6 12.8 1.4 14.5 9.2 6.7 2.5 13.0 15.5 2.3 2.4 134 
111 E1 1 DH116 525.5 31.4 0.9 605.4 30.8 86.5 12.1 1.4 13.7 8.5 6.5 2.9 12.3 15.2 2.3 2.6 133 
112 E1 1 DH117 547.8 32.3 1.0 553.9 33.7 78.8 13.3 1.8 18.4 7.7 6.5 1.5 13.0 14.5 2.2 2.5 133 
113 E1 1 DH119 588.6 44.1 1.5 392.1 32.5 92.2 16.7 1.5 19.3 12.9 7.6 2.4 15.3 17.7 2.3 2.9 133 
114 E1 1 DH120 650.0 32.7 0.9 689.3 31.7 89.0 14.0 1.4 15.1 10.2 6.4 2.5 13.1 15.6 2.5 2.5 135 
115 E1 1 DH121 621.1 36.9 1.2 537.8 29.9 81.5 13.3 1.4 14.5 9.7 6.9 3.0 14.4 17.4 2.5 2.6 137 
116 E1 1 DH122 540.4 44.8 0.9 571.2 27.8 88.3 14.7 1.6 18.8 9.2 7.2 1.5 16.0 17.5 2.4 2.8 134 
117 E1 1 DH123 405.6 44.0 1.2 339.7 26.8 96.0 13.3 1.2 12.2 11.9 7.7 1.7 15.5 17.2 2.2 2.8 135 
118 E1 1 DH124 703.4 37.4 1.2 591.6 30.5 83.2 15.5 1.5 18.0 10.7 7.2 2.2 13.6 15.8 2.2 2.7 134 
119 E1 1 DH125 679.9 37.8 1.1 597.5 30.0 79.0 14.4 1.7 18.9 8.7 6.4 1.6 13.3 14.9 2.3 2.8 133 
120 E1 1 DH126 488.5 45.8 1.4 357.6 29.6 76.7 12.8 1.5 14.9 8.7 7.5 1.0 16.5 17.5 2.3 2.8 136 
121 E1 1 DH128 478.5 42.0 1.1 428.4 27.0 93.1 17.7 1.5 20.5 12.5 6.9 2.2 15.5 17.7 2.6 2.7 136 
122 E1 1 DH129 668.1 43.0 1.3 527.3 32.6 91.5 13.2 1.6 16.2 8.7 6.9 2.1 13.6 15.7 2.3 3.2 133 
123 E1 1 DH130 620.1 35.3 1.0 599.7 30.0 85.2 13.9 1.5 16.7 9.2 6.8 2.3 13.4 15.7 2.3 2.6 134 
124 E1 1 DH131 396.3 38.9 1.3 314.3 33.6 88.0 13.7 1.6 17.7 8.4 7.4 2.5 15.5 18.0 2.4 2.5 137 
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No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
125 E1 2 DH1 581.7 34.8 1.0 567.5 30.3 84.8 11.4 1.2 10.9 9.5 6.0 1.3 12.3 13.6 2.3 2.8 132 
126 E1 2 DH3 428.9 38.1 1.0 409.2 27.5 88.8 12.5 1.4 14.0 8.9 6.4 2.5 13.5 16.0 2.5 2.8 136 
127 E1 2 DH4 525.7 36.5 1.2 433.1 32.9 78.7 11.3 1.6 14.2 7.1 7.0 2.0 15.0 17.0 2.4 2.4 133 
128 E1 2 DH5 359.3 36.6 0.9 390.1 29.9 80.9 13.9 1.5 16.9 9.0 7.0 2.1 13.3 15.4 2.2 2.8 135 
129 E1 2 DH6 559.5 40.3 1.2 460.5 31.4 86.7 13.8 1.4 15.1 10.0 6.8 1.2 13.8 15.0 2.2 2.9 130 
130 E1 2 DH7 535.0 35.9 1.1 505.2 31.5 85.1 12.7 1.5 15.0 8.5 6.6 3.3 14.3 17.6 2.7 2.5 136 
131 E1 2 DH8 564.3 50.1 1.5 368.1 30.8 91.9 14.7 1.4 16.6 10.3 7.4 1.4 15.5 16.9 2.3 3.2 132 
132 E1 2 DH9 484.1 43.7 1.4 338.3 31.0 86.1 14.4 1.5 17.5 9.4 7.7 2.2 15.3 17.5 2.3 2.9 135 
133 E1 2 DH11 668.8 43.9 1.5 446.8 35.4 99.3 16.6 1.5 19.2 11.3 8.0 1.6 13.9 15.5 1.9 3.2 131 
134 E1 2 DH12 311.6 53.4 1.7 182.9 32.9 84.5 14.2 1.6 17.9 9.0 8.1 1.2 17.7 18.9 2.3 3.0 134 
135 E1 2 DH13 515.0 45.5 1.4 378.1 28.5 92.2 15.9 1.5 18.3 11.0 7.0 2.4 15.5 17.9 2.6 2.9 136 
136 E1 2 DH14 634.0 32.4 1.1 590.9 32.4 89.4 14.1 1.6 17.6 8.9 6.6 3.2 13.5 16.7 2.5 2.4 135 
137 E1 2 DH15 647.9 37.2 1.2 553.3 31.9 82.8 13.6 1.4 15.4 9.5 7.2 1.7 14.2 15.9 2.2 2.6 130 
138 E1 2 DH16 589.3 41.6 1.2 493.5 30.8 82.6 12.8 1.4 14.2 9.1 6.2 1.6 13.5 15.1 2.4 3.1 132 
139 E1 2 DH17 535.7 45.9 1.5 349.0 34.4 88.8 16.3 1.6 20.9 10.1 8.0 1.4 15.3 16.7 2.1 3.0 130 
140 E1 2 DH18 391.5 43.4 1.4 289.6 32.1 85.2 12.2 1.6 15.7 7.5 7.5 1.4 16.5 17.9 2.4 2.6 135 
141 E1 2 DH19 372.0 38.5 1.3 286.6 32.1 87.4 12.8 1.5 15.2 8.5 6.6 1.5 13.6 15.1 2.3 2.8 132 
142 E1 2 DH20 633.8 38.0 1.3 490.2 29.7 81.8 13.8 1.6 17.6 8.6 7.0 2.0 14.2 16.2 2.3 2.7 134 
143 E1 2 DH21 642.3 36.8 1.2 523.0 33.6 90.4 14.3 1.5 16.8 9.7 7.0 2.7 12.9 15.6 2.2 2.8 135 
144 E1 2 DH22 510.4 48.9 1.5 347.9 32.5 93.7 13.8 1.5 16.2 9.3 7.2 1.4 15.9 17.3 2.4 3.1 135 
145 E1 2 DH23 640.2 45.4 1.4 466.6 31.6 93.7 14.9 1.4 16.3 10.9 6.4 1.1 13.5 14.6 2.3 3.4 130 
146 E1 2 DH24 762.1 42.2 1.3 587.1 31.9 88.7 14.7 1.6 19.1 9.0 6.8 1.1 13.9 15.0 2.2 3.0 132 
147 E1 2 DH25 662.4 48.3 1.3 508.7 34.2 84.3 14.0 1.5 16.6 9.3 7.8 1.6 15.7 17.3 2.2 3.1 132 
148 E1 2 DH26 494.2 38.1 1.1 444.0 32.3 78.0 12.1 1.4 13.3 8.7 6.9 1.6 14.4 16.0 2.3 2.6 133 
149 E1 2 DH27 575.2 39.9 1.2 483.8 28.3 92.9 13.5 1.5 15.9 9.1 6.4 2.3 13.4 15.7 2.5 3.0 136 
150 E1 2 DH28 588.7 38.7 1.2 493.5 33.0 91.5 15.4 1.6 19.2 9.8 6.3 2.4 13.7 16.1 2.5 2.8 134 
151 E1 2 DH29 402.3 37.1 1.2 348.9 31.9 75.9 14.0 1.4 15.5 10.0 7.5 2.2 14.9 17.1 2.3 2.5 133 
152 E1 2 DH30 566.5 42.2 1.3 448.2 35.4 93.3 13.9 1.6 17.7 8.6 6.7 2.4 15.2 17.6 2.6 2.8 133 
153 E1 2 DH31 466.8 46.8 1.4 340.2 29.1 83.0 12.5 1.5 15.2 8.2 7.6 1.5 15.1 16.6 2.2 3.1 134 
154 E1 2 DH32 575.6 37.6 1.0 568.8 27.2 80.2 11.1 1.5 13.5 7.2 7.2 2.0 15.8 17.8 2.5 2.4 138 
155 E1 2 DH33 436.3 48.7 1.1 391.7 29.7 90.4 17.1 1.7 23.8 9.8 7.2 2.0 16.2 18.2 2.5 3.0 136 
156 E1 2 DH34 637.0 46.8 1.5 425.8 33.5 97.4 14.5 1.5 17.4 9.5 7.2 1.5 15.4 16.9 2.3 3.0 130 
157 E1 2 DH35 527.6 36.1 1.2 438.9 34.0 83.5 10.9 1.5 12.9 7.3 7.0 2.2 13.6 15.8 2.3 2.6 134 
158 E1 2 DH36 492.1 49.9 1.7 294.3 31.9 83.0 14.6 1.7 19.7 8.5 8.6 1.0 17.5 18.5 2.2 2.8 134 
159 E1 2 DH37 555.4 33.6 1.1 516.6 30.5 84.9 16.0 1.5 19.3 10.5 6.9 2.1 13.6 15.7 2.3 2.5 134 
160 E1 2 DH38 669.5 43.7 1.4 479.6 31.4 80.4 15.5 1.6 19.0 10.1 7.2 1.0 14.6 15.6 2.2 3.0 130 
161 E1 2 DH39 504.3 37.2 1.1 460.2 31.0 89.0 11.7 1.3 12.4 8.8 6.2 2.5 14.8 17.3 2.8 2.5 135 
162 E1 2 DH40 497.3 42.8 1.4 351.9 32.9 104.3 13.5 1.3 13.6 10.6 8.4 0.6 16.4 16.9 2.0 2.6 133 
163 E1 2 DH41 666.8 41.2 1.2 573.8 30.0 87.7 13.3 1.4 14.7 9.7 7.0 1.1 14.6 15.7 2.2 2.8 135 
164 E1 2 DH42 440.2 41.0 1.3 340.2 30.5 87.3 14.7 1.3 15.4 11.3 7.0 1.7 15.6 17.3 2.5 2.6 136 
165 E1 2 DH43 622.4 41.6 1.4 458.3 31.8 84.5 12.8 1.4 14.6 8.9 7.0 1.7 14.0 15.7 2.3 3.0 134 
166 E1 2 DH44 570.1 41.7 1.4 397.8 34.9 95.4 15.4 1.5 18.3 10.2 7.9 1.7 15.0 16.7 2.1 2.8 133 
167 E1 2 DH45 598.4 36.4 1.3 450.9 35.8 89.1 11.4 1.4 12.7 8.1 7.4 2.0 14.4 16.4 2.2 2.5 132 
168 E1 2 DH46 340.1 43.0 1.2 277.4 31.4 89.5 17.2 1.7 22.5 10.4 8.2 1.7 14.7 16.4 2.0 2.9 135 
169 E1 2 DH47 807.0 36.5 1.2 676.4 32.7 91.7 13.6 1.6 17.3 8.5 7.2 1.5 14.0 15.5 2.2 2.6 133 
170 E1 2 DH49 1091.6 48.2 1.6 699.7 32.0 92.8 15.1 1.5 18.5 9.9 7.9 1.9 15.1 17.0 2.2 3.2 134 
171 E1 2 DH50 712.9 41.9 1.5 490.0 35.6 96.4 14.3 1.6 17.8 9.1 7.1 1.5 14.1 15.6 2.2 3.0 130 
172 E1 2 DH51 480.2 41.2 1.0 461.7 28.8 88.5 15.5 1.5 18.4 10.3 7.2 2.5 13.9 16.4 2.3 3.0 134 
173 E1 2 DH52 664.6 39.3 1.2 547.4 29.0 80.9 12.9 1.2 12.8 10.3 6.8 1.2 14.5 15.7 2.3 2.7 132 
174 E1 2 DH53 786.5 30.3 1.0 816.8 30.3 73.5 10.5 1.3 11.1 8.0 6.4 2.4 14.7 17.1 2.7 2.1 134 
175 E1 2 DH54 368.5 45.5 1.5 244.7 32.7 83.0 16.5 1.6 20.3 10.6 7.7 1.8 14.4 16.2 2.1 3.2 137 
176 E1 2 DH55 620.6 35.4 1.0 593.9 28.7 91.8 11.3 1.4 12.3 8.3 6.1 2.6 12.9 15.5 2.5 2.7 134 
177 E1 2 DH56 723.0 31.7 1.1 657.9 31.7 90.2 12.3 1.4 13.9 8.7 6.0 2.3 12.5 14.8 2.5 2.5 133 
178 E1 2 DH57 508.5 31.8 0.9 535.8 29.3 84.7 14.0 1.5 16.2 9.6 5.8 2.0 13.3 15.3 2.6 2.4 136 
179 E1 2 DH58 439.9 43.9 1.2 378.3 29.5 84.7 12.0 1.3 12.8 8.9 6.9 1.8 13.1 14.9 2.2 3.3 133 
180 E1 2 DH59 858.9 43.7 1.4 599.0 32.7 83.2 14.3 1.4 15.6 10.3 6.8 1.0 14.2 15.2 2.3 3.1 130 
181 E1 2 DH60 659.4 46.4 1.5 447.0 31.9 83.5 14.8 1.3 15.6 11.3 7.2 1.5 14.0 15.5 2.1 3.3 132 
182 E1 2 DH61 583.5 35.6 1.1 522.8 31.5 84.8 12.8 1.6 16.3 8.1 6.9 1.4 14.2 15.6 2.3 2.5 136 
183 E1 2 DH62 540.5 40.6 1.2 462.4 29.8 87.0 14.2 1.4 15.6 10.3 6.4 1.1 13.3 14.4 2.2 3.1 132 
184 E1 2 DH63 631.4 48.3 1.6 398.1 33.2 87.0 15.6 1.6 19.4 10.0 7.8 1.4 15.1 16.5 2.1 3.2 131 
185 E1 2 DH64 480.0 43.0 1.6 306.9 36.6 96.1 13.3 1.4 15.1 9.2 7.6 1.2 14.6 15.8 2.1 2.9 132 
186 E1 2 DH65 519.6 50.3 1.5 342.7 30.8 85.4 15.9 1.4 17.9 11.1 7.6 1.0 15.5 16.5 2.2 3.2 130 



 

 
 

164 
 

Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
187 E1 2 DH66 396.9 45.6 1.6 245.6 33.8 88.3 13.5 1.7 18.6 7.8 7.9 2.5 16.5 19.0 2.4 2.8 136 
188 E1 2 DH67 628.9 36.6 1.2 518.4 32.8 83.1 12.8 1.4 14.4 9.0 7.0 1.6 14.4 16.0 2.3 2.6 131 
189 E1 2 DH68 454.5 37.9 1.3 358.4 27.5 85.2 16.3 1.7 21.7 9.8 7.1 2.4 13.6 16.0 2.3 2.8 133 
190 E1 2 DH69 487.0 37.4 0.9 532.2 30.1 83.3 12.1 1.2 12.1 9.8 6.0 1.7 12.9 14.6 2.4 2.9 133 
191 E1 2 DH70 505.3 42.4 1.5 333.8 32.5 90.7 13.9 1.4 15.6 9.7 7.8 1.7 15.5 17.2 2.2 2.7 134 
192 E1 2 DH71 625.7 45.9 1.4 437.9 30.5 90.7 13.4 1.6 16.7 8.6 8.0 1.1 16.3 17.4 2.2 2.8 134 
193 E1 2 DH72 564.8 42.7 1.4 417.1 30.9 88.7 13.1 1.5 15.3 8.8 7.4 1.7 16.1 17.8 2.4 2.6 135 
194 E1 2 DH73 549.0 43.0 1.3 413.4 29.6 90.0 11.7 1.4 13.4 8.1 7.2 1.7 15.5 17.2 2.4 2.8 136 
195 E1 2 DH75 655.8 39.9 1.5 446.7 35.9 89.6 13.4 1.5 16.2 8.9 7.5 1.8 14.2 16.0 2.1 2.8 130 
196 E1 2 DH76 721.4 35.4 1.1 637.8 32.8 79.0 13.2 1.4 14.3 9.7 6.4 2.0 12.8 14.8 2.3 2.8 134 
197 E1 2 DH77 601.8 30.5 1.1 570.4 33.7 77.7 14.3 1.3 14.5 11.2 7.5 2.6 14.9 17.5 2.3 2.0 133 
198 E1 2 DH78 608.0 47.6 1.4 445.4 30.5 89.0 13.8 1.4 15.1 10.0 7.5 1.2 16.6 17.8 2.4 2.9 133 
199 E1 2 DH79 644.7 45.2 1.3 511.3 31.8 92.4 13.2 1.4 14.4 9.7 7.1 2.2 14.2 16.4 2.3 3.2 133 
200 E1 2 DH80 611.0 46.4 1.4 443.4 30.7 91.0 15.1 1.4 16.5 11.1 6.9 1.6 16.2 17.8 2.6 2.9 135 
201 E1 2 DH81 418.2 41.4 1.4 303.7 33.2 87.3 11.8 1.4 13.1 8.5 6.8 1.3 15.8 17.1 2.5 2.6 132 
202 E1 2 DH82 563.9 45.0 1.6 357.6 32.8 85.1 9.8 1.4 10.9 7.1 7.8 2.3 16.7 19.0 2.4 2.7 133 
203 E1 2 DH83 764.8 38.0 1.3 569.0 35.5 100.6 14.8 1.6 18.4 9.5 7.0 2.3 13.1 15.4 2.2 2.9 133 
204 E1 2 DH84 834.4 32.8 1.2 694.1 37.4 87.7 10.2 1.2 9.6 8.6 6.9 2.1 12.6 14.7 2.1 2.6 130 
205 E1 2 DH85 738.8 28.6 0.9 863.0 32.4 82.6 14.3 1.5 16.7 9.7 6.0 2.4 12.3 14.7 2.5 2.3 134 
206 E1 2 DH86 607.3 53.8 1.7 352.1 32.6 94.7 12.1 1.4 13.1 8.9 6.9 0.7 15.1 15.8 2.3 3.6 132 
207 E1 2 DH87 581.1 54.4 1.6 367.8 29.7 88.7 13.2 1.2 12.7 10.9 7.4 0.4 16.3 16.7 2.3 3.3 131 
208 E1 2 DH89 624.2 35.2 1.2 520.6 33.9 88.4 12.7 1.5 15.1 8.4 6.5 2.4 13.7 16.1 2.5 2.6 133 
209 E1 2 DH90 735.5 33.4 1.0 746.0 34.1 87.6 13.4 1.6 16.9 8.5 6.5 2.0 13.6 15.6 2.4 2.5 130 
210 E1 2 DH91 607.4 36.3 1.2 525.9 33.1 95.8 13.7 1.4 15.1 9.8 6.4 2.1 13.0 15.1 2.4 2.8 133 
211 E1 2 DH92 450.4 44.1 1.3 357.8 32.9 81.9 15.0 1.5 17.8 10.1 7.1 1.3 14.3 15.6 2.2 3.1 133 
212 E1 2 DH93 484.6 43.9 1.2 391.8 30.2 83.6 12.6 1.3 13.2 9.4 7.0 1.5 14.9 16.4 2.3 3.0 130 
213 E1 2 DH94 580.9 34.1 1.1 543.9 30.4 91.6 10.6 1.3 11.3 7.8 7.1 2.2 14.7 16.9 2.4 2.3 133 
214 E1 2 DH95 528.3 32.9 1.2 452.7 36.3 86.7 14.1 1.5 17.1 9.1 7.2 2.3 13.3 15.6 2.2 2.5 130 
215 E1 2 DH96 828.3 38.8 1.4 603.7 37.3 91.2 13.3 1.4 15.1 9.3 6.4 1.9 12.6 14.5 2.3 3.1 133 
216 E1 2 DH97 476.8 47.3 1.6 300.6 34.0 88.6 10.9 1.5 13.1 7.2 7.1 1.2 15.2 16.4 2.3 3.1 133 
217 E1 2 DH98 566.6 46.1 1.6 351.3 36.0 83.3 12.2 1.6 15.3 7.7 7.6 0.9 14.7 15.6 2.1 3.1 130 
218 E1 2 DH99 438.9 44.2 1.3 350.0 29.6 86.7 13.3 1.6 16.6 8.4 7.1 1.4 14.9 16.3 2.3 3.0 135 
219 E1 2 DH100 438.7 . . . 28.6 74.8 11.4 1.3 12.3 8.5 . . . . . . 133 
220 E1 2 DH101 645.3 42.7 1.3 480.5 31.4 92.8 12.2 1.5 14.5 8.1 7.2 1.1 14.5 15.6 2.2 2.9 132 
221 E1 2 DH102 506.9 50.8 1.4 349.8 28.9 90.6 13.8 1.4 15.3 9.9 8.3 1.5 16.6 18.1 2.2 3.1 134 
222 E1 2 DH103 416.2 36.4 1.1 367.7 30.8 85.4 12.8 1.6 15.9 8.1 6.6 2.3 13.1 15.4 2.3 2.8 136 
223 E1 2 DH104 414.0 36.9 1.0 412.8 27.9 89.6 15.0 1.3 15.9 11.2 6.8 2.0 15.2 17.2 2.5 2.4 135 
224 E1 2 DH105 543.5 41.6 1.1 495.9 27.9 81.1 14.2 1.4 16.1 9.9 6.2 2.6 14.4 17.0 2.8 2.9 134 
225 E1 2 DH106 579.9 45.2 1.4 407.8 30.6 89.7 11.9 1.6 14.7 7.6 7.3 1.7 15.6 17.3 2.4 2.9 133 
226 E1 2 DH107 603.5 39.9 1.2 492.6 31.7 90.8 13.0 1.3 13.6 9.9 7.0 1.5 13.4 14.9 2.1 3.0 132 
227 E1 2 DH108 494.4 40.8 1.2 407.6 29.9 90.8 11.9 1.4 13.1 8.6 7.0 2.0 14.9 16.9 2.4 2.7 133 
228 E1 2 DH109 595.6 39.3 1.2 496.0 30.1 79.7 14.0 1.4 16.0 9.7 7.1 2.3 13.6 15.9 2.2 2.9 133 
229 E1 2 DH110 473.3 46.5 1.4 339.5 31.8 93.8 13.2 1.3 13.8 10.0 8.2 1.5 15.7 17.2 2.1 3.0 132 
230 E1 2 DH111 495.5 54.8 1.7 294.1 30.2 89.4 15.7 1.4 17.4 11.3 8.7 1.0 16.9 17.9 2.1 3.2 133 
231 E1 2 DH112 504.1 46.6 1.4 361.3 31.2 89.8 12.1 1.4 13.7 8.5 7.7 1.6 15.1 16.7 2.2 3.1 132 
232 E1 2 DH113 555.9 39.6 1.3 427.9 34.7 95.2 12.0 1.3 12.1 9.4 6.7 1.7 14.1 15.8 2.3 2.8 132 
233 E1 2 DH114 624.2 38.5 1.3 486.5 32.0 72.1 12.7 1.5 15.5 8.2 7.4 1.1 15.5 16.6 2.2 2.5 133 
234 E1 2 DH115 509.0 32.7 1.0 503.4 31.6 93.7 10.8 1.3 11.2 8.2 6.8 2.1 12.9 15.0 2.2 2.5 133 
235 E1 2 DH116 549.9 31.0 1.0 537.5 34.4 94.0 11.0 1.5 12.8 7.5 6.3 2.7 12.2 14.9 2.4 2.5 131 
236 E1 2 DH117 552.4 35.2 1.2 452.0 34.8 79.5 12.6 1.4 14.0 9.0 6.9 1.4 13.5 14.9 2.2 2.6 133 
237 E1 2 DH119 502.3 46.4 1.5 333.3 34.3 98.7 15.0 1.6 19.5 9.2 7.6 2.1 15.4 17.5 2.3 3.0 136 
238 E1 2 DH120 399.1 36.8 1.1 365.1 28.3 83.9 13.1 1.5 15.1 9.0 6.7 2.2 14.5 16.7 2.5 2.5 135 
239 E1 2 DH121 577.2 36.8 1.2 501.9 31.2 83.3 12.9 1.4 14.5 9.0 7.0 2.3 15.1 17.4 2.5 2.4 135 
240 E1 2 DH122 347.9 49.3 1.4 242.8 28.7 90.6 14.5 1.4 16.2 10.3 7.5 1.1 16.4 17.5 2.3 3.0 135 
241 E1 2 DH123 268.7 36.6 0.9 312.4 . 86.3 14.6 1.3 15.0 11.2 7.0 2.3 13.9 16.2 2.3 2.6 136 
242 E1 2 DH124 515.3 33.0 0.9 548.8 29.9 87.3 14.1 1.5 16.4 9.7 7.0 2.2 13.0 15.2 2.2 2.5 135 
243 E1 2 DH125 755.9 40.6 1.5 511.5 31.9 83.5 12.4 1.7 16.6 7.4 7.1 1.9 15.0 16.9 2.4 2.7 134 
244 E1 2 DH126 396.6 51.5 1.5 265.6 30.9 76.8 12.3 1.6 15.2 7.9 7.9 0.8 17.2 18.0 2.3 3.0 135 
245 E1 2 DH128 357.2 45.5 1.2 292.5 26.9 90.4 19.2 1.4 21.0 14.0 7.0 1.9 15.8 17.7 2.5 2.9 137 
246 E1 2 DH129 643.8 42.6 1.4 472.7 32.2 91.3 12.7 1.4 13.9 9.2 6.9 1.8 13.4 15.2 2.2 3.2 132 
247 E1 2 DH130 615.2 46.7 1.4 432.3 27.3 82.2 12.6 1.4 14.5 8.7 7.5 1.4 14.8 16.2 2.2 3.2 134 
248 E1 2 DH131 442.8 38.4 1.3 347.1 34.4 85.7 13.3 1.6 17.1 8.1 6.6 1.7 14.0 15.7 2.4 2.7 136 
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No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
249 E2 1 DH1 938.1 29.8 0.8 1175.6 26.8 94.3 14.6 1.3 15.5 10.9 6.7 2.3 14.3 16.6 2.5 1.8 141 
250 E2 1 DH3 782.8 36.8 1.1 734.3 29.1 92.8 13.6 1.5 15.7 9.3 6.9 1.9 15.2 17.1 2.5 2.2 141 
251 E2 1 DH4 798.0 32.7 0.9 866.5 30.3 84.6 13.8 1.5 16.3 9.3 7.2 2.7 16.0 18.7 2.6 1.7 143 
252 E2 1 DH5 702.9 36.0 0.8 863.5 26.6 78.7 16.3 1.6 21.1 10.1 7.6 1.9 14.5 16.4 2.2 2.2 143 
253 E2 1 DH6 885.5 36.0 0.9 936.1 30.3 97.6 16.4 1.4 17.9 11.9 7.3 2.2 15.5 17.7 2.4 2.0 142 
254 E2 1 DH7 865.4 35.6 1.0 866.3 32.0 87.7 14.8 1.5 17.6 9.8 6.9 2.7 15.1 17.8 2.6 2.0 143 
255 E2 1 DH8 888.0 38.6 1.1 805.0 30.3 99.8 16.4 1.4 18.7 11.4 7.5 2.3 15.2 17.5 2.3 2.2 140 
256 E2 1 DH9 761.4 38.0 1.0 770.7 31.9 87.6 16.1 1.6 20.7 9.9 7.7 3.1 16.5 19.6 2.6 1.9 144 
257 E2 1 DH11 817.9 38.4 1.3 651.7 32.3 107.9 15.1 1.3 15.1 11.9 8.3 1.7 15.8 17.5 2.1 2.2 142 
258 E2 1 DH12 670.8 35.7 1.0 690.9 29.2 72.9 15.0 1.7 20.3 9.1 6.8 1.8 15.1 16.9 2.5 2.1 143 
259 E2 1 DH13 807.1 35.6 0.9 899.8 26.9 89.7 18.9 1.4 21.6 13.1 7.5 2.8 17.0 19.8 2.7 1.8 142 
260 E2 1 DH14 823.6 28.8 0.9 898.1 31.5 87.9 16.9 1.4 18.4 12.5 7.1 2.8 15.1 17.9 2.5 1.6 143 
261 E2 1 DH15 900.7 29.1 0.8 1120.2 28.9 90.5 16.2 1.4 18.4 11.4 7.0 2.2 14.2 16.4 2.4 1.8 141 
262 E2 1 DH16 752.6 36.7 1.0 739.3 28.3 89.3 14.0 1.5 16.6 9.3 7.0 1.7 14.7 16.4 2.4 2.2 142 
263 E2 1 DH17 839.2 36.1 1.1 768.5 32.7 89.6 17.8 1.5 20.5 12.2 7.4 2.1 14.4 16.5 2.2 2.2 140 
264 E2 1 DH18 793.3 39.1 1.1 730.5 31.1 81.6 17.6 1.9 26.6 9.3 7.6 1.7 15.8 17.5 2.3 2.2 145 
265 E2 1 DH19 822.2 31.6 1.0 855.6 32.3 92.6 14.3 1.4 15.8 10.3 6.6 2.2 13.3 15.5 2.3 2.0 140 
266 E2 1 DH20 810.2 40.0 1.0 775.3 . 88.0 15.3 1.6 19.4 9.5 7.1 2.5 15.7 18.2 2.6 2.2 144 
267 E2 1 DH21 836.3 33.1 1.0 812.7 32.9 91.6 18.1 1.5 20.8 12.5 7.4 3.1 14.6 17.7 2.4 1.9 143 
268 E2 1 DH22 849.6 34.1 0.9 923.4 31.8 97.1 16.7 1.5 19.6 11.2 7.6 3.0 15.9 18.9 2.5 1.8 143 
269 E2 1 DH23 884.2 33.3 0.9 963.2 28.1 92.5 18.7 1.4 20.1 13.7 6.3 2.4 13.7 16.1 2.5 2.1 141 
270 E2 1 DH24 909.7 33.9 0.9 1042.0 28.4 95.3 15.6 1.6 20.0 9.6 6.7 2.1 14.2 16.3 2.4 2.1 141 
271 E2 1 DH25 836.0 34.1 0.9 973.3 30.5 83.2 16.0 1.3 17.0 11.9 7.3 2.5 15.2 17.7 2.4 1.9 139 
272 E2 1 DH26 862.1 34.5 0.9 956.8 29.1 85.7 17.7 1.4 20.2 12.3 7.2 2.1 15.4 17.5 2.5 2.0 142 
273 E2 1 DH27 975.6 30.8 0.9 1142.4 28.9 99.2 17.7 1.4 19.4 12.9 6.2 2.4 13.7 16.1 2.6 1.9 144 
274 E2 1 DH28 895.4 36.8 1.0 927.9 29.7 96.9 15.4 1.4 17.0 11.1 7.1 2.2 15.5 17.7 2.5 2.1 143 
275 E2 1 DH29 835.9 34.9 0.9 897.9 30.0 79.9 15.3 1.4 17.0 10.9 7.4 2.3 15.1 17.4 2.4 2.0 143 
276 E2 1 DH30 876.8 31.6 1.1 780.8 34.1 86.5 18.3 1.4 20.8 12.7 7.0 2.2 15.9 18.1 2.6 1.7 142 
277 E2 1 DH31 679.8 32.5 0.7 921.1 26.7 87.2 14.6 1.4 16.7 10.1 7.3 2.5 14.4 16.9 2.3 1.9 141 
278 E2 1 DH32 780.3 30.8 0.8 1005.6 26.4 86.9 12.2 1.4 13.5 8.8 6.5 2.9 14.7 17.6 2.7 1.7 145 
279 E2 1 DH33 644.6 41.5 0.8 799.7 26.9 96.2 15.8 1.5 19.4 10.3 7.3 3.1 17.1 20.2 2.8 2.0 147 
280 E2 1 DH34 837.0 37.3 1.0 798.7 28.8 100.2 16.3 1.4 18.2 11.5 7.6 2.5 15.7 18.2 2.4 2.0 141 
281 E2 1 DH35 867.5 25.7 0.8 1135.5 30.9 91.9 15.2 1.5 18.2 10.0 7.1 3.3 13.6 16.9 2.4 1.5 141 
282 E2 1 DH36 862.0 33.4 0.9 909.5 29.3 83.5 18.9 1.7 25.7 11.0 7.8 2.5 15.6 18.1 2.3 1.7 142 
283 E2 1 DH37 693.3 33.2 0.8 855.9 26.4 90.2 16.0 1.3 16.4 12.4 7.4 2.8 15.7 18.5 2.5 1.8 141 
284 E2 1 DH38 805.7 34.2 0.9 883.4 27.3 86.5 16.3 1.4 18.6 11.3 7.2 2.2 15.6 17.8 2.5 1.9 141 
285 E2 1 DH39 932.9 36.3 1.1 882.6 29.4 87.4 15.5 1.3 15.7 12.2 6.4 2.3 15.3 17.6 2.7 2.1 140 
286 E2 1 DH40 760.5 33.5 1.0 780.0 30.6 100.8 14.9 1.3 15.3 11.5 7.8 2.0 15.8 17.8 2.3 1.9 142 
287 E2 1 DH41 873.5 31.3 0.9 922.4 31.6 89.9 16.9 1.4 19.5 11.6 7.1 2.7 15.4 18.1 2.6 1.7 144 
288 E2 1 DH42 905.8 35.3 0.9 1031.7 29.7 90.3 18.9 1.4 20.9 13.5 7.5 3.0 16.5 19.5 2.6 1.8 143 
289 E2 1 DH43 934.0 36.6 1.1 879.5 32.0 90.6 16.3 1.4 18.5 11.4 7.3 2.5 14.5 17.0 2.3 2.2 142 
290 E2 1 DH44 940.9 30.6 0.9 999.9 33.0 109.3 16.5 1.5 20.2 10.7 7.4 3.2 13.9 17.1 2.3 1.8 145 
291 E2 1 DH45 927.1 32.1 1.1 868.8 33.2 97.8 14.8 1.5 18.0 9.7 7.8 2.4 15.6 18.0 2.3 1.8 143 
292 E2 1 DH46 722.9 31.8 0.6 1147.5 28.8 94.3 17.8 1.5 21.8 11.5 7.7 3.5 14.7 18.2 2.4 1.7 145 
293 E2 1 DH47 831.5 34.4 1.0 835.7 31.0 92.8 14.2 1.4 15.7 10.1 7.1 2.4 14.8 17.2 2.4 2.0 142 
294 E2 1 DH49 774.5 39.3 1.0 771.5 30.8 91.6 18.7 1.7 25.3 10.9 7.5 2.7 15.3 18.0 2.4 2.2 145 
295 E2 1 DH50 889.9 30.6 0.9 989.8 30.3 104.4 14.0 1.4 15.2 10.2 6.9 2.3 15.1 17.4 2.5 1.8 143 
296 E2 1 DH51 725.8 38.1 0.8 917.6 26.4 91.4 17.7 1.4 20.2 12.3 7.6 2.8 15.8 18.6 2.4 2.0 144 
297 E2 1 DH52 862.1 34.0 0.8 1123.9 25.7 83.0 14.0 1.2 13.7 11.3 6.8 2.1 14.7 16.8 2.5 2.0 141 
298 E2 1 DH53 914.3 37.8 1.1 860.9 26.9 76.6 16.6 1.5 19.6 11.2 7.3 1.6 16.2 17.8 2.5 2.1 142 
299 E2 1 DH54 881.7 37.6 1.2 723.9 31.9 95.4 19.5 1.6 25.5 11.8 8.6 1.8 15.9 17.7 2.1 2.1 142 
300 E2 1 DH55 801.1 34.7 0.9 855.8 26.7 92.2 15.0 1.5 17.4 10.3 6.5 2.3 14.4 16.7 2.6 2.1 139 
301 E2 1 DH56 959.7 29.0 0.9 1026.4 32.2 87.3 17.7 1.4 20.2 12.2 6.6 2.6 14.0 16.6 2.5 1.7 143 
302 E2 1 DH57 892.0 34.0 1.0 938.9 27.2 93.8 15.6 1.5 18.4 10.4 6.6 2.3 15.7 18.0 2.7 1.9 142 
303 E2 1 DH58 683.4 30.5 0.8 898.0 30.5 94.3 13.8 1.4 14.8 10.2 6.4 2.6 12.7 15.3 2.4 2.0 141 
304 E2 1 DH59 910.8 37.1 0.9 961.8 26.6 91.7 13.6 1.2 13.4 11.0 6.8 1.7 15.0 16.7 2.5 2.2 140 
305 E2 1 DH60 983.9 40.6 1.1 903.4 30.0 90.5 16.4 1.4 18.3 11.6 7.7 2.2 15.1 17.3 2.3 2.3 141 
306 E2 1 DH61 870.6 32.5 0.8 1151.6 29.1 89.7 13.5 1.5 15.5 9.3 7.5 1.8 15.6 17.4 2.3 1.9 144 
307 E2 1 DH62 838.3 38.7 1.1 753.8 28.2 92.0 17.3 1.4 19.4 12.2 6.8 1.1 14.7 15.8 2.3 2.5 140 
308 E2 1 DH63 885.1 40.7 1.2 764.3 29.6 84.0 20.6 1.7 27.7 12.2 8.2 2.4 15.7 18.1 2.2 2.3 142 
309 E2 1 DH64 857.5 37.9 1.2 719.4 34.3 100.2 15.6 1.5 17.9 10.7 7.8 2.1 15.2 17.3 2.2 2.2 141 
310 E2 1 DH65 826.8 38.9 1.0 863.9 26.8 87.8 18.6 1.3 19.6 14.0 7.9 2.2 17.2 19.4 2.5 2.0 142 
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Table E.1 Continued. 
 

No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
311 E2 1 DH66 740.2 34.8 1.0 746.9 34.3 92.6 16.5 1.7 22.2 9.7 7.9 3.4 15.8 19.2 2.4 1.8 145 
312 E2 1 DH67 676.6 31.0 0.8 890.2 28.0 85.9 16.4 1.4 18.3 11.6 6.9 2.6 14.6 17.2 2.5 1.8 139 
313 E2 1 DH68 600.8 33.7 0.8 717.8 26.2 77.4 15.8 1.5 18.8 10.6 7.3 1.5 15.0 16.5 2.3 2.0 141 
314 E2 1 DH69 823.4 37.7 0.9 961.9 30.8 91.3 14.8 1.4 16.5 10.4 6.9 1.8 15.0 16.8 2.4 2.2 141 
315 E2 1 DH70 911.0 35.4 1.0 891.3 31.8 90.3 16.8 1.5 20.1 11.2 7.7 2.7 16.5 19.2 2.5 1.8 144 
316 E2 1 DH71 707.0 39.8 1.1 653.5 29.2 86.1 16.4 1.5 19.1 11.2 7.9 1.5 15.8 17.3 2.2 2.3 144 
317 E2 1 DH72 835.5 36.8 0.8 985.3 30.7 85.1 14.4 1.6 17.8 9.3 7.5 2.7 16.2 18.9 2.5 1.9 144 
318 E2 1 DH73 832.5 38.8 0.9 880.0 31.2 91.5 16.4 1.7 21.8 9.7 7.6 2.1 17.1 19.2 2.5 2.0 145 
319 E2 1 DH75 901.8 33.2 0.9 971.7 33.5 97.3 18.0 1.4 19.6 13.2 7.3 2.4 15.1 17.5 2.4 1.9 142 
320 E2 1 DH76 837.7 30.6 0.8 1035.5 28.7 84.5 17.1 1.4 19.8 11.8 6.8 2.6 14.2 16.8 2.5 1.8 142 
321 E2 1 DH77 926.0 32.7 0.9 1007.7 31.9 94.0 18.3 1.4 20.0 13.4 8.5 3.2 16.9 20.1 2.4 1.5 141 
322 E2 1 DH78 764.6 35.8 0.9 849.6 28.3 88.0 14.4 1.3 14.7 11.2 7.4 2.5 15.6 18.1 2.5 2.0 140 
323 E2 1 DH79 776.5 35.5 1.0 785.1 30.2 92.9 16.9 1.3 17.8 12.7 6.9 2.2 14.4 16.6 2.4 2.1 141 
324 E2 1 DH80 873.5 38.9 1.1 766.2 29.2 87.4 17.1 1.4 18.5 12.5 7.1 1.5 15.6 17.1 2.4 2.3 140 
325 E2 1 DH81 711.7 37.6 1.1 639.9 30.8 90.9 15.0 1.4 17.4 10.6 7.0 2.0 15.9 17.9 2.6 1.9 141 
326 E2 1 DH82 730.8 37.6 1.0 767.6 27.5 91.2 13.5 1.4 14.8 9.8 7.3 1.7 15.4 17.1 2.3 2.2 140 
327 E2 1 DH83 986.3 30.4 1.0 971.8 35.8 98.2 16.3 1.7 22.4 9.5 6.8 3.2 13.5 16.7 2.5 1.8 143 
328 E2 1 DH84 997.7 29.8 0.9 1111.0 31.0 87.0 16.6 1.4 17.8 12.3 7.0 2.7 12.8 15.5 2.2 1.9 140 
329 E2 1 DH85 864.6 31.0 0.8 1026.8 29.5 87.5 15.7 1.4 17.9 11.1 7.1 2.9 14.9 17.8 2.5 1.7 141 
330 E2 1 DH86 698.5 31.8 0.9 804.7 29.7 95.9 14.7 1.3 15.6 11.0 6.4 2.1 14.8 16.9 2.6 1.9 142 
331 E2 1 DH87 978.5 36.6 0.9 1038.7 25.8 89.6 17.2 1.4 19.1 12.2 6.7 1.8 14.8 16.6 2.5 2.2 139 
332 E2 1 DH89 829.1 29.3 0.9 937.9 32.2 93.6 14.8 1.5 17.3 10.0 7.0 2.7 15.1 17.8 2.6 1.6 143 
333 E2 1 DH90 867.5 33.6 1.0 882.5 29.6 86.1 16.6 1.5 19.4 11.3 7.4 3.0 15.2 18.2 2.4 1.9 140 
334 E2 1 DH91 809.0 36.2 1.0 803.4 29.5 92.8 17.1 1.4 18.3 12.6 7.0 2.5 15.1 17.6 2.5 2.1 141 
335 E2 1 DH92 865.5 31.8 0.9 966.0 29.8 84.8 16.8 1.5 19.8 11.2 7.4 2.4 15.7 18.1 2.5 1.8 144 
336 E2 1 DH93 877.7 39.8 1.0 853.8 . 86.1 17.7 1.4 19.7 12.6 7.6 2.0 16.7 18.7 2.5 2.1 140 
337 E2 1 DH94 849.3 29.6 0.9 962.9 31.4 100.1 12.5 1.4 13.5 9.2 7.2 2.4 15.5 17.9 2.5 1.6 142 
338 E2 1 DH95 839.4 35.3 1.0 803.2 33.2 88.1 14.9 1.5 17.6 10.0 7.7 2.0 14.8 16.8 2.2 2.1 140 
339 E2 1 DH96 1089.0 31.8 1.1 1030.2 34.5 102.2 14.9 1.3 15.8 11.1 7.1 2.5 13.4 15.9 2.3 2.0 141 
340 E2 1 DH97 879.3 34.9 1.0 881.0 32.4 88.0 15.3 1.6 19.3 9.6 7.0 2.0 15.3 17.3 2.5 2.0 141 
341 E2 1 DH98 826.9 35.5 1.1 738.3 33.0 92.0 16.9 1.5 19.5 11.6 7.3 2.3 13.6 15.9 2.2 2.2 139 
342 E2 1 DH99 751.5 40.5 1.1 703.0 28.7 85.5 14.9 1.6 18.9 9.4 7.5 1.3 16.0 17.3 2.3 2.3 143 
343 E2 1 DH100 815.5 42.2 0.9 910.2 25.0 80.2 14.4 1.4 16.4 10.0 7.1 1.9 16.7 18.6 2.6 2.3 140 
344 E2 1 DH101 844.9 39.2 1.0 855.2 26.5 94.4 13.4 1.4 14.6 9.8 7.4 1.6 15.7 17.3 2.3 2.3 142 
345 E2 1 DH102 822.3 39.7 0.9 880.4 27.7 99.0 15.6 1.5 18.9 10.2 7.7 3.0 16.1 19.1 2.5 2.1 145 
346 E2 1 DH103 630.4 32.3 0.9 677.8 30.1 85.2 14.6 1.7 19.5 8.7 7.4 2.1 15.2 17.3 2.4 1.9 146 
347 E2 1 DH104 836.4 41.3 1.1 777.3 28.1 98.3 16.5 1.4 18.4 11.7 7.2 2.1 16.3 18.4 2.5 2.3 144 
348 E2 1 DH105 740.2 33.0 0.9 850.8 27.5 86.2 15.4 1.4 16.8 11.2 6.2 2.2 14.8 17.0 2.7 1.9 141 
349 E2 1 DH106 932.8 40.9 1.1 840.4 29.0 93.4 16.2 1.6 20.2 10.4 8.0 2.3 16.5 18.8 2.3 2.2 142 
350 E2 1 DH107 908.7 31.2 0.8 1079.2 29.0 97.2 12.7 1.3 12.9 9.8 7.0 2.3 13.6 15.9 2.3 2.0 140 
351 E2 1 DH108 855.0 29.7 0.7 1141.5 27.5 87.0 17.3 1.5 20.2 11.8 6.3 2.7 14.1 16.8 2.7 1.8 141 
352 E2 1 DH109 834.3 34.7 0.9 897.1 26.9 91.0 16.2 1.4 18.2 11.5 7.7 2.5 15.5 18.0 2.4 1.9 143 
353 E2 1 DH110 804.0 38.7 1.0 802.4 28.0 101.2 13.5 1.4 14.5 10.1 8.7 2.1 16.7 18.8 2.2 2.1 140 
354 E2 1 DH111 680.8 38.3 1.0 684.3 27.7 93.3 17.2 1.4 18.8 12.4 8.0 1.7 16.1 17.8 2.2 2.2 140 
355 E2 1 DH112 777.1 40.0 1.0 749.4 28.0 91.6 15.6 1.4 17.8 10.9 7.8 2.0 16.6 18.6 2.4 2.1 141 
356 E2 1 DH113 821.5 32.3 0.9 885.2 29.7 99.0 16.1 1.4 17.7 11.5 6.6 1.7 14.8 16.5 2.5 1.9 141 
357 E2 1 DH114 766.4 38.9 1.0 739.7 28.3 80.0 16.5 1.5 19.6 11.0 7.6 1.3 15.5 16.8 2.2 2.3 142 
358 E2 1 DH115 897.9 27.2 0.8 1097.6 30.7 99.1 13.1 1.5 15.2 9.0 7.1 3.2 14.3 17.5 2.5 1.6 141 
359 E2 1 DH116 800.6 25.0 0.8 1002.0 33.0 94.2 13.4 1.3 14.0 10.3 6.5 3.1 12.9 16.0 2.5 1.6 142 
360 E2 1 DH117 962.3 32.4 1.0 997.2 30.1 87.1 15.7 1.5 18.5 10.6 7.2 1.6 14.3 15.9 2.3 2.0 141 
361 E2 1 DH119 811.4 34.4 1.1 752.0 31.8 90.6 17.2 1.6 22.2 10.6 8.0 2.8 15.3 18.1 2.3 1.9 143 
362 E2 1 DH120 821.1 28.4 0.7 1197.0 29.9 83.4 18.2 1.3 19.3 13.7 6.8 3.2 14.0 17.2 2.5 1.7 142 
363 E2 1 DH121 678.5 30.7 0.8 807.7 30.0 81.8 16.1 1.5 18.7 11.0 7.1 3.6 15.0 18.6 2.6 1.6 142 
364 E2 1 DH122 671.7 34.2 0.6 1088.7 15.8 99.1 16.7 1.5 19.7 11.2 6.4 2.5 13.8 16.3 2.6 2.1 146 
365 E2 1 DH123 726.4 35.6 0.9 809.9 26.0 94.1 17.5 1.3 17.4 13.9 7.8 2.7 16.1 18.8 2.4 1.9 144 
366 E2 1 DH124 849.0 36.5 0.9 907.1 28.3 85.4 17.8 1.4 20.1 12.4 8.0 2.3 15.8 18.1 2.3 2.0 144 
367 E2 1 DH125 808.3 32.4 0.9 911.3 28.0 86.5 13.5 1.4 15.1 9.7 7.0 2.3 14.0 16.3 2.3 2.0 140 
368 E2 1 DH126 . 39.2 0.9 . 26.2 81.5 14.4 1.5 16.9 9.8 7.3 1.4 15.8 17.2 2.3 2.3 142 
369 E2 1 DH128 807.7 29.2 0.7 1115.5 26.7 94.2 19.4 1.3 19.1 15.6 6.7 3.0 14.3 17.3 2.6 1.7 142 
370 E2 1 DH129 707.7 36.9 1.0 679.8 28.3 96.2 12.7 1.2 12.5 10.2 6.8 2.2 14.8 17.0 2.5 2.2 140 
371 E2 1 DH130 913.9 36.0 1.0 908.5 29.6 89.3 14.8 1.5 17.4 10.0 7.8 2.3 15.3 17.6 2.3 2.0 141 
372 E2 1 DH131 686.3 30.9 1.0 721.7 34.7 90.6 18.8 1.7 24.9 11.5 7.8 4.0 15.5 19.5 2.5 1.6 145 

 
 
 



 

 
 

167 
 

Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
373 E2 2 DH1 929.6 38.8 1.0 914.1 26.6 93.1 15.2 1.3 16.1 11.4 7.3 1.4 15.6 17.0 2.3 2.5 141 
374 E2 2 DH3 804.7 37.5 1.2 686.6 30.2 92.6 14.5 1.5 17.1 9.7 6.8 1.8 15.0 16.8 2.5 2.5 142 
375 E2 2 DH4 693.9 29.3 0.8 898.9 29.4 80.2 15.7 1.6 19.9 9.7 7.0 3.2 15.0 18.2 2.6 1.9 144 
376 E2 2 DH5 684.8 40.5 1.1 597.0 27.9 82.7 14.0 1.5 16.1 9.6 8.0 1.4 15.8 17.2 2.2 2.6 141 
377 E2 2 DH6 773.9 38.1 1.1 714.6 29.4 90.4 14.1 1.3 14.6 10.8 7.2 1.7 15.3 17.0 2.4 2.5 140 
378 E2 2 DH7 718.7 37.0 1.0 689.1 32.5 81.1 15.7 1.5 19.5 10.1 7.1 2.8 15.3 18.1 2.6 2.4 143 
379 E2 2 DH8 695.1 41.0 1.2 575.4 27.7 85.8 14.8 1.4 16.0 10.8 7.5 1.7 15.0 16.7 2.2 2.7 141 
380 E2 2 DH9 636.5 36.4 1.2 532.6 31.1 83.3 15.7 1.5 19.2 10.3 7.1 2.7 15.1 17.8 2.5 2.4 142 
381 E2 2 DH11 977.2 39.4 1.3 742.6 33.6 108.5 15.2 1.2 14.9 12.3 8.7 1.5 16.3 17.8 2.0 2.4 141 
382 E2 2 DH12 586.9 38.7 0.9 623.7 27.6 70.2 12.7 1.8 17.5 7.2 6.4 1.2 15.2 16.4 2.6 2.5 142 
383 E2 2 DH13 577.5 44.0 1.1 512.9 25.0 82.1 15.0 1.3 15.4 11.6 7.6 1.6 17.5 19.1 2.5 2.5 141 
384 E2 2 DH14 878.4 33.7 1.1 805.2 32.3 87.5 17.6 1.5 21.1 11.6 7.5 2.5 15.9 18.4 2.5 2.1 143 
385 E2 2 DH15 813.8 31.2 0.9 940.8 28.0 87.3 14.4 1.3 15.2 10.8 7.1 1.9 14.6 16.5 2.3 2.1 141 
386 E2 2 DH16 732.6 30.1 0.8 965.2 28.5 87.5 14.8 1.5 17.5 10.0 6.7 3.1 13.3 16.4 2.5 2.3 142 
387 E2 2 DH17 730.2 39.1 1.3 567.8 33.1 89.6 16.0 1.4 17.6 11.5 7.7 2.0 15.2 17.2 2.2 2.6 139 
388 E2 2 DH18 781.5 40.2 1.2 644.3 30.7 89.4 14.4 1.9 21.7 7.6 7.8 2.4 16.2 18.6 2.4 2.5 146 
389 E2 2 DH19 738.5 34.5 1.1 661.8 30.3 78.4 14.5 1.3 15.3 10.8 6.5 1.6 13.3 14.9 2.3 2.6 139 
390 E2 2 DH20 739.5 41.9 1.0 704.9 28.8 80.8 16.8 1.6 21.9 10.2 7.4 2.0 16.1 18.1 2.5 2.6 143 
391 E2 2 DH21 822.5 31.6 1.0 790.1 31.8 90.6 15.1 1.4 16.3 11.1 7.2 3.2 14.0 17.2 2.4 2.3 142 
392 E2 2 DH22 847.0 42.5 1.3 663.8 30.5 101.1 15.4 1.5 17.8 10.6 8.0 1.6 17.5 19.1 2.4 2.4 141 
393 E2 2 DH23 820.1 39.4 1.1 765.0 27.0 91.8 17.0 1.3 17.4 13.3 6.6 1.7 14.6 16.3 2.5 2.7 141 
394 E2 2 DH24 880.0 37.4 1.1 820.9 28.7 85.3 15.4 1.5 17.9 10.5 7.0 1.3 14.7 16.0 2.3 2.5 141 
395 E2 2 DH25 705.3 36.2 0.9 768.3 29.3 78.5 13.5 1.3 13.9 10.3 7.0 2.2 15.3 17.5 2.5 2.4 138 
396 E2 2 DH26 815.4 35.5 0.9 951.4 29.4 82.1 14.8 1.5 17.1 10.1 7.0 1.9 14.9 16.8 2.4 2.4 141 
397 E2 2 DH27 667.1 34.9 1.0 650.2 30.2 87.2 13.8 1.2 13.4 11.2 6.4 1.8 14.0 15.8 2.5 2.5 141 
398 E2 2 DH28 729.9 32.7 1.0 750.2 30.1 87.6 13.4 1.3 13.5 10.6 6.5 2.0 13.7 15.7 2.4 2.4 141 
399 E2 2 DH29 816.7 31.0 0.8 970.0 28.7 81.4 12.9 1.4 13.9 9.5 7.1 2.5 15.0 17.5 2.5 2.1 141 
400 E2 2 DH30 893.2 31.8 1.1 814.2 35.4 90.9 16.9 1.5 20.4 11.1 7.2 2.5 15.9 18.4 2.6 2.0 143 
401 E2 2 DH31 632.8 36.3 1.0 664.8 26.0 82.7 14.9 1.4 16.2 10.9 7.4 1.7 15.1 16.8 2.3 2.4 140 
402 E2 2 DH32 863.6 31.2 0.8 1131.8 26.2 87.8 14.0 1.4 15.5 10.0 6.6 3.1 14.8 17.9 2.7 2.1 146 
403 E2 2 DH33 731.3 43.5 0.8 878.0 27.3 93.6 18.8 1.7 25.6 11.0 7.7 2.8 17.4 20.2 2.6 2.5 147 
404 E2 2 DH34 733.0 42.8 1.2 588.3 28.5 95.3 15.3 1.4 17.0 10.8 7.7 1.5 16.9 18.4 2.4 2.5 141 
405 E2 2 DH35 752.0 34.3 1.0 749.7 30.9 88.2 13.4 1.4 14.5 9.9 7.2 2.2 14.7 16.9 2.4 2.3 141 
406 E2 2 DH36 867.6 37.0 1.0 844.8 29.3 84.3 17.6 1.7 23.0 10.6 8.4 2.3 16.9 19.2 2.3 2.2 143 
407 E2 2 DH37 708.0 40.6 1.0 709.5 25.2 90.3 15.2 1.4 16.5 11.2 7.5 2.2 16.4 18.6 2.5 2.5 141 
408 E2 2 DH38 995.7 37.4 1.0 994.7 27.1 82.9 14.8 1.4 16.2 10.8 7.4 2.2 16.2 18.4 2.5 2.3 141 
409 E2 2 DH39 1098.1 31.6 0.9 1180.7 28.8 95.7 18.5 1.4 20.7 13.3 6.3 3.0 14.6 17.6 2.8 2.2 140 
410 E2 2 DH40 744.0 36.5 1.1 674.6 29.3 100.4 12.8 1.2 12.6 10.4 8.2 2.0 17.0 19.0 2.3 2.1 143 
411 E2 2 DH41 696.9 33.4 0.9 760.0 26.8 85.2 13.0 1.2 13.0 10.4 7.0 1.9 15.0 16.9 2.4 2.2 142 
412 E2 2 DH42 918.7 43.5 1.3 696.0 29.6 94.3 16.1 1.3 17.1 11.9 7.9 1.4 18.0 19.4 2.4 2.4 142 
413 E2 2 DH43 845.4 37.9 1.2 727.6 30.8 81.8 14.3 1.3 14.8 11.0 6.9 2.0 14.4 16.4 2.4 2.6 140 
414 E2 2 DH44 815.7 39.0 1.4 604.2 32.6 100.0 15.4 1.5 18.1 10.3 7.9 1.4 15.4 16.8 2.1 2.5 141 
415 E2 2 DH45 735.2 34.4 1.2 618.3 33.6 89.1 14.1 1.5 16.8 9.4 7.8 1.5 15.7 17.2 2.2 2.2 140 
416 E2 2 DH46 591.8 37.8 0.9 624.2 26.6 89.0 17.0 1.5 20.8 11.0 8.1 2.3 15.4 17.7 2.2 2.5 142 
417 E2 2 DH47 837.5 32.3 0.9 916.3 28.9 90.3 14.0 1.4 15.8 9.9 6.9 2.1 14.1 16.2 2.3 2.3 142 
418 E2 2 DH49 642.3 36.3 1.1 588.7 31.5 81.6 15.5 1.5 18.6 10.2 7.2 2.2 14.8 17.0 2.4 2.4 141 
419 E2 2 DH50 740.6 31.3 1.0 755.7 29.8 92.3 12.8 1.2 12.5 10.5 6.9 1.9 14.9 16.8 2.4 2.1 142 
420 E2 2 DH51 717.5 44.4 1.1 666.2 25.5 90.0 16.3 1.4 18.3 11.5 8.0 1.6 16.6 18.2 2.3 2.7 142 
421 E2 2 DH52 943.3 35.8 0.8 1257.7 24.3 88.2 14.4 1.3 14.8 11.2 6.9 1.8 15.1 16.9 2.4 2.4 142 
422 E2 2 DH53 914.8 36.1 0.9 984.7 28.2 73.6 13.7 1.4 15.2 9.9 6.9 1.8 15.5 17.3 2.5 2.3 141 
423 E2 2 DH54 786.2 39.6 1.3 620.5 32.4 84.2 19.3 1.5 22.7 12.9 8.2 1.6 15.0 16.6 2.0 2.6 142 
424 E2 2 DH55 732.7 37.4 1.1 691.2 28.0 90.7 14.7 1.4 16.0 10.7 6.5 1.8 14.2 16.0 2.5 2.6 141 
425 E2 2 DH56 665.9 35.8 1.0 640.3 28.5 85.3 11.9 1.3 12.4 9.1 7.0 2.1 15.0 17.1 2.4 2.4 141 
426 E2 2 DH57 783.2 31.7 0.9 839.5 28.8 88.8 14.3 1.5 16.7 9.6 6.3 1.9 15.1 17.0 2.7 2.1 142 
427 E2 2 DH58 736.4 35.7 0.9 776.0 30.3 89.2 14.7 1.4 16.8 10.2 6.8 2.0 14.0 16.0 2.4 2.5 141 
428 E2 2 DH59 837.7 42.0 1.1 740.0 27.1 81.3 13.5 1.2 12.6 11.6 6.9 0.8 15.8 16.6 2.4 2.7 140 
429 E2 2 DH60 613.1 38.6 1.2 520.9 29.5 81.2 11.8 1.3 11.9 9.4 7.3 2.5 15.0 17.5 2.4 2.6 137 
430 E2 2 DH61 649.7 32.0 0.9 692.7 29.8 79.6 12.6 1.4 13.8 9.1 7.1 1.9 14.3 16.2 2.3 2.2 142 
431 E2 2 DH62 675.4 36.5 1.0 649.4 28.3 82.9 15.6 1.3 16.5 11.7 6.5 1.9 13.7 15.6 2.4 2.7 139 
432 E2 2 DH63 762.6 45.7 1.4 550.6 30.3 90.4 16.4 1.6 20.4 10.5 8.5 1.3 16.7 18.0 2.1 2.7 141 
433 E2 2 DH64 903.8 34.4 1.0 864.9 33.1 103.1 16.0 1.5 18.5 10.9 7.7 2.3 15.4 17.7 2.3 2.2 142 
434 E2 2 DH65 884.3 43.6 1.2 755.1 26.5 94.8 18.0 1.4 20.1 12.8 8.4 1.8 18.0 19.8 2.4 2.4 142 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
435 E2 2 DH66 628.1 38.3 1.3 490.3 32.8 83.8 15.6 1.5 18.7 10.3 8.0 2.0 16.6 18.6 2.3 2.3 143 
436 E2 2 DH67 574.4 34.3 0.9 658.7 27.0 81.9 14.5 1.2 14.1 11.8 6.7 1.9 15.1 17.0 2.5 2.3 139 
437 E2 2 DH68 473.2 32.5 0.9 551.5 27.2 78.7 16.2 1.4 17.6 12.0 6.9 1.7 14.3 16.0 2.3 2.3 141 
438 E2 2 DH69 694.3 42.3 1.2 603.2 29.4 80.1 13.8 1.4 14.8 10.2 6.8 1.3 15.5 16.8 2.5 2.7 140 
439 E2 2 DH70 788.9 35.5 1.0 795.3 31.3 91.4 14.9 1.5 17.4 10.1 7.7 2.7 16.2 18.9 2.5 2.2 143 
440 E2 2 DH71 708.5 39.0 1.1 628.1 29.9 84.1 15.3 1.4 17.2 10.7 7.7 1.6 15.7 17.3 2.3 2.5 141 
441 E2 2 DH72 610.0 35.5 1.0 597.4 28.7 84.1 14.2 1.5 17.1 9.4 7.3 1.9 16.2 18.1 2.5 2.2 143 
442 E2 2 DH73 599.3 36.9 1.0 594.6 28.1 82.8 14.8 1.5 17.7 9.7 7.2 1.9 15.9 17.8 2.5 2.3 143 
443 E2 2 DH75 822.2 32.3 0.9 871.9 32.3 89.2 13.1 1.3 13.0 10.4 6.8 2.4 13.7 16.1 2.4 2.4 141 
444 E2 2 DH76 693.5 34.0 1.0 689.4 28.5 76.9 14.3 1.4 16.0 10.1 6.7 2.1 14.3 16.4 2.4 2.4 140 
445 E2 2 DH77 827.4 32.6 1.0 823.3 30.3 88.0 18.0 1.3 18.1 14.2 8.0 2.8 15.9 18.7 2.4 2.0 139 
446 E2 2 DH78 798.5 40.4 1.1 696.8 30.4 88.7 14.1 1.3 14.5 10.8 7.8 1.5 16.5 18.0 2.3 2.4 139 
447 E2 2 DH79 847.6 37.5 1.1 774.8 29.3 96.4 15.2 1.4 16.4 11.1 7.2 2.1 14.9 17.0 2.4 2.5 142 
448 E2 2 DH80 797.6 37.2 1.1 723.8 29.1 87.2 15.2 1.3 15.8 11.6 7.0 1.9 15.3 17.2 2.5 2.4 142 
449 E2 2 DH81 690.7 35.6 1.1 646.7 30.6 79.2 17.2 1.7 23.6 9.9 7.2 1.1 16.5 17.6 2.4 2.2 141 
450 E2 2 DH82 755.0 34.4 0.9 885.1 26.7 88.8 12.6 1.4 14.4 8.9 7.4 2.1 15.0 17.1 2.3 2.3 141 
451 E2 2 DH83 733.4 33.3 1.1 652.0 32.4 96.6 13.1 1.3 13.1 10.4 6.6 2.6 13.3 15.9 2.4 2.5 140 
452 E2 2 DH84 857.6 35.8 1.1 760.3 33.3 87.7 14.4 1.3 14.8 11.1 7.0 1.6 13.8 15.4 2.2 2.6 140 
453 E2 2 DH85 764.3 37.1 1.1 683.7 27.4 79.8 14.8 1.3 15.6 11.3 7.0 1.4 15.1 16.5 2.4 2.5 141 
454 E2 2 DH86 852.1 34.1 0.9 901.7 31.5 96.7 15.3 1.4 16.5 11.2 6.6 2.0 15.0 17.0 2.6 2.3 144 
455 E2 2 DH87 822.5 43.2 1.3 650.7 27.2 89.7 13.5 1.3 13.5 10.7 7.0 1.0 15.3 16.3 2.3 2.8 138 
456 E2 2 DH89 581.9 32.2 1.1 548.9 31.4 82.0 13.1 1.4 14.2 9.5 6.7 2.0 14.6 16.6 2.5 2.2 141 
457 E2 2 DH90 676.0 36.9 1.2 575.8 30.1 77.2 14.9 1.3 15.7 11.2 7.5 2.5 15.5 18.0 2.4 2.4 139 
458 E2 2 DH91 656.0 37.6 1.1 577.0 30.5 89.8 14.8 1.4 15.9 10.9 6.7 2.2 15.1 17.3 2.6 2.5 140 
459 E2 2 DH92 715.0 34.3 0.9 753.5 26.9 81.9 15.9 1.4 17.1 11.8 6.9 1.8 14.8 16.6 2.4 2.3 140 
460 E2 2 DH93 663.1 44.5 1.2 535.7 25.6 80.9 14.9 1.3 14.9 11.8 7.5 1.4 16.7 18.1 2.4 2.6 140 
461 E2 2 DH94 795.2 28.4 0.9 903.7 30.1 90.3 12.5 1.3 13.3 9.4 6.9 2.3 14.6 16.9 2.5 1.9 140 
462 E2 2 DH95 958.7 35.3 1.0 958.7 31.7 91.3 16.0 1.3 16.9 12.0 8.0 2.0 15.3 17.3 2.2 2.3 142 
463 E2 2 DH96 971.1 29.2 1.0 944.6 34.6 96.0 14.0 1.3 14.5 10.7 6.7 2.6 12.8 15.4 2.3 2.3 141 
464 E2 2 DH97 831.8 38.1 1.1 736.7 33.0 90.1 15.6 1.6 19.2 10.1 7.3 1.4 15.6 17.0 2.3 2.4 141 
465 E2 2 DH98 729.1 44.4 1.4 519.3 32.1 84.3 13.6 1.4 14.8 10.0 7.8 1.0 15.2 16.2 2.1 2.9 138 
466 E2 2 DH99 704.9 33.8 0.9 771.3 27.7 80.5 16.4 1.5 19.1 11.2 6.8 1.7 14.5 16.2 2.4 2.3 143 
467 E2 2 DH100 648.2 48.0 1.2 544.7 25.3 74.6 12.5 1.4 13.4 9.2 7.3 1.1 16.9 18.0 2.5 2.8 140 
468 E2 2 DH101 872.9 41.4 1.1 823.5 27.7 91.2 17.8 1.6 22.3 11.2 8.0 1.4 16.3 17.7 2.2 2.5 141 
469 E2 2 DH102 650.9 43.5 1.1 589.1 28.3 88.5 15.4 1.6 19.7 9.6 8.1 1.8 17.0 18.8 2.3 2.6 144 
470 E2 2 DH103 539.0 32.5 1.0 531.5 30.0 77.5 13.0 1.5 15.7 8.5 7.2 2.1 15.0 17.1 2.4 2.2 145 
471 E2 2 DH104 762.3 37.7 1.0 798.2 27.6 95.6 15.6 1.4 17.7 10.9 7.0 2.8 15.5 18.3 2.6 2.4 145 
472 E2 2 DH105 659.9 38.0 1.1 618.5 27.2 88.2 15.5 1.4 17.8 10.8 6.8 1.8 16.2 18.0 2.7 2.3 142 
473 E2 2 DH106 810.6 42.4 1.2 656.3 29.4 81.7 14.9 1.5 17.6 10.0 7.7 2.1 16.6 18.7 2.4 2.6 141 
474 E2 2 DH107 758.2 32.0 0.9 870.4 28.9 90.0 12.4 1.2 12.0 10.2 6.8 2.2 13.7 15.9 2.3 2.3 139 
475 E2 2 DH108 672.9 34.7 1.0 689.4 27.0 87.9 15.1 1.4 16.4 11.2 6.6 2.3 14.6 16.9 2.6 2.4 139 
476 E2 2 DH109 570.9 30.5 0.8 675.6 27.2 80.0 14.3 1.4 15.3 10.6 7.0 2.6 14.5 17.1 2.5 2.1 140 
477 E2 2 DH110 617.6 38.8 1.1 554.4 27.2 90.4 12.2 1.0 9.2 12.8 8.0 1.9 16.1 18.0 2.3 2.4 139 
478 E2 2 DH111 642.9 39.2 1.1 568.5 27.9 89.6 15.4 1.3 16.3 11.5 8.0 1.9 15.8 17.7 2.2 2.5 141 
479 E2 2 DH112 574.3 38.7 1.1 500.3 27.8 78.7 13.8 1.4 15.1 10.0 7.4 2.2 15.8 18.0 2.4 2.5 140 
480 E2 2 DH113 686.5 35.1 1.1 638.0 30.8 84.6 15.3 1.3 15.7 11.8 6.5 1.6 14.2 15.8 2.5 2.5 140 
481 E2 2 DH114 773.9 36.5 1.0 765.5 28.4 74.0 14.6 1.5 17.0 9.9 7.3 1.3 15.2 16.5 2.3 2.4 141 
482 E2 2 DH115 669.1 31.7 1.0 679.3 29.3 88.7 13.0 1.3 13.9 9.7 7.0 2.4 14.1 16.5 2.4 2.2 140 
483 E2 2 DH116 730.3 30.2 0.9 772.8 30.4 91.2 13.3 1.4 14.8 9.4 6.5 2.4 13.1 15.5 2.4 2.3 141 
484 E2 2 DH117 666.0 34.1 1.0 663.3 29.8 80.6 13.0 1.4 13.9 9.6 7.3 1.4 14.2 15.6 2.2 2.4 139 
485 E2 2 DH119 761.8 39.3 1.3 608.5 31.8 99.4 17.3 1.6 21.9 10.8 8.3 2.4 16.7 19.1 2.3 2.3 143 
486 E2 2 DH120 805.8 33.9 0.9 923.0 29.7 87.8 16.0 1.4 17.1 11.8 7.1 2.2 15.7 17.9 2.5 2.2 142 
487 E2 2 DH121 759.2 35.5 1.1 712.9 29.0 89.1 13.4 1.4 15.4 9.3 7.2 2.8 15.4 18.2 2.5 2.3 141 
488 E2 2 DH122 581.9 35.8 0.9 641.6 27.7 87.9 13.3 1.3 13.8 10.2 6.5 1.6 14.5 16.1 2.5 2.5 142 
489 E2 2 DH123 555.1 34.4 0.9 602.1 25.4 91.4 14.1 1.1 12.9 12.2 7.5 2.5 14.9 17.4 2.3 2.3 143 
490 E2 2 DH124 626.2 35.3 0.9 722.2 26.0 79.8 15.3 1.3 15.9 11.7 7.8 1.9 15.1 17.0 2.2 2.3 142 
491 E2 2 DH125 863.3 31.1 0.9 978.7 28.7 84.7 12.5 1.4 13.8 9.0 6.7 2.7 13.8 16.5 2.5 2.2 141 
492 E2 2 DH126 775.2 43.0 1.1 692.7 26.7 82.8 13.8 1.5 16.7 9.0 7.9 1.4 17.0 18.4 2.3 2.5 144 
493 E2 2 DH128 731.9 37.1 1.0 721.8 27.4 84.5 17.9 1.3 18.3 13.8 6.6 2.2 14.8 17.0 2.6 2.5 142 
494 E2 2 DH129 697.2 37.9 1.2 601.6 29.8 86.7 13.9 1.3 14.1 11.0 6.7 2.2 14.4 16.6 2.5 2.6 140 
495 E2 2 DH130 794.7 32.0 0.9 893.9 28.8 83.3 13.6 1.4 14.6 10.0 7.3 2.5 14.8 17.3 2.4 2.2 141 
496 E2 2 DH131 689.8 35.9 1.2 576.2 36.6 89.4 16.7 1.8 23.2 9.5 8.1 3.2 16.5 19.7 2.4 2.2 144 
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No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
497 E3 1 DH1 662.5 47.7 1.5 439.9 31.3 98.3 14.6 1.5 17.0 9.9 7.0 0.4 15.5 15.9 2.3 3.1 126 
498 E3 1 DH3 810.1 48.3 1.5 527.1 30.5 99.6 17.7 1.8 25.1 9.9 7.2 1.7 16.1 17.8 2.5 3.0 130 
499 E3 1 DH4 794.3 44.1 1.4 561.8 29.9 90.3 18.3 1.9 28.2 9.4 7.1 1.6 15.0 16.6 2.4 2.9 129 
500 E3 1 DH5 830.1 43.9 1.3 648.0 31.0 91.8 17.4 1.6 22.6 10.6 7.7 1.8 14.8 16.6 2.1 3.0 129 
501 E3 1 DH6 847.7 47.5 1.5 557.0 32.6 99.2 17.5 1.6 22.8 10.6 7.3 1.1 15.4 16.5 2.3 3.1 123 
502 E3 1 DH7 491.5 38.6 1.2 408.3 31.0 92.4 17.0 1.7 23.4 9.8 6.6 3.1 14.2 17.3 2.6 2.7 133 
503 E3 1 DH8 614.6 51.5 1.6 373.6 30.7 103.1 18.7 1.7 24.5 11.3 7.7 1.5 15.2 16.7 2.2 3.4 127 
504 E3 1 DH9 655.1 43.8 1.4 454.6 32.8 97.4 20.0 1.9 29.9 10.7 7.4 2.4 16.2 18.6 2.5 2.7 130 
505 E3 1 DH11 611.3 49.4 1.9 330.1 35.1 115.5 19.7 1.6 24.3 12.8 8.6 1.4 15.5 16.9 2.0 3.2 125 
506 E3 1 DH12 582.1 42.5 1.4 408.5 32.5 87.0 16.7 1.7 22.9 9.6 7.0 1.5 14.1 15.6 2.2 2.9 128 
507 E3 1 DH13 548.3 47.8 1.4 387.4 . 93.9 20.0 1.7 27.2 11.6 7.1 2.2 15.9 18.1 2.6 2.6 130 
508 E3 1 DH14 475.6 38.8 1.3 363.6 32.1 95.9 16.6 1.6 20.9 10.7 7.0 3.2 15.3 18.5 2.7 2.1 129 
509 E3 1 DH15 774.6 37.5 1.3 597.7 31.9 91.0 14.8 1.5 17.3 10.0 7.1 1.8 13.8 15.6 2.2 2.4 122 
510 E3 1 DH16 834.4 42.1 1.5 573.5 33.0 95.1 15.5 1.7 20.5 9.3 6.9 1.5 13.8 15.3 2.2 2.8 124 
511 E3 1 DH17 790.0 42.5 1.5 516.3 32.7 98.9 17.8 1.6 22.7 11.0 7.4 1.8 14.3 16.1 2.2 2.6 124 
512 E3 1 DH18 605.8 42.7 1.4 435.1 31.4 94.4 18.7 2.2 33.5 8.3 7.5 1.9 15.6 17.5 2.3 2.4 135 
513 E3 1 DH19 469.2 41.2 1.4 334.7 34.6 99.2 16.4 1.8 23.3 9.2 6.6 1.5 13.3 14.8 2.3 2.8 127 
514 E3 1 DH20 808.3 50.7 1.6 495.6 30.1 91.5 20.4 1.9 31.4 10.5 7.8 1.5 16.6 18.1 2.3 2.8 130 
515 E3 1 DH21 651.0 36.8 1.3 512.2 32.3 105.2 18.9 1.6 23.7 11.9 6.8 3.1 13.4 16.5 2.4 2.2 131 
516 E3 1 DH22 852.4 51.7 1.7 491.3 32.7 114.2 16.1 1.8 22.9 9.0 7.8 2.0 17.6 19.6 2.5 2.6 129 
517 E3 1 DH23 817.3 42.1 1.3 607.2 30.7 103.8 18.6 1.5 22.2 12.3 6.5 1.9 13.8 15.7 2.4 2.7 126 
518 E3 1 DH24 450.2 43.8 1.4 319.3 32.2 96.9 16.0 1.6 20.7 9.8 6.7 1.5 14.1 15.6 2.3 2.8 121 
519 E3 1 DH25 1044.5 38.0 1.2 880.7 33.1 96.4 16.3 1.7 21.9 9.6 6.9 2.6 14.4 17.0 2.5 2.2 125 
520 E3 1 DH26 671.9 44.4 1.4 465.0 31.1 94.5 16.2 1.8 22.5 9.2 7.0 1.8 15.1 16.9 2.4 2.6 128 
521 E3 1 DH27 505.0 47.8 1.5 333.3 30.6 103.2 20.5 1.8 28.7 11.7 7.1 1.5 14.7 16.2 2.3 2.9 131 
522 E3 1 DH28 804.5 52.1 1.5 532.1 32.2 98.1 17.5 1.6 22.6 10.7 7.1 0.9 15.3 16.2 2.3 3.2 129 
523 E3 1 DH29 903.7 46.9 1.5 589.9 31.6 89.2 15.8 1.6 20.2 9.8 7.6 2.1 16.2 18.3 2.4 2.6 129 
524 E3 1 DH30 779.4 45.7 1.6 498.0 34.1 99.7 18.0 1.8 25.5 10.1 7.3 2.1 16.3 18.4 2.5 2.5 129 
525 E3 1 DH31 583.7 44.6 1.4 409.0 29.7 92.6 18.5 1.7 24.7 10.9 7.6 1.7 15.4 17.1 2.3 2.6 129 
526 E3 1 DH32 612.5 42.2 1.2 505.4 25.9 95.7 15.4 1.7 20.5 9.1 7.5 1.7 16.5 18.2 2.4 2.3 134 
527 E3 1 DH33 533.0 51.8 1.5 364.3 29.2 104.2 18.9 1.9 29.2 9.7 7.6 2.2 16.8 19.0 2.5 2.7 136 
528 E3 1 DH34 629.3 47.2 1.5 412.6 32.1 99.5 18.3 1.7 24.4 10.9 7.4 2.2 15.6 17.8 2.4 2.7 126 
529 E3 1 DH35 505.5 32.0 1.1 453.8 . 99.8 17.3 1.9 25.8 9.2 7.1 3.1 14.1 17.2 2.4 1.9 126 
530 E3 1 DH36 832.9 48.7 1.6 533.6 31.4 96.7 20.6 2.0 32.3 10.4 9.0 1.1 18.3 19.4 2.2 2.5 130 
531 E3 1 DH37 735.2 44.6 1.4 522.9 30.9 100.1 16.3 1.6 20.5 10.3 7.3 2.8 15.6 18.4 2.5 2.4 128 
532 E3 1 DH38 824.3 42.3 1.4 568.9 31.5 95.4 17.2 1.6 21.9 10.7 7.5 0.9 15.5 16.4 2.2 2.6 121 
533 E3 1 DH39 863.0 44.7 1.5 591.9 31.1 105.4 17.5 1.7 23.7 10.2 6.5 1.7 14.2 15.9 2.5 2.8 126 
534 E3 1 DH40 363.4 38.1 1.3 280.6 33.3 107.7 15.6 1.5 18.2 10.7 7.5 0.7 15.2 15.9 2.1 2.4 130 
535 E3 1 DH41 651.2 41.5 1.3 500.6 31.9 97.6 17.4 1.7 23.5 10.2 6.7 1.3 13.5 14.8 2.2 2.8 131 
536 E3 1 DH42 953.4 38.1 1.1 848.7 31.9 103.4 16.3 1.6 20.2 10.4 7.0 2.9 15.5 18.4 2.6 2.1 130 
537 E3 1 DH43 830.6 45.2 1.5 545.7 32.9 96.2 16.6 1.7 22.3 9.8 7.2 1.9 15.3 17.2 2.4 2.6 128 
538 E3 1 DH44 720.3 37.6 1.4 531.2 36.0 109.5 21.3 1.8 29.9 12.0 7.7 2.1 14.2 16.3 2.1 2.3 132 
539 E3 1 DH45 693.5 36.8 1.3 547.8 35.1 93.8 17.9 1.8 25.8 9.9 6.8 2.1 13.6 15.7 2.3 2.4 128 
540 E3 1 DH46 581.9 48.3 1.5 390.0 30.8 99.2 19.8 1.7 26.8 11.5 8.1 1.5 15.5 17.0 2.1 2.8 131 
541 E3 1 DH47 888.6 41.3 1.3 667.6 32.9 99.8 17.2 1.7 23.8 9.9 7.1 2.3 14.5 16.8 2.4 2.5 130 
542 E3 1 DH49 682.3 55.8 1.8 384.9 31.7 97.5 19.7 1.8 28.6 10.8 7.9 1.3 15.9 17.2 2.2 3.2 130 
543 E3 1 DH50 904.9 33.6 1.3 671.8 35.1 100.8 14.3 1.5 17.1 9.5 6.5 2.4 13.4 15.8 2.4 2.1 125 
544 E3 1 DH51 632.7 50.0 1.5 434.2 29.9 98.6 20.3 1.8 28.8 11.4 7.9 1.4 15.9 17.3 2.2 2.9 131 
545 E3 1 DH52 698.2 48.0 1.5 476.9 29.5 87.9 15.4 1.7 20.7 9.2 7.2 0.8 15.5 16.3 2.3 2.9 127 
546 E3 1 DH53 768.8 46.1 1.6 491.6 31.0 83.6 18.7 1.8 27.0 10.3 7.2 0.9 15.2 16.1 2.2 2.9 129 
547 E3 1 DH54 858.6 50.5 1.9 456.4 34.9 94.4 18.1 1.9 26.8 9.7 8.0 1.8 14.6 16.4 2.1 3.1 123 
548 E3 1 DH55 875.1 40.5 1.2 707.4 28.5 101.3 16.3 1.6 20.2 10.4 6.3 2.4 14.4 16.8 2.7 2.4 129 
549 E3 1 DH56 848.5 32.9 1.2 691.0 . 100.4 13.8 1.5 16.1 9.4 5.9 2.3 11.9 14.2 2.4 2.3 125 
550 E3 1 DH57 874.6 42.2 1.4 638.8 30.6 98.3 14.3 1.7 19.7 8.2 6.3 2.2 15.2 17.4 2.8 2.4 129 
551 E3 1 DH58 689.1 47.6 1.5 475.3 31.1 101.3 15.5 1.5 18.3 10.5 6.9 1.5 14.2 15.7 2.3 3.0 127 
552 E3 1 DH59 1071.2 36.6 1.1 951.3 30.6 100.9 14.8 1.6 19.0 9.2 6.5 1.4 13.3 14.7 2.3 2.5 122 
553 E3 1 DH60 880.1 54.3 1.7 519.8 31.3 95.7 18.9 1.7 26.2 10.9 8.0 1.4 16.5 17.9 2.2 3.0 126 
554 E3 1 DH61 642.1 37.3 1.1 564.2 31.7 93.0 17.3 1.8 24.2 9.7 7.2 2.0 14.6 16.6 2.3 2.3 131 
555 E3 1 DH62 771.7 52.6 1.7 462.7 . 103.1 19.5 1.7 26.3 11.4 7.2 0.4 15.5 15.9 2.2 3.3 126 
556 E3 1 DH63 666.0 55.4 2.0 331.3 33.6 93.5 16.8 1.8 24.3 9.2 8.5 0.9 15.8 16.7 2.0 3.3 123 
557 E3 1 DH64 830.2 42.6 1.6 515.7 36.1 111.8 16.2 1.6 20.3 10.2 7.5 1.6 14.7 16.3 2.2 2.6 123 
558 E3 1 DH65 721.8 55.6 1.7 420.4 31.0 91.1 18.8 1.6 23.4 12.0 8.0 0.9 17.0 17.9 2.2 3.1 125 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
559 E3 1 DH66 652.4 42.7 1.5 421.7 34.8 105.2 18.7 2.1 30.4 9.1 8.1 3.7 17.1 20.8 2.6 2.1 132 
560 E3 1 DH67 845.4 45.1 1.5 573.6 32.1 97.4 17.9 1.7 23.8 10.6 7.2 1.1 15.9 17.0 2.4 2.7 125 
561 E3 1 DH68 609.3 43.3 1.2 503.1 27.4 97.0 18.3 1.8 25.8 10.2 7.4 1.0 15.3 16.3 2.2 2.7 127 
562 E3 1 DH69 946.3 44.2 1.5 612.1 33.0 98.4 16.1 1.7 21.0 9.8 6.9 0.9 14.4 15.3 2.2 2.9 124 
563 E3 1 DH70 661.2 46.8 1.3 490.2 31.7 98.6 16.8 1.8 23.8 9.5 8.0 1.8 17.0 18.8 2.3 2.5 132 
564 E3 1 DH71 826.0 49.2 1.5 555.1 31.2 99.8 19.0 1.9 28.0 10.3 8.0 1.5 17.1 18.6 2.3 2.6 130 
565 E3 1 DH72 835.7 41.7 1.4 617.7 31.8 98.1 14.2 1.7 18.6 8.5 6.9 2.8 15.2 18.0 2.6 2.3 129 
566 E3 1 DH73 804.7 50.0 1.6 506.4 30.4 99.6 16.2 1.7 22.2 9.4 7.8 1.3 15.9 17.2 2.2 2.9 130 
567 E3 1 DH75 941.7 36.5 1.3 723.8 36.1 103.5 17.1 1.8 24.6 9.5 6.9 1.9 13.5 15.4 2.2 2.3 122 
568 E3 1 DH76 916.5 31.1 1.1 867.0 32.4 91.3 18.1 1.6 22.7 11.4 6.3 2.5 13.1 15.6 2.5 2.0 130 
569 E3 1 DH77 746.8 37.5 1.3 581.2 33.7 105.3 18.1 1.6 22.3 11.6 7.8 2.6 15.8 18.4 2.4 2.0 127 
570 E3 1 DH78 862.2 47.3 1.6 530.9 33.4 92.0 16.6 1.6 21.0 10.5 7.1 1.5 14.8 16.3 2.3 2.9 125 
571 E3 1 DH79 670.1 52.0 1.7 399.1 32.0 101.2 15.8 1.5 19.1 10.4 7.5 1.3 15.2 16.5 2.2 3.1 126 
572 E3 1 DH80 742.3 48.2 1.5 480.8 31.7 103.9 19.3 1.6 24.6 12.0 7.1 1.4 15.6 17.0 2.4 2.8 129 
573 E3 1 DH81 719.8 36.1 1.2 584.8 31.6 101.0 15.3 1.6 19.5 9.5 6.1 1.6 15.4 17.0 2.8 2.1 127 
574 E3 1 DH82 793.8 51.3 1.8 436.9 32.2 100.1 15.0 1.6 19.2 9.3 8.1 0.6 16.2 16.8 2.1 3.1 122 
575 E3 1 DH83 828.1 40.2 1.4 584.0 35.6 110.5 18.3 1.6 23.2 11.4 7.2 2.6 14.2 16.8 2.3 2.4 126 
576 E3 1 DH84 1017.3 34.9 1.3 786.2 37.2 102.4 15.5 1.5 18.2 10.4 7.1 1.7 12.8 14.5 2.0 2.4 122 
577 E3 1 DH85 921.5 33.3 1.2 792.1 31.7 90.6 16.2 1.6 20.2 10.2 6.4 2.1 13.0 15.1 2.4 2.2 128 
578 E3 1 DH86 787.1 40.3 1.4 571.2 32.0 104.8 17.3 1.6 21.4 11.1 6.1 1.8 14.5 16.3 2.7 2.5 128 
579 E3 1 DH87 893.4 47.2 1.4 642.3 28.7 101.3 18.0 1.7 24.0 10.7 7.0 1.0 14.8 15.8 2.3 3.0 121 
580 E3 1 DH89 804.8 40.5 1.4 591.8 33.5 99.8 17.2 1.7 22.6 10.3 7.1 2.2 14.8 17.0 2.4 2.4 127 
581 E3 1 DH90 768.8 37.2 1.3 580.2 31.0 91.2 15.2 1.7 19.8 9.3 6.7 2.2 13.5 15.7 2.4 2.4 125 
582 E3 1 DH91 714.4 42.8 1.4 498.9 31.7 109.0 17.0 1.5 20.5 11.1 7.1 1.9 14.6 16.5 2.4 2.6 125 
583 E3 1 DH92 898.9 36.5 1.3 708.3 32.9 97.5 16.8 1.7 22.1 10.3 6.8 1.9 13.4 15.3 2.2 2.4 126 
584 E3 1 DH93 888.8 50.2 1.7 523.8 31.1 87.8 16.5 1.8 23.2 9.3 7.8 1.3 15.6 16.9 2.2 2.9 126 
585 E3 1 DH94 838.3 37.0 1.2 691.1 31.2 103.2 15.5 1.5 19.1 10.1 6.9 2.0 14.8 16.8 2.4 2.2 130 
586 E3 1 DH95 1026.1 37.0 1.3 799.1 36.0 102.0 15.7 1.4 18.0 11.1 7.5 1.7 14.3 16.0 2.1 2.3 121 
587 E3 1 DH96 759.0 35.8 1.3 564.3 . 105.1 16.0 1.6 19.6 10.3 6.4 2.4 12.5 14.9 2.3 2.4 128 
588 E3 1 DH97 884.6 44.2 1.5 581.2 34.2 109.4 16.1 1.9 23.8 8.7 7.3 1.0 15.8 16.8 2.3 2.6 126 
589 E3 1 DH98 712.6 48.5 1.8 404.2 38.0 91.5 16.4 1.6 20.6 10.3 7.8 0.2 15.1 15.3 2.0 3.2 120 
590 E3 1 DH99 722.2 48.9 1.6 466.0 32.0 91.5 17.5 2.0 27.7 8.8 7.0 1.5 16.4 17.9 2.6 2.7 130 
591 E3 1 DH100 877.3 47.9 1.4 620.9 30.5 80.5 14.6 1.7 19.7 8.6 6.9 1.5 15.3 16.8 2.4 2.8 125 
592 E3 1 DH101 891.5 47.0 1.4 626.5 . 99.4 17.6 1.8 24.9 9.9 7.5 1.7 15.5 17.2 2.3 2.7 126 
593 E3 1 DH102 669.8 53.4 1.4 462.2 29.2 99.7 20.3 1.8 28.7 11.7 8.1 1.9 16.9 18.8 2.3 2.8 131 
594 E3 1 DH103 470.3 42.7 1.4 342.8 30.7 92.4 18.8 2.0 30.2 9.3 7.2 1.9 14.7 16.6 2.3 2.6 132 
595 E3 1 DH104 714.7 42.7 1.3 551.0 29.6 104.0 19.8 1.7 26.2 11.9 6.9 1.7 14.6 16.3 2.4 2.6 132 
596 E3 1 DH105 760.8 44.3 1.4 541.9 29.7 97.1 18.5 1.6 23.6 11.5 6.3 1.9 14.4 16.3 2.6 2.7 126 
597 E3 1 DH106 873.8 48.0 1.5 592.4 31.1 99.6 16.2 1.8 22.7 9.2 7.6 2.0 16.3 18.3 2.4 2.6 128 
598 E3 1 DH107 726.8 38.9 1.1 642.6 31.4 98.0 15.8 1.8 22.2 9.0 6.7 1.5 13.2 14.7 2.2 2.6 125 
599 E3 1 DH108 488.1 40.1 1.3 367.2 30.5 106.8 17.4 1.6 22.7 10.6 6.4 2.4 14.7 17.1 2.7 2.3 125 
600 E3 1 DH109 634.5 43.0 1.3 485.1 30.0 92.0 18.1 1.6 23.0 11.2 7.5 1.7 14.9 16.6 2.2 2.6 129 
601 E3 1 DH110 545.4 41.5 1.4 391.8 32.1 109.2 16.0 1.5 19.3 10.5 7.9 2.1 16.0 18.1 2.3 2.3 127 
602 E3 1 DH111 517.6 34.3 1.1 452.5 30.5 103.7 18.9 1.6 24.4 11.5 6.8 2.1 13.7 15.8 2.3 2.2 127 
603 E3 1 DH112 608.4 41.0 1.3 458.8 30.2 90.2 16.0 1.6 20.4 9.9 7.2 2.5 15.2 17.7 2.5 2.3 128 
604 E3 1 DH113 776.2 36.8 1.3 593.9 33.1 106.4 17.2 1.5 21.1 11.1 6.2 2.2 14.2 16.4 2.7 2.2 129 
605 E3 1 DH114 622.4 41.2 1.3 492.0 31.7 78.4 17.1 1.7 23.7 9.9 7.3 0.9 14.4 15.3 2.1 2.7 128 
606 E3 1 DH115 551.7 37.0 1.1 494.8 30.9 103.9 15.9 1.6 20.5 9.8 7.2 1.9 14.4 16.3 2.3 2.3 127 
607 E3 1 DH116 780.0 30.9 1.1 740.0 35.2 103.3 12.9 1.6 16.0 8.4 6.5 3.0 12.4 15.4 2.4 2.0 123 
608 E3 1 DH117 827.6 37.4 1.3 619.9 34.3 92.7 13.8 1.7 18.1 8.3 7.0 1.5 14.3 15.8 2.3 2.4 124 
609 E3 1 DH119 715.5 44.8 1.5 475.1 32.5 104.0 20.8 2.0 33.0 10.3 7.5 1.8 15.7 17.5 2.3 2.5 128 
610 E3 1 DH120 941.8 35.8 1.2 812.6 32.5 100.7 17.4 1.6 21.8 11.0 6.7 2.9 14.4 17.3 2.6 2.1 130 
611 E3 1 DH121 737.3 39.8 1.3 547.4 30.0 92.1 16.6 1.7 22.2 9.8 6.7 2.7 13.8 16.5 2.4 2.4 131 
612 E3 1 DH122 635.9 52.3 1.6 386.8 30.3 95.3 18.9 1.7 25.0 11.3 7.4 0.7 15.8 16.5 2.2 3.2 131 
613 E3 1 DH123 571.2 49.3 1.5 379.6 29.2 103.0 17.5 1.2 16.0 15.2 7.8 1.2 14.9 16.1 2.1 3.1 128 
614 E3 1 DH124 744.5 40.7 1.3 558.5 31.0 96.7 18.6 1.6 23.7 11.5 7.6 2.4 15.5 17.9 2.4 2.3 131 
615 E3 1 DH125 789.9 38.8 1.4 577.0 33.2 89.8 15.7 1.8 22.0 8.9 6.5 1.5 13.9 15.4 2.4 2.5 128 
616 E3 1 DH126 797.2 49.7 1.6 506.2 31.9 87.8 17.9 1.9 26.2 9.7 7.9 1.1 16.9 18.0 2.3 2.8 130 
617 E3 1 DH128 567.3 40.2 1.1 510.1 29.4 103.3 21.3 1.7 28.9 12.5 6.8 2.0 15.2 17.2 2.5 2.3 131 
618 E3 1 DH129 888.1 49.3 1.6 550.9 30.9 100.8 19.2 1.6 23.8 12.3 7.2 1.6 14.6 16.2 2.3 3.0 127 
619 E3 1 DH130 698.6 38.7 1.2 565.7 32.4 96.0 16.2 1.7 21.6 9.6 7.0 2.0 14.3 16.3 2.3 2.4 128 
620 E3 1 DH131 659.9 36.4 1.3 520.1 35.2 107.1 17.4 1.9 26.4 9.1 7.7 3.9 15.8 19.7 2.6 1.9 134 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
621 E3 2 DH1 854.9 45.4 1.4 590.4 30.8 99.1 14.1 1.5 16.2 9.7 6.5 0.6 14.9 15.4 2.4 3.1 124 
622 E3 2 DH3 508.4 37.2 1.2 427.6 31.2 106.5 18.6 1.9 28.2 9.8 6.3 1.9 13.7 15.6 2.5 2.7 130 
623 E3 2 DH4 763.1 41.2 1.3 607.5 31.8 90.5 16.4 1.7 22.4 9.5 6.6 1.9 14.9 16.8 2.5 2.8 129 
624 E3 2 DH5 758.5 40.8 1.2 628.4 31.2 92.6 17.2 1.7 23.0 10.2 7.6 1.7 15.0 16.7 2.2 2.7 130 
625 E3 2 DH6 818.4 49.7 1.6 500.2 32.1 99.1 16.4 1.6 20.7 10.3 7.5 0.8 15.6 16.4 2.2 3.2 122 
626 E3 2 DH7 780.7 39.2 1.2 643.1 31.3 87.9 17.9 1.8 25.1 10.4 6.5 3.1 14.4 17.5 2.7 2.7 132 
627 E3 2 DH8 731.5 47.9 1.4 535.9 31.7 101.8 17.8 1.5 21.6 11.8 7.2 1.8 14.7 16.4 2.3 3.3 127 
628 E3 2 DH9 382.1 51.6 1.7 222.9 34.0 95.6 18.1 1.8 25.6 10.1 8.1 2.1 18.0 20.1 2.5 2.9 131 
629 E3 2 DH11 548.8 48.1 1.8 310.2 36.1 113.3 19.4 1.5 23.6 12.6 8.6 1.6 15.5 17.1 2.0 3.1 127 
630 E3 2 DH12 619.9 47.0 1.5 413.0 32.5 87.8 18.5 2.0 28.8 9.4 7.0 1.1 15.2 16.3 2.3 3.1 128 
631 E3 2 DH13 668.9 53.1 1.5 437.2 28.4 97.2 18.3 1.7 25.0 10.6 7.4 1.9 17.1 19.0 2.6 3.0 129 
632 E3 2 DH14 608.4 40.0 1.4 446.7 33.4 93.5 18.4 1.7 24.9 10.7 7.0 2.0 14.9 16.9 2.4 2.7 129 
633 E3 2 DH15 853.9 38.6 1.3 668.1 33.1 96.3 14.1 1.6 18.2 8.9 7.3 1.0 14.6 15.6 2.2 2.6 122 
634 E3 2 DH16 478.5 45.2 1.6 307.1 32.7 94.7 16.5 1.7 22.4 9.6 6.8 1.1 13.9 15.0 2.2 3.2 125 
635 E3 2 DH17 707.3 48.0 1.7 410.5 35.2 100.3 16.9 1.6 22.0 10.3 8.1 1.1 15.2 16.3 2.0 3.1 125 
636 E3 2 DH18 438.9 43.8 1.3 342.0 . 96.7 19.1 2.2 32.6 8.8 7.8 1.3 16.7 18.0 2.3 2.6 136 
637 E3 2 DH19 788.0 41.7 1.5 527.8 34.1 106.5 15.9 1.7 21.6 9.2 6.5 0.9 13.1 14.0 2.2 3.2 127 
638 E3 2 DH20 579.4 44.4 1.3 434.0 29.7 89.0 20.6 1.8 29.1 11.5 6.9 1.6 14.5 16.1 2.3 3.1 131 
639 E3 2 DH21 777.6 40.3 1.3 577.7 32.7 104.1 19.5 1.7 25.8 11.7 7.2 1.9 13.9 15.8 2.2 2.9 129 
640 E3 2 DH22 646.4 51.1 1.6 396.8 33.3 115.2 17.9 1.9 27.1 9.3 7.5 1.7 16.3 18.0 2.4 3.1 129 
641 E3 2 DH23 855.6 41.0 1.3 654.6 31.7 104.1 17.6 1.7 23.4 10.5 6.3 1.8 12.7 14.5 2.3 3.2 124 
642 E3 2 DH24 603.8 40.5 1.3 452.9 32.3 101.7 16.3 1.6 20.2 10.7 6.9 0.6 14.8 15.4 2.2 2.7 122 
643 E3 2 DH25 744.2 44.0 1.3 573.8 32.6 97.3 18.1 1.6 23.4 11.1 7.1 1.8 15.3 17.1 2.4 2.9 126 
644 E3 2 DH26 813.8 42.4 1.3 617.9 31.8 85.1 17.9 1.7 23.7 11.0 6.8 1.3 14.2 15.5 2.3 3.0 129 
645 E3 2 DH27 754.6 42.3 1.3 581.8 30.2 105.3 20.5 1.7 27.3 12.1 6.6 1.9 14.0 15.9 2.4 3.0 130 
646 E3 2 DH28 714.5 45.6 1.4 503.5 32.4 105.5 17.3 1.7 23.1 10.3 6.6 1.7 14.0 15.8 2.4 3.1 129 
647 E3 2 DH29 892.5 53.0 1.8 496.4 32.1 82.3 15.7 1.7 20.8 9.4 8.1 1.3 16.2 17.5 2.2 3.2 128 
648 E3 2 DH30 594.3 46.6 1.6 360.4 34.1 98.6 18.4 1.8 27.0 10.0 7.2 1.3 15.3 16.6 2.3 3.0 128 
649 E3 2 DH31 809.0 42.2 1.3 623.2 30.6 97.4 17.2 1.7 23.2 10.1 7.5 1.9 15.2 17.1 2.3 2.8 131 
650 E3 2 DH32 597.0 39.3 1.1 542.2 25.5 91.9 15.2 1.7 20.3 9.0 6.9 1.7 14.9 16.6 2.4 2.6 134 
651 E3 2 DH33 510.1 51.6 1.4 354.0 29.6 99.3 18.9 1.9 29.0 9.8 7.2 2.4 16.5 18.9 2.6 3.1 136 
652 E3 2 DH34 855.9 51.8 1.7 490.8 32.4 105.2 19.3 1.8 27.6 10.7 7.9 1.1 16.2 17.3 2.2 3.2 125 
653 E3 2 DH35 610.7 37.6 1.3 476.7 33.4 101.2 17.5 1.9 25.8 9.4 7.2 1.9 14.1 16.0 2.2 2.7 128 
654 E3 2 DH36 764.6 43.4 1.5 502.7 32.0 93.3 18.9 1.9 27.8 10.2 8.2 1.3 16.3 17.6 2.1 2.7 130 
655 E3 2 DH37 484.1 50.4 1.5 320.6 31.7 98.6 18.4 1.6 23.1 11.6 7.5 1.7 15.8 17.5 2.3 3.2 128 
656 E3 2 DH38 750.2 45.9 1.6 483.4 . 90.7 18.0 1.8 25.1 10.2 7.5 0.9 14.7 15.6 2.1 3.2 121 
657 E3 2 DH39 765.8 40.3 1.3 592.3 31.3 104.0 15.7 1.7 21.0 9.4 6.0 1.8 13.8 15.6 2.6 2.9 128 
658 E3 2 DH40 419.3 40.9 1.3 318.6 32.8 111.6 17.7 1.6 21.8 11.7 7.6 0.8 15.7 16.5 2.2 2.6 126 
659 E3 2 DH41 861.3 41.2 1.3 671.3 31.8 99.6 17.4 1.7 22.8 10.5 6.9 1.5 14.5 16.0 2.3 2.8 130 
660 E3 2 DH42 856.9 45.0 1.5 574.4 31.7 102.8 17.1 1.5 20.7 11.2 7.2 1.8 15.8 17.6 2.5 2.8 129 
661 E3 2 DH43 673.8 43.4 1.4 471.9 32.1 98.8 17.4 1.6 22.6 10.5 7.0 2.2 14.4 16.6 2.4 3.0 129 
662 E3 2 DH44 571.5 40.8 1.4 395.8 35.7 104.4 19.9 1.7 27.6 11.4 7.6 1.8 14.4 16.2 2.1 2.9 131 
663 E3 2 DH45 578.9 36.9 1.4 410.9 35.5 96.9 15.2 1.7 20.6 8.8 7.1 2.0 14.4 16.4 2.3 2.6 127 
664 E3 2 DH46 592.5 46.8 1.4 430.9 32.4 99.4 20.9 1.9 31.0 11.2 8.2 1.7 15.4 17.1 2.1 3.0 131 
665 E3 2 DH47 649.0 45.0 1.4 478.3 33.7 90.4 17.4 1.6 22.7 10.7 7.4 1.6 15.1 16.7 2.3 2.9 130 
666 E3 2 DH49 628.5 46.7 1.5 420.1 32.9 98.2 19.4 1.7 26.3 11.4 7.5 1.9 14.8 16.7 2.2 3.1 131 
667 E3 2 DH50 641.7 41.5 1.6 411.9 37.8 108.0 15.7 1.6 19.5 10.0 6.8 1.5 13.8 15.3 2.2 3.0 125 
668 E3 2 DH51 649.8 44.2 1.3 506.4 29.8 98.5 19.8 1.7 26.4 11.7 7.6 2.3 15.4 17.8 2.4 2.8 130 
669 E3 2 DH52 847.6 45.9 1.4 621.9 31.8 88.4 14.6 1.4 16.7 10.3 7.0 1.3 14.4 15.7 2.2 3.2 128 
670 E3 2 DH53 882.1 41.1 1.3 670.8 30.1 85.1 16.5 1.8 23.9 9.1 6.7 1.7 14.5 16.2 2.4 2.9 130 
671 E3 2 DH54 720.2 47.1 1.7 425.9 35.9 100.4 16.0 1.9 23.6 8.6 7.6 1.1 14.5 15.6 2.0 3.2 124 
672 E3 2 DH55 926.0 39.6 1.2 801.0 29.8 105.6 16.0 1.6 20.2 10.0 6.4 1.9 14.3 16.2 2.5 2.8 127 
673 E3 2 DH56 984.3 35.4 1.2 847.8 35.1 101.4 13.9 1.5 16.8 9.1 6.1 1.6 13.0 14.6 2.4 2.7 125 
674 E3 2 DH57 788.3 40.5 1.3 600.4 31.5 95.8 15.2 1.6 19.6 9.3 6.0 1.3 14.0 15.3 2.5 2.9 128 
675 E3 2 DH58 880.2 38.0 1.3 694.7 33.2 101.2 16.0 1.5 19.0 10.6 6.3 2.3 12.8 15.1 2.4 3.0 126 
676 E3 2 DH59 932.2 42.8 1.4 659.8 33.2 95.5 16.1 1.5 19.6 10.5 6.5 0.6 13.3 13.9 2.1 3.2 123 
677 E3 2 DH60 809.4 49.9 1.6 518.2 . 102.0 17.4 1.7 23.0 10.6 7.6 1.5 14.6 16.1 2.1 3.4 127 
678 E3 2 DH61 502.1 37.4 1.2 416.3 32.1 90.8 17.0 1.5 20.5 11.4 7.3 2.1 14.5 16.6 2.3 2.6 130 
679 E3 2 DH62 746.0 39.8 1.2 597.8 32.6 93.5 19.4 1.7 25.5 11.8 6.4 1.6 12.9 14.5 2.3 3.1 127 
680 E3 2 DH63 833.0 51.8 1.8 450.7 34.6 91.0 17.1 1.5 20.4 11.6 8.3 0.8 15.5 16.3 2.0 3.3 124 
681 E3 2 DH64 923.7 42.7 1.5 603.7 38.6 109.5 16.7 1.7 22.3 9.9 7.5 1.6 14.9 16.5 2.2 2.9 126 
682 E3 2 DH65 808.8 58.2 1.8 444.6 30.7 99.0 17.7 1.6 22.3 11.1 8.2 0.4 17.0 17.4 2.1 3.4 124 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
683 E3 2 DH66 510.4 42.2 1.4 355.2 35.4 102.0 20.4 2.2 35.1 9.4 7.9 2.2 15.7 17.9 2.3 2.7 133 
684 E3 2 DH67 818.6 40.5 1.4 568.5 33.4 99.0 17.9 1.7 23.4 10.8 6.8 1.8 14.9 16.7 2.5 2.7 126 
685 E3 2 DH68 570.4 38.9 1.2 460.4 28.3 93.1 18.7 1.7 25.0 11.1 7.0 2.0 14.0 16.0 2.3 2.8 127 
686 E3 2 DH69 820.1 41.5 1.4 578.4 32.7 93.5 15.9 1.6 20.0 10.0 6.3 0.9 13.4 14.3 2.3 3.1 125 
687 E3 2 DH70 687.0 43.1 1.1 607.9 32.3 99.8 17.2 1.7 23.6 9.9 7.4 2.0 15.8 17.8 2.4 2.7 131 
688 E3 2 DH71 481.2 47.1 1.5 331.0 31.6 93.3 20.2 1.9 29.9 10.9 7.6 1.0 15.3 16.3 2.2 3.1 131 
689 E3 2 DH72 824.6 43.9 1.4 569.8 32.4 96.9 15.7 1.7 21.7 9.0 7.5 1.7 16.0 17.7 2.4 2.7 130 
690 E3 2 DH73 692.3 40.4 1.3 529.7 31.4 94.9 16.8 1.8 23.9 9.4 6.6 1.9 14.5 16.4 2.5 2.8 130 
691 E3 2 DH75 877.8 37.0 1.3 685.7 35.5 96.7 15.5 1.9 23.5 8.1 6.9 1.6 13.7 15.3 2.2 2.7 121 
692 E3 2 DH76 983.3 34.0 1.1 873.3 32.6 92.7 17.3 1.7 22.5 10.5 6.4 2.0 12.8 14.8 2.3 2.6 129 
693 E3 2 DH77 550.0 40.8 1.3 426.3 32.6 102.9 24.4 1.6 30.0 15.8 7.2 1.7 15.0 16.7 2.3 2.7 127 
694 E3 2 DH78 895.1 52.2 1.8 503.1 35.5 102.6 16.7 1.6 21.3 10.4 7.6 0.8 16.2 17.0 2.2 3.2 124 
695 E3 2 DH79 974.9 46.5 1.6 620.5 . 104.5 16.7 1.5 19.8 11.0 7.0 1.8 14.3 16.1 2.3 3.2 126 
696 E3 2 DH80 748.9 51.7 1.6 458.1 31.7 100.4 19.1 1.6 24.2 12.0 7.0 1.0 16.1 17.1 2.4 3.2 130 
697 E3 2 DH81 593.1 41.4 1.3 454.5 32.6 90.2 17.8 1.8 25.5 9.9 6.3 0.7 14.5 15.2 2.4 2.9 128 
698 E3 2 DH82 705.3 41.9 1.4 491.5 33.5 101.1 14.8 1.6 18.6 9.4 7.4 1.1 14.1 15.2 2.1 3.0 125 
699 E3 2 DH83 847.2 46.9 1.6 516.3 34.9 95.0 17.9 1.6 22.3 11.4 7.4 1.7 14.6 16.3 2.2 3.2 127 
700 E3 2 DH84 1031.6 37.0 1.4 752.4 37.6 97.4 13.8 1.4 15.1 10.1 7.2 1.5 13.0 14.5 2.0 2.8 122 
701 E3 2 DH85 841.7 35.1 1.2 695.6 32.6 91.8 16.3 1.5 19.7 10.7 6.3 1.8 12.8 14.6 2.3 2.7 129 
702 E3 2 DH86 795.7 42.4 1.4 556.0 33.3 100.4 18.0 1.5 21.6 11.9 6.2 1.4 14.0 15.4 2.5 3.0 125 
703 E3 2 DH87 993.9 52.8 1.5 648.3 29.4 97.6 16.8 1.5 20.1 11.1 7.4 0.1 15.9 16.0 2.2 3.3 122 
704 E3 2 DH89 751.7 35.4 1.2 615.7 33.1 102.6 17.1 1.7 22.8 10.2 6.5 2.3 14.0 16.3 2.5 2.5 127 
705 E3 2 DH90 531.0 42.5 1.4 375.8 32.1 90.7 15.0 1.6 19.2 9.3 7.2 1.9 14.5 16.4 2.3 2.9 125 
706 E3 2 DH91 738.6 42.0 1.4 523.4 32.9 101.5 16.7 1.5 19.8 11.2 6.4 1.8 14.0 15.8 2.5 3.0 128 
707 E3 2 DH92 822.9 41.2 1.4 599.8 32.2 94.3 17.7 1.7 23.4 10.6 7.1 1.2 14.0 15.2 2.2 2.9 127 
708 E3 2 DH93 966.8 58.1 1.9 520.1 31.2 91.5 15.2 1.6 19.1 9.6 7.5 0.9 15.9 16.8 2.2 3.6 124 
709 E3 2 DH94 913.9 40.7 1.3 696.6 32.0 103.6 14.3 1.6 18.2 8.9 7.1 1.5 14.9 16.3 2.3 2.7 129 
710 E3 2 DH95 984.6 36.4 1.2 791.5 36.6 96.7 15.0 1.6 19.1 9.8 7.4 1.7 13.9 15.6 2.1 2.6 122 
711 E3 2 DH96 905.2 39.2 1.4 629.0 37.9 104.4 17.5 1.5 21.3 11.3 6.5 1.7 12.7 14.4 2.2 3.1 126 
712 E3 2 DH97 714.0 39.5 1.3 534.1 35.4 105.4 15.7 1.8 22.5 8.7 6.9 1.5 14.9 16.4 2.4 2.6 126 
713 E3 2 DH98 878.0 48.7 1.8 487.5 37.9 88.6 17.8 1.8 25.2 10.0 8.2 0.3 15.0 15.3 1.9 3.2 119 
714 E3 2 DH99 657.1 49.9 1.5 435.1 31.1 91.5 17.9 1.9 27.4 9.3 7.2 0.9 16.2 17.1 2.4 3.1 131 
715 E3 2 DH100 681.8 56.0 1.6 430.9 29.1 86.2 15.4 1.6 19.4 9.8 7.1 1.3 16.0 17.3 2.5 3.5 126 
716 E3 2 DH101 685.4 53.2 1.6 434.6 30.7 96.9 17.5 1.7 23.6 10.2 7.7 0.5 16.0 16.5 2.1 3.3 124 
717 E3 2 DH102 772.5 50.6 1.4 538.7 28.4 104.5 17.8 1.7 23.9 10.5 8.2 1.9 17.8 19.7 2.4 2.8 130 
718 E3 2 DH103 552.8 37.5 1.2 453.8 30.0 88.0 17.7 1.9 26.0 9.5 6.6 2.3 13.8 16.1 2.4 2.7 132 
719 E3 2 DH104 608.5 45.8 1.4 436.2 29.8 100.8 19.4 1.5 22.8 13.1 7.0 1.2 15.9 17.1 2.4 2.9 131 
720 E3 2 DH105 964.3 42.5 1.3 721.2 30.4 102.7 17.4 1.6 22.6 10.7 6.2 2.2 14.3 16.5 2.7 3.0 127 
721 E3 2 DH106 696.4 52.2 1.6 422.3 31.0 96.1 17.4 1.8 25.5 9.4 7.7 1.6 16.0 17.6 2.3 3.3 128 
722 E3 2 DH107 848.7 37.8 1.2 702.0 30.6 103.3 15.6 1.5 18.9 10.2 6.7 1.7 13.4 15.1 2.3 2.8 125 
723 E3 2 DH108 659.8 38.4 1.2 536.4 30.5 105.6 14.9 1.6 18.5 9.5 6.4 1.9 14.0 15.9 2.5 2.7 124 
724 E3 2 DH109 724.0 40.3 1.2 588.6 29.1 95.5 17.1 1.6 21.6 10.7 7.4 1.9 14.7 16.6 2.3 2.7 128 
725 E3 2 DH110 749.9 45.9 1.5 497.6 . 101.7 16.4 1.6 21.1 10.1 7.9 1.3 14.9 16.2 2.0 3.1 127 
726 E3 2 DH111 696.0 50.1 1.6 436.9 30.1 104.5 19.2 1.7 25.6 11.5 8.1 1.2 15.9 17.1 2.1 3.1 127 
727 E3 2 DH112 479.4 43.2 1.4 353.8 31.9 98.1 16.0 1.6 20.7 9.9 7.2 2.1 15.1 17.1 2.3 2.9 127 
728 E3 2 DH113 856.8 46.8 1.7 499.0 36.5 113.5 16.2 1.5 19.1 11.2 7.1 1.7 14.7 16.4 2.3 3.2 127 
729 E3 2 DH114 797.9 40.6 1.3 634.3 31.9 87.3 16.5 1.6 21.4 10.2 7.3 1.4 14.6 16.0 2.2 2.8 126 
730 E3 2 DH115 544.1 37.0 1.1 508.0 32.3 101.0 16.5 1.6 20.5 10.6 7.0 2.0 13.7 15.7 2.2 2.7 127 
731 E3 2 DH116 836.0 34.3 1.2 702.5 35.8 101.6 15.5 1.6 19.3 9.9 6.6 2.4 12.5 14.9 2.3 2.7 126 
732 E3 2 DH117 932.5 34.0 1.2 775.8 35.4 91.8 14.8 1.7 19.5 9.0 7.1 1.2 14.0 15.2 2.2 2.4 124 
733 E3 2 DH119 698.4 46.6 1.6 429.5 31.7 106.3 19.4 1.8 28.5 10.6 7.8 1.8 16.3 18.1 2.3 2.9 128 
734 E3 2 DH120 863.9 38.5 1.2 691.7 33.3 94.7 17.9 1.6 22.9 11.1 6.6 2.4 14.2 16.6 2.5 2.7 129 
735 E3 2 DH121 608.3 42.2 1.4 444.6 31.8 97.9 15.1 1.7 20.9 8.7 7.0 2.7 14.7 17.4 2.5 2.9 131 
736 E3 2 DH122 620.7 46.0 1.3 477.5 31.5 97.1 19.4 1.5 22.8 13.5 7.2 1.3 15.8 17.1 2.4 2.9 131 
737 E3 2 DH123 623.2 40.3 1.2 510.4 28.4 99.8 19.2 1.5 22.9 12.8 7.5 1.6 14.4 16.0 2.1 2.8 127 
738 E3 2 DH124 637.1 40.1 1.4 466.8 31.4 90.3 19.5 1.7 26.0 11.7 7.7 1.9 14.9 16.8 2.2 2.7 131 
739 E3 2 DH125 857.7 43.2 1.4 602.3 33.8 93.7 17.1 1.8 24.4 9.6 6.7 0.9 14.0 14.9 2.2 3.1 127 
740 E3 2 DH126 794.6 43.7 1.4 583.8 31.1 85.8 18.1 1.7 24.1 11.2 7.5 1.2 16.3 17.5 2.3 2.7 130 
741 E3 2 DH128 429.9 36.6 1.0 445.1 29.8 98.4 21.2 1.6 27.4 13.0 6.7 2.4 14.2 16.6 2.5 2.6 131 
742 E3 2 DH129 854.7 46.5 1.5 568.3 32.8 104.2 16.4 1.5 19.9 10.8 7.2 1.8 14.7 16.5 2.3 3.2 126 
743 E3 2 DH130 929.4 44.6 1.4 660.1 31.2 94.3 17.5 1.6 22.4 10.9 8.0 1.3 16.3 17.6 2.2 2.7 126 
744 E3 2 DH131 402.2 41.3 1.4 283.0 34.3 99.1 18.9 2.1 31.0 9.2 7.8 3.0 15.8 18.8 2.4 2.6 132 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
745 E4 1 DH1 671.4 37.0 1.0 671.4 28.8 72.4 12.5 1.3 12.4 9.9 6.0 0.5 12.7 13.2 2.2 2.9 139 
746 E4 1 DH3 523.2 36.3 1.0 519.0 28.5 76.0 16.8 1.5 19.6 11.5 6.0 1.2 12.7 13.9 2.3 2.8 142 
747 E4 1 DH4 601.8 27.9 0.8 753.2 30.0 71.8 13.9 1.6 17.6 8.6 6.4 2.3 13.1 15.4 2.5 2.1 142 
748 E4 1 DH5 633.9 38.6 1.0 608.9 29.0 75.1 15.1 1.5 17.9 10.1 7.5 1.4 13.7 15.1 2.0 2.8 142 
749 E4 1 DH6 665.9 33.9 1.0 667.9 31.1 79.3 13.8 1.2 13.1 11.5 6.6 1.6 13.5 15.1 2.3 2.5 136 
750 E4 1 DH7 554.1 34.0 0.9 592.6 30.0 67.4 15.4 1.5 18.3 10.3 6.1 2.2 12.7 14.9 2.4 2.7 142 
751 E4 1 DH8 671.1 37.7 1.0 669.1 30.0 84.0 15.7 1.5 18.7 10.4 6.6 1.6 12.9 14.5 2.2 2.9 139 
752 E4 1 DH9 572.6 38.9 1.1 529.2 31.0 75.7 15.2 1.5 17.8 10.3 6.6 2.0 14.1 16.1 2.4 2.7 142 
753 E4 1 DH11 744.5 46.4 1.5 485.0 32.3 95.9 14.9 1.3 15.4 11.4 8.7 1.3 15.9 17.2 2.0 2.9 139 
754 E4 1 DH12 538.7 37.9 1.0 527.1 28.4 62.0 11.5 1.7 15.6 6.7 5.7 0.6 14.1 14.7 2.6 2.7 141 
755 E4 1 DH13 635.0 44.3 1.2 530.5 27.0 81.4 15.9 1.4 17.5 11.4 6.9 1.3 14.8 16.1 2.3 3.0 140 
756 E4 1 DH14 677.1 42.3 1.4 491.8 31.2 81.3 15.1 1.5 18.4 9.8 7.3 0.9 15.4 16.3 2.2 2.8 139 
757 E4 1 DH15 696.0 39.2 1.1 653.5 28.4 76.3 13.2 1.2 13.1 10.6 6.9 0.8 14.6 15.4 2.2 2.7 137 
758 E4 1 DH16 489.9 35.4 0.9 544.3 28.9 70.1 16.1 1.3 17.1 12.0 6.2 1.5 13.2 14.7 2.4 2.7 139 
759 E4 1 DH17 705.5 38.1 1.2 594.8 33.4 80.6 15.3 1.3 15.3 12.3 6.9 2.0 13.4 15.4 2.2 2.8 136 
760 E4 1 DH18 621.3 45.5 1.3 475.8 29.1 78.5 17.4 1.9 25.6 9.4 7.7 1.1 16.2 17.3 2.2 2.8 142 
761 E4 1 DH19 617.6 35.5 1.0 597.3 31.5 72.1 13.9 1.5 17.0 9.0 6.3 1.2 12.9 14.1 2.2 2.7 138 
762 E4 1 DH20 483.6 40.9 1.1 448.2 26.2 73.9 18.1 1.6 22.2 11.7 6.4 1.3 14.1 15.4 2.4 2.9 143 
763 E4 1 DH21 746.5 36.9 1.1 668.9 29.2 85.2 15.7 1.4 18.0 10.9 7.0 2.2 13.9 16.1 2.3 2.6 141 
764 E4 1 DH22 696.7 40.9 1.2 581.5 29.6 87.7 14.8 1.5 17.5 9.9 6.8 0.9 14.5 15.4 2.3 2.8 141 
765 E4 1 DH23 648.3 38.5 1.0 667.7 25.9 78.8 14.9 1.1 13.0 13.6 6.1 1.6 13.3 14.9 2.5 2.9 138 
766 E4 1 DH24 615.4 34.6 0.9 672.6 27.1 74.4 16.1 1.6 20.9 9.8 6.1 1.2 12.8 14.0 2.3 2.7 138 
767 E4 1 DH25 639.5 39.9 1.1 599.3 30.1 71.9 15.6 1.4 17.9 10.9 6.9 1.5 14.1 15.6 2.3 2.8 139 
768 E4 1 DH26 707.5 40.8 1.1 643.8 27.9 73.2 13.6 1.4 14.6 10.0 6.6 0.2 14.3 14.5 2.2 2.9 139 
769 E4 1 DH27 571.6 33.4 1.0 591.7 28.2 74.5 17.4 1.4 19.2 12.4 6.0 2.1 12.8 14.9 2.5 2.6 142 
770 E4 1 DH28 621.1 38.6 1.1 558.5 28.9 80.5 15.5 1.4 17.0 11.1 6.2 1.4 13.5 14.9 2.4 2.8 141 
771 E4 1 DH29 683.6 35.8 1.0 673.5 29.2 69.1 12.6 1.4 14.3 8.8 6.6 1.4 13.1 14.5 2.2 2.7 141 
772 E4 1 DH30 568.5 32.5 1.0 544.5 31.6 73.8 17.1 1.5 19.9 11.7 6.8 1.6 13.9 15.5 2.3 2.3 142 
773 E4 1 DH31 562.7 40.5 1.1 524.9 26.2 75.8 14.4 1.4 15.5 10.6 7.0 1.3 14.4 15.7 2.2 2.8 140 
774 E4 1 DH32 570.6 34.2 0.9 657.3 24.5 75.5 15.3 1.4 17.7 10.6 6.1 1.9 13.1 15.0 2.5 2.6 143 
775 E4 1 DH33 506.9 43.1 0.9 591.5 26.3 84.1 15.6 1.7 21.0 9.2 7.0 2.1 15.9 18.0 2.6 2.7 144 
776 E4 1 DH34 765.8 48.6 1.4 544.7 28.1 83.4 18.3 1.5 22.3 11.9 7.8 1.0 16.0 17.0 2.2 3.0 140 
777 E4 1 DH35 595.9 30.2 0.9 678.6 29.3 71.0 13.9 1.5 16.1 9.6 6.0 1.6 11.7 13.3 2.2 2.6 139 
778 E4 1 DH36 741.5 37.5 1.1 679.7 28.6 79.2 16.0 1.6 20.2 10.1 7.3 1.3 14.4 15.7 2.1 2.6 141 
779 E4 1 DH37 590.1 39.9 1.0 597.8 25.8 79.0 17.7 1.4 19.8 12.5 6.6 1.5 13.5 15.0 2.3 3.0 142 
780 E4 1 DH38 553.7 41.5 1.2 471.2 29.9 76.0 14.1 1.4 15.1 10.4 7.1 0.6 16.0 16.6 2.4 2.6 138 
781 E4 1 DH39 658.6 39.8 1.1 605.3 27.6 72.7 16.4 1.4 18.1 11.9 5.6 0.8 13.3 14.1 2.5 3.0 139 
782 E4 1 DH40 542.7 33.6 1.0 546.5 28.3 87.5 12.9 1.3 13.5 10.0 6.8 1.1 13.6 14.7 2.2 2.5 140 
783 E4 1 DH41 660.5 37.4 1.0 683.0 28.2 85.3 14.3 1.4 15.5 10.4 6.6 1.2 14.2 15.4 2.3 2.6 140 
784 E4 1 DH42 637.9 43.5 1.3 492.9 29.5 80.3 15.6 1.3 16.4 11.7 6.9 0.3 15.3 15.6 2.3 2.8 139 
785 E4 1 DH43 769.0 41.6 1.2 647.3 30.6 71.8 14.6 1.3 15.2 11.1 6.5 1.0 13.2 14.2 2.2 3.1 139 
786 E4 1 DH44 724.6 32.6 1.1 685.5 33.8 89.4 17.5 1.5 21.5 11.3 7.0 2.1 12.8 14.9 2.2 2.5 142 
787 E4 1 DH45 603.6 26.8 0.9 653.3 34.2 78.8 13.1 1.4 14.4 9.5 6.6 2.1 13.0 15.1 2.3 2.0 139 
788 E4 1 DH46 579.0 40.7 1.1 538.1 29.0 85.9 14.9 1.5 17.4 10.1 7.9 1.4 15.1 16.5 2.1 2.7 141 
789 E4 1 DH47 726.0 41.1 1.1 639.1 29.4 82.8 12.9 1.4 14.3 9.2 6.8 1.2 13.4 14.6 2.2 3.1 141 
790 E4 1 DH49 634.1 37.3 1.0 624.8 29.5 83.2 15.7 1.5 19.0 10.3 7.0 2.2 14.1 16.3 2.4 2.6 142 
791 E4 1 DH50 596.1 35.6 1.0 589.7 28.7 81.8 12.9 1.3 13.7 9.7 6.5 1.0 13.8 14.8 2.3 2.6 141 
792 E4 1 DH51 602.5 42.6 1.0 601.3 26.3 77.4 15.1 1.4 16.9 10.7 6.7 1.7 13.5 15.2 2.3 3.1 141 
793 E4 1 DH52 725.7 39.9 0.9 774.5 23.8 72.4 14.8 1.3 15.9 11.1 6.6 0.5 14.8 15.3 2.3 2.7 138 
794 E4 1 DH53 647.2 37.8 1.0 618.8 27.9 70.4 13.7 1.4 15.1 9.9 6.8 0.8 14.5 15.3 2.3 2.6 139 
795 E4 1 DH54 663.5 45.6 1.5 448.6 31.6 76.6 15.6 1.6 19.5 9.9 7.8 0.6 14.8 15.4 2.0 3.1 139 
796 E4 1 DH55 695.3 40.0 1.1 624.7 27.9 81.4 13.4 1.3 14.2 10.1 6.3 1.1 13.6 14.7 2.3 2.9 138 
797 E4 1 DH56 638.6 39.5 1.2 544.9 30.4 76.6 13.3 1.3 14.0 9.9 6.3 1.0 13.6 14.6 2.3 2.9 139 
798 E4 1 DH57 577.7 36.9 1.0 565.2 27.7 66.4 14.0 1.3 14.1 11.1 5.9 0.5 13.8 14.3 2.4 2.7 140 
799 E4 1 DH58 723.0 39.0 1.1 679.5 27.9 78.1 12.8 1.3 13.0 9.9 6.4 1.3 12.6 13.9 2.2 3.1 138 
800 E4 1 DH59 720.6 36.5 1.0 743.7 28.0 73.4 14.6 1.3 15.5 11.0 5.8 1.0 13.4 14.4 2.5 2.7 139 
801 E4 1 DH60 681.5 39.6 1.1 595.2 30.6 75.8 14.3 1.4 15.8 10.3 6.7 1.5 12.8 14.3 2.1 3.1 139 
802 E4 1 DH61 640.7 32.0 0.9 701.0 27.8 74.9 13.1 1.5 15.1 8.9 6.8 1.7 13.2 14.9 2.2 2.4 141 
803 E4 1 DH62 666.2 42.1 1.2 577.3 29.0 74.2 14.9 1.4 15.9 11.1 6.1 0.4 12.9 13.3 2.2 3.3 138 
804 E4 1 DH63 638.5 49.9 1.5 436.1 29.5 81.0 15.8 1.6 20.2 9.7 8.2 1.3 15.5 16.8 2.1 3.2 139 
805 E4 1 DH64 739.1 35.9 1.1 655.8 32.4 84.3 15.8 1.4 18.1 10.9 6.9 1.5 13.8 15.3 2.2 2.6 139 
806 E4 1 DH65 529.2 44.6 1.1 475.9 27.6 74.9 17.3 1.4 18.9 12.6 7.4 1.1 15.4 16.5 2.2 2.9 139 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
807 E4 1 DH66 439.7 34.0 1.1 399.3 31.3 74.1 17.4 1.7 22.9 10.4 7.0 2.0 14.0 16.0 2.3 2.4 142 
808 E4 1 DH67 588.6 35.7 1.0 586.3 31.4 71.5 14.3 1.4 16.0 10.4 6.1 0.9 13.5 14.4 2.3 2.6 138 
809 E4 1 DH68 438.6 38.0 1.0 455.9 25.4 75.9 16.0 1.6 20.5 10.0 6.7 0.8 14.1 14.9 2.2 2.6 139 
810 E4 1 DH69 642.1 42.4 1.0 652.6 28.6 69.9 15.0 1.5 17.8 10.0 6.0 0.8 13.6 14.4 2.4 3.1 140 
811 E4 1 DH70 512.3 35.3 1.0 527.1 29.5 77.8 16.0 1.4 17.4 11.6 6.7 1.9 13.7 15.6 2.3 2.6 142 
812 E4 1 DH71 683.9 39.6 1.1 605.2 30.2 76.9 14.0 1.5 16.3 9.5 7.5 0.9 14.9 15.8 2.1 2.6 141 
813 E4 1 DH72 575.8 37.7 0.9 632.8 26.2 76.8 14.4 1.5 17.2 9.6 6.8 1.5 14.4 15.9 2.4 2.6 142 
814 E4 1 DH73 479.5 34.2 0.9 524.1 26.6 72.7 16.4 1.4 18.7 11.5 6.4 1.6 13.7 15.3 2.4 2.5 142 
815 E4 1 DH75 634.8 44.7 1.3 474.5 33.3 82.9 14.6 1.3 15.2 11.4 7.7 1.1 15.6 16.7 2.2 2.9 137 
816 E4 1 DH76 659.1 34.1 1.0 690.2 29.3 72.1 14.3 1.4 15.9 10.2 6.2 1.2 13.0 14.2 2.3 2.6 139 
817 E4 1 DH77 573.3 34.4 1.1 545.5 30.2 70.3 20.1 1.3 21.4 14.9 7.3 1.7 13.8 15.5 2.1 2.5 140 
818 E4 1 DH78 659.7 40.0 1.2 566.8 30.4 75.5 17.9 1.3 19.0 13.3 7.1 1.7 14.3 16.0 2.3 2.8 137 
819 E4 1 DH79 761.2 49.7 1.5 523.5 31.0 84.4 16.0 1.3 17.2 12.0 7.3 1.0 14.5 15.5 2.1 3.4 139 
820 E4 1 DH80 733.9 52.6 1.4 511.8 28.2 82.4 15.6 1.4 17.2 11.2 7.0 0.3 15.4 15.7 2.2 3.4 139 
821 E4 1 DH81 520.4 35.8 1.0 508.7 30.3 66.0 15.2 1.7 20.4 9.1 6.6 1.1 14.1 15.2 2.3 2.5 140 
822 E4 1 DH82 659.4 34.0 0.9 740.8 26.6 77.1 12.9 1.4 14.2 9.3 6.4 1.7 12.5 14.2 2.2 2.7 139 
823 E4 1 DH83 619.2 35.1 1.2 532.9 33.4 83.8 14.6 1.3 15.5 11.0 6.1 1.9 12.4 14.3 2.3 2.8 141 
824 E4 1 DH84 747.9 36.0 1.1 661.3 30.7 81.0 11.6 1.2 11.3 9.5 6.7 1.4 13.2 14.6 2.2 2.7 136 
825 E4 1 DH85 665.8 35.7 1.0 683.6 28.4 72.4 13.8 1.4 15.2 9.9 6.6 1.1 13.6 14.7 2.2 2.6 139 
826 E4 1 DH86 635.8 39.8 1.1 572.2 29.2 79.4 13.2 1.3 13.2 10.4 6.1 0.8 13.8 14.6 2.4 2.9 139 
827 E4 1 DH87 742.9 44.4 1.1 651.1 26.3 81.4 15.7 1.4 17.6 11.3 6.6 0.6 14.7 15.3 2.3 3.0 137 
828 E4 1 DH89 587.0 37.6 1.1 526.0 30.8 77.3 13.4 1.3 14.2 10.1 6.5 1.4 14.7 16.1 2.5 2.6 139 
829 E4 1 DH90 545.1 35.3 1.0 534.4 30.0 74.5 14.8 1.4 15.8 11.1 6.7 2.3 13.8 16.1 2.4 2.5 137 
830 E4 1 DH91 559.8 40.4 1.1 497.6 28.8 82.1 15.2 1.3 15.6 11.9 6.3 1.4 13.9 15.3 2.4 2.9 139 
831 E4 1 DH92 663.3 36.4 0.9 711.7 27.9 76.3 13.4 1.3 14.2 10.1 6.3 1.1 13.1 14.2 2.3 2.8 140 
832 E4 1 DH93 635.5 50.9 1.3 486.6 27.3 72.6 16.5 1.4 18.6 11.5 7.5 0.6 16.1 16.7 2.2 3.2 139 
833 E4 1 DH94 748.6 35.1 1.0 736.1 29.8 84.4 12.3 1.3 13.2 9.1 6.6 1.3 14.0 15.3 2.3 2.5 138 
834 E4 1 DH95 674.1 35.4 1.1 630.0 32.3 73.5 15.6 1.5 18.8 10.4 7.2 1.6 14.0 15.6 2.2 2.5 138 
835 E4 1 DH96 605.7 32.7 1.1 568.2 33.0 72.9 14.8 1.3 15.4 11.4 6.3 1.1 11.7 12.8 2.0 2.8 138 
836 E4 1 DH97 672.5 36.9 1.2 580.8 31.6 79.0 14.7 1.6 18.7 9.2 6.3 1.1 13.4 14.5 2.3 2.7 139 
837 E4 1 DH98 726.1 42.4 1.3 578.1 32.0 80.6 14.2 1.4 15.4 10.4 7.3 0.9 14.4 15.3 2.1 2.9 136 
838 E4 1 DH99 671.3 39.2 1.1 601.0 29.5 77.2 16.2 1.5 19.2 10.9 6.6 0.6 13.8 14.4 2.2 2.8 141 
839 E4 1 DH100 685.6 48.0 1.2 594.6 26.8 71.5 15.3 1.5 18.1 10.2 6.8 0.6 15.1 15.7 2.3 3.2 139 
840 E4 1 DH101 696.2 44.8 1.1 634.7 27.7 79.2 13.7 1.4 15.3 9.7 7.2 0.5 14.8 15.3 2.1 3.0 138 
841 E4 1 DH102 562.4 44.5 1.0 576.9 25.2 79.6 16.8 1.5 19.5 11.5 7.4 1.0 14.7 15.7 2.1 3.0 142 
842 E4 1 DH103 535.9 33.4 0.9 623.9 27.8 77.8 15.8 1.7 21.1 9.3 6.9 2.2 13.7 15.9 2.3 2.4 142 
843 E4 1 DH104 576.8 39.6 1.0 575.1 25.2 79.9 18.1 1.4 19.9 13.1 6.1 1.3 13.2 14.5 2.4 3.0 142 
844 E4 1 DH105 687.7 39.6 1.0 665.7 28.2 77.2 16.0 1.4 17.3 11.7 5.8 1.4 13.3 14.7 2.6 3.0 140 
845 E4 1 DH106 655.2 42.8 1.1 582.9 28.7 76.6 14.8 1.5 18.1 9.7 7.1 1.3 14.8 16.1 2.3 2.9 139 
846 E4 1 DH107 612.6 36.0 1.0 609.6 28.2 75.7 13.0 1.3 13.1 10.2 6.5 0.8 12.8 13.6 2.1 2.8 139 
847 E4 1 DH108 585.9 36.3 1.0 602.8 27.4 76.4 15.6 1.3 15.5 12.3 5.9 1.1 12.6 13.7 2.3 2.9 139 
848 E4 1 DH109 . 38.0 1.1 . 26.8 72.1 15.5 1.4 17.6 10.7 7.0 1.2 14.1 15.3 2.2 2.7 139 
849 E4 1 DH110 677.7 41.1 1.2 570.4 28.6 78.5 13.7 1.2 13.1 11.3 7.6 0.8 14.4 15.2 2.0 2.9 137 
850 E4 1 DH111 583.4 43.8 1.1 529.4 27.0 79.0 16.1 1.4 17.6 11.7 7.2 1.1 14.1 15.2 2.1 3.1 139 
851 E4 1 DH112 589.1 45.0 1.3 460.9 30.7 75.9 15.3 1.3 16.1 11.7 7.0 0.9 14.7 15.6 2.2 3.1 138 
852 E4 1 DH113 692.1 33.2 0.9 752.3 32.8 80.2 13.5 1.4 15.1 9.6 5.9 1.6 12.9 14.5 2.5 2.5 139 
853 E4 1 DH114 509.3 34.6 0.9 576.8 27.2 62.7 13.8 1.5 16.6 9.1 6.5 0.7 13.2 13.9 2.1 2.6 140 
854 E4 1 DH115 576.7 36.8 1.1 537.4 29.0 74.1 13.1 1.3 13.0 10.5 6.7 1.4 13.6 15.0 2.2 2.6 139 
855 E4 1 DH116 515.0 31.2 0.9 554.3 30.8 72.7 13.6 1.3 14.1 10.4 6.1 1.7 12.1 13.8 2.3 2.6 140 
856 E4 1 DH117 495.7 33.0 1.0 505.8 30.3 64.8 13.1 1.4 14.3 9.6 6.5 0.9 12.8 13.7 2.1 2.6 138 
857 E4 1 DH119 517.3 39.9 1.2 445.6 28.9 81.3 16.7 1.5 20.4 10.8 7.2 1.8 15.1 16.9 2.3 2.6 142 
858 E4 1 DH120 581.5 35.1 1.0 589.2 30.4 70.1 14.9 1.3 15.9 11.0 6.0 1.1 12.8 13.9 2.3 2.7 141 
859 E4 1 DH121 738.8 36.2 1.1 697.7 29.4 77.9 15.2 1.5 17.6 10.5 6.8 1.8 13.6 15.4 2.3 2.7 141 
860 E4 1 DH122 672.2 39.3 1.0 674.4 26.6 84.7 15.2 1.4 16.6 11.0 6.4 1.7 14.1 15.8 2.5 2.8 142 
861 E4 1 DH123 610.7 44.2 1.1 544.8 26.3 81.9 15.5 1.2 14.2 13.5 7.2 0.9 14.4 15.3 2.1 3.1 142 
862 E4 1 DH124 677.6 37.1 1.0 646.6 28.0 72.4 16.3 1.4 18.0 11.8 7.6 1.2 14.2 15.4 2.0 2.6 141 
863 E4 1 DH125 677.6 39.7 1.2 576.7 30.1 70.2 13.6 1.5 16.2 9.1 6.7 1.1 13.5 14.6 2.2 2.9 140 
864 E4 1 DH126 637.4 41.3 1.1 601.8 27.4 72.4 15.2 1.6 18.6 9.8 7.4 1.1 15.4 16.5 2.2 2.7 142 
865 E4 1 DH128 594.2 40.7 1.0 585.4 27.0 81.8 17.7 1.3 18.6 13.4 6.2 1.5 13.8 15.3 2.5 2.9 140 
866 E4 1 DH129 593.2 40.9 1.2 510.5 29.3 79.5 13.9 1.4 15.1 10.3 6.6 1.5 13.3 14.8 2.3 3.1 140 
867 E4 1 DH130 691.5 37.5 1.0 670.7 28.3 76.3 14.2 1.6 17.7 9.1 6.8 1.4 13.0 14.4 2.1 2.9 139 
868 E4 1 DH131 574.1 36.0 1.1 515.3 32.8 80.1 17.1 1.7 22.5 10.3 7.3 2.5 14.3 16.8 2.3 2.5 142 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
869 E4 2 DH1 591.6 44.5 1.2 486.9 29.0 72.6 13.4 1.3 13.8 10.2 6.4 0.2 13.9 14.1 2.2 3.2 139 
870 E4 2 DH3 584.3 41.6 1.2 491.4 27.5 77.0 15.7 1.5 18.9 10.4 6.2 0.6 13.6 14.2 2.3 3.1 141 
871 E4 2 DH4 495.7 31.8 0.9 555.8 29.0 70.9 12.6 1.5 15.3 8.3 6.1 1.5 13.1 14.6 2.4 2.4 141 
872 E4 2 DH5 541.2 42.7 1.2 442.0 27.3 71.5 13.8 1.5 16.9 9.0 7.5 0.7 14.2 14.9 2.0 3.0 141 
873 E4 2 DH6 614.4 41.7 1.2 504.5 30.5 75.8 16.1 1.4 17.4 11.9 6.6 1.2 14.1 15.3 2.3 3.0 137 
874 E4 2 DH7 575.8 35.3 0.9 616.5 28.6 72.6 15.8 1.6 20.4 9.8 6.5 2.7 14.3 17.0 2.6 2.5 143 
875 E4 2 DH8 697.5 45.5 1.2 561.1 28.5 77.4 16.8 1.4 18.8 11.9 7.1 0.6 13.8 14.4 2.0 3.3 140 
876 E4 2 DH9 557.6 44.4 1.4 403.2 30.6 75.0 13.9 1.5 16.2 9.5 7.2 1.5 15.8 17.3 2.4 2.8 142 
877 E4 2 DH11 577.7 38.2 1.3 451.7 32.9 85.5 17.5 1.4 19.1 12.8 7.7 2.0 14.2 16.2 2.1 2.7 137 
878 E4 2 DH12 379.3 39.4 1.1 355.8 27.4 52.7 12.4 1.6 15.6 7.9 6.1 0.6 13.7 14.3 2.4 2.9 142 
879 E4 2 DH13 539.5 46.0 1.2 459.6 25.8 77.1 17.8 1.6 22.0 11.4 7.0 1.3 15.1 16.4 2.4 3.0 142 
880 E4 2 DH14 703.3 40.9 1.3 555.5 30.2 78.0 15.2 1.5 17.9 10.3 7.3 1.3 15.3 16.6 2.3 2.7 140 
881 E4 2 DH15 592.8 38.2 1.1 545.3 27.6 75.6 12.6 1.3 12.7 10.0 6.8 0.7 14.5 15.2 2.3 2.6 137 
882 E4 2 DH16 580.0 52.4 1.5 398.1 28.7 74.2 15.4 1.5 17.7 10.5 7.4 0.4 16.0 16.4 2.2 3.3 137 
883 E4 2 DH17 665.4 44.5 1.5 453.0 32.8 76.1 13.4 1.2 13.1 10.9 7.2 0.9 14.4 15.3 2.1 3.1 137 
884 E4 2 DH18 553.9 48.1 1.4 406.0 28.7 74.0 18.1 1.9 26.8 9.7 7.7 0.6 16.1 16.7 2.2 3.0 142 
885 E4 2 DH19 558.4 37.4 1.1 500.8 31.4 73.2 12.7 1.5 14.5 8.7 6.4 1.1 12.7 13.8 2.2 2.9 137 
886 E4 2 DH20 607.5 48.6 1.3 464.1 26.7 74.7 15.5 1.6 19.6 9.7 7.1 1.0 15.5 16.5 2.3 3.1 142 
887 E4 2 DH21 612.6 38.6 1.2 500.5 29.6 78.7 16.9 1.5 19.5 11.5 7.1 2.1 13.9 16.0 2.3 2.8 142 
888 E4 2 DH22 621.2 46.8 1.4 457.5 30.3 86.8 15.0 1.5 18.0 9.9 7.3 1.3 15.9 17.2 2.3 2.9 142 
889 E4 2 DH23 656.7 46.8 1.3 497.5 26.9 79.9 16.3 1.3 16.9 12.5 6.8 0.6 14.9 15.5 2.3 3.1 140 
890 E4 2 DH24 679.4 44.0 1.2 558.2 27.2 79.5 13.2 1.5 16.1 8.6 6.7 0.5 14.2 14.7 2.2 3.1 139 
891 E4 2 DH25 588.4 36.8 1.0 561.4 32.0 69.7 14.1 1.4 15.4 10.3 6.4 1.8 12.8 14.6 2.3 2.8 139 
892 E4 2 DH26 578.6 40.7 1.1 518.0 27.7 77.0 17.1 1.5 20.0 11.6 7.0 1.4 14.7 16.1 2.3 2.8 140 
893 E4 2 DH27 566.0 40.2 1.1 503.1 27.4 75.1 15.6 1.4 16.9 11.4 6.1 1.3 13.2 14.5 2.4 3.0 142 
894 E4 2 DH28 680.7 42.2 1.3 523.2 29.7 81.4 13.9 1.3 15.0 10.4 6.5 1.1 13.6 14.7 2.3 3.1 140 
895 E4 2 DH29 626.3 35.5 1.0 599.9 29.2 69.0 15.2 1.4 16.3 11.2 7.0 1.2 13.2 14.4 2.1 2.7 140 
896 E4 2 DH30 704.1 38.0 1.3 556.6 31.2 78.0 17.4 1.4 19.9 12.1 6.9 0.9 15.2 16.1 2.3 2.5 140 
897 E4 2 DH31 495.4 43.4 1.1 434.2 28.3 74.9 15.0 1.5 18.2 9.8 7.3 1.4 14.4 15.8 2.2 3.0 142 
898 E4 2 DH32 520.6 37.4 0.9 564.0 23.5 78.2 12.5 1.4 13.5 9.2 6.4 1.2 14.4 15.6 2.4 2.6 143 
899 E4 2 DH33 573.3 45.5 1.1 509.6 26.8 85.2 16.3 1.6 20.9 10.1 6.8 1.5 15.8 17.3 2.5 2.9 145 
900 E4 2 DH34 667.0 47.8 1.3 522.3 28.3 83.8 13.3 1.3 13.5 10.4 7.3 0.9 15.9 16.8 2.3 2.9 139 
901 E4 2 DH35 552.5 36.8 1.1 482.1 31.2 72.6 14.0 1.5 16.2 9.6 6.9 0.8 13.6 14.4 2.1 2.7 138 
902 E4 2 DH36 652.8 39.9 1.2 558.4 30.3 75.1 15.7 1.6 20.0 9.8 7.5 1.0 14.8 15.8 2.1 2.7 141 
903 E4 2 DH37 550.2 44.7 1.2 478.0 29.4 78.7 15.4 1.2 15.0 12.6 6.8 1.1 14.4 15.5 2.3 3.1 140 
904 E4 2 DH38 622.8 43.2 1.3 488.4 28.9 73.2 15.9 1.4 17.4 11.5 7.5 0.7 16.3 17.0 2.3 2.6 138 
905 E4 2 DH39 611.7 38.3 1.2 511.4 29.7 71.1 12.8 1.2 12.3 10.7 5.5 0.9 12.7 13.6 2.5 3.0 139 
906 E4 2 DH40 524.8 35.3 1.0 504.1 29.7 81.8 16.4 1.5 19.2 11.0 7.1 0.8 14.0 14.8 2.1 2.5 142 
907 E4 2 DH41 720.2 41.3 1.1 631.8 28.9 83.1 16.0 1.5 19.6 10.4 7.2 1.1 14.6 15.7 2.2 2.8 142 
908 E4 2 DH42 602.7 38.6 1.1 537.7 28.7 78.3 16.2 1.4 17.7 11.7 6.5 1.1 13.9 15.0 2.3 2.8 140 
909 E4 2 DH43 649.7 31.9 0.9 686.8 29.9 72.7 14.6 1.3 15.1 11.2 5.8 1.6 11.8 13.4 2.3 2.7 139 
910 E4 2 DH44 751.4 35.2 1.2 641.7 31.8 86.8 17.1 1.4 19.5 11.8 7.2 1.3 13.3 14.6 2.0 2.6 142 
911 E4 2 DH45 593.1 30.0 1.0 578.0 35.2 75.3 12.8 1.3 13.4 9.7 6.3 1.7 12.1 13.8 2.2 2.5 139 
912 E4 2 DH46 528.6 37.2 1.1 501.5 29.5 80.7 17.0 1.5 19.8 11.6 7.3 1.6 13.8 15.4 2.1 2.7 141 
913 E4 2 DH47 690.0 43.2 1.2 558.3 29.5 79.4 12.8 1.4 13.8 9.4 6.9 0.9 14.7 15.6 2.3 2.9 141 
914 E4 2 DH49 585.8 40.3 1.1 524.5 31.1 80.4 15.2 1.3 16.2 11.4 6.7 1.4 13.8 15.2 2.3 2.9 141 
915 E4 2 DH50 578.8 31.9 1.0 603.5 29.3 81.9 12.9 1.4 13.8 9.5 6.1 1.3 12.7 14.0 2.3 2.5 140 
916 E4 2 DH51 564.7 43.4 1.0 575.7 27.9 78.9 15.9 1.5 18.3 10.9 6.9 2.4 14.9 17.3 2.5 2.9 142 
917 E4 2 DH52 720.3 38.2 0.9 759.0 25.2 67.7 13.8 1.3 13.7 10.9 6.3 0.8 13.7 14.5 2.3 2.8 139 
918 E4 2 DH53 534.4 41.2 1.1 469.6 29.6 65.0 13.4 1.4 14.5 10.0 6.7 0.7 14.8 15.5 2.3 2.8 141 
919 E4 2 DH54 570.0 35.8 1.1 501.8 31.2 72.8 16.8 1.4 19.2 11.7 7.1 1.7 13.3 15.0 2.1 2.7 139 
920 E4 2 DH55 596.8 43.4 1.2 495.7 27.7 78.4 12.9 1.3 13.6 9.8 6.5 0.9 14.7 15.6 2.4 3.0 139 
921 E4 2 DH56 632.9 40.3 1.3 494.9 30.2 76.6 14.1 1.4 16.3 9.8 6.6 1.2 13.4 14.6 2.2 3.0 140 
922 E4 2 DH57 551.5 38.6 1.1 486.8 28.5 74.1 12.8 1.4 14.2 9.2 6.0 0.7 13.9 14.6 2.4 2.8 139 
923 E4 2 DH58 632.5 41.0 1.1 570.4 28.5 77.6 15.9 1.4 18.2 11.1 6.7 1.4 13.3 14.7 2.2 3.1 139 
924 E4 2 DH59 757.5 38.0 1.1 678.7 29.3 71.8 13.9 1.3 14.6 10.5 6.4 1.4 14.0 15.4 2.4 2.7 139 
925 E4 2 DH60 607.4 43.3 1.3 458.0 30.6 70.4 16.2 1.5 19.2 11.1 6.9 1.0 13.5 14.5 2.1 3.2 140 
926 E4 2 DH61 605.5 38.4 1.1 560.1 28.1 75.8 15.6 1.5 18.8 10.2 7.3 1.2 14.6 15.8 2.2 2.6 142 
927 E4 2 DH62 514.4 40.6 1.2 440.4 28.9 64.5 14.6 1.3 14.8 11.5 6.0 0.2 12.5 12.7 2.1 3.2 138 
928 E4 2 DH63 539.9 52.6 1.5 351.9 29.2 78.3 15.5 1.4 17.0 11.3 8.5 0.8 16.2 17.0 2.0 3.2 139 
929 E4 2 DH64 764.0 42.2 1.4 563.8 33.8 85.8 17.3 1.5 20.8 11.4 7.4 1.1 14.5 15.6 2.1 2.9 138 
930 E4 2 DH65 587.2 55.8 1.5 389.7 27.2 74.8 16.8 1.3 17.9 12.6 8.3 0.7 17.0 17.7 2.1 3.3 138 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
931 E4 2 DH66 600.6 41.2 1.2 494.7 32.6 76.2 16.5 1.6 21.4 10.1 7.6 1.9 15.4 17.3 2.3 2.7 143 
932 E4 2 DH67 586.4 35.7 1.1 544.0 31.7 68.7 13.0 1.2 12.5 10.7 6.3 0.9 13.6 14.5 2.3 2.6 138 
933 E4 2 DH68 389.7 36.4 0.9 435.9 25.0 72.8 16.5 1.5 20.1 10.8 6.6 0.8 14.0 14.8 2.2 2.6 139 
934 E4 2 DH69 585.2 43.2 1.2 484.4 29.7 64.9 14.2 1.4 15.2 10.5 6.6 0.9 14.3 15.2 2.3 3.0 140 
935 E4 2 DH70 582.2 34.7 1.1 548.8 30.2 77.9 15.4 1.4 16.9 11.2 6.8 1.8 14.4 16.2 2.4 2.4 142 
936 E4 2 DH71 531.8 36.0 1.1 479.1 30.7 72.6 14.9 1.4 16.9 10.5 6.6 0.9 12.9 13.8 2.1 2.7 142 
937 E4 2 DH72 578.4 41.6 1.1 515.1 27.0 77.1 15.5 1.5 19.1 10.0 7.2 1.2 15.6 16.8 2.3 2.7 142 
938 E4 2 DH73 637.7 43.9 1.3 508.2 27.3 78.9 13.7 1.5 16.2 9.2 7.2 1.1 15.4 16.5 2.3 2.8 141 
939 E4 2 DH75 725.4 41.6 1.3 551.2 33.2 81.8 15.3 1.4 17.1 10.9 7.5 1.2 14.9 16.1 2.2 2.8 137 
940 E4 2 DH76 531.9 38.2 1.1 493.0 29.0 68.4 14.0 1.4 15.5 10.0 6.4 0.8 13.1 13.9 2.2 2.9 140 
941 E4 2 DH77 599.9 40.6 1.3 478.8 31.8 72.3 14.2 1.2 13.0 12.2 7.9 1.3 15.8 17.1 2.2 2.6 140 
942 E4 2 DH78 736.2 44.9 1.3 572.1 31.7 73.1 16.0 1.3 16.1 12.6 7.3 1.1 15.1 16.2 2.2 3.0 137 
943 E4 2 DH79 643.6 39.1 1.1 563.6 30.7 79.4 14.2 1.3 14.7 10.8 6.5 2.0 12.8 14.8 2.3 3.0 137 
944 E4 2 DH80 660.4 45.3 1.4 484.5 29.6 77.9 15.2 1.3 16.2 11.4 6.7 0.8 14.1 14.9 2.2 3.2 139 
945 E4 2 DH81 525.3 39.9 1.2 444.4 30.4 72.2 14.6 1.6 18.4 9.5 6.8 0.5 14.9 15.4 2.3 2.7 140 
946 E4 2 DH82 567.5 40.6 1.2 490.1 29.0 74.2 13.7 1.4 14.8 10.0 6.9 0.9 14.2 15.1 2.2 2.8 138 
947 E4 2 DH83 615.3 27.2 0.9 681.4 33.5 77.7 13.8 1.2 13.3 11.3 5.5 2.7 10.5 13.2 2.4 2.6 141 
948 E4 2 DH84 617.8 38.8 1.3 488.8 31.5 75.9 12.9 1.2 11.9 11.1 7.2 0.9 13.4 14.3 2.0 2.9 136 
949 E4 2 DH85 662.2 40.1 1.2 560.7 28.9 66.6 17.7 1.5 21.2 11.8 6.5 0.7 13.6 14.3 2.2 2.9 140 
950 E4 2 DH86 647.5 41.5 1.1 582.8 30.3 81.4 13.9 1.3 14.1 10.9 6.1 0.9 13.8 14.7 2.4 3.0 140 
951 E4 2 DH87 581.6 40.3 1.1 512.8 29.0 71.0 13.4 1.3 13.9 10.3 6.2 0.7 13.1 13.8 2.2 3.1 139 
952 E4 2 DH89 588.1 33.1 1.0 578.8 31.8 78.6 13.1 1.3 14.0 9.7 6.0 1.4 12.6 14.0 2.3 2.6 141 
953 E4 2 DH90 488.7 43.9 1.3 364.5 29.4 71.0 13.6 1.2 12.7 11.7 7.5 1.3 15.8 17.1 2.3 2.7 137 
954 E4 2 DH91 671.3 39.2 1.1 588.3 29.8 84.0 14.3 1.3 15.2 10.7 6.4 1.2 14.1 15.3 2.4 2.8 139 
955 E4 2 DH92 518.8 31.4 0.9 560.9 27.7 66.6 13.4 1.3 13.6 10.5 6.0 1.7 12.0 13.7 2.3 2.6 140 
956 E4 2 DH93 559.0 49.5 1.3 423.2 26.8 69.1 14.3 1.3 14.8 11.0 7.4 0.7 15.6 16.3 2.2 3.2 139 
957 E4 2 DH94 662.9 38.9 1.1 579.4 29.8 79.9 13.3 1.3 13.3 10.6 6.9 1.1 15.1 16.2 2.3 2.6 139 
958 E4 2 DH95 587.8 32.8 1.0 579.7 32.6 71.4 12.3 1.3 12.8 9.6 6.5 1.5 12.4 13.9 2.2 2.6 139 
959 E4 2 DH96 719.5 35.4 1.2 601.1 33.0 77.2 14.6 1.4 16.0 10.6 6.5 1.5 12.5 14.0 2.2 2.8 136 
960 E4 2 DH97 604.5 45.7 1.4 436.2 31.0 77.3 14.8 1.6 18.8 9.2 7.1 0.1 15.6 15.7 2.2 2.9 139 
961 E4 2 DH98 566.3 32.4 1.1 518.6 33.0 67.9 13.8 1.3 13.9 10.9 6.4 1.3 12.2 13.5 2.1 2.7 137 
962 E4 2 DH99 672.8 40.4 1.2 570.1 28.8 71.9 13.7 1.5 15.8 9.4 6.6 0.4 13.7 14.1 2.2 2.9 141 
963 E4 2 DH100 475.9 45.9 1.3 378.3 26.8 65.9 11.4 1.2 11.2 9.3 7.1 1.0 15.2 16.2 2.3 3.0 138 
964 E4 2 DH101 559.2 39.9 1.1 508.8 27.3 71.5 12.4 1.3 13.2 9.2 6.6 0.6 13.2 13.8 2.1 3.0 138 
965 E4 2 DH102 510.9 42.8 1.1 454.1 26.8 74.0 14.8 1.4 16.3 10.7 7.1 1.3 13.7 15.0 2.1 3.1 142 
966 E4 2 DH103 560.1 37.0 1.1 518.1 28.8 75.1 16.5 1.6 21.4 10.1 7.0 1.6 13.9 15.6 2.2 2.6 142 
967 E4 2 DH104 691.0 45.5 1.2 583.1 27.4 83.9 16.2 1.4 18.2 11.4 6.9 1.3 15.0 16.3 2.4 3.0 142 
968 E4 2 DH105 649.9 45.6 1.2 553.6 26.6 76.1 16.6 1.5 19.7 11.1 6.2 1.2 14.5 15.7 2.5 3.1 140 
969 E4 2 DH106 561.9 47.3 1.3 428.9 27.8 74.3 13.7 1.6 17.4 8.6 6.9 0.8 14.6 15.4 2.2 3.2 140 
970 E4 2 DH107 679.5 38.3 1.1 594.4 27.0 78.7 14.5 1.4 16.2 10.3 7.0 0.8 13.8 14.6 2.1 2.8 139 
971 E4 2 DH108 725.8 42.6 1.3 572.9 28.4 85.2 14.3 1.2 13.9 11.7 7.0 1.4 15.0 16.4 2.3 2.8 137 
972 E4 2 DH109 479.3 41.9 1.1 453.9 26.2 72.0 15.9 1.5 19.0 10.5 7.7 1.2 14.9 16.1 2.1 2.8 141 
973 E4 2 DH110 638.3 43.3 1.3 481.7 29.7 77.4 14.9 1.2 14.0 12.9 7.4 0.8 14.6 15.4 2.1 3.0 137 
974 E4 2 DH111 584.5 38.9 1.1 526.1 30.0 79.5 15.4 1.3 16.2 11.5 6.9 1.5 13.3 14.8 2.1 2.9 139 
975 E4 2 DH112 566.3 38.7 1.1 497.2 30.2 73.5 12.1 1.3 12.9 9.0 6.6 1.5 13.6 15.1 2.3 2.8 139 
976 E4 2 DH113 575.7 33.2 1.0 555.7 31.8 72.9 11.9 1.2 11.3 10.0 5.7 1.5 12.4 13.9 2.4 2.7 139 
977 E4 2 DH114 526.9 40.5 1.2 447.7 27.2 63.2 13.1 1.5 15.1 9.1 7.2 0.6 14.3 14.9 2.1 2.8 140 
978 E4 2 DH115 534.1 36.4 1.1 484.2 29.4 73.0 14.6 1.3 14.8 11.4 6.8 1.4 13.8 15.2 2.2 2.6 138 
979 E4 2 DH116 657.9 33.1 1.0 650.7 32.1 78.7 12.6 1.3 13.1 9.7 6.3 1.7 12.7 14.4 2.3 2.6 139 
980 E4 2 DH117 483.4 38.8 1.2 393.0 30.4 59.9 16.0 1.4 17.7 11.4 7.1 0.5 13.4 13.9 2.0 2.9 139 
981 E4 2 DH119 589.3 49.1 1.5 390.3 29.1 86.8 18.7 1.7 25.8 10.7 7.7 0.6 16.0 16.6 2.2 3.1 141 
982 E4 2 DH120 655.7 36.2 1.1 614.0 29.8 58.9 14.4 1.3 15.0 11.0 6.2 1.0 12.9 13.9 2.2 2.8 139 
983 E4 2 DH121 614.8 38.2 1.1 548.4 29.3 71.8 15.0 1.5 17.3 10.3 6.9 1.3 13.8 15.1 2.2 2.8 141 
984 E4 2 DH122 578.0 40.9 1.1 547.4 25.7 82.8 14.6 1.4 16.1 10.5 6.6 1.2 14.9 16.1 2.4 2.7 142 
985 E4 2 DH123 541.9 41.6 1.1 506.5 26.3 80.5 14.9 1.3 15.3 11.7 7.1 1.3 14.3 15.6 2.2 2.9 140 
986 E4 2 DH124 674.8 42.8 1.2 549.9 28.0 77.5 16.0 1.4 18.0 11.3 7.7 1.3 14.6 15.9 2.1 2.9 143 
987 E4 2 DH125 628.6 35.5 1.0 656.1 29.8 69.7 12.9 1.4 14.7 9.0 5.9 1.3 12.6 13.9 2.4 2.8 139 
988 E4 2 DH126 647.9 44.9 1.2 533.2 28.2 71.8 15.2 1.6 19.0 9.6 7.8 0.6 16.2 16.8 2.2 2.8 142 
989 E4 2 DH128 574.6 46.0 1.2 480.0 25.4 71.6 16.5 1.5 19.3 11.3 6.4 1.4 14.0 15.4 2.4 3.3 142 
990 E4 2 DH129 684.4 44.0 1.3 535.1 30.1 83.8 14.5 1.3 15.4 10.8 6.9 1.5 14.0 15.5 2.2 3.1 138 
991 E4 2 DH130 575.3 42.5 1.2 480.2 27.2 73.1 14.5 1.5 17.1 9.7 7.3 0.9 14.5 15.4 2.1 2.9 140 
992 E4 2 DH131 480.2 41.5 1.3 383.9 31.9 72.5 16.3 1.5 19.6 10.8 7.6 1.7 15.1 16.8 2.2 2.7 142 
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No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
993 E5 1 DH1 439.4 36.8 0.9 490.9 25.5 . . . . . 6.6 1.6 14.6 16.2 2.4 2.5 113 
994 E5 1 DH3 593.4 37.9 1.0 584.0 29.0 . . . . . 6.9 2.8 14.9 17.7 2.6 2.5 119 
995 E5 1 DH4 454.2 38.0 0.9 532.3 28.0 . . . . . 7.4 3.1 16.0 19.1 2.6 2.3 117 
996 E5 1 DH5 601.4 33.7 0.8 737.9 24.5 . . . . . 7.4 3.5 14.2 17.7 2.4 2.4 116 
997 E5 1 DH6 508.2 42.3 1.1 462.0 27.9 . . . . . 7.3 2.2 16.2 18.4 2.5 2.6 110 
998 E5 1 DH7 459.0 41.9 1.1 426.1 25.3 . . . . . 6.9 3.3 16.6 19.9 2.9 2.5 123 
999 E5 1 DH8 439.9 50.7 1.3 338.1 27.2 . . . . . 7.9 1.9 16.8 18.7 2.4 3.0 115 
1000 E5 1 DH9 404.7 57.0 1.5 274.9 24.8 . . . . . 8.3 2.3 19.8 22.1 2.7 2.9 119 
1001 E5 1 DH11 598.9 39.8 1.4 440.0 33.2 . . . . . 8.6 2.7 15.7 18.4 2.1 2.5 114 
1002 E5 1 DH12 288.8 43.3 1.0 285.7 21.7 . . . . . 7.3 1.9 16.3 18.2 2.5 2.7 115 
1003 E5 1 DH13 582.9 50.7 1.3 455.4 24.5 . . . . . 8.2 2.3 19.2 21.5 2.6 2.6 116 
1004 E5 1 DH14 639.1 38.1 1.2 515.4 31.7 . . . . . 7.4 2.9 15.9 18.8 2.5 2.4 116 
1005 E5 1 DH15 604.2 40.9 1.1 542.4 27.8 . . . . . 7.5 1.8 15.4 17.2 2.3 2.6 111 
1006 E5 1 DH16 537.1 37.5 1.0 541.5 27.8 . . . . . 7.1 2.6 14.3 16.9 2.4 2.6 111 
1007 E5 1 DH17 486.5 37.9 1.2 421.5 30.8 . . . . . 7.4 2.8 14.4 17.2 2.3 2.6 112 
1008 E5 1 DH18 525.9 47.1 1.2 443.0 27.5 . . . . . 8.0 2.8 17.5 20.3 2.5 2.7 123 
1009 E5 1 DH19 634.5 36.5 1.1 582.7 29.7 . . . . . 6.8 2.8 14.1 16.9 2.5 2.6 113 
1010 E5 1 DH20 545.9 51.0 1.2 437.1 25.0 . . . . . 7.3 2.4 17.1 19.5 2.7 3.0 119 
1011 E5 1 DH21 664.7 40.3 1.2 554.4 31.2 . . . . . 7.5 3.7 15.1 18.8 2.5 2.6 118 
1012 E5 1 DH22 597.5 46.7 1.2 516.4 26.3 . . . . . 8.2 2.3 18.2 20.5 2.5 2.6 116 
1013 E5 1 DH23 517.6 47.0 1.2 433.1 24.8 . . . . . 7.0 1.8 15.6 17.4 2.5 3.0 111 
1014 E5 1 DH24 622.5 40.1 1.1 560.8 28.8 . . . . . 6.9 2.5 14.3 16.8 2.4 2.8 111 
1015 E5 1 DH25 558.5 40.1 1.0 535.5 25.0 . . . . . 7.5 2.5 15.7 18.2 2.4 2.5 112 
1016 E5 1 DH26 461.1 47.0 1.1 408.0 22.2 . . . . . 7.6 2.1 16.3 18.4 2.4 2.9 115 
1017 E5 1 DH27 542.5 40.9 1.1 482.6 29.0 . . . . . 6.3 3.3 14.2 17.5 2.8 2.9 120 
1018 E5 1 DH28 461.1 40.6 1.1 428.1 30.7 . . . . . 6.9 3.0 14.7 17.7 2.6 2.7 117 
1019 E5 1 DH29 442.9 41.8 1.1 419.4 25.3 . . . . . 7.9 2.4 17.0 19.4 2.5 2.5 117 
1020 E5 1 DH30 324.8 40.2 1.1 298.2 26.8 . . . . . 7.7 2.4 16.6 19.0 2.5 2.4 116 
1021 E5 1 DH31 493.6 46.6 1.1 460.4 24.8 . . . . . 8.4 1.9 17.0 18.9 2.3 2.7 116 
1022 E5 1 DH32 559.0 42.0 0.9 592.8 23.0 . . . . . 7.6 2.4 17.9 20.3 2.7 2.3 123 
1023 E5 1 DH33 599.8 59.3 1.2 496.9 24.3 . . . . . 7.9 1.9 20.2 22.1 2.8 2.9 123 
1024 E5 1 DH34 688.2 45.9 1.3 515.1 29.6 . . . . . 7.7 1.8 16.2 18.0 2.3 2.8 110 
1025 E5 1 DH35 548.0 35.7 1.1 517.5 30.3 . . . . . 7.4 2.8 15.0 17.8 2.4 2.4 115 
1026 E5 1 DH36 525.9 40.2 1.1 466.2 26.4 . . . . . 8.2 2.7 16.7 19.4 2.4 2.4 117 
1027 E5 1 DH37 464.2 44.1 1.1 437.5 24.2 . . . . . 7.8 2.5 17.1 19.6 2.5 2.6 117 
1028 E5 1 DH38 492.9 41.1 1.0 508.7 23.8 . . . . . 7.6 2.2 16.2 18.4 2.4 2.5 110 
1029 E5 1 DH39 596.8 42.5 1.2 493.2 25.3 . . . . . 6.2 2.0 16.4 18.4 3.0 2.6 116 
1030 E5 1 DH40 368.8 39.6 0.9 391.1 25.6 . . . . . 8.1 2.5 17.2 19.7 2.4 2.3 118 
1031 E5 1 DH41 648.9 37.7 1.0 659.4 25.9 . . . . . 7.0 2.9 14.6 17.5 2.5 2.6 118 
1032 E5 1 DH42 554.6 46.3 1.2 450.9 26.7 . . . . . 7.7 2.4 17.7 20.1 2.6 2.6 117 
1033 E5 1 DH43 381.2 47.8 1.2 314.7 23.1 . . . . . 7.4 2.2 16.5 18.7 2.5 2.9 116 
1034 E5 1 DH44 574.9 47.0 1.4 396.8 29.0 . . . . . 8.5 2.2 17.2 19.4 2.3 2.7 121 
1035 E5 1 DH45 504.1 40.4 1.3 386.3 34.5 . . . . . 7.9 2.1 16.8 18.9 2.4 2.4 115 
1036 E5 1 DH46 506.4 46.4 1.1 448.2 23.7 . . . . . 8.7 3.3 17.9 21.2 2.4 2.6 119 
1037 E5 1 DH47 482.3 37.9 1.0 503.4 24.5 . . . . . 7.1 3.5 14.6 18.1 2.5 2.6 119 
1038 E5 1 DH49 457.2 52.4 1.4 337.4 27.1 . . . . . 8.0 2.2 16.6 18.8 2.4 3.1 120 
1039 E5 1 DH50 512.9 36.1 1.0 498.9 28.1 . . . . . 7.2 2.8 15.7 18.5 2.6 2.3 117 
1040 E5 1 DH51 535.3 46.4 1.1 492.4 24.0 . . . . . 7.9 3.3 16.7 20.0 2.5 2.8 120 
1041 E5 1 DH52 702.4 39.4 1.0 706.0 26.5 . . . . . 7.1 1.9 15.3 17.2 2.4 2.6 114 
1042 E5 1 DH53 612.7 37.2 1.1 568.9 27.8 . . . . . 6.7 2.2 15.8 18.0 2.7 2.4 116 
1043 E5 1 DH54 612.7 47.9 1.6 392.7 32.9 . . . . . 8.3 1.9 15.7 17.6 2.1 3.0 110 
1044 E5 1 DH55 573.7 43.4 1.2 484.1 27.8 . . . . . 7.2 2.2 15.9 18.1 2.5 2.7 116 
1045 E5 1 DH56 643.6 37.4 1.2 554.8 29.4 . . . . . 6.9 2.2 14.2 16.4 2.4 2.6 114 
1046 E5 1 DH57 402.5 36.1 0.9 467.5 22.8 . . . . . 6.7 2.4 15.8 18.2 2.7 2.4 115 
1047 E5 1 DH58 584.9 37.9 1.1 554.9 28.4 . . . . . 6.8 2.3 13.7 16.0 2.4 2.8 114 
1048 E5 1 DH59 581.6 39.1 1.0 592.9 24.4 . . . . . 6.5 1.7 14.1 15.8 2.4 2.7 109 
1049 E5 1 DH60 568.4 48.2 1.4 406.6 27.9 . . . . . 8.0 2.2 15.9 18.1 2.3 3.0 110 
1050 E5 1 DH61 595.6 42.1 1.2 503.1 27.0 . . . . . 7.4 2.2 15.8 18.0 2.4 2.7 120 
1051 E5 1 DH62 228.7 41.4 0.7 308.6 18.3 . . . . . 7.0 1.6 15.3 16.9 2.4 2.7 115 
1052 E5 1 DH63 547.1 54.9 1.5 361.9 28.1 . . . . . 8.6 1.6 17.2 18.8 2.2 3.2 110 
1053 E5 1 DH64 590.2 38.7 1.2 504.8 33.1 . . . . . 7.9 2.0 15.8 17.8 2.3 2.4 112 
1054 E5 1 DH65 428.8 50.4 1.2 369.7 24.0 . . . . . 8.6 1.9 18.7 20.6 2.4 2.7 110 
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No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
1055 E5 1 DH66 382.9 47.7 1.2 321.8 24.4 . . . . . 8.1 3.1 18.4 21.5 2.6 2.6 121 
1056 E5 1 DH67 492.9 41.1 1.1 467.2 27.9 . . . . . 7.2 1.9 15.8 17.7 2.5 2.6 114 
1057 E5 1 DH68 322.2 39.9 0.9 340.2 24.3 . . . . . 7.6 2.0 15.6 17.6 2.3 2.5 115 
1058 E5 1 DH69 468.5 47.4 1.0 463.0 22.6 . . . . . 7.1 1.5 15.8 17.3 2.5 3.0 113 
1059 E5 1 DH70 554.6 47.3 1.3 411.7 27.5 . . . . . 7.7 2.8 17.3 20.1 2.6 2.7 120 
1060 E5 1 DH71 529.4 50.5 1.3 400.4 27.8 . . . . . 8.5 2.1 17.8 19.9 2.3 2.8 119 
1061 E5 1 DH72 491.2 48.9 1.2 401.0 25.0 . . . . . 8.1 2.7 17.4 20.1 2.5 2.8 118 
1062 E5 1 DH73 514.6 48.7 1.2 426.3 24.2 . . . . . 7.8 2.4 16.9 19.3 2.5 2.9 118 
1063 E5 1 DH75 730.8 43.6 1.3 543.8 31.7 . . . . . 7.8 1.6 15.7 17.3 2.2 2.8 110 
1064 E5 1 DH76 621.8 40.7 1.2 500.2 29.2 . . . . . 7.0 2.1 15.6 17.7 2.5 2.6 117 
1065 E5 1 DH77 632.3 39.3 1.2 513.2 30.6 . . . . . 8.6 2.8 17.2 20.0 2.3 2.3 114 
1066 E5 1 DH78 602.8 48.5 1.4 422.7 29.5 . . . . . 8.1 1.5 17.2 18.7 2.3 2.8 113 
1067 E5 1 DH79 583.5 40.7 1.2 468.7 29.6 . . . . . 7.5 2.8 15.7 18.5 2.5 2.6 115 
1068 E5 1 DH80 559.8 45.9 1.3 423.8 28.2 . . . . . 7.3 2.1 17.5 19.6 2.7 2.6 116 
1069 E5 1 DH81 404.2 39.7 1.0 387.5 27.0 . . . . . 7.4 1.8 17.3 19.1 2.6 2.3 115 
1070 E5 1 DH82 559.8 39.3 1.0 573.0 26.0 . . . . . 7.4 2.3 15.0 17.3 2.4 2.6 109 
1071 E5 1 DH83 678.2 35.0 1.2 560.5 33.8 . . . . . 7.1 3.9 14.1 18.0 2.6 2.4 116 
1072 E5 1 DH84 688.7 39.8 1.3 547.0 31.0 . . . . . 7.7 1.8 15.2 17.0 2.2 2.6 109 
1073 E5 1 DH85 606.0 40.9 1.2 501.2 30.2 . . . . . 7.3 2.6 15.6 18.2 2.5 2.6 115 
1074 E5 1 DH86 587.6 41.5 1.2 508.8 29.2 . . . . . 6.7 2.0 15.4 17.4 2.6 2.7 114 
1075 E5 1 DH87 485.9 51.4 1.3 380.5 25.5 . . . . . 7.3 0.9 16.9 17.8 2.4 3.0 109 
1076 E5 1 DH89 529.4 35.5 1.1 495.9 31.7 . . . . . 7.0 2.9 15.1 18.0 2.6 2.5 116 
1077 E5 1 DH90 481.7 38.7 1.2 414.6 29.7 . . . . . 7.5 3.0 15.7 18.7 2.5 2.4 108 
1078 E5 1 DH91 428.3 41.9 1.2 349.6 29.7 . . . . . 7.2 2.7 15.7 18.4 2.6 2.8 115 
1079 E5 1 DH92 508.2 40.0 1.1 468.8 28.9 . . . . . 7.5 1.9 15.6 17.5 2.3 2.6 115 
1080 E5 1 DH93 454.7 53.4 1.3 350.9 22.6 . . . . . 8.2 1.3 18.0 19.3 2.3 3.0 110 
1081 E5 1 DH94 563.2 40.3 1.2 485.9 28.9 . . . . . 7.6 2.6 16.2 18.8 2.5 2.5 117 
1082 E5 1 DH95 527.1 37.7 0.9 593.6 24.5 . . . . . 7.7 2.3 15.0 17.3 2.2 2.5 108 
1083 E5 1 DH96 837.8 40.1 1.5 572.7 35.2 . . . . . 7.2 2.2 14.1 16.3 2.3 2.8 111 
1084 E5 1 DH97 581.0 46.8 1.4 410.3 31.8 . . . . . 7.9 1.5 17.7 19.2 2.4 2.6 114 
1085 E5 1 DH98 545.9 50.2 1.4 389.9 28.0 . . . . . 8.2 1.4 15.5 16.9 2.1 3.2 107 
1086 E5 1 DH99 501.6 47.7 1.2 427.3 26.5 . . . . . 7.3 1.9 17.4 19.3 2.6 2.7 120 
1087 E5 1 DH100 534.1 48.0 1.1 472.6 25.4 . . . . . 7.5 3.0 17.2 20.2 2.7 2.8 114 
1088 E5 1 DH101 550.6 48.8 1.3 421.2 27.3 . . . . . 7.9 1.9 16.4 18.3 2.3 3.0 114 
1089 E5 1 DH102 661.6 54.3 1.3 516.5 24.4 . . . . . 8.7 2.6 19.0 21.6 2.5 2.8 121 
1090 E5 1 DH103 584.0 42.5 1.3 456.2 28.7 . . . . . 7.8 2.4 16.4 18.8 2.4 2.6 123 
1091 E5 1 DH104 753.5 48.8 1.2 613.1 25.8 . . . . . 7.1 2.8 17.7 20.5 2.9 2.7 120 
1092 E5 1 DH105 721.1 40.3 1.1 652.5 27.7 . . . . . 6.7 3.0 15.3 18.3 2.7 2.6 116 
1093 E5 1 DH106 575.0 38.7 1.1 525.6 28.8 . . . . . 7.8 2.8 15.9 18.7 2.4 2.4 116 
1094 E5 1 DH107 537.5 36.9 1.1 506.1 27.9 . . . . . 7.4 2.5 14.5 17.0 2.3 2.5 113 
1095 E5 1 DH108 473.7 36.2 1.0 483.4 28.4 . . . . . 6.7 3.0 15.3 18.3 2.7 2.4 116 
1096 E5 1 DH109 502.9 40.2 1.1 455.1 27.8 . . . . . 8.2 2.9 16.5 19.4 2.4 2.4 117 
1097 E5 1 DH110 432.1 46.1 1.3 331.9 29.7 . . . . . 8.8 2.0 17.9 19.9 2.3 2.6 113 
1098 E5 1 DH111 444.7 48.8 1.4 328.7 28.3 . . . . . 8.8 2.2 17.8 20.0 2.3 2.7 114 
1099 E5 1 DH112 373.7 40.3 1.1 328.1 27.7 . . . . . 7.2 3.2 15.8 19.0 2.7 2.5 117 
1100 E5 1 DH113 545.3 39.7 1.2 442.9 29.4 . . . . . 6.7 2.3 14.5 16.8 2.5 2.7 115 
1101 E5 1 DH114 552.5 43.6 1.2 453.2 26.2 . . . . . 8.1 1.5 16.7 18.2 2.3 2.6 115 
1102 E5 1 DH115 494.7 39.9 1.1 447.3 29.4 . . . . . 7.5 2.3 15.6 17.9 2.4 2.5 115 
1103 E5 1 DH116 663.2 34.7 1.1 615.2 31.5 . . . . . 7.0 2.8 13.7 16.5 2.3 2.5 114 
1104 E5 1 DH117 535.3 40.4 1.1 484.2 26.3 . . . . . 7.9 1.2 15.7 16.9 2.2 2.6 113 
1105 E5 1 DH119 651.1 46.2 1.4 481.9 31.9 . . . . . 8.8 2.3 17.6 19.9 2.3 2.6 115 
1106 E5 1 DH120 620.3 38.7 1.0 605.8 27.3 . . . . . 6.6 3.2 15.1 18.3 2.8 2.6 119 
1107 E5 1 DH121 527.5 38.2 1.1 475.3 28.3 . . . . . 7.2 4.2 15.0 19.2 2.7 2.5 120 
1108 E5 1 DH122 535.0 48.5 1.1 472.6 23.1 . . . . . 7.4 1.9 17.1 19.0 2.6 2.9 120 
1109 E5 1 DH123 609.8 39.5 1.1 565.7 25.5 . . . . . 7.3 2.6 15.5 18.1 2.5 2.5 117 
1110 E5 1 DH124 679.2 46.1 1.2 552.2 25.4 . . . . . 8.2 2.7 16.7 19.4 2.4 2.8 119 
1111 E5 1 DH125 774.4 36.4 1.2 670.5 31.2 . . . . . 7.0 2.9 14.8 17.7 2.5 2.5 116 
1112 E5 1 DH126 729.7 45.4 1.2 597.6 25.1 . . . . . 8.2 2.0 18.0 20.0 2.5 2.5 119 
1113 E5 1 DH128 504.7 43.9 1.1 476.1 23.8 . . . . . 7.2 3.0 17.3 20.3 2.8 2.6 119 
1114 E5 1 DH129 651.8 41.0 1.3 503.3 30.2 . . . . . 7.5 3.0 15.8 18.8 2.5 2.6 115 
1115 E5 1 DH130 596.5 37.4 1.0 588.3 26.8 . . . . . 7.9 2.6 15.4 18.0 2.3 2.5 115 
1116 E5 1 DH131 508.2 42.6 1.2 409.5 29.3 . . . . . 8.1 3.4 17.4 20.8 2.6 2.4 121 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
1117 E5 2 DH1 433.6 37.4 0.9 458.3 24.3 . . . . . 6.7 1.8 14.1 15.9 2.4 2.6 113 
1118 E5 2 DH3 596.5 36.2 1.1 565.4 28.3 . . . . . 6.6 2.9 13.9 16.8 2.5 2.6 120 
1119 E5 2 DH4 505.9 37.2 1.1 479.0 27.8 . . . . . 7.3 2.7 16.1 18.8 2.6 2.3 117 
1120 E5 2 DH5 678.2 40.0 1.1 593.8 27.2 . . . . . 8.0 2.4 15.1 17.5 2.2 2.6 117 
1121 E5 2 DH6 727.2 42.6 1.2 585.9 29.2 . . . . . 7.2 1.9 15.9 17.8 2.5 2.7 109 
1122 E5 2 DH7 637.6 45.6 1.2 547.3 25.2 . . . . . 6.9 3.2 16.7 19.9 2.9 2.7 123 
1123 E5 2 DH8 606.0 47.5 1.3 451.5 27.8 . . . . . 7.9 2.2 16.1 18.3 2.3 2.9 116 
1124 E5 2 DH9 451.0 42.7 1.1 408.5 24.4 . . . . . 7.6 3.9 16.9 20.8 2.8 2.5 120 
1125 E5 2 DH11 608.1 38.7 1.3 458.9 34.5 . . . . . 8.3 2.6 15.4 18.0 2.2 2.5 114 
1126 E5 2 DH12 314.5 40.9 1.1 292.8 21.9 . . . . . 7.3 2.5 16.6 19.1 2.6 2.5 115 
1127 E5 2 DH13 620.3 46.5 1.3 480.1 25.1 . . . . . 7.8 3.4 18.0 21.4 2.7 2.6 116 
1128 E5 2 DH14 668.4 39.3 1.3 509.9 33.8 . . . . . 7.8 3.6 16.1 19.7 2.5 2.4 117 
1129 E5 2 DH15 660.2 37.7 1.1 603.5 27.7 . . . . . 7.5 2.0 15.1 17.1 2.3 2.5 112 
1130 E5 2 DH16 713.0 40.7 1.2 604.2 29.3 . . . . . 7.0 1.8 15.2 17.0 2.4 2.7 112 
1131 E5 2 DH17 657.9 42.2 1.4 467.9 32.2 . . . . . 8.0 2.0 16.1 18.1 2.3 2.6 112 
1132 E5 2 DH18 538.1 48.0 1.3 401.6 27.3 . . . . . 8.4 2.2 18.2 20.4 2.4 2.6 123 
1133 E5 2 DH19 605.3 37.4 1.1 533.7 31.1 . . . . . 6.9 2.2 14.3 16.5 2.4 2.6 114 
1134 E5 2 DH20 541.8 43.7 1.2 470.8 26.2 . . . . . 7.0 3.2 16.2 19.4 2.8 2.7 119 
1135 E5 2 DH21 538.1 33.4 1.1 511.5 30.8 . . . . . 7.1 4.0 14.1 18.1 2.5 2.4 118 
1136 E5 2 DH22 469.0 46.4 1.3 361.0 28.7 . . . . . 7.8 2.9 17.5 20.4 2.6 2.6 117 
1137 E5 2 DH23 484.8 44.6 1.2 415.4 26.0 . . . . . 6.9 2.0 15.1 17.1 2.5 3.0 112 
1138 E5 2 DH24 635.4 39.4 1.2 545.8 28.8 . . . . . 7.1 2.1 15.0 17.1 2.4 2.6 112 
1139 E5 2 DH25 607.7 42.8 1.2 504.3 25.5 . . . . . 7.8 3.2 16.3 19.5 2.5 2.6 112 
1140 E5 2 DH26 531.6 40.2 1.0 520.6 23.7 . . . . . 7.1 2.6 15.2 17.8 2.5 2.6 115 
1141 E5 2 DH27 791.0 41.9 1.2 642.6 27.4 . . . . . 6.5 3.1 14.6 17.7 2.7 2.9 119 
1142 E5 2 DH28 658.7 38.9 1.2 542.6 30.4 . . . . . 6.8 2.8 15.0 17.8 2.6 2.6 117 
1143 E5 2 DH29 595.6 39.3 1.2 515.3 25.1 . . . . . 7.7 3.5 15.9 19.4 2.5 2.5 117 
1144 E5 2 DH30 460.6 34.4 1.1 433.3 30.2 . . . . . 7.3 3.2 15.9 19.1 2.6 2.2 116 
1145 E5 2 DH31 542.1 40.4 1.1 511.4 26.2 . . . . . 7.7 2.6 15.6 18.2 2.3 2.6 116 
1146 E5 2 DH32 550.7 38.8 0.9 622.3 23.6 . . . . . 7.1 2.5 16.4 18.9 2.7 2.4 123 
1147 E5 2 DH33 617.5 56.5 1.3 489.7 22.2 . . . . . 7.8 2.3 20.1 22.4 2.9 2.8 123 
1148 E5 2 DH34 705.3 54.0 1.6 445.5 30.0 . . . . . 8.3 1.4 17.5 18.9 2.3 3.1 110 
1149 E5 2 DH35 576.3 34.3 1.1 543.6 30.6 . . . . . 7.6 3.0 14.9 17.9 2.4 2.3 115 
1150 E5 2 DH36 657.2 42.5 1.2 566.1 27.3 . . . . . 8.6 2.9 16.9 19.8 2.3 2.5 117 
1151 E5 2 DH37 580.8 45.2 1.2 500.3 26.5 . . . . . 8.0 2.7 17.1 19.8 2.5 2.6 116 
1152 E5 2 DH38 519.8 43.9 1.1 473.9 23.2 . . . . . 7.9 1.9 16.4 18.3 2.3 2.7 109 
1153 E5 2 DH39 578.9 40.3 1.3 457.7 29.3 . . . . . 6.3 2.1 16.5 18.6 3.0 2.4 116 
1154 E5 2 DH40 421.5 36.8 1.0 404.6 28.1 . . . . . 8.2 2.0 17.1 19.1 2.3 2.2 117 
1155 E5 2 DH41 542.7 37.7 1.1 504.4 29.7 . . . . . 7.1 2.6 14.5 17.1 2.4 2.6 118 
1156 E5 2 DH42 459.0 45.9 1.3 364.0 26.8 . . . . . 7.3 2.3 17.8 20.1 2.8 2.6 116 
1157 E5 2 DH43 443.1 40.3 1.2 380.4 27.4 . . . . . 7.0 2.8 15.2 18.0 2.6 2.6 116 
1158 E5 2 DH44 621.9 43.0 1.4 453.0 31.4 . . . . . 8.1 2.9 15.4 18.3 2.3 2.8 120 
1159 E5 2 DH45 586.9 36.8 1.4 431.2 35.5 . . . . . 8.1 2.8 16.6 19.4 2.4 2.2 115 
1160 E5 2 DH46 545.5 46.3 1.1 476.0 26.8 . . . . . 8.6 3.6 16.8 20.4 2.4 2.8 120 
1161 E5 2 DH47 598.2 37.6 1.0 589.9 23.9 . . . . . 7.2 3.7 14.6 18.3 2.5 2.6 119 
1162 E5 2 DH49 622.5 47.4 1.3 472.7 28.5 . . . . . 7.9 3.0 16.4 19.4 2.5 2.9 120 
1163 E5 2 DH50 618.9 33.7 1.0 596.2 31.4 . . . . . 7.2 3.5 14.8 18.3 2.5 2.3 116 
1164 E5 2 DH51 548.6 45.1 1.0 538.9 23.7 . . . . . 7.6 3.4 15.9 19.3 2.6 2.8 119 
1165 E5 2 DH52 585.6 37.2 1.0 600.0 25.4 . . . . . 7.1 2.2 15.4 17.6 2.5 2.4 114 
1166 E5 2 DH53 555.8 39.5 1.1 507.6 28.1 . . . . . 7.2 2.7 15.6 18.3 2.6 2.5 116 
1167 E5 2 DH54 619.4 47.0 1.5 409.1 30.4 . . . . . 7.9 2.0 15.2 17.2 2.2 3.1 110 
1168 E5 2 DH55 630.1 37.7 1.1 582.4 27.8 . . . . . 7.0 2.5 15.3 17.8 2.5 2.5 115 
1169 E5 2 DH56 699.2 36.2 1.1 608.5 31.0 . . . . . 6.9 2.4 14.2 16.6 2.4 2.5 113 
1170 E5 2 DH57 426.4 42.1 1.0 412.4 21.1 . . . . . 7.1 2.0 16.4 18.4 2.6 2.6 114 
1171 E5 2 DH58 617.9 37.9 1.1 541.1 29.8 . . . . . 6.9 2.7 13.7 16.4 2.4 2.8 114 
1172 E5 2 DH59 654.9 45.4 1.2 560.2 27.0 . . . . . 7.0 0.9 15.8 16.7 2.4 2.9 109 
1173 E5 2 DH60 568.4 51.0 1.5 375.7 27.1 . . . . . 8.0 1.8 16.4 18.2 2.3 3.1 110 
1174 E5 2 DH61 567.0 41.6 1.2 485.8 28.2 . . . . . 7.6 2.0 15.4 17.4 2.3 2.7 119 
1175 E5 2 DH62 272.2 40.2 0.9 307.5 20.0 . . . . . 7.3 1.8 15.6 17.4 2.4 2.6 114 
1176 E5 2 DH63 382.9 49.6 1.3 285.5 27.2 . . . . . 8.2 1.8 16.1 17.9 2.2 3.1 110 
1177 E5 2 DH64 519.4 40.1 1.2 434.6 30.6 . . . . . 7.8 1.7 15.6 17.3 2.2 2.6 113 
1178 E5 2 DH65 440.4 49.2 1.2 364.6 23.5 . . . . . 8.4 1.7 18.5 20.2 2.4 2.7 110 
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Table E.1 Continued. 
 
No. Env. Rep. Name GYLD GPS GWPS SPSM TGW PHT FLL FLW FLA FLS SL SSN FSN TSN SC GSP HD 
1179 E5 2 DH66 451.0 46.5 1.3 334.4 26.9 . . . . . 8.0 3.5 17.9 21.4 2.7 2.6 121 
1180 E5 2 DH67 540.0 41.6 1.2 447.0 29.9 . . . . . 7.5 2.0 16.2 18.2 2.4 2.6 114 
1181 E5 2 DH68 495.9 39.3 1.0 479.6 24.1 . . . . . 7.8 2.5 15.7 18.2 2.3 2.5 116 
1182 E5 2 DH69 652.6 53.3 1.4 480.2 24.3 . . . . . 7.3 0.9 16.5 17.4 2.4 3.2 113 
1183 E5 2 DH70 708.5 49.4 1.5 468.6 26.9 . . . . . 8.1 2.3 18.3 20.6 2.6 2.7 119 
1184 E5 2 DH71 620.8 47.9 1.3 477.9 23.3 . . . . . 8.2 2.4 17.2 19.6 2.4 2.8 119 
1185 E5 2 DH72 485.3 43.4 1.2 420.9 25.1 . . . . . 7.5 2.9 16.3 19.2 2.6 2.6 118 
1186 E5 2 DH73 523.5 44.7 1.2 429.8 25.0 . . . . . 7.4 2.6 16.4 19.0 2.6 2.7 118 
1187 E5 2 DH75 735.1 37.4 1.2 601.1 30.8 . . . . . 7.2 2.2 14.6 16.8 2.3 2.6 110 
1188 E5 2 DH76 629.2 35.5 1.1 592.5 28.6 . . . . . 6.9 2.6 14.6 17.2 2.5 2.4 116 
1189 E5 2 DH77 623.9 38.7 1.2 499.6 27.7 . . . . . 8.3 2.7 16.8 19.5 2.3 2.3 114 
1190 E5 2 DH78 717.5 43.1 1.3 561.8 29.3 . . . . . 8.0 2.2 16.3 18.5 2.3 2.6 111 
1191 E5 2 DH79 635.4 45.3 1.4 461.7 29.5 . . . . . 7.7 2.0 16.3 18.3 2.4 2.8 115 
1192 E5 2 DH80 549.9 45.6 1.3 425.3 27.5 . . . . . 7.3 1.4 16.8 18.2 2.5 2.7 116 
1193 E5 2 DH81 399.8 38.1 1.1 362.5 27.5 . . . . . 7.5 1.8 16.6 18.4 2.5 2.3 114 
1194 E5 2 DH82 507.6 39.0 1.0 487.2 24.8 . . . . . 7.5 1.4 15.5 16.9 2.3 2.5 108 
1195 E5 2 DH83 500.6 36.6 1.3 396.0 33.5 . . . . . 7.2 3.6 14.2 17.8 2.5 2.6 116 
1196 E5 2 DH84 532.8 32.2 1.0 511.8 32.4 . . . . . 7.1 2.6 13.7 16.3 2.3 2.3 108 
1197 E5 2 DH85 528.8 39.7 1.2 435.6 30.1 . . . . . 7.5 2.3 15.8 18.1 2.4 2.5 115 
1198 E5 2 DH86 571.1 44.6 1.4 415.3 29.5 . . . . . 6.9 1.3 15.8 17.1 2.5 2.8 114 
1199 E5 2 DH87 491.8 41.5 1.2 412.5 26.2 . . . . . 7.3 1.7 15.8 17.5 2.4 2.6 108 
1200 E5 2 DH89 586.2 37.0 1.2 484.9 32.4 . . . . . 7.2 2.5 14.9 17.4 2.4 2.5 115 
1201 E5 2 DH90 645.1 46.9 1.5 443.1 28.6 . . . . . 7.9 2.3 16.0 18.3 2.3 2.9 108 
1202 E5 2 DH91 561.1 41.6 1.2 472.3 28.3 . . . . . 7.3 2.4 15.5 17.9 2.4 2.7 115 
1203 E5 2 DH92 614.1 41.6 1.2 520.4 29.0 . . . . . 7.5 1.5 15.3 16.8 2.3 2.7 114 
1204 E5 2 DH93 502.9 49.8 1.4 361.8 23.1 . . . . . 8.1 1.9 17.3 19.2 2.4 2.9 109 
1205 E5 2 DH94 521.1 32.9 1.0 521.6 29.7 . . . . . 7.1 3.5 15.8 19.3 2.7 2.1 117 
1206 E5 2 DH95 545.9 33.7 1.0 559.9 27.0 . . . . . 7.2 2.4 14.1 16.5 2.3 2.4 108 
1207 E5 2 DH96 729.9 37.3 1.3 557.6 34.3 . . . . . 7.1 2.1 13.8 15.9 2.2 2.7 112 
1208 E5 2 DH97 581.0 41.0 1.2 472.3 31.8 . . . . . 7.4 2.1 16.0 18.1 2.4 2.6 114 
1209 E5 2 DH98 551.8 46.1 1.3 424.8 25.8 . . . . . 8.1 1.3 15.6 16.9 2.1 3.0 107 
1210 E5 2 DH99 597.0 42.6 1.1 538.8 25.9 . . . . . 7.4 2.0 16.1 18.1 2.4 2.6 120 
1211 E5 2 DH100 567.8 55.2 1.4 407.6 22.6 . . . . . 7.7 1.8 17.6 19.4 2.5 3.1 113 
1212 E5 2 DH101 553.3 53.1 1.4 403.5 27.2 . . . . . 8.2 1.3 17.5 18.8 2.3 3.0 113 
1213 E5 2 DH102 556.6 48.0 1.2 470.5 23.8 . . . . . 8.3 2.9 17.9 20.8 2.5 2.7 121 
1214 E5 2 DH103 487.3 36.1 1.1 441.0 30.4 . . . . . 7.6 3.3 15.2 18.5 2.4 2.4 123 
1215 E5 2 DH104 538.1 47.8 1.4 398.0 26.0 . . . . . 7.2 2.6 17.8 20.4 2.9 2.7 120 
1216 E5 2 DH105 527.5 36.7 1.1 465.6 28.2 . . . . . 6.6 3.3 14.5 17.8 2.7 2.5 116 
1217 E5 2 DH106 465.9 47.0 1.2 377.4 28.3 . . . . . 8.3 2.2 17.6 19.8 2.4 2.7 116 
1218 E5 2 DH107 535.0 38.7 1.2 446.2 28.6 . . . . . 7.2 1.9 14.3 16.2 2.3 2.7 113 
1219 E5 2 DH108 519.8 37.1 1.1 484.5 28.4 . . . . . 7.0 2.4 15.9 18.3 2.6 2.3 116 
1220 E5 2 DH109 526.9 41.3 1.1 477.7 23.4 . . . . . 8.0 2.7 16.1 18.8 2.4 2.6 116 
1221 E5 2 DH110 573.0 47.3 1.5 389.0 29.2 . . . . . 9.2 2.0 18.2 20.2 2.2 2.6 113 
1222 E5 2 DH111 611.2 50.5 1.5 400.0 27.1 . . . . . 9.1 1.6 18.4 20.0 2.2 2.7 115 
1223 E5 2 DH112 480.1 37.7 1.1 447.0 29.4 . . . . . 7.3 3.1 15.8 18.9 2.6 2.4 116 
1224 E5 2 DH113 555.2 41.0 1.3 440.6 29.6 . . . . . 6.9 2.4 15.2 17.6 2.6 2.7 115 
1225 E5 2 DH114 571.7 39.7 1.1 516.5 26.5 . . . . . 7.9 2.2 15.9 18.1 2.3 2.5 115 
1226 E5 2 DH115 507.6 32.0 1.0 510.7 30.6 . . . . . 7.2 2.6 14.8 17.4 2.4 2.2 115 
1227 E5 2 DH116 656.4 34.8 1.1 592.4 29.8 . . . . . 7.1 2.5 14.0 16.5 2.3 2.5 114 
1228 E5 2 DH117 548.0 39.8 1.1 497.3 25.6 . . . . . 7.5 1.1 15.2 16.3 2.2 2.6 112 
1229 E5 2 DH119 639.1 40.4 1.2 516.7 30.6 . . . . . 8.5 3.1 16.4 19.5 2.3 2.5 115 
1230 E5 2 DH120 727.2 37.1 1.1 682.8 24.8 . . . . . 6.7 2.8 14.9 17.7 2.6 2.5 117 
1231 E5 2 DH121 560.5 45.6 1.3 431.8 26.9 . . . . . 7.9 3.9 16.9 20.8 2.6 2.7 119 
1232 E5 2 DH122 494.8 54.0 1.3 390.2 23.3 . . . . . 7.5 2.2 18.0 20.2 2.7 3.0 121 
1233 E5 2 DH123 520.4 42.7 1.2 428.4 26.6 . . . . . 7.3 2.2 16.0 18.2 2.5 2.7 117 
1234 E5 2 DH124 573.0 43.1 1.2 461.0 26.0 . . . . . 8.0 2.8 16.0 18.8 2.4 2.7 119 
1235 E5 2 DH125 597.5 37.8 1.2 489.0 32.2 . . . . . 7.2 2.7 15.2 17.9 2.5 2.5 115 
1236 E5 2 DH126 520.0 39.4 1.1 476.2 26.9 . . . . . 7.6 3.3 16.3 19.6 2.6 2.4 118 
1237 E5 2 DH128 487.0 47.6 1.3 376.4 24.9 . . . . . 7.2 2.6 17.6 20.2 2.8 2.7 119 
1238 E5 2 DH129 606.3 44.4 1.4 422.2 31.4 . . . . . 7.6 2.2 16.0 18.2 2.4 2.8 115 
1239 E5 2 DH130 630.1 42.9 1.3 470.2 27.9 . . . . . 7.9 2.3 15.7 18.0 2.3 2.7 116 
1240 E5 2 DH131 503.5 41.8 1.3 394.3 28.8 . . . . . 8.0 3.6 17.1 20.7 2.6 2.4 121 
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Table E.2 Average phenotypic data for yield contributing traits evaluated at greenhouse 2012 and 
2013. Three replications in 2012 and four in 2013. Missing data is indicated by dot.  
 

Name 
Greenhouse 2012 Greenhouse 2013 

PHT FLL FLW FLA FLS PHT FLL FLW FLA FLS 
DH1 73.7 23.6 1.7 32.5 13.6 78 24.1 2 37.7 12.2 
DH3 76.1 27 2.1 45.8 12.6 80.2 27.3 2.6 56.1 10.5 
DH4 64.9 20.7 1.9 31.5 10.8 65.8 24.7 2.2 43.5 11.1 
DH5 68.9 22.5 1.9 33.2 12 75.9 26.4 2.2 45.9 12.1 
DH6 79 22.5 1.9 34.2 11.7 78.6 23.7 2 38.3 11.6 
DH7 66.1 17 1.9 25.3 9 71.3 28.7 2.4 53.3 12.2 
DH8 72.4 18.4 1.7 24.9 10.9 78.3 28.5 2.1 46.6 13.8 
DH9 72.9 17.2 2 27.8 8.5 73.9 27.7 2.5 55.4 11 
DH11 91.9 21.5 1.8 31.1 11.7 86.8 29.8 2.1 50.3 14 
DH12 51.9 18.8 2.1 30.5 9.2 54.8 21.6 2.2 37.2 10 
DH13 65.9 18 1.8 25.3 10.1 72 27.1 2 43.1 13.5 
DH14 61.8 19.1 1.9 27.9 10.3 71.9 25.9 2.3 46.5 11.4 
DH15 63.7 20 1.6 25.2 12.5 70.1 24 1.7 33.4 13.7 
DH16 66.9 20.2 1.7 27.3 12 76.1 27 2.1 45.7 12.6 
DH17 68.7 26.6 1.6 32.6 17.5 81.7 28.5 2 45.2 14.2 
DH18 73.6 16.9 2 26.1 8.6 71.8 30.5 2.6 62.4 11.8 
DH19 79.9 15.6 1.9 23.7 8.3 78.4 28 2.3 51.4 12 
DH20 70.8 18.1 1.8 26.4 9.9 73.5 29.3 2.5 59 11.5 
DH21 81.3 18.6 1.8 26.1 10.5 82.8 28.9 2.4 54.4 12.1 
DH22 82.3 15.1 1.6 19.3 9.4 83.4 23.4 1.9 37 11.8 
DH23 76.6 21.6 1.6 26.3 13.9 78.9 27.8 2 42.8 14.3 
DH24 65.2 20.3 1.9 30.6 10.7 60.5 22.3 2 36.4 11 
DH25 73.4 21.5 1.6 26.6 14.5 72.6 25.6 1.9 39.5 13.2 
DH26 63.3 14.9 1.5 18.3 9.6 66.2 21.9 1.8 32 12.1 
DH27 78.5 15.5 1.5 18.3 10.5 79 30.3 2.4 58.4 12.4 
DH28 81.5 19.7 1.6 24.1 12.7 81.4 23.7 1.8 34.2 13.1 
DH29 68.7 23 2.1 37.4 11.2 69.8 25.8 2.2 45.3 11.6 
DH30 74.6 25.1 1.8 35.2 14.2 78.8 26.6 2.1 44.2 12.9 
DH31 74.6 19.1 2.3 34.7 8.3 76.8 23.3 2.2 40.7 10.5 
DH32 68.3 15.6 1.8 21.7 8.9 70.8 25.2 2.2 43.8 11.6 
DH33 79.7 20.6 1.9 30.9 11 78.6 29.7 2.4 55.8 12.5 
DH34 79 17 1.9 25.5 8.9 74.7 26.5 1.9 40.5 13.8 
DH35 79.5 14.5 2 22.9 7.3 74.8 20.9 2.1 34.3 10.1 
DH36 75 21.1 2 34.1 10.4 76.7 27.2 2.5 53.8 10.9 
DH37 77 21.2 2 33.5 10.6 76.9 27.8 1.9 40.2 15.4 
DH38 66 20.6 1.5 24.5 13.7 77.1 24.7 1.9 38 12.9 
DH39 76.4 13.6 1.5 16.4 8.9 74.8 22.4 1.9 33.6 11.8 
DH40 78.5 13.7 1.6 17 8.7 84.2 22.2 1.8 32.8 12.1 
DH41 79.2 17.4 1.6 21.9 11.1 84.5 26.4 2 41.8 13.3 
DH42 72.3 18.4 1.5 21.8 12.3 77.1 26.2 2.1 42.6 12.7 
DH43 77.5 14.3 1.6 18.3 8.9 79 26.7 2 42.9 13.2 
DH44 84.4 19.3 1.8 26.5 11 92 28.3 2.5 56.1 11.5 
DH45 68.8 18.2 1.7 24.6 10.7 77.6 24.2 2.2 41.5 11.1 
DH46 77.6 21.7 1.9 32.9 11.3 79.6 30.9 2.3 56.4 13.4 
DH47 74 21 1.7 29 12.1 76.8 23.8 2.2 41.5 10.8 
DH49 79.4 26.2 2 41.4 13.2 77.9 29.1 2.2 50.3 13.9 
DH50 75 26.1 1.9 39.6 13.6 81.4 24.5 2.1 40.6 11.7 
DH51 71.1 28.7 2 45.1 14.5 74.8 24.2 2 40 11.8 
DH52 62.5 27.2 1.4 30.2 19.4 70.7 25.4 1.8 35.3 14.5 
DH53 57.3 18.9 2 29.5 9.6 59.8 24.9 2.2 42.9 11.5 
DH54 67.7 28.3 2.2 48.3 13.2 78.4 29.8 2.4 55.5 12.7 
DH55 67.6 22.1 1.7 29.8 12.9 75 23.1 1.9 35.2 12.2 
DH56 62.8 26 2 40.3 13.3 70.8 22.4 2 35.6 11.2 
DH57 75.3 21 1.9 30.8 11.3 69.4 24 2.1 40.2 11.3 
DH58 78.6 25.4 2 39 13 83.7 25.9 2 41.3 12.8 
DH59 71.1 21.8 1.5 26.6 14.1 80.5 26.4 1.9 39.9 13.9 
DH60 78.9 20.5 2.1 34.1 9.7 76.6 31.9 2.3 57.4 14 
DH61 70.4 16.7 1.8 23.8 9.3 72.9 27 2.1 44.3 13 
DH62 78.1 21.3 1.8 30.2 11.8 75.6 28.9 2.1 48.7 13.6 
DH63 73.1 25.9 2.2 44.4 11.9 77.1 28.2 2.3 50.7 12.5 
DH64 79.9 21.3 1.8 30.6 11.8 85.6 23.7 1.9 36.6 12.2 
DH65 66.7 14.8 1.4 16.9 10.3 75.3 27.9 1.9 42.3 14.6 
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Table E.2 Continued. 
 

Name 
Greenhouse 2012 Greenhouse 2013 

PHT FLL FLW FLA FLS PHT FLL FLW FLA FLS 
DH66 71.6 16.6 2 26.2 8.3 79.4 30.3 2.8 67.9 10.8 
DH67 69.4 25.4 1.8 36.1 14.1 73.3 26.3 1.8 38 14.5 
DH68 69.3 21.4 2.1 34.7 10.4 73.4 24 2.4 45.3 10.1 
DH69 67.7 20.4 1.6 26.3 12.6 78.3 26.8 2 41.1 13.7 
DH70 76.7 16.9 1.8 24 9.4 80.2 24.9 2.1 41.8 11.8 
DH71 64.7 19.8 2 31.3 9.9 67.6 26.1 2.5 51.8 10.5 
DH72 67.7 22.1 1.8 31 12.5 71 23.1 1.9 34.7 12.2 
DH73 68.7 18.4 1.8 26.2 10.2 72.6 27 2.1 44.7 12.9 
DH75 77.1 18 1.3 17.6 14.6 85.2 26.7 1.8 38.4 14.7 
DH76 69.2 21 1.8 29.9 11.7 70.7 24.4 2 38.4 12.6 
DH77 75.6 22.3 1.6 27.6 14.3 76.7 31.3 1.8 45.6 17 
DH78 82.2 15.3 1.6 20.1 9.5 80.3 28.4 2 45.6 14.1 
DH79 79.1 20.5 1.7 27.5 12 82 26.3 2 41.2 13.3 
DH80 77.6 19.3 1.7 25.9 11.3 75.8 27.6 1.9 42.2 14.3 
DH81 66.5 11.8 1.6 14.9 7.4 70 27 2.3 48.8 11.9 
DH82 72.2 20.5 1.8 28.7 11.6 78.8 27 2.1 45.1 12.8 
DH83 85.9 19.3 2 30.5 9.7 88.4 24.3 1.8 35.4 13.3 
DH84 72.5 17.4 1.6 22.4 10.7 77.4 25 1.9 36.6 13.5 
DH85 67.3 17.1 2.1 27.9 8.3 71.5 26 2.2 44.7 12 
DH86 72.2 22.8 1.7 30.1 13.6 79.5 24.2 1.8 34.5 13.5 
DH87 75.9 21.5 1.6 27.8 13.3 83.2 28.4 1.9 42.7 15 
DH89 . . . . . 79.3 23.2 2.1 39.2 10.9 
DH90 68.1 27.1 2.1 45 12.9 73.2 27.4 2.2 47.9 12.4 
DH91 74 13.8 1.4 15.3 9.9 78.8 27.1 1.9 40.3 14.4 
DH92 75.7 22.6 1.8 31.7 12.8 76.1 26.9 1.9 40.2 14.2 
DH93 72.5 18.5 1.7 25.2 10.9 67.2 26.1 1.8 37.5 14.4 
DH94 72.1 19 1.7 25.5 11.2 81.2 21.3 1.9 32.6 11.1 
DH95 86.3 21.5 1.6 27.2 13.4 74.2 22 1.8 32.4 12 
DH96 82 17.2 1.5 20.4 11.5 80 27.8 2 45 13.6 
DH97 76.5 18.7 2.1 31 8.9 78.1 23.8 2.1 40.4 11.1 
DH98 72.6 21.3 2.1 35.3 10.1 72.7 27.2 2.1 44.1 13.4 
DH99 77.6 14 1.7 18.8 8.2 74.8 29.1 2.7 61.9 10.8 
DH100 64.7 23 1.8 32.6 12.8 66.6 26.2 2 41.2 13.2 
DH101 67.9 22.4 1.8 32.3 12.3 80.3 26.3 2.1 44.6 12.2 
DH102 78 16.6 1.8 23.6 9.2 79.7 29.6 2.2 52.2 13.3 
DH103 71.9 28.3 2.3 50.4 12.6 74.7 28.3 2.6 59 10.8 
DH104 78.2 25.2 1.9 37.8 13.3 83 28 2.2 49 12.6 
DH105 67.7 28 1.9 40.9 15.2 75.8 28.9 1.9 32.9 11.4 
DH106 72.1 17.8 1.9 26.7 9.4 71.3 24.7 2.2 42.3 11.4 
DH107 71.1 19.3 1.7 25.7 11.5 76.4 24.4 2 39.2 12 
DH108 79.2 11 1.6 14.1 6.8 77.1 27.3 2 42.4 13.8 
DH109 69.9 16 1.8 22.8 8.9 68.8 26.6 2 41.1 13.6 
DH110 80.1 21.4 1.7 28.3 12.8 81.3 26.5 2 41.4 13.4 
DH111 77.8 26.8 1.8 37.1 15.4 82.9 29.1 2.1 47.6 14.1 
DH112 81 13.2 1.6 16.4 8.4 74.4 23.7 1.9 36.5 12.2 
DH113 82.4 12.6 1.8 17.3 7.2 83.2 24.8 2.1 40.6 12 
DH114 62.9 18.8 1.9 28.2 9.9 68.7 27.1 2.2 47.5 12.2 
DH115 76.6 12.1 1.6 15.6 7.5 74.9 24 1.9 36.4 12.6 
DH116 83.4 18.8 1.9 27.5 10.2 83.6 22.4 2.1 36.5 10.9 
DH117 72 22 2.1 36.1 10.6 77.6 25.5 2.3 46 11.2 
DH119 76.7 22.4 1.9 34 11.7 78.4 25.3 2.1 43 11.9 
DH120 77.6 15.2 1.6 19.4 9.5 76.7 26.6 2 42.1 13.4 
DH121 72.9 20.7 1.8 29.9 11.4 72.3 28.2 2.4 53.6 11.8 
DH122 79.6 20.4 1.4 22.2 15.5 81.2 27.6 1.9 41.3 14.6 
DH123 77.6 17.6 1.4 18.9 13 76.7 21.6 1.3 22.7 16.4 
DH124 76.7 20.2 1.9 29.9 10.7 73.4 27.6 2.3 51.2 11.8 
DH125 67.8 19.2 1.9 29.2 10.1 71.7 22.6 2 35.1 11.6 
DH126 61.6 25.6 1.7 34.9 15.3 74.8 28.9 2.4 53.9 12.3 
DH128 70.3 21.4 1.6 28.2 13.1 75.8 29.7 2.3 55.4 12.9 
DH129 69.1 27.9 1.7 38.1 16.1 80 24.3 1.9 36.3 12.9 
DH130 69.2 22.5 2 35.6 11.3 71.7 25.8 2.1 42.8 12.3 
DH131 73.5 17.9 2 28.3 9 77.3 29.2 2.6 60.2 11.2 
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