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Data from wide field-of-view sensors have been providing information about

the Earth’s surface since the early 1980’s. This manuscript is the result of inves-

tigations designed to determine the effective resolution and geometric variability

of the NASA Earth Observing System MODerate Resolution Imaging Spectrora-

diometer (MODIS) and Visible Infrared Imager Radiometer Suite (VIIRS) gridded

data. Although the wide field-of-view and high temporal frequency of MODIS pro-

vide near-daily global coverage, inconsistent observation assignment in geolocated

MODIS pixels measurably demonstrates how spatial accuracy is affected by pixel-

size growth (up to 4.8x) along-scan.

For studying the effective resolution, the point spread function of nominal

250m MODIS gridded surface reflectance products (L2G) was estimated from [man-

made] large size targets. The findings indicate that in near-optimal locations the

resolution of (sinusoidal grid) gridded products varies between 344m-835m along-

scan for a range of viewing angles, but also indicate location-dependent variability



with along-scan and along-track ranges of 314m-1363m and 284m-501m respectively.

Albedo was identified as a well-known physical metric to study the effects

of geometric variability, thus a broadband albedo using MODIS-like geometry was

simulated for five EOS validation sites. Results of each site simulation exhibit

compounded uncertainty attributable to the geometric distortion in ranges sufficient

to influence climate models (i.e. ranges from 0.01-0.045 albedo).

A second series of broadband albedo simulations was developed for the same

five EOS validation sites using VIIRS-like geometries and aggregation zones. Spa-

tially heterogeneous land cover demonstrated a marginally significant difference in

the mean albedo between aggregation zones (< 0.015). Results from data simulat-

ing temporal compositing, demonstrate the influence of geometric artifacts through

differing levels of uncertainty between periods (i.e. ranges from 0.01-0.05 albedo).

The variability in both MODIS and VIIRS L2G questions the standard appli-

cation of a global fixed grid, and indicates that regional projections combined with

a representative grid cell 4x the nominal detector size (i.e. 1000m and 1500m for

MODIS and VIIRS, respectively) are potentially useful for products using off-nadir

views. This work ultimately resolves the surface-feature representation of temporo-

spatial wide field-of-view instrument observations and quantifies the results of asso-

ciating inherently-variable observations into an artificially-fixed and geometrically-

regular space.
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Chapter 1: Introduction

1.1 Research Objectives

”What is the actual resolution of MODerate Resolution Imaging Spectrora-

diometer (MODIS) data?” is the simple question this dissertation seeks to answer,

presenting technical, quantitative findings, and continuing the investigation to in-

clude the Visible Infrared Imager Radiometer Suite (VIIRS) instrument, the next

generation sensor extending MODIS-type observations into the future. The nominal

resolution of the system (e.g. MODIS 250m), rather than a more complete under-

standing of the properties of the complete sensor system and processing stream

employed [Forshaw et al., 1983, Joseph, 2000], is regularly used to characterize the

data from these instruments. In order to utilize the finest-possible spatial resolution

data from wide field-of-view instruments such as MODIS and VIIRS one must know

the actualities of resolutions, in order to avoid extrapolating mischaracterizations

into user applications.

MODIS and VIIRS science products and models currently resample and geolo-

cate relative to the nominal sensor resolution (e.g. 500m) instrument observations;

these protocols result in products and models with nominal resolutions that are not

representative of actual observations. This dissertation examines the relationships

1



between nominal resolutions, instrument observations, and processing protocols.

Recent moves to utilize native-scale observations in science products and models,

such as the MODIS MCD43 product that changed from a 1km to 500m resolution

as of Collection 5 [Schaaf et al., 2014], makes this research an important line of

inquiry. Instruments such as MODIS and VIIRS exhibit a known growth of pixel

sizes in off-nadir views [Barnes et al., 1998, Wolfe et al., 1998], questioning whether

or not there is consistent representation of surface features in any given observation

footprint as viewing geometry varies in different orbit passes.

1.2 Background

NASA’s Earth Observing Systems (EOS) have been providing data to inform

the science community of important changes to Earth’s climate system since the

early 2000’s [NASA, 2014], and builds on the legacy of systems including NOAA’s

Advanced Very High Resolution Radiometer (AVHRR) and NASA’s Sea-viewing

Wide Field-of-view Sensor (SeaWiFS). The level of detail has improved with each

new generation of sensor providing greater insight along the way. However, despite

improvements, the tradeoff between temporal frequency and spatial capabilities re-

mains; in order for a sensor to observe large portions of Earth’s surface frequently,

sensors must necessarily trade spatial resolution (i.e. pixel size) for scan width.

Sensors such as the MODIS instrument are capable of making observations on a

daily basis, but at the expense of a spatial resolution that starts at 250m.

Several sensor designs are used to accommodate the viewing requirements of
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landscape-scale sensors, those sensors capable of viewing large swaths of Earth’s

surface at a time. The MODIS instrument employs a scanning mirror to achieve a

2000+ km view of the surface on each orbit [Barnes et al., 1998]. The constantly

scanning mirror provides spectral signal to an array of detectors of various size and

spectral sensitivity creating a discrete array of pixels. The discrete array is not,

however, representative of signal from a fixed space.

An instrument’s Point-Spread Function (PSF) describes the response of an

imaging system to an idealized point illumination source (2-dimensional). The de-

gree to which the point source is blurred within the boundary of a pixel, for example,

defines the spatial response of the system in all directions. The Line-Spread Func-

tion (LSF) of an imaging system is the 1-dimensional response in either the along

scan direction (x) or in the along track direction (y). It is usual to assume that the

PSF can be separated into the two components of the LSF, and therefore can be

written as the product PSFxy(X, Y ) = LSFx(X) ∗ LSFy(Y ).

The scanning system in MODIS forms a triangular LSF along scan, integrating

radiometric signal from the immediate preceding and subsequent neighbor pixels

(12.5%) with the center pixel (75%) [Nishihama et al., 1997]. The portion of physical

space observed is dependent on the instantaneous ground-projected sample interval

(the spacing between pixels), also referred to as the ground sample distance (GSD)

[Schowengerdt, 2007], which is subject to the geometric growth of the observation at

increasing view zenith angles (VZA), the angle formed between a line perpendicular

to the observed surface (local zenith) and a line pointing back to the instrument.

The variable pixel size forms overlapping scans toward the edge of scan, referred
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to as bow tie, owing to the larger size at the edges narrowing at the middle, then

growing again [Wolfe et al., 1998].

A generally accepted measure of spatial resolution is the maximum distance at

which 50% contrast is observed between pixels, known as full width at half maximum

(FWHM). The spatial resolution values of 250m, 500m and 1000m often used to

describe MODIS data correspond to the FWHM of the MODIS instrument at nadir

in laboratory conditions and do not reflect the continuously varying VZA, the overall

effect of which is a growth in the GSD of approximately 2.0 times along track and

4.8 times along scan at the maximum observation angle [Wolfe et al., 1998]. The

reported pre-launch FWHM along scan spatial resolution for the 250m MODIS

bands exceed 290m [Barnes et al., 1998].

The primary concern in this dissertation is the fundamental variability of ge-

ographic space being observed as the instrument geometry changes from orbit-to-

orbit; a given location on Earth’s surface will be observed from different directions

and with varying level of contribution from neighboring landscape every time it is

observed. Therefore, the assumption of target stability through changing geometry

in any spatial sense is negated.

These irregular observation sizes from daily orbit variation make consistent

geolocation of the same observation footprint difficult, thus a process was developed

to assign the variable space to a fixed map projection with known pixel size and

locations. The consequence of this assignment is to fit an oblong peg into a square

hole. Figure (1.1) illustrates the assignment of irregular space to a fixed pixel.

Most higher order MODIS biophysical measurement and model products are
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Figure 1.1: Illustration of the relationship between the irregular observation space
(dotted line) and the fixed-pixel projected grid space (solid line). The bow tie effect
elongates pixels primarily in the scan direction (left to right), increasing their size
as a result. The observation at any given time and location is the integration of
signal from the [variable] ground sample distance footprint based on the viewing
geometry. The resultant observation is assigned to a grid with a fixed pixel size.
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assigned to a geo-referenced grid using a custom sinusoidal projection with a fixed

pixel size for each of the available nominal resolutions. MODIS geolocation assumes

a fixed spatial size based on the subdivision of a 30 arc second grid providing a

seamless global grid with resolutions of ≈ 231m, ≈ 463m, and ≈ 926m [Wolfe et al.,

2002]. Observations made at resolution r (e.g. 250m) are assigned to a co-located

(x, y) coordinate in the geolocation grid of the same resolution.

The reported mean observation-to-grid assignment for MODIS grid data is less

than 30%, meaning the value assigned to any given grid pixel is only a portion of

the spatial signal from the observation pixel, and not necessarily representative of

that smaller geographic grid space [Tan et al., 2006]. Further, single observations

are often assigned to more than one grid pixel at large VZA’s.

The MODIS instrument’s on-orbit spatial response based on Level 1B swath

data is well understood [Butler and Xiong, 2006, Rojas et al., 2002, Salomonson

et al., 2000], and artifacts from the process of geolocation gridding have been studied

by [Tan et al., 2006]. Similarly, on-orbit reports of the VIIRS instrument spatial

performance indicate the pixel aggregation scheme is effective [Lin et al., 2013, Wolfe

et al., 2012, 2013].

However, what has been missing is an account of an ”effective resolution” for

Level 2 Gridded (L2G) data, which form the basis for all higher order MODIS and

VIIRS science products [Justice et al., 2002, 2013]. Excluding an explicit represen-

tation of changing observation contributions through time and space in the L2G

product presents uncertainty in the estimation of spatial resolution. That is, if the

actual per-pixel observation contribution is assumed to be constant as with the ge-
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olocation grid, then the resultant resolution will be underestimated at larger view

angles.

1.3 Research Questions

This dissertation investigates the compounded effects of a variable observa-

tion geometry and geolocation assignment on measurements by posing the following

focused research questions:

1. What is the effective spatial resolution of gridded MODIS data? A more

informed usability of data is achieved by quantifying the effective resolution

of existing gridded MODIS data, the basis of higher-order land biophysical

measurement and model products.

2. What impact does variable view geometry have on MODIS observations? A

better understanding of error sources is achieved by measuring the effect of

variable geometric footprints in simulated MODIS gridded data.

3. Does the VIIRS instrument improve the consistency between variable spatial

footprints? Continuity in next generation sensor data is assessed by investi-

gating the effectiveness of applied error mitigation methods.

Both existing science-quality and simulated data were used to demonstrate

various aspects of the effects that changing sensor view geometries have on the

assumption of spatial resolution and spatial representation.
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1.4 Outline of Dissertation

This dissertation is organized in five chapters including the introduction and

conclusion. The three primary chapters are self-contained and structured in the

format of journal articles. Literature pertinent to each chapter is reviewed in that

chapter, though there is overlap between chapters since the subject matter in each

chapter is closely related.

Chapter 2 establishes the effective resolution of MODIS Level 2 Gridded (ge-

olocated) surface reflectance, which forms the basis of most higher order biophysical

products from the MODIS Land Science Team. Chapter 3 takes the results from

Chapter 2 for MODIS to test the assumption that the geographic space in the geolo-

cated data is stable across the range of view geometries using broadband albedo as

a well-understood physical measurement. Chapter 4 investigates the same assump-

tion by extending the methods from Chapter 3 to VIIRS view geometry. Finally,

Chapter 5 summarizes the dissertation and discusses the implications of the findings.

The framework of this dissertation is shown in Figure 1.2.
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Figure 1.2: Illustration of research framework. Chapter titles are in bold italics.
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Chapter 2: Estimation Of Effective Resolution For Daily Modis Grid-

ded Surface Reflectance Products

The following chapter was published by the IEEE Transaactions on Geoscience

& Remote Sensing. c©2014 IEEE. Reprinted, with permission, from Manuel L.

Campagnolo and Enrique L. Montaño, Estimation of effective resolution for daily

MODIS gridded surface reflectance products, IEEE Transactions on Geoscience &

Remote Sensing, September 2014, 52 (9), 5622-5632.

2.1 Abstract

Data from wide field-of-view sensors have provided a wealth of information of

the Earth’s surface for many years. Of the more recent efforts, the NASA Earth

Observing System MODerate Resolution Imaging Spectroradiometer (MODIS) in-

strument has been operational since 2000 (for Terra, mid-2002 for Aqua). The wide

field of view and high temporal frequency of MODIS provides near daily global cov-

erage. However, this coverage comes at the cost of some level of spatial accuracy due

to known effects of pixel size growth at increasing view zenith angles (VZA). Further

complicating the matter of variable viewing geometry is the application of a fixed

grid for the geolocation of MODIS observations. An accurate understanding of this

10



process is necessary to characterize the effective spatial resolution of daily MODIS

gridded products. In this paper we estimate the point spread function (PSF) of

nominal 250m MODIS gridded surface reflectance products from sequences of daily

images over man-made large size targets. Our results suggest that in near optimal

locations the resolution of those MODIS gridded products varies between 344m and

835m along rows and between 292m and 523m along columns when the VZA ranges

from, respectively, 0o (nadir view) to 55o. We also discuss some implications of the

reliance on a global fixed grid, like MODIS sinusoidal grid, on the relation between

location and spatial resolution.

2.2 Introduction

A key facet in representing features on the ground is understanding how those

features are organized in space and how that space is depicted as a function of the

spatial resolution of the imaging system [Joseph, 2000]. Spatial resolution in remote

sensing is often considered only as the characteristic pixel resolution reported for

the sensing system used, but is in fact far more complex [Forshaw et al., 1983].

Schowengerdt [2007] provides extensive definitions and examples of aspects of spa-

tial resolution, representing the cumulative result of optical properties of the sensing

system. Several authors have reported on the errors that are due to the contamina-

tion of the signal from neighboring pixels and suggested improvements to per-pixel

estimates of land cover by incorporating known sensor characteristics [Huang et al.,

2002, Townshend et al., 2000]. MODIS, flown on two polar orbiting platforms, is a
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whiskbroom system with a scanning mirror providing a wide observation swath at a

high temporal frequency for 36 spectral bands at nominal detector pixel resolutions

of 250m, 500m, and 1000m [Barnes et al., 1998], and has established the benchmark

for high quality landscape to global scale land observations [Gitelson et al., 1996,

Huete et al., 1999, Ji et al., 2008]. This accomplishment has been achieved through

a well-calibrated sensor, extensive derivative data products along with the develop-

ment and implementation of quality control [Roy et al., 2002] and validation efforts

[Morisette et al., 2002].

The wide field-of-view of 110o [Wolfe et al., 1998] and high temporal frequency

of MODIS provides near daily global coverage, but at varying spatial resolution due

to known effects of pixel size growth at increasing view zenith angles (VZA) [Tan et al.,

2006]. The pixel growth ultimately leads to overlaps toward the edge of scan known

as the bow-tie effect. The most common measure of a sensor spatial resolution is

the ground sample distance (GSD), also known as the ground-projected instantaneous

field-of-view (GIFOV), which matches by design the ground-projected sample interval,

i.e. the spacing between pixels on the ground [Schowengerdt, 2007]. The reported

values of 250m, 500m and 1000m correspond to the GSD at nadir [Barnes et al., 1998]

although MODIS observations are made at continuously varying VZA. The overall

effect of increasing VZA is a growth in the GSD of approximately 2.0 times along track

and 4.8 times along scan for the maximum Earth observation angle [Nishihama et al.,

1997, Wolfe et al., 2002]. Higher latitudes provide increasing orbital coverage on

any given day presenting the possibility of more than one VZA reported for a single

daily product [Vermote et al., 2011]. Further complicating the matter of variable
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viewing geometry is the application of a fixed grid for the geolocation of MODIS

observations [Wolfe et al., 1998, 2002]. The GSD is independent of the gridding

process. Therefore, reporting the nominal GSD of 250m, 500m, or 1000m as the

resolution of MODIS gridded products is rather misleading, particularly concerning

any attempt at temporal compositing.

MODIS gridded products are the output of a sampled image system [Park et al.,

1984] that combines an imaging system and a sampling procedure. The imaging

system is characterized by the sensor point spread function (PSF), which models

the spatial response of the sensor to the measured physical signal [Schowengerdt,

2007]. The sensor PSF is usually assumed to be separable, which means that it can

be written as PSFsensor = LSFs × LSFt, where LSF is the line spread function, either

in the along scan direction (LSFs) or in the along track direction (LSFt), and was

characterized before launch for the MODIS instrument [Barnes et al., 1998]. To assess

the resolution of gridded MODIS products it is essential to take into consideration

the sampling procedure as well. The sampling procedure converts the output of the

imaging system to an equally spaced, geolocated rectangular grid, producing the

images that most users rely on.

There are two alternatives to estimate the PSF of the whole sampled image

system. The first approach is to model both the imaging system and the sampling

procedure to derive the overall PSF. This is the approach followed in [Park et al.,

1984] where the imaging system PSF is assumed to be uniform. However, Park

et al. [1984] computes just the average system PSF over all possible positions of the

physical signal. If the exact position of the source of the signal is known, a more
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precise overall PSF estimate can be obtained from a gridded image over a target on

the surface. We will follow this latter approach, using a target suitable for MODIS

and a technique that does not rely on high resolution imagery.

The well known dikes in Netherlands are large size man-made features that

are compatible in scale with MODIS imagery. We consider two of those features, one

oriented along the North-South direction (NS edge) and the other along the East-

West direction (EW edge), which are straight for over 10km and separate water

from agricultural fields. We use two years of observations to estimate the PSF for

the 250m MODIS gridded reflectance products. We also use the actual locations of

the swath and grid observation cells for the same dates and over the same targets to

generate a synthetic MODIS gridded product. Synthesized data provides a template

for observations in the absence of noise (e.g. atmospheric affects, edge imperfections)

and illustrate in detail the effect of the sampling procedure in the final gridded

product. Formally, the PSF of the MODIS gridded product can be written as the

convolution (see [Park et al., 1984, Schowengerdt, 2007])

PSFgrid.product = PSFsensor ∗ PSFsampling ∗ PSFnoise (2.1)

where the three components of PSFgrid.product model respectively the imaging system,

the sampling procedure and the additional noise factors that affect the MODIS daily

gridded products. In this paper we estimate directly PSFgrid.product from MODIS daily

Terra and Aqua Collection 5 MOD09GQ and MYD09GQ surface reflectance products,

and we estimate PSFsensor ∗ PSFsampling from the synthetic data mentioned above.

Specifically, we model the PSF of the sampled image system (i.e. the gridded
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image, either real or synthetic) as the product of the along row LSF and the along

column LSF, each one parameterized as a function of its full width at half maximum

(FWHM). For the MODIS imaging system as described in [Barnes et al., 1998], the

GSD and the FWHM are approximately equal. However, while the GSD characterizes

the imaging system but is independent of the sampling procedure, the FWHM can be

used to characterize either the imaging system or the whole sampled system (the

gridded product). Hence, even if both GSD and FWHM increase with the VZA, only

the FWHM is relevant for characterizing the resolution of the gridded products.

The paper is organized as follows: in Section 2.3 we describe the MODIS

imaging system PSF and the sampling procedure for MODIS gridded products. In

Section 2.4 we present the study area and data and we discuss the central concepts

of line, edge and point spread function, and review how those functions can be

estimated from the data. We also describe how we synthesize daily MODIS grid-

ded products that simulate ideal observation conditions. Finally, in Section 2.5 we

present our results and estimate the PSF for gridded reflectance products as a func-

tion of the VZA. We end the paper with a discussion of the implications of using a

global grid, like the sinusoidal grid for MODIS, on the relation between location and

spatial resolution.

2.3 The MODIS instrument and the land level 2 grid

The MODIS instrument includes several components to monitor on-orbit per-

formance [Barnes et al., 1998, Xiong and Barnes, 2006]. The spatial performance of
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MODIS is monitored by the on-board spectral radiometric calibration assembly that

indicates that the PSF has been stable over time for the 250m bands [Xiong et al.,

2006]. The MODIS instrument uses a scanning mirror to satisfy the requirement of

a large (2330km) swath. The scanning mirror continuously passes light from the

instrument telescope onto three focal plane assemblies containing 10, 20 and 40 de-

tectors for the 1000m, 500m, and 250m bands respectively. The constant scan speed

of the mirror causes an integration of the signal from the immediate preceding and

following neighbor pixels, with the signal being collected from the center pixel (75%)

and from each of its neighbors (12.5%) [Nishihama et al., 1997], and leads to the tri-

angular along scan LSF depicted in Figure 1. The observation footprint grows in size

with the scan angle as described in [Tan et al., 2006, Appendix B]. The scan angle

is related to the larger view zenith angle (VZA) – the angle at the ground position

between a ray pointing toward the sensor and one pointing toward the zenith, which

is also called the sensor zenith angle [Nishihama et al., 1997, Wolfe et al., 2002] –

by the expression VZA = arcsin(R+H
R

sin(scan angle)), where R is Earth’s radius and

H is the satellite’s altitude, for a spherical Earth model.

In this paper, we are concerned mostly with the 250m nominal resolution

products, where the GSD is 250m at nadir and increases until it reaches 1207.5m

in the along scan direction and 502.5m in the along track direction when the scan

angle is 55o (VZA ≈ 66o), as illustrated in [Wolfe et al., 1998, Fig. 2]. Fig. 2.1,

which is similar to [Tan et al., 2006, Fig. 2], shows the approximate shape of the

sensor PSF according to [Barnes et al., 1998] and illustrates the fact that the FWHM

of the imaging system is approximately equal to the GSD and therefore grows with
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Figure 2.1: The figure describes the approximate PSFsensor decomposed into along
scan LSFs and along track LSFt according to [Barnes et al., 1998]. The support is
the area on the ground that contributes to the detector response. The FWHM is the
width of the LSF at half its maximum height.

the VZA in both along scan and along track directions. The area on the ground that

contributes to the response at the detector, i.e. the support of the PSF depicted in

Fig. 2.1, is therefore twice as large as the GSD in the along scan direction.

All the above considerations are about the GSD associated to the detectors, and

correspond to the observation cells (or just cells). All MODIS data up to and includ-

ing level 2 are in an ungridded orbital swath arrangement of those cells [Vermote

et al., 2011]. All higher order MODIS biophysical observation and model products

(so-called Level 3 and 4) are assigned to a georeferenced grid with a fixed pixel size

for each of the available nominal resolutions (250m, 500m, 1000m). As a means of

separating geolocating from compositing and averaging, a gridded level 2 data (L2G)

was developed, followed by a more user-friendly version (L2G-lite) that provides a

minimal level of compositing of daily level 2G data [Vermote et al., 2011]. The

data at the core of our analysis is at the L2G-lite daily MOD09GA and MYD09GQ

reflectance products, the major daily MODIS reflectance products and also the in-

put data for Collection 5, Level 3, 8-day reflectance composites MOD/MYD09A1

and MOD/MYD09Q1 [Vermote et al., 2011, Table 1]. All publicly available gridded

MODIS surface reflectance products are geolocated within the sinusoidal tile grid
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Figure 2.2: Mercator projection of the SIN grid between latitudes 70oS and 70oN.
The thick solid and dashed lines represent respectively the tracks of an Aqua as-
cending orbit and a Terra descending orbit that cross the origin determined with
the Orbit Determination Tool Kit (ODTK) software. The Mercator (conformal)
projection was chosen to preserve the angles between the grid and the sensor track
all over the globe.

(SIN) outside the polar regions, with the exception of the 0.05o product which is

based on a Climate Modeling Grid (CMG) [Vermote et al., 2011]. The selection of

the SIN grid is discussed in [Yang and Wolfe, 2001]; in particular it is an equal area

gridding scheme based on the subdivision of a 30 arc second grid providing a seam-

less global grid with pixel sizes of ≈ 231m, 463m, and 926m. The grid is oriented

East-West horizontally, but it is not oriented North-South except at the Equator or

at 0o longitude. Its deviation from the vertical direction grows with both latitude

and longitude as illustrated in Fig. 2.2.

The sampling procedure associated to MODIS gridding described by [Wolfe

et al., 1998] preserves the original value for each cell. In that sense, it is essentially

a nearest-neighbor approach. Originally, the values of all cells that intersected a

given grid pixel were retained in the L2G products. However, since the support

of the PSFsensor (see Fig. 2.1) is wider than the cell, the selection in [Wolfe et al.,
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1998] was too strict. The L2G approach was improved [Yang and Wolfe, 2001] in a

number of ways. Not only the previous limitation was fixed, but a method to limit

the size of the revised L2G product while keeping for each grid pixel the cell values

with the highest integrated PSFsensor over the grid pixel (the so-called obscov, which

can range from 0 to 1) was devised. This new approach has been used in MODIS

gridding starting in Collection 4 products [Tan et al., 2006]. The daily L2G-lite data

is derived from L2G with the primary goal of keeping in the L2G-lite first data layer

(the one most users rely on) the best possible information from the daily orbits of

the satellite [Vermote et al., 2011].

We have described how values for each cell are assigned to pixels in the SIN

grid based on the obscov criteria (see Fig. 2.6 for examples of this relationship).

Hence, observations are often shifted and/or assigned multiple times because of the

mismatch between cells and grid pixels, with mean obscov reported to be less than

0.3 [Tan et al., 2006]. The distortions resulting from assigning irregular observation

space data to a regular grid space has been studied, in particular with respect to

temporal compositing and band-to-band registration [Tan et al., 2006]. However,

what has been missing is an account of the effect of gridding on the overall PSF of

L2G data, which form the basis for all higher order MODIS science products [Justice

et al., 2002].
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2.4 Data and Methods

2.4.1 Line, Edge and Point Spread Functions

In analogy to the sensor PSF, we consider that the sampled image system PSF

is also separable as PSFsystem = LSFrow×LSFcol where LSFrow and LSFcol are respectively

along the rows and the columns of the gridded product. There are many ways of

estimating a directional LSF from remote sensing imagery [Pagnutti et al., 2010].

Schowengerdt et al. [Schowengerdt et al., 1985] consider both two-image analysis

and target methods to estimate the LSF for Landsat TM images. The former is a

technique that requires two simultaneous images, one from the sensor of interest

and one from a higher resolution sensor. The two-image technique was also used in

[Rojas et al., 2002] to estimate the spatial response from coincident Landsat ETM+

imagery. Since we are interested in analyzing daily time series of MODIS images this

method is problematic; indeed, no daily time series of moderate- or high-resolution

images are available to us.

The so-called target methods rely on the existence of a target on the ground.

Among those we can distinguish the edge method, the pulse method, and the impulse

method [Helder et al., 2003], where the high contrast targets are, respectively, a knife

edge (a straight edge with a wide area), a straight narrow long object, and a point

source (a beam of light or mirror). The pulse target can be for example a bridge

[Schowengerdt et al., 1985] or an artificial target with known width. The target

for the edge method can be artificial, like a high contrast tarpaulin or painted area
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on the ground [Schowengerdt et al., 1985], or a natural target, like the edge of a

parking lot or a dam [Ruiz and Lopez, 2002]. Given the spatial resolution of MODIS

images (250m and larger) it is difficult to find a suitable pulse target. However, we

can find an edge target of large enough dimension. In this study we used two edges

of Noordoostpolder near Urk, in the Netherlands (see Section 2.4.2), which are over

10km long and perfectly straight, providing excellent targets for the edge method.

The goal of the edge method is to estimate the sensor edge spread function

(ESF) along some direction. Then, the corresponding LSF can be derived by dif-

ferentiation. To estimate the ESF we take a sequence of reflectance measurements

that cross either the NS edge (for ESFrow) or the EW edge (for ESFcol). Since a sin-

gle row (respectively, a column) of the image can lead to a poor estimate of the

ESFrow (respectively, ESFcol), a denser series is needed. Hence, our input is composed

of several superimposed rows (or columns) aligned about the edge. To estimate a

non-parametric ESF we follow the standard approach (see [Helder et al., 2003]) that

consists of: (i) aligning the image with respect to the edge (see Section 2.4.2), (ii)

adjusting a spline function to each row, and (iii) averaging the splines to obtain a

non-parametric estimation of the ESF which is normalized between 0 and 1. Fig. 2.3

illustrates that approach applied to 23 rows of Aqua data over the NS edge of our

study area (see Section 2.4.2).

The non-parametric approach described above leads to a sigmoid shaped ESF

that can be in general well approximated by a parametric expression. In our analysis

the major parameter is the FWHM. We denote by FWHMrow the common parameter

for LSFrow and ESFrow and we define analogously FWHMcol. The qualitative behavior
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Figure 2.3: Estimation of the along row edge spread function (ESFrow). The dots
represent the reflectance values along the aligned x values and the solid line is the
estimated non-parametric ESF. All values are normalized so the ESF ranges from 0 to
1. The sensor is Aqua and VZA = 5.7o for the day of acquisition 2008046 (yyyyddd).
One can notice that the signal is very uniform on the water side of the edge and it
has more variability on the land side, where the land cover is a mixture of forest and
agriculture land. The dotted line is the parametric ESF adjusted to the data which
has FWHM =311m. The goodness of fit of the parametric ESF is 0.773 with respect
to the aligned observations (obs) and it is 0.999 with respect to the non-parametric
ESF (spline).

of the imaging system (modeled by PSFsensor) and the sampled image system (mod-

eled by PSFsystem) are similar in the analysis carried out by [Park et al., 1984, see

Fig. 6 and 7] (those authors exhibit the modulation transfer function of the systems

rather than the PSF) even though the sampled image system is, as expected, blur-

rier than the imaging system. This leads us to consider as a first approximation

of the PSFsystem a trapezoidal family of LSF models, with two parameters: the FWHM

and the ratio (α) between the bases of the trapezoid. Varying α we obtain shapes

ranging from the triangular LSF (α = 0) to the rectangular LSF (α = 1) depicted

in Fig. 2.1. We also consider the well known Gaussian kernel [Schowengerdt, 2007]

already used to assess the impact of the PSF in MODIS products [Huang et al., 2002].

To compare the different parametric models we compute the goodness of fit both of

a given parametric ESF with the corresponding non-parametric ESF and the sequence
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of reflectance values across the edge (see Fig. 2.3). The goodness of fit is only com-

puted over the range where the parametric ESF is effectively increasing, so it’s not

influenced by the data away from the edge signal. Our analysis show that the best

parametric models are piecewise quadratic (α = 1) and the Gaussian. It turns out

that for any x and any value of the parameter FWHM between 250m and 800m, the

expressions for the piecewise quadratic (α = 1) and the Gaussian ESF differ at most

0.012 (over the ESF range [0,1]) and, therefore, are in practice interchangeable. Thus,

we adopt the Gaussian model for the (unidimensional) LSF, i.e.

LSF(z) =
1√
2πσ

exp

(
− z2

2σ2

)
,

where the relation between σ and the FWHM is given by FWHM = 2.355σ. Hence the

2-dimensional PSF of the sampled image system is modeled by Equation 2.2, where

a = FWHMrow/2.355 and b = FWHMcol/2.355.

PSF(x, y) =
1

2π ab
exp

(
−1

2

[
x2

a2
+

y2

b2

])
(2.2)

2.4.2 Study area and data

The study area is located at the western edge of Noordoostpolder near Urk,

in the Netherlands (Fig. 2.4). The site was specifically chosen for the presence of

linear edges between water and agricultural fields. The water feature provides an

excellent linear source of contrast to the land features with strong absorption in

the NIR spectrum; the edges under consideration provide a very sharp transition

between those two features as illustrated by Fig. 2.4. The site presents enough area
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Figure 2.4: The study area in the Netherlands (Lat = 52.697oN, Long = 5.593oE)
was chosen for the linear transition between water and agriculture to produce a clear
line of contrast between features. The hollow boxes indicate the positions of the
sub-images around the NS edge (top) and the EW edge (bottom) where MODIS re-
flectance products were extracted. The inserted pictures show the sharp transitions
between water and a surface mostly covered by vegetation (source: GoogleEarth ID
10896477 for the NS edge and ID 44047111 for the EW edge).

on either side of the edges for sufficient sampling of MODIS observations at multiple

view angles. The bounding boxes in Fig. 2.4 shows the extent of the surfaces used

for sampling the MODIS data.

Data for this study consists of daily Terra and Aqua Collection 5 MOD09GQ

and MYD09GQ (nominal 250m) surface reflectance products for MODIS tile h18v03

during a two-year period from 2007 to 2008 (in the remainder of the paper M09GQ

will denote the combined dataset MOD09GQ and MYD09GQ). We use band 2 (NIR)

which provides a clearer distinction between the water feature and agricultural fields.

Angle data, stored in 1km grids within the companion MOD09GA and MYD09GA

products are averaged to provide the mean VZA for each observation date over the

study area. In addition we use the cell positions and the corresponding VZA values

from level 1 MYD03, collection 5, to generate synthetic observations for Aqua (see

Section 2.4.3). All data sources are indicated in Table 2.1.

24



Product Field Range

full scenes study area

MYD03 Latitude 31.62–80.57 52.54–52.78

Longitude -54.11–65.32 5.43–5.83

SensorZenith 0.01–65.62 1.81–55.90

SensorAzimuth -180–180 -119.9–83.4

MYD09GA SensorZenith 1 0–65.57 2.93–55.48

SensorAzimuth 1 -180–180 -110.6–80.4

MOD09GA SensorZenith 1 0.4–65.62 2.95–53.46

SensorAzimuth 1 -180–180 -102.0–105.6

MYD09GQ sur refl b02 1 -100–16000 -100–7231

MOD09GQ sur refl b02 1 -100–16000 -100–5971

Table 2.1: Data sources: the fields Latitude and Longitude are the coordinates of
the centers of the observation cells (in degrees). The fields SensorZenith and Sen-

sorZenith 1 are the view zenith angle or VZA (in degrees), The fields SensorAzimuth

and SensorAzimuth 1 represent the sensor azimuth angle at each observation cell.
The field SensorAzimuth 1 is listed for completeness since only SensorAzimuth is used
in the analysis. The field sur refl b02 1 is essentially the surface reflectance at each
grid pixel (multiplied by 10000). The ranges in the table correspond to the screened
scenes for the years 2007 and 2008.
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The study area is known to be persistently cloudy; therefore data were screened

for observation quality including cloud and aerosol masking, resulting in the removal

of most days from both sensors. Locations at latitudes greater than approximately

30o have multiple scans per day [Wolfe et al., 1998, 2002]. The high latitude of

the study area (approximately 52.7o N) yields as many as 3 orbits on a given day.

Although the daily composite (L2G-lite, discussed in Section 2.3) can include ob-

servations from several orbits, we only retain in our sample data acquired within a

single orbit. This is enforced by restricting our analysis to dates where the extracted

pixels (delimited in Fig. 2.4) have almost identical SensorZenith 1 values. The final

sample group resulted in 62 (NS edge) and 58 (EW edge) observations from Aqua

and 51 (NS edge) and 53 (EW edge) from Terra for an overall range of VZA from

2.93o to 55.48o.

The inspection of Table 2.1 shows that the highest available VZA for M09GQ

within our study area is 55.48o. Since MOD09GA and MYD09GA use minimum VZA

as one of the criteria for selecting observations, it is very unlikely to find VZA values

close to the maximum (66o) for a particular location. This will limit our analysis to

a range of view zenith angles from 2.93o to 55.48o, which contains, nonetheless, the

vast majority of angles that users find in MODIS gridded reflectance products.

To obtain the estimate of the LSF along either rows or columns from daily

samples of M09GQ products we use the techniques described in Section 2.4.1 applied

to the sub-images delimited in Fig. 2.4. For the NS edge, our target is conveniently

positioned in a near north-south direction, forming a small angle of 3.49o with the

y-direction of the L2G grid. A shift is then applied to every row of the 23 rows by
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20 columns corresponding sub-image to align the rows over the edge. For each date,

we obtain a dense series of 20 × 23 = 460 aligned x-values and the corresponding

reflectance values, which are used to derive a non-parametric estimation of the ESF

and the corresponding parametric adjustment as described in Section 2.4.1 and

illustrated in Fig. 2.3. For the EW edge the sub-image has 11 rows and 21 columns

(see Fig. 2.4). We proceed similarly, although the sub pixel shift is very small

(≈0.33o). Nonetheless, we claim that the ESF estimates over the EW edge are still

reliable (see discussion in Section 2.5.1).

2.4.3 Simulated values for observation cells and grid pixels

As described in Section 2.3, MODIS gridded products are resampled from swath

observations. The cells are approximately rectangular and their GSD is a function of

the view zenith angle. Therefore, we just need to know the geometry of acquisition,

the location of the Level 2 grid and the sensor PSF to generate synthetic gridded

data over some known target. Since our results for Aqua and Terra don’t differ

significantly (see Section 2.5) we only consider data from Aqua in this analysis.

The simulation is done in three steps. The goal of the first step is to determine

the footprint of each nominal 250m observation cell. First, we select the orbit from

which the (gridded) MYD09GQ product is derived. This is done by choosing the

orbit which, for the coordinates of our study area, has the same range of values for

the SensorZenith field of MYD03 and the SensorZenith 1 field of MYD09GA. Then we

extract from the selected MYD03 data set the precise location of each nominal 1km
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Figure 2.5: Geometry of the observations cells derived from MYD03 data over a
portion of the NS edge for day 2007091 (yyyyddd) in relation to the SIN grid. The
array of 4 by 4 cells represent a set of nominal 250m observations cells derived from
one nominal 1km cell of MYD03, and the background grid represents the SIN grid.
The dashed line represents the location of the edge. The coordinates are relative to
the middle point of the edge in the study area (Lat = 52.697oN, Long = 5.593oE) .
The array of observation cells which is depicted has sensor azimuth angle of 80.52o.

observation cell within the study area. The along scan direction for each nominal

1km cell is obtained from the MYD03 SensorAzimuth value. From the cell center

and the values of SensorZenith and SensorAzimuth we determine the footprint of the

1km cell as in [Tan et al., 2006, Appendix B] (those authors use the scan angle as

input, which we derive from SensorZenith). Finally, we determine the approximate

observation cell footprint for swath data with nominal 250m resolution by generating

a regular array of 16 nominal 250m cells that matches the footprint of the nominal

1km cell. This is illustrated by Fig. 2.5 where we represent the SIN grid and a subset

of the observation cells obtained as described above.

The second step of the simulation is the 2-D convolution of the signal of the

target with the sensor PSF for each observation cell. An ideal signal would be a signal

which is not contaminated by atmospheric effects or other factors. For our study

area, it would be the response over the perfect edge that separates a uniform feature
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with value 0 on the water side and a uniform feature with value 1 on the land side.

However, due to the geometry of acquisition of MODIS images, such ideal signal

still suffers some blurring which increases with the GSD. To generate the response of

the imaging system for the ideal signal, i.e. to obtain a simulated reflectance value

between 0 and 1, we use the sensor PSF described in Section 2.3 and compute for

each observation cell the 2-D convolution of the sensor PSF with the ideal signal.

This is illustrated in Fig. 2.6, which background is still the SIN grid but depicts the

PSF support, rather than the footprint, of a subset of observation cells for two dates

over the NS edge and one date over the EW edge. In particular Fig. 2.6 (top two

figures) describes how the signal acquired by the sensor depends on the VZA.

The third and last step is the resampling of the observation cell values into

the SIN grid using the maximum obscov resampling criteria discussed in Section 2.3,

which determines the values of the Level 2 grid pixels. We illustrate this construction

also with Fig. 2.6, where it is noticeable that an increased VZA causes a larger blurring

of the edge in the gridded image, depicted by the more heterogeneous distribution

of the grid values around the edge in the middle image than on the top image. The

bottom image in Fig. 2.6 shows that even if the grid is almost perfectly aligned with

the EW edge, the grid values still exhibit a fair amount of variability around the

edge. In particular, the observation cells centered near the edge have a response close

to 0.5 which is assigned by the maximum obscov rule to grid pixels on either side

of the edge. This artifact, which is due to geometry of observation and resampling,

explains the blurring of the edge in the gridded product.
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Figure 2.6: Simulation of observation cell and gridded reflectance values based on
the location of the observation cell centers and the target. The SIN grid is in the
background; the rectangles represent the PSF support for a subset of observation cells
and the dashed line represents the position of the target edge between water (on the
left) and agricultural fields (on the right). The response at each observation cell is
represented by a gray circle; the value at each grid pixel derived from the maximum
obscov criteria is represented by a gray square. The two top figures depict a portion
of the NS edge respectively for day 2007091 (yyyyddd) with VZA ≈ 5.9o, as in
Fig. 2.5, and day 2007074, with VZA ≈ 51o. The lower figure depicts a portion of
the EW edge (day 2007216 with VZA ≈ 42o).
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Figure 2.7: Estimation of the along row edge spread function (ESFrow) for MYD09GQ

data with VZA = 55.64o. The dots represent the reflectance values along the aligned
x values and the solid line is the estimated non-parametric ESF. All values are nor-
malized so the ESF ranges from 0 to 1. The dotted line is the Gaussian ESF adjusted
to the data. The goodness of fit of the Gaussian ESF with the non-parametric ESF

obtained by adjusting a spline is indicated by “spline”; the R2 between the Gaussian
ESF and the aligned observations is indicated by “obs”.

2.5 Results

2.5.1 Line spread function estimation

Given a clip of L2G reflectance (from actual M09GQ products or from our

simulations) over an edge we can estimate the non-parametric and the parametric

ESF as discussed in Section 2.4.1. Fig. 2.3 illustrates the estimation for a small VZA.

For comparison, we include Fig. 2.7 that is also based on MYD09GQ data but for

high VZA. The goodness of fit is similar to Fig. 2.3 but the estimated FWHM is clearly

higher as expected. These two examples show that the estimation method is robust

for different geometry of acquisitions of MODIS products.

For each combination of sensor, edge, and date, we adjust a non-parametric

ESF and all candidate parametric ESF described in Section 2.4.1 and compute the

goodness of fit as illustrated in Fig. 2.3. We conclude that the best fit is always
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Edge Data average R2 average R2

(spline) (obs)

NS Aqua (simulated) 0.998 0.870

Aqua (MYD09GQ) 0.998 0.826

Terra (MOD09GQ) 0.994 0.812

EW Aqua (simulated) 0.998 0.812

Aqua (MYD09GQ) 0.996 0.779

Terra (MOD09GQ) 0.996 0.772

Table 2.2: Goodness of fit of the Gaussian ESF to the data, measured by the average
coefficient of determination relative to the non-parametric ESF (spline) and to the
aligned observations (obs) for each edge and each data set. Each data set includes
all observations for the sampled dates.

obtained with the Gaussian ESF and the similarly shaped piecewise quadratic ESF

(see Section 2.4.1). This suggests that the triangular LSF is always better than

any combination of triangular LSF and rectangular LSF to model the sampled image

system, even in the along column direction. This is an indication that the combined

effect of the acquisition geometry and the sampling procedure (see Fig. 2.6) doesn’t

preserve the sharp rectangular along track response of the imaging system.

As discussed in Section 2.4.1, we model LSFrow and LSFcol as Gaussian in the

rest of the paper. Table 2.2 lists the goodness of fit measured by the coefficient of

determination for the Gaussian ESF for both sensors and edges and show that the

Gaussian ESF is essentially as good as the non-parametric model to represent the

ESF.
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Figure 2.8: Relations between the FWHM and the VZA estimated from actual MODIS
gridded surface reflectance products for the years 2007 and 2008 over the NS and
the EW edge targets. The closed areas represent 95% confidence bands for the
mean value of the FWHM. The gray areas are for Aqua and the hollow areas are for
Terra. The estimated FWHM values are represented by circles for the NS edge and
by squares for the EW edge, which are filled for Aqua and hollow for Terra. The
equations indicate the regression between FWHM and VZA

3 for each combination of
sensor and edge and are followed by the respective R2.

2.5.2 Estimation of the relation between FWHM and VZA

In this section we use the results described earlier and we model the relation

between FWHM and VZA. We also compare the actual MYD09GQ with our simulated

data set. Fig. 2.8 describes the relation for M09GQ data for both sensors and edges.

We adjusted several models to the pairs {(VZAi, FWHMi)} and concluded that a cubic

relation is statistically as good or better than other models with more parameters.

The confidence intervals depicted in Fig. 2.8 show that there are no significant

differences between sensors but there are clear differences between edges. This means

that LSFrow is consistently smoother than LSFcol for the MODIS gridded products we

considered.

As mentioned in Section 2.4.2, a matter of concern is the small sub-pixel shift
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used to align the observations about the EW edge. To evaluate its impact on our

results, we ran our simulations over an artificial EW edge, which is defined by a

rotation of 2.29o of the actual EW edge, in order to optimize the ESF estimation.

Fig. 2.9 show that the FWHM estimates for the simulations over the artificial and

the actual EW edge are almost coincident. Therefore we conclude that the FWHM

estimates for the EW edge are reliable. Since there are not significant differences

between sensors, we determine a single relation between FWHM and VZA for the NS

edge and another for the EW edge, which we indicate in Fig. 2.9 for the combined

M09GQ data set and that we compare with the data set that was obtained through

simulation. Some conclusions can be drawn from the inspection of Fig. 2.9. First,

there is a significant difference in the mean value of FWHM between the combined

M09GQ data set and the simulated data set, for most of the range of VZA values.

This is due to noise factors (e.g. atmospheric effects) that alter the signal prior to

the sensor acquisition and that we don’t incorporate when we generate the synthetic

data set. Nonetheless, we can see that the relations for each edge are qualitatively

similar, which is further evidence that our estimation techniques are robust. The

major concern is that the irregularities of the target edge we consider in this study

are affecting the estimation of the LSF. However, Fig. 2.9 shows that the differences

between the M09GQ and the synthetic data set grow progressively with the VZA from

30m to 130m for the NS edge, and from 6m to 90m for the EW edge. If the difference

was due a lack of definition of the target edge, then it should be essentially constant

since it would not depend on the VZA. This suggests that the reported difference is

mostly related to atmospheric effects.
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Figure 2.9: Relations between the FWHM and the VZA estimated from the combined
M09GQ data set and from the simulated MODIS gridded surface reflectance prod-
ucts over the NS and the EW edge targets. The five curved shapes represent 95%
confidence bands for the mean value of the FWHM. The light gray areas are the con-
fidence bands for the FWHM derived from the M09GQ datasets described in Fig. 2.8.
The three hollow bands are derived from simulated data over the actual NS edge
(top), the actual EW edge (bottom hollow band with a solid border), and the artifi-
cial EW edge (hollow band bordered by a dashed line). The fact that both bottom
hollow bands are almost superimposed indicates that the actual EW edge can be
used to obtain reliable estimates of FWHM in spite of its small sub-pixel shift. The
estimated FWHM values for the simulated data are represented by circles for the NS
edge and by squares for the EW edge. The equations indicate the regression between
FWHM and VZA

3 for each data set, for the NS edge and for the (actual) EW edge.

We use Equation 2.2, where the coefficients a = FWHMrow/2.355 and b =

FWHMcol/2.355 are replaced by their dependence on VZA as estimated from the com-

bined M09GQ data set, i.e.

FWHMrow = 344.8 + 0.00294 VZA
3

FWHMcol = 291.6 + 0.00139 VZA
3

(2.3)

to determine the area on the ground that contributes the most to the value at any

grid pixel according to our estimation of the sampled image system PSF. Although

the minimum size ground area would be elliptical, we compute a rectangular area

which is easier to describe. Table 2.3 indicates, for a range of VZA between 0o and

50o, the dimensions of rectangles, centered at the grid pixel, that contribute to 50%,
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VZA (degrees)

0 10 20 30 40 50

50% along rows 308 310 329 379 476 637

along columns 261 262 270 294 340 416

75% along rows 438 442 468 540 679 908

along columns 371 373 385 419 484 592

90% along rows 570 575 609 702 882 1180

along columns 483 485 501 545 630 770

Table 2.3: Estimated dimensions (in meters) of an rectangular area on the ground
that contributes to 50%, 75% or 90% of the signal of a 250m nominal gridded pixel
as a function of the VZA. These values are derived from the combined M09GQ data
set depicted in Fig. 2.8 for the study area (Lat = 52.697oN, Long = 5.593oE).

75% or 90% of the signal at that pixel.

We are now in measure to discuss the decomposition of M09GQ PSF described

in Equation 2.1. Instead of estimating each component of the PSF, we follow a

coarser approach that consists in decomposing the FWHM for M09GQ given by Equa-

tion 2.3 into three additive terms: one for the imaging system, one for the sampling

procedure, and a third term for the additional noise factors (including atmospheric

effects). The GSD, which depends solely on the VZA (see [Tan et al., 2006, Appendix

B]), measures the contribution of the imaging system, the FWHM estimated from

simulated gridded reflectance accounts for the both the imaging system and the

sampling procedure. The additional noise factors correspond then to the difference
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Figure 2.10: Approximate contributions of the imaging system, the sampling pro-
cedure and additional noise factors (including atmospheric effects) to the estimated
FWHM of M09GQ. The figure shows the decomposition of FWHMrow (top) and FWHMcol

(bottom). The lower curve indicates the contribution (in %) of the imaging system
and the middle curve the cumulative contribution of the both imaging system and
sampling procedure. The dots along the curves correspond to the printed VZA values.

between the mean FWHM estimates for M09GQ and simulated datasets. Fig. 2.10

reveals differences in the decomposition of FWHMrow, which combines high VZA and

high GSD, and FWHMcol which combines high VZA with moderate GSD. The figure sug-

gests that the effect of additional noise factors increases with the VZA, but that there

is a reduction of the sampling procedure effect for high GSD; this can be explained by

the fact that as GSD becomes increasingly larger with respect to the fixed grid size,

the contribution of the sampling procedure in the whole imaging system becomes

progressively attenuated.

2.5.3 Simulations for world wide locations

As discussed in Section 2.3, most MODIS gridded reflectance products are

assigned to the SIN grid which intersects the along track direction of the sensor at

variable angles (see Fig. 2.2). Since our analysis relies on the combined geometry of
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the observation cells and the L2G pixels, one can ask how our previous results apply

to areas other than our study area in the Netherlands. To address this question

we generalize the simulation described in Section 2.4.3 to an arbitrary location.

We replicate the Aqua dataset used for the study area (see Section 2.4.2) but we

introduce a correction for the latitude. Since the sensor track direction varies with

the latitude (see Fig. 2.2), we rotate the positions of the cell centers and the azimuth

angle accordingly. Hence, the rotation is counterclockwise for latitudes higher than

52.7o (the study area latitude) and clockwise otherwise. The L2G geometry can be

derived for any location by converting its latitude/longitude into the corresponding

row/column of the SIN grid as described in [Giglio, 2008, p.24]. For each location,

we simulate the gridded product over two ideal edges which are aligned – up to a

small rotation of 2.86o in order to optimize the sub-pixel shift – either with the SIN

grid rows or columns. This allow us to estimate the FWHMrow and the FWHMcol for

the location of interest as a function of the VZA using the approach described in

Section 2.4.3.

We illustrate the rotational effects that the combination of track direction and

grid geometry create with two opposite examples: Fig. 2.11 (top) shows the result of

the simulation with a high VZA = 51.3o at the Earth Observation System (EOS) core

validation site [Morisette et al., 2002] of Changbaishan in China, where the rotational

effects between track direction and SIN grid are pronounced. In that case, the along

scan direction is 67.4oNE while the grid columns are oriented 56.44oNE, leading to

a 10.96o angle between those two directions. In a clear contrast with our study area

(see Fig. 2.6) the along scan direction is almost aligned with the columns of the SIN
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grid. The opposite example corresponds to the EOS site of Barrow, Alaska, where

the track direction and the columns of the grid are now much more aligned as shown

in Fig 2.11 (bottom). The simulation is performed over the same dataset (after the

correction for latitude described earlier) and shows that for the same sensor PSF

support, the signal of the edge suffers much more blurring. As a matter of fact,

while the simulation represented by Fig. 2.11 (top) leads to an estimated FWHMrow

of 594m, the one for the bottom figure leads to a 1233m value for FWHMrow.

We perform the above simulation for 145 locations regularly distributed be-

tween latitudes below 72o, and the whole range of longitudes, and for an additional

29 EOS site locations well distributed around the globe to estimate the depen-

dences of both FWHMrow and FWHMcol on the VZA using the techniques described in

Section 2.4.1. Fig. 2.12 shows some contour lines of the estimated FWHMrow at nadir

(VZA = 0o) and Table 2.4 indicates the estimated values of FWHMrow and FWHMcol

at VZA = 0o and VZA = 55o for a subset of EOS locations around the globe. The

inspection of Fig. 2.12 shows that the along row resolution is very much dependent

on the latitude, mainly for higher longitudes, while the along column resolution is

much more stable. This is the result from the geometry of the SIN grid, where

the rows are always along the parallels but the direction of the columns vary as

described by Fig. 2.2. Moreover, Fig. 2.12 shows that there is a asymmetry in the

degradation of the along row resolution, which is related to the track direction of

the sensor. Therefore, it is important stress that Fig. 2.12 illustrates the results

obtained from simulations over daily Aqua data sets, although it is reasonable to

admit that simulations based on Terra data would be similar, but inverted with
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Figure 2.11: Simulated values for Aqua observation cells and SIN grid pixels over a
perfect edge (depicted as the dashed line) aligned with the SIN grid columns (rep-
resented by the thin solid lines in the background). A subset of the PSF supports is
depicted (wide rectangles). The circles are located at the centers of the observation
cells; their size indicates the estimated response over the edge and ranges from 0 (to
the left of the edge) to 1. The squares are located at the centers of the SIN grid pixels;
their size indicates the estimated grid pixel value which is derived from the observa-
tion cell values by the maximum obscov criteria. The top figure corresponds to the
EOS Changbaishan site location (Lat=42.4025oN and Long=128.0958oE) and the
bottom figure corresponds to the EOS Barrow site location in Alaska (Lat=71.281oN
and Long=156.612oW).

respect to the prime meridian, due to the symmetry of the orbits.
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Site Lat Long FWHMrow (m) FWHMcol (m)

nadir 55o nadir 55o

Ak 71.28 N 156.61 W 631 1363 281 475

Or 44.43 N 121.56 W 460 1169 279 494

Me 45.20 N 68.73 W 390 935 279 469

Br 10.08 S 61.93 W 321 720 281 475

An 52.61 N 0.52 E 319 746 284 424

St 59.80 N 30.80 E 317 690 284 435

Si 57.27 N 91.60 E 415 733 285 407

Ch 42.40 N 128.09 E 446 757 285 436

Zb 15.43 S 23.25 E 326 752 288 466

Au 34.39 S 145.30 E 451 1153 280 501

Table 2.4: Simulations based on Aqua data sets for 10 EOS site locations: Ak
(Barrow), Or (Cascades), Me (Howland), Br (Ji-Parana), An (Barton Bendish),
St (St. Peterberg), Si (Krasnoyarsk), Ch (Changbaishan), Zb (Mongu), and Au
(Uardry). The listed values are the estimated FWHMrow and FWHMcol at nadir and at
VZA = 55o for each location.
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Figure 2.12: Simulations based on Aqua data sets for 174 locations distributed over
the globe. The countour lines represent the estimated FWHMrow (in meters) at nadir
(VZA = 0o). Each box represents the location of an EOS site. The inner and outer
boxes dimensions for each location are proportional to FWHMrow and FWHMcol at nadir
and at VZA = 55o; their exact values are described in Table 2.4. The map projection
is as in Fig 2.2.

2.6 Conclusions

The main goal of this paper is to characterize the spatial resolution for the

MODIS L2G surface reflectance product incorporating the known properties of the

variable viewing geometries. We have shown that the FWHM is a reasonable estimate

of resolution for gridded products over the range of VZA for MODIS. Furthermore,

based on the estimation of the along row and along column FWHM, we propose a

complete description of the overall sample image system PSF.

The results in this paper rely on two main assumptions. Firstly, we consider

that the anisotropic Gaussian distribution is a good model to represent the PSF of the

gridded products, as long as the support of the PSF is allowed to vary. We found that

this simple model for the PSF fits very well with both actual MODIS L2G products

and MODIS synthetic products over an ideal target. The second assumption is that

our study area is a suitable target for the edge method with sufficient resolution for
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MODIS. In addition to the very sharp geometry of the target, illustrated in Fig. 2.4,

our results with real data match nicely with our synthetic results, which we consider

an additional evidence of the applicability of our techniques.

The results obtained in this paper indicate a resolution near nadir coarser

than the reported nominal GSD of 250m. The pixel offsets and noise shown around

a stable, simulated edge target allow us to evaluate how sampling and geometric

effects from the MODIS instrument contribute to image degradation, as illustrated

in Fig. 2.6 and Fig. 2.11 that describe the artifacts that can occur when the grid is

aligned with the target.

The reported results assert the importance of distinguishing the imaging sys-

tem, associated to the “swath” data, from the sampling procedure that leads to

the gridded products. While the former is beyond the control of the final user, the

latter is somewhat arbitrary, since it depends on the chosen projection and resam-

pling criteria. Our results show that the projection associated to the MODIS SIN

grid causes a degradation of the resolution for locations away from the Equator

and the central meridian of the projection, as illustrated by Fig. 2.12. The study

area in the Netherlands happens to be situated near the central meridian of the

SIN grid and, therefore, our results described by Fig. 2.8 and Table 2.3 give a good

indication of the best possible resolution that can be obtained for 250m nominal

gridded products, with a suitable projection. These findings support the idea that

users should re-project the data depending on the location of interest. Tools like

LPDAAC MODIS Reprojection Tool Swath or NSIDC MODIS Swath-to-Grid Toolbox

are readily available to re-project swath data (e.g. level 2 MOD09 or MYD09) into
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a grid with minimal distortion for a given location. Those gridded data could then

be processed to obtain higher level (level 3 or level 4) MODIS products, although

this last step would require a much greater level of expertise from the user.

There are several open questions that could be addressed in future work. One

question is related to the resampling criteria since L2G products depend on the

selection of both grid and resampling criteria. It would be interesting to analyze

how a criteria other than maximum obscov (e.g. bilinear resampling) would affect

the resolution of gridded products. Another direction to explore is related to the

fact that our study was only focused on daily MODIS products. Most higher order

MODIS products are temporal composites created from the best quality pixels (e.g.

cloud free, low aerosol, or minimum VZA) over a composite period (e.g. 8 or 16 days).

The outcome of the composite product is a scene often comprised of observations

acquired from multiple days and geometries [Solano et al., 2010]. The scenes over

persistently cloudy regions, e.g. the Amazon or our own study area, must frequently

use off-nadir observations but near-nadir observations are prevalent in areas with

little clouds. While our results for VZA = 0o provide lower bounds for the resolution

of higher order multi-day products, more research is needed to assess the spatial

resolution of temporal composites in general.

The results presented in this paper establish the methods to account for the

effective spatial resolution of geolocated grid data from wide field-of-view instru-

ments. The VIIRS instrument will provide data with a more uniform along scan GSD

than MODIS does currently for varying VZA. The methods used in this paper will

be used to assess the gridded products generated from these new data as soon as a
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representative dataset is available. The results from this future analysis is essential

to evaluate continuity between the MODIS and VIIRS sensors for long-term data

records.
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Chapter 3: Demonstration of Uncertainty Resulting from MODIS-

Like Geometries: an Albedo Case Study

3.1 Abstract

This research examines uncertainty in MODerate Resolution Imaging Spec-

troradiometer (MODIS) observations, and demonstrates the direct influence of geo-

metric distortions resulting from the standard practice of geolocating swath observa-

tions. MODIS observations vary dependent on the Ground Sample Distance (GSD),

which varies dependent on the View Zenith Angle (VZA) that changes with every

orbit. MODIS Level 2G (L2G) land products are generated by applying a geolo-

cation algorithm that resamples the variable observation geometries to a consistent

grid of fixed pixel size and location, a process which itself introduces variability

associated with the changing observational footprint. For this study, broadband

albedo was simulated for five validation sites, representing five distinct land cover

types, exhibiting quantifiable variability, with additional seasonal variability exhib-

ited in some sites. All site simulations exhibit compounded uncertainty attributable

to the geometric distortion sufficient to influence climate models (i.e. ranges from

0.01-0.045 albedo). These results indicate there is a minimum level of uncertainty
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associated with the variable geometry that should be factored into L2G-based prod-

ucts, particularly for nominal 250 meter band data. Aggregating the data to coarser

resolutions and smoothing the data through average resampling can mitigate the un-

certainty.

3.2 Introduction

Coarse resolution sensors (4km-250m) commonly used for land remote sensing,

such as the NOAA AVHRR, SPOT VGT, MODIS have broad swath-widths (2,200–

2,600km). The resulting off-nadir viewing allows for near-daily viewing, increasing

the opportunity for cloud-free observations [Townshend and Justice, 2002]. However

the off-nadir viewing results in variable geometries, which needs to be addressed

in data pre-processing and production, and provides an inherent uncertainty in

the resulting products. For this study, uncertainty is examined with respect to

a hypothetical albedo product from MODIS. Albedo was selected as a physical

quantity measurable by satellite with importance to the climate change community.

Albedo is the fraction of incident solar irradiance reflected by the Earth’s

surface across the solar spectrum [Goward, 2005], measured as a ratio of upwelling

to downwelling radiance, providing estimates of the energy budget available for

driving heat fluxes in climate system modeling. Radiative forcing is the change

imposed to Earth’s radiation balance as a result of some perturbation of the surface

[Hansen et al., 1997], measured in Watts per meter squared (Wm−2), providing a

useful measure for positive (warming) and negative (cooling) changes, and can be
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derived from measurements of albedo. The relationship of albedo in a basic net

radiation budget model is:

Rnet = (1− albedo) ∗ Esolar + εs ∗ Elwd(Ta) − εs ∗Mlwu(Ts), (3.1)

where albedo is the surface albedo, Esolar is directly absorbed solar radiation, εs is

surface emissivity, Elwd(Ta) is downwelling longwave atmospheric emission (Ta = air

temperature), and Mlwu(Ts) is upwelling longwave surface emission (Ts = surface

temperature).

Monteith and Unsworth [2008] demonstrate the linear relationship between ir-

radiance and air temperature for both direct and diffuse radiative scattering models;

multiple studies have either included, or modeled, their climate system response to

changing land albedos with respect to direct temperature effects and carbon seques-

tration [Dixon et al., 2003, Montenegro et al., 2009, Schurgers et al., 2008, Waggoner

and Sokolik, 2010].

The role and importance of albedo in Earth Systems Science has been estab-

lished since the early days of remote sensing [Sagan et al., 1979], and is now key

to the ongoing discussion regarding climate change and anthropogenic effects upon

Earth systems [Goward, 2005, Lacis et al., 2010]. Recorded albedo estimates derived

from satellite observations contribute to our understanding of changes in the climate,

through a relation to the net radiative flux over different landscapes. The absolute

error for satisfactory albedo parameters in climate models ranges from ±0.05 to

±0.02 [Oleson et al., 2003]. As climate models continue to improve their spatial
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and temporal resolution and incorporate new data sources [Pachauri and Reisinger,

2007], identifying and minimizing model error becomes increasingly necessary.

Two studies, each using simulated cropland land cover class albedos, exemplify

the dependency between albedo accuracy and model uncertainty. Myhre and Myhre

[2003] ran sequential models using albedo values from 0.15, 0.18 and 0.20 to simulate

baseline albedo scenarios representative of the potential natural vegetation (PNV);

the resultant radiative forcing was calculated at −0.06, −0.20 and −0.29 Wm−2

cooling, respectively. Matthews et al. [2003] ran models using albedo values between

0.17 and 0.20 to simulate historical baseline land covers from the 1700’s CE to 1992,

demonstrating increased radiative forcing from −0.15 to −0.28 Wm−2, calculated as

a difference in cooling of −0.09 ◦C and −0.17 ◦C respectively. Both studies conclude

that model outcomes are dependent on small changes in albedo parameters and

describe a general relationship where +0.01 albedo corresponds to −0.05Wm−2,

and −0.03◦C cooling.

The MODerate Resolution Imaging Spectroradiometer (MODIS), flown on two

polar orbiting platforms, has provided useful information regarding planetary albedo

since the early 2000’s [Schaaf et al., 2002]. The Fifth Edition of the Intergovern-

mental Panel on Climate Change (IPCC) describes the uncertainties of the albedo

parameters used in global climate models [Myhre et al., 2013], exhibiting the sensi-

tivity of model runs to changes in albedo parameters, and demonstrating the depen-

dency of model outcomes on the accuracy of albedo parameters, some of which are

derived from MODIS. Calculations of albedo are sensitive to observational charac-

teristics, such as atmosphere and land cover. For example, the Myhre [2009] albedo
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study demonstrates diminished negative forcing, −0.8 to −0.65 Wm−2, when atmo-

spheric models incorporate aerosol optical depth (AOD) from MODIS observations.

Liang et al. [1999] report albedo uncertainty exceeding ±0.05 attributed to sources

including changing AOD conditions, variable zenith angles, and complex landscapes.

Given the sensitivity of climate models to small changes in albedo, this paper

simulates a series of MODIS-like gridded broadband albedo for several land cover

types to test the measurement consistency of a given gridded pixel through changing

view geometries. The following section describes the MODIS instrument character-

istics and known sources of error. Methods for simulating MODIS geometries and

a simulated albedo time series are discussed in Section 3.4. Results for the various

simulations are discussed in Section 3.5. Methods useful in mitigating the error are

explored in Section 3.5.5. Finally, conclusions and recommendations are presented

in Section 3.6.

3.3 MODIS Observation Characteristics

MODIS is a whiskbroom system with a scanning mirror providing a wide ob-

servation swath (2330km) for 36 spectral bands at nominal detector pixel resolutions

of 250m, 500m, and 1000m [Barnes et al., 1998]. The wide field-of-view (±66◦) and

high temporal frequency (at least 2 passes a day at the equator) of MODIS provides

near daily global coverage [Salomonson et al., 2000, Xiong and Barnes, 2006], but

comes at the cost of a loss in signal accuracy due to known effects of pixel size

growth at increasing view zenith angles (VZA). VZA is the angle formed between a
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line perpendicular to the observed surface (local zenith) and a line pointing back to

the instrument.

The ground-projected sample interval (the spacing between pixels), known

as the ground sample distance (GSD), is a common measure of instrument spatial

resolution [Schowengerdt, 2007]. The reported values of 250m, 500m and 1000m

correspond to the nominal GSD of the MODIS instrument at nadir and do not

reflect the continuously varying VZA, the overall effect of which is a growth in

the GSD of approximately 2.0 times along track and 4.8 times along scan at the

maximum observation angle. The pixel growth ultimately leads to overlapping scans

toward the edge of scan, known as the bow-tie effect. The constant scanning of the

mirror forms a triangular line spread function (a sensor’s one-dimensional spatial

response to the measured physical signal) integrating radiometric signal from the

immediate preceding and subsequent neighbor pixels (12.5%) to the center pixel

(75%) along scan [Nishihama et al., 1997, Wolfe et al., 2002].

To help facilitate use, all higher order MODIS products are assigned to a geo-

referenced grid using a custom sinusoidal projection with a fixed pixel size for each

of the available nominal resolutions. MODIS geolocation assumes a fixed spatial size

based on the subdivision of a 30 arc second grid providing a seamless global grid

with resolutions of ≈ 231m, ≈ 463m, and ≈ 926m [Wolfe et al., 2002]. Observations

made at resolution r (e.g. 250m) are assigned to a co-located (x, y) coordinate in

the geolocation grid of the same resolution. Observational coverage (obscov) is the

integrated signal response during a sample interval overlapping a grid cell divided

by the full observation footprint, which accounts for the changing sample sizes at
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increasing GSD. Grid pixels are assigned the value of those observations (swath

pixels) with the highest obscov values [Wolfe et al., 1998, Yang and Wolfe, 2001].

However, the reported mean obscov for MODIS grid data is less than 30% [Tan et al.,

2006], meaning the value assigned to any given grid pixel is only a portion of the

spatial signal from the larger observation pixel, and not necessarily representative of

the small geographic area defined by the grid location. Further, single observations

are often assigned to more than one grid pixel at large VZA.

There is no specific problem with the assignment of single or partial values to

multiple grid cells. Conversely, there is no benefit from producing a finer resolution

product given the cell will only ever represent a portion of spatial signal present

because the GSD of the instrument is not consistent and is always greater than

the grid cell size. The portion of the spatial signal will also differ as a function of

location, since the observation pixel center location and associated geometry will be

different for each orbit between nadir-to-nadir views, making the defined grid space

an arbitrary subdivision of the swath data.

The results from [Campagnolo and Montaño, 2014] introduced an inconsis-

tent, location dependent effective GSD that is far different than the nominal grid

resolutions suggested by product descriptions. The author concludes the effective

resolution of MODIS 250m grid data varies between 344m and 835m along scan and

behave in the same basic manner as swath data (i.e. the effective resolution grows

in the same fashion as swath data).

Many MODIS products are generated as discrete temporal composites, using

only the single best quality per-pixel observation (e.g. cloud-free and/or minimum
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view zenith angles) for a given composite period - usually 8-16 days. Data in these

composites ultimately suffer from geometric distortion in that a seemingly spatially

continuous scene nonetheless represents a spatially discontinuous surface comprised

of observations from any number of disparate GSD.

Figure 5.1 illustrates the different days of data and the associated VZA used

in a typical discrete composite MOD13 NDVI product. The composite day of year

seen in the figure is an interesting illustration of the false assumption of spatial

continuity of data within a composite scene. There are 8 days worth of data in

the scene that are not necessarily spatially contiguous. Further, and of particular

import to this study, the range of VZA in the composite is far larger than one might

expect. Specifically, the MOD13 product series applies a minimum VZA criterion

in the selection of best quality pixels [Solano et al., 2010]. However, there are

clearly circumstances overriding this criteria (e.g. a limited number of cloud-free

observations) making the use of less desirable observation days (e.g. those with

large VZA) a necessity.

Therefore, the goal of this paper is to demonstrate the level of measurement

uncertainty imposed by the variable GSD of the MODIS instrument and geoloca-

tion process attributable to geometric distortion at different spatial scales using

broadband albedo as a measure. The work is not a validation study for any cur-

rent MODIS science product, and does not employ the same production methods

or quality assessment as those products. Reference to any given published product

accuracies is solely to compare the relative error contribution.
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Figure 3.1: Sample illustration of days used in compositing the MODIS MYD13Q1
NDVI product from the April 27, 2008 (day 116) 16-day composite. The top figure
shows the view zenith angles associated with the days used. The lower figure shows
the day within the period that was used in the composite. The MOD13 product uses
a minimum VZA as part of the quality selection, but nonetheless some large angles
are used as a result of coincident factors such as persistent cloud contamination.
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3.4 Data and Methods

Assessing the impact of geometric artifacts on measures of albedo requires

isolation of the geometric influence from other potential sources of error. To accom-

plish this, synthetic time series of MODIS data were generated from 11 individual

scenes of Landsat 5 TM images for five Earth Observation System (EOS) validation

sites [Morisette et al., 2002], representing five distinct land cover types (Table 3.1).

A broadband albedo was calculated using a simple linear model albedo and

methods for non-snow land cover described in Brest and Goward [Brest and Goward,

1987]. The broadband albedo method uses a linear combination of visible red and

near infrared bands calibrated to top-of-atmosphere reflectance - originally bands 4

and 7 from Landsat 1-3 in the paper translated into bands 3 and 4 for the Landsat 5

data used here - that are represented in 250m MODIS bands 1 and 2. The method

first uses a simple ratio (SR) of band 4 divided by band 3, where a ratio greater

than 2 indicates vegetation versus non-vegetation. The broadband albedo is then

calculated as follows:

albedo =


0.526(B3) + 0.362(B4) + 0.112[0.5(B4)] if SR > 2.0 (vegetation)

0.526(B3) + 0.474(B4) if SR < 2.0 (non-vegetation)

(3.2)

The difference in bandwidth between Landsat instruments and potential changes

to the linear model was not a factor, nor was the lack of atmospheric correction,

since absolute albedo model accuracy is not the goal of this paper. Albedo was
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selected for this study as it is a physical quality that can be estimated from satellite

instruments. Thus, the simple broadband model is sufficient to serve as a context

from which geometric variability can be assessed.

The surface composition and spatial variability of the land cover at any site will

influence the amount of spatial signal incorporated into any given GSD; a uniform,

homogeneous canopy will present a more stable spatial signal over coarsening scales

than a highly variable, heterogeneous landscape with small crop fields. Spatial varia-

tion further depends on seasonality for those canopies that experience different levels

of canopy green-up and senescence. Therefore, seasonal profiles were generated for

those sites expected to demonstrate seasonally variable phenology, Harvard Forest

(broadleaf forest), Konza Prairie (grassland/cereal crop), and Bondville (broadleaf

cropland). Images containing snow cover are beyond the scope of this analysis, and

were excluded.

3.4.1 Study Areas

The Bondville, IL EOS agricultural site is located in the Midwest United

States and is characterized by agricultural land with generally rectangular fields of

agricultural land that can be in various states of development based on both time

of year and crop type in each field. A high level of spatial heterogeneity can be

expected from this site as a function of the GSD being larger than the field size

from day-to-day. The pixel grid cells containing the site, seen in the Figure 3.2a,

clearly demonstrate the MODIS signal incorporated at each given stage of spatial
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Table 3.1: EOS Validation Sites and Landsat TM data used in the study

Site Name Lat Lon Path/Row Date Land Cover

Bondville, IL 40.00 -88.29 22/32

2010-04-14

2010-07-03

2010-11-08

Broadleaf Cropland

Harvard Forest LTER, MA 42.54 -72.18 13/30

2008-04-26

2008-06-12

2006-10-13

Broadleaf Forest

Konza Prairie LTER, KS 39.08 -96.56 28/33

2011-03-10

2011-07-01

2011-09-02

Grassland/Cereal Crop

Jornada LTER, NM 32.60 -106.86 33/37 2011-04-30 Shrubland/Woodland

Lake Tahoe, NV 39.17 -120.104 43/33 2009-09-21 Needleleaf Forest/Clear

Water

aggregation.

The histograms in Figure 3.2 are used to understand the level of spatial hetero-

geneity of the study sites at varying scales. Each group of histograms illustrate the

distribution of Landsat albedo pixels centered around the site extending in a circle

to 250m, 500m, 1000m, and 2000m and for each season. Non-normal distributions

will incorporate varying amounts of outlier data as the MODIS GSD changes, caus-

ing irregularity in the simulated MODIS albedo; a normal distribution (i.e. spatially

homogeneous) provides a more stable input signal for each simulated footprint, thus
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(a) Bondville, IL (b) Spring albedo frequency

(c) Summer albedo frequency (d) Fall albedo frequency

Figure 3.2: The site characteristics respective of the geolocation grid aggregation
scheme for the Bondville site are seen in 3.2a. The remaining plots are distributions
of the source Landsat albedo for each season at increasing spatial scales (250m-
2000m) centered around the site.

less variability as the GSD changes. The distributions for all season at the Bondville

site indicate an irregular distribution at finer scales that tend to smooth at coarser

resolutions, indicating inherent spatial heterogeneity at the site.

The Harvard Forest LTER (EOS Test Site) is a deciduous forest in the north-

east United States, which would be expected to demonstrate some seasonality as

a result of leaf-on/leaf-off periods. The site relative to the geolocation grid is il-

lustrated in Figure 3.3a. The histograms for the three seasons in Figure 3.3 are
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(a) Harvard Forest, MA (b) Spring albedo frequency

(c) Summer albedo frequency (d) Fall albedo frequency

Figure 3.3: The site characteristics respective of the geolocation grid aggregation
scheme for the Harvard Forest site 3.3a and histograms of albedo frequency for the
different seasons and scales.

generally more normally distributed than the Bondville site, suggesting this site

is more spatially homogeneous. However, the distributions demonstrate a skew at

finer resolutions (250m and 500m), particularly in the Summer period, which can

manifest as greater variability with varying GSD.

The Konza Prairie LTER site is a grassland land cover class in the Midwest

United States. The site relative to the geolocation grid is illustrated in Figure

3.4a suggests the site is relatively spatially homogenous at all scales. The histogram

distributions in Figure 3.4 have a relatively normal distribution for all scales, similar
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(a) Konza Prairie, KS (b) Spring albedo frequency

(c) Summer albedo frequency (d) Fall albedo frequency

Figure 3.4: The site characteristics respective of the geolocation grid aggregation
scheme for the Konza Prairie site 3.4a and histograms of albedo frequency for the
different seasons and scales.

to that of Harvard Forest. The Summer period shows a skew at finer resolution,

though the frequency is denser than the skew in the Harvard site, which suggests

the site will continue to be homogeneous.

The site characteristics respective of the geolocation grid aggregation scheme

for Lake Tahoe are seen in Figure 3.5a and Jornada in Figure 3.5c. Land cover

at the Lake Tahoe site was not expected to demonstrate high levels of seasonality.

Therefore, only a single Fall image was simulated for Lake Tahoe. The Lake Tahoe

EOS site is a clear water and needle leaf land cover class in the western United States.
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The Lake Tahoe site was chosen for the interesting feature of having the exact site

location defined in the lake, but the aggregation of pixels ultimately incorporating

land features at coarser resolutions. The Jornada LTER, located in the southwest

United States, is classified as a semi-arid grass/scrubland. A single Summer image

was selected for the Jornada site, since seasonality was not expected to influence

the land cover.

The histograms for both Lake Tahoe and Jornada are seen in Figures 3.5b

and 3.5d respectively. The histograms for the Lake Tahoe site are very irregular,

which is an artifact of the incorporation of very different land albedos within the

scene at coarser scales, and is highly spatially homogeneous at fine scales. The

spatial homogeneity of the Jornada site is indicated through the generally normal

distributions of albedo at all scales.

3.4.2 MODIS Albedo Simulation

MODIS bands 1 and 2 used for the simulation are nominal 250m bands, thus

the decision was made to start the analysis for this research at the finest available

pixel size. The process of generating the synthetic MODIS data from the Landsat

scenes incorporates the known spatial integration of signal by creating a triangu-

lar weighting scheme for all Landsat pixels that fall into a given MODIS swath

observation footprint. The simulation is accomplished in several steps.

A MODIS observation center for the 250m resolution must first be determined

from the input geolocation file (MOD03/MYD03), which is stored at 1km resolution.
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(a) Lake Tahoe, NV (b) Lake Tahoe Fall albedo frequency

(c) Jornada LTER, NM (d) Jornada Summer albedo frequency

Figure 3.5: Figure 3.5a for Lake Tahoe illustrates the composition of pixels at coarser
resolutions and the level of land features that are added to the signal. The relative
homogeneity of the Jornada site can be seen in Figure 3.5c.

62



Figure 3.6: The spatial relationship between 1km geolocation data and the 500m
and 250m resolutions. The cell center of the 1km data is co-registered with the
second and fourth 500m and 250m pixels respectively. An accurate geolocation for
each of the resolutions can be determined though bilinear interpolation of the 1km
values. (This figure is derived from [Nishihama et al., 1997, Figure 2-11]

The cell centers for the first along-track 1km earth scans are co-registered with the

cell centers of the second 500m and fourth 250m spatial samples. Figure 3.6 from

[Nishihama et al., 1997, Figure 2-11] shows the relationship between the spatial

resolutions. Accurate geolocation must occur for each scan independently due to

the overlap of successive scans. Therefore, each scan is calculated individually by

dividing the number of rows in the MOD03 file by 10, i.e. the number of scans in

each file. The 250m longitude and latitude for each pixel center is then calculated

using bilinear interpolation of the 1km longitude and latitude values. The first two

and last two rows in the 250m geolocation fall outside the actual 1km frame, so

these values are approximated using bilinear extrapolation.

From these 250m cell centers the footprint of individual pixels can be de-
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termined using methods described in [Tan et al., 2006, Appendix B], using the

approximate scan angle and sensor azimuth obtained from the MOD03 geolocation

file. The observation footprints derived using this method vary in size based on the

given viewing geometries.

The MODIS along-scan Line Spread Function (LSF) is approximately trian-

gular, integrating 12.5% of each neighboring pixel to the 75% pixel currently being

observed [Nishihama et al., 1997]. The weighting scheme W = [0.2, 0.4, 0.6, 0.8,

1.0, 0.8, 0.6, 0.4, 0.2] describes a representation of the relative contribution of signal

for each MODIS pixel along-scan; the along-track LSF is assumed to be relatively

rectangular Barnes et al. [1998], with equal weight in that direction. Therefore, a

MODIS pixel is simulated by defining a 5 row x 5 column grid for each MODIS

footprint, with a companion 5 row x 2 column grid defined for each of the adjacent

pixel footprints starting from the pixel center. Weights from W are defined along

each respective vector of the grid columns, representing the relative contribution to

the triangular LSF (Figure 3.7).

Landsat pixels located inside the observation pixel footprint and adjacent pix-

els are assigned weights from the nearest column of the weighting grid using nearest

neighbor resampling. Along-scan weights are assumed constant and discrete for the

sake of computational consistency and ease, so no effort was made to interpolate be-

tween column weights (e.g. bilinear interpolation). The weighting scheme remains

unchanged regardless of the observation size, but the number of Landsat pixels as-

signed a given weight will increase or decrease based on the size of the footprint. The

final observation value is calculated using the weighted average of all Landsat pixels
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Figure 3.7: Illustration of swath observation simulation. Landsat pixels are assigned
weights from a 5x9 grid centered inside the swath cell and incorporating signal from
neighboring swath cells. The value for a given cell is then the weighted average of
all Landsat pixels. The simulated swath observation is consistent with the LSF of
the MODIS instrument.

using the weighting scheme W for each respective column, respecting the 12.5% /

75% / 12.5% neighborhood contribution and the triangular shape of the MODIS

LSF [Nishihama et al., 1997].

The individual Landsat albedo scenes were transformed to MODIS swath ge-

ometries for each MOD03/MYD03 file intersecting a given site during an ≈ 30

day period, representing at least two nadir-to-nadir periods (see Table 3.2). The

resultant synthetic MODIS swath data were maintained in a WGS84 geographic pro-

jection, preserving the variable pixel size for the daily swath. The synthetic swath

data were projected from geographic to the custom MODIS sinusoidal projection

with a pixel resolution of 250m. The choice was made to keep the grid resolution at

an even 250m for easy manipulation even though the actual MODIS grid resolution

is ≈ 231m. The reprojection uses a nearest neighbor pixel assignment method to

approximate the obscov method used in actual MODIS product generation. The as-
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Table 3.2: MOD/MYD03 time periods used for simulating data

Site Platform Season Begin Date End Date

Bondville Aqua Fall 2010-11-08 2010-12-09

Aqua Summer 2010-07-03 2010-08-03

Aqua Spring 2010-04-14 2010-05-14

Harvard Forest Aqua Fall 2006-10-13 2006-11-14

Aqua Summer 2010-07-03 2010-08-03

Aqua Spring 2010-04-14 2010-05-14

Konza Prairie Terra Fall 2011-09-02 2011-10-01

Terra Summer 2011-06-30 2011-07-31

Terra Spring 2011-03-10 2011-04-08

Jornada LTER Terra Spring 2011-04-30 2011-07-08

Lake Tahoe Aqua Fall 2009-09-21 2009-10-26

signment difference between the resampling methods is expected to be small and is

consistent with tools like the LPDAAC MODIS Reprojection Tool Swath [LPDAAC

User Services, 2015].

The daily MODIS Surface Reflectance (MOD09GQ) processing steam selects

the highest quality individual pixels from multiple orbits for the first layer based on

quality criteria including overall observation quality, maximum obscov and minimum

VZA [Vermote et al., 2011]. However, the simulated data in this study are considered

to have equal observation quality and obscov was not generated. Therefore, only
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the minimum VZA criteria was applied to select individual daily observations.

Nominal 250m band MODIS data used in coarser resolution science products

(e.g. MODIS Albedo MCD43 at 500m resolution) are aggregated using the weighted

average of all observations intersecting a given coarse resolution cell determined by

the obscov values for the input pixels. For this study, a simpler method was applied

assuming any given resolution is an equal subdivision of the original sinusoidal grid

- a 250m pixel in the sinusoidal grid is the 4x4 subdivision of the 1km grid for

example. Each resolution is calculated from the original 250m grid data, with the

simple mean value calculated from all pixels falling into the new, coarser pixel. The

full process is illustrated in Figure 3.8. Finally, the pixel value for the grid cell

containing the study site was extracted for each gridded scene in the series.

Although the process is not completely consistent with the production code

used for MODIS land products, the process does provide an approximation of the

variability. The results of the simple method demonstrate a similar effect of data

smoothing through the averaging of data to coarser resolution even though the

method of aggregation differs.

3.5 Results

The goal of the simulation process is to hold albedo constant, with the geo-

metric effects from the MODIS instrument as the only variable; geometric variation

and inconsistent swath-to-grid assignment from orbit-to-orbit leads to differing mea-

surements of the same underlying albedo at the same location, as the GSD changes.
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Figure 3.8: The full process of synthesizing data. Clockwise from top left: A) The
original Landsat synthetic albedo at 30m resolution. B) The next step transforms
the Landsat at 30m resolution to daily MODIS observation geometry derived from
daily MOD03 geolocation data and projected to a geographic coordinate system
preserving the variable swath pixel sizes. This example uses data from Aqua and
has a VZA of 26.47◦, resulting in an ≈ 290m pixel. C) Finally the daily synthetic
swath data are gridded to the MODIS sinusoidal grid at 250m resolution.
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Data from the MODIS instruments on both Aqua and Terra are used to illustrate

any differences to be seen in the viewing geometries from a morning descending orbit

(Terra) versus an afternoon ascending orbit (Aqua).

Two measures are used to determine variability in the data, range and stan-

dard deviation. Standard deviation provides the basic metric of variability around

the observed mean values. The range of measured albedo (maximum value −

minimum value) is a useful measure in this case to assess the geometric error. The

range of signal variation from peak to trough through time is related to the obser-

vation footprint as a function of the changing GSD from the variable VZA, since

the source Landsat albedo only varies due to relative contribution in the changing

GSD. Observations made at increasing VZA will necessarily incorporate more signal

from adjacent space as the observation footprint grows to be greater than the grid

pixel size. The range of values for homogeneous land covers should be small, since

the underlying albedo would vary little with changing GSD. However, spatially het-

erogeneous land covers are expected to demonstrate increased ranges, influenced by

the variable GSD and the fluctuating albedos present in the footprint.

An example of simulated swath data from the Harvard Forest, MA site in

Figure 3.9 clearly shows the extreme values are not observed at the extreme range of

VZA. Rather, the extreme values are observed in the middle range of VZA between

≈ 5◦ and 35◦, while the smallest is near nadir. The range incorporating these

values is relatively large at 0.038, though the standard deviation is far smaller at

0.009. Excluding the extreme values still retains a range of values ≈ 0.025. These

measurements are made with data prior to the grid process, suggesting a significant
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Figure 3.9: Albedo plotted as a function of VZA for Harvard Forest site. The results
show the largest values are observed in the mid range of VZA between ≈ 15◦ and
35◦. Overall variability for these simulated swath data appears low reporting a
measured standard deviation of 0.009. The range of values is larger at 0.038, which
is a significant contribution to uncertainty from the variable GSD before gridding
occurs.

variability from the GSD alone.

The results for all sites and seasons during the entire simulated period, Figure

3.10, are organized in ascending order of increasing pixel size ranging from 250m

to 2000m in 500m increments showing the range and standard deviation of daily

measured albedo. The results clearly demonstrate a measurable level of variability

from the geometric properties of the MODIS instrument, which would carry forward

to the final grid product. Reduction of both standard deviation and range is achieved
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through aggregating data to coarser grid resolutions, but full removal is not achieved

at any resolution in the simulation. The increasing values for the Lake Tahoe site

are an artifact of the center of the EOS site being located offshore, but ultimately

incorporating land features at increasing grid resolutions.

The overall low values for standard deviation, generally < 0.01 albedo, sug-

gest a given temporal series of data is relatively stable. However, the relationship

between climate model and albedo parameters was previously described as +0.01

albedo corresponding to −0.05 Wm−2, and −0.03◦C cooling. The level of variabil-

ity seen at the finest resolution, 250m, are sufficient to influence radiative forcing in

climate models attributed to the variable observation geometry of the instrument

and geolocation, independent of atmospheric or albedo model related sources.

The reduction of both range and standard deviation from aggregating the data

to 500m in this study, suggests products such as the 500m MODIS albedo product

[Schaaf et al., 2014, 2002], MCD43, incorporating multiple days of observations from

both Aqua and Terra, and therefore GSD, to approximate a nadir adjusted value are

not impacted greatly from the varying geometry. However, the higher values for the

range indicate significant levels of uncertainty remain when individual geometries

are integrated into temporally discrete composite data products like the NDVI in

Figure 5.1. This applies to both assignment of varying GSD in a given scene, or

from composite period-to-period. The variability observed from fine-resolution GSD

in a scene could affect land cover classification accuracy for example.

The focus of the above research was to demonstrate the impact of geometric

distortions as a result of off-nadir viewing. The analysis shows the impact, and
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Figure 3.10: Albedo ranges and standard deviation for all sites. The plot is arranged
in ascending order of increasing pixel size from 250m-2000m illustrating the albedo
variability for the three seasons tested.

that, in general, the smoothing effect of aggregating the data to coarser resolutions

is expected to reduced the resultant measurement variability. The analysis also

revealed a relationship between land cover spatial heterogeneity, the variability in

the signal and the level of spatial aggregation required to reduce albedo variability

at different sites, which is described individually in the following sections.
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3.5.1 Bondville, IL

The results for the Bondville site, Figure 3.11, show the range (upper figure)

and standard deviation (lower figure) for the three seasonal periods for all data

in each of the respective simulations. The values indicate the expected smoothing

effect from pixel aggregation, though the variability is never totally removed. The

Spring and Fall values demonstrate the highest variability. This variability is likely a

function of the spatial heterogeneity seen in the irregular Landsat albedo frequency

seen in Figures 3.2b and 3.2d, and is expected since the Spring and Fall periods

would present the most heterogeneous canopy as crops are planted, then either

harvested or senesced. The Summer period has a smaller variability from a more

fully developed canopy providing a more uniform signal. The uncertainty for all

seasons is sufficient to indicate potential model influence at fine scales, up to at

least 1000m.

Several MODIS biophysical products are generated as discrete temporal com-

posites, using only the single best quality per-pixel observation (e.g. cloud-free

and/or minimum view zenith angles) for a given composite period - usually 8-16

days. The series of plots in Figure 3.12 group the simulated data into discrete

8-day groups and calculate a range for each period. The 250m and 500m groups

demonstrate persistent variability greater than 0.01 albedo for all seasons, which is

sufficient to influence an expected result within any given 8-day group, and suggest

care is needed when using observations from different geometries during a given

composite period.
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Figure 3.11: Albedo ranges (upper figure) and standard deviation (lower figure) for
the Bondville site. The results for Bondville indicate a resolution of at least 1000m
to stabilize the effect from geometric distortion, though it is not fully removed even
at 2000m.

74



(a) Bondville Spring (b) Bondville Summer

(c) Bondville Fall

Figure 3.12: Discrete 8-day groups of simulated albedo for the Bondville site.
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3.5.2 Harvard Forest LTER, MA

The variability in Figure 3.13 appears similar to the Bondville results for the

250m resolution. However, the reduction of variability achieved more rapidly than

Bondville, the majority occurring at 500m, and a relative minimum reduction is

achieved at 1000m, similar to the Bondville site. The level of spatial heterogeneity

at the Harvard site appears constrained to finer resolutions, and becomes more ho-

mogeneous at coarser resolutions. The Landsat albedo frequencies for the site, Fig-

ure 3.3, support this, particularly the Summer results that demonstrated a skewed

distribution that is seen here as the highest level of uncertainty. The standard de-

viation values are small, suggesting the data are stable when using a mean value.

However, the uncertainty remains a potentially significant contribution to the overall

accuracy of the signal at finer resolutions.

Figure 3.14 groups the simulated data into similar discrete 8-day groups as

3.12. The Spring and Fall scenes demonstrate low variability from period-to-period

and remain below 0.02 for all resolutions, contrary to the global variability in Figure

3.13, which is cumulative over the range of all values in the simulation. The dis-

crete results suggest the site is far more homogeneous and stable through geometry,

though some care should be taken with fine resolution data that present the highest

per-group uncertainty. The results for Summer, however, demonstrate high levels of

variation in the 250m data. The effect is mitigated through aggregation, becoming

more stable as the other seasons. The results for Summer suggest 250m data are

sensitive to GSD-to-grid assignment in developed tree canopies.
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Figure 3.13: Range (upper plot) and standard deviation (lower plot) for the Harvard
Forest site. The albedo data for Harvard Forest demonstrate a continuing reduction
of error as pixel size increases.
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(a) Harvard Forest Spring (b) Harvard Forest Summer

(c) Harvard Forest Fall

Figure 3.14: Discrete 8-day groups of simulated albedo for the Harvard site.
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Figure 3.15: Albedo ranges and standard deviation for the Konza Prairie site. The
relatively homogeneous land cover at the Konza Prairie site demonstrates an overall
small and consistent uncertainty for all resolutions.

3.5.3 Konza Prairie LTER, KS

The results for Konza Prairie, Figure 3.15 demonstrate a low, and stable overall

uncertainty for all resolutions. The standard deviation is insignificant, but the

range data, while small, remains a constant source of significant uncertainty despite

aggregation. The land cover seen in Figure 3.4a appears relatively uniform compared

to Bondville and Harvard Forest indicating a high level of spatial homogeneity for

all seasons, and is supported in the Landsat albedo frequencies in Figure 3.4.

The discrete analysis, Figure 3.16 shows the same basic pattern of low un-
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(a) Konza Prairie Spring (b) Konza Prairie Summer

(c) Konza Prairie Fall

Figure 3.16: Discrete 8-day groups of simulated albedo for the Konza site.

certainty between groups similar to the Harvard site. The Fall data show the

largest variation, though this is small. Overall, the results for Konza Prairie support

MODIS data present a consistent uncertainty for homogeneous landscapes.

3.5.4 Lake Tahoe, NV and Jornada, NM

The final two sites are presented together since only one season was analyzed

for each. The Lake Tahoe site was chosen for the interesting feature of having the
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exact site location defined in the lake, but the aggregation of pixels ultimately incor-

porating land features at coarser resolutions. Figure 3.5a illustrates the composition

of pixels at increasing resolutions and the level of land features that are added to the

signal. The level of variability is inverse to the expected smoothing for resolutions

greater than 500m seen in Figure 3.17, as the spatial variability of land features is

introduced. Ultimately, the variability is the highest level for all the measured sites,

but at the coarsest resolution. The integration of potentially disparate land covers

into any given GSD is a consequence of the MODIS instrument’s wide field-of-view.

The variable land cover integration is carried forward into the gridded product, so

care should be taken making assumptions about per-pixel stability.

The Lake Tahoe site discrete results, Figure 3.18a, are similar to the global in

that nominal 250m or aggregating data to 500m is the most representative for this

type of extreme heterogeneous land cover. Aggregation to coarser resolutions intro-

duces a level of uncertainty to each period, unlike the other land covers represented

in this research.

The Jornada site is relatively homogeneous, which can be seen in Figure 3.5

and is confirmed by the Landsat albedo frequencies in the figure. The homogeneity

of the site is further confirmed with an low level of uncertainty for all resolutions in

Figure 3.17

The discrete analysis of the Jornada data, Figure 3.18b, shows the 250m data

return the lowest uncertainty of all the resolutions. This result, and a similar find-

ing for the Konza Prairie site, suggests aggregation introduces heterogeneity from

adjacent areas not otherwise incorporated in the nominal pixel. However, aggrega-
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Figure 3.17: Albedo ranges and standard deviation for the Lake Tahoe and Jornada
sites. The actual site center for Lake Tahoe is located offshore, but inclusion of signal
from land features is steadily introduced at increasing spatial resolutions increasing
the variability in the signal. The Jornada data present a stable level of uncertainty
for all resolutions.
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(a) Lake Tahoe Fall (b) Jornada Summer

Figure 3.18: Discrete 8-day groups of simulated albedo for the Lake Tahoe and
Jornada sites.

tion to resolutions needed to stabilize variability in other sites does not necessarily

introduce a significantly different uncertainty.

3.5.5 Average Resampling

Current MODIS land data products use the highest proportion of a GSD

intersecting a given grid space, obscov, to assign a grid value [Wolfe et al., 1998,

Yang and Wolfe, 2001]. However, the resampling of a widely variable GSD to a

fixed 250m grid cell does not necessarily represent the sample space. Specifically,

the misalignment of observations occur when two observations partially intersect a

grid cell and only a single value, with the largest coverage, is assigned; the feature

of interest may be mis-assigned if the observation coverage is insufficient.

A second method of data processing was attempted as part of this study, to

mitigate the inconsistent assignment resulting from the nearest neighbor (obscov in
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production) resampling. This method uses the average of all observations inter-

secting the grid cell to assign the grid a value. The average resampling technique is

more representative of the changing GSD through the inclusion of all data informing

a given grid space. Average resampling is processed from swath at all resolutions

rather than aggregating the results of resampling a single resolution to progressively

coarser resolutions as was done above. In a production environment, the simple av-

erage used here should be replaced with a weighted average using obscov, the same

method used for aggregation in production. The results are seen in Figure 3.19.

The immediate effect of the average resampling method is a reduction of range

by at least half for the worst sites and a far more consistent reduction for all sites

except Lake Tahoe, which demonstrates an increase. The standard deviation is sim-

ilarly reduced for finer resolutions. However, some level of geometric error remains.

The Bondville site for the Fall period demonstrates a clear increase at coarser reso-

lutions, which is likely reflective of the introduction of spatially heterogeneous land

cover similar to the Lake Tahoe site and the inherent sensitivity of averages to outlier

values. The Lake Tahoe site does not benefit, and in fact suffers from the average

resampling method.

These results indicate a more uniform choice of aggregating data to 1000m

to mitigate geometric effects and produce a more consistent error across land cov-

ers. The average resampling swath method also presents a better tradeoff between

resolution and accuracy.
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Figure 3.19: Albedo profiles for all sites using an average resampling method for all
resolutions. All sites except for Lake Tahoe demonstrate a reduction of range and
standard deviations at fine resolutions. The average resampling method presents a
more consistent and smaller error at a finer resolution.
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3.6 Discussion and Conclusion

The objective of this research was to investigate the effect of geometric distor-

tions inherent in the scanning MODIS system using broadband albedo as an example

to quantify uncertainty. It should be noted that the purpose of this paper is not to

assess the accuracy or model methods used for the MODIS standard albedo prod-

uct (MCD43) or any other MODIS standard product. Rather, the findings of this

work are meant to inform users of MODIS land products of the level of uncertainty

added by the distortion inherent in MODIS data due to off-nadir viewing, using

albedo as a meaningful physical variable. A quantified error budget associated with

the spatial representativeness of wide field-of-view data like MODIS will improve

the accuracy and inform end use of current and future product generations through

a better understanding of specific sources of error. The work has led to several

valuable conclusions.

First, the assignment of a variable daily geometric footprint to a consistent

geolocation grid has a significant influence on daily observations of synthetic albedo.

Variability in albedo attributable to geometric effects alone ranged as high as≈ 0.045

to < 0.01. Even applying a more robust assumption of maximum error that is half

the range the results, still present uncertainty in albedo < 0.015 for most sites

at nominal resolution. These ranges from geometric and geolocation effects alone

would be sufficient to influence climate models utilizing MODIS data. The standard

deviation is much smaller for the same data and range from ≈ 0.01 to < 0.002,

suggesting algorithms integrating multiple GSDs into a single, adjusted value suffer
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less from the inconsistent geometry.

Second, the research illustrates that error from geometric distortions can be

mitigated through the smoothing of data by aggregation of pixels to coarser reso-

lutions. Pixel resolutions in excess of 1000m are required to mitigate the geometric

influence from some land cover types, though 1000m provides a relatively consistent

result for all sites. The level of aggregation is consistent with previous findings using

gridded data [Tan et al., 2006], as well as the known 4.8 times GSD growth along

scan.

The fact that complete removal of noise is not fully achieved even at coarse

resolutions up to 8 times the nominal 250m resolution when the known GSD of

the instrument grows up to 4.8 times nominal resolution, indicates models using

these data must incorporate an uncertainty attributable to geometric distortions

before model error can be assessed. It should be noted that the current MCD43

BRDF/Albedo is generated at 500m grid resolution rather than the 250m geometries

used for the above simulation [Schaaf et al., 2014].

The applicability of the results presented here is significant despite this dif-

ference in resolution for several reasons. The Red and NIR bands in the MCD43

product are nominal 250m MODIS bands that are aggregated to 500m using a more

robust method than that presented here. The results for 250m bands presented here

clearly demonstrate the smoothing from just a simple aggregation method to 500m

helps stabilize the geometric uncertainty, and the 500m nominal bands could like-

wise benefit from aggregation to 1000m. Additionally, the geometries for all MODIS

detector resolutions function the same, but at different scales. Therefore, even the
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simple assumption of doubling of the minimum effective GSD for 250m grid data

[Campagnolo and Montaño, 2014] at nadir (e.g. 250m u 340m ∴ 500m u 680m)

suggests a 500m grid product is not representative of the space being observed

through varying geometry. While MODIS products are designed to accurately

present the portion of the space observed in a given grid cell, there is no specific

benefit from using a smaller grid cell size than a cell size more representative of the

maximum variable observation footprint for example; a resolution increasing the av-

erage obscov to greater than 30% [Tan et al., 2006] would be beneficial to stabilize

the spatial signal.

Finally, the assessment of an alternate resampling method demonstrates av-

eraging all swath pixel that fall into a grid space rather than nearest neighbor (as

a proxy for obscov) is a more consistent spatial representation across the range of

GSD. Future research of alternate data processing methods should also investigate

the efficacy of other equal area projections that can improve the swath-to-grid align-

ment over the sinusoidal projection. Campagnolo and Montaño [2014] demonstrate

the sinusoidal grid causes a degradation of the resolution for locations away from

the Equator and the central meridian of the projection from inconsistent swath and

grid orientation, which might be improved with a more localized projection.

The results demonstrate the gridded data from different GSDs are not in-

herently interchangeable, and selection of data for any given period of geometry

introduces a level of uncertainty that should be factored into product accuracy as-

sessment for these data. This is particularly true of nominal 250m data, but also

for other resolutions. Spatial homogeneity for the site is an important factor when
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considering observation stability across the range of GSDs. Relatively homogeneous

sites like Konza Prairie, Jornada, and Harvard Forest provide a stable, though po-

tentially significant, level of uncertainty for all resolutions.

Spatially heterogeneous sites like Bondville can be smoothed through aggre-

gation to similar levels of uncertainty to accommodate the spatial variability. Field

size is also a factor when considering the most appropriate scale for MODIS data.

Sites like Bondville, with agricultural fields smaller than a given GSD, will present

different portions of those fields with every orbit at finer resolutions. Thus these

land cover types benefit from a coarser scale to stabilize the signal. Conversely, some

care should be taken not to aggregate the data to level that no longer represent the

land cover of interest, as the Lake Tahoe results demonstrated with two disparate

adjacent land cover types.

The MODIS instruments have proven to be valuable contributions to the on-

going monitoring of Earth’s surface [Gitelson et al., 1996, Huete et al., 1999, Ji

et al., 2008]. There remains an important tradeoff between achieving high-temporal

frequency observations and spatial accuracy; the results shown in this work clearly

demonstrate the importance of minimizing measurement error arising from known

instrument artifacts. However, the presence of known artifacts does not negate the

use of existing nominal-scale data. Rather, the final use informs the level of utility.

Nominal 250m gridded data are adequate when the final accuracy needed is

relatively low as might be the case for a simple forest/non-forest classification or

visual analysis. The results using standard deviation also indicate the uncertainty

of measurements are stable when considering products that integrate multiple GSD
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into a single measurement. Physical variables or analysis assuming a stable spatial

signal through time, per-pixel comparison from two different 8-day composites for

example, and requiring a high level of accuracy or measurement sensitivity can

benefit from adding a geometric uncertainty factor based on the known variability

of the GSD to increase the precision.

The use of whisk-broom sensors will continue and there is considerable interest

in developing long term consistent climate data records from satellites [Justice et al.,

2011]. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, part the

orbiting Suomi NPP mission and to be flown on the upcoming JPSS mission will

provide data that are aggregated along scan to help control for the known effects of

GSD growth. The intention of the aggregation is to provide a more consistent obser-

vation footprint than MODIS does currently, and early spatial performance [Wolfe

et al., 2012] indicates the method is effective. Standard products from VIIRS, simi-

lar to the current MODIS suite, are available in beta form now. Future research will

investigate efficacy of the cross-scan pixel aggregation using the methods presented

here.
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Chapter 4: Evaluating VIIRS Product Uncertainty associated with

Scanning Geometry: an Albedo Case Study

4.1 Abstract

This research examines uncertainty in Visible Infrared Imager Radiometer

Suite (VIIRS) observations, and demonstrates the direct influence of geometric dis-

tortions resulting from the standard practice of geolocating swath observations. The

VIIRS data are unique amongst coarse resolution earth-sensing systems, as a result

of the user requirements to exhibit uniform pixel size across scan. This was addressed

by on-board spatial aggregation of pixels toward nadir, to mitigate the growth of

Ground Sample Distance (GSD). The pixel aggregation scheme employed for VI-

IRS data in an effort to mitigate the growth of GSD is assessed. No significant

difference was found between aggregation zones for homogeneous land covers, but

spatially heterogeneous land cover demonstrated a marginal difference in the mean

albedo between zones. VIIRS observations vary dependent on the Ground Sample

Distance (GSD), which varies dependent on the View Zenith Angle (VZA) that

changes with every orbit. Gridded VIIRS land products (L2G) are generated by ap-

plying a geolocation algorithm that resamples the variable observation geometries
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to a consistent grid of fixed pixel size and location, a process which itself introduces

variability associated with the changing observational footprint. For this case study,

broadband albedo was simulated for five validation sites, representing five distinct

land cover types, exhibiting quantifiable variability, with additional, seasonal vari-

ability exhibited in some sites. Results from discrete 8-day groups of data simulating

temporal composite data demonstrate the influence of geometric artifacts through

differing levels of uncertainty between periods sufficient to influence climate models

(i.e. ranges from 0.01-0.05 albedo). Results further indicate that uncertainty should

be factored into L2G-based products, particularly for nominal 375 meter band data.

4.2 Introduction

The Visible Infrared Imager Radiometer Suite (VIIRS) instrument is a rotating

telescope assembly onboard The Suomi National Polar-orbiting Partnership (NPP)

satellite. The Suomi NPP mission will provide VIIRS data from several agency

sources. NOAA provides a core set of Environmental Data Records (EDRs) pri-

marily for the existing community of weather-prediction and hazard-response users

who require rapid turn-around time. NASA Land Product Evaluation and Analysis

Tool Element (Land PEATE) further processes data continuity and climate quality

data [Justice et al., 2013]; currently released at beta-quality, the data will eventu-

ally be processed at full production quality for the broader user community. Part

of the MODIS and VIIRS sensor-to-sensor continuity is the application of a con-

sistent geolocation process, ensuring that the VIIRS data produced by the NASA
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Land PEATE will continue to geolocate data in the same manner as MODIS data

[Justice et al., 2013], and perpetuating the assumption of a fixed pixel size based on

the subdivision of a 30 arc second sinusoidal grid providing a seamless global grid

with resolutions of ≈ 231m, ≈ 463m, and ≈ 926m [Wolfe et al., 2002].

The VIIRS instrument is expected to continue the important legacy of cli-

mate and environmental measurements established by several predecessor missions

[Justice et al., 2013], including the Advanced Very High Resolution Radiometer

(AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) [Jus-

tice et al., 2011] missions. This continuity between missions and protocols enables

the VIIRS-derivative science products to benefit from the expertise of established

science teams, standard science quality products, and validation strategies [Justice

et al., 2013, Morisette et al., 2002] previously developed for the MODIS missions,

while obviating the imperative to fully understand mitigation strategy impacts and

effects on the accurate use of VIIRS data.

Composed of 22 spectral and thermal bands, which are split between imagery

bands (I-Bands) representing a nominal 375m ground sample distance (GSD), and

moderate resolution bands (M-Bands) representing a nominal 750m GSD [Wolfe

et al., 2013], the VIIRS instrument, like the MODIS instrument [Barnes et al.,

1998], suffers growth in pixel ground sample distance as a function of the view

zenith angle (VZA) of its sensor, with sample interval size increasing farther from

nadir [Schueler et al., 2013]. To control this growth of pixels, the VIIRS instrument

employs rectangular detectors with the smaller dimension aligned in the along-scan

direction combined with an along-scan pixel aggregation scheme [Baker, 2014, Wolfe
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et al., 2013], and introduces a deletion scheme for the bow tie effect (redundant data

resulting from overlapping scans), seen at increasing VZA [Wolfe et al., 2012].

The pixel aggregation scheme performed onboard the satellite [Wolfe et al.,

2013] averages three pixels for along-scan regions from nadir to scan angle 31.72◦,

two pixels for regions between 31.73◦ and 44.86◦, and native observations are used for

the remaining data (44.87◦ to 56.28◦). It is important to note the difference between

the scan angles used to define the aggregation zone here and the larger VZA used

throughout this paper. The relationship between the VZA and the scan angle can

be described by VZA = arcsin(R+H
R

sin(scan angle)), where R is Earth’s radius and

H is the satellite’s altitude, for a spherical Earth model. The corresponding VZA

for the aggregation zones are nadir to 35.75◦ (3-pixel), 35.75◦ to 51.75◦ (2-pixel)

and 51.75◦ to 67.48◦ (1-pixel). Each detector is ≈131m in the short dimension to

accommodate known pixel growth along-scan, thus providing a footprint of ≈393m,

617m, and 800m for each of the 3x1, 2x1 and 1x1 aggregation zones respectively

(Figure 4.1a). The breakpoints between aggregation zones along the scan, and the

overall effect of pixel growth, are illustrated in Figure 4.1b.

On-orbit reports of spatial performance indicate that the aggregation scheme

is effective [Lin et al., 2013, Wolfe et al., 2012, 2013], presenting significant im-

provement in constraining the spatial footprint along-scan compared to MODIS

(co-plotted in Figure 4.1b). I-bands results show some variability in pixel sizes

along scan, generally ranging within one-tenth of a pixel, with pixel size at the edge

of scan still greater than 2 nominal pixels. Some bands show even greater variability,

likely resultant from problems finding and processing adequate ground targets [Lin
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(a) [Baker, 2014, Figure 2.2] illustrates the rectangular detector and along-scan aggregation
scheme on the VIIRS instrument. Fewer detectors are needed to cover the same space as
the distance from nadir increases, and pixel growth is constrained to≈800m by the aligning
the short edge of the rectangle along scan.

(b) [Wolfe et al., 2013, Figure 4] illustrates aggregation zone impact on pixel size growth.
MODIS data was co-plotted as a reference. The overall pixel growth is constrained,
particularly compared to MODIS. However, there remains growth in pixel size to more
than 2 pixels by the edge of scan.
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et al., 2013]. On-orbit analysis of VIIRS data geolocation accuracy indicate that the

location accuracy of these data is reported to be ≈ 70m [Wolfe et al., 2013], which

is consistent with published MODIS accuracies [Wolfe et al., 2002].

The geolocation process developed for MODIS introduced a method of pixel

assignment by defining the proportion of integrated signal response during a sample

interval overlapping a grid cell, called obscov [Wolfe et al., 1998, Yang and Wolfe,

2001]. Grid pixels are assigned the value of those observations with the highest

obscov values, thereby preserving the original pixel value for each cell (similar to

nearest neighbor), and accounting for the increasing sample interval size as asso-

ciated with geometrically-increasing GSD. Observations are often shifted and/or

assigned multiple times because of the mismatch between GSD and grid pixels. The

VIIRS 375m I-Bands are assigned using obscov to the 463m grid and the 750m M-

Bands are assigned to the 926m grid; in this way, the data are expected to achieve

a better observation-to-grid assignment than MODIS data have previously achieved

[Tan et al., 2006].

The methods and results of [Montaño, 2015] demonstrate the level of uncer-

tainty associated with MODIS observation geometry and geolocation. There is a

general expectation amongst the user community that the on-board improvements

to the VIIRS instrument will provide a more consistent spatial signal across the

range of GSD. To test this, a simulated series of VIIRS-like gridded broadband

albedo were generated for the same study areas as the [Montaño, 2015] paper.

The key characteristics of the Jornada LTER semi-arid grass/scrubland site in

the southwestern United States are seasonally-invariant vegetation and multi-scale
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homogeneity of land cover. The key characteristics of the Konza Prairie LTER

grassland site in the midwestern United States are minimally seasonally-variant

vegetation and multi-scale homogeneity of land cover. The key characteristics of the

Harvard Forest LTER deciduous forest site in the northeastern United States are

significantly seasonally-variant vegetation and spatial heterogeneity of land cover.

The key characteristics of the Lake Tahoe clear water lake site in the western United

States are significantly invariant land cover type (water), nominal-scale homogeneity,

and incorporation of adjacent land cover types (vegetation) at coarser scales. The

key characteristics of the Bondville agricultural site in the midwestern United States

are seasonally-variant vegetation and significant spatial heterogeneity of land cover

type (field size, crop type, crop season).

The site characteristics respective of the geolocation grid aggregation scheme

from 375m to 2250m for all the sites are illustrated in Figure 4.2, and demonstrate

the land features incorporated at each given stage of spatial aggregation to coarser

resolutions.

4.3 Synthetic Broadband Albedo

The data and methods follow and extend [Montaño, 2015], thus a time series

of synthetic broadband albedo data were generated from the same 11 individual

Landsat TM images used in that study (Table 4.1). The use of the same scenes

allows for direct comparison with the MODIS results, with the addition of VIIRS

observation geometry the only new variable.
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(a) Bondville, IL (b) Harvard Forest, MA (c) Konza Prairie, KS

(d) Lake Tahoe, NV (e) Jornada LTER, NM

Figure 4.2: The site characteristics respective of the geolocation grid aggregation
scheme for the study areas.

The same broadband albedo was calculated following methods described by

Brest and Goward [1987] for non-snow land cover using the Landsat 5 TM images

calibrated to top-of-atmosphere reflectance. The Landsat broadband albedo conve-

niently uses a linear combination of near infrared and visible red band, which are

comparable to VIIRS 375m I-Bands 1 and 2. Any difference in albedo calculations

from lack of atmospheric correction of bandwidth differences can be dismissed, since

absolute albedo accuracy is not the focus of this paper.

4.4 Simulated VIIRS Geometries

The VIIRS instrument improves on the spatial performance of the MODIS

instrument by employing a rectangular detector with the short edge aligned along
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Table 4.1: EOS Validation Sites and Landsat TM data used in the study

Site Name Lat Lon Path/Row Date Land Cover

Bondville, IL 40.00 -88.29 22/32

2010-04-14

2010-07-03

2010-11-08

Broadleaf Cropland

Harvard Forest LTER, MA 42.54 -72.18 13/30

2008-04-26

2008-06-12

2006-10-13

Broadleaf Forest

Konza Prairie LTER, KS 39.08 -96.56 28/33

2011-03-10

2011-07-01

2011-09-02

Grassland/Cereal Crop

Jornada LTER, NM 32.60 -106.86 33/37 2011-04-30 Shrubland/Woodland

Lake Tahoe, NV 39.17 -120.104 43/33 2009-09-21 Needleleaf Forest/Clear

Water

scan. However, the instrument itself utilizes a scanning mirror that creates the same

triangular shape of the MODIS Line Spread Function (LSF) prior to aggregation

[Nishihama et al., 1997], imposing a similar neighborhood contribution (12.5% /

75% / 12.5%) to the current pixel being scanned [NOAA/STAR VIIRS SDR Team,

2013]. Therefore, the methods to simulate MODIS data described by [Montaño,

2015] can be utilized to simulate VIIRS data for this study.

The process of generating the synthetic VIIRS follows [Montaño, 2015] to

replicate the triangular LSF of a VIIRS observation pixel using a triangular weight-
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ing scheme. Individual VIIRS pixel footprints are determined following methods

described by [Tan et al., 2006, Appendix B], using latitude, longitude and known

instrument geometry including scan angle and sensor azimuth from the input geolo-

cation file [NOAA/STAR VIIRS SDR Team, 2013].

A further improvement to spatial accuracy for VIIRS is the inclusion of native-

scale geolocation data (NPP IMFT L1). VIIRS geolocation data are produced and

distributed in both 375m and 750m resolutions, unlike MODIS MOD03 geolocation

files that are only produced at 1km resolution and require interpolation for appli-

cation in finer resolution data; the new geolocation data remove potential location

error from interpolation.

The along-scan pixel aggregation scheme described previously occurs after the

instrument finishes a scan. Thus, the simulated pixels from the previous step are

aggregated and averaged according to the scan angle (SA) breakpoints described

earlier using Equation 4.1. Again, note the corresponding aggregation zones using

VZA are nadir to 35.75◦ (3-pixel), 35.75◦ to 51.75◦ (2-pixel) and 51.75◦ to 67.48◦

(1-pixel).

Obsagg =



Obsi,i+2/3 if SA ≤ 31.72◦

Obsi,i+1/2 if 31.72◦ < SA ≤ 44.86◦

Obsi if SA > 44.86◦

(4.1)

VIIRS I-Band geometries were simulated for a hypothetical ≈ 30 day period

using daily NPP IMFT L1 geolocation data intersecting the site (Table 4.2). The
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decision was made to generate simulated data at the finest available pixel size using

375m VIIRS I-Band geolocation data to remain consistent with the 250m MODIS

data used in [Montaño, 2015]. Further, the M-Bands follow the same geometries

and aggregation at exactly twice the size as I-Bands [Baker, 2014, NOAA/STAR

VIIRS SDR Team, 2013], thus the results presented in this work can be expected

to retain a similar structure for M-Bands.

The daily VIIRS gridded surface reflectance product from the NASA Land-

PEATE is expected to follow the MODIS Surface Reflectance (MOD09GQ) process-

ing steam, which selects the highest quality individual pixels from multiple orbits

based on quality criteria including overall observation quality, maximum obscov and

minimum VZA [Vermote et al., 2011]. However, the simulated data in this study

are considered to have equal observation quality and obscov was not generated.

Therefore, only the minimum VZA criteria was applied to select individual daily

observations.

In this paper, the reprojection of swath data, maintained in a WGS84 geo-

graphic projection, uses a nearest neighbor pixel assignment to approximate the

obscov method used in actual VIIRS product generation. The assignment difference

between the resampling methods is expected to be small and is consistent with tools

like the LPDAAC MODIS Reprojection Tool Swath [LPDAAC User Services, 2015].

Two swath-to-grid resolutions were generated using the nearest neighbor approach,

a nominal 375m grid and a 500m grid, both using the existing MODIS geolocation

sinusoidal grid to determine which is more representative of the swath pixel. The

375m grid resolution is meant to be representative of the expected detector GSD
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Table 4.2: NPP IMFT L1 time periods used for simulating data

Season Begin Date End Date

Bondville Spring 2013-04-14 2013-05-13

Summer 2013-07-03 2013-08-02

Fall 2013-11-08 2013-12-05

Harvard Forest Spring 2013-04-26 2013-05-28

Summer 2013-06-13 2013-07-15

Fall 2013-10-13 2013-11-13

Konza Prairie Spring 2013-03-11 2013-04-07

Fall 2013-09-02 2011-09-28

Summer 2013-06-30 2013-08-02

Jornada LTER Spring 2013-04-30 2013-06-02

Lake Tahoe Fall 2013-09-21 2013-10-25
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resolution of the VIIRS instrument.

VIIRS I-Band data used in coarser resolution products are aggregated using

the weighted average of all observations intersecting a given coarse resolution cell

determined by the obscov values for the input pixels. For this study, a simpler

method was applied assuming the 375m grid pixel is an equal subdivision of any

given coarse pixel between 750m-2250m. Each resolution is calculated using integer

factors from the original 375m grid data, with the simple mean value calculated

from all pixels falling into the new, coarser pixel. Finally, the pixel value for the

grid cell containing the site was extracted for each gridded scene in the series.

Although the process is not completely consistent with the production code

used for VIIRS land products, the process does provide an approximation of the

variability. The results of the simple method demonstrate a similar effect of data

smoothing through the averaging of data to coarser resolution even though the

method of aggregation differs.

4.4.1 VIIRS Aggregation Zone Efficacy Results

Montaño [2015] reported small, though potentially significant, geometric in-

fluence for spatially homogeneous land covers like Harvard Forest or Konza Prairie.

Therefore, the geometric influence using VIIRS should be likewise small, and show

some improvement. However, the spatially heterogeneous Bondville demonstrated

high levels of uncertainty, and will therefore be the main focus.

An example of simulated VIIRS swath data from the Bondville, IL site during
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Figure 4.3: MODIS (top) and VIIRS (lower) albedo plotted as a function of VZA
for the Bondville site, with the aggregation zones for reference. The range of values
for VIIRS is improved over MODIS, 0.05 vs. 0.08, and the stability of the signal
across the swath is somewhat smoother than MODIS.

the Spring period in Figure 4.3 (lower plot) shows the effectiveness of the aggregation

scheme when compared to MODIS data (upper plot) using the same Landsat scene.

The pattern of variability in the VIIRS albedo across the range of VZA suggests

the aggregation scheme is helpful to stabilize the GSD. The overall range of albedo

is reduced to 0.05 for VIIRS compared to 0.08 for MODIS. The difference in albedo

resulting from the GSD for each of three aggregation zones, illustrated in Figure

4.4, indicate a difference in albedo ≈ 0.02.

The introduction of the pixel aggregation scheme for VIIRS as a means to

achieve a more consistent GSD along scan is an important improvement to the

sensor design. Schueler et al. [2013] describe the benefits of the ”constant-resolution”
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Figure 4.4: The effect of aggregation zones on simulated albedo. The three scenes
illustrate the aggregation of 3-pixels, 2-pixels, and 1-pixel aggregation from a range
of view zenith angles from ≈4 to ≈50 degrees on the same sample location. The
scenes indicate a change in albedo of ≈0.02 from just the geometry and aggregation
prior to the geolocation process.

105



pixels implemented in VIIRS, and provide several visual examples of improvements.

The VIIRS pixel aggregation scheme, like any mathematical average, is sensitive

to outlier values in the sequence being averaged. Polivka et al. [2015] investigate

the effects of the VIIRS pixel aggregation on occurrence of radiance saturation in

thermal M-Bands. The authors conclude saturation occurs at significantly lower

levels than published limits for the 2 and 3-pixel aggregation zones resulting from

the averaging of increased radiance in the smaller IFOV near-nadir pixels into a

single pixel when compared to unaggregated 1-pixel results.

A series of one-way ANOVA tests were conducted to test for any significant

difference between the mean albedo measurements for each aggregation zone. The

tests are only conducted for the swath, 375m and 500m grid data, as these are

the nominal grid resolutions derived from the original swath; data aggregated to

coarser resolutions are not considered for this analysis. One-way ANOVA assumes

data being tested are independent both within and between each aggregation zone

(group). Data for this study are independent in that only a single pixel value is

retrieved for each geometry, and each observation can only be in a single aggregation

zone.

One-way ANOVA further assumes groups are normally distributed and have

equal within-group variance. Group data for each site/season combination were

first visually inspected for normality using a series of Quantile-Quantile normal

(QQnorm) plots. Data for those groups indicating non-normal distributions were

transformed to approximate normal distributions as necessary to meet model as-

sumptions, using either log or power transformations accordingly. Finally, a Bartlett

106



test [Bartlett, 1937] was run for each group to test for equal variance between the

groups being compared. Further transformations (either power or log functions)

were applied to those few groups demonstrating unequal variance until model as-

sumptions were met. Assumptions of normality were again tested for those trans-

formed groups in case the underlying distributions changed, though no further trans-

formations were required.

The results for the homogeneous sites, Harvard Forest, Konza Prairie, and

Jornada, demonstrated no significant difference between aggregation zones. This

result is not surprising since a homogeneous land cover presents a more spatially

continuous signal for any given GSD regardless of aggregation zone. The results from

the spatially heterogeneous Bondville site did demonstrate a marginal difference

in the mean albedo between zones for the Spring and Summer periods, though

the Bondville Fall period does not show any significant differences. The differing

incorporation of land cover for each GSD that is clearly evident in the swath results

above offers an explanation for the differing means between aggregation zones. The

Lake Tahoe site was omitted due to the extremely low albedo measurement from

the water feature at nominal resolution.

The results for the Bondville Spring period reveal a significant difference in

aggregation zones at the 90% confidence level or better (p < 0.1). The results

for the Bondville Summer period also reveal significant differences in aggregation

zone, but at increased confidence (p < 0.05). The need to meet model assumptions

was particularly important considering the unequal number of observations for each

aggregation zone in the simulation (an unbalanced design) consequent of the orbit,
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which the end user has no control over. The results presented here have both small

sample sizes and unbalanced design, which, when combined, can lead to falsely

significant differences. Thus, a Tukey HSD (honest significant difference) post-

hoc test was applied for comparing multiple groups that remains useful under an

unbalanced design [Tukey, 1949]. Table 4.3 summarizes the results of the pairwise

Tukey test.

The Bondville Spring period showed significant differences between aggrega-

tion zones 1 - 2 for the swath data, and aggregation zones 1 - 2 and 1 - 3 were

significantly different in both the 375m and 500m grid data. Analysis of coincident

MODIS data using the same aggregation zones for comparison did not reveal any

significant differences between zones for either the swath or 250m grid data.

Post-hoc analysis for the Bondville Summer period indicate differences lie be-

tween zones 1 - 3 and 2 - 3 for both swath data and 375m grid. However, only

aggregation zones 1 - 3 indicated a difference in the 500m data. MODIS results

reveal significant differences for both swath and 250m data, with post-hoc analysis

indicating differences in swath zones 1 - 2 and 1 - 3 and 250m zones 1 - 3.

Figure 4.5 is a series of boxplots with the distribution of observed albedo

measurements for the Bondville site in each aggregation zone of the swath, 375m

grid and 500m grid results. Visual analysis confirms the results from the ANOVA

with apparent difference between the distributions of zone 1 and 2 data, though

visually the difference should carry between zones 2 and 3 as well. The difference

between zones 1-2 and 1-3 for both 375m and 500m grid data is visually confirmed.

MODIS swath data for the same site show larger distributions than the VIIRS data,
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Table 4.3: Summary of ANOVA Post-hoc Pairwise Results

Agg Zone p-value

VIIRS Spring Swath 1 - 2 0.0857

VIIRS Spring 375m 1 - 2 0.0687

VIIRS Spring 375m 1 - 3 0.0316

VIIRS Spring 500m 1 - 2 0.0232

VIIRS Spring 500m 1 - 3 0.0787

VIIRS Summer Swath 1 - 2 0.0577

VIIRS Summer Swath 2 - 3 0.0515

VIIRS Summer 375m 1 - 3 0.0064

VIIRS Summer 375m 2 - 3 0.0867

VIIRS Summer 500m 1 - 3 0.0044

MODIS Summer Swath 1 - 2 0.0260

MODIS Summer Swath 1 - 3 0.0213

MODIS Summer 250m 1 - 3 0.0310
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(a) Spring VIIRS Swath (b) Spring VIIRS 375m (c) Spring VIIRS 500m

(d) Spring Swath MODIS (e) Spring MODIS 250m

Figure 4.5: Distribution of albedo by aggregation zone for the Bondville site Spring
period. MODIS results are added for comparison.

indicating the spatial performance of the VIIRS instrument is helping constrain the

GSD to a smaller footprint.

Figure 4.6 is a series of boxplots for the Bondville Summer period. The dis-

tributions in the 3-pixel aggregation zone are larger than the other two in all series,

which visually confirms the differences found in the ANOVA. The visually signif-

icant differences between the 1-pixel and other aggregation zones in the MODIS

results clearly demonstrate that the VIIRS spatial performance improvements are

particularly effective in constraining the GSD far off-nadir.

The different distributions between swath and grid datasets, particularly in

the Spring, is likely a result of an inconsistent swath-to-grid pixel assignment. The
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(a) Summer VIIRS Swath (b) Summer VIIRS 375m (c) Summer VIIRS 500m

(d) Summer Swath

MODIS
(e) Summer MODIS 250m

Figure 4.6: Distribution of albedo by aggregation zone for the Bondville site Summer
period. MODIS results are added for comparison.
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method used to extract swath pixel values used a nearest neighbor approach to

select the swath pixel center closest to the site coordinates in Table 4.1. The grid

pixel value is extracted using the same method, but in this case the grid pixel is the

result of a separate nearest neighbor assignment of swath pixels prior to extracting

the value, which is not necessarily the same swath pixel used for the swath analysis.

For example, if two swath pixels intersect a grid cell, only the swath pixel closest

to the center of the grid pixel will be chosen, but this is not necessarily the swath

pixel closest to the site coordinates.

The results indicate the choice of grid resolution is not necessarily a factor in

the results. The grid results are the same for Spring, but different for Summer, which

indicates the underlying land cover is more influential than the choice of nominal

grid resolution. However, the argument can be made for using the 500m grid in

removal of difference between aggregation zones 2–3 for Summer. The persistent

difference between 1-pixel and 3-pixel, and to a lesser extent the 1-pixel and 2-

pixel aggregation zones in the grid results suggest the averaging that occurs in

the 2 and 3-pixel is effective in smoothing the GSD, making them more consistent

between these zones, but the unaggregated zone behaves differently from the lack

of additional smoothing.

4.5 VIIRS Uncertainty Gridded Results

Montaño [2015] groups results into discrete 8-day periods to replicate what

could be expected from a discrete temporal composite product using only the best
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per-pixel observations (e.g. cloud-free with minimum VZA) for a given composite

period. Following [Montaño, 2015], this study continues the use of range of measured

albedo (maximum value − minimum value) as a means to assess influence from

geometric effects of the changing GSD. Holding albedo constant, the range of values

in any given group of VIIRS geometries remains related to the changing observation

footprint as the GSD and pixel composition changes from orbit-to-orbit; observation

footprints at the same location made from different VZA will necessarily be com-

posed of differing signal contribution from adjacent space. The pixel averaging in

different aggregation zones further influences the final observation. The results from

replicating this grouping for the Jornada and Bondville sites using simulated VIIRS

data illustrate the contrast between spatially homogeneous and heterogeneous land

covers.

The Jornada site is both spatially homogeneous and seasonally-invariant, and

the results in Figure 4.7 indicate a relatively constant range of albedo uncertainty,

< 0.02, for all resolutions. The discrete analysis of the Jornada data demonstrates

some minor variability between groups at 375m, and indicates aggregation of 2x

to 4x (750m-1150m) can mitigate the variability to ≈ 0.01. However, the coarsest

2250m resolution demonstrates an increase in inter-group variability, similar to that

seen in the 375m data, indicating a limit to the aggregation before some contrasting

adjacent land cover influences the result. These results along with similar results

from Konza Praire suggest a level of uncertainty from geometric effects can only

be mitigated to a certain extent, with some residual level retained and possibly

increasing despite the smoothing of the signal.
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Figure 4.7: Discrete 8-day groups of simulated albedo for the Jornada site.

The series of plots in Figure 4.8 replicate the discrete analysis for all seasons at

the Bondville site, and demonstrate the influence of a seasonally-variant vegetation

and spatially heterogeneous land cover type. The 375m and 500m data in the

Spring periods demonstrate the highest levels of uncertainty, and sizable reduction

is achieved through aggregation to coarser resolutions. The high levels and trends of

uncertainty in the Spring period suggest the pixel aggregation scheme only stabilizes

the signal to a limited extent for spatially heterogeneous land covers. The results

suggest care is needed when using observations from different geometries during a

given composite period, particularly when using nominal resolution data.

The Summer period shows similar patterns and levels of uncertainty for all

resolutions, which suggests the matured canopy is creating a more spatially homo-
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Figure 4.8: Discrete 8-day groups of simulated albedo for the Bondville site.

geneous land cover, stabilizing the signal, though some overall reduction is seen in

the 1500m and 2250m resolution. The Fall period shows patterns of reduction at

inconsistent resolutions; some finer resolution simulations demonstrate better reduc-

tion than coarser resolutions, indicating field size is a factor in choosing the best

scale to represent spatially heterogeneous land cover.
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4.6 Discussion and Conclusions

The objective of this research was to investigate the important improvements

to the spatial performance of the VIIRS instrument. The findings inform users of

VIIRS land products of the level of uncertainty added by the distortion inherent in

VIIRS data due to off-nadir viewing, using albedo as a meaningful physical variable.

This paper is in no way a validation of model accuracy of the VIIRS albedo or any

other standard VIIRS product.

The efficacy of the pixel aggregation scheme was examined as part of this

study. A series of ANOVA tests were conducted to test for significant differences

between albedo measurements in each aggregation zone. No significant difference

was found between aggregation zones for homogeneous land covers (i.e. Harvard

Forest, Konza Prairie, Jornada). However, the results from the spatially hetero-

geneous Bondville site did demonstrate a marginal difference in the mean albedo

between zones for several seasonal periods. The primary difference lies between the

1-pixel (unaggregated) and 3-pixel zones. The difference can be attributed to the

sensitivity of mathematical averages to outlier values, which in this case is the dif-

fering incorporation of land cover for each GSD. Alternatively, averaging can also

introduce a smoothing effect to heterogeneous data that is not present in the 1-pixel

zone.

Like MODIS, many VIIRS science products are generated as discrete temporal

composites, using only the single best quality per-pixel observation (e.g. cloud-free

and/or minimum view zenith angles) for a given composite period. The results
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from discrete 8-groups of data simulating temporal compositing, demonstrate the

influence of geometric artifacts through differing levels of uncertainty between peri-

ods, and suggest gridded data from different GSDs are not necessarily comparable

without accounting for the uncertainty between the GSDs, regardless of the pixel

aggregation scheme. That is, a grid pixel from an observation near-nadir is not

comparable with the same grid pixel (e.g. from a different temporal composite pe-

riod) with an observation from a far off-nadir GSD without first accounting for the

uncertainty from the different observation geometries.

Spatially homogeneous land cover provides a relatively stable, though poten-

tially significant, level of uncertainty for all resolutions (≈ 0.01 albedo), which in

effect presents a ”noise floor” for the degree of accuracy possible. Spatial hetero-

geneous land covers can be smoothed through aggregation of grid pixels to similar

levels of uncertainty to accommodate the spatial variability. However, aggregating

nominal resolutions to increasingly coarse resolutions has limits as was shown in the

Jornada example when a similar level of variability was seen in the nominal 375m

and 2250m results. The results suggest a grid resolution of 1150m (4x nominal)

provides a consistent reduction of uncertainty for both spatially homogeneous and

heterogeneous land covers.

The range of errors presented in these simulations, ≈0.01–0.05, offer a signifi-

cant contribution to error when satisfactory levels of error in various albedo models

and products range from ±0.05 to ±0.02 [Baker, 2014, Liu et al., 2009, Oleson

et al., 2003]; as the entire error can be explained by the geometric variability in-

forming the model. Using the same benchmark climate model sensitivity of +0.01
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albedo corresponding to −0.05Wm−2, and −0.03◦C cooling [Matthews et al., 2003,

Myhre and Myhre, 2003] from [Montaño, 2015], the VIIRS results contribute be-

tween ≈ −0.05Wm−2 and −0.25Wm−2 to radiative forcing estimates, and between

−0.03◦C and −0.15◦C to model uncertainty when using nominal resolution data.

An important consideration in this analysis is the consistency of pixel assign-

ment. Sites like Bondville, with agricultural fields smaller than a given GSD, will

present different portions of those fields with every orbit at finer resolutions. The

pixel assignment, whether using obscov or nearest neighbor like this paper, will vary

based on the location and size of the of the swath pixel relative to the grid from

orbit-to-orbit; pixel assignment is improved by the along-scan aggregation scheme,

with a more consistent GSD. However, off-nadir GSD growth is still a factor, since

Figure 4.1b indicates a pixel growth of up to 2 times nominal pixel size by the end

of scan, including pixel aggregation. Thus these land cover types benefit from a

coarser scale to smooth the signal through aggregation.

Some applications or products might tolerate levels of uncertainty when using

nominal resolution VIIRS data. Specifically, applications that do not require a high

level of precision, binary pixel classification (e.g. crop/non-crop) for example, can

still utilize the finest resolution data without significant reduction of result accuracy.

Products incorporating multiple GSD to estimate a single measurement around the

mean value might also utilize nominal resolution data and achieve desired product

accuracy. Physical variables or analysis assuming a stable spatial signal through

time, per-pixel comparison from two different 8-day composites for example, and

requiring a high level of accuracy or measurement sensitivity can benefit from adding
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a geometric uncertainty factor based on the known variability of the GSD to increase

the precision.

The use of the sinusoidal grid for geolocation is a carry-over from the MODIS

era. Campagnolo and Montaño [2014] report the effective resolution of 250m gridded

MODIS data across a range of VZA actually varies from 344m and 835m, and

behaving in a swath-like relationship to VZA. The authors further conclude the

difference in alignment of the observation space and the sinusoidal grid leads to a

location-dependent spatial resolution in locations farther from the central meridian

of the projection at at increasing latitude. The application of an alternate projection

is recommended for those regions, and can be extended to the application of the

sinusoid grid to VIIRS as well since the orbits and spatial performance are similar.

The need for a consistent global dataset and the level of acceptable uncertainty

should be weighed prior to application of these data using this projection. Future

research of alternate data processing methods should also investigate the efficacy of

other equal area projections that can improve the swath-to-grid alignment over the

sinusoidal projection and investigate a more representative resolution.

The MODIS instrument has proven to be a valuable contribution to the on-

going monitoring and quantification of climate change, and the VIIRS instrument

and follow on missions are expected to continue this tradition. As with MODIS

data, the problem illustrated here is the difference between the sampling of variable

observation space by the imaging system and resampling, or gridding, that image

space to a fixed space with known resolution. While the efforts employed to mit-

igate geometric distortions with VIIRS data, primarily along-scan, on-board pixel
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aggregation, lead to improved published spatial accuracies of the imaging system,

the same improvements do not necessarily translate to improved spatial performance

when the observations are assigned to a fixed grid space. The results presented here

and in conjunction with similar work on data from MODIS provide the framework

to assess the continuity of measurements between the two instruments.
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Chapter 5: Summary and Conclusions

5.1 Synthesis of Research

The role and importance of Earth observations in the form of satellite im-

agery will continue to grow as research seeks to better understand how the Earth

is changing, for example as a result of land use or climate change. Polar-orbiting

satellite instruments have played a role in making Earth observations and providing

critical evidence of how and where change is manifesting. Wide field-of-view instru-

ments like MODIS and VIIRS continue the important legacy in assessing change

by providing global data with high temporal (near daily) frequency. However, in

the satellite system design there is a tradeoff between high temporal frequency and

spatial resolution and accuracy.

The work presented in this dissertation answers the question, ”What is the

actual resolution of MODIS data?” The as-launched MODIS mission configurations

(Aqua and Terra) were the result of a compromise in requirements for the sake of

cost and reduced complexity [Barnes et al., 1998]. In an early concept stage, two

instruments were considered: a tilting scanning mirror for atmospheric and ocean

observations, where the geometric distortions are of limited influence in continuously

variable conditions (MODIS-T), and a nadir push-broom sensor for land observa-
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tions (MODIS-N).

A push-broom sensor relies on the motion of the platform in the track direction

and has no moving scanning mechanism. The primary spatial benefit of a push-

broom sensor is having a fixed pixel size as a result of the optical camera rather

than the pixel size determined by the GSD of the scanning system. However, the

optical system in a push-broom sensor is more complex than those of the scanning

mirror, which partially led to the final decision of merging the MODIS mission

requirements into a single converged instrument.

Final configuration and actual resolution notwithstanding, the MODIS instru-

ments (onboard the Aqua and Terra satellites) have provided invaluable information

for the land sciences community for more than a decade. The VIIRS instrument,

part of the recently launched Suomi NPP mission, will continue this important

legacy into the future [Justice et al., 2011, 2013]. This dissertation addressed three

fundamental aspects of the MODIS/VIIRS continuum with respect to spatial reso-

lution.

An effective resolution of MODIS L2G data was characterized across a variety

of geometries for the full image system, based on the amount of spatial signal con-

tributing to the grid pixel in Chapter 2. An understanding of the effective resolution

of these gridded data is crucial to their informed use in higher-order science prod-

ucts. The results clearly indicate the data from variable GSD assigned to a uniform

grid continue to include the same radiometric impact of pixel growth as swath data,

bringing into question the spatial consistency of the data.

Chapter 3 built on the findings of Chapter 2 by expressly evaluating the spatial
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consistency of simulated measurements through the range of VZA. The findings

of Chapter 3 illustrate a level of variability in the geometric distortion directly

related to the variable view geometry of the MODIS instrument, that is sufficient to

influence the derivation of albedo, an important input to climate models. Reducing

the resolution of the data and aggregating the gridded data can achieve some level

of mitigation of the noise associated with geometric distortions.

Chapter 4 was similar in approach to Chapter 3, but investigated important

improvements to spatial performance of the VIIRS instrument. The results in Chap-

ter 4 suggest there are improvements in the representativeness of the data compared

to the MODIS results presented in Chapter 3. However, there remain problems in

the consistency of measurements despite the improvements, which also require re-

duction of resolution to achieve a stable spatial representation.

5.1.1 Establish an Effective Resolution of MODIS L2G Data

Chapter 2 presented models to estimate the ground space actually contribut-

ing to a given geolocated grid cell in both along-scan and along-track directions,

thus describing the full 2-Dimensional Point-Spread-Function, for the full range of

VZA. The results model the MODIS instrument on the Aqua and Terra satellites

independently, since the sensors have opposite orbits (ascending vs. descending) at

different times of day (AM vs. PM).

The results indicate a much coarser spatial resolution (> 300m along scan)

than those assumed by the 250m-product description. Native swath observations
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demonstrate a geometric growth of pixel size at increasing VZA, resulting in a pixel

4.8 times the nadir size by the end of scan. Level 2 gridded data (L2G) data

continue to present off-nadir observations composed of signal contributions for a

much larger area of ground surface, despite being resampled into a fixed grid pixel

space. The crux of the problem lies in the misleading notion of reporting a nominal

detector size at nadir, which inadequately describes the geographic space observed

with increasingly off-nadir view angles. Simply put, a convenient 250m global grid,

approximating the sensor resolution at nadir, is not representative of an observation

GSD that exceeds 1km off-nadir.

The results further uncovered an artifact in the gridding process causing a

variation in resolution as data progress away from the central meridian of the si-

nusoidal projection. The artifact is the result of inconsistent alignment of swath

observations to grid cells as a function of instrument alignment (azimuth) to the

grid at increasing distance from the central meridian and changes with latitude,

which causes the misrepresentation of the PSF orientation in the grid.

The primary site used for analysis in Chapter 2 is in Holland, near the central

meridian of the projection, which forms an angle with the grid aligned mostly along

scan with the swath. The primary site thus provides a meaningful general estimate

of the resolution for the grid for a range of VZA. Chapter 2 provides two examples,

one for a Barrow, Alaska site and the other a site in Changbaishan, China, showing

the opposite extremes of the problem. The Alaska site demonstrates a near per-

pendicular alignment of the sensor along scan to the grid, leading to an increased

blurring and therefore a decreased resolution. The site in China, however, forms a
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shallow 10.96◦ angle between the scan direction and the grid column, aligning the

grid with the track direction. The effect of the different alignment is an underes-

timation of ground space contribution to the signal as the short side of the ground

space in the track direction is aligned with the along scan grid. Ultimately, effective

pixel resolutions are not consistent globally despite having the same VZA, a fact

that end users of gridded data should be aware of when using L2G MODIS data

that are far from the central meridian of the sinusoidal projection.

Two examples illustrate the outcome for end users. Users of data for Oregon

in North America, a location far off center from the central meridian, can expect

effective along-scan resolutions between 460m-1169m for nadir and 55◦ VZA respec-

tively. Whereas users of data for St. Petersburg in Russia, closer to the center of

the projection, can expect effective resolutions between 317m-690m for the same

VZA range. User applications requiring or assuming consistent spatial accuracy

across a range of VZA for multiple locations will suffer from the effective resolution

misrepresented by a nominal 250m product description.

5.1.2 Estimate the Level of Measurement Variability Associated with

Variable View Geometries

The level of geometric distortion resulting solely from the variable GSD inher-

ent in MODIS data is quantified using multiple land cover types and seasonality.

The results from Chapter 2 introduced an inconsistent, location-dependent effective

GSD that is far different than the nominal grid resolutions suggested by standard
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product descriptions (i.e. 250m, 500m and 1km). Chapter 3 uses this information

to generate a series of gridded broadband albedos for several sites to test the spa-

tial stability of measurements at a given site through changing geometries. Albedo

was selected for this study as it is a physical quantity that can be estimated from

satellite observations. The overall results show a range of albedos between ≈ 0.01

to ≈ 0.045 attributed solely to the variable GSD. Many MODIS standard products

are generated as discrete temporal composites, using only the single best quality

per-pixel observation (e.g. cloud-free and/or minimum view zenith angles) for a

given composite period - usually 8-16 days. Results from discretely grouping sim-

ulated data into 8-day groups to replicate a temporal composite product, indicate

geometric variability persists between groups, particularly at finer resolutions (i.e.

250m and 500m).

Simulated results indicate error from geometric distortion alone that is suffi-

cient to influence radiative forcing in climate models. Specifically, results from sev-

eral studies using simulated land cover class albedos [Matthews et al., 2003, Myhre

and Myhre, 2003] describe the dependency between albedo accuracy and model

uncertainty. Together, the studies describe a general relationship +0.01 albedo cor-

responds to −0.05Wm−2, and −0.03◦C cooling, which would equate to a range of

negative radiative forcing between ≈ −0.05Wm−2 and −0.2Wm−2, and decreased

temperatures between −0.03◦C and −0.12◦C for the MODIS results. The vari-

ability is also significant when compared to the reported ±0.05 accuracy of the

MODIS MCD43 albedo product when validated using ground measurements [Liu

et al., 2009]. The authors attribute a decrease in accuracy to a mismatch in spatial
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scale between ground measurements and MODIS observation footprints and also to

site heterogeneity, supporting the conclusions in Chapter 3. However, the variability

reported in Chapter 3 is independent of error from correlation to ground validation

data and solar zenith effects, indicating the geometric variability a large contributor

to the stated accuracy.

Mitigation of the geometric variability is (partially) achieved through smooth-

ing of data by aggregation of pixels to increasingly coarse resolutions. Pixel resolu-

tions of at least 1000m, 4x the nominal 250m detector size, are required to mitigate

the geometric influence from most land cover types tested. However, complete re-

moval of the noise from variable geometries is not achieved, even at 2000m or 8x

nominal resolution. The need for aggregation to mitigate artifacts resulting from the

gridding process is consistent with previous findings using gridded data [Tan et al.,

2006]. An alternative method of averaging all swath pixels informing a grid space

for any given grid resolution showed a significant reduction in albedo variability at

all resolutions. The average resampling demonstrated a similar minimum variability

at 4x the nominal 250m, but the difference between finer resolutions is smaller than

that of the standard grid aggregation.

The current MCD43 BRDF/Albedo is generated at 500m-grid resolution rather

than the 250m geometries used for the simulation [Schaaf et al., 2014]. The applica-

bility of the Chapter 3 results is significant despite this difference for several reasons.

First, the Red and NIR bands in the MCD43 product are nominal 250m MODIS

bands that are aggregated to 500m. The results for 250m data clearly demonstrate

a resolution at least twice that of the MCD43 product (i.e. 1km) is necessary to
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stabilize the geometric error.

Further, the geometries for all MODIS detector resolutions function the same,

but at different scales. Therefore, even the simple assumption of doubling of the

effective GSD for 250m grid data (e.g. 250m u 340m ∴ 500m u 680m) suggests a

500m-grid product is not representative of the variable space being observed through

geometry. While MODIS products are designed to accurately present the portion

of the space observed in a given grid cell, there is no specific benefit from using

a smaller grid cell size than a cell size more representative of the maximum vari-

able observation footprint for example; a resolution increasing the average obscov

to greater than 30% [Tan et al., 2006] would be beneficial to stabilize the spatial

signal. Users only considering nadir observations might find 250m grid data suf-

ficient to represent the surface being observed. However, users of multi-temporal,

and therefore multi-geometry, data would benefit from the data being generated at

the more representative resolution of a coarser product.

Spatial homogeneity is an important factor when considering observation sta-

bility across the range of GSDs. Relatively homogeneous land cover provides a

stable, though potentially significant, level of uncertainty for all resolutions. In

contrast, spatially heterogeneous land covers can be smoothed through aggregation

to similar levels of uncertainty to accommodate the spatial variability. The spatial

configuration of the surface, influence from field size for example, is also a factor

when considering the most appropriate scale for MODIS data. Sites like Bondville,

with agricultural fields smaller than a given GSD, will present different portions of

those fields with every orbit at finer resolutions. Thus representation of these land
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cover types benefit from a coarser scale to stabilize the signal. Conversely, some

care should be taken not to aggregate the data to an extent that no longer repre-

sents the land cover of interest, as the Lake Tahoe results demonstrated with two

disparate and contrasting adjacent land cover types (forest and water). Ultimately,

all land cover types would benefit from standard products being generated at a 1km

resolution.

5.1.3 Evaluate the Effectiveness of Methods to Improve Spatial Ac-

curacy

The spatial performance of VIIRS data was tested in the same manner as

MODIS data, which showed some improvement for the VIIRS gridded product,

though not as much as expected, given the design adopted to mitigate pixel growth

across the swath. The VIIRS instrument employs two primary mechanisms in an

effort to constrain the known geometric growth of pixels off-nadir, rectangular de-

tectors and onboard along-scan pixel aggregation.

VIIRS uses rectangular detectors in place of the square detectors used for

MODIS, with the smaller dimension aligned in the along-scan direction [Baker,

2014, Wolfe et al., 2013]. Added to the improvement in detector shape is a pixel

aggregation scheme meant to present a similar effective GSD across the range of

VZA. Three pixels are averaged for along-scan regions from nadir to 31.72◦, two

pixels are used between 31.73◦ and 44.86◦, and native observations are used for the

remaining data (44.87◦ to 56.28◦). Each detector is ≈131m in the short dimension to
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accommodate known pixel growth long scan, thus providing a footprint of ≈393m,

617m, and 800m for each of the 3x1, 2x1 and 1x1 aggregation zones respectively.

The result of the pixel aggregation scheme represents a significant improvement

in constraining the spatial footprint along scan as compared to MODIS, but the pixel

size at the edge of scan stills grows to more than twice the nominal detector GSD.

The aggregation is performed onboard the satellite [Wolfe et al., 2013], thus an

understanding of the impact and effect is integral to the use of data from VIIRS.

Visual interpretation of data might not easily uncover any inconsistency between

aggregation zones.

The efficacy of the pixel aggregation scheme was examined as part of this study.

A series of ANOVA tests were conducted to test for significant differences between

albedo measurements in each aggregation zone. No significant difference was found

between aggregation zones for homogeneous land covers (i.e. Harvard Forest, Konza

Prairie, Jornada). However, the results from the spatially heterogeneous Bondville

site did demonstrate a marginal difference in the mean albedo values (< 0.015)

between zones for several seasonal periods. The primary difference lies between

the 1-pixel (unaggregated) and 3-pixel zones. The difference can be attributed to

the sensitivity of mathematical averages to outlier values, which in this case is the

differing incorporation of land cover for each GSD. Alternatively, averaging can also

introduce a smoothing effect to heterogeneous data that is not present in the 1-pixel

zone.

Like MODIS, many VIIRS science products are generated as discrete temporal

composites, using only the single best quality per-pixel observation (e.g. cloud-free
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and/or minimum view zenith angles) for a given composite period. The results from

discrete 8-groups of data, simulating (8 day) temporal composite data, demonstrate

the influence of geometric artifacts through differing levels of uncertainty between

periods. The results suggest gridded data from different GSDs are not necessarily

comparable without accounting for the uncertainty between the GSDs, regardless

of the pixel aggregation scheme. That is, a grid pixel from an observation near-

nadir is not comparable with the same grid pixel (e.g. from a different temporal

composite period) with an observation from a far off-nadir GSD without first fitting

an error term to the measurements accounting for the uncertainty from the different

observation geometries. Alternatively, both observations can be aggregated to a

comparable, coarse grid resolution.

The range of errors presented in these simulations, ≈0.01–0.05, offer a signifi-

cant contribution to error when satisfactory levels of error in various albedo models

and products range from ±0.05 to ±0.02 [Baker, 2014, Liu et al., 2009, Oleson et al.,

2003]; as the entire error can be explained by the geometric variability from the

data informing the model. Using the same benchmark climate model sensitivity of

+0.01 albedo corresponding to −0.05Wm−2, and −0.03◦C cooling [Matthews et al.,

2003, Myhre and Myhre, 2003] from Chapter 3, the VIIRS results contribute be-

tween ≈ −0.05Wm−2 and −0.25Wm−2 to radiative forcing estimates, and between

−0.03◦C and −0.15◦C to model uncertainty when using nominal resolution data.

Further, the VIIRS Albedo EDR is expected to provide a threshold albedo accuracy

of ±0.05, but has a specification of ±0.025 [Baker, 2014] for the 1km product.

Spatially homogeneous land cover provides a relatively stable, though poten-
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tially significant, level of uncertainty for all resolutions (≈ 0.01 albedo), which in

effect presents a ”noise floor” for the degree of accuracy possible. Aggregating data

to coarse resolutions can result in a more consistent uncertainty especially for spatial

heterogeneous land covers. However, limitations to aggregating nominal resolutions

to increasingly coarse resolutions was shown in the Jornada example, when a similar

level of variability was seen in the nominal 375m and 2250m results. The results

suggest a grid resolution of 1150m (4x nominal) provides a consistent reduction of

uncertainty for both spatially homogeneous and heterogeneous land covers.

5.2 Future Research

The findings from the research presented in this thesis would indicate several

avenues for further research. The first is to explore alternatives to the continued use

of the sinusoidal grid for MODIS and VIIRS data. Chapter 2 reports the effective

resolution of 250m gridded MODIS data across a range of VZA actually varies

between 344m and 835m along scan. The chapter further concludes the difference

in alignment of the observation space and the sinusoidal grid leads to a location-

dependent spatial resolution in locations farther from the central meridian of the

projection. The inconsistent alignment of data will carry forward with VIIRS since

the NPP satellite is on the same ascending orbit as the Aqua satellite.

The exploration of an alternate map projection, which would reduce the align-

ment artifacts reported in Chapter 2, is an important first step in future research.

Specifically, equal area projections such as the Lambert Azimuthal or Albers Equal
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Area projections offer possible alternatives for regional projections that define a

local center meridian, and the longitude range can be constrained to maintain an

optimal swath-to-grid alignment angle. For example, the results in Chapter 2 sug-

gest regions can be defined at a continental scale with a central meridian defined for

each, while still retaining a consistent alignment angle. The switch to a regionally

defined projection should be both consistent in projection (e.g. use only Lambert

Azimuthal) and pixel size (e.g. 1km) such that comparisons can be made between

data from different regions, and also allow for systematic processing in a similar

manner to the current MODIS/VIIRS processing stream. The existing sinusoidal

projection should be retired and replaced once a suitable replacement is identified

and improvements measured and demonstrated.

The current L2G product, so-called L2G-lite, no longer contains the data layers

necessary to reverse the sinusoidal projection back to swath [Vermote et al., 2011].

Thus, any alternative projection must occur at the initial swath-to-grid stage, since

simply reprojecting existing sinusoidal grid data will necessarily incorporate the

uncertainty demonstrated throughout this thesis. A tool like the existing LPDAAC

MODIS Reprojection Tool Swath [LPDAAC User Services, 2015] offers alternate

projections and is useful for the investigation of alternate projections or for end

users interested in processing their own data for a specific study area. The MODIS

Science Team recognized the utility of global datasets for the modeling community

by generating products using the Climate Model Grid (CMG) at 0.05 degree (5600-

meter) spatial resolution [Justice et al., 1998]. The coarser spatial resolution of the

CMG reflects limitations to data complexity climate model applications are capable
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of handling, and is also an indication of the need to spatially degrade the data for

interoperability between instruments like AVHRR [Pedelty et al., 2007].

Coincident with the exploration of alternative projections is the application of

a representative grid size for these data. Results from all chapters of this dissertation

demonstrate disconnect between the sinusoidal grid resolutions and the physical

space described by the variable GSD of the instrument. The number 4x the nominal

detector size has been demonstrated as an effective scale factor for both MODIS and

VIIRS data. Therefore, local projections combined with a representative grid cell 4x

the nominal detector size (i.e. 1000m and 1500m for MODIS and VIIRS respectively)

are potentially useful for products using off-nadir views, such as albedo.

A consistent method of mitigation through aggregation is particularly impor-

tant when considering data continuity between sensors. Continuity of measure-

ments requires integration of multiple characteristics including viewing geometries

and spatial resolutions, which require a common factor such as aggregated pixel size

to achieve a common representative spatial footprint between sensor data. NASA’s

Land Long Term Data Record (LTDR) is a multi-sensor data continuity product

that already integrates data from the AVHRR sensor with MODIS to produce a

long term data set at 0.05◦ spatial resolution, illustrating the need to coarsen data

to accommodate differences in spatial resolutions [Pedelty et al., 2007].

The results from Chapter 3 also suggest an alternative average resampling

technique is more effective than the maximum obscov for at least MODIS data. The

approach was attempted for VIIRS data in Chapter 4, but presented poor results

and was omitted. One possible explanation is the pixel aggregation scheme is already
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averaging the data with only a marginal new contribution to the final LSF, thus the

average resampling is simply averaging the average.

Further, the need to provide a 1:1 swath observation to geolocation grid pixel

assignment (e.g. nearest neighbor or maximum obscov resampling) is not necessary

when one considers that both the MODIS and VIIRS instruments already present

a variable GSD as part of the imaging system. That is, no one ”nadir” pixel is

comprised exclusively of nadir view signal and necessarily integrates signal from

neighboring space (i.e. 12.5% / 75% / 12.5%) and the GSD grows along scan.

Averaging all the observations informing a projected grid space (possibly weighted

using obscov or other relative contribution weight) would be more informative than

attempting to achieve a 1:1 swath-to-grid assignment and should be further explored.

Many MODIS and VIIRS products are generated as discrete temporal compos-

ites, using only the single best quality per-pixel observation (e.g. cloud-free and/or

minimum view zenith angles) for a given composite period - usually 8-16 days. Data

in these composites ultimately suffer from the same geometric distortion problem,

as daily data in that a seemingly spatially continuous scene nonetheless represents

a spatially discontinuous surface comprised of observations from any number of dis-

parate GSD.

Figure 5.1 illustrates the disparate days of data and VZA used in a typical

discrete composite MOD13 NDVI product. The composite day of year seen in the

figure is an illustration of the false assumption of spatial continuity of data within a

composite scene. There are 8 days worth of data in the scene that are not necessarily

spatially contiguous. Further, and of particular import to this study, the range of
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VZA in the composite is far larger than one might expect. Specifically, the MOD13

product series applies a minimum VZA criterion in the selection of best quality

pixels [Solano et al., 2010]. However, there are clearly circumstances overriding this

criteria (e.g. a limited number of cloud-free days) making the use of less desirable

observation days (e.g. those with large VZA) a necessity. Stabilization of geometric

influence for the range of GSD present in temporal composite scenes is important to

improve accuracy of analyses such as per-pixel classification or per-pixel comparison

between periods, and should be the focus of future work.

5.3 Conclusion

The research presented in this dissertation illustrates the false assumption that

gridded data from wide field-of-view instruments offer a consistent spatial represen-

tation of land features. Many tradeoffs are required in using remotely sensed data

to understand an environmental system. In the case of MODIS and VIIRS, the

value of high temporal frequency observations and the wealth of temporal detail

they provide come at the cost of spatial accuracy and precision. The significance

of this tradeoff for MODIS and VIIRS is understanding the space being observed,

or more specifically, the contribution of signal to a given space, is unstable through

changing geometry, thus negating an assumption of a consistent target in any spa-

tial sense. The recent trend to develop finer spatial resolution gridded products

from MODIS/VIIRS (e.g. the MCD43 originally produced at 1km resolution is now

produced at 500m) misrepresents the data by attempting to achieve finer scale mea-
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Figure 5.1: Illustration of days used in compositing a MODIS MYD13Q1 NDVI
product from the April 27, 2008 (day 116) time period. The top right figure shows
the view zenith angles from the day used. The lower left figure shows the day within
the period that was used in the composite. The MOD13 product uses a minimum
VZA as part of the quality selection, but some large angles are used despite this as
a result of coincident factors such as persistent cloud contamination.
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surements than the observations warrant. The results presented in this dissertation

demonstrate that data from a nominal 250m detector do not produce a consistent

250m GSD, and the variable GSD is not represented by a 250m grid pixel.

While the wealth of published results in the literature remain valid despite

these results, care should be taken in interpreting and extending their utility. The

literature largely ignores the impact of artifacts arising from geometric distortion, or

fails to breakout the uncertainty explicitly related to these artifacts when describing

results. Research using data or models derived from MODIS L2G of any scale is

subject to the errors reported in this dissertation.

The fact some applications or products might tolerate levels of uncertainty

when using nominal resolution MODIS or VIIRS data should be noted. Specifically,

applications that do not require a high level of precision, binary pixel classifica-

tion (e.g. snow/non-snow) for example, can still utilize the finest resolution data

without significant reduction of result accuracy. Products incorporating multiple

GSD to estimate a single measurement around the mean value might also utilize

nominal resolution data and achieve desired product accuracy. Physical variables or

analysis assuming a stable spatial signal through time, per-pixel comparison from

two different 8-day composites for example, and requiring a high level of accuracy

or measurement sensitivity, can benefit from adding a geometric uncertainty factor

based on the known variability of the GSD to increase the precision.

The ultimate outcome of this work is attaining an understanding of what sur-

face features are being resolved in a given space and time by wide field-of-view

instruments, and quantifying the impact of placing an inherently variable observa-
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tion into a fixed space. The importance of achieving this fundamental understanding

is bridging the span between actual observation and convenient, consistent packag-

ing. The highest level of utility for data from MODIS and VIIRS can be achieved

through a new projection with a representative pixel size using a resampling method

that better describes the continuous overlapping observations.
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