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Projects are considered interrelated when their benefits or costs depend on which other 

projects are implemented. Selection and scheduling of interrelated projects is a 

challenging optimization problem which has applications in various fields including 

economics, operations research, business, management and transportation. The goal is 

to determine which projects should be selected and when they should be funded in order 

to minimize the total system cost over a planning horizon subject to a budget constraint. 

The budget is supplied by both external and internal sources from fuel tax revenues. 

This study then applies three meta-heuristic algorithms including a Genetic Algorithm 

(GA), Simulated Annealing (SA) and, Tabu Search (TS) in seeking efficient and 

consistent solutions to the selection and scheduling problem. These approaches are 

applied to a special case of link capacity expansion projects to showcase their 

functionality and compare their performance in terms of solution quality, computation 

time and consistency. 
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Chapter 1: Introduction 
 

1.1 Problem Statement 

 

Evaluating transportation infrastructure projects and determining which of them at 

what time should be implemented requires several criteria. Common evaluation 

practices imply the linear aggregation of project impacts in the objective function 

which is later optimized. Nevertheless, these assumptions are inadequate since they 

disregard the interdependence due to non-linearly additive benefits, costs, budget 

constraints, constructability or operability requirements, and other possible factors. The 

selection and scheduling of projects with consideration of their interrelations is a 

challenging optimization problem, but its solution is very valuable as it has applications 

in various fields, including economics, finance, operations research, development, 

industrial engineering, and business administration. This research deals with road 

expansion projects as an example of interrelated projects, however, the introduced 

methods may be used generally to analyze interrelated alternatives. 

As traffic increases and links become congested, passenger and freight 

movements experience increasing travel times and delays. One obvious solution to this 

problem is constructing new lanes and creating additional capacity on the highly 

congested links. Then we must determine which links should be selected, in what order 

they should be implemented and when they should be funded in order to minimize the 

present worth of cost. One simple idea is to identify congested links and prioritize them 

according to their congestion level, i.e., volume/capacity ratio. However, even after 

adjusting for the relative costs of links, this approach does not yield the best solution 
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as it disregards the interrelations among network links. In fact, changes in one link 

affect the flows on others and removing bottlenecks from some links may shift them 

elsewhere in the network. Thus, in sequencing a set of improvement projects we should 

consider their interrelations.  

Conceptually, the first step of a project planning problem is the project 

evaluation which identifies candidate projects and evaluates their merits, often in terms 

of their benefits and costs. A second step selects which projects from among the 

considered set should be chosen for implementation. After evaluating and selecting a 

set of projects for improvement, a third step determines the order of projects and, 

finally, a fourth step determines the scheduled time for completion under budget 

limitations (Wang and Schonfeld 2005). Project selection and scheduling easily 

becomes a large optimization problem whose feasible region increases rapidly as the 

number of considered projects in the system grows. Considering a set of improvement 

projects for a given network, the objective is to find a project implementation sequence 

that minimizes the total system cost or maximizes the net benefits over the analyzed 

period. To date, several methods have been developed for scheduling interrelated 

projects. However, the number of studies on this topic is relatively low. 

 

1.2 Sioux Falls Network 

 

The Sioux Falls network is considered as a case study for this problem. Sioux Falls is 

the largest city in the U.S. state of South Dakota. It is the county seat of Minnehaha 

County, and also extends into Lincoln County to the south. Figure 0-1 shows the real 

map to the city. However, the network used in this research is partially different from 
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the real network which has been used in many publications. This network is good for 

code debugging and also provides an opportunity to examine the data format. More 

detail about this network is presented in section 3.1. 

 

Figure 0-1 Sioux Falls Network Map 

 

1.3 Research Objective and Contribution 

 

One of the objectives of this research is to compare three alternative meta-heuristic 

algorithms for solving the problem of selecting and scheduling interrelated projects. 

These three algorithms are a Genetic Algorithm (GA), Simulated Annealing (SA) and 

Tabu Search (TS). The GA results are furthermore investigated by sensitivity analysis 

and a statistical approach for optimality check. This study also demonstrates how a 

relatively simple method, namely a traffic assignment model can be efficiently used as 
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the objective function for such an optimization problem and thereby compute the 

relevant interrelations among many projects that are implemented at various times. 

However, more complex methods for evaluating the objective functions, such as 

microscopic simulations, can also be combined with the same metaheuristic algorithms 

for optimizing the project selection and schedule. In recent years, the meta-heuristics 

compared here have been widely used for finding optimal or near-optimal solutions. 

The work presented in this thesis contributes to the current research in several ways. 

First, we apply three meta-heuristics to explore and compare different approaches for 

solving the selection and scheduling problem. Second, we further modify algorithms’ 

assumptions to account for the possibility that candidate projects may become 

economically unjustified after the implementation of previous projects, This may occur 

due to project interrelations and the possibility that the cost savings from completing a 

project are affected by earlier project implementations. Moreover, a multi-period 

analysis is incorporated in this study to distinguish between peak and off peak hour 

demands.     Finally, we demonstrate these algorithms by conducting a case study and 

compare their performances in terms of solution quality, computation time and 

consistency. The comparative analysis is useful in deciding which algorithm to use in 

different circumstances. Generally, the methodology presented in this work should also 

be applicable to other prioritization problems with interrelated alternatives. 

 

1.4 Thesis Organization 

 

Chapter 2 of the thesis overviews the existing literature on evaluating and prioritizing 

interrelated projects mostly focusing on recent works. Chapter 3 explains the 
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methodology used for both evaluation and optimization process as well as the important 

assumptions made in this research. Chapter 4 provides the detailed algorithms for the 

three metaheuristic models (Simulated Annealing, Tabu Search and Genetic 

Algorithm) is provided. Chapter 5 describes the case study characteristics and network 

configuration. Chapter 6 presents the outcomes from the metaheuristic algorithms and 

compares their functionality from different aspects. Chapter 7 includes further analysis 

including sensitivity analysis and a statistical approach to check the goodness of the 

optimal solution exclusively for the GA results. Finally chapter 8 summarizes the 

methodology and results of the selecting and scheduling problem and provides future 

steps and recommendations. 
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Chapter 2: Literature Review 
 

Studies in the existing literature mainly deal with the selection and scheduling of 

projects by assuming independence among them. Two approaches are commonly used 

for selecting and sequencing of independent projects. These are integer programming 

(Weingartner 1966; Cochran et al. 1971; Clark et al. 1984; Johnson et al. 1985) and 

dynamic programming (Weingartner 1966; Nemhauser and Ullman 1969; Morin and 

Esogbue 1971; Erlenkotter 1973; Morin 1974). The drawbacks of these approaches 

include the difficulty of capturing the interrelations among projects and their 

inefficiency or even the infeasibility for large problems (Jong and Schonfeld 2001).  

In portfolio management, interrelations between choices (stocks) were identified and 

modelled as early as the 1950s in pioneering work by Markowitz (1952).  The linear 

program is extended into a quadratic program with the inclusion of variances of returns 

for different stocks. The objective is to minimize the sum of purchase cost and 

interrelated risks. The consideration of project interdependence significantly 

complicates the model’s structure because the combined costs and benefits for a set of 

projects are no longer equal to the sum of the costs and benefits, respectively, of 

individual projects. The dependence matrix, in the portfolio optimization, is convenient 

in modeling interdependence between choices. Its variants are still used in recent 

works, e.g., Durango-Cohen and Sarutipand (2007) and Bhattacharyya et al. (2011). 

However, the estimation of dependence matrix is difficult and its manipulation is 

computationally burdensome when the project space grows (Disatnik and Benninga 

2007). Moreover, the pairwise dependency between the projects as well as three-way 

and higher order dependencies, are insufficient to model the complex relations among 
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infrastructure development projects, as well as cumbersome to estimate. For example, 

roadway improvement projects are usually interrelated since delays at one link are 

affected by operations at other links, both upstream and downstream. Expansion at one 

location may shift delays and capacity bottlenecks elsewhere. Some complete system 

models, such as queueing approximations (Jong and Schonfeld 2001), equilibrium 

assignment (Tao and Schonfeld 2005), microsimulation (Wang et al. 2009) and neural 

networks (Bagloee and Tavana 2012), have been adopted to model the interrelations. 

The following section reviews some relevant literature on evaluating and prioritizing 

interdependent projects. 

Solving the interrelation problem is first attempted by Weingartner (1966) with 

an integer programming approach. Nemhauser and Ulmann (1969) tried to re-solve 

Weingartner’s objective function by incorporating pairwise interactions. Afterwards, 

several studies, namely Gear (1980), Fox (1984), and Janson (1988) aimed to broaden 

the second-order interaction to third-order and fourth-order but failed to reflect all 

possible interactions. Martinelli (1993) proposed a heuristic method for selecting and 

scheduling interdependent waterway investment projects by comparing various 

combinations of projects over an analysis period. This method began by establishing 

an initial sequence based on an independent evaluation. Then the initial solution is 

adjusted with a heuristic performing pairwise swaps as long as system costs were 

improved, according to evaluation functions estimated from simulation results. Wei 

and Schonfeld (1993) developed an algorithm which combined an artificial neural 

network and a branch and bound algorithm to find a a near-optimal solution for 

scheduling interdependent projects. They proposed a multi-period network design 
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model for selecting the best combination of improvement projects and schedules. Then 

they utilized the neural network approach to estimate total travel times corresponding 

to different project selection and scheduling. They applied their model to the Calvert 

County highway system in southern Maryland to check its performance. Martinelli and 

Schonfeld (1995) developed an approximation to microsimulation model to evaluate 

lock improvements with consideration of their interrelation. Jong and Schonfeld (2001) 

developed a genetic algorithm and a simple approximation to solve project investment 

planning problem. They showed that GAs are very effective at searching for minimum 

cost highway alignments. 

Bouleiman and Lecocq (2002) developed a simulated annealing algorithm for 

the resource constrained project scheduling problem. The objective of this model is to 

minimize total project duration. A new design is substituted the conventional SA search 

scheme which considered the specificity of the solution space of project scheduling 

problems. Tao and Schonfeld (2005) developed a Lagrangian heuristic to solve the 

selection of interdependent projects under cost uncertainty. In this paper a genetic 

algorithm is developed to solve the Lagrangian problem, and an equilibrium 

assignment is applied to evaluate the objective function. Mika et.al (2005) proposed 

two local search meta-heuristics, simulated annealing and tabu search to solve the 

multi-mode resource constrained project scheduling problem with discounted cash 

flows. The objective is set to maximize the net present value of all cash flows. Four 

payment models were considered in this study: lump-sum payment at the completion 

of the project, payments at activity completion times, payments at equal time intervals, 

and progress payments. They evaluated their model on a set of instance switches that 



 

 

9 

 

were based on some standard test problems constructed by the ProGen project 

generator.  Wang and Schonfeld (2005) developed a waterway simulation model for 

evaluating lock operations over long analysis periods and then solved the problem of 

selecting, sequencing and scheduling interdependent projects with a genetic algorithm. 

Milatovic and Badiru (2004) proposed a methodology for mapping and scheduling of 

interdependent and multifunctional project resources. Their methodology performed 

two alternative procedures, namely activity scheduler and resource mapper. The first 

procedure prioritized and scheduled activities based on their attributes and the latter 

considered resource characteristics and mapped the available resource units to the 

scheduled activities. 

Durango-Cohen and Sarutipand (2007) developed a quadratic programming 

formulation for optimizing maintenance and repair (M&R) policies with consideration 

of link interdependencies in a network. The quadratic objective of their work captures 

the pairwise economic dependencies which reflect both the costs and benefits of 

improving adjacent facilities. Tao and Schonfeld (2007) developed variation of 

traditional genetic algorithms called island models to optimize the selection and 

scheduling of interrelated projects under resource constraints. Dueñas-Osorio et.al 

(2007) studied the interdependence response of network systems to internal or external 

disruptions. They established interdependencies among network elements based on 

geographical proximity. Their work indicated that responses that are detrimental to 

networks are larger when interdependencies are considered after disturbances. Zhang 

et.al (2008) proposed an agent-based approach to evaluate price completion, capacity 

choice, and product differentiation on congested networks. This approach is 
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specifically designed to analyze the distributional effects of network management and 

financing policies, and evaluate policy scenarios with consideration of the spatial and 

temporal effects of these policies. Zhang and Levinson (2008) study the effect of 

investment rules on hierarchical structure of roads, and their vulnerability to natural 

disasters, congestion and accidents. In this research a set of Monte Carlo simulation 

runs are used to evaluate the equilibrium road network under two policy scenarios: 1. 

Investment based on benefit-cost ratio; 2.investments based on bottle-neck removal. 

Zhang and Levinson (2009) explore the economic impact of alternative ownership 

structures on transportation system performance, social welfare, and regulatory needs. 

An agent-based evolutionary model is used to capture Road pricing, investment, and 

ownership decisions in a large network. Results suggest that a completely privatized 

transportation network could achieve net social benefits close to the theoretical 

optimum. 

Szimba and Rothengatter (2012) extended the classical benefit-cost analysis by 

integrating the occurrence of interdependence among the projects within an 

investment package. They addressed the interdependence problem by introducing a 

heuristic method to solve the large-scale problem with numerous projects. In this 

approach, the number of projects and their interrelations are reduced step by step in 

order to reduce the number of interdependence cases. Bagloee and Tavana (2012) 

formulated the prioritization problem as a Traveling Salesman Problem, and 

incorporated a Neural Network to deal with project interdependence. A heuristic 

algorithm with hybrid components is then used to search for the longest path (most 

benefit) in the NN as a solution to the TSP. Zhang and Yusufzyanova (2012) evaluate 



 

 

11 

 

the pricing and capacity decisions for private toll roads against existing public roads 

using an agent-based model. The purpose of this study is to evaluate regulation policy 

packages and illustrate the effect of public and private network hierarchy on network 

growth patterns.  Li et.al (2013) proposed a hypergraph knapsack model to maximize 

the overall benefits for a sub collection of interdependent projects. For this purpose, a 

multi-commodity minimum cost network (MMCN) was developed to obtain traffic 

volume and speed to estimate benefits using a life cycle cost analysis method. 

Mollanejad et.al (2014) proposed a model to prioritize transportation investments for 

a megaregion. They maximized the total production of the megaregion subject to a 

budget and environmental constraints. In this study a simple all-or-nothing traffic 

assignment model used to evaluate transportation investments. Another study by 

Mollanejad and Zhang (2014) attempts to prioritize road improvements by accounting 

for equity issues into the interurban road network design problem. This is done by 

minimizing the total inaccessibility in the region by solving a mixed integer program. 

Chen et.al (2015) reformulates the mixed network design problem (MNDP) to 

simultaneously find both optimal capacity expansions of existing links and new link 

additions. The upper level aims to minimize the network cost in terms of the average 

travel time via the expansion of existing links and the addition of new candidate links. 

The lower level is a dynamic user-optimal condition that can be formulated as a 

variational inequality problem. A surrogate based optimization framework is 

proposed to solve the MNDP. 

 
The literature review indicates that most application methods for selection and 

prioritization of projects as part of investment packages are based on classical BCA 
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(Benefit-Cost Analysis) in which projects are regarded as mutually exclusive 

components. On the other hand, the state-of-the art shows both insufficient studies on 

the matter and lack of comprehensive applicable methods for real world problems. The 

literature also indicates that earlier studies addressed the problem by customizing it to 

specific cases, without generalizing it to real world problems. Many studies address the 

problem of interrelation by estimating and using the marginal pairwise or n-way 

interrelations which are rarely adequate. More complete system models, for example 

simulation models, are desirable for evaluating systems with project interrelations. 

Furthermore, existing methods are computationally expensive and may be 

overwhelmed when the numbers of scenarios are increased. 

This study solves the project selection and scheduling problem where the 

objective function is not implicit but can be evaluated with a user equilibrium model. 

The study also takes into account several uncertainties by conducting a sensitivity 

analysis of important parameters. The most important components of the proposed 

methodology that extend the current methodologies offered in the literature include the 

following: First, the budget constraint is reformulated to accommodate internal budget 

supply by assessing fuel tax revenues before each project implementation. Second, 

three meta-heuristic algorithms are used to solve the optimization problem whose 

objective function is evaluated with user equilibrium model that accounts for all 

possible interactions beyond the conventional pairwise interaction. Third, these 

algorithms are modified to account for the possibility that candidate projects may 

become economically unjustified after the implementation of previous projects. This 

task is fulfilled by calculating the marginal benefits and costs of candidate projects 
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before including them in the project sequence. Finally, a roadway network example is 

designed to test the performance of the proposed methodology. 
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3 Chapter 3: Research Methodology 
 

 

3.1 Development of Evaluation Model 

 

This research incorporates the convex combination algorithm (Frank and Wolfe 1956) 

to evaluate link expansion projects upon their implementation in the network. This 

method is an iterative algorithm applicable for nonlinear programming problems with 

convex objective functions and linear constraints. Starting with an initial flow x, the 

search direction at each iteration is determined by solving a linear approximation of the 

objective function, determining the step size and moving in that direction. The 

algorithm eventually stops when the convergence criterion, which is based on the 

similarity of two successive solutions, is satisfied. 

Given a current travel time for link a, 𝑡𝑎
𝑛−1 the nth iteration of the convex combination 

algorithm is summarized as follows: 

1. Initialization: all or nothing assignment assuming 𝑡𝑎
𝑛−1 which yields 𝑥𝑎

𝑛. 

2. Updating travel time: using a BPR function 𝑡𝑎
𝑛 = 𝑡𝑎(𝑥𝑎

𝑛) = 𝑡0(1 + 0.15 (
𝑣

𝑐
)4). 

3. Direction finding: all or nothing assignment considering 𝑡𝑎
𝑛 which yields auxiliary 

flow 𝑦𝑎
𝑛. 

4. Line search: find 𝛼 that solves  𝑚𝑖𝑛 ∑ ∫ 𝑡𝑎(𝜔)𝑑𝜔
𝑥𝑎

𝑛+𝛼(𝑦𝑎
𝑛−𝑥𝑎

𝑛)

0𝑎 . 

5. Move: set 𝑥𝑎
𝑛+1 = 𝑥𝑎

𝑛 + 𝛼𝑛(𝑦𝑎
𝑛- 𝑥𝑎

𝑛),  ∀𝛼. 

6. Convergence test: If a convergence criterion met, stop. Otherwise set n=n+1 and 

go to step 1. 
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3.2 Problem Formulation 

 

The objective function for prioritizing transportation investments has a non-convex 

surface. Moreover, the scope of the problem may be beyond the capability of typical 

mathematical optimization methods since the problem size grows very fast with the 

number of candidate projects 𝑛𝑝. The solution space for all possible sequences of 

projects is: 

 

 ∑
𝑛𝑝!

(𝑛𝑝 − 𝑖)! 𝑖!

𝑛𝑝

𝑖=0

= ∑
𝑛𝑝!

(𝑛𝑝 − 𝑖)!

𝑛𝑝

𝑖=0

 (1) 

 

As a result, heuristic methods have gained popularity among researchers for solving 

such complex problems. This research explores three meta-heuristic methods, 

including Genetic Algorithm, Simulated Annealing and Tabu Search, which have often 

been found effective in finding near-optimal solutions. The planning problem is to 

determine which links should be expanded in what order, and when each project should 

be completed over the planning horizon T. The objective is to minimize the total cost 

which consists of (i) total road user cost and (ii) total supplier cost, subject to a budget 

constraint. In this problem, an internal source of budget is considered for funding the 

future projects. More specifically, the collected fuel taxes from users is added to an 

external budget, constituting the overall budget for future projects. This assumption 

concurs with the reality as fuel taxes and toll collections contribute substantially to the 

highway improvement budget.  The following equation is used to estimate the internal 

budget: 
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 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐵𝑢𝑑𝑔𝑒𝑡 =  𝑉𝑀𝑇 ∗ 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗ 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 ∗ 𝑡𝑎𝑥 𝑟𝑎𝑡𝑒 (2) 

 

Jong and Schonfeld (2001) formulated this problem by defining the decision variables 

as the completion time of projects. In this formulation the budget constraint is defined 

as follows: 

 

 

∑ 𝑐𝑖𝑥𝑖(𝑡) ≤ ∫ 𝑏(𝑡)𝑑𝑡,    0 ≤ 𝑡 ≤ 𝑇
𝑡

0

𝑛𝑝

𝑖=1

 (3) 

{
𝑥𝑖(𝑡) = 0   𝑖𝑓 𝑡 < 𝑡𝑖 

𝑥𝑖(𝑡) = 1   𝑖𝑓  𝑡 > 𝑡𝑖
 

 

where 𝑡𝑖 is the time when project i is finished and 𝑥𝑖(𝑡) is a binary variable specifying 

whether project i is finished by time t. It should be noted that the set of all 𝑡𝑖s eventually 

determines the schedule of projects. This occurs because under the limited budget, 

which is continuously distributed over time, it is reasonable to fund and finish each 

project one at a time knowing that there are always some justifiable projects awaiting 

funding, and the system gains immediate benefit as soon as a project is completed. In 

other words, funding multiple projects simultaneously increases the completion time 

meaning that the cost savings of capacity improvements are delayed. Thus, under 

limited budget flow it is desirable to fund and complete one project at a time and avoid 

funding overlaps (although not necessarily construction time overlaps). As a result, the 

schedule of each project is easily determined by considering the budget flow. The idea 

is that each project is funded immediately after the predecessor one is finished and is 
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completed as soon as the available cumulative budget reaches the project cost. To date, 

other studies assumed that all candidate projects remain justified until the end of the 

studied period. However, due to project interdependence the cost savings of completing 

a project may change over time. In order to tackle this problem, we developed 

algorithms that account for the possibility that projects may become economically 

unjustified after some other projects are implemented.  

As stated earlier, the objective function minimizes the total supplier cost and 

user cost over the planning horizon subject to a budget constraint. The user cost is 

defined as the system delay multiplied by value of time, and the supplier cost is 

describes as the present value of all project costs. Unlike in some previous studies, the 

cost of projects has to be included in the objective function since not all the selected 

projects are guaranteed to be implemented during the analyzed period. In fact, some 

projects may be discarded from the sequence as they may not be financially justified at 

some point during the analysis. The present worth of total cost Z to be minimized is: 

  

 

𝑚𝑖𝑛 𝑍 =  ∑
𝑣

(1 + 𝑟)𝑗
∑ 𝑤𝑖𝑗

𝑛𝑙

𝑖=1

𝑇

𝑗=1

+ ∑
1

(1 + 𝑟)𝑗

𝑇

𝑗=1

∑ 𝑐𝑖𝑥𝑖(𝑡)

𝑛𝑝

𝑖=1

 (4) 

 

where 𝑤𝑖𝑗 denotes the waiting time over link i in year j, and 𝑐𝑖 is the present worth of 

the cost of project i. 𝑛𝑝, 𝑛𝑙 , 𝑣 describe the number of projects implemented, total 

number of links and value of time, respectively, while r is the interest rate.  
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3.3 Development of Optimization Models 

 

One of the goals of this research is to compare the performance of three meta-heuristic 

methods (GA, SA, TS) in solving the selection, sequencing and scheduling of 

interrelated projects. The common elements of the four approaches are as follows.  

3.3.1 Solution representation 

 

The solutions are represented by the sequence of projects in which projects are 

implemented. In this setting, each project has to occur after all its predecessors and 

after all its successors. Figure 3-1 represents an example of a feasible solution. 

 

Figure 3-1 Example of a Feasible Solution 

 

3.3.2 Objective function 

 

The objective function with all three approaches minimizes the present worth of the 

total user and system cost subject to a budget constraint which was defined in the 

previous section.  

 

3.3.3 Solution feasibility 

 

All three algorithms incorporate a solution feasibility test to check the justification of 

adding a new project to the project list. This is done by estimating the marginal benefit 

and the marginal cost of adding a new project to the sequence and calculating the 



 

 

19 

 

resulting benefit cost ratio.  Any unjustified project is discarded before the next project 

in the list is similarly considered, in order to maintain the feasibility of solutions. 

Furthermore the implementation time is checked not to exceed the planning horizon 

and the projects scheduled beyond the horizon are deleted from the accepted sequence. 

This makes intuitive sense as in real world application there are usually more desirable 

projects than the budget available during a planning time and one must choose a subset 

of candidate projects and discard the rest. If justified projects are always available then 

the budget constraints are binding and optimal sequencing decisions also determine 

optimal timing of projects: Spending on the next project starts immediately after 

spending on the preceding project is completed. 

 

3.3.4 Stopping criterion 

 

Two stopping criteria, including number of iterations and running time, are tested for 

all the algorithms. In the first case, the search stops after a specific number of iterations 

is completed, and the second criterion terminates the search after a specified amount of 

computation time.  

3.3.5 Project Selection, Sequencing and Scheduling   

 

The framework of the general proposed method for selecting, sequencing and 

scheduling interdependent road projects is presented in Figure 3-2. The proposed 

combination of traffic assignment and metaheuristic algorithms may be used to 

evaluate any sequence of projects and discover the near optimal solution. Assuming 

that each project is funded immediately after the predecessor one is finished and is 
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completed as soon as the available cumulative budget reaches the project cost, the 

schedule of projects is automatically derived from the sequence of projects. It should 

be noted that an internal source of budget is considered for funding the future projects. 

More specifically, the fuel tax revenues from users is added to an external budget, 

constituting the overall budget for future projects. 

As a result, the schedule of each project is easily determined by considering the budget 

flow.  
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Figure 3-2 Overall Framework of Optimization Process 
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Chapter 4: Meta-Heuristic Algorithms 

3.4 Genetic Algorithm 

 

A Genetic Algorithm (GA) is a metaheuristic method that mimics the process of natural 

selection and is a successful optimization method in a wide range of fields. GAs get a 

set of possible solutions called the population. Each individual in the population is 

specified by a string of encoded genes which is called a chromosome. In this process 

some individuals are selected to reproduce off springs and since each individual has a 

probability of selection according to its fitness value, better (“fitter”) solutions have a 

higher opportunity of being selected. Then the selected solutions are processed through 

a series of crossover and mutation operators which create offspring and change their 

attributes while maintaining the diversity of the population. Designing an appropriate 

GA can lead to an optimal or near optimal solution.  

3.4.1 Initial population 

 

In general, solutions of GAs are mostly represented by binary digits and the initial 

population is generated randomly. In this research, each individual in a population is 

defined by a string including a sequence of numbers each corresponding to a specific 

project. In addition to random order solutions, two other methods comprising greedy-

order solutions and bottleneck-order solutions are used to create the initial population 

(Jong 2001). In greedy-Order solutions, projects are selected based on their benefit-

cost ratio, regardless of their interrelations. In bottleneck-order solutions, projects are 

ranked based on the link volume-capacity ratio which describes the congestion severity 
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over that link. This assumes that more congested links should have higher priority for 

being implemented. 

3.4.2 Fitness function and parent selection 

 

The fitness function is considered equivalent to the value of the objective function 

(NPV of total cost) and it is computed through the traffic assignment model. The 

selection probability is generally based on the value of the objective function in 

maximization problems. Therefore, in minimization problems the selection probability 

varies inversely with the objective function value. However, for preventing some 

undesirable properties of prematurity, a ranking method is applied instead (Wang 

2001). In this method, the population is sorted with nonlinear ranking from the best to 

the worst. Then the selection probability of each chromosome is assigned according to 

its exponential ranking value considering the lowest fitness value equal to one 

(Michalewicz 1995). Let q be the selective pressure∈ [0,1], the selection probability is 

defined as follows: 

 

 𝑃𝑖 = 𝑐 ∗ 𝑞(1 − 𝑞)𝑖−1,       𝑐 = 1/[1 − (1 − 𝑞)𝑃𝑜𝑝𝑆𝑖𝑧𝑒] (5) 

 

Next, a roulette wheel approach is incorporated to select appropriate parents based on 

their selection probabilities (Michalewicz 1995). This process is conducted by spinning 

the roulette wheel pop_size times. Each time a random number r [0,1] is generated, 

then the 𝑖𝑡ℎ chromosome is selected such that 𝑤𝑖−1 < 𝑟 ≤  𝑤𝑖 , where 𝑤𝑖 is the 

cumulative probability for each chromosome.  
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3.4.3  Crossover and mutation 

 

Then a crossover and a mutation operator are applied to reproduce offspring and create 

the new population. Common methods of mutation and crossover are not very efficient 

for sequencing problems since they construct many infeasible solutions with repetitive 

project numbers in one sequence. To avoid producing such solutions, some other 

genetic operators are employed to solve the project sequencing problem. These 

crossover and mutation operators are described below adapted from Wang (2001): 

Crossover operators: 

1. Partial Mapped Crossover (PMX)  

Proposed by Goldberg and Lingle (1985), this two-point crossover exchanges the 

sequence of projects between two random positions in the selected parents. Then a 

mapping mechanism is established to correct for the possible duplication of projects 

by replacing the repeated projects by their corresponding projects. Figure 0-1 

illustrates this process.  
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Figure 0-1 Example of Partial Mapped Crossover (PMX) 

 

2. Position Based Crossover (PBX) 

The PBX operator was proposed by Syswerda (1991). In this multi-point crossover, 

a set of random positions are selected from the first parent and copied to the same 

positions in the offspring. Then the projects that already exist in the offspring are 

deleted from the second parent and the rest are copied to the offspring with their 

original order. (Figure 0-2) 
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Figure 0-2 Example of Partial Based Crossover (PBX) 

 

3. Order Crossover (OX) 

This two-point crossover operator was introduced by Davis (1985). This operator 

works by selecting two random points in the first parent and copying the sequence 

in between those points to the new offspring, keeping their original positions. The 

copied projects are deleted from the second parent and the remaining projects are 

inserted to the vacant positions in the offspring while keeping their order. 

(Figure 0-3) 

 

Figure 0-3 Example of Order Crossover (OX) 

 

4. Order Based Crossover (OBX) 
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This operator also proposed by Syswerda (1991) is similar to PBX but imposes the 

selected positions in one parent on the corresponding projects in the second parent. 

(Figure 0-4) 

 

Figure 0-4 Example of Order Based Crossover (OBX) 

 

5. Edge Recombination Crossover (ERX) 

The edge recombination operator (ERX) is an operator that creates offspring 

exclusively by looking at the edges rather than the vertices. The idea here is to use 

as many existing edges, or node-connections, as possible to generate children. This 

operator is specifically useful when a genotype with non-repeating gene sequences 

is needed such as for the sequencing problem in this study. The method is 

introduced by Whitley et.al. (1989). 

For each project i, the edge list consists of all other neighbor projects connected to 

project i from both parents. The construction of the offspring begins by selecting a 

project with the lowest number of edges. In case projects have equal number of 

edges, one of them is randomly chosen. The selected project is then crossed out 

from all the other edge lists, and the procedure continues by selecting the next 

project with the smallest number of edges until all projects are selected. Figure 0-5 

shows an example of the ERX operator. 

http://en.wikipedia.org/w/index.php?title=Darrell_Whitley&action=edit&redlink=1
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Figure 0-5 Example of Edge Recombination Crossover (ERX) 

 

Mutation operators: 

6. Insertion Mutation (IM) 

In this operator a project is randomly selected and is inserted to a random position. 

Other projects are shifted over while keeping their original sequence. (Figure 0-6 

a) 

7. Inversion Mutation (VM) 
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This operator selects two random positions and inverts the subsequence between 

those two points. The other projects keep their positions. (Figure 0-6 b) 

 

8. Reciprocal Exchange Mutation (EM) 

The EM operator simply exchanges the position of two random projects while other 

projects keep their original order. (Figure 0-6 c) 

 

Figure 0-6 Example of Mutation Operators 

 

The reproducing process randomly selects one operator and applies it on the 

selected parents. 
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3.5 Simulated Annealing 

 

Simulated Annealing (SA) is a probabilistic meta-heuristic method for global 

optimization of an objective function which may possess several local optima. The 

algorithm which is introduced independently by Kirkpatrick et.al (1983) and Černý 

(1985) is inspired by a process which involves heating and gradual cooling of a material 

to reach minimum energy configuration. Starting from an initial solution (S), the value 

of objective function is calculated for the new solution in the neighborhood f(S’) where 

f() denotes the objective function value for a solution. Then, the algorithm attempts to 

move to a neighborhood solution (S’) based on specified criteria. In minimization 

problems, a transition to the new solution is immediately allowed when Δ=f(S’)-f(S)<0. 

However, a transition to the new solution is also permitted based on the probability 

function exp(-Δ/T), where T (Temperature) is a control parameter. Allowing for such 

transitions guarantees the diversification of the solutions and enables SA to escape a 

local optimum in a search for the global optimum. After each iteration, the parameter 

T decreases within a cooling function (T=T*α) where α is a constant parameter by 

which the temperature decreases after each iteration. The algorithm finally stops when 

the stopping criterion is satisfied. This procedure is summarized as follows: 

1. Generate an initial solution S. 

2. Compute the initial temperature 𝑇0 described in section 4.2.2. 

3. Generate a neighborhood solution S’. 

4. Let  Δ=f(S’)-f(S). 

5. If  Δ<0, let S= S’ 

Otherwise, let S= S’ with probability exp(-Δ/T). 
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6. Stop if the stopping criterion is met 

Otherwise, let T=T*α and go to step 3. 

 

3.5.1 Neighborhood 

 

In the developed SA, the neighbor solutions are produced by using the Project Shift 

operator in which project j is randomly selected from the project list and project i is 

randomly selected from the first predecessor and successor of project j. The two 

selected projects switch positions and the new solution is evaluated for possible 

transition. Figure 0-7 illustrates the neighbor generation process. 

 

Figure 0-7 Neighbor Generation Example 

 

3.5.2 Initial Temperature 

 

One of the most important steps in SA is to set an appropriate initial temperature. In 

this research, a recursive formula proposed in Ben-Ameur (2004) is used to assess an 

initial value for the temperature T as follows: 

 
𝑇𝑛+1 = 𝑇𝑛(

ln (𝜒̂(𝑇𝑛))

ln (𝜒0)
)

1
𝜌 (6) 

where 𝜒0 is the desired acceptance probability, ρ is a real number ≥ 1 and 𝜒̂(𝑇𝑛) is 

determined by generating a set of positive transitions P (a transition in which the 



 

 

32 

 

objective function increases), storing the corresponding objective functions (f(S’), f(S)) 

and using the following equation: 

 

 

𝜒̂(𝑇𝑛) =
∑ exp (−

𝑓(𝑆′)𝑝

𝑇 )𝑝∈𝑃

∑ exp (−
𝑓(𝑆)𝑝

𝑇 )𝑝∈𝑃

 (7) 

 

The iteration stops as 𝜒̂(𝑇𝑛) becomes sufficiently close to 𝜒0 and the value of 𝑇𝑛 can 

be used as a good approximation for the initial temperature. The algorithm for this 

process is as following: 

1. Estimate ||S||, the number of samples needed to compute 𝜒̂(𝑇). 

2. Generate S random positive transactions. 

3. Set 𝑇1 at a strictly positive number. 

4. Calculate 𝜒̂(𝑇𝑛) from equation 6. 

5. If |𝜒̂(𝑇𝑛) − 𝜒0| < ε, return 𝑇𝑛. 

Otherwise:  -    Compute 𝑇𝑛+1 from equation 5, 

- Go to step 4. 

                    

 

 

3.6 Tabu Search 

 

Tabu Search (TS) is a meta-heuristic created by Glover (1986) that employs 

neighborhood search and enhances it by using a memory structure that avoids visiting 

previously investigated solutions. To achieve this goal, the method records recent 
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moves and stores them in a Tabu list, preventing the algorithm from retracing these 

moves. This insures that new regions of the solution space are explored in the search 

for the global optimal solution.  

A move is defined as the position number in the project list selected for swapping. The 

following summarizes the procedure: 

1. Generate a random solution S. 

2. Generate a subset N of solution such that either one of them violates the tabu 

condition or the aspiration condition holds. 

3. Let S’ the best solution in subset N. 

4. If f(S’)-f(S) < 0, let S=S’. 

5. Update tabu list. 

6. Stop if the stopping criterion is met 

Otherwise, go to step 2. 

 

3.6.1 Neighborhood 

 

Similarly to simulated annealing, the neighbors of current solutions are generated by 

swapping the position of projects in the project sequence. 

3.6.2 Move 

 

According to the neighborhood generation described in the previous section, moves are 

defined by the position numbers of swapped projects. For example, if project 6 in 

position #3 is swapped with project 2 in position # 7, then the attributes of the move is 

(3,7). 
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3.6.3 Tabu list 

 

After a move is made, its reverse enters the tabu list while the oldest existing move 

exits the list. All moves that exist in the list remain tabu for a specified number of 

iterations called Tabu Tenure. However, it is possible that a tabu move reaches to a 

non-visited solution. In order to avoid the possibility of overlooking of a better solution, 

an aspiration criterion authorizes a tabu move only if this move leads to a solution with 

the best objective value visited so far. 
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Chapter 5:  Case Study 
 

3.7 Network Configuration 

 

Figure 0-1 presents the network that is used in this work for testing user equilibrium 

and the metaheuristic algorithms. This network consists of 24 nodes and 76 links. 

Table 0-1 describes the hourly travel demand between each origin destination pair. 

These numbers are assumed as the peak hour demand and the off peak travels is 

considered half of these values. It is also assumed that the demand increases 

exponentially as a function of time over the planning horizon as follows: 

 𝑑𝑖𝑗
𝑡 =  𝑑𝑖𝑗

0 ∗ (1 + 𝑟)𝑡 (1) 

Where 𝑑𝑖𝑗
𝑡  is the demand between origin 𝑖 and destination𝑗, 𝑑𝑖𝑗

0  is the base demand for 

the 𝑖𝑗  O/D pair at time 0, and 𝑟 is the growth rate. 
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Figure 0-1 Sioux Falls Network 

Table 0-1 Trip Table between Each Two Node Pairs (Vehicle per Hour) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0 20 12 36 18 24 30 48 36 84 36 18 36 18 30 36 30 12 18 18 6 24 18 12 

2 20 0 6 18 6 30 12 30 18 36 12 12 18 6 12 24 18 6 6 12 6 12 6 6 

3 12 6 0 18 6 18 6 12 12 18 18 18 12 6 6 12 6 0 6 6 6 6 6 6 

4 36 18 18 0 30 30 30 42 48 72 90 42 36 30 30 48 30 6 18 24 12 24 30 18 

5 18 6 6 30 0 18 12 36 48 60 36 12 12 12 18 36 18 6 12 12 6 12 12 6 

6 24 30 18 30 18 0 24 48 24 48 24 18 18 12 18 60 36 6 18 24 6 18 12 6 

7 30 12 6 30 12 24 0 66 36 114 30 48 30 18 30 84 60 60 30 36 18 36 12 6 

8 48 30 12 42 36 48 66 0 0 96 54 36 36 24 42 132 84 18 42 54 24 36 24 12 

9 36 18 12 48 48 24 36 0 0 168 90 42 36 36 60 90 60 12 30 42 24 42 36 12 

10 84 36 18 72 60 48 114 96 168 0 240 126 114 132 240 264 0 42 108 156 78 162 108 54 

11 36 12 18 90 36 24 30 54 90 240 0 90 60 96 90 84 60 12 30 42 30 66 84 36 

12 18 12 18 42 12 18 48 36 42 126 90 0 84 42 48 42 42 12 18 30 24 48 42 30 

13 36 18 12 36 12 18 30 36 36 114 60 84 0 36 42 42 36 6 24 42 36 78 48 48 

14 18 6 6 30 12 12 18 24 36 132 96 42 36 0 45 42 42 6 24 30 24 72 66 24 

15 30 12 6 30 18 18 30 42 60 240 90 48 42 45 0 78 90 18 48 66 48 156 60 30 

16 36 24 12 48 36 60 84 132 90 264 84 42 42 42 78 0 168 100 84 102 36 72 36 18 
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The Sioux Falls network illustrated in Fig. 1 is selected for demonstrating the 

performance of the proposed algorithms. As mentioned earlier, this is not considered a 

realistic network since it mainly includes the city’s major arterial roads and omits many 

characteristics of its transportation system. However, it has widely been used to 

examine and compare studies on networks (LeBlanc et.al 1975). After running the 

traffic assignment model, the critical lanes with high volume-capacity ratio were 

identified as an initial set of candidate projects. It should be noted that our model allows 

volume-capacity ratios above 1.0 since we are using a BPR function (Ref) for 

estimating link performances. Since our demand matrix is symmetrical for all origin 

and destination nodes, each link expansion improvement is assumed to be implemented 

in both directions between the two connected nodes, i.e. each project is defined as 

expanding two links between each pair of connected nodes. This assumption is also 

justified economically because it saves costs due to the parallel use of resources and 

construction equipment. After identifying an initial collection of candidates, all projects 

are further investigated through a benefit-cost analysis to identify and rank the 

economically beneficial projects. The finalized set of candidate projects includes links: 

{(2 & 5), (4 & 14), (6 & 8), (10 & 31), (13 & 23), (16 & 19), (22 & 47), (25 & 26), (27 

17 30 18 6 30 18 36 60 84 60 0 60 42 36 42 90 168 0 42 102 102 42 102 36 18 

18 12 6 0 6 6 6 60 18 12 42 12 12 6 6 18 100 42 0 24 100 6 24 6 6 

19 18 6 6 18 12 18 30 42 30 108 30 18 24 24 48 84 102 24 0 78 30 78 24 12 

20 18 12 6 24 12 24 36 54 42 156 42 30 42 30 66 102 102 100 78 0 78 0 42 30 

21 6 6 6 12 6 6 18 24 24 78 30 24 36 24 48 36 42 6 30 78 0 114 42 36 

22 24 12 6 24 12 18 36 36 42 162 66 48 78 72 156 72 102 24 78 0 114 0 0 72 

23 18 6 6 30 12 12 12 24 36 108 84 42 48 66 60 36 36 6 24 42 42 0 0 48 

24 12 6 6 18 6 6 6 12 12 54 36 30 48 24 30 18 18 6 12 30 36 72 48 0 
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& 32), (29 & 48), (33 & 36), (34 & 40), (39 & 74), (41 & 44), (49 & 52), (53 & 58), 

(65 & 69), (66 & 75), (70 & 72), (73 & 76) }. In order to find appropriate initial 

solutions, the traffic assignment model is conducted for all improvement scenarios. The 

first column in Table 0-2 Greedy Order and Bottle Neck Order Solutions shows the 

order of projects based on their benefit-cost ratio in a descending order. In this context, 

the benefit is the present worth value of travel time savings, and the cost is the present 

value of implementation cost. The third column displays the sequence of projects based 

on their congestion severity. More specifically, the links with lower level of service 

have higher priority. 

Table 0-2 Greedy Order and Bottle Neck Order Solutions 

Greedy 

Order 

Solution 

Project 

Benefit 

(dollar) 

Bottle-

neck 

Order 

Solution 

VC 

Ratio 

16 & 19 217300346 16 & 19 2.17 

39 & 74 193368891.2 39 & 74 1.89 

4 & 14 189404178.1 73 & 76 1.79 

33 & 36 161423612.9 25 & 26 1.62 

13 & 23 117425401.3 13 & 23 1.59 

29 & 48 91362676.79 53 & 58 1.48 

2 & 5 87751582.78 65 & 69 1.42 

2 & 14 74066280.27 33 & 36 1.41 

49 & 52 71863521.6 29 & 48 1.36 

34 & 40 70811859.82 34 & 40 1.35 

6 & 8 69331975.33 4 & 14 1.35 

53 & 58 68775533.16 27 & 32 1.32 

66 & 75 61764580.07 70 & 72 1.31 

22 & 47 61099053.87 66 & 75 1.22 

41 & 44 60702083.07 41 & 44 1.21 

27 & 32 60135953.13 2 & 14 1.12 

25 & 26 59110008.45 6 & 8 1.11 

65 & 69 44182898.22 2 & 5 1.11 

70 & 72 36073907.44 22 & 47 1.09 

73 & 76 5242573.323 49 & 52 1.04 
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3.8 Project Interdependence 

 

Table 0-3. Travel Time Reduction due to Link Expansion shows a sample of the travel 

time savings from separate implementation of projects in the network. The second 

column presents the initial link travel times prior to project implementations while 

columns three to seven present the travel time reductions for single projects. Positive 

values indicate travel time reductions, while negative values show increases in travel 

time due to network interdependence. (Conceptually, if the capacity increases in one 

link the network, congestion and average travel times tend to increase in other links 

that are “in series” with it and decrease in its “parallel” links.) The bolded numbers 

indicate the travel time changes in the location of the expanded links. These numbers 

are relatively higher since the expanded links gain direct benefits after project 

implementation. Notably, the sum of all the cells in one column is not equal to the 

travel time changes on the links which are getting expanded. This, in effect, confirms 

the interrelation among links and the possible shifting of bottlenecks to surrounding 

links. Furthermore, the last column implies that the total system cost reduction from 

implementing two projects together is different from the sum of cost savings for the 

two individual projects, emphasizing that the cost saving of multiple projects is not a 

linear summation of their individual savings. 

 

Table 0-3. Travel Time Reduction due to Link Expansion 

  link travel time reduction (min/veh) 

link 
Link travel 

time 

expanding  

2 & 5 

expanding  

4 & 14 

expanding  

6 & 8 

expanding  

10 & 31 

expanding  

13 & 23 

expanding  

(2&5)&(4 &14) 
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without 

projects  

1 3.594 0.006 -0.018 0.008 0.000 -0.004 -0.023 

2 5.021 1.115 0.720 -0.408 -0.062 0.031 1.659 

3 3.594 0.006 -0.018 0.008 0.000 -0.004 -0.023 

4 10.356 2.338 5.712 3.468 0.658 -0.342 7.240 

5 5.021 1.115 0.720 -0.408 -0.062 0.031 1.659 

6 4.550 -0.346 0.570 0.927 -0.269 -0.144 0.736 

7 2.618 0.016 0.041 0.032 0.021 0.041 0.052 

8 4.550 -0.346 0.570 0.927 -0.269 -0.144 0.736 

9 1.629 -0.093 0.166 -0.060 0.015 -0.206 0.164 

10 7.374 -0.038 -4.221 -4.398 2.803 2.051 -2.308 

11 1.629 -0.093 0.166 -0.060 0.015 -0.206 0.164 

12 3.001 -0.344 0.340 -0.526 -0.272 -0.851 0.367 

13 7.390 0.053 1.214 0.933 0.883 2.392 1.013 

14 10.356 2.338 5.712 3.468 0.658 -0.342 7.240 

15 3.001 -0.344 0.340 -0.526 -0.272 -0.851 0.367 

16 7.882 -0.494 -1.261 -0.065 0.881 2.222 -2.483 

17 1.796 0.013 0.089 0.028 0.015 0.018 0.087 

18 1.312 0.000 0.001 0.001 0.000 0.000 0.001 

19 7.882 -0.494 -1.261 -0.065 0.881 2.222 -2.483 

20 1.796 0.013 0.089 0.028 0.015 0.018 0.087 

21 7.333 0.691 1.464 1.392 0.647 0.267 1.475 

22 4.369 0.151 0.788 0.999 0.500 0.378 0.537 

23 7.390 0.053 1.214 0.933 0.883 2.392 1.013 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

75 3.287 0.090 0.189 0.164 -0.190 -0.173 0.139 

76 1.431 -0.003 0.041 -0.087 0.050 0.033 0.079 

Total travel time saving 9.753 15.656 8.054 13.632 18.037 25.216 

 

 

It is assumed that each project improvement adds one lane equivalent to 700 

vehicle/hour additional capacity to each link, and the equivalent annual cost of each 

lane expansion is assumed to be 4,000,000 $/lane-mile. The main cost saving of link 

expansion projects is the reduced travel time for all the users. These travel time 

reductions can be computed through the traffic assignment model by comparing the 
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total system travel time before and after project implementation. Next we use the meta-

heuristic methods described in previous sections to find near optimal solutions for the 

sequence and schedule of selected projects. When optimizing, it is desired to find a 

sequence of projects which can be implemented within the planning horizon (30 years). 

Therefore, each project with a scheduled completion time after the planning horizon is 

eliminated from the sequence. Additionally, the projects with unacceptable marginal 

benefit-cost ratio are discarded form the sequence list during the evaluation stages and 

replaced by other justifiable projects.  
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Chapter 6:  Comparison of Optimization Methods 
 

In this study network with 76 links, 20 improvement projects were selected based on 

the method explained in previous section. These candidate projects are evaluated by 

the user equilibrium traffic assignment model. Since the solution space for such 

problem is as large as 20!= 2.4329e+18, three metaheuristic algorithms are applied to 

search the project sequence.  Table 0-1, Table 0-2 and Table 0-3 describe the 

characteristics and basic parameters of SA, GA and TS respectively. 

Table 0-1 SA Parameters 

Parameter Value 

Neighborhood Size 100 

# of samples for initial 

temp 

0.5 

Cooling Ratio 0.8 

Trial Count 20 

Move method Swap 

 

 

Table 0-2 GA Parameters 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

Population Size 20 

Mutation Rate 0.5 

Crossover Rate 0.5 

Selective Pressure 0.1 

Sampling 

Mechanism 

Roulette 

Wheel 
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Table 0-3 TS Parameters 

 

 

 

 

 

This section analyzes the results obtained from GA, SA and TS in terms of (i) quality 

of the final results, (ii) computation speed and (iii) consistency of the optimized 

solutions. The study further compares each algorithm in the aforementioned categories.  

3.9 Quality 

 

Each meta-heuristic is tested for 50 replications, each encompassing 150 iterations, 

which is considered a reasonable number of iterations for comparison purposes since 

all three algorithms reach a stable convergence within 150 iterations. The best results 

out of 50 replications in terms of the final value for the objective function (minimum 

total cost) are extracted and plotted in Figure 0-1, presenting the performances of the 

GA, SA and TS.  

Parameter Value 

Neighborhood 

Size 

100 

Tabu Tenure 3 

Trial Count 20 

Move method Swap 
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Figure 0-1 Performances of the GA, SA and TS for 150 Iterations 

 

 

These results suggest that after running all the algorithms long enough for stable 

convergence, the GA performs better in terms of producing solutions with lower 

objective functions and TS performs better than SA. In this case, the present values of 

total system cost are: GA=15009, SA=15028, TS=15016 million dollars, which are 

remarkably close. Furthermore, the resulting selection, sequencing and scheduling of 

projects are presented in Table 0-4 which also demonstrates the comparison between 

the meta-heuristic solutions and the solution ranked according to congestion severities. 

The severity ranked solution has a total cost of $15605 million while the solutions 

obtained from the meta-heuristics have lower total costs, emphasizing the significance 

of project interdependencies. In fact, the present worth of total cost is reduced by 596, 

577 and 589 million dollars when applying GA, SA and TS, respectively, compared to 

the severity-ranked order. 
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Table 0-4 Selection, Sequencing and Scheduling of Projects 

 GA SA TS 

Bottle Neck 

 Order 
Sequence 

Scheduled 

Completion 

 Year 

Sequence 

Scheduled 

Completion 

 Year 

Sequence 

Scheduled 

Completion 

 Year 

16 & 19 16 & 19 1.8 16 & 19 1.8 16 & 19 1.8 
39 & 74 4 & 14 6 39 & 74 6 4 & 14 6 
73 & 76 39 & 74 9 33 & 36 9 39 & 74 9 
25 & 26 33 & 36 13 13 & 23 9.8 33 & 36 13 
13 & 23 13 & 23 15.2 49 & 52 12 13 & 23 15.2 
53 & 58 29 & 48 17.4 13 & 23 14 41 & 44 17.4 
65 & 69 25 & 26 18.2 66 & 75 17.6 25 & 26 18.2 
33 & 36 34 & 40 20 6 & 8 19.8 10 & 31 21.2 
29 & 48 27 & 32 21.6 10 & 31 22.8 53 & 58 22.4 
34 & 40 2 & 5 26.2 25 & 26 23.6 29 & 48 24.6 
4 & 14 41 & 44 28.4 34 & 40 25.4 6 & 8 28.2 

27 & 32 -  53 & 58 27.6 66 & 75 29.1 
70 & 72 -  -    
15605 15009 15028 15016 

NPV of total cost (million $) 

 

3.10 Computation Time 

 

The meta-heuristic results may also be compared in terms of computation time. For this 

purpose, the average running time per iteration is computed for all algorithms and is as 

following: GA= 87.5 sec, SA=19.3 sec and TS=37.7 sec. The results indicate that the 

GA has the most and the SA has the least computation time. This is due to relative 

complexity and multiple operators incorporated in the GA. However, as discussed in 

the previous section, if the running time is sufficiently large for all models to reach 

convergence, then GA yields better solutions than SA and TS.  
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3.11 Consistency 

 

While running replications of the meta-heuristics we can find how similar the results 

are among replications after different numbers of iterations. In other words, how 

consistent are the outcomes after running a specific number of iterations and at what 

point they reach steady state? To address this question, after running 50 replications 

the coefficient of variation (CV) of the objective function is estimated for each number 

of iterations. Figure 0-2 shows the CV value for each algorithm as the number of 

iterations increases. It indicates that the variation of results is relatively low at the 

beginning since the set of initial solutions is quite similar, then it increases during the 

process, and finally drops after the 80th iteration converging to 0.07%. This means that 

running different replications of the GA method yields almost similar results after the 

80th iteration. Similarly for TS and SA, the value of CV fluctuates along the number of 

iterations and finally converges to 0.13% and 0.22%. In this case, the GA is the most 

consistent algorithm, followed by TS and SA.  
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Figure 0-2 Coefficient of Variation of the Objective Function for a) GA, b) SA, c) 

TS 
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Chapter 7: Optimal Selection and Scheduling 
 

In this study, an urban network with 24 nodes, 76 links and 20 improvement projects 

is selected. As discussed in previous sections, a traffic assignment model is designed 

to evaluate the candidate projects over the planning horizon and three metaheuristic 

algorithms are proposed to search for good near optimal solutions. This section 

analyzes the GA results and compares the basic scenario with no improvement projects 

with the scenario where projects are implemented.  

Table 0-1 Optimal Sequence and Schedule 

Optimal Sequence Completion Time 

(year) 

16 & 19 1.8 

73 & 76 5.9 

39 & 74 8.8 

13 & 23 10.8 

25 & 26 14.8 

2 & 14 16.2 

65 & 69 20.7 

53 & 58 22.7 

66 & 75 25.0 

33 & 36 28.0 

NPV of Total 

Cost×106 

8535.93 

 

Table 0-1 presents the optimal sequence and the corresponding schedule of projects 

along with the objective value. It should be reminded that the optimized schedule is 

directly determined by the sequence of selected projects, assuming it is reasonable to 

fund and finish each project one at a time, and gain its benefits as soon as it is 

completed. By this definition, the schedule of each project is appointed to a time when 

the available budget equalizes the project cost.  
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Figure 0-1 Accumulated Budget over Study Period 

 

 
Figure 0-2 Accumulated Total Delay Cost with and without projects 
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delay costs with and without projects over the 30 years of analysis. These results 

indicate that at the end of 30 years, the improvement projects can save up to 21% of 

the total delay costs. 

In general, no existing methods can guarantee that results of heuristic algorithms are 

globally optimal, and it is somewhat difficult to assess the goodness of solutions 

obtained by the evolutionary methods. In this study, a statistical experiment is 

conducted to examine the effectiveness of the algorithm. For this purpose, first a sample 

of randomly generated solutions is created. Ideally the sample must be created in a way 

that the solutions are independent of each other in order to satisfy the statistical 

requirements. The next step is to fit an appropriate distribution to the fitness values. 

The distribution of sample values should approximate the actual distribution since the 

sample is randomly generated. The final step is to calculate the cumulative probability 

of the solution found by the algorithm based on the fitted distribution. It is desirable to 

obtain a very low probability to prove the goodness of the solution.  

Accordingly, a random sample of 50,000 solutions is created. Table 0-2 summarizes 

the statistical results drawn from this sample. After exploring different distributions, 

the Lognormal (mu= 9660, sigma= 0.0248) distribution appears to yield the best fit. 

Figure 0-3 shows the fitted distribution and the data derived from random sampling. It 

is evident that the minimum value in the distribution of 50,000 random solutions is 

higher (costlier) than the optimal solution presented in Table 0-1. In other words, the 

solution found by the algorithm excels all solutions in the distribution. 
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Table 0-2 Statistical results for the random solutions 

Min Max Average Standard Deviation 

8709.19×106 15769.69×106 9421.77×106 236.38×106 

 

The cumulative probability of the best solution found by the GA according to the 

Lognormal distribution is 𝑝 = 𝐹(𝑥| μ, σ) =  𝐹(8535.93 × 106| 9660, 0.0248) =

3.597 × 10−5 which can be derived from the following equation: 

 𝑝 = 𝐹(𝑥| μ, σ) =
1

𝜎√2𝜋
∫

𝑒
−(ln(𝑡)−𝜇)2

2𝜎2

𝑡

𝑥

0

 𝑑𝑡 (8) 

This result implies that the best solution obtained with the algorithm dominates 

99.999% of the random solutions in the distribution. Therefore, the solution found by 

the GA although not necessarily globally optimal, is very good compared to other 

possible alternatives in the solution space and the deviation from global optimality is 

likely to be very small compared to uncertainties and errors in the problem’s inputs. 
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Figure 0-3 Fitted Lognormal distribution  



 

 

53 

 

Chapter 8: Sensitivity Analysis 
 

This section studies of how the uncertainty in the output of the optimization model can 

be apportioned to different sources of uncertainty in inputs. This is useful in 

understanding model behavior and enhancing the efficiency of the proposed 

methodology. For this purpose, sensitivity analysis is conducted to investigate the 

effects based on both Genetic parameters and network specifications. Several factors 

such as population size, selective pressure, crossover and mutation rate influence the 

performance of genetic algorithms. Other factors such as the problem size are 

especially significant in determining the computation time thus, important in 

determining the efficiency and feasibility of the algorithm. This section provides 

sensitivity analysis based on population size, selective pressure, crossover/mutation 

rate and problem size that affects the GA performance and impact the optimization. 

This section continues with further analysis on network parameters and system settings 

such as demand growth rate, cost of projects and fuel tax rates. The goal is to examine 

the uncertainty of such parameters and observe their impacts on system output. 

3.12 Population size 

 

Population size is one of the key parameters of genetic algorithm. Usually decreasing 

population size increases optimization speed to a certain point, however, further 

decreasing may cause premature convergence. On the other hand, increasing 

population size increases optimization reliability. Therefore, a good selection of 

population size may reduce the optimization speed considerably. This experiment 

examines four different population sizes namely 10, 20, 30 and 40 while each 

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Uncertainty
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experiment is implemented 10 times. In all four cases the search stops when 

convergence is reached for at least 5 generations. 

Table 0-1 presents the optimization outcomes including the computation size, total 

system cost and the optimal sequence for different population sizes. Figure 0-1 shows 

that by increasing the population size the computation time grows dramatically, 

However as seen in Figure 0-2 increasing the population size results in sequences with 

lower objective function value (total cost over 30 year horizon). Therefore, it is 

important to set the population size such that balances between computation time and 

solution quality. 

Table 0-1 Sensityivty Analysis (Population Size) 

Population 

Size 

Computation 

Time (min) 

Total Cost 

(*106 $) 

Optimal Sequence 

10 73.34 85955.23 6,13,2,10,5,11,1,4,9,14 

20 126.2660945 85390.99 6,2,13,11,8,5,10,1,17,9,16,18 

30 270.8740385 85389.29 6,2,13,11,5,1,9,10,20,7,14 

40 416.795875 85373.22 6,2,13,5,11,1,10,4,3,15 

 

 

Figure 0-1 Computation Time for Different Population Size 
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Figure 0-2 Optimization Process for Different Population Sizes 

 

One can see significant improvement by increasing population size from 10 to 20. 

However, selecting population size of 30 or 40 does not yield much significant 

improvement in terms of solution quality but requires much more computation time. 

Thus it seems population size of 20 is the most reasonable choice. 

 

3.13 Crossover and Mutation rate 

 

A judicious choice of crossover and mutation rates is essential to the success of genetic 

algorithms. One should seek a proper balance between exploration and exploitation 

ability of the searching algorithm. In genetic algorithms, mutation operators are mostly 

used to provide exploration and cross-over operators are widely used to lead population 

to converge to a good sub optimal solution (exploitation). Consequently, while 
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and explore more areas. In more detail, crossover rate indicates a ratio of how many 

couples will be picked for mating, hence usually a higher rate is maintained with the 

expectation of converging faster using the already explored regions. Higher mutation 

rate increases the probability of searching more areas in search space, however, 

prevents population to converge to any optimum solution. On the other hand, too small 

mutation rate may result to premature convergence, and falling to local optima instead 

of global optimum. For this study, we examine crossover rates ranging from 0.2 to 0.5 

and mutation rates from 0.1 to 0.3 separately while keeping the other parameters fixed. 

By default, the crossover rate is set to 0.5 and the mutation rate is set to 0.2 in the entire 

study. 

Figure 0-3 indicates that a crossover value of 0.5 yields better a solution than the other 

values. Table 0-2 presents the optimal sequence and their corresponding objective 

function value for different crossover values. Accordingly, the crossover rate of 0.5 

gives a better sequence with a total cost of 8532*106 dollars over the entire study 

period. 

 

Figure 0-3 Optimization Process for Different Crossover Rates 
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Table 0-2 Sensitivity Analysis (Crossover Rate) 

Crossover 

Rate 

Number of 

Generations 

Total System 

Cost 

Optimal Sequence 

0.2 30 8596.53 6,13,2,11,5,10,1,4,9,14 

0.3 30 8542.33 6,13,2,11,5,10,1,8,15,19,20,12,17 

0.4 30 8538.15 6,13,2,11,5,1,10,9,12,3 

0.5 30 8532.33 6,2,13,5,11,10,1,4,12,15 

 

Figure 0-4 indicates that a Mutation rate value of 0.2 yields better a solution than the 

other values. Similar to the crossover rates, Table 0-3 provides the optimal sequence 

and the total system cost for different mutation rates. According to the table, the 

mutation rate of 0.2 gives a better sequence with a total cost of 8548*106 dollars over 

the entire study period. In this case, the mutation rate of 0.3 converges to a better 

solution with less total cost ($8547*106) but requires more generations to reach the 

optimal solution. Therefore the value of 0.2 is selected for this study. 

 

 

Figure 0-4 Optimization Process (Mutation Rate) 
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Table 0-3 Sensitivity Analysis (Mutation Rate) 

Mutation 

Rate 

Number of 

Generations 

Total System 

Cost 

Optimal Sequence 

0.1 30 8565.13 6,13,2,11,5,10,1,3,16,18 

0.2 30 8548.12 6,13,2,5,11,10,1,18,15,12,3 

0.3 30 8547.48 6,13,2,10,5,11,1,4,15,3 

 

3.14 Selective pressure 

 

Selective pressure controls the tendency to select the best members of current parents 

to propagate to the next generation, and is a requirement to direct the GA to an optimum 

solution. On the other hand, maintaining the diversity of the population, is also required 

to ensure that the solution space is adequately searched, especially in the earlier stages 

of the optimization process. If the selective pressure is too high, the genetic diversity 

may decrease so that the global optimum is overlooked and the GA converges to a local 

optimum. However, if the selective pressure is too low, the GA may not converge to 

an optimum in a reasonable time. Selecting a proper value for selective pressure while 

maintaining the diversity shall lead to convergence in a reasonable time to a global 

optimum. 

Figure 0-5 reveals the performance of the GA having to different selective pressure 

values. The results for both values seem relatively identical, however the selective 

pressure of 0.2 yields a slightly better solution with a total cost of $8543*106 over the 

study period and converges to the optimum in earlier generations. Subsequently, a 

value of 0.2 is selected for the selective pressure in this research. 
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Table 0-4 Sensitivity Analysis (Selective Pressure) 

Selective 

Pressure 

Number of 

Generations 

Total System 

Cost 

Optimal Sequence 

0.1 30 8544.30 6,2,13,11,5,10,1,4,3,15 

0.2 30 8543.72 6,2,13,5,11,10,1,4,15,12,19 

 

 

Figure 0-5 Optimization Process for Different Slective Pressure Values 
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specifically, if the problem size is the same for different network sizes (i.e. number of 

nodes and links), the computation time needed to solve the problem will be different. 

For this reason, a network with the same characteristics is tested in this section, and the 

only variable that changes is the problem size.  

This section explores 5 alternatives with different problem sizes for 5, 7, 10, 15 and 20 

candidate projects. The planning period is adjusted according to the problem size for 

more realistic results. Table 0-5 and Figure 0-6 show the optimization results and the 

computation time for each problem size. 

Table 0-5 Sensitivity Analysis (Problem Size) 

Problem 

size 

Population 

size 

Computation 

time 

Total 

system cost 

Optimal sequence Planning 

Horizon 

(years) 

5 10 38.78534174 63248.78 3,2,5,4,1 12 

7 13 46.1506325 69301.94 3,2,5,4,1,6,7 15 

10 15 78.58381202 80453.39 5,2,4,9,1,3,8,10,6,7 20 

15 18 96.4942549 89128.00 5,2,11,4,14,1,6,9,8,15,10,7,13 25 

20 20 126.2660945 85390.99 6,2,13,11,8,5,10,1,17,9,16,18 30 

 

 

Figure 0-6 Computation Time for Different Problem Sizes 
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3.16 Demand growth rate 

 

As explained in previous sections, it is assumed that the demand increases 

exponentially as a function of time over the planning horizon as follows: 

 𝑑𝑖𝑗
𝑡 =  𝑑𝑖𝑗

0 ∗ (1 + 𝑟)𝑡 (1) 

This section explores how changes in demand growth rate affect the optimization 

procedure and the optimal solution. For this purpose, growth rates of 0, 0.005, 0.01, 

0.015 and 0.02 are tested. Too high growth rate may cause over saturation in the 

network which may require more time to reach user equilibrium or even cause system 

failure. On the hand, too low growth rate may not reflect the trend in real situation.  

Table 0-6 Sensitivity Analysis (Demand Growth Rate) 

Demand growth 

rate 

Computation time Total system 

cost 

Optimal sequence 

0 70.36 7445317456 6,2,13,5,8,10,16,19,7,1,20,18 

0.005 85.85 7819339098 6,2,13,18,11,5,1,10,16,12,3 

0.01 131.19 8431728530 6,2,13,18,11,5,1,10,16,12,3 

0.015 272.72 8853373713 6,2,13,18,11,5,1,10,16,12,3 

0.02 1567.48 10039171025 6,13,2,15,18,11,12,3,17,1,19 
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Figure 0-7 Computation Time for Different Demand Growth Rate Values 

 

 

Figure 0-8 Optimization process for different demand growth rates 
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Figure 0-9 Total cost flow over analysis period 

 

Table 0-6 presents the optimization results for different growth rate values. It can be 
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final project sequence. Figure 0-7 gives a visual comparison for computation time of 

different growth rates. It can be seen that the analysis time generally increases as the 
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is due to the fact that the increased demand may lead to an over saturation circumstance 
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0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

0 5 10 15 20 25 30 35

T
o

ta
l 

co
st

 (
$

)

Year

growth rate = 0

growth rate = 0.005

growth rate = 0.01

growth rate = 0.015



 

 

64 

 

Figure 0-9 compares the flow of the total cost over the 30 year analysis period for 

different values of growth rate. It is evident that the slope of the total cost growth 

increases as the demand growth gets higher. 

3.17 Project costs 

 

As described in previous sections, the budget constraint is defined as follows: 

 

 

∑ 𝑐𝑖𝑥𝑖(𝑡) ≤ ∫ 𝑏(𝑡)𝑑𝑡,    0 ≤ 𝑡 ≤ 𝑇
𝑡

0

𝑛𝑝

𝑖=1

 (2) 

{
𝑥𝑖(𝑡) = 0   𝑖𝑓 𝑡 < 𝑡𝑖 

𝑥𝑖(𝑡) = 1   𝑖𝑓  𝑡 > 𝑡𝑖
 

 

where 𝑡𝑖 is the time when project i is finished, 𝑥𝑖(𝑡) is a binary variable specifying 

whether project i is finished by time t and 𝑐𝑖 is the cost of project i. In this study the 

cost of each project is a function of the length of improvement. For this purpose, the 

cost of adding a lane is considered $4,000,000 per lane mile. This section explores how 

variations of project costs may affect the optimization results by increasing the cost per 

lane mile up to 5%, 10% and 20%. Table 0-7 shows the optimizing results for different 

widening costs. It is evident that the total cost of optimal solution increases as project 

costs increase. It is also clear that the optimal order of projects changes and fewer 

number of projects are accommodated in the sequence because the cost of projects 

increases while the budget remains unchanged. Figure 0-10 provides a more detailed 

demonstration of how the total cost changes over the study period.  
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Table 0-7 Sensitivity Analysis (Project Cost per Lane) 

Widening cost per lane 

mile 

Total system 

cost 

Optimal sequence 

$4,000,000  8611886171 6,2,13,18,11,5,1,10,16,12,3 

$4,200,000  9747438334 6,2,13,11,5,10,1,12,4,20 

$4,400,000  9570418735 6,2,13,5,8,11,9,1,10,4 

$4,800,000  9983438568 6,2,13,8,5,11,1,10,16 

 

 

 

Figure 0-10 Total cost flow over analysis period 
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Chapter 9: Conclusion and Summary 
 

The selection and scheduling of interrelated projects is an interesting problem for 

policy makers and researchers in various fields, including economics, operation 

research, business, management, and transportation. Although it is crucial to consider 

the interrelation among projects when evaluating and prioritizing them, the problem is 

not sufficiently solved in the literature. This study combines a simple traffic assignment 

model for evaluating the objective function with three meta-heuristic algorithms, 

including genetic, simulated annealing and tabu search, for optimizing the sequence 

and schedule of the interrelated expansion projects. In particular, the optimized 

schedule is directly determined by the sequence of selected projects. More specifically, 

under the limited budget, which is continuously distributed over time, it is reasonable 

to fund and finish each project one at a time, and gain its benefits as soon as it is 

completed.   

The main contribution of this research is to provide an extensive comparative 

analysis in terms of quality, speed and consistency for the three meta-heuristics used. 

A second contribution is considering an internal source of budget for future projects. 

More specifically, the fuel tax revenues from users is added to an external budget, 

constituting the overall budget for next projects. Another significant contribution is to 

account for the possibility that projects may become economically unjustified after the 

implementation of previous projects, before the end of the study period. In order to 

apply the proposed algorithms and demonstrate the numerical results, a sample network 

is examined through the evaluation and optimization process. The outcomes are further 

used for a multilateral comparison.  
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After finding the optimum sequence and schedule of the projects, the 

comparative analysis indicates that the GA, SA and TS decrease the present worth of 

the total cost by 596, 577 and 589 million dollars, respectively, compared to a 

congestion-ranked solution, thus indicating that the GA yields a better solution with 

less total cost than the other two. However, the SA and TS reach better solutions in the 

earlier stages of the search and thus seem preferable if budgets for computation are 

limited. The latter case is unlikely in the long term planning and scheduling of 

significant investments.  The results also indicate that the GA yields the most consistent 

solutions with a 0.07% coefficient of variation for the 150th iteration, implying that 

different replications of the GA yield almost similar final solutions after a sufficient 

number of iterations. In addition to comparing the metaheuristic algorithms, an 

extensive sensitivity analysis is performed on both genetic parameters and system 

specifications. The goal is to acquire a comprehensive understanding of 

the uncertainty in the output of the optimization model that can be apportioned to 

different sources of uncertainty in inputs. The analysis consists of testing the following 

parameters: population size, crossover/mutation rate, selective pressure, problem size, 

demand growth rate, project costs and fuel tax rates. 

In a nut shell, the major objective this study is to set an example of a more general 

applicable method for optimizing planning and scheduling decisions on infrastructure 

while considering the interrelation among them and major relevant uncertainties. This 

method is initially set for a road network problem but can be easily extended to not 

only other transportation infrastructure applications (e.g. airports, rail transit routes and 

inland waterways), but also beyond transportation.  

http://en.wikipedia.org/wiki/Uncertainty
http://en.wikipedia.org/wiki/Uncertainty
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