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Chapter 1: Introduction 

Physicality plays a central role in shaping everyday human experience. The 

way we engage with the physical world affects the way we perceive, transform, and 

derive meaning from it (Clark, 1998, 2010; Dourish, 1997, 2001; Klemmer, 

Hartmann, & Takayama, 2006). Increasingly, we use tools built with information 

systems, often as applications of computing and communication systems, to enable 

new kinds of engagement with the environment, influencing our experience. Despite 

the integral role and enabling potential of such systems in daily life, few can create 

them, and creating custom systems for everyday use is generally infeasible. 

This thesis explores techniques for designing tools with support for making 

information systems in the course of everyday life. I present the novel design and 

evaluation of such a tool called Pixel with an aim to enable the use of intuitive 

knowledge derived from experience with the physical world, as an alternative to 

technical expertise, in creating custom systems in the course of everyday life. 

Everyday Making 

Everyday making is a composition of "the processes we [carry] out in our 

daily life with different kinds of materials, tools and in interaction with other people. 

Everyday practices are those ordinary matters people do while busy with their 

everyday activities—while talking, writing, moving, doing manual work, interpreting 

and feeling" (Tuomi-Gröhn, 2008, p. 8). As information systems influence more of 

our experience, designing tools that enable the everyday making of systems is not 

only potentially empowering but may become necessary (Holloway & Julien, 2010). 
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Making Information Systems 

Presently, making information systems requires a familiarity with technical 

concepts, conventions, and an ability to express—or model—scenarios in an abstract 

formal language far removed from everyday experience. Even the most common tools 

for creating systems are technical. For example, Arduino, a platform popular among 

artists, hobbyists, and learners for prototyping interactive objects, relies on expertise 

in electronics and programming (Mellis, Igoe, Banzi, & Cuartielles, 2007). 

Tools such as Arduino have significantly broadened participation in 

electronics and programming (e.g., Kafai et al., 2010; Peppler, Glosson, Kafai, Fields, 

& Searle, 2011), but they tend to be limited in ways that make them infeasible for 

everyday making. They rely on the use of a keyboard, mouse, and display screen, 

drawing programmers’ attention to editing a textual description of the system, and 

away from the system itself. This limits the mobility of programmers, separates them 

from their environmental context, and prevents direct experimentation with system 

designs in the environment. 

Taken as a medium, information systems lack an appropriate representation 

and a corresponding set of creative tools appropriate for making systems in the course 

of everyday life. Researchers are exploring graphical, tangible, and material 

alternatives techniques that can engage more of our physical senses. 

Graphical programing environments (GPEs) tend to emphasize the creation of 

interactive multimedia (Franklin et al., 2013) and many focus on simplifying 

programming to make it accessible to children (Kay, 2005; Resnick et al., 2009). Yet, 

GPEs have shown promise to support young people in making interactive systems 
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with sensors and actuators (Booth & Stumpf, 2013) and to enable product designers 

to quickly prototype interactive devices (Björn Hartmann, Klemmer, Bernstein, & 

Mehta, 2005). At the same time, GPEs can constrain making systems. Montemayor 

found that children using a GPE to define relationships between sensors and actuators 

might overlook the GPE entirely or become confused as they shift their attention 

between physical and graphical environments (2003). Until recently, GPEs relied on 

the use of a screen, keyboard, and mouse, fixing programmers’ attention on the screen 

and restrict their movements to the space near it (e.g., Millner & Baafi, 2011). Recent 

research mitigates these limitations by enabling touchscreen interactions on mobile 

platforms (e.g., Chan, Pondicherry, & Blikstein, 2013) and shifting web environments 

(e.g., Sadler, Durfee, Shluzas, & Blikstein, 2015). However, graphical and physical 

environments remain separate. 

To an extent, tangible user interfaces (TUIs) can reconcile physical structure 

and information systems. This has made it possible to program systems by physically 

manipulating physical objects that represent programming language constructs 

(Suzuki & Kato, 1995). However, tangible formulations of logical constructs and 

programming language syntax provide limited physical manifestations of the 

counterparts in traditional programming paradigms. TUIs that explore more intuitive 

mappings between form and function offer more promising direction for designing 

everyday making tools. Researchers have developed kits for constructing robots and 

defining their behavior by directly manipulating parts of the built robots to 

demonstrate movements (Raffle, Parkes, & Ishii, 2004). Others have explored the use 

of gesture for creating custom gestural interfaces with everyday objects (Chung, 



4 

2010) and defining relationships between sensors and actuators embedded in objects 

to support immersive storytelling (Montemayor, 2003). 

To make constructing systems easier, researchers are exploring uses of 

common materials for rapidly prototyping interactive devices (B. Hartmann et al., 

2006) and making custom controllers for traditional computer software (Silver, 

Rosenbaum, & Shaw, 2012). Others are exploring the design of electronics that 

function more like familiar materials (Bdeir, 2009), microcontrollers as materials 

(Mellis, Jacoby, Buechley, Perner-Wilson, & Qi, 2013), and considering qualities 

such as texture as they relate to materials that are both physical and computational 

(Robles & Wiberg, 2010). 

In my development of Pixel, I build on the research above to situate users’ 

attention on the physicality of space and materials in their environment, by making 

computational processes accessible through physical gestures and touch interactions 

(with Pixel), and by eliminating the need to tether to a traditional computer to access 

a programming environment. 

Pixel 

Pixel is a tool for creating interactive information systems that sense and 

respond to the physical environment. It consists of one or more cube-shaped Pixels 

that together form a tangible user interface (TUI), to which electronic sensors and 

actuators can be connected with “snap connectors” on each Pixel, and a graphical 

programming environment (GPE) for mobile touchscreen devices (Figure 1). 
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Figure 1: Conceptual drawing of Pixel, consisting of one or more Pixels (left) and, optionally, a mobile device to program 

Pixel behavior with the graphical programming environment. 

 

Generally, Pixel was designed to be modular so it can be easily moved within 

and distributed throughout environments, combined with materials, and embedded in 

objects. Pixel’s modular design is similar to that of Montemayor’s physical 

programming tools in that it enables systems with sensors and actuators to be 

distributed in environments (2003). However, the systems differ in that Pixel enables 

components to be quickly connected to and disconnected from modules (i.e., Pixels). 

On the other hand, Montemayor’s system embeds sensors and actuators into its 

modules, called “physical icons,” along with component-specific circuitry and code. 

Systems made with Pixel can interact with the physical environment though 

sensors—devices for detecting physical phenomena—and actuators—devices for 

altering the physical environment. Pixel provides three interfaces for defining 

relationships between sensors and actuators. 

First, users can perform spatial gestures by holding one or two Pixels and 

moving them according to certain patterns. The four gestures that each module can 

recognize are rest, swung, shaken, and tapped to another module (Figure 2). 
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Figure 2: The set of gesture that are recognized by Pixel. 

 

Spatial gestures are used solely for defining relationships between Pixels’ 

connected sensors and actuators. Notably, Pixel doesn’t require the use of an external 

tool to perform gestures, in contrast to both Montemayor’s system, which requires a 

“magic wand” and “wizard hat” (2003), and Chung’s OnObject, which requires 

wearing a ring device with an embedded RFID tag reader to perform gestures with 

objects (2010).  

Pixel’s second interface, the snap connection interface was inspired by the 

MaKey MaKey (Silver et al., 2012). The MaKey MaKey, designed for creating 

custom controllers for computer software (only), allows electronic components to be 

easily connected with alligator clips and emphasizes the use of construction materials 

(e.g., cardboard, tape, glue, etc.). Pixel’s snap interface offers comparable 

functionality, but extends it to support controlling actuators, too. Pixels have two snap 

connection ports and support one sensor and one actuator. Components can be 

connected to ports using the removable “snaps,” to which they can be connected with 

alligator clips (Figure 3).  
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Figure 3: Drawing of Pixel’s “snap connection interface.” The component on the Pixel is the “port” to which the 

removable “snap” couples. The port’s two gray circles represent magnets that hold the snap onto the Pixel. The snap has 

magnets on the opposite side of that shown. The two circular copper features of the snap are designed specifically for 

connection with alligator clips. 

 

 To assist users with connecting components, magnets are embedded into 

snaps and ports. The magnets are oriented so connectors can only be snapped onto 

Pixels one way. 

Pixel diverges significantly from Montemayor’s physical programming tools 

in its use of a graphical programming environment. Although GPEs can distract from 

physical engagement, they seem suitable for expressing information with which no 

single gesture intuitively corresponds. The GPE supports customizing behaviors of 

individual Pixels, connected sensors, and actuators. To maintain the freedom afforded 

by the modular design, the GPE was designed for mobile phones and tablets and can 

be used through touch-based gestures that “directly” manipulate graphical 

representations of a Pixel’s actions. 

 To show how one can use Pixel to make everyday systems, three example 

scenarios are given in the following section. 

Examples of Use 

The three scenarios below show how to build three simple systems with Pixel. 

The scenarios also show how to build the same systems using Arduino. Showing both 
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of these highlights the advantages of using gesture and touch interactions (with Pixel) 

over traditional technical techniques.  

Example 1: Making a Light Switch 

This scenario shows how to build a simple light switch with both the Arduino 

and Pixel. This scenario is based on the common Blink example that serves as an 

introduction to Arduino. In contrast to Blink, this scenario incorporates a physical 

switch to control a light rather than automatically switching the light after a delay. 

Part 1: Making a Light Switch with Arduino 

Imagine that you’re building a simple light switch device with Arduino. To do 

this with Arduino, you must identify the electronic input and output components 

required for the circuit, assemble them in a specific pattern, and program the Arduino 

to control the operation of components. In this situation, you use an input switch, 

output LED, four wires, a USB cable, and computer with the Arduino integrated 

development environment (IDE) installed, as depicted below. 

 

Figure 4: Illustration of the materials needed to make the light switch. Note that no current limiting resistor is used in 

this scenario, for simplicity. 
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You’d like to switch to turn the LED on and off. The electronic components 

need to be assembled in a pattern that will perform the desired light switching 

behavior. You connect the switch circuit as shown below. 

 

Figure 5: Drawing of connecting the components for the light switch. 

 

Understanding even simple circuits like this one requires one to have some 

technical knowledge of electronics. Assembling the circuit with Arduino requires 

several steps, and each involves technical concepts, questions, and decisions. 

Components must be connected in way that matches their polarity. Some 

components, including LEDs, are unipolar, so they can be connected only one way. 

Some components need to be powered (or connected to power, as does the switch in 

this example). What is the power source? Arduino has no battery. It draws power over 

USB from the connected computer. Which components need power? How much (i.e., 

5V or 3.3V)? Which common voltage should be used (i.e., GND)? How are the 

components actually connected to power and how does power relate to polarity? 

These are some basic concerns of working with Arduino. 
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Once assembled, the circuit needs to be programmed to control how the 

switch and LED interact. The program should deliver power the LED when the 

switch is in an “on” position and to cut the power when the switch is “off.” You type 

the program into the Arduino integrated development environment (IDE) with a 

programming language resembling the C programming language. 

 

Figure 6: Drawing of programming the Arduino to control the light switch circuit. The complete program is shown in 

Figure 50 (Appendix A). 

 

 Now that the circuit is connected and programmed, the light switch device can 

be used. You toggle the switch from “off” to “on” as shown below. 

 

Figure 7: Drawing of the complete light switch. 
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Creating devices in this way with Arduino is technically challenging and 

physically constraining. To be appropriate for day-to-day applications, creating a 

simple switch device should be very easy and take no more than minute or two. The 

next section shows how Pixel simplifies creating switches, notably eliminating the 

need for a computer (and external power source) and a textual programming 

language. 

Part 2: Making a Light Switch with Pixel 

The materials required to build a light switch with Pixel are shown in Figure 

9. No computer is needed to program the switch circuit. 

 

Figure 8: Drawing of the materials needed to make the light switch. 

 

 As with Arduino, the electronic components need to be assembled in a pattern 

that will result in expected behavior. A component can be connected Pixel by clipping 

it to a snap connector with two alligator clips, then snapping it to an input or output 

port. You connect the switch and LED in this way, as shown below. 
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Figure 9: Drawing of connecting the input switch (top) and output LED (bottom) for the light switch. The complete 

system is shown in Figure 10. 

 

By default, each pixel functions as a switch. That is, when its input port is 

activate—if a connected circuit is closed—its output port will actively power the 

connected component. As a result, creating the light switch can be done entirely 

through direct physical action. As soon as the switch and LED are snapped onto a 

pixel, you can use the light switch.  

 

 

Figure 10: Drawing of the complete light switch. 

 

In this case, no programming was required to make the light switch. Pixel was 

designed to provide “switch” as default a behavior because it is a design pattern that 

can to control a variety of electronic components. There is no need to program the I/O 

relationship because each pixel has only a one input and one output—their default 

relationship is set automatically. The “switch” behavior was chosen as the default for 



13 

each pixel because it provides immediate utility and is applicable in a range of 

situations. Example 2 shows the use of this primitive “switch” behavior (analogous to 

a control structure) in making a remote light switch. 

Example 2: Making a Remote Light Switch 

This scenario extends the previous one so the light can be turned on and off 

remotely. Again, I show necessary steps to build the system with Arduino before 

showing it is built with Pixel. 

Part 1: Making a Remote Light Switch with Arduino 

The additional materials required to make the switch are shown below. 

 

Figure 11: Drawing of the materials needed in addition to those used for the light switch in the previous scenario. 

 

 To make the Arduino light switch from the previous example controllable 

remotely, the LED can be integrated into a second circuit, and the original light 

switch circuit can be changed to function as a remote control for the new light circuit. 

You make these adaptations as shown below. 
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Figure 12: Drawing of the circuit connections and component placement on the breadboard for the remote light switch. 

Each dotted-line arrow represents a connection (and disconnection, for the LED) that must be made to update the 

circuits. 

 

The programs controlling these circuits must be updated to handle 

communications between the devices. The switch circuit monitors the connected 

switch and sends a command to the light circuit accordingly. When the switch is 

“on,” the circuit sends a command to the light circuit. You make the changes shown 

in the figure below. 

 

Figure 13: Drawing of the steps involved in programming the Arduino. The two separate Arduino sketches are shown to 
represent the two separate circuits in the remote light switch. The programming of both circuits needs to be updated. The 

complete sketches are shown in Figures 51 and 52 (Appendix A). 
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After you update the programs and upload them to the Arduinos, you can use 

the remote light switch. 

 

Figure 14: Drawing of the complete remote light switch. 

 

 This remote light switch is considerably more complex than the one from the 

previous example. The circuitry and programming in this example require much more 

technical knowledge than Example 1, even though the resulting behavior is quite 

similar. Even this very simple use of the wireless communication device requires a 

communication protocol to be designed and implemented for both the switch and 

light circuits. In this example, the switch circuit sends the value “255” to the light 

circuit to indicate that it should should turn “on” its LED. The next section shows that 

making a remote light switch with Pixel is significantly simpler. 

Part 2: Making a Remote Light Switch with Pixel 

 Adapting the light switch made with Pixel to be a remote switch requires only 

one additional pixel. The adaptation can be done in three steps with only physical 

actions (Figure 16). First, you swing the additional pixel in a downward motion (top 

left). Next, you tap the pixel just swung to the other pixel in the light switch circuit 
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(top right). Finally, you unsnap the switch from the light switch pixel and snap it onto 

the other module that you swung (bottom). 

 

    

 

 

Figure 15: Drawing of the sequence of actions to adapt the light switch to be a remote light switch. 

 

The complete remote switch is shown in the figure below. 

 

Figure 16: Drawing of the complete remote light switch. 

 

The process of adapting the light switch to be a remote switch with Pixel is 

relatively simple and involves little in addition to moving the switch to a second 

module. The additional processes are minimal—swinging a module and tapping it to 
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the other—and the actions to carry them out bear some intuitive relationship to their 

effect. Swinging a module engages it, indicating that it is the subject of attention, and 

tapping a module to another indicates that it is the subject of consideration in relation 

to another module. 

Example 3: Making a “Scarecrow Tree” 

This scenario is based on a suggestion of a participant in a Pixel evaluation 

(discussed in Chapter 5). This scenario was chosen to illustrate a realistic everyday 

situation in which an information system could be usefully and uniquely applied. The 

participant characterized the problem as follows. 

“Here’s a problem I have. I have a cherry tree. Just when the cherries get 

real ripe, the birds come and eat them. Now, if I can make some sounds or some kind 

of flashes or something—a scarecrow, right?—then the birds will not come. Now even 

a scarecrow that you have, it has to have moving parts on it, or, they say, you can buy 

a plastic owl and put it somewhere, but if the plastic owl is not moving at all then it 

won’t work. The birds will learn and it’s useless. So, if one had these kinds of things, 

and one of them has a motion detector, gets a motion from the birds around or 

something, then it can signal the other ones which would be on several branches in 

the tree. Something like that.” 

This is illustrated in Figure 17. 
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Figure 17: Drawing of the “scarecrow tree” problem as described by a participant in an evaluation of Pixel. I discuss my 

interaction with the participant in Chapter 5. 

 

Below, potential solutions are illustrated for Arduino and Pixel. These 

solutions extend the remote light switches presented in the previous scenarios. Note 

that while participant P1 envisioned this scenario for Pixel, the solution for Arduino is 

shown for consistency with previous Examples. 

Part 1: Making a Scarecrow Tree with Arduino 

This scenario describes how to change the remote light switch circuits for use 

in making a scarecrow tree. The additional materials needed are a single piezo 

speaker, a resistor, and a jumper wire (Figure 18). 

 

Figure 18: Drawing of the additional materials needed to adapt the remote light switch to play sound. 
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Extending the circuit is relatively simple. To do it, the three components must 

be connected to the “Output” circuit. Likewise, the program needs to be updated to 

control the speaker. 

 

 

Figure 19: Drawing of connecting the speaker into the circuit and programming the circuit. 

 

At this point, only one output device has been built for installation into the 

tree. To match the design adopted for Pixel, three more need to be made. Each of the 

additional devices requires the materials shown below. 

 

Figure 20: Illustration of the materials needed to create each additional “Output” device. 
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Using these materials, the circuit needs to be assembled and programmed. 

This is depicted in the figure below. 

 

 

Figure 21: Drawing of connecting an additional “Output” device. This is done for each of the three additional devices. 

The complete program is shown in Figure 53 (Appendix A). 

 

Once all four circuits are connected, they can function together to create the 

“scare” effect to embed in the tree. This is illustrated below. 
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Figure 22: Drawing of connecting an additional “Output” device. This is done for each of the three additional devices. 

 

At this point, the devices are functionally complete, but they still need to be 

packaged into an enclosure that can be installed in a tree. One possibility is using a 

plastic enclosure. In that case, the plastic would need to be translucent or modified to 

make the light visible and the sound audible. 
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Part 2: Making a Scarecrow Tree with Pixel 

 Making the scarecrow tree with Pixel can be done with five Pixels, one snap 

connector, an input switch, two alligator clips, and a mobile phone with Pixel’s 

graphical programming environment (Figure 23). 

 

Figure 23: The materials used to make the scarecrow tree with Pixel. 

 

One Pixel must be chosen to function as the “remote” to cause light and sound 

to be generated by the other four Pixels. Because each Pixel contains an LED and 

speaker, separate light and sound actuators are unnecessary. An input switch will be 

connected to this module. In turn it will cause the remote Pixels to flash light on and 

off and play a sequence of high pitch tones. 

To start making the system, imagine that you swing one of the Pixels. This 

will function as the “remote” Pixel. Swinging the module engages it, or directs it to 

become available for further gestural interaction.  

 

Figure 24: The swing gesture. 
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Recall that gesturing with Pixel is for defining stimulus-response interactions 

between Pixels. Next, you tap the “switch” Pixel to one of the other Pixels, 

represented as “Output A” in the figure below. 

 

Figure 25: The tap gesture between two Pixels. 

 

This defines stimulus-response relationship between the “Switch” and “Output 

A” Pixels in which the stimulating the “Switch” activates “Output A,” which 

responds by emitting flashes of light and generating a succession of sonic tones. To 

make the “Switch” activate all other Pixels (not just “Output A”), repeat the swing-

and-tap gesture sequence, swinging the “Switch” as before, but tapping it to “Output 

B,” “Output C,” and “Output D” in turn. You do this as shown below. 

 

     

     

     

Figure 26: From top to bottom, this drawing shows the gestures needed to create define the relationships between the 

“Switch” and “Output” Pixels. 
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At this point, stimulating the “Switch” activates all of the “Output” Pixels 

synchronously. To stimulate the “Switch” easily, snap a toggle switch to “Switch” 

(with a snap connector), in the same way as was done in the prior scenarios. You do 

this as shown below. 

 

Figure 27: Drawing of connecting the input switch to the “Switch” Pixel. 

 

The above sequence of swing-and-tap gestures and connecting the toggle 

switch to the “Switch” Pixel concludes the gestural interactions needed to make the 

scarecrow tree. However, as the Pixels are performing their default behavior, 

stimulating the “Switch” activates the “Output” actuators, to which no components 

are connected. The “Outputs” should, instead, display a sequence of flashing light and 

play a series of tones with their embedded LEDs and speakers. This can be done in 

the graphical programming environment. 
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Figure 28: Drawing of the default state of the graphical programming environment. 

 

 When you open the GPE, it appears as shown in Figure 24. It shows a 

representation of the Pixel’s behavior as a sequence of actions, represented as circles, 

ordered clockwise around a circular “loop.” Pixels perform the action sequence 

repeatedly. The actions may be conditional, as represented by the loop segment 

before an action. In Figure 24, the dotted segment represents the “activation” 

condition, satisfied when the Pixel is activated remotely. 

To make the “Output” Pixels produce light and sound to scare birds away 

from the tree, the corresponding actions must be added to their loops, and those 

actions must be set to fire only when the “Switch” activates the corresponding 

“Output.” This can be done through a series of single-finger surface gestures with the 

graphical environment. 
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Figure 29: Drawing of the graphical state of the GPE after adding the light behavior, setting its activation condition, 

adding the sound behavior, and setting it’s activation condition. 

 

To start, you remove the existing action by touching and holding your finger 

to it, then dragging it away from the loop, and finally lifting your finger from the 

action. Only the actions on the loop will be performed. Actions that are not on a loop 

can be added to the same loop again or left off-loop to fade away (removing them 

from memory). 

Now you create the new action sequence on each Pixel. First, you touch and 

hold anywhere off the loop (for about one second) until the possible actions are 

presented, then lift your finger. Second, you touch and drag the “light” action onto the 

loop (shown on the left). By default, actions are unconditional, so the Pixel will emit 

white light. White is the default light color. Third, to make the light action 

conditional, you tap (touch and then immediately lift) the loop segment prior to the 

action. This changes the condition that must be met to perform the action (shown 

second from left). Next, you repeat these three steps for the “sound” action (the result 

is shown third from the left), adding it to the loop. 

These steps must be repeated on the remaining three “Outputs.” Swiping left 

and right across the GPE changes between loops for different Pixels. To complete the 

scarecrow tree, you swipe left three times, each time repeating the steps done above. 

Once completed, the Pixels can be installed into the cherry tree. The complete 

scarecrow tree is depicted in Figure 30. 
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Figure 30: Drawing of the complete scarecrow tree built as built with Pixel. 

Design Motivation 

This thesis was motivated by the recognition that our experiences are 

increasingly mediated by and intertwined with technology, but, paradoxically, the 

ability to create, shape, and control these experiences is accessible only to those with 

a technical understanding of systems. This became apparent over the course of a 

number of personal experiences working with young people in museums and 

workshops, and from participating in hackathons. My exploration of alternatives to 

the technical tools for creating systems heavily guided by principles of constructionist 

learning theory, the approach of critical making (Ratto, 2011), physical computing 

(O’Sullivan & Igoe, 2004), as well as the “do it yourself” spirit of hacker and maker 

subcultures (e.g., Hatch, 2013).  

Design Approach 

I designed Pixel “in the wild” over the course of eighteen months while 

participating actively in communities of hackers, makers, artists, and educators. This 
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gave me many opportunities to observe and interact with many people experimenting 

with system building tools, including electronics projects, software experiments, and 

artifacts made of physical materials such as cardboard. Computer programming, 

electronic circuit building, and physical materials were common elements in these 

projects. In the case of hackers, emerging technologies were commonly used in 

projects (e.g., smart watches, virtual and augmented reality head mounted displays, 

and wearable sensing devices). 

To a gain better understanding of the challenges encountered by the children, 

hackers, and other makers “in the wild,” I experimented with a range of popular and 

emerging hardware platforms, breakout boards for components, and fabrication 

techniques while prototyping Pixel. While this allowed me to encounter more 

challenges first-hand, it was largely guided by the search for a combination that fit the 

design goals for Pixel. 

Evaluation 

To evaluate the design of Pixel and gain a sense of its feasibility as a tool for 

creating everyday systems, I conducted three workshops, each an hour long, at KID 

Museum in Bethesda, Maryland. These workshops were designed based on prior 

experience facilitating workshops, and similar to Montemayor’s brainstorming 

sessions with children (2002) and the workshop-based deployments by Silver et al. 

(2012) and Buechley et al. (2006). In each workshop, I demonstrated Pixel and 

facilitated a hands-on, informal discussion about its design, how it could be used, and 

how its design could be improved. I encouraged participation from participants as 

design partners. I recorded video and audio of each session, which, along with my 
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direct observations and notes were used for my analysis and discussion. To gain 

greater perspective of how Pixel might be used by facilitators in making-oriented 

learning contexts, such as afterschool workshops, I conducted an informal focus 

group of “coaches” (facilitators) from FutureMakers, an organization that runs 

making-focused workshops in schools in the Washington, D.C. metropolitan area. 

During the group interview, I demonstrated Pixel and encouraged the coaches to play 

with it. This session was audio recorded. 

In the workshop, participants created basic artifacts including a remote 

controlled light switch (as was illustrated previously) and a distributed, multi-person, 

light-based call-and-response game. Together, the participants in each of the museum 

workshops were able to create and change I/O channel mappings with swing and tap 

gestures, and connect components with alligator clips after a single demonstration. 

Multiple participants suggested changes to the Pixel design, including size, the 

addition of a wrist strap, and additional case options, signifying an interest in deeper 

physical interaction with the Pixels. In the focus group with facilitators, participants 

expressed enthusiasm for physical engagement as well, particularly to support 

learning computational thinking through physical movement, for example, “You 

could get kid who are kinesthetic learners to learn about something like programming 

from moving,” and “It’s coding at a human level.”. They expressed far less interest in 

connecting electronic components to Pixels and programming them graphically than 

Pixel responsiveness to movement. Taken together, though brief, these evaluations 

help to highlight the benefits of Pixel and uncover important areas for future work. 

Evaluations are discussed in Chapter 5. 
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Contributions 

This thesis synthesizes concepts from prior research in tangible user interface 

design, physical programming, gestural interaction, circuit construction kits, and 

graphical programming environments, guided by personal experiences facilitating 

museum exhibits and workshop activities. It offers the following contributions:  

It introduces Pixel, a tool designed to support the creation of interactive 

information systems for everyday application. This platform consists of a single 

module (i.e., Pixel) design for building electronic circuits and programming 

computers. This enables constructing interactive systems with a programming 

environment that is distributed throughout the physical space encompassed as well as 

a mobile device that can connect to it. 

It introduces a “loop” representation of module (i.e., Pixel) behavior with 

which creators can interact in real-time using the graphical and tangible 

interfaces. This loop construct repeats automatically and continuously, providing a 

context for transforming system behavior in real time, between visual and gestural 

interfaces. This loop construct provides a common, shared communication context 

between for collaborative human and computer programming. This loop, inspired by 

the relationship between the sculptor and the potter’s wheel, is a variation on the 

“event loop” as in Processing and Arduino. 

It introduces a minimal gesture language for creating and transforming 

network structures for logically connecting sensors and actuators. This four-

gesture language provides a way to connect electronic components that eliminates 

some of the technical aspects of connecting components, such as running wires, 
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writing computer code, or using breakout boards for communications devices. In 

contrast to other gesture languages for defining relationships between sensors and 

actuators and gesture interfaces, it does not require the use of an external peripheral 

for programming. This enables users to freely move through their environment and 

multiple users to use the interface simultaneously. 

It presents a graphical programming environment design for touchscreen 

devices. The graphical environment is demonstrated for programming module (i.e., 

Pixel) behaviors, including connected sensors and actuators, in real time. This 

language was designed to be minimal and compliment the gestural language. It is 

designed for mobile devices for use with one finger. The touch-based interaction 

design was inspired by the way a sculptor shapes clay with touch.  

Overview of Thesis 

This thesis is organized is follows: Chapter 2 provides background on 

physical computing and related challenges. Chapter 3 describes the academic 

literature and commercial development on tangible user interfaces and tangible 

programming languages, graphical programming languages, gestural interaction, and 

physical computing. Chapter 4 specifies design and implementation Pixel. Chapter 5 

describes the three workshop evaluations conducted at KID Museum and the group 

discussion with FutureMakers facilitators. Chapter 6 presents a discussion of the 

evaluations presented in Chapter 5, conclusions drawn, and offers direction for future 

efforts.   
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Chapter 2: Motivation and Background 

Though this research builds on past research, it stems from observations made 

while facilitating activities and exhibits at The Tinkering Studio in The 

Exploratorium in San Francisco, for KID Museum in Washington, D.C., at The 

American Visionary Art Museum in Baltimore, and in collaboration with 

FutureMakers. These experiences provided the formative context for this thesis, 

exposing physical constraints and technical challenges faced by children (and some 

adults) that took part in them. The observations that motivated the design aims for 

Pixel are enumerated below. 

Confinement to the physical space near electronic and computing tools. 

Participants rarely built beyond the small space around the circuits they built or 

computing tools they were using. While participants appeared to be anchored to the 

computer, they also didn’t seriously consider the possibility of moving away from the 

computer to build a large, expansive, or distributed, multi-part object. It seemed that 

designing the tools differently might have freed participants to consider such 

possibilities. 

Fixation on the software environment. Tethered to a computer, participants 

would often give their attention to graphical software environments displayed on-

screen, devoting much of their effort to drawing or adjusting the appearances of 

graphical objects, mostly overlooking their behavior. 

Heavy reliance on the screen. Perhaps due to an increased interest or level of 

familiarity using computers, the screen absorbed children, perhaps because they 

found it was more engaging than programming or building with physical materials. 



33 

The challenges that arose were more often technical—concerning the tools 

being used—than conceptual or imaginative—concerning the thing being built. 

Generally, children seemed at ease with imagining what to do, but were puzzled by 

the software and hardware used.  

I participated in several collegiate hackathons in search of additional examples 

of these challenges, hoping to gain a more comprehensive understanding of them. 

Chronologically, I participated in HackMIT, HackRU, MAKEwithMOTO Media 

Lab, hackTECH, BoilerMake, PennApps, and HackRU (again). I also co-organized 

and participated in Bitcamp. These events, unlike museum exhibits, took placed over 

the course of 24, 36, or 48 consecutive hours, and involved about 500–1,500 hackers 

per event, with the exception of MAKEwithMOTO Media Lab, which involved about 

10 participants divided into 3 teams. 

Participating in these events provided me with a rich context for observing 

and collaborating with fellow hackers and enabled me to gain additional perspective 

on the challenges (listed above) faced by children during the prior summer. Like the 

children facilitated at museums, hackers also fixated on the software environment. 

However, the reasons seemed different. Unlike the children’s projects, the majority of 

hackers’ projects seemed to be software-only. Some hackers built circuits, but they 

appeared to focus on “raw electronic functionality,” giving little attention to their 

usability or applicability. Like the challenges encountered by children in museum 

exhibits and workshops, most that arose for hackers appeared to be technical, not 

conceptual or imaginative. 
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To supplement my investigation at hackathons, I helped facilitate senior 

undergraduate art students in a basic electronics workshop led by Professor Shannon 

Collis in the Department of Art at the University of Maryland, College Park (UMD). 

The students in the workshop had little or no experience working with electronic 

circuits, so this provided additional contrast to museums and hackathon experiences. 

Finally, Conway’s law (Conway, 1967) inspired me to exercise my own 

conception of the effect of environmental and social context on the kinds of 

challenges that arise while creating systems. I deliberately worked on Pixel at weekly 

“hack nights,” organized by a group of student hackers (Terrapin Hackers), in 

hackerspaces, startup incubators, and co-working spaces, most notably, Collider and 

Startup Shell at UMD. I also set up makeshift workspaces on several-hour coastal 

train trips, international flights, at hostels, on apartment floors, at museums in San 

Francisco, at coffee shops in Lincoln, Nebraska and South Korea, and in a hostel in 

Aarhus, Denmark. These exercises gave me a visceral understanding of some 

physical constraints that result from the design of existing tools (e.g., Arduino), and 

led me to develop a graphical programming environment to supplement gestural 

programming. 

Observed Challenges in Physical Computing 

Over the course of the above activities, I began to conceptualize the process of 

creating systems as physical computing, as shown in Figure 32. This model highlights 

the tension between working with physical materials, building circuits, and 

programming organizing it into three general activities. 
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Figure 31: In general, physical computing is carried out through some combination of manipulating physical materials, 

computer programming, and circuit building. 

 

Throughout my experiences working with children and participating in 

hackathons, I organized the observed challenges of physical computing into the 

following categories: 

Physical computing is a multifaceted activity composed of disparate tasks, 

tools, and materials. It involves manipulating a variety of physical materials to form 

objects and environments, assembling electronic circuits and embedding them 

objects, and computer programming. Each of these involves a different set of skills, 

materials, and tools. 

Not only are the areas of physical computing disparate, but also they tend 

to be technical and abstract. Individually, these are difficult to learn because they 

require separate skillsets and specialized conventional knowledge. In particular, 

circuitry and programming are highly technical and require both the corresponding 
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technical expertise to carry out the activity as well as some understanding of the 

underlying principles involves. Some of these principles are procedures, loops, 

conductivity, and current, to name a few. The need for such expertise makes them 

especially challenging to learn. 

Individual activities are hard, but moving between them poses additional 

challenge, even for experienced users. Moving between these entails learning, 

managing, and integrating the individual processes and accounting for the context 

where they take place. This overhead imposes an additional cost on those doing it. 

These observations are the basis on which I formulated the design aims for 

Pixel, discussed in the following section. 

Design Aims and Methods 

The aims of this thesis are the following: 

Holism. Physical computing draws on an assortment of tools, materials, and 

methods from domains separated by technical skillsets, principles, and methods. 

Although achieving a singular approach to physical computing may be a dubious 

undertaking, there are clear opportunities for bringing it into better alignment through 

holistic design. 

Computing tools that require physical connection to a computer can anchor 

users the space near it, thereby limiting their exploration of possible system designs. 

Pixel aims to support situated use by removing “anchors,” including data transfer 

cables that tether users to computers too bulky to allow free movement in the 

environment. In particular, Pixel is designed to support distributed programmability 

and eliminate physical tethers. 
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Material engagement. This thesis strives for holistic design with the 

stipulation that creating interactive systems is an embodied phenomenon (Dourish, 

2001). Specifically, the designs explore concepts of material engagement theory, 

which posits that “[h]uman thinking is, first and above all, thinking though, with, and 

about things, bodies, and others” (Malafouris, 2013, p. 77). 

Inspired by experiences building interactive systems with children, I design 

Pixel to be nontechnical, trying to displace requirements for domain-specific 

technical knowledge in tools. Furthermore, this design encourages engagement with 

the physical environment and experimentation with materials through direct 

interaction. 

Summary 

In Chapter 4, I continue this discussion by outlining the approach taken in this 

thesis to address these goals. In the following Chapter, discuss work related to 

physical computing, discussing how it supports traditional physical computing and 

comparing it to Pixel from this more holistic perspective. 
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Chapter 3: Related Work 

This thesis builds on decades of research exploring creativity support tools for 

making interactive physical systems. Pixel relates to rapid prototyping tools, 

construction kits for electronics and computing, tools for creating gestural interfaces, 

sensor-based programming by demonstration, particularly for gestural interaction, and 

embedded computing platforms. In this chapter, I discuss developments in these areas 

as they relate to Pixel. 

Physical Computing 

As highlighted in the previous chapter, physical computing, while supported 

with many tools, is complex and technical. This section summarizes development 

boards and their programming environments, rapid prototyping tools for building 

interactive systems, and plug-and-play hardware that simplifies use of electronic 

peripherals in computing. 

Development Boards and Platforms 

Much of the research into development platforms has focused on reducing 

technical challenges posed by system-building tools. The Arduino, a popular 

commercial development platform, provides a microcontroller development board 

and integrated development environment (IDE) that supports a programming 

language derived from C/C++ and updated for use in embedded computing projects 

(Mellis et al., 2007). This language simplifies common operations such as reading 

and writing analog and digital data from and to pins to single-line operations, making 
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interfacing with sensors and actuators easier. The Arduino IDE is based on 

Processing (Reas & Fry, 2006) and is popular among artists, hackers, students, 

hobbyists, and engineers with support from an enthusiastic user community. 

Arduino resembles Phidgets, a system for “everyday programmers” that 

modified BASIC for use with custom electronic components (i.e., “physical widgets”) 

prepared for easier connection (Greenberg & Fitchett, 2001). Similarly, Logo adapted 

Lisp for use in controlling the robotic “floor turtle” (Papert, 1993). Recently, 

i*CATch, a plug-and-play construction kit explored this approach to simplify 

wearable and physical computing. Rather than representing programs to users as text, 

the i*CATch IDE denotes program elements graphically in a hybrid flow-based 

graphical programming environment (GPE) that generates textual code for the 

Arduino IDE (Ngai et al., 2010). 

In contrast to the i*CATch IDE, Pixel provides a custom minimal GPE design 

for programming uniform tangible modules to which off-the-shelf electronic input 

and output (I/O) components can be connected with alligator clips. 

Rapid Prototyping Platforms 

Support for rapid experimentation with a variety of system designs is 

increasingly common feature of tools in physical computing. 

The d.tools and BOXES systems are two such systems. d.tools is a statechart-

based visual design tool for early-stage prototyping in design (B. Hartmann et al., 

2006). BOXES focused on rapidly exploring interactive physical forms early in the 

prototyping process (B. Hartmann et al., 2006). Whereas d.tools fosters the 

development of higher fidelity prototypes through iteration, BOXES focuses on use 
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of everyday materials such as cardboard, tape, thumbtacks, and glue, to build early, 

functional lower-fidelity prototypes. While Pixel shares features with each of these 

systems, it relates most closely to BOXES. Like BOXES, Pixel is designed for 

building with everyday materials and supports digital input through capacitive touch 

sensing. However, Pixel, unlike BOXES, supports connection with output devices, 

and critically for its design, sans tethering to a desktop or laptop computer at any 

point in the building process.  

Plug-and-Play Hardware 

The d.tools design support custom plug-and-play hardware, similar to 

Phidgets (Greenberg & Fitchett, 2001). Both systems leverage plug-and-play 

hardware interoperating with desktop software, however, only d.tools provides a 

graphical programming environment. (Phidgets provides a textual language 

specialized for use with its plug-and-play components, as mentioned previously.) The 

GPE provided by d.tools enables designers to program prototype hardware by 

defining system states and defining control flow through transitions established by 

connecting input components on a (source) statechart to another (destination) 

statechart through drag and drop operations performed with a mouse. The input 

triggers the transition upon activation. Hardware prototypes are made by connecting 

devices to a central hub, connected over USB to the computer running the d.tools 

software. Pixel has no central control point, requires no tether to a desktop computer, 

and uses common I/O components. To balance between the convenience of plug-and-

play devices and the availability of off-the-shelf components, Pixel provides 
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“magnetic snap connectors” for providing both ease of use in connecting components 

and convenience of readily available parts (discussed in Chapter 4). 

Tool and Construction Kits 

Inspired by the ease of using construction kits like LEGO, researchers have 

developed construction kits for building electronic circuits (e.g., littleBits) and 

embedded computer programming (e.g., Modkit Micro). These have broadened 

participation in physical computing to hobbyists, students, and designers. Pixel differs 

from many construction kits in that it provides only a single unit module design. 

Electronic Circuit Kits 

Circuits are systems of special-purpose components, each a small system of 

materials that define a specific electronic operation. Circuits are built by patterning 

components to control the operation of multiple components. Building circuits 

requires technical skill special with components ranging from understanding 

theoretical models (e.g., Ohm’s law) to experience applying conventional practice 

(e.g., measuring voltage with a multimeter).  
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Modularity: In the 1960s, the Lectron electronic building set, or “Electronic 

Dominoes,” was introduced to reduce the complexity of working with electronic 

circuits (Greger, 1965, 1969). The Lectron set is modular and abstracts electronic 

components, including resistors, capacitors, button switches, lamps, and even 

transistors1, simplifying circuit bulding. Modularity is a key design feature in more 

recent kits such as Tower (Lyon, 2003), Cube-in (Gross, 2014), SAM (“SAM,” 

2014), as well as Pixel. Tower is designed with a number of “stackable” modules that 

can be layered onto one another to extend system functionality. Cube-in, a physical 

computing kit for children, adopts modules as cube-shaped “plugs” that are inserted 

into corresponding sockets a central base to form program expressions. SAM and 

Pixel incorporate modularity similar to each other, however SAM’s modules are 

embedded with specific components (like littleBits), whereas common components 

can be connected to Pixel. 

Moreover, unlike these recent kits, Pixel has one module design. While many 

systems incorporate modularity, relatively few adopt a unit design. Commonly, 

modules have a one-to-one correspondence with electronic components, as in 

                                                

 

1 It is interesting to note that the first commercial silicon transistor was produced in 1954 by Texas Instruments. 
The Lectron set made this new technology available as one of its bricks. Likewise, the first interlocking Lego 
began production in 1949. One can speculate that the modularity and ease of use of Lego bricks may have 
influenced the modular design of the Lectron set. 
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littleBits (Bdeir, 2009), LightUp (Chan et al., 2013), and SAM, although perhaps with 

support circuitry for interfacing with other modules. With Pixel, as with BOXES, 

common off-the-shelf components and capacitive touch can be used to connect input 

components. For Pixel (but not BOXES), common electronic output components can 

be used as well. 

Kits for Children and Learners: Features of the Lectron, also found in 

littleBits and LightUp, simplify aspects of electronic circuit building for children 

(e.g., Johnson & Thomas, 2010). These kits have been designed primarily for use 

with their respective proprietary components, not common, widely available 

electronic peripherals, limiting their extensibility. Others have simplified interfacing 

with prototyping platforms to ease connecting physical materials and electronics. For 

example, MaKey MaKey allows children to create electronic switches and improvise 

input devices to the computer using a wide range of conductive materials, including 

bananas, copper tape, wire, fruit, and skin (Silver et al., 2012). Pixel takes this 

concept further by additionally allowing children to connect output devices to 

modules (in addition to inputs) to create conditional I/O interactions and parallel 

sequences of conditional behaviors (Chapter 4). 

Kit Module Design: Like the Lectron set, SAM consists of a number of 

modules, each a single electronic component, such as a button, light, servo, slider, tilt 

sensor, DC motor, light sensor, thermometer, and “cloud” modules. littleBits and 

LightUp also include modules associated with different electronic components. Pixel 

supports connection to one input and one output component using conductive 

materials such as alligator clips. Compared to the MaKey MaKey, Pixel supports an 
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output device and does not rely on an external computer to operate. The input device 

connected to the MaKey MaKey, itself connected to a computer over a physical USB 

connection, is recognized as a keyboard and mouse on the computer. Like MaKey 

MaKey, BOXES, and d.tools must be physically connected to a computer2. 

Communications: SAM’s modules communicate with one another wirelessly 

(using Bluetooth Low Energy). Pixel’s modules communicate with one another 

wirelessly over a mesh network and with a mobile device running the GPE over Wi-

Fi. Pinoccio (“Pinoccio,” 2014), an Arduino-like platform also supports mesh 

communication. 

Programming: SAM, Pinoccio, and Pixel can be programmed wirelessly, and 

to varying degrees, in real time. SAM uses a flow-based, graphical programming 

language in which the modules are rendered graphically and can be moved about a 

2D plane, can be connected by dragging from one component and dropping onto 

another (using a pointing device such as a mouse), generating JavaScript code as it 

does so. Programs can also be coded directly in JavaScript. Pinoccio is programmed 

using the Pinoccio HQ, a Web-based interface that provides limited real-time on-

                                                

 

2 It is important to note that a separate peripheral device can add Bluetooth support to the MaKey MaKey. Using this peripheral 
involves updating the firmware of the MaKey MaKey to interface with the Bluetooth peripheral and communicate with a 
computer as a wireless keyboard. 



45 

board LED and pin I/O control, a shell interface called ScoutScript, and a RESTful 

API available for JavaScript. Pixel is also wirelessly programmable. In contrast to 

SAM and Pinoccio, Pixel allows basic I/O mappings to be programmed with gestures 

in real time, requiring no screen. 

Tethering to External Computer: It appears that a computer running the 

SAM programming environment is needed to orchestrate the functioning of SAM 

modules. However, like both Pixel and Pinoccio, the modules are battery powered 

and can be recharged with a USB cable. Pixel does not rely on any external computer 

for its operation, aside from using the graphical interface to change system behavior. 

Like SAM, Pixel consists of modules that are battery powered, allowing them to be 

used away from a computer or other power source. BOXES, d.tools, and i*CATch 

require a tethered computer to program modules. Phidgets requires tethering to an 

external computer to perform processing. 

Note that at the time of writing this thesis, SAM was not yet commercially 

available and little technical detail is available about it beyond news articles. As a 

result, I was unable to determine absolutely whether a computer running the SAM 

programming environment was needed, but it does seem to be the case based on 

several news articles. I was also unable to determine if each module included an 

embedded computer, and therefore, if so, whether the embedded computer could be 

programmed using SAM’s graphical programming environment. Finally, I was not 

able to determine whether the SAM modules, once programmed, could run as a 

standalone system without a computer running the SAM programming environment. 

These relate to considerations fundamental to the design of Pixel and are important 
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points of comparison between the systems that should be considered by the critical 

reader, if feasible.  

Building Bricks and Magnetic Coupling: The Lectron set also introduced 

some features that are still used in physical computing tools today, including Pixel. 

These include a “building brick” module design, magnetic attraction to produce “the 

necessary contact pressure between the contact plates of the two bricks” to facilitate 

connecting components, and abstract representations of technical components 

contained in modules (in its case, graphical symbols for notating electronic circuit 

diagrams). In contrast to Pixel, the Lectron set includes no brick containing a power 

source. Instead, it includes a brick to which external power source could be 

connected, limiting its use for physical computing. 

Material Manipulatives & Digital Manipulatives 

Interacting with artifacts and environments has long been studied in education 

as a possible way to enhance learning. In 1837, Friedrich Fröbel, the inventor of the 

first kindergarten in Germany, designed a diverse range of physical objects to help 

children learn and to recognize the common patterns and forms found in nature 

(Brosterman, 1997). These material manipulatives served as “thinking tools” by 

providing a “medium” for children to explore abstract concepts such as shape, size, 

and color. 

Prompted by the promise of material manipulatives such as to help engage 

children in learning and explore their interests, researchers are investigating the role 

of manipulating materials with embedded computing (Raffle, 2004; Resnick et al., 

1998; Zuckerman, Arida, & Resnick, 2005). In particular, researchers have looked at 
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how the computer can be used to create digital manipulatives that might help children 

discover and create patterns in the physical and digital worlds. Digital manipulatives 

combine elements of creating hybrid digital and physical systems in attempt to help 

children learn about dynamic systems through building and play (Resnick et al., 

1998). 

Children commonly use digital manipulatives in museum exhibits and after-

school workshops. Researchers have invented digital manipulatives for finding novel 

approaches to help children learn about complex concepts in mathematics, 

programming, and robotics (respectively, Papert, 1993; Resnick et al., 2009). 

MIT has pioneered much of the research into digital manipulatives, including 

a number of “programmable bricks,” brick-shaped digital manipulatives for 

composing computer programs through physical construction. McNerney discusses 

this work in the larger context of educational computing research done at MIT (2004). 

The Cricket platform, developed in the late 1990s, provided new direction for 

programmable bricks, being based on the notion that computational processes should 

be made visible and manipulable. The Cricket was the first in a family of general-

purpose programmable computing platforms designed for use in learning about 

science and engineering. The Cricket provided two ports for connecting sensors and 

two output ports. It was programmable from a computer using a dialect of the Logo 

programming language specialized for the platform. Logo programs are 

communicated to the Cricket by way of an infrared transceiver tethered to the 

computer. The Cricket inspired a number of similar platforms based on its driving 

concept—including the HandyBoard, PicoCricket—and later extensions to the 
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concept—exemplified by MetaCricket, PicoCricket, Phidgets, and the GoGo Board. 

These systems are discussed by Blikstein (2013) and McNerney (2004).  

Programming Interactive Systems 

One of the earliest educational computing platforms focused on combining 

computing and building was the LEGO Mindstorms Robotics Invention System 

(McNerney, 2004). Mindstorms was designed around a new brick into which a 

battery-powered computer was integrated. The system introduced new sensor and 

actuator pieces connectable to the central brick using the same connection interface 

used by traditional bricks. Mindstorms is programmed in a graphical flowchart 

language designed specifically for use with the system. The graphical language 

presents programing constructs as jigsaw puzzle pieces that only allow syntactically 

acceptable connections to be made. 

Gestural Interaction and Programming 

Gesture been found to be tightly related to language development (Iverson & 

Goldin-Meadow, 2005), to augment mental representations of explained tasks by 

adding action information (Beilock & Goldin-Meadow, 2010), and to influence the 

actions of others (Cook & Tanenhaus, 2009). Gestures affect and can aid in learning 

mathematics (Novack, Congdon, Hemani-Lopez, & Goldin-Meadow, 2014) and they 

may lead to the construction (rather than reflect) of certain mental representations 

(Trofatter, Kontra, Beilock, & Goldin-Meadow, 2014). 

Gesture is a natural and intuitive part of every human discourse. As such, 

supporting the use of gesture to interacting with computers has appealed to 
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researchers for decades and continues with advancements in sensing technologies. 

Topobo is a distributed, modular set of components designed to learn about the form 

and behavior of dynamic systems (Raffle, 2004). Topobo consists of a number of 

active and passive tangible components that can be snapped to one another to create 

robotic “animals,” geometric configurations, and abstract forms. The active 

components contain kinetic memory enabling them to be programmed by 

demonstrating behaviors through manipulating them by hand. This technique records 

motions performed (demonstrated) and plays them back, animating the built form. 

Topobo’s record and play model was based on that of the curlybot (Frei, Su, Mikhak, 

& Ishii, 2000). 

Like the physical programming tools introduced by Montemayor (2003), Pixel 

supports the use of gesture for defining interactive relationships between sensors and 

actuators (those components that are connected to Pixels). However, unlike 

Montemayor’s tools, Pixel does not require the use of external tools (i.e., using a 

“magic wand” to do gestures while wearing a “wizard hat”) for the performance of 

gestures. Instead, users can directly swing, shake, and tap Pixels together to create 

these relationships. Gestural interactions are intended to compliment the 

manipulations involved in connecting electronic components to the modules during 

system building. Pixel’s gestural interaction design is closely related to OnObject 

(Chung, 2010) and The Toolstone (Rekimoto & Sciammarella, 2000). Below, I 

discuss these as they relate to Pixel. While discussing OnObject, I also relate it to 

MaKey MaKey to help point out the differences between the tools. 
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OnObject is a tool for creating gestural interfaces using everyday objects, 

including homemade objects. Although OnObject does is not for creating systems 

with sensors and actuators, it does use a set of gestures virtually identical to those 

supported by Pixel, but to record and trigger sound samples associated with gestures 

performed with specific objects. 

While OnObject is used to create interactive gestural interfaces, MaKey 

MaKey is for creating tangible interfaces. Both of these are similar to Pixel in that 

they are tools for creating systems, however they differ in the methods by which users 

create interfaces with them, the kinds of interactions afforded by the built interfaces, 

as well as in their underlying interaction mechanisms. OnObject produces a sound in 

response a particular gesture, and like the MaKey MaKey, it can emulate a key press 

on the USB-connected computer, in turn, affecting applications monitoring keyboard 

input. As discussed previously, Pixel can be used to create interactive input interfaces 

like MaKey MaKey, but its output is a built system rather than software on a 

computer. Similar to the MaKey MaKey, Pixel allows users to incorporate their body 

into circuits. However, Pixel uses capacitive touch sensing rather than high resistance 

switching to implement digital switching. 

Graphical Programming Environments 

Pixel offers a graphical programming language, accessible from mobile 

devices, for finely tuning the behavior of individual modules, systems of modules, 

and connected peripherals. 

Squeak eToys is an environment for graphically authoring multimedia objects 

such as custom digital drawings, images and videos, text, and sound (Kay, 2005). 
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Sqeak eToys provided conceptual inspiration for Pixel. Pixel is similar to Sqeak 

eToys in that it provides an environment for creating objects and exposes operations 

to transform their behavior in situ. In contrast to Pixel, the Sqeak eToys environment 

is displayed graphically on a computer screen and is designed for use with a keyboard 

and mouse. Simple objects from geometric shapes to representational objects (e.g., 

cars) are provided for modification and use in projects. Custom objects are made with 

simple drawing tools and object-specific operations, represented graphically, for 

changing the properties and behavior of objects. Pixel further differs from Sqeak 

eToys in that it supports building physical objects rather than virtual objects and 

exposes operations for transforming object behavior through physical modules and on 

a mobile device. 

Scratch is a graphical programming language designed to give children the 

ability to create and share interactive stories, animations, and games (Resnick et al., 

2009). Scratch provides a language comprised of graphical block elements that fit 

together in a similar fashion as pieces in a jigsaw puzzle. Scratch provides a “stage” 

that shows the graphical output drawn by the scripts, an “sprite” editor that can be 

used to create, edit, and animate graphical sprites, and a script editor. There are many 

scripts available for use, including those for controlling the motion and appearance of 

sprites, creating turtle graphics, control structures, basic sensing, logical operators, 

events, and data such as variables. Scratch has been successfully introduced many 

children to programming concepts in an engaging manner (e.g., Franklin et al., 2013). 

While Scratch provides little native support for connecting to and control 

peripheral devices or programming physical computing platforms, it has been 
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extended to include some support for both of them. For example, Scratch can be 

extended with a plugin to interact with the LEGO WeDo kit. 

Scratch was extended to support the LEGO WeDo construction kit, designed 

for use by children (aged about 7–11) in constructing simple robots. While designed 

for robots, it can be used for more general physical computing projects. The WeDo 

kit includes motor, light, distance sensor, tilt sensor, and a hub for connecting to a 

computer (running Scratch) over USB. These parts are physically designed to be 

compatible with LEGO kits. Each one consists of a connector—for connection to the 

hub part—and an electronic component separated by a relatively short length of wire. 

While these parts can be combined to form many objects, the projects achievable with 

the kit are quite limited in the context of general physical computing.  

The functions of WeDo parts are accessible in Scratch as “Extension Blocks” 

(enabled by installing an extension) and can be combined with the existing Scratch 

blocks to create interactive experiences incorporate both the WeDo bricks and 

graphical output rendered in Scratch. 

Scratch has been adapted specifically for use with commonly used physical 

computing platforms, including the Arduino. It has been highly influential in the 

design of a number of other GPEs for controlling peripheral devices that have 

simplified aspects of programming in physical computing. Modkit (and 

Scratch4Arduino), a GPE heavily influenced by Scratch, suggests that it simplifies 

some programming tasks on the Arduino (Booth & Stumpf, 2013). 

The extensiveness of the design language popularized by Scratch is helpful in 

that it can help those already familiar with Scratch. Some of these also improve on 
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aspects of the Scratch interface. For example, Tickle implements the interface for 

tablet devices affording mobility and interaction through touch (“Tickle,” 2014). 

Tickle is a tablet application that extends and adapts the Scratch design quite closely 

(“Tickle,” 2014). Tickle is designed specifically for mobile devices and incorporates 

multi-touch screen-based gestural interaction. It also introduces high quality graphics 

(e.g., new characters) and sound effects. Tickle can be used to create full-screen 

interactive graphical experiences and provides limited support for programming of 

physical systems (including RC drones). 

Unlike the Scratch family of programming environments, Pixel explores a 

new approach to graphical programming that more easily affords real-time interactive 

programming (or live programming) of system behavior. In particular, Pixel offers a 

continuous looping context into which actions are placed. This allows system actions 

to be added, transformed, and removed in real-time in a simple manner using only 

touch-based interactions on the graphical language. This is similar to the dataflow 

model of graphical programming languages. 

Summary 

The range and variety of related work presented in this chapter illustrate the 

richness of tools for building interactive systems, and capture some of the breadth in 

approach to physical computing. I provided examples of work closely related to Pixel, 

specifically focusing on construction kits and programming methods offered by 

existing tools, orienting them in relation to Pixel, highlighting their weaknesses in 

supporting users to freely explore their physical environments and build systems that 
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extend through environments without the need to be tethered to a computer at any 

point during the creative process.
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Arduino 
(Mellis et al., 2007) 

Scratch 
(Resnick et al., 2009) 

MaKey MaKey 
(Silver et al., 2012) 

d.tools 
(Hartmann, 2009) 

OnObject 
(Chung, 2010) 

Topobo 
(Raffle, 2004) 

StoryRooms 
(Montemayor, 2003) Pixel 

Typical 
User 

Hobbyists, artists, 
hackers 

Children Children Designers without 
specialized 
engineering or 
programming 
knowledge 

Casual users (e.g., 
parents and preschool 
children)  

Children Children Everyday users 

User Goal Construct interactive 
and autonomous 
objects 

Author interactive 
multimedia with 
basic interaction with 
the environment 

Construct a custom 
controller for a 
computer with 
common materials 

Rapidly prototype a 
functional interactive 
product  

Turn objects into 
gestural audio 
interface 

Construct and define 
the behavior of 
robotic creatures that 
resemble animals 

Create interactive room-
sized environments to 
facilitate storytelling 
experiences 

Create interactive systems for 
use in an everyday situation 

Technical 
Knowledge 
Requireme
nts 

Arduino 
programming 
language, circuit 
design, familiarity 
with desktop 
computing 

Basic programming 
concepts 

Basic computer use, 
web browsing 

Familiarity with basic 
circuitry and statechart 
representations of 
system behavior 

None, basic GUI to 
map additional 
responses 

None None None 

Physical 
Constraints 
Imposed on 
User and 
System 
Design 

Tethered to computer, 
fixes attention on 
screen during 
programming 

Fixes attention on 
screen during 
programming 

Only supports 
making controllers 
for computer 
software 

Tethered to computer, 
anchored to single 
location 

Tethered to computer 
(prototype), must wear 
ring device, anchored 
to a location 

(System) Can only 
interoperate with kit 
parts 

Tethered to computer 
(prototype), must wear a 
wizard hat and use 
magic wand for 
programming 

Relatively large Pixel size can 
make them difficult to embed 
in objects 

Modalities 
Supported 
for Making 
Systems 
(Programm
ing, 
Circuitry, 
Constructio
n) 

Connecting electronic 
components to form 
components, 
programming their 
relationships with a 
keyboard (and mouse) 

Connect graphical 
components together 
like jigsaw puzzle 
pieces with mouse 
and keyboard 

User creates input 
devices and 
connects them to a 
computer  

Drag and drop mouse 
and keyboard actions 
with statechart editor, 
connecting plug-and-
play electronic 
components 

Attach RFID tags to 
an object, wear ring 
device, connect the 
device to a computer 

(Physical) Connect 
parts from the kit to 
one another, 
(Behavior) move 
parts relative to one 
another to 
demonstrate behavior 

Wear wizard hat, tap 
magic wand to sensors 
and actuator “physical 
icons” 

Place pixels in objects and 
environments, create custom 
sensing and actuation circuits; 
perform gestures while holding 
pixels; drag and drop through 
direct touch on a mobile device 

Representa
tion and 
Interface of 
System 
Behavior 

Symbolic Turing 
complete 
programming 
language (similar to 
C) 

Graphical 
programming 
language (based on 
Sqeak) 

N/A Graphical statechart 
diagrams specifying 
device state transitions 
(and Java) 

One to one mappings 
from gestures to audio 
recordings 

Physical movement 
of a robot’s parts 

Many to one interactions 
between specific sensor 
and actuator “physical 
icons” 

One to many interactions 
between an input port and 
output ports; conditional 
actions in a loop 

Final 
System 
Format and 
Capability 

Connected digital and 
analog output devices 
(e.g., to controlling 
custom hardware) 

Multimedia (e.g., 
graphics and sound) 

Keyboard and 
mouse events, 
Computer software 
(e.g., a custom 
Scratch game) 

Connected digital, 
pulse width 
modulation (PWM), 
and I2C components 

Objects that play audio 
in response to 
gesturing with them 
while wearing the ring 
device 

Physical robotic 
creatures that 
resemble animals and 
perform 
demonstrated 
movements 

Environments that 
respond to defined 
interactions between 
sensor and actuator 
“physical icons” 

Integrated RGB LED, speaker; 
connected digital output 
components 

 

Table 1: Summary of tools for creating systems that are similar to Pixel.
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Chapter 4: Design and Implementation 

Pixel is a tool for use in everyday situations for making interactive 

information systems that can sense and respond to the physical environment. It is 

composed of three interfaces, each with unique affordances that support making the 

different features of systems. This chapter discusses the design of these interfaces. 

System Design 

Pixel is a tangible user interface (TUI) composed of one or more cubic objects 

called Pixels. Individually, Pixels are small computers that can communicate with 

each other, other devices, and interact with their environment through sensors and 

actuators. Together, Pixels form a single system. Every Pixel in a system maintains its 

own representation of the system and each Pixel in it. 

To support interaction with users, each Pixel recognizes a set of gestures, 

discover and communicate with other modules through a mesh network, and 

communicate with devices such as a handheld or tablet computers wirelessly. Pixels 

can be used together as a single system. To support computations that do not 

correspond to a simple gesture, Pixel offers a graphical programming environment 

(GPE), designed specifically for use on mobile devices that support touch-based 

interaction, such as cellular phones and tablets. 

Module Design 

During the development of Pixel, I considered each individual Pixel to be a 

unit construct of sensorimotor interactivity (or, alternatively, a “unit” of I/O). That is, 
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each one can interface with one sensor and one actuator. These were designed to 

enable the construction of interactive systems of varying complexity (i.e., with 

different numbers of modules). 

 

Figure 32: One Pixel. 

 

Conceptually, an individual Pixel can be considered as roughly analogous to a 

single digital I/O pin on a development board such as Arduino. That is, each Pixel 

exposes a one port for connecting sensors (or input) and one for connecting actuators 

(or output). Similarly, a set of Pixels can together be seen as roughly analogous to a 

complete development platform with all of its pins. In opposition to development 

platforms, the number of units (i.e., Pixels) available determines the number of I/O 

ports available for use with Pixel. 

There are a number of external features apparent on each Pixel. First, each one 

extends about 2.5 inches in each dimension, forming a rounded cube. Several sizes 
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were considered during prototyping. The 2.5 inch cube was selected because it 

seemed was comfortable to grasp, manipulate, and hold in one’s hand. 

I fabricated several candidate Pixels. These were printed with a number of 

different 3D printers using both acrylonitrile butadiene styrene (ABS) and polylactic 

acid (PLA) filaments in several colors. The final Pixel design was made with natural 

(non-colored) translucent PLA because it allowed light emitted by the enclosed LEDs 

the pass through it visibly while also obscuring, and thereby visibly abstracting, its 

internal circuitry. 

The thickness and internal support structure of the exterior wall were 

optimized to minimize wall thickness while increasing the distribution of light across 

the surface of the module (making the color more visible for users to see), and to 

increase robustness (so it can be dropped, for example). The chosen size also proved 

to be reliably printable and housed the hardware and batteries comfortably. 

Each Pixel exposes connection ports for connecting one digital sensor and one 

digital actuator. The ports are identical and are positioned on opposing faces of the 

cubic form as shown in the figure below. 
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Figure 33: One complete Pixel module, opened and arranged to show the contained printed circuit board and parts. 

 
Pixel is designed for use with magnetic snap connectors that magnetically 

couple with modules and expose ports to which users can connect electronic input 

and output components. The ports on modules do not support direct connection to 

electronic peripherals. 

Magnetic Snap Connectors 

Digital electronic sensors and actuators can be connected to Pixels using 

magnetic “snap” connectors. The connector can be “snapped” onto and  “unsnapped” 

from the Pixels. This design facilitates quick experimentation with sensors and 

actuators and seems to add flexibility in connecting components when Pixels are 

embedded in objects or environments. The snap connector is shown below: 
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Figure 34: Photograph of the final prototype, showing the interchangeable port adapters, both attached (left) and 

detached (right) from modules. 

 

On the front of a snap connector is connection interface consisting of two 

circular copper “outlets” designed specifically for connecting alligator clips. The 

outlets each expose two circular cutouts that guide the user in connecting the clips 

(see Figure 9, Top). Each copper outlet supports only one way to easily connect 

alligator clips, limiting the possible ways that the clips can be attached onto them. 

On the back of each snap connector are the faces of two rare-earth magnets 

and two copper rods physically connected, through the plastic body of connector, 

with conductive wire and glue to the copper outlets on the front of the connector 

(Figure 9, Bottom). The magnets “snap” the connector to a module, physically 

holding the two copper rods on the connector against two opposing copper rods 

embedded in the ports. This provides a conductive path between a Pixel’s internal 
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circuitry and the copper outlets to which components can be connected with alligator 

clips. 

 

 

Figure 35: The front (top) and back (bottom) of the “snap” connection interface. 

 
The decision to design a connection interface for alligator clips was inspired 

by experiences using the MaKey MaKey (Silver et al., 2012), which adopts a similar 

design. However, the MaKey MaKey only supports connection from input 

components. Pixel supports both input and output components. (Power is provided to 

output components from the battery enclosed in the module.) 

Module Behavior 

Pixel’s behavior can be organized into two general stages. The first stage is 

“initialization,” performed when a module is powered on, to make it operational as 

one system with other modules. The second stage is “ongoing” behavior. Below I 

discuss each of these, how they support interaction with users and how they support 

interfacing with sensors and actuators. 
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Initialization Behavior 

Once Pixels receive power, they attempt to construct a “collective identity” 

that serves as a logical grouping construct that enables Pixels to interact with each 

other. Although Pixels are aware of each other, they can be grouped by identity to 

logically separate groups from one another. This could be done to separate different 

users’ Pixels or organize the Pixels used in different systems. 

The initialization behavior is done when a Pixel is turned on for the first time. 

When turned on, a Pixel turns on bright (“wakes up”), then checks if it has been given 

a collective identity. If not, it shuts off its light momentarily, then turns on dim (“in a 

fog”). At this point, a user could do one of two things. They could tap the Pixel to 

another Pixel, to give it that Pixel’s identity (limiting it to use with other Pixels 

sharing the same identity), or they can shake it, to instruct it to remain without a 

collective identity (making it compatible with all other Pixels, regardless of their 

identity, and enabling it to serve as a bridge between sets of Pixels with different 

identities). Once given an identity, a Pixel will store it in its non-volatile memory 

(EEPROM), so it can recall it when it is next turned on. The identity can be removed 

through continuous shaking until the module plays a sequence of tones in rapid 

succession (i.e., for 5 seconds continuously). 

Ongoing Behavior 

Pixel’s primary behavior is supporting computing through physical action. 

Users can direct its behavior by performing spatial gestures with modules and surface 

gestures with the graphical programming environment (see Figure 43). 
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Default Behavior 

By default, each Pixel detects the state of its electronic input switch (either 

“open” or “closed”), and, if “closed”, powers a connected electronic output device, if 

any. This succession of behavior from input to output is called the module’s 

activation routine. For example, a switch could be connected to the input port and a 

direct current light emitting diode could be connected to its output port with alligator 

clips as depicted in Figure 36. When the switch is flipped, the output port is activated, 

powering the diode as shown Figure 36. 

 

 

Figure 36: Drawing of a Pixel before (left) and after (right) it is switched on. 

 

Custom Behaviors 

 When using Pixel, users customize the behavior of modules with spatial and 

surface gestures. Pixel’s interfaces that enable customization are discussed in the next 

section. 

Using Pixel: The Interface and Interaction Design 

Users interact with Pixel through the gestural and graphical interfaces. The 

gestural interface is used to create and change I/O mappings between modules. The 

graphical interface, designed for use on handheld and tablet computers, gives users an 

environment in which they can interactively program module behavior. 
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Affording Embodiment: Movement, Gesture, Touch, and Manipulation 

Pixel offers users interfaces affording free movement through the physical 

environment, gestural interaction with modules performed while holding modules, 

more specific single-finger touch gestures performed on a mobile device, and 

manipulation of and connection to electronic components using a custom connector 

and alligator clips (Figure 37).  

 

Figure 37: Drawing and description of the general relationships between the movement, gesture, touch, and manipulation 

engagement styles. 
 

Generally speaking, these interfaces were designed to facilitate a system-

building progression from “general” to “specific” styles of engagement with the 

physical environment, materials, and interactive behaviors that compose an 

interactive system. Because Pixel is modular and the graphical composer can be 

access from mobile devices, transitions between the movement, gesture, touch, and 
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manipulation interfaces are relatively seamless. Each of these interfaces are discussed 

in the following sections. 

Material Engagement: Modularity and the Physical Interface 

Pixel’s modular design enables users to freely place modules throughout their 

environment as they build an interactive system. Modules automatically discover and 

connect to each other, providing a modular tangible user interface with which users 

can perform gestures to create I/O channels across modules. This provides users with 

a quick way to experiment with different input and output component combinations 

and interactions during system design. The graphical programming environment can 

be accessed from a mobile device such as a mobile phone and automatically discovers 

modules and provides a real-time programming interface. Users can freely transition 

between these activities to experiment with interactive behaviors and system designs 

as they assemble a system’s physical topology (Figure 38). 
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Figure 38: Movement is afforded by Pixel’s modular design, enabling users experiment with system interaction designs 

by arranging modules in their environment, gesturing with modules, connecting components, and programming module 

behavior using the graphical programming environment on a mobile device. 

 

Defining Multi-Pixel Interactions: Gesture and the Tangible Interface 

Pixel can recognize four gestures, each characterized by the movement of a 

module over time. The “at rest” gesture is a relatively static, characterized by little 

movement, and results in no action when recognized. The “swing” gesture engages a 

module, enabling it to be used to create I/O mappings between modules. Tapping a 

module engaged by the swing gesture to another module results in a “tap” gesture, 

and maps the input of the engaged module to output of the module against which it 

was tapped. The “shake” gesture is only effective on an engaged module, and 

disengages it. 

 

 

Figure 39: Drawing of the state transition diagram underlying the gestural language. 
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The gestural language was designed to be simple for nontechnical users to 

learn and do after one or two demonstrations. With this goal, gestures were chosen 

that were simple but result in an effect that is “complete” in that it affects only and all 

of the modules used to perform a gesture and resembles an analogous common 

experience with a similar effect. The swing gesture is kinematically analogous to a 

finger touching a screen or pressing a button. Tapping modules together resembles 

joining objects to each another. Shaking an Etch a Sketch erases the toy’s screen. 

To use gestures, modules must be in a second mode called “composition” 

mode. In this mode, gestures are used to initiate actions that affect the behavior of 

Pixel. 

Figure 40: Drawing of the swing gesture. The swing gesture starts an interactive dialogue with Pixel in which it can assist 

in creating, remapping, and removing I/O channels through additional gesturing and feedback. 
 

Swinging a module expands the scope of Pixel’s interactive behavior, 

enabling the user to perform the tap and shake gestures to setting up I/O mappings 

between modules. 
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Pixel responds to a gesture by providing direct visual feedback and changing 

Pixel’s behavior as defined by the gestural language. For example, “swinging” 

(raising a module, then quickly swinging it down again) causes a module in 

performance mode to enter composition mode and “shaking” reverses the effect of the 

gesture, returning to performance mode (i.e., similar to common “undo” functions).  

Communication Channels 

Pixels send and receive messages through “communication channels” using a 

custom messaging protocol. System communication channels are created when 

devices are powered on. The relationships between pixels are defined by their 

communications with one another (as well as physical interactions, including those 

that occur through sensing and actuation). Their communications (and therefore, their 

relationship) are changeable with gesture. Taken together, channels define the 

communication network of a system (made with Pixel). 

Channels between Pixels can be created and changed with the swing, shake, 

and tap gestures (Figure 39). Setting up I/O channels and placing modules throughout a 

physical environment provides a template for further refinement to Pixel’s behavior 

(analogous to an approximate outline of an form when drawing). 

One builds the high level structure of a system with Pixel by doing the following 

activities: 

1. Connecting and experimenting with digital electronic input and output 

components to individual modules using the snap connectors. 
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2. Using gesture to create (swing, then tap to a module), change (swing, then tap 

to the mapped module, then tap to a module), and remove I/O mappings 

(swing then tap to a mapped module). 

3. Using touch gestures in the graphical programming environment to fine-tune 

module and system behavior. 

The physical infrastructure created through these activities provides a context 

to continuously change and refine. For example, imagine that you’re in a room, and 

you’d like a button (an input) mounted on a wall in one part of the room to control an 

LED light set on a desk another part of the room (an output). To do it, one picks up 

two modules, one per hand, and swings one of the modules, engaging it, as indicated 

by blinking light, then one taps it to the other module, creating an I/O channel from 

the engaged module (input) to the other one (output). Now, flipping the switch 

plugged into the input module turns on the light plugged into the output module. 

Throwing the input switch plugged into the input module will cause the output 

component plugged into the output port of the corresponding output module to turn 

on. 

Feedback and Response to Gestures 

Modules provide feedback in response to certain interactions with light and 

sound. Before a module has been connected to any others, switching its input will 

activate its output. This is indicated by a single flash (off then on) of the light built 

into the module. If it has been connected to another module, it blinks twice upon 
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being switched.

 

Figure 41: Illustration depicting the feedback behavior when the input switch is closed for the default behavior (top) and 

when a module’s input maps to a different output module (bottom). 

 

The connections and mappings between modules are represented visually by 

their color and light properties. Connected modules are shown in the same color. By 

default, modules are set to white. This means that modules are aware of one another 

but not yet modified. White was chosen because it is the color of a “blank” sheet of 

paper or an unpainted canvas prepared with gesso. When a module is waiting to be 

mapped to another module, it blinks repeatedly for several seconds. If it is not 

mapped to another module in this time, it stops blinking. The input to output 

mappings between associated modules are represented by a unique color. The light on 

the output side of the “input module” is set to the same color as the input side of the 

“output module.” 

Once an input switch is closed, the module will blink once if the module’s 

input maps to its own output port. (No sound is made.) The module will blink twice if 
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its input maps to the output port of another module. The remote module will also 

generate two audible tones. The perception of sound on a module is intended to 

suggest “the output module is elsewhere” with respect to the module where the input 

was activated. This suggestion is reinforced by the correspondence in frequency of 

light blinks (on the held module) and tones played (on the remote module). 

Defining Per-Pixel Behavior: Touch and the Graphical Interface 

Users can directly specify the actions of individual Pixels with the graphical 

programming environment. Users interact with the GPE through touches, holding, 

and dragging (with a finger) along the surface of a mobile, touch-screen display. The 

GPE is shown in the figure below. 

 

 

Figure 42: Four screenshots (not drawings) showing four separate states of Pixel’s interface. 

 

The behavior of each Pixel is represented in the GPE as a series of actions on 

a circular “loop” construct. This sequence is stored in each module’s random access 

memory (RAM), and can be changed dynamically to affect Pixel behavior in real 

time. The loop is directed clockwise, as indicated by the arrow positioned near the 
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“end” point on the circular arc. This arrow indicates the order in actions will be 

performed by the corresponding Pixel. 

To create actions, a user touches at any single point on the screen. At the 

moment of touch, one of two actions could be taken. The user could lift the finger 

from the screen just after touching it, resulting in a quick tap, to create a placeholder 

for an action, represented as a circle (Figure 11a). Alternatively, the user could 

continue touching the screen, summoning a palette of potential actions that the 

module could do (Figure 11b). Touching an action on the palette selects it, hiding all 

actions in the palette except the selected one. Similarly, to select an action for a 

placeholder, a user would tap the placeholder, summoning the action palette, and then 

touch a chosen action. 

The loop drawn on the screen is a placeholder for a sequence of actions (see 

Figure 12). Actions can be dropped on and taken off the loop by dragging and 

dropping them, adding or removing it from the module’s behavior. The actions on the 

loop are called engaged actions, and are performed by the module on its next 

performance (or iteration). The actions off the loop are called disengaged actions. 

Tapping a disengaged action causes Pixel to perform it spontaneously. 
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Figure 43: Four screenshots showing a four-action sequence for turning a connected light emitting diode on for one 

second then off for one second. This behavior, equivalent to Arduino’s “Blink” example, was created leisurely in under 

ten seconds on a Motorola Moto X (2nd Generation) mobile phone using one hand. 

 

By focusing on transformations of a module’s behavior that can be done 

through simple gestures, this interaction design aims to give nontechnical users an 

alternative experience to that of traditional programming languages. This design is 

based on the “gentle cause and great effect” relationship between a sculptor’s touch 

on wet clay and the resulting transformation of form while it spins on a potter’s 

wheel. 

To facilitate behavior transformation with the graphical interface, Pixel carries 

out the actions on the loop on behalf of the user. Pixel handles interactions that take 

place through the performance of simple gestures and the direct manipulation of 

visual constructs corresponding to behaviors. 

Sensing and Actuation: Manipulation and the Peripheral Interface 

Digital electronic components can be connected to Pixel’s modules. Each 

module has a single input port and a single output port. Electronic sensors and 
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actuators, such as a direct current motor or light emitting diode, can be connected to 

the ports. 

 

Figure 44: Conceptual drawing of the default “switch” behavior of a module represented as a switch circuit. 

 

In addition, one can simply touch one’s fingers on the input port to activate it. 

For example, one can pick up any modules, connect an output component using 

alligator clips, and touch the input port to “test” the component. This was done to 

make it easy to quickly test outputs on a module (or connected module). 

Hardware Implementation 

The electronic circuitry enclosed in each module is organized into five layers. 

These layers, dubbed “order,” “life,” “movement,” “stimulus,” and “connection” 

correspond to subsystems for computing, power, orientation and gesture sensing, light 

and sound actuation, and communications (Figure 45). 
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Figure 45: Drawing of the printed circuit board and subsystem organization. 
 

The main electronic components are a 10-degree of freedom (10 DOF) inertial 

measurement unit (IMU), an IEEE802.15.4 RF mesh networking modules, an IEEE 

802.11bg Wi-Fi, two RGB LEDs, a speaker, and two microprocessors. Two pins on 

one of the microprocessors are used in the input and output port interfaces. 

Electronic Components Per Pixel 

Order: The “order” layer contains processing components. Pixel performs 

computations using two Teensy 3.1 microprocessors. The major processing 

operations are associated with recognizing and responding to user interactions, 

measurements performed with the IMU sensors, estimating orientation, handling 

communications from other modules and devices, running a module simulator, and 

programming the simulator in response to user interactions. 

Life: The “life” layer contains the power circuitry. Each Pixel module is 

powered by two (rechargeable) 3.7 V 500 mAh lithium-ion polymer (LiPo) batteries. 
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This layer includes two Japan Solderless Terminal PH series (JST-PH) connectors for 

connecting the LiPo batteries to the layered circuitry, a single pole, double throw 

(SPDT) slide switch for toggling power, and 3.3V and 5V voltage regulators. 

Movement: The 10 degree of freedom (DOF) inertial measurement unit 

(IMU) on the “movement” layer measures acceleration, rotational, magnetic, and 

pressure and store them in memory. The data are transferred to the microprocessors 

on the “order” layer and used to estimate the orientation of each module. The data are 

incorporated into a direct cosine matrix (DCM) used to calculate the relative 

orientation of each module, relative to the global coordinate system (or inertial frame 

of reference) provided by the Earth (i.e., the celestial sphere). This enables estimation 

of orientation including roll, pitch, yaw, and heading (i.e., direction). 

Stimulus: Visual and tonal audio components are included on the “stimulus” 

layer. Visual feedback is generated by two WS2811 multi-color light-emitting diodes 

(LEDs) that emit red, green, and blue (RGB) light. Tones are produced by a CEM-

1203(42) piezoelectric buzzer rated at 2.048 kHz, capable of producing audible tones 

around that frequency, with a sound output of about 95 dB. 

Connection: The “connection” layer includes radio frequency (RF) 

communications components. The Synapse RF266PC1 running the IEEE 802.15.4 

protocol is embedded in each module for peer-to-peer communications. The device is 

also used to measure received signal strength indicator (RSSI) for coarsely estimating 

the relative distance separating modules, providing coarse system-level orientation. 

The Texas Instruments CC3000 wireless network processor enables each module to 
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connect to a wireless local area network (WLAN) in the IEEE 802.11bg Wi-Fi 

frequency band (2.4 to 5 GHz). 

Software Implementation 

Firmware 

Generally speaking, Pixel’s firmware performs computations for taking 

measurements with the IMU sensors, estimating orientation and movement, 

recognizing and responding to gestural, graphical, and textual interactions, 

communicating with other modules and devices, simulating itself, and programming 

the simulated device on the behalf of users or other modules. 

The firmware was architected as a simple distributed operating system that 

creates and maintains a distributed simulation of each module, communicates with 

other modules to update the simulation to reflect the most recent state of modules, 

and handles interactions with users. 

Gesture Builder 

Gesture Builder was designed for use in defining custom gestures  

Figure 46. Gesture Builder collects data from the inertial measurement unit, and 

with it, constructs a model used to later identify the gesture.  
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Figure 46: Screenshot of Gesture Builder. Gesture Builder is the tool used to create gesture models. 

 

 Presently, Gesture Builder can only be used on a traditional desktop or laptop 

computer. However, it could be integrated into Pixels with relative ease to enable the 

creation of custom gestures. This is left for future work. 
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Chapter 5: Prototype Evaluation and Critique 

This chapter describes evaluations of Pixel and the results of each, illustrates 

examples of using Pixel offered by participants during evaluation sessions, and 

describes participants’ interactions with the Pixel prototypes. These are followed by a 

summary of example usage scenarios envisioned by evaluation participants. 

Evaluation Methods 

Two types of evaluations were conducted. First, to better understand how 

children (and parents) approach and use Pixel to design interactive systems, three 

workshops were conducted at KID Museum, a children’s museum in Bethesda, 

Maryland. To gain another perspective, a focus group with FutureMakers coaches, 

educators that deliver a variety of hands-on workshops to children to teach them 

crafts including sewing, woodworking, robotics, computer programming, and 

circuitry7. The two studies were intended to be complementary. Study 1 allowed me 

                                                

 

7 A third session, more in-depth classroom evaluation was organized together with FutureMakers. Unfortunately, the session 
needed be cancelled due to a concern about the study raised by a parent, received the day prior to the evaluation. In these classes, 
participants would have used Pixel to build custom musical instruments that respond to gestural and physical interaction and 
operate based on custom programmed behavior. This type of field deployment is important and would enable us to further assess 
how novices can approach and use Pixel and what they build with it, but it is left for future work. 
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to observe the use of Pixel in a facilitated context while Study 2 provided insights 

from experienced coaches familiar with teaching prototyping and craft skills. 

Workshops at KID Museum 

Overview 

Workshop evaluations lasted approximately 60 minutes and consisted of four 

parts: (i) a brief introduction to myself and the session, (ii) personal introductions by 

participants and brief conversations about what kinds of things they like to build, (iii) 

a brief description and demo of Pixel, then (iv) open play with Pixel coupled with an 

free-form discussion about its design and capabilities as a system for creative 

expression. These evaluations were conducted on Saturday, November 8, 2014 at 

KID Museum in Bethesda, Maryland. The sessions were run as one-hour workshops 

at KID Museum. In consideration of the limited time, the workshops omitted formal 

interactions with participants, including written questionnaires. Instead, the full 

duration was dedicated to discussion about Pixel, anticipating it would provide an 

overall richer collection of qualitative data.  
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Figure 47: Workshop evaluation at KID Museum. 

 

Participants 

The three workshop sessions were advertised by KID Museum as “Invention 

Workshops” on its website as well as social media, including Facebook and Twitter. 

Workshops participants chose to sign up for one of the three sessions through an 

online system operated by KID Museum. Each workshop was limited to eight 

participants, of at least eleven years in age. Most participants in the workshops were 

middle school students. Some participants were accompanied by their parents or 

grandparents, who were invited to participate. 

At the outset of each session, I asked participants to introduce themselves and 

answer the question “What kinds of stuff do you like to make?” Responses varied 

widely from building “aerodynamic things” and assembling decks for Magic the 

Gathering, to making YouTube videos and taking apart old toys that don’t work 
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anymore then putting them back together. These diverse responses help demonstrate 

the varied skills of participants and provided useful context for running the 

workshops. 

Evaluations 

In each session, participants were encouraged to play with the Pixel 

prototypes. I provided alligator clips as well as electronic inputs and outputs mounted 

on wood boards borrowed from the museum’s Circuit Boards activity, designed to be 

used with alligator clips. The available input components were a light switch and the 

available outputs were a red and a white LED. 

 

Figure 48: Photo showing the red LED “circuit board” after a workshop session. 

 

Using these components, participants could connect components to the input 

and output ports on Pixel modules using alligator clips. Additional input and output 
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components were available, but were not used because the sessions were only an hour 

long, leaving little time actually build artifacts. During workshops, I observed the 

participants’ interactions with prototypes, but most of the time was spent discussing 

of the design of prototypes and envisioned usage scenarios. 

Feedback and Observations 

In my evaluations, I observed participants’ basic physical interactions with 

Pixel module attempting to identify any physical difficulties connecting peripherals 

using the magnetic adapter or gesturing to link modules, or conceptual challenges in 

understanding how one module’s input could be made to activate another module’s 

output through gesture. In addition to evaluating basic interactions, I was interested in 

how participants could envision using Pixel to assemble their own systems and 

specify their behavior for their own purposes, playful or practical. 

In addition, participants provided feedback about (1) the current prototype 

design, (2) envisioned applications, and (3) design suggestions for future prototypes. 

Below, I summarize observations and feedback, discuss several specific scenarios in 

which they envisioned using Pixel, and detail three of the scenarios that were 

described very clearly by participants, suggesting an accurate understanding of Pixel, 

despite their inability to actually build the systems during the workshops. 

Interactions with Pixel 

Several aspects of Pixel’s design were evaluated. These are given below along 

with feedback and observations. 

Together with the participants, I evaluated (1) connecting input and output 

components to modules, (2) connecting modules using the gestural language, and (3) 
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interacting with modules using the graphical programming language. To evaluate 

these experiences by playing with the provided components and ten prototype 

modules. The graphical programming language was shown on an iPad Mini then 

made available to participants for play. 

Connecting input and output peripherals to module with alligator clips: 

Participants did not appear to have any difficulty using alligator clips to connecting 

input or output peripherals to the magnetic adapters. They appeared to find attaching 

the magnetic adapter to Pixel modules easy, too.  

Connecting modules to one another with gesture: Participants appeared to 

understand the gestural language after a single demonstration. They were able to 

reproduce the demonstrated gestures, namely swing, tap, and shake, having no 

apparent difficulty in doing so. 

While no feedback was offered about the selection of gestures for connecting 

modules to one another, some participants indicated that the tap gesture felt 

unresponsive. Making modules responsive to gestures was a major focus in 

developing Pixel. I looked into the cause of the unresponsiveness following the 

evaluations. It appeared that the unresponsiveness was due to a disparity between the 

movement sensor and gesture model produced a technical limitation has since been 

resolved. The gesture model has now been fixed. 

Participants also suggested ways to extend the gestural language. One 

participant wanted the ability to add custom gestures. 
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General Purpose Making 

I described Pixel to participants as a tool designed for constructing interactive 

systems and setting up their behavior. Participants seemed to understand that Pixel 

was being designed as a general-purpose making tool. In particular, one participant 

described it as “one product that can do multiple things.” Likewise, another offered 

that Pixel is “multiple things you can program all in one thing.” One young boy 

consistently used the word “modes,” saying he wanted a mode to use Pixel as a 

flashlight, for personal storage, and to use as an input device for gaming, suggesting 

conceptualization of Pixel as somewhat flexible, if not general purpose. 

One adult participant expressed interest in using Pixel to fashion systems in a 

variety of different situations. He said, “I usually come up with all these kinds of 

ideas but I don’t have the knowhow or anything.” He continued, “A lot of people 

would want such a thing, but need to figure out which kinds of sensors can be used.” 

This seems to show willingness to use a device like Pixel to address needs creatively, 

and provides hints to a reluctance to do so because of the technical challenges 

involved. 

Module Design 

Uniform design: Multiple participants noticed that the prototype modules and 

their internal circuits were designed uniformly. They encouraged me to move forward 

with this approach, but suggested designing different kinds of cases while 

maintaining a uniform design for the internal circuit, so it can be fit into different 

cases. 
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Participants suggested several ways that they wanted to change Pixel in order 

to make using it more personal. 

Opaque Color and Indicator LEDs: One participant asserted that Pixel 

should have an opaque case that has visible lights only at specific locations on the 

module. 

Size: The groups seemed to like the size of the modules. One participant said 

he like “[how] small it is.” Some suggested that it should be made “a little smaller,” 

so it could fit into one’s pocket. The first group suggested that it should be able to fit 

in one’s pocket and fit comfortably in hand. 

Cases: In every session, participants suggested making multiple cases tailored 

to different kinds of use and for personalization. “So there should be different cases, 

but you should be able to take out the internal hardware, and put it into a new case 

easily.” He continues, “So, like, easily put it in new cases, like for different 

environments—waterproof, climbing, let’s say it falls off or something like that—and 

since it’s modular, you should also be able to swap out the hardware easily and 

install software easily.” 

One participant thought that cases should be able to be changed more easily. 

“If you take all this hardware inside and put it into a case then put that into this case, 

that way if they’re switching cases, they don’t have to worry about accidentally 

pulling out one of these wires, or accidentally bending one of these things, and not 

even knowing what’s happening inside, so they’re ‘just taking it apart’.” 
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Robustness: Some participants felt the prototype case was too brittle. They 

said that it should withstand many drops. They also suggested insulated and 

waterproof designs, as mentioned previously. 

Accessories: One participant wanted to connect a wrist strap to modules 

(similar to that used by the Wiimote) so it could recognize swinging gestures. Others 

suggested that this would also be helpful for preventing modules from being thrown 

accidentally. 

Envisioned Usage Scenarios 

Participants envisioned several specific applications of Pixel. Most of these 

concerned remotely controlling systems, monitoring environments or behaviors, 

responsive or intelligent environments, agriculture, health, personal fitness, or 

freeform making. Again, while participants were not able to create these systems 

during the one-hour workshop, the descriptions help reveal how Pixel was being 

conceptualized. 

Specific Example 1: “Scarecrow Tree” 

In the second session, one of the participants described an actual problem he 

had experienced for multiple years and explained how he would solve it with Pixel. 

Note this is the same “scarecrow tree” situation described in Chapter 1. It is provided 

again here verbatim for the sake of readability of this subsection. 

“Here’s a problem I have. I have a cherry tree. Just when the cherries get 

real ripe, the birds come and eat them. Now, if I can make some sounds or some kind 

of flashes or something—a scarecrow, right?—then the birds will not come. Now even 

a scarecrow that you have has to have moving parts on it or they say you can buy a 
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plastic owl and put it somewhere, but if the plastic owl is not moving at all then it 

won’t work. The birds will learn and it’s useless. So, if one had these kinds of things, 

and one of them has a motion detector, gets a motion from the birds around or 

something, then it can signal the other ones which would be on several branches in 

the tree. Something like that.” 

Approach: I discussed the following approach that could be used to 

implement this solution with the participant: (1) start with problem, (2) set up general 

structure with modules (i.e., connect an input with a sensor and put it on a branch and 

repeat this step, connect to outputs with motors on them and flashing lights, and (3) 

program specific behavior (sensor sensitivity) using the graphical programming 

enviornment. 

 

Figure 49: Conceptual drawing of the scenario described by the participant with five modules, with two 

sensors (depicted as cameras), a light (depicted as a light bulb), a speaker (depicted as such), and two additional modules 

to produce additional sound and light. 
 

Limitations: There are some limitations of the prototypes that would prevent 

it from being used in the way envisioned by the participant. Another participant 

noticed the most inhibiting limitation; the current prototypes only support digital 



89 

input and output, preventing the use of analog sensors and actuators. Support for 

analog sensors and controlling motors is needed to realize the interactive scarecrow as 

described by the participant. 

Variations: The group suggested some variations on this example. For 

example, another participant commented that he could use an “ultrasonic device” 

(perhaps an ultrasonic waveform generator), to fend off squirrels as well as birds. 

Another suggestion was to record the sound made by a cat for playback when a 

squirrel was detected to scare the squirrels. 

Specific Example 2: Autonomous Garden Robot 

“You have a tiny robot that just moves in the path in between two lines of 

plants. It’s going and it’s looking around. It’s going and it sees these worms, or an 

insect or something. Two ways. One, it has a laser connected to it and can zap it. It 

just goes through and finds them and zaps them. These robots would just walk 

through the different lines. It doesn’t have to be so sophisticated.” 

“There is a lot of technology that is possible and available, it just needs people 

to think about them, and see how it can be used.” 

Overall, participants in these evaluations seemed to have a positive 

experience. Virtually all participants experimented with Pixel prototypes and were 

actively and voluntarily engaging in the discussions. 
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Discussion with FutureMakers Coaches 

Overview 

The semi-structured focus group about Pixel was conducted with four 

“coaches” that facilitate workshops for FutureMakers, an organization that teaches 

making-oriented workshops. These were conducted in Baltimore, Maryland at the 

FutureMakers office. This session consisted of (i) a brief demo followed by (ii) an 

informal conversation focused on how Pixel might fit in the workshops facilitated by 

FutureMakers. We also discussed the general design of Pixel and envisioned usage 

scenarios as they arose. This session was about one hour long and took place on 

November 10, 2014. 

Our discussion focused on Pixel in the context of coaching, education, and 

learning. We touched on its current possibilities, future possibilities, and aspects of 

gesture in and beyond learning contexts. Most of our discussion was focused on 

gestural interaction. We covered gestural interaction, roles it can play in learning, and 

the ideas of movement and mobility as they relate to gesture. 

Participants 

Four coaches from FutureMakers participated in the discussion. Each had 

experience designing, leading, and otherwise facilitating workshops and a 

background in education. 
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Session and Analysis 

I began the session by providing an overview of Pixel. I introduced myself, 

describing my experiences facilitating workshops and museum activities, such as 

programming, demonstrated Pixel, and then facilitated an informal, focus group 

discussion of Pixel. Our discussion is summarized below. Quotations emphasize 

fragments to call attention to recurring themes and highlight thoughts that seem 

especially important for Pixel. I discuss these emphasized points in the next chapter. 

Results 

During the discussion, one participant captures the essential topics of the 

discussion—physical movement, getting away from screens, and learning 

computational thinking—in saying, “As coaches and educators, I would be really 

curious to see how we can start supporting the foundations of programming and 

computational thinking using objects, getting completely off of screens.” The 

participant continued, “I would like to see how low on the age spectrum we can go in 

order to get really meaningful learning going on.” The participant continued to 

express interest not just “playing Simon” but making gestures and making Simon. 

The participant expressed dissatisfaction with present physical computing 

systems, “I would really like physical computing to stop being, sort of, just, making 

with certain things, and [start being] moving them in space, because that’s what we 

do. We’re gesturing the whole time we’re here and we don’t have to make physical 

contact with each other to be able to read those signs. We have sight, and we can 

hear, and we can sense, you know, we’ve got those things, and I’d love to see, 

especially with your product, that kids can move around.” Then, “I mean, it is… until 



92 

high school when they’ve beaten it all out of you… you still need to move. I would 

hope that there could be a much more, sort of, moving around, type option. I’ve been 

looking at a lot of products that are, ‘take your device and make something do 

something’ and I’ve seen very few things where it’s like ‘interact with this device—

you do something—and something else does something’ and you program something 

by doing things that you do.” 

Below, I synthesize the four main themes that emerged from our discussion: 

(1) computational thinking, (2) movement and gesture, (3) bodily feedback, and (4) 

kinesthetic performance and learning. 

Computational Thinking through Physical Movement 

Participants thought that even basic “if this then that” programming based on 

custom gestures and gestural interaction would be very valuable. “Just something 

like, if I do this, this will happen type stuff. Very, very basic. The fact that it can be a 

physical action is huge, because we’ve dabbled a bit with these that are, in the 

physical sense, taken away from the actual screen, but still very code-like in that it’s 

arrows or things like that. The fact that this would be a physical interaction would 

open it up more.” 

The participant continued to envision one way to use Pixel, offering “If there 

were two kids standing next to each other, and like, the output of [one module] was 

controlling [another module] so that every time [one kid] did a jumping jack, the 

other module made the sound of a jumping jack, then if the other kid knew that was a 

jumping jack, he could do a jumping jack, and then pass it on or something.” 
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Movement and Gesture 

Movement was perhaps the topic discussed most. We covered gestural 

interaction, roles it can play in learning, and the ideas of movement and mobility as 

they relate to gesture. 

Generally, custom gestures seemed to be easily understood. Participants 

grasped the idea of creating a custom gesture through demonstration. After explaining 

that custom gestures could be made since they’re defined by “motion data,” 

participants indicated they understood. To verify her understanding, one participant 

asked, “Oh, so, you could do a circle, and then you could look at the data that it 

recorded for the circle, and you could say, now, this circle, or within these 

parameters, this is done again.” Likewise, another participant indicated her 

understanding, “So you can program a gesture.” 

One imagined using it, saying, “I’m going to make the letter A.” Another said, 

referring to using gesture programming to control sound, “That could sound so 

amazing. You could perform music in such an amazing way.” He continued, “I want 

kids to move things through space and generate sound. That blows my mind. That 

would be so amazing. We could create compositions, get a team of kids together to 

actually create a composition with gesture in space.” Another participant built on 

that, “You could have one on a right foot, one of a left foot, and then you could have a 

dance or a pattern that they were all [doing].” 

They were really interested in ways Pixel could encourage movement or 

support kinesthetic learning. One participant concisely described the role of gesture in 

interacting with Pixel, “It’s coding at a human level.” The participant continued, 
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expressing general interest in the idea of using movement to express ideas, “You 

know, I think it’s good because it would get people moving.” 

“You could get kid who are kinesthetic learners to learn about something like 

programming from moving.” Another added, “Coding with their body.” Similarly, 

one participant wanted to be able to see how the gesture was made. “You can do a 

gesture and then the computer visualizes it. This is how the Pixel reads your gesture.” 

They think it would be helpful to show users how a gesture was represented as 

data in graph form while making custom gestures and show them different properties 

of the graph data to help them understand the gesture and movement. For example, 

the acceleration could be shown to help them understand how acceleration factors 

into the performed gesture. Upon reflection, it seems that it may also be useful to add 

tools for fine-tuning gestures graphically. 

They suggested that a visualization of gesture data would also provide a way 

for people to see the correspondence between the life data and a particular recorded 

gesture, to help them practice the gesture. That is, it could be used as a feedback tool 

for learning how to perform gestures (e.g., for playing performance). 

Bodily Feedback and Kinesthetic Performance 

While considering Pixel as a tool for training and teaching, one participant 

enthusiastically pointed out that Pixel could also be used as a general “feedback tool 

for your body,” beyond the contexts of learning and making objects. Even in these 

broader applications, they discussed some of the same underlying ideas, including 

being able to move away from screens, and moving throughout physical space. 
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The participants were interested in applications in kinesthetic performance. “I 

would love to create a gesture and see someone repeat my gesture. I think that 

playing that game and seeing if I was actually able to ‘be them’, you know… I think 

dance, it definitely has strong connections to dance.” Another participant made a 

similar suggestion, offering that devices like Pixel could be used to build a wearable 

kinesthetic sensor that would provide feedback about movement as well as haptic or 

visual feedback to help correct movements during training. They suggested that a 

soccer player could use it to learn how to train while learning to kick a ball. 

Critical Feedback and Suggestions for Future Prototypes 

Near the end of the discussion, I encouraged participants to provide critical 

feedback, suggestions for future prototypes, and any other examples envisioned but 

not discussed. 

Participants envisioned using Pixel outside, as is conveyed in some of their 

comments above. They wanted the case to be robust enough to “dunk in water” and 

“throw against the wall.” 

Participants seemed generally satisfied with the size of the case. I asked two 

of the participants about the case size directly. One suggested, despite seeming 

satisfied, offered that it could possibly be a little bit smaller, “If anything, I would just 

say it should be slightly smaller. I like that it fits in the palm of your hand.” 

One participant suggested thought that it would be useful in some cases if 

modules could actuate themselves or actuate another module. Relatedly, some 

participants suggested adding haptic feedback to the modules, in addition to light and 

sound. One participant thought haptic feedback could provide way to provide 
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feedback to individuals with “low vision and no vision.” They thought that additional 

feedback other than haptic feedback could also be incorporated, but didn’t offer 

specific suggestions. 
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Chapter 6: Discussion, Summary, Future Work 

The aim of this thesis was to better understand design techniques useful for 

designing creative tools that support the creation of information systems for 

application in everyday situations. Based on observations of challenges encountered 

by children, hackers, and artists in making these systems, I developed a tool called 

Pixel to explore a unique synthesis of design techniques explored separately in the 

literature, namely modular system design, gestural programming, and graphical 

programming. Based on evaluations, I suggest that together, these techniques offer 

affordances that are particularly suitable for designing tools that support the everyday 

making of systems.  

Specifically, I suggest: 

1. Combining a modular design with direct gesturing afford greater freedom in 

using physical space, exploration, embedding. I suggest this set of techniques 

provides affordances that can make building systems for everyday application 

more feasible. 

2. Simple gestures are sufficient for expressing a number of relationships 

topologies that connect elements of a modular system. This builds on the 

gesturing approaches of Montemayor (Montemayor, 2003) and Chung 

(Chung, 2010). 

3. Graphical programming environments for mobile touchscreen devices provide 

a way to interact with the programmable elements of modular systems that are 

not directly accessible.  
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4. Support for quickly connecting, disconnecting, and changing sensors and 

actuators connected to modules, afford exploration. 

I believe this combination provides powerful affordances that can enhance the 

feasibility of creating custom systems in everyday life situations. Below, I discuss the 

advantages and limitations of each of these, their potential implications for makers 

and researchers, and finally, suggest some directions for future research. 

Discussion 

Overall, the level of enthusiasm expressed by evaluation participants was 

unexpectedly positive and helps underscore the promise of Pixel. Very soon after 

demonstrating Pixel, participants began to play with modules and describe scenarios 

in which they envisioned using it. Their suggestions were diverse, indicating they 

understood Pixel to be a general-purpose tool. Moreover, participants envisioned 

creating systems inspired by their own experiences that would be personally 

meaningful, such as the “scarecrow tree” scenario. This indicates that participants 

conceived of creating systems that are personally meaningful. However, participants 

expressed that they could not create the envisioned systems due to limitations in their 

“technical know-how.” Despite their limited technical ability, it seemed that most 

participants could not only envision interactive systems but also describe their key 

features, suggesting that, if empowered with enabling tools, they would create 

systems to resolve everyday situations. Taken together, I believe these outcomes 

suggest that Pixel represents a viable approach to designing support tools for 

interactive systems in everyday situations. 
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Reflections and Insights 

It seems that the positive response of participants resulted largely from a few 

design features of Pixel. 

Both museum and focus group participants quickly learned the set of gestures 

recognized by Pixel. After a single demonstration, participants started to do the 

gestures themselves to connect and disconnect modules, suggesting the set of gestures 

chosen was simple to learn. Similar results were achieved by Montemayor with his 

physical programming system that could define relationships between sensor and 

actuators to support immersive storytelling environments for children (2003) and 

Chung with OnObject in defining gestural interfaces to everyday objects (2010). Both 

of their systems support gesture in a tool external to the systems built with them—a 

“magic wand” (along with a “wizard hat”) and wearable ring device, respectively. 

In contrast to these, Pixel supports direct gesturing with modules. This style of 

direct gesturing is analogous to direct manipulation of graphical objects displayed on 

a touchscreen device. Gesturing indirectly with a special tool is analogous to using a 

mouse to manipulate a cursor on a screen. I believe that directly gesturing with tools 

provides a more naturalistic everyday interaction because it seems to provide a more 

viscerally engaging making experience. Moreover, in the case of modular systems 

such as Pixel, direct gesturing provides natural support for multiple users. Existing 

systems can be modified directly, without the need to retrieve the tool for modifying 

it. 

Some of the most stimulating outcomes of my research result from the 

combination of a modular design and the ability to gesture with modules directly. 
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This combination seems to deliver powerful affordances that fit naturally in everyday 

life. First, a single module can act as a source in multiple of such one-to-one 

relationships, one-to-many relationships can also be expressed between one source 

and more than one destination at (about) the same time. Moreover, these relationships 

can be defined between any two modules, providing considerable flexibility. In 

addition to granting expressive power, combining modularity with direct gesturing 

naturally enables multiple people to use Pixel simultaneously. Finally, supporting 

direct gesturing with modules seems to give makers more freedom to move around 

through space and leverage their intuitive sense of the physical environment. 

Limitations 

Though participants generally expressed enthusiasm, the evaluations of Pixel 

can only hint at the kinds of systems that might be built with Pixel. This is the case 

because participants were only given materials for building a remote light switch (in 

the workshop evaluations). They couldn’t create systems of their own design other 

than various light switches and remote light switches. I felt this was the greatest 

limitation of the evaluations. This is a clear opportunity for future research. 

Fortunately, participants were able to demonstrate the ability to use the functions of 

Pixel by making the light switch variations. However, this provides little insight into 

important concerns of usefulness and usability of Pixel. While participants couldn’t 

create systems of their own design, they discussed the numerous systems they 

envisioned creating, providing insight into their conceptualization of Pixel. 

There are limitations in the design of Pixel that constrain its utility for making 

interactive systems. The current module design is quite large at about 2.5 inches in 
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each dimension. Though the module is quite comfortable to hold at this size, it is too 

large to embed within many everyday objects (e.g., a remote control car) and 

transporting more than a few of them (e.g., in a backpack) requires significant space. 

Reducing the modules module significantly is a feasible technical challenge and 

could resolve this limitation. I suspect that reducing the module size to one square 

inch would address these limitations. Moreover, I believe this smaller size would 

increase the overall utility of Pixel as a tool because the size is easy to manipulate 

with one’s fingers (as opposed to one’s whole hand). Likewise, from experimenting 

with different types of 3D printing materials, I believe a softer outer layer (e.g., as 

offered by flexible filament or a rubberized material) may feel better in the hand. 

Pixel modules can be programmed to receive sensor information, control 

output devices, and communicate with each other. The gestural language consists of a 

fixed set of gestures. These gestures seem to effectively support connecting modules 

into network topologies. The inability to extend the set of gestures, however, 

eliminates the possibility of leveraging the ability of modules to recognize gestures 

(and other movements) in custom systems. This limitation was quickly pointed out 

during the evaluations, but was a central concern of facilitators, who wanted to create 

gestures for multiple applications. Extending Pixel to support custom gesture creation 

would be quite easy, and could be accomplished through gesture, similar to OnObject 

(Chung, 2010), or through extensions to the graphical environment. 

The current gesture language can only express a relationship between one 

source module and one destination module. There are some relationships that cannot 

be expressed with gesture. Notably, these include one-to-many (where the many 
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modules activate sequentially) and many-to-one relationships (where multiple source 

conditions must be simultaneously. 

 Finally, even though multiple people can simultaneously interact with Pixel, 

but minimal consideration was given specifically to interfaces to support it. 

Implications for Makers 

Pixel represents an approach to creating systems that enables systems to be 

made through interactions and interfaces that engage one’s physical senses and 

leverages the intuitive knowledge of physicality derived from experience. This 

approach may minimize the role of technical expertise in making systems, and in as a 

result, broaden the participation in creating systems. Making the creative tools much 

more accessible to people with no technical background—such as through support for 

expressive physical actions appropriate for defining aspects of system behavior—

could enable the creation of systems in everyday situations. 

This approach may affect the creative process of making systems. First, it 

seems to foster exploration in constructing systems and defining their behavior. The 

snap connection interface seemed to facilitate quickly connecting, disconnecting, and 

changing sensors and actuators to modules using alligator clips. The simple set of 

gestures can foster quickly defining, erasing, and changing relationships between 

modules. Additionally, the graphical programming environment presents the available 

system behaviors for selection through touch interactions rather than requiring the 

manual recall and entry of programming language. Second, Pixel enables freer 

movement in the physical environment during the process of building systems. 

Traditionally, makers are confined to the space near a computer to a more physically 
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expressive. Third, Pixel shifts some common tasks involved in creating systems from 

being technically demanding. The support for gesture changes the activities involved 

in creating communication channels between modules from being quite technically 

demanding to be more playful activities involving experimentation in connecting 

electronic components and defining relationships between modules. 

Implications for Researchers 

 This thesis explored the potential of tools that empower people with the ability 

to feasibly create information systems as an everyday activity. Further research into 

tools to support making everyday systems has implications on the access, use, and 

impact of information technology. I discuss each of these below. 

 Previous advancements in the design of tools for creating systems have made 

them more accessible, often by changing them to hide and manage technical 

complexity formerly managed by those using the system. Such advancements in 

accessibility have broadened the range of people to use them. Researching the design 

of tools specifically for use in everyday life could enable anyone to create systems 

regardless of technical ability, further broadening participation. 

 The technologies people use in everyday life are almost always commercial 

products designed and manufactured by industrial organizations. Tools that make it 

possible for people to create systems themselves may enhance the utility of systems 

by allowing them to be made for use in highly specific and personal situations that 

specialized commercial products cannot address in an economical manner. 
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 Tools that make it possible for everyone to create systems could potentially 

lead to greater technological independence for individuals that presently rely on 

commercial technologies. 

Lessons Learned from Designing Pixel 

I learned a number of lessons while developing Pixel that may be useful for 

future design and development of tools for creating everyday systems. I discuss these 

below. 

Modularity (Modular System Design): The modular design approach taken 

for Pixel seems to enable more real-time exploration of system design. Participants 

pointed out the importance of modularity and flexibility in Pixel’s design. Users can 

more freely move through their physical environment to build and rebuild physical 

system topology while situated in the final deployment context. 

Unit Design (Individual Module Design): Large module size and “poor 

quality.” Both the internal circuitry and the enclosure are quite large. This is largely 

due to the use of widely available components in the prototypes. The mobile and 

modular design of the system lend well to a diverse range of use cases. 

Module Feedback to Users: The light and tonal feedback provided by the 

current Pixel design are minimal. While enough for the limited I/O functionality, 

additional feedback, such as tactile feedback, may be useful. Tactile feedback, like 

haptic feedback, seems well suited for modular and gestural TUIs used with one’s 

hands. Additionally, real-time interactive feedback could be made available in the 

graphical environment, providing users with multiple feedback channels. 
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Peripheral Interface: Pixel supports one input and one output per module. 

While this is provides simplicity, the limitations of the design quickly become 

apparent when building single objects that do not extend through space. Consider 

modifying an RC car. This can require several I/O ports for interfacing with the car’s 

control circuitry. Even though modules connect automatically and I/O channels can 

be established in a quickly with gesture, using multiple modules is not feasible due to 

their collective size. To strike a balance between the minimal approach of Pixel and 

the general approach of the Arduino, both ports on Pixel could be available for use as 

either input or output. This could result in additional complexity in the graphical 

interface design. Alternatively, I/O connectors could be designed with additional I/O 

ports available for use while maintaining a simple interface between the connector 

and the module. This approach is common in general-purpose I/O expanders that 

communicate with a host controller (e.g., Pixel) with the I2C protocol. 

Magnetic Snap Connectors: The snap connectors for I/O components were 

designed so components could be quickly interchanged to enable quick 

experimentation with different I/O components. This design was made in response to 

experiences with previous prototypes that embedded the I/O connectors directly into 

modules. While using alligator clips can make changing components easier, 

experiences with children show that alligator clips can be difficult open for children 

and can be frustrating to use when switching between a series of components during 

experimentation. While connecting the components to different snap connectors 

makes them available for rapid experimentation with Pixel, the connectors themselves 

are large for certain use, such as embedding within objects.   
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Gestural Interaction: Based on workshop evaluations, gesture seems to be a 

promising approach for setting up communications between separate parts of a single, 

distributed system. Participants were able to perform the swing, tap, and shake 

gestures to connect components after a single demonstration. While there are likely 

additional gestures that could be incorporated into the core set used to connect 

components, such as for basic configuration of analog components, additional 

flexibility to create and change gestures in situ may provide additional flexibility 

without loss of simplicity, as suggested by OnObject (e.g., Chung, 2010). 

Graphical Programming Environment: The graphical programing 

environment for changing module behavior is designed to compliment the gestural 

composition interface for module-module I/O channels. While this enables 

experimental programming in situ, the current graphical environment is quite limited 

in functionality. Moreover, the functionality of the mobile device displaying the 

graphical environment is not accounted for by Pixel, despite the possibility of voice 

and video interaction that might be provided. 

Summary 

Creating interactive systems that interact with the environment is a complex 

creative process that draws upon the tools, materials, and techniques from a range of 

technical domains. The purpose of this thesis was to investigate tool designs that can 

support more holistic engagement with the physical environment and materials in 

physical computing. To contextualize this investigation, a tool was prototyped 

iteratively over the course of about eighteen months while facilitating children in 
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museum exhibits and workshops focused on making, participating in a series of 

hackathons, and joining student hackers and artists in creative projects. 

Preliminary design evaluations of Pixel were conducted in a series of three 

workshops with children at a children’s museum and in a focus group discussion with 

educators working in a local organization that leads making-oriented workshops for 

young people. 

Future Work 

Pixel was an exploration in building a physical computing platform that 

offered more complete support for its constituent activities, specifically 

programming, circuit building, and working with physical materials. There are 

several opportunities for directly extending Pixel, and many directions for design 

research into more embodied approaches to physical computing. 

One needed extension to this work is support for a broader range of input and 

output components, including analog sensors and analog output components. As part 

of this, one could experiment with gestures or gestural interaction designs to make 

connecting and exploring sensor and actuator configurations. Likewise, graphical 

representations could be investigated for extending the graphical programming 

environment to support the additional sensing and actuation capabilities. 

The module case design could be modified to better support diverse use. As 

suggested by evaluation participants, the cases could be made more robust, 

specifically to support outdoor use. The enclosure could be made weatherproof and 

submersible. One approach would be to make modules with adjustable sizes. Another 

possibility is creating multiple interchangeable cases. 
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To afford use in a wider variety of situations, more materials could be 

explored to provide, for example, a soft exterior, a coating that allowed the module to 

bounce, or modules designs that allow it to be used with construction kits, similar to 

the Free Universal Construction Kit (“Free Universal Construction Kit,” 2012). In 

some situations, but not all, a module of a different size may be desirable. In 

particular, the device could be made smaller. Finally, as suggested by a participant in 

a museum workshop, exploring module accessories such as wrist straps (so the 

module hang from one’s wrist) could be explored. 

Pixel should support collaborative behavior design and sharing of designs. 

The experience should be easy and seamless. Pixel should handle all technical aspects 

of communicating with other modules and incorporate corresponding conversational 

interactions and facilitation into the implemented interaction model. 

The gestural and graphical interfaces presented could be augmented with 

voice interaction to further explore embodied interaction designs for physical 

computing tools. Voice interaction may be particularly useful along with gestural 

interaction for supporting analog input and output components. Such components 

have signals that cover a range of continuous values with which it is natural to want 

to associate a point in the continuous range of output with a particular range of input. 

To support voice interaction, a better speaker should be added to each module in 

addition to at least one microphone (per module). 

Of course, more comprehensive evaluations may provide deeper insight into, 

for example, gestural interaction with modular tangible interfaces for connecting 

input and output components. To develop understanding into the range of applications 
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for which the modular design is appropriate, evaluations could be conducted in a 

variety of contexts, including museums and workshops, with groups of different ages. 
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Appendix A: Supplementary Figures 

 

Figure 50: Drawing of the Arduino program for the light switch in Example 1, Part 1. This corresponds to Figure 6. 
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Figure 51: Drawing of the first Arduino program for the remote light switch in Example 2, Part 1. This corresponds to 

Figure 13. 
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Figure 52: Drawing of the second Arduino program for the remote light switch in Example 2, Part 1. This corresponds to 

Figure 13. 
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Figure 53: Drawing of the updated Arduino program for the “scarecrow tree” in Example 3, Part 2. This corresponds to 

Figure 21. 
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