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ABSTRACT

Title of Thesis: Some Broadband Characteristics of Delta—
Sigma Modulation

,Robgrt John Biegalski, Master of Science, 1971

Thesis Directed by: Dr. Steven Tretter, Associate
' Professor, Electrical Engineering

This paper-presents an analysis‘usihg'correlation tech-
niques of an idealized Dglta-sigma‘Modulation system. An
analytical assumption of errors with.a marginall§ Gaussian
distribution is shown t& vield accurate results for broadband
modulation with a maximum input-output cross correlation.

It is also shown that this maximum is g¢reatest for the degen-
erate case of conly "hard limiting" with no-feedback and no |
integration. -A case of highly correlated inputs for Delta-
Sigma Modulation is also discussed to compare it with broad-

¥
band performance and "hard limiting."
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SECTION I

INTRODUCTION

Delta modulation techniques have been pfopoeed for many
.communiéation tasks from space telemetry to walkie-talkie
systeﬁs. The basic feedback technique for analog to binary
conversion was introduced bylF. de Jager [l] who was primarily
interested in the trenSmissien of speech signais. O'Neil
[2] has investigated the use of delta modulation for trans;
mittinvaaussian and television signals. Higher order guan-
tization and prediction have also been studied by 0'Neil [3].
Other medifications have been studied by Winkler [41, Helijuk
- and Tripp [5], and others. These systeﬁs have proved useful
for tﬁe tfansmission.of eignals whose: power density.spectrum
decreases with intreasing freguency. -

,ﬂ significantly different ﬁodification to delta modula-
tion‘was introduced by Inose, Yasuda, and Mufakami 6] - [7]
which they called Delta-Sigma (A-ZI) modelation. A-Z medula-
tion is significantly different in that it can transmit the
dc component of a signal, its dynamic range and signal-to-
noise ratio are independent of signal frequency rather than
inversely proportional to the signal frequency, and trans-
mission errors are not cumelative.

The objective of this paper is to investigate the charac-

"teristics of a Delta-Sigma Modulation system for wide sense

stationary signals and to compare these characteristics with

”
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a clipper modulator alone. A discrete time Delta-Sigma
Modulation system is studied for wideband noise inputs andl

a theoretical model is developed on the assumption Ofistatis—
tical linearization. The validity of this model is deter;

mined by computer simulation.
Idealized Model

An idealized A-ZI modulation system is shown in Figuré
1 with an input random statibnary process X(t) and an output
wavefofm y(t). The input is periodically sampled with a
period T. 2an output from the clipper is multipiied by h and
subtracted from the next input Sample. These differences
"are then integrated with an integration factor g < 1. The
output samples y, are passed through a boxcar cirquit which
may berconsidered a filter with an impulse response f(t)

where f(t) is given by (1) for the purposes of discussion.

r‘_ -
.,

| 1 0<t<T
f(t) = i1/2 t =0, T (1)
0 elsewhere

The clipper output is defined as

+1 Zn>0
vy, = [Z2_] = 0 z =.0 B
-1 Zn <:QA‘

The pﬁrpose of the theory presented here is to use
correlation techniques to study fhe system performance for
various feedback and intég:ation values and to compare these
results with the case of no feedback énd no intégration, [é],
(i.e., B =h =0).

-
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FIGURE 1. IDEALIZED DELTA-SIGMA MODULATION- 
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Consider a long sequence of pulses of width T and mag—
‘nitude 1 with a random fluctuation of sign. The auto-
correlation function of the sequence is given in the statis-

tical sense [9] by

byy (1) = ¥TEY Y(E, F T @

where y(t) is a function derived from a sample seqﬁence,
holding each sample value from the clipper for an interval
T. To obtain ¢yy(T),‘the function y(t) and this'fuﬁction
shifted by an amount T is taken at an arbitrary poiht'to,
and the statistical average is taken over the ensemble of
ail sequences. For values of T which are integral multiples
of the sample interval T (say T = nT) the correlation will
be the average product of the samples. separated by n sample
int%;vals. o |

The values of the auto-correlation functién between
thgiinﬁegral values nT will be a linear function coﬁnecting
the aiscrete points at nT. The auto-correlation function
igs known to be an even function of T, so ¢yy(nT) = ¢ (—qT).

Yy
The complete function may then be written as

100

by (T) = nzé& dyy () ¢ff(r—nT) (3)
where S o
deelt) = J(T=|1]) 0o<fy{rtjcr
0 jtl>07
¢ff(t) is the auto-correlation function of the impulse

response of f(t) defined above and ¢yy(n) is the correlation



of the samples separated by n sample intervals.

Then the power densitY”spectrum of y(t) is given by

P, = )ch)/ b3 %, o & W

h—..hD

where F(w) 1is the Fourier transform of the impulse response

of the boxcar circuit. For f(t) as defined aboVe:
Fo = Te /l 5'"(w')>

‘ "(5)

JF(U—U 2:: A (5”](—_))

So the problem at hand reduces to finding theAgorrela—
tion between the samples, y(mT)y((m + n)T).where m and n
are in£egers. This correlation will be found for the
idealized systems, then the results of testinévthe validity
‘of tﬂe theoretical model will be presentea. |

» The correlation between the samples can be found as

y,

follows.

Referring to Figure 1, Zn is given by the recursive

equation:
Zh+1 - XH B l’\./U” ! ﬂzh ‘-_'(6)
or : A : .
th) = Zm+) - ﬁzm + I’\jm . © A7)
also
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Multiplying the respective sides of (7) and (8) and indi-

- cating the statistical average by ( ) results in

Xeo Xoin = Zonty Zomeny =3 Z e Zowin®h Zy o,
"ﬂzmzmrm*rﬁ_zh Zm+5 ‘ﬁhmm- |
+ 0 G Zoes =0T + 1 G T
Now X(t) is assumed to be at least w;aé—sense stétidnary [10]

and here we will assume-Zn and Yn to also be wide-sense

stationary. With this assumption then we let:

Yn Vnss : émr(h)_ o ) . (10)

Equation (9) is

. %(h) = @, ~ﬂ¢zzc;q-f) + Aqeéy(h-;)"
.o

.," "ﬂ¢zz(h+l) + /32 ¢ZZ(“),_ ﬁl’l gy(h)'
i ¢:72(h‘7"'/) —-'/)’}) @Z(h)_ + hz ¢”(n) .




SECTION II

CROSSCORRELATION STATISTICS

An examination of Figure 1 shows that for Valueé éf 8
near 1.0 the'{Zn} are the sums 6f a large number-of random
variables. In particular if {Xn} are the samplés_from a.
broadband source with a réasonébly flat spectrum it is
expected that the éistribution of'{zn} due to th¢4{xn} cén
be approximated by a Gaussian probability distribution.

The {yn} are also exbected to apéroximéte the spedtra_of
{Xn} so‘that‘{Zn} becoﬁeé the sum of.a large number 6f
.weakly correlated samples and might thérefo;e be dist;ibuted
_'approximatelybas a Gaussian distribution. The same type of
reasoﬁing does not apply to the joint'distribﬁtions of'{Zn}.
To the contrary it is expected that the joint diStributibn
of'{;;} separated by one sémélé interval will‘be étronglj
influenced by the sign of the earlier sampie in a manner
described by Papoulis [11]. 1In order to solve equation (li)
for:¢yy(n) we must have some knbwledge of the crosscorrelation
fupction ¢Zy(n) which will involvg some assumptions on the
ljoint'distributibn of'{Zn}, A method-bf-determinihg'some
propértieé of ¢Xy(n) will be described below. Tﬁié appfqach
is based on an épproach takeﬁ by Brown [12] and his notation
will be used here.

Let p (Xy, Xz)jdehote the seéond;order joint probability
distribution of X, and X.,, where X, and X. are derived from

2 1 2

’ : ) . . u
the same stationary random process a time interval Tt apart.
. 4
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The firs£ order distributions are given by
70()<I> - ffo(xj)xl)dxl
Cpow 2 ok, wdx,

where integrals without limits denote integrals from -« to

(12)

4o, It is assumed p(XI, Xz) can be expressed with a set of

A

orthogonal polynomials {0(X)} so that . -

=0 h=o

PO, = 7200 720%) 2 2 QD 8.06,(k) 13

where

szn

(?) = (/70(%/ )X1> @m(x/)- en(xl) QJX,JXL ' (14)

and the orthonormality conditions are

y O (x) B, (xvdx = (15)
[70(’0 % Fh 6 mXxh . |
the‘first two polynominals are given by'
I - ‘ B . (16)
s, . X —_/LL . . : - L
. 6 = A==

where y is the mean of X(t) and o the standard deviation.
The term a (t) is then the normalized autocorrelation func-
tion of the process X(t)

/O(T.) = CL“(T) = ffe, (X/)e‘ (Xﬂjo(xt, X2) X, dXy. (17)
and it can be shown that 200" 1 and qon = %no = 0.

An instantaneous non-linear device can also be expressed

in terms of {Ok(x)} as

76(7(") = RZ Cp G (W) | (18)

with

”

Cu = yf(‘)ﬂ;) @p\(x/).‘fg(xl)‘;xl . (19)



For convenience we let CO =0, u= 0.

The crosscorrelation of f(X ) and X, is then given by'

¢ ‘o ﬂ [Z Ck@%ﬂ Xz[E 2 4P W@Uﬂj

vSince )(Z: & 9' (Xl) ) .
| 9?1(2) = crké Ly, (2 CK ' .. 2y

Consider the expression

‘ fXZ 70()(;) X;_) a{Xj_ ':'I 70(X/> EEXZ/Xl] | (22)

EL%/x] = fx}g/o(xl/xg do .
04) ED% /%] =[x [gfa@@ CX)écx]F&JF(XD o
70 ) Thnmo e (2

¢ .For}(i: f@, (XZ) and &y =o 4

) E[')(z/x, = O’-}QZ akg'c)@km);ﬁ()q) (25)
. =/

For those values of X, where p(Xl)és 0

Flx/%] = o 2 gt - -~
: S k=1 .

In the case where X4 and X, are jointly normal variables

ELX/x ] = X /N?) | (27)
. Then - '



but 6@, G, (%) = % PO '
so that GL,“(’?):O kRx o and QZ?L(@') :G‘C,/O(’?) : (.29)

For the clipper with a Gaussian input

<0 R A

, 2 T el _ Z:A ‘ ,'
C, = T X e Tax =qf=" GO

Obtaining the conditional expectatlons to obtain ¢ y h)

is technically much more difficult for A-Z modulatlon. For

the Gaussian assumption of {Zn}, ¢Zy(0) is given &irectly by

oD N

e _ A T ‘\1’ '
gbzyco)—d_m fzf- Jdz —-_G‘J;—; . (31)

(2]

If {Zn} were not Gaussian ¢"y(0) would be given by the

-~

general form:

(6 = o C . | -7 (32)

The conditional expectation E[Zn+l/zh] can be obtained

s, . -

through the use of equation (6)
zh'fl = Xh - hy;’) + ﬂz-h B _ (6)
Zpey = Fa ~ hggn[z'ﬂj L ER A : - (33)

Let the probability density§function of Xn'be given by Pk(xn)

and lét E[X] = 0. Then for independeht;input-samples:

7O(Zn+f/Zn) 7%(Zuy hSL2I=B2)  (a4)
E [Zhﬂ /éh—‘{ thH 7ﬁ (Zhﬂ fh5§ﬂ[2;] ﬂZh)C/Zh-H (35)

’E[Znﬂ .-/Zh]':.ﬁzh'_ h S [Zhj . (36)



. with the set of solutions

As in equation (18) we let C ,
SgnLZu] = Z" Cu©x(2n) o am

Substituting (36) and (37) into (26) we have

Bz, h > ¢ 9k<2h> = O‘Z akz(" 9/«(2“7 (38)
R=1 ’

B - hg = o @, (1)
Lo = — ho

o

(39

)

K:Z 3).41'”

This also gives a solutlon for the autocorrelation functlon

t¢ () = o a,) : - .
c;S(/J = c-Cd*F—hC) o (40)

From equatlon (21) one obtalns -
o N

a

11

-

TN

; _ C . » Y
) ¢yz CH) = C,G‘/”‘_' bc/ | “Ea 5 I
s S0 bEE

Since £ [.F(x,)jr / = > Chl “then 1-1nder the Gaussian

assumption
o o - h ' , o
= _ = = ,363 . 43
& == 363 e
N " C _ - . ) . “‘ -
@z(*”’ E MORS: 121 N
Also since ¢¢3 = C, o~ - the néfmaliied correlaticn /q,¢+0
=J : ! . _ j‘—

will be given by

’
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[3 (+1) = éﬁﬁ; = _%%%ng— i%rgi~— : j "(46f
| /DHZGD = [3 - /a253(3—h‘) o | . (48)

Substituting equations (32), (40),'and (41) ip equation (11)

for n = 0 yields a solution for 02.. Thus

a* = o>-20(c*f -he) +2h(E ) - cfh@)

2 h - + B -z/é’iwq + b (495'

2 _ _ 2 . X ‘f
ot = o (- B+ zp’hc, \ h_ S (50)

Therefore g is given by

_ .
th- C P 1 - a ) . '
o = = L A (LY s s
, B e T
and for 8 = 1
»" | ~* = ) | . S ) ) -'.".
e S *h R (52)
_Zl) ‘
For 8 =h = g_ =1
o = ,O/CJ \ ' L (53)

The expression for o can be minimizeg with respect to

'h by solving the equation % = § for h with the following

oh
result
2 2 C,lﬁ . - o .
‘N = Oy TTETc At " (54
h X /"/3i*’9/32 o (54)

This expression shows' that the feedback gain which will

minimize the variance of.{ZA} is lineérly related to Oy and



is a function of both C
minimizé ¢ with the result that . ‘
Omin = 9%/, ‘ ‘ o (55)

'It should be pointed out that this result is’ theoretlcally
not dependent on the probability dlstrlbutlon of the 1nput
| but requ1res only that the input consists of 1ndependent
samples with zero mean. A plot'of minimum g, ahdfﬁhe corres-
ponding feedback gain, h, as a.fuﬁctien éf the'inteération
'factor, B, is given in Figure 2.for an input variaece{of 1.
For other values of the input variance; both mieimum 0 and
feedback gain, h, are linearly related tp ehe input‘stenderd
deviation} Sx - Quite appropriately, the minimum‘of the
minimum ¢ occurs when 8 = h = 0 which is £he case of the
clipper only. To find ¢2é (2) the conditional expectetioﬁ

of EEZn+2/Zn] is needed. Using (6) - |

-

s,

ELZn+L/Z,,J ﬁ L[Znﬁ/zh] - I") EED_]"[ZMJ /Z :l (57)

E[Zh+l/zn] is given in equatlop F36).

Znez = X = h Ve /?Znu - (s6)

From equation (34)

70’(2-;”//2”) A% C Zh+/ Thin = Zh) (58)
E [ 59)1[2»141]/2”—] = ffx(zm, -%kf/n ﬁZh) c/ Zh+l

B jé;g(zn+* %Jn /gzh)JZ"ﬂ(Sg)
For Px(x) being Gaussian - o -
7" ﬁ Zn _>_<,_,
2 z 63
l—th[ZMJ/Z ] é?i?r( JX (60)

1 and B. For B,='1;, h =“d%ﬂﬁiil;1f?i,l¢
, : x



‘1.3

14

VALUE
' ; S " ./ "

B} . /;Q/-’//f”' P
MINIMUM o ) " o
..‘,________.—/""""/' »

T .
i;///f
//};.
. ' .
‘L////EEEﬁBACK\GAIN, h
. .
41 //// INPUT VARIANCE = 1
N " ; f + f . -+ }
21 .2 .3 .4 .5 -.6 ..7 .8 .9 1.0
INTEGRATION FACTOR, B
FIGURE 2.

MINIMUM o VS INTEGRATION FACTOR
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Let this last expression be represented by the expression

o
E[thfzhflj/zh] - = Z dR eh\(zh) . ,'(615
R:d
where
'le = fe (Z) E[s}hfzm,]/zh’_(/o(zh) th | T (62)
- hS];,[Z.q]—-ﬂZn A '
- .
= h 26x- = o L
O/I @‘FJ -2 e dx € lfdzh .t (63)
oo h ﬁZ X —;Zii .
c! —_ j 42z ( e T3t e e (JXQ/Z. | . (64)
{ 2 d_:z. 271 ) S A
For o = B = =
0 —;2 ’___ C‘LZ.L
d, ({ e e dxdz _(65)

e o
This was solved by integration by parts and the use of
probability tables to give 4, = .418.

2

since @, (%) = = - R i
d[ = }L £ EZhEESj”[Znﬂj/Zn]J ‘ (66)
d, = & ¢j(‘) ' (67)

The expression for E[Zn+1/Z ] can then be expressed as

El2Zn+2/Zn] = fz,,—-hﬁ-?sn[zh] L»Zd ekczn) (68)
S:ane t£2n+z/~n] = 6 Z CLKI (2) Q (2.,.,)

£=1
we have the set of solutions

6 Q,) = BLep =G hi — gh.— 95fzj<'f’) (69)
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As béfore the autocorrelation ¢ZZ(2) is given by-ozall(Z)
¢ (= o [3CsB-6hD - h ySZy(») (T
»quZ (2) = ﬁ ¢'Z‘2(/) - 17 ¢zy(l) (72)

This last expression can be generalized to give for

_ ey - (h-i (73
4)22(,1) = ?Szz(" ) h é-’-j b, (73)
The crosscorrelation ¢Zy(2),is given by :

- : '
0,0 =62 Q,2¢ - - ‘ (74)
4)72 py R P\
' N X &
9552(2) = ﬂ[c‘/ﬁ’q— hetd - _h&:z_ d«*zj(l) |
~Bh2 G- hZ Gk (75)
=2 R=2

.%2(2) = oG- Bh -ﬁqfé—hkéckdﬁ | : (76)

. To obtain ¢y;(2) it was necessary to determine ¢Z (1) .

In doing so it is observed‘that.¢yz(l) # ¢zy(l); alsg whereas
¢yz(1)'depend§d ogly on the rean of {Xn}, ¢Zy(lj is a strong -
function of Px(n). Othef values of ¢yz(n) can be determined
only on a per case basis and then using involved integrals,
but £hey will not grant any further insight into the basic
-feedback process. |

_: The next theoretical item is;tQ.déterminé the inéut—
outpgt_crosscorrelation for'the>indépendent input caSeﬂ
Because of independent inputs ¢X (n) = 0 for n < 1. Because .

Y

of the unit delay in the formation of {Zn}, ¢. (1) is the

Xy

.first non zero crosscorrelation coefficient and for a A-Z

’
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modulation system with a "flat" response ¢Xy(l) will be the
maximum value of ¢Xy(n). ¢nyl) can be computed by first
considering the joint distribution of X ’ Z , 2 n+l.
Formally we have: “
70()(") " Zn-n) ﬂ(xh) 70(2,,/)(,1)/0(‘2;,“/2,,))( ) (77)
Since the {X } are independent Lo
iz (Z,/%,) = ﬁ(z,,) o ~(78)
n+l ; hY - B Zn ‘ ’

P Znei/ 20, %) = §(Zuu=Xn+hdn=BZ.)  (39)

where §(x) is the ‘Dirac Delta function.

and since X = 2

The value of ¢#Y(l) is expressed as ]
- ) i _ . o
Gy = [T SpEnd 0, 2, 2,,) diadzs 2 o0
Integrating 2 nt+l first gives: _;.' .
(/) = ffx,, Syl Xn- hjn +B2, ]/O(X.\),Q(Z)C’Xac'zn (81)

Next 1ntegrat1ng with respect to X Ylelds

(P2,- hx,,) - “

?%j(')_ )RJ— jf(4)€ 2-°—x ’ c/zh : : - (82)
18hy7 b
~ 2 (=) 4, +=L (83)
= 2 _5, (Cwl 2K )Zh (ZS;‘J 6;(1)42 |
N s E - h
This expression was evaluated for B % h =0, =1 toyield
¢Xy ) = .6477 \ , o (54)
From the expression Xn = Zn+l + hYn - B Zn we have that
g,bxj(hy-; ¢25(n,,) -+ h §5y,j.(h) - [3)4?2_907) (85)
Therefore: '

‘1%9(0“‘ ‘Cé(fj ) +ﬂ %’Zy(l) —-q‘ (a) : (86)
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For the case of B = h = cx'= 1 we have from eéuatiOns (84),
(67), and (55) |
(D = =017 | (87
A few general ppoperties of the correlation functions
. can be found by working directly with the joipﬁ aistribution
" functions as follows. Since for lndependent inputs P (x /Z")
= P (Z n+l + hY - Z /Z ) and p(z ) is Gaussian by assumptlon,
the second order ]Olnt dlstrlbutlon is glven by ‘
| 70 (Zy Zpy)) = 70(Zh) f’xczhﬂ +hyh ﬂzh) - (88)
This process can be extended to have

7O(X|’\M~/Zh+m)zh+m-”" h) 777(<Zhﬂﬂ\ﬂ ﬂznﬂfh"hyﬂ*m/zh*‘m) (89)

so that the mtl joint distribution is glven by
+ h¥. 4
7'/) <Zh) h+/ Zh»m) 70(211)—7—7?( (th-l.- ﬁthL Jnﬁ) (90)

The integral for ¢, (m) then looks like

zz(m) ff‘"J.Z Zn-tm 70(2*\)77—’/3((2”“-] ﬂzh-ﬂﬂ‘ynﬂ)éz CIZ '"'ézmm (91)

Integrating with respect to Zn+m we have

¢Zz(.'””) = f"‘fzh(ﬁ Zpy vimei —w{"””‘afj(z"‘"Zh*”"“) JZ.\"‘"::(Z,, im-i (92)

‘which yields the relation B _
Z22 | ‘ o .
In the same manner it is found that'
4 - - h ¢, (m=i '
Cé,z(m) — /3 §@Z_Cm ) - h 4?7} ) ‘ : (94)
These last two equatlons are valid only for m > 1 and

. they also are a solution to equation (11)



SECTION III
EXPERIMENTAL RESULTS

The Delta-Sigma Modulation system sho&n iﬁ figure 1
was simulatédvon~a digital computéf. An approximately
Agaussian random séquence of samples was deri&éé from a uni-
form_nﬁmber generator. This seﬁﬁence was used as an input
to the modulator. All_the correlatioﬁ fuhctions'in equation
(11) were computed for n =-10 to 10.

A histogram of. the first 5000 uniform numbgr generator
samples is shown in Figure 3. Two metﬁods'of generating
normally distributed random variables froﬁ the uniform
samples were tested. Oné methéa was to ﬁsé'theﬂsum of twelve
uniforﬁiy distributed samples and the other was the direct
method discussed by Dillard [13} where if U and V are <
independent samples from a uniform dist;ibution then two
independent saﬁples T and Y from a normal distribution are

given by

I

T = /-2 In u cpé (2mv)

Y = /2 In 4 sin (21v)
Figure 4 shows the resulting histograms of the first 5000
sam?les génerated by the two methods: ‘Neitﬁer method is
clearly superior but the sum of twelve samples froﬁ a uniform
distribution was chosen for the simulation process because it

seemed to have a smoother histogram for smaller sample sizes

N
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as shown in the histograms for the first lOO'sgmples5in

Figure 5. ' ‘ | ;i , fj .
Clipper Correlation Statistics

The crosscorrelation of the clipper inpﬁt‘éﬁd'output
for a sﬁm of twelve uniformly distributed variabléé;as an
approximation for the normally distributed vafiablé was also
investigated. For 13000 independent saﬁples the input var-
.iance (assuming zero mean).waé .992. ‘The'c?dsécorféiation
coefficient for éero delay Qas .7955-Wﬁich‘is wflhin 12 of
the theoretical value giveh by equation (32)~df_clc‘; .7914.
.Other correlation coefficients for delays.differeﬁﬁxtban zZero

were less than .02. h |

Correlated input samples were génerafeq byvfilfering the
ihput samples with the equation: N
2= X_+ .82 . . T (96)
where the {Xﬁ} are the independent gambles'éndl{zn} are the
clipper inputs. The input variance for ;3000'§amples-was
2.774 and the croéscorrelation coefficient for zero Qas 1.337.
The theoretical value, Clo = 1.329, was aéain within 1% of
the experimental value. Table 1 lists the-nbrmalized input
‘autocorrelation, crosscorrelation,,thédretidal output auto-
correlation, and measured ouéput autocorrelation functions.
From equation (29) the normalized crosscorrelation and input
autocorrelation are fheoretically equal. Thé_table shows

that for sample sizes on the order of 13000 the correlation

functions can be expeéted to be accurate to within 3% when

!
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Sample

Table I

CORRELATION: VALUES FOR CLIPPER

Input Cross-

24

Output

4 Output
- Delay Auto Corre- Auto- - Auto-
Corre- "lation Corre- Corre-
lation . lation lation
2 Tl . Measured
. T sin p
-10 .102 0.99
-9 120 114
-8 .156 .150
-7 .203 ".198
-6 .255 ~.251
- 5" .320 .318
-4 .403 .407
-3 .506" .510 »
-2 .638 - .641 ,
-1 .801 - .804 o
0’ 1 1 1 1
1 .801 .798 . .590 .. .595
2 .638" .630 441 .438
3 .506 497 .338 .334
4 .403 .399 .263 .269
5 .320 .310 .207 .202
6 .255 .243 .164 .154
7 .203 .193 130 .120
8 .156 .144 . .100 .085
9 . .121 - L110 077 .068
10, .103 .096 . 066 057
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they have.a normalized value of .2 or more. Smaller values

of correlation coefficients are less accurate.
Distribution of Z

The next experimental result is the histogram‘of'the
’samples at the 1nput of the clipper in the A-Z modulator.
These are the samples 1ndlcated in the theoretlcal sectlon
by {Z }. For the feedback gain, h, equal to the standard_
deviation of the 1ndependent approx1mately normal 1nput
samples and for oer .98, the hlstogram of. {Z } shown in
Figure 6 was obtained. The data points are the histogram
samples for a total sample set of 49000 and the cross marks.
indicate the standard deviations of the~datalset cfoésed;witﬁ
the aopropriate number of samples at the same standard devia-
tion if the set were normally distributed. The agreeﬁent is
quite good~at the lo and 20 p01nts but when compared w1th a
normal dlstrlbutlon having the same standard deVlatloa the
sample histogram of {Z } was notlceably more flat at the peak of
the distribution. The normalized cumulative distribution of the
sample set is plotted in Figure 7 for the same set of data.:
On the probability graph of Figure 7 a Gaussian diatributiOn
would form a stralght line. The data set‘seems to give a
very straight llne with no dlscernable flattenlng out at the
peak of the distribution. No statlstlcal tecsts were_made to
determine confidence limits on the Gaﬁssian assumptioh of this
distribution. It was reasoned that the appropriate test would-

be in the accuracy of the crosscorrelation coefficient of {Zﬁ}
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and {Yn} to determine the coefficient C, since it is the

1
main consequence of the Gaussian assumption.

Simulation for B =1

The A-I modulation was simulated with‘independenf inputs
1 and with the correléted inpﬁts used to generate Table I. For
_the independent inputs, the variance of_theJinput (0#2) was
.992. With this in§u£ and an integratidn féctor (B) of 1,
¢;z(0){ ¢yz(0), and ¢xy(l) were determined with differeﬁt
feedback gains, h, for a sample size of 13000. The linear
gain coefficient Ci'was cpmputed as C1 = ¢ZY(0)/ézf 'Figu;e.
8 shows this estimate of Cl'éﬁd the input—outpuf Cross=
correlation coefficient ¢xy(1)‘ as a functiqn of feedback
géin. These results indicate that Cq is mcﬁotoniéélly
increasing function of ﬁhe'feedback gain with the Qaiue éf
//% 2 ,7979 odcurring very near unity feedbackﬂ This is also
where the input-output crosscorrelation also achieves a max-
imum. For {Zn} being a Gaussian process, thére‘is only one
value of Cl' namely.//%; therefore for feedback gaips other
than the one which gives C, as yr%, th; {Zn} canhot;be
derived from a gaussian process.

. As”indicated in the theofetical-seétion, for B = O, = 1
the minimum value for the variance of’{Zn} occurs with a
feedback gain of 1. ' This can be seen in Figure 9 which shows
¢ZZ(0) as a function of h. It is just at tﬁis minimum wvalue
of ¢zz(0) where ¢Xy(2) obtains its maximum and Cy = Jr% indi-

 cating a.normal distribution. This result might be informally
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.
explained by viéwing'{zn} as the sum of tﬁe.wéighed errors
between the A-I modulation output and iﬁs;input.. When these
errors are made a minimum such that the varian&e of {Zg} is
a minimum, it is expected that the inpﬁt—output cross-
correlation woﬁld be a maximum. Albné with this mihimum
error, we have the philoscphical notion that when'ﬁhe errors
of a system are minimized by a propér édjuéfment of éll the
vériables (there are only 2, h and S, in A-Z deqlation) the
residue error is likeiy to be §f a Gaussian naﬁﬁre. 1
Tabie IT shows the normalized correlation wvalues

(¢uv(n)/¢uv(0)) for a 13000 sample simulation.wjth h=8=1.
Table III shows a comparison of the simulation resﬁlts and
the théoretical values derived for B = h = O = lf The
‘experimental numbers agree well withAthe.théoretical results.
For those functions which are theore#ically zefb, the
standard deviation of the error due to finité sample size is
.01. For example the function ¢xy(n+l) for 9f= 0 is-theoret-
ically zero. For the values of this function in Table IT the
standard deviation of the error-ié .Ol/¢xy(l)-; 3915f A ploé
of the normalized functions of ¢Zz(n) and ¢zy(n) is shown in
Figure 10. From the erratic behavior.of the. functions at
small values, the errors due Fo finite'saﬁple size would be
estimated as .01 to .02. .This iS»abQuf‘the size of the
errérs féund in the simulation of.the'clipper results thch

" was shown in Table I.



Table I1
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NORMALIZED CORRELATION VALUES
B=1 h=1
13000 Samples
' s, (n) 3, (n) 3. (n+1)
"Sh;ft %, (0) sy 0{ ¢yy(n) Py (1)
-10 -.007 -.008 .004 .007
-9 -.002 -.025 -.013 -.026
-8 ~.008 -.010 -.002  -:024
-7 .009 -.001 -.004 - .006
-6 .012 .009 .01l .005
-5 .015 ~.002 -.008°  -.005
-4 .037 .004 .003 - -,004
-3 .071 .019 .012 ~ -.006
-2 .152 .026 .003 - - .001
-1 .364 .006 -.019 .03
0 1.0 1.0 S10 1.0°
1- 329 o '~ .325
2 121 121
3 .654 L .039
4 .032 L .025
5 .008 .009
6 013 I .002
7 .008 L .020
8 -.007 o .000
.9 ~.020 -.029
10 .002 .000



Table III.

SIMULATION AND THEORETICAL RESULTS

Simulation Theoretical ' Theoretical

33 .

]
(v

Function
: Result (0x=.996 Result (B=h= ‘Equation
h=8=1) ox=l) Used
¢, .7950 7979 {30)
g 1.239 .- . 1.253 - (55)
¢zz(l) .559 .571 . (40)
¢zz(2) .234 +236 (72)
b,y (0) .985 ' 1.0 ; (32)
-¢yz(l). .006 | -0 - (45)
¢yz(2) .026 ' .018 (76) and (87)
¢zy(l) .329 ’ | .3346 (67)
¢yy(l) -.019 S _ -.018. ' .(87)‘ _
A¢xy(0) .021 L Q o (independence)
¢ (1) .641 A .648 . (84)
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Simulation for B8 = .5

The A-I modulator was also éimulatéd with'an integra-
tion factor B = .5 for the same inaependent inputs samples
. as in the simulation above. For this case Figﬁ;e 11 shows
ﬁhe éstimate of Cq and the.input—output ctosséprreiation
coefficients as a function of feedback gain. It can be seen
that C; is not a very sﬁrpng function of feedback gain. -In
the interval of .1 to 1 the difference'betweenfthé maximum
estimate of Cy and the minimum is .0044. The function of
the input-output crosscorrelation coefficient does have a
maximum very near the theoretical gain for minimum variance
of {Zn}. For B = 0.5, the feedback gaiﬁ_fof‘é minimum of
¢zz(0) is given by equétion (54) as .418. At this value,
| is

~¢xy(l) does seem to be a maximum, and the estimate'of‘cl

.798 which is the value expected for the gaussian process of

[y B
-

/r%:founded to 3 significant figures.
Figure 12 shows the variance of {Zn}'as a function of
feedback gain for 8 = .5. As in Figure 8, ¢ZZ(O) also has_ a
definite minimum near the point where the thedfetical equation
(54) indicates. The theoretical minimum occuié at h = .418.
- Por this value of h, the simulation yie;dea:a standard devia-
tion of {2} of 1.044. This compé’#e"s'wgéll with the theoret-
ical valué of 1.049,
Table IV shows the nqrmaliéed correlation values
(¢, (n) /6, (0)) for a _13Qoo sample simulation with B = .5 and

h = .418, Table V shows a comparison of the simulation
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Table IV

NORMALIZED CORRELATION VALUES

"B = .5 h=

13000 Samples

. 2 (n) (n) ¢, (0+1)
Shife ar‘r—r JTT ™ g
-10 -.003 -.009 ~ -.013 ~-.005
-9 -.025 -.019 - =.008 .015
- -.019" -.012 -.002 .007
-7 .002 .000 ©.012 .005
-6 -.006 -.007 .001 000
-5 -.004 -.008 .005 .008
-4 .003 - .005 .007 .010
-3 ~.002 -.014 ~.007 .019
~ 2 1,037 007 .001 .001
-1 .190 017 .005 .021
0 1.0 1.0 1.0 1.0
1 ©.184 *.185
2 .033 .034
3 -.004 -.005
4 .008 .005
5 .012 .011
6 .006 .001
7 022 .031
8 -.016 .011
9 -.020 .026
10 -.005 .006



Table V

SIMULATION AND THEORETICAL RESULTS

B = .5 h= .418

Simulation Theoretical

. Function Theoretical
Results Results Equation

Used

Cl. .7981 .7979 (30)

o 1.0433 '1.0488 (51)

¢,, (1) 207 .200 (40)

¢zz(2) .0399 .0386 (93)

¢zy(0) .8331 . .8368 (32)

¢yz(l) .014 .001 (45)

byp(2) .0056 .0025. (94)

Opy (1) .153 o .147 (67)

¢, (1) .005 -.00455 (86)

¢xy(0) .016 0.0 (independence)

¢$_. (1) .7586 _ .7614 (83)
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results and the theoretical values derived for B.= .5 and
h = .418. The accuracy of-these results are about the same
as in the case of B = h = 1 sh?wn previously. A plot of thé
pormalizea functions of ¢zz(n) and ¢zy$n) is sthn in Figure
13..

It was demonstrated in both simulations thaf a minimum
vvariance of {Zn} corresponded to a maximuﬁ ihput-output cross-—
‘correlation. Figure 14 sﬁows a plot of the theoretical min-
imum ¢zz(0) and the corresponding input-output correlation,
~¢xy(1), as a function pf the integration facfor‘B. The
results of the two simulations are indicated in the figure
by an "X". Figure 14 shows that a maximum. input<output cross-
correlation for independent input samples is achieved by the
clipper alone with 8 = h = 0. It was also obser?ed that the
effects of the clippér non-linearity Qere not ﬁnique.~ When
the clipper alone is used with 8 = h = 0, én input;with a
joinfly normal distributioﬁ yields a unique output such that
the output autocorrelationkfunction or po&er>dehsity spectrum
indicates a unique input autocorrelation function or power
density spectrum in a one-to-one manner. In tﬂe A-%¥ moduiator,
the distribution of {Zn} is such that the autocorrelation func-
tion of the output does not in itseif indicate the auto-
correlation function of {Zn}. This inverse transformation is
dependent:. on the integration factor, B, and'feedback gain h.
Figure 15 shows the output power density sbectrum for the two
independent input sample simulation céées discussed along with

"the power density spectrums of‘{Zn} for these cases as a
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function of frequenéy normalized to the sample rate. From
this figure it can be seen that although the output spectrums
were similar, the spectrums of {Zn} for the two simulation

cases differ.
Simulation for Correlated Inputs

The operation of the A-I modulatioﬁ system for corre-
lated inputs was simulated to observe what properties of the
indepeﬁdent input case might apply. In this simﬁiation the
correlated inputs wére those used to generéte Téble I. For
an integration factor B = 1, the linear gain cbefficient, Cl’
was estimated as a function of feedback gain,'h; using 13000
samples. The results are plotted in Figure 16;? These
;esults show that Cl has a minimum near the value of feed-
back gain equal to the standard deviation of thé:input
samples, 1.66. After this C, increases monotoniéélly with

feedback gain and reaches the value for Gaussian samples,
.798, near h = 3.4. The experimental data indicates a slight
discontinuity in the estimate of C, in this region with ¢y =
.794 for h = 3.4 and C; = .806 for h = 3.45.

The input-output crosséorrelation, ¢Xy({), ;s a function
of feedback gain for the same set of Qaﬁé is shown in Figure
17. It can be seen that this crosscorrelationlis a maximum
near the value of feedback gain equal to the standard devia-
tion of the input samples. The variange of.thé samples {Zn}
at the input of the clipper is a minimum near the value of

h .= 3.4 where the estimate of C1 indicates the possibility of

Gaussian samples. The variance'of'{zn}, ¢zz(0), as a function
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of feedback gain is shown in Figure 18. With the indepen-
dent input samples shown earlier, the conditions for minimum
variance of {Zn} coincided with a maximum input4output cross-
correlation, whereas for this low pass filtered sample set
- the maximum of ¢xy(l) and the minimum of ¢zé(05'cccur at
"different values of feedback gain. However, the minimum of
'¢zz(0)'is consistant with the hypothesis that'{zn} has a
marginal distribution which is a normal distribution.

Table VI lists the normalized correlation values of
¢zz(n)’ ¢zy(n)' ¢ (n{, and ¢Xy(n) for the situation where

Yy
¢... (1) is a maximum in Figure 17. This is the condition

XY
where the feedback gain was equal to the standard dev1atlon
of the input samples. These results do not compare favorably
with what could be achieved by using the clipper alone.

U51ng only polarity sampling the input- output crosscorrela-
tlon is 1. 33 which is approx1mately 20% greater than the 1.11
maximum ¢Xy(l) for the case when B = 1. A_comparisoﬁ of the
output correlation as a function of input correlation for the
clipper alone and the simulated output is shown in Figure 19.
For the low pass filtered data set, th accuracy of the power
‘density spectrum at low frequencies is determined by the
accuracy of the smaller values of tﬁe autocorrelation function
which occur at the greate£ sampie intervals, n. Figure 19
shows that although the output-coﬁtains more lower frequency
content that the output.of the clipper alone, the clipper
- output autoco;relaticn is approximately linearly related to

the input autocorrelation for small values.



Table VI

NORMALIZED CORRELATION VALUES
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B=1 h=1.66
' (bzz(n) ¢, (n) . ¢ (n+l)
Sh;ft 6;;767' 6;§TET ¢¥y(n) ¢zy T
~10 .591 .476 .146 CL121
-9 . 629 .509 .158 o .139
- 8 .670 .549 .189 . .174
-7 .174 .588 .207 .214
-6 .759 .626 .234 .257
-5 . 805 .672 .281 .322
-4 .852 .718 .324 .399
-3 .898 .767 .381 .510
-2 .940 .820 .466 .  .635
-1 .972 .802 .382 . .795
0 1.0 1.0 1.0 1.0
T .880 .921
2 .817 . .833
3 744 ".740
4 .672 .649
5 .609 .554
6 .551 .489 -
7 .501 .435
8 .458 .375
9 .420° .327
10. .295

.389
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The region where the estimate of C, was closest to the

1
value obtained for a Gaussian process was also investigated.
This is where the variance of {Zn} was found to be.a minimum.
Tables VII and VIII show the normalized correletion values
._of ¢zz(n), ¢zy(n), ¢yy(n), and ¢ " for B =1 aﬁd for h =
3.4 and h = 3.45 respectfully. These are the valuee of feed-
back gain before and after the slight discontinuity in the
estimate of Cl shown in Figﬁre l6. It ean be seen from these
tables that for 8 = 1 and for h = 3.4 and 3.45, the input;
oﬁtput crosscorrelation function is nearly symmetric about
¢Xy(l)'ihdicating the modulator is doing ver§ little integra—
tion or differentiation of the input signal. It can also be
'observed from the input-output crosscorrelation function, that
for these conditions the A—i’modulator is behaving much like
a simple non-linear device with no memory such that, 1ike the
llpper alone, the input-output crosscorrelatlon function is
llnearly related to the lnput autocorrelatlon functlon and as
a consequence the output modulation noise, or that which is
équivalent to quantization noise, will be orthogonal to the
ihput signal.

Assuming the output "noise” is orthogonal to;the'input
"gignal," some approximations of the.output'signal—to—signal
plus,néise,ratiosr S/(S+N),'can eaeiiYibe made. The total
'signai in £he output'bandwidth froh 0 to one half the sampl—
ing rate is given by (¢Xy(})/cx)2. This is also the outbut
signal-to-signal plus noise ratio because the total output

power is 1. PFigure 20 shows the output power spectrum as a



Table VII
NORMALIZED CO'RRELATION COEFFICIENTS

6 (n) 6 () T 4 (ntl)

. . z2 2 X
R R m ™ g me

.10 .086 064 .031 -~ L.110
-9 .094 .063 . 025 . .122
-8 117 C L0900 047 .156
-7 .135. .100 043~ .204
-6 .162 129 067 .270
-5 .188 .130 ' .064 : .313
-4 .252 - ©.196 117 . .395
-3 .288 .208 .100 ~ .502
-2 .366  .367 .221 .629
-1 342 -.262 -.257 .790

0 1.0 1.0 1.0 1.0
s | 235 .801
2 .284 ! . .659
3 .200 T .516
4 191 . . 434
5 .132 . .335
6 113 - .259
7 .086 ' .222
8 077 | . .160
9 .058 - .129

10

059 ' T .122



Table VIIT

NORMALIZED CORRELATION COEFFICIENTS

B=1 h=3.45

o, () e, ()

' . ¢ . (n+l)
W0 B, w® g
-10 . 047 .040 .619 1106
-9 .063 "~ .053 .032 .132
- 8. 081 .067 .039 .160.
-7 .106 ' .086 .048 .199
-6 .134 114 .063 . 250
-5 .162 .128 | .666 .314
-4 .201 ' .165 .095 .418
-3 .264 .215 .126 .509
-2 .319 .352 .202 .649
-1 .290. - -.296 -.259 .818
0 1.0 1.0 1.0 . 1.0
I ~.225 ‘ .808
2 ..253 .656
3 217 " 533
4 .174 . 419
5 127 .340
6 .104 .267
7 .085 .220
8 .067 .165
9 .059 .133
10 .041 .116
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{-} OUTPUT SPECTRUM, CLIPPER ALONE, B8 = h = 0
{ X} OUTPUT SPECTRUM, 8 = 1, h = 3.45

. .
(o)}
i

AMPLITUDE RELATIVE TO ¢ (0)

\ |

T~

‘\.
\.-—.__..-—“ ——
- » . —

| - AL . ¥ - 1 |
1 .2 T a3 T L .5
NORMALIZED FREQUENCY (£/£)

FIGURE 20. , OUTPUT POWER DENSITY SPECTRUMS
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N
R

function of frequency normalized to the sampling rate calcu-

lated for the output of the clipper alone with B = = 0 and

for the modulator with B = 1 and h = 3 45. It is apparent

,that the A-I modulator output has a large amount of its
.power in the higher frequenc1es. The input signal for this
- case has approximately 90% of 1ts power in the bandw1dth

';from 0 to 1/8 the sampling rate. The output power 1n thlS

bandw1dth was approximated from the sample p01nts in Flgure

20 as the ratlo ‘ »m“, o » .

.56 (0) + $(.05) + 6(.1) , (96)

9
L5(0(0) + @(.5)) + I $(.051i)
i=1 :

Table IX shows the results of the 51gnal and 51gnal plus.
noise calculations in the total output bandwidth and in the
first gquarter bandwidth. Results are shown for the clipper
alone and for the three cases of A-Z modulatlon discussed.

The case where B = 1 and h 1. 66 was computed for comparison
even though it is expected that the modulation,noise Qill be
correlated with the input signal. The signal "loss" for the
clipper alone was 2 db in the total bandwidth compared to

6.5 db for A-I with’a minimum ¢ (O) and 3.5 db for A-X with
a maximum input-output crosscorrelatlon. Fof the lower
guarter. bandw1dth where approx1mately 90% of the 1nput power
ex1sts the A-I modulator with a minimum variance of {Z } has
approx1mately .7 db less "loss" than the clipper alone

The assumption for uncorrelated output noise can be

strengthened by showing it leads to an appropriate value for



Bandwidth

OUTPUT SIGNAL

Input-Output
Correlation

Total Output

- Signal Power

"Total [

S+N

- -8+N in 0 to fs

T

Signal,ih 0 to
f Band (.88x

§§ Total Signal)

S in 0 to fS
S+N 8

Bandwidth

-.13 db

56
4
Table IX
AND SIGNAL PLUS NOISE CALCULATIONS
INPUT ' |
Clipper A-Z A-T “A-T
Alone R=1 =1 g=1
B=h=0 h=3.4 h=3.45 h=1.66
1.33 .802 .785 1.11

.6366 .232 1 .2223 <444
-1.96 db -6.35 db -6.54 db - -3.53 db

.67 .21 .20 .57

.56 .204 .196 .391
-.87 ab -.09 db -1.64 db
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the variance of {Zn}. The general case for uncorrelated

noise can be shown by representing a non-linear device with-

. no memory as a linear gain, K, followed by the addition of

noise, da(t). For an input x(t) and an output y(t):

y(t) = K x(t) + a(t) (e

e

a®(t) = K x%(t) - 2K x(B)y(e) + y2(£) (99

Finding the minimum value of dz(t) as a function of K by

setting adz(t) = 0 yields the result
v 3K S
¢ (0)

K= 6EKTUT

XX

- Using this value for linear gain in the model gives

2 .
b, (0) |
bgq(0) = ¢, (0) - -ggiTﬁy S oo

From equation (97)

k2 4, (0) = 2K 6_,(0) + 6,,(0) (101)

¢YY(0)

and Sﬁbstituting the above-value of K gives the uncorrelated

noise result

$.q(0) =0 (102
Using the simular value for K in A-X modulation gives a

correct value for the variance of‘{Zh}. Using the relation,

Z

0+l —‘xn = - hYn'T-QZn : - ©(103)

squéring and averaging both sides of the eéuatidn gives
. ‘ | 2 L
2 ¢, (1) - ¢_.(0) = (1-8") $,,(0) + (104)

LT ahe o) - 0% g (o)



_ oo i 5 | ’ .

ne1 = I OBT (X - ohy L) (105)

6, (1) = z Bt (o, (i) - (11) . (106)
1= ,

For the A-Y modulation case with mlnlmum varlance we get as

an approxlmatlon that

¢ . (1)

_ _ 'x _ .  .¥1_' -
 byy (D) ' $;fT6T ¢, (n=1) - (107)
byy (M) = ¢ x (0+1) ‘ - (108

1051ng equation (108) and (106) in equation (104) glves

3 :
4, (0) + 2 iii B (¢xx(1> - EK 9. (1)) =
| (183 6. 10) + 28h ¢ (0) - B2 6 (0) (109)
: T zz " T PR Ogy Pyy
2 ooi Y TS
P * 2K T eT e (6 = {169+ o2 (110)

-~ K . -

+:28hco - h2°

For the case with minimum $_,(0), B =1, and hK =~ ]

o ox2 + h2 7 L
o = 2hc - L ’ B - (111)

Equatlon (lll) glves standard dev1atlons of 2.7 and 2.6

for the simulations where h = 3.4 and h = 3.45 whlch gave

[

standard dev1atlons of 2.8 and 2.7 respectfully.
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SECTION IV , ,
CONCLUSIONS L

The assumption that the integrated differehces between the

input and output signals, {Zn}, have a Gaussian distribution

leads toa correct solution of A-I modulator perfofmance only
under a strictly limited set of circumstances. This set of
circumstances occur when the variance of {Zn} is a minimum.

However, the case where the variance of {2 } is a minimum may

-

be the most important one from a signal proce551ng p01nt of

view because, for independent sample inputs, the 1nput—output

crosscorrelation is a maximum, and, for the simple "low pass

sample inputs, the 1nput output crosscorrelatlon function is

papprox1mately linearly proportlonal to the 1nput autocorrelatlon

function.
When the A-I modulator input consists of‘independent

’ s o . e 2
inputs, the conditions for minimum variance of {Zn}, Onint can

be determined analytically to give apprepriate values for the

integration factor, B, and the feedback cain, h. The values

of the A-1% modulator parameters, B and h which gave o© min did
.Iujt depend on the probabzlltj dlstrlbutlon but only on the
jndependence of the input samples. For 1ndependent 1nput
. th .. A . . .
gamples, the n™ order 301nt probabll}ty distribution of {Zn}
. . . 2
Canbe defined and if the values of B and h for Omin are used,
the assumption of a marginal Gaussian distribution for {Zn}
'Fﬂ“yvides correct analytical results for the steady state
‘. ' | 59
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-pEIformance of‘ArZ moduletion. The‘resuits frombsimulétion
with indépendent inputs demonstrated that when‘the>variance_of
"{Zn} is a minimum the input—output crosscorrelation is a max-
imum. This expetimental result togéether with the analytical
rresuits leads to the conelusion that.both the minimum Of‘the
minimum variance of. {z_ } and the maximum of the maximum 1nput-
output erosscorrelatlon occur when 8 —'h~¥'0. In terms of thev
performance factors of minimum error,'ef maximum input—output
erosscortelation, a simple clipperlperforms'betterfthan.alA;z
modulator for independent input samples.

A-I modulator performance for correlated,inputs was

' examined using an input with a simple "low pass"'spectrum.

The fifrst result noted was that the values of h for B8 = 1 which
gave a minimum value for the variance of {2z } was different from
the value which gave a maximum input-output crosscorfelétion.

The max1mum 1nput output correlatlon was less than could be

'obtalned with a 51mple cllpper alone - At the value of h where

X

- the variance of . {Z } was a minimum two - 1nterest1ng results were

found: the crosscorrelation of {Zn} and the A—Z modulator out-
out was appreximately what could he expected-if the distribution
of {Zn} were Gaussien and the ihput—output_chSSeo;reletion func-
tioh was approximately iinearly propoftional-te the input auto-
Cérrelation fuhction.‘ $hese observetiens were shown to be con-
sistent with the operation of a non-linear devise with no memory
so that the output modulator noise, or.that which is equivalent
to guantization noise, will be orthogonal to the input signal.

This property of a non-linear device with no memory made

simple the calculation of signal-to-signal plus noise ratio for

s




in the total system bandw1dth.

’ . . N ‘.. 61

the A—Z.modulator. These calculations indicated that although

_the'A-Z modulator output had a worse signal-to-noise ratio than

a simple clipper in the total system bandw1dth from 0 to one-

- half the sample rate, the A- 2 modulator output had a better

signal-to-noise ratio than a simple cllpper in the lower

guarter system bandwidth from 0 to one-eight the sample rate.

This is the spectrum region which contained approximately 90%

of the ‘'signal energy. This performance of the A-f modulator

“where the variance of'{zh} is a minimum was found to be con-

‘sistant with the general ‘notion used in practice that A-%

modulation tends to displace quantizetioh uoise'into the higher
frequency spectrum. For the case~simulated,'the.signal—to—
signal plus noise ratio was .7.db better thah a clipper alone
in the lower quarter bandwidth at the cost of more than 4 db

worse 51gnal to-signal plus noise ratlo than a cllpper alone
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