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ABSTRACT 

Title of Thesis: Some Broadband Characteristics of Delta
Sigma Modulation 

Robert John Biegalski, Mast~r of Science, 1971 

Thesis Directed by: Dr. Steven Tretter, Associate 
Professor, Electrical Engineering 

This paper presents an analysis using correlation tech-

niques of an idealized Delta-Sigma Modulation system. An 

analytical assumption of ·errors with ·a marginally Gaussian 

distribution is sho~n to yield accurate results for broadband 

modulation with a maximum input-output cross correlation. 

It is also shown that this maximum is greatest for the degen-

erate case of only "hard limiting" with no feedback and no 

integration. A case of highly correla~ed inputs for Delta-

Sigma Modulation is also discussed to compare it with broad-
.. 

band performance and "hard limiting." 
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.SECTION I 

INTRODUCTION 

Delta modulation techniques have been proposed for many 

communication tasks from space telemetry to walkie-talkie 

systems. The basic feedback technique for analog to binary 

conversion was introduced by F. de Jager [1] who was primarily 

interested in the transmission of speech signals. O'Neil 

[2] has investigated the use of delta modulation for trans-

mitting Gaussian and television signals. Higher order quan-

tization and prediction have also been studied by O'Neil [3]. 

Other modifications have been studied by Winkler [4], Halijuk 

and Tripp [5], and others. Thes~ systems have proved useful 

for tne transmission of signals whose·power density spectrum 

decre~ses with increasing frequency. 

f " 
A significantly different modification to delta modula-

tion was introduced by Inose, Yasuda, and Murakami [6] - [7] 

which they called Delta-Sigma (~-E) modulation. ~-L modula-

tion is significantly different in that it can transmit the 

de component of a signal, its dynamic range and signal-to-

noise ratio are independent of signal frequency rather than 

inversely proportional to the signal frequency, and trans-

mission errors are not cumulative. 

The objective of this paper is to investigate the charac-

· teristics of a Delta-Sigma Modulation system for wide sense 

stationary signals and to compare these characteristics with 

1 
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a clipper modulator alone. A discrete time Delta-Sigma 

Modulation system is studied for wideband noise inputs and 

a theoretical model is developed on the assumption of statis

tical linearization. The validity of this model is deter-

mined by computer simulation. 

Idealized Model 

An idealized ~-E modulation system is shown in Figure 

1 with an input random stationary process X(t) and an output 

waveform y(t). The input is periodically sampled with a 

period T. An output from the clipper is multiplied by h and 

subtracted from the next input sample. These differences 

·are then integrated with an integration factor S .:_ 1.· The 

output samples Yn are passed through a boxcar cir~uit which 

may be considered a filter with an impulse response f(t) .. 
where f(t) is given by (1) £or the purposes of discussion. 

1 0 < t < T 

f(t) = t = 0, T (1) 

0 elsewhere 

The clipper output is defined as 

+1 zn > 0 

Yn = [Zn] = 0 z = 0 n 

-·1 z < ··o 
n 

The purpose of the theory presented here is to use 

correlation techniques to study the system performance for 

various feedback and integration values and to compare these 

results with the case of no feedback and no integration, [8], 

(i.e., f3 = h = 0). 

2 
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P..NALOG ..-----
DATA SAMPLER 
X (t) bw "* S!f d { xn} = -{ X ( n T) L 

... 

CLIPPER 
.. , 

! 1+1 

1 :{ zn} L:.:::~- J 1-.--.-i BOXCAR 

'{y } n I I {y (t)_} 

FIGURE 1. IDEALIZED DELTA-SIGMA MODULATION 
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Consider a long sequence of pulses of width ~ and mag-

'nitude 1 with a random fluctuation of sign. The auto-· 

correlation function of the sequence is given in the statis-

tical sense [9] by 

(2) 

where y(t) is a function derived from a sample sequence, 

holding each sample value from the clipper for an interval 

T. To obtain ~YY(T), the function y(t) and this·function 

shifted by an amount T is taken at an arbitrary point t , 
0 

and the statistical average is taken over the ensemble of 

all sequences. For values of '1' which are integral multiples 

of the sample interval T (say '1' = nT) the correlation will 

be the average product of the samples. separated by n sample 

intervals. 

The values of the auto-correlation function between 

th~ .. integral values nT will be a linear func:tion connecting ,. 

the discrete points at nT. The auto-correlation function 

is known to be an even function of T, so ¢ (nT) = ¢ (-nT). yy yy . 

The complete function may then be written as 

L:. 
n=-oo 

wh~re 

0 < l '1' l < T 

l '1' ~ > T 

(3) 

¢ff(t) is the auto-correlation function of the impulse 

response of f(t) defined above and ¢yy(n) is the correlation 

4 
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of the samples separated by n sample intervals. 

~hen the power density spectrum of y(t) is given by 

:t ""' -JwnT 

-p!J!J (w) == J F~w)/ h~~o£) ~/~'~) e (4) 

where F(w) is the Fourier transform of the impulse response 

of the boxcar circuit. For f(t) as defined abov~: 

F<w) = T e-)W71z.e,~~~i:)) 
;z... (5) 

1 j-c "'' r-- T~ e '_:} ¥-7) r-
:2- . 

So the problem at hand reduces to finding the correla-

tion between the samples, y(mT)y((m + n)T) where m and n 

are integers. Thi~ correlation will be found for the 

idealized systems, then the results of testing the validity 

of the theoretical model will be presented. 

~The correlation between the samples can be found as 

follows. 

Referring to Figure 1, Z is given by the recursive 
n 

equation: 

z h-t/ (6) 

or 

Xr;,- ZVfl-+1- f3Zm + h Jtn , (7) 

also 

(8) 

, 
I , 

5 



Multiplying the respective sides of (7) and (8) and indi

cating the statistical av~rage by (-) results in 

X r/1 Xm+-h zmr-, z ~ThT/ -? z m-rt zmrh -t h z~~~J 11'1+h 

- (3 Zn-. Zm-~"h+l-+ f3'"J.. Zf>J Zrn+~- (3 h Zrr.Jrn-H1 

+ h Jn-. Zm+nt-~ - (3 h Jn, zru-t-h + h-4Jrn Ji'h+h 
.. (9) 

Now X(t) is assumed to be at least wide-sense stationary [10] 

and here we will assume ·Z and Y to also be wide-sense n n 

stationary. With this assumption then we let: 

ll_ rn 17,.; + n 

Equation (9) is 

, 

rfzz(h) - (3 ~zzCh-1) + h fzy (h-r}. 

- (3 ¢2 i h+l) + f3 z ¢zz( 11) . - j.3 h ¢z.yCh) 

-t h ¢yz 01·1-t) - (5' h ffz. Ch~ -+ h -z. ~ yy(n) 

(10) 

(11} 

6 
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SECTION II 

CROSSCORRELATION STATISTICS 

An examination of Figure 1 shows that for values of 8 

near 1.0 the {Z } are the sums of a large number of random 
n 

variables. In particular if {X } are the samples from a 
n 

broadband source with a reasonably flat spectrum it is 

expected that the distribution of {Z } due to the {X } can 
n . n 

be approximated by a Gaussian probability distribution • 

. The {yn} are also expected to approximate the spectra of 

{X } so that {Z } becomes the sum of a large number of 
n n 

weakly correlated samples and might therefore be distributed 

.•approximately as a Gaussian distribution. The same type of 
.. 

reasonihg does not apply to the joint distributions of {Zn}. 

To the contrary it is expeGted that 'the joint distribution 
f " 

of· {Z } separated by one sam:rle interval ';.'7il1 be strongly 
n 

influenced by the sign of the earlier sample in a manner 

described by Papoulis [11] . In order to solve equation (11) 

for ¢ (n) we must have some knowledge of the crosscorrelation 
. yy . 

function ¢ (n) which will involve some assumptions on the 
. . zy 

joint. distribution of. {Zn}. A method.of. determining· some 

properties of ¢xy(n) will be_ described below. This approach 

is based on an approach taken by Brown [12] and his notation 

will be used here. 

Let p (X
1

, x2}·denote the second-0rder joint probability 

distribution of x1 and x; where x1 and x
2 

are derived from 

the 'same stationary random process a time intervai T apart. 
I 

7 



The first order distributions are given by 

~ ('f.,) - f-p ( X J } x .. J J ~z. 

? ( x-J s r ( X I ) )(2.) d X I 

(12) 

where integrals without limits denote integrals from -oo to 

+oo. It is assumed p(x1 , x2 ) can be expressed with a set of 

orthogonal polynomials {G(X)} so that 

00 '00 

(> (x,)xJ = fo(X,) j2fx,_) r ~ a mi'\(t) G;vJX,) $h(x~) (13) 
m=o h.:=o , , ' 

where 

and the orthonormality conditions are 

(15) 

the f.:i,.rst two polynominals· are given by 

.. eo I (16) 

f " e, X - _j.L 
cr· 

where )1 is the mean of X (t) and a the standard deviation. 

The term a (T) is then the normalized autocorrelation func-

tion of the process X(t) 

f ('1:-), = a
11 

c-c) = J f e, (t,) Ej (x;)j'Cx,, x,_) dx, dx'- (l7l 

and it can be shown that a = 1 and a = a = 0. oo on no 

An instantaneous non-line~r device can also be expressed 

in terms of {Gk(X)} as 
oU 

L c~ eR(~,) 
~=o 

f ('!-,) 

with 

" 

( 18) 

(19) 

8 
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For convenience we let c = o, ~ = 0. 
0 

The ~rosscorrelation of f(Xl) and x2 is then given by 

W-/7:-J :1J [fit Cp_b~>.(Xt~ ·x.Jl 'foa"'~-z; e..,(X,)El,ix,)] • 

· f' (x,) -{J(X2) Jx, d Xz.. (20) 

Since 

. (21) 

Consider the expression 

J X
2 
~ (X, 1 x,_) d x.,_ = to {x,) E Cx2 /x,J . (22) 

E r x,_ /x, J "" J X'-f' ( x./x,) dx,_ (23) 

'f' .ex,) E ex,;;<,] [x,_fJJ~'~;.t)e.,cK,) GJ"(;(~!'C<,)f'(.:<J 

.. 
< For Ai:::. cJ e) ()(2.) and QOI = 0 . 

(25) 

For those values of Xl where p(X1 ) ~ 0 

-o-c:>· -

E [ '~-1. /-x,] - c- L ak, Cl) eh ex,) .· (26) 
~==I 

In the case where x1 and x2 are jointly normal variables 

·Then 

X ,.oc"t) 
I f . 

00 

6 :z_ c;z.k, c<:-) ep:c~;) 
k=( 

(27) 

(28) 

I 

9 



/ 10 

but o a
11 

8 1 ('1.,) Y...1 fC?:) 

so that 0..~ 1 (() = 0 )'("!Ito and ~l..WJ = a-c1 pc?:) (29) 

For the clipper with a Gaussian input 

c = 2 
I rs-J 2_ '77"" I 

<:::p • y..L 

J,; ~2~dx ==~ 
0 

(30) 

Obtaining the conditional expectations to obtain ~zy(h) 
.. 

is technically much more difficult for 6-~ modulation. For 

the Gaussian assumption of {Z }, ¢ {O) is given directly by 
n zy 

. "" . (o) = 2. r"" z e: ;;.J ;z_ = "j i ' (31) 
'-rz ':1 o t1 :z.. 7T . 11"' 

" 
If {Z } were not Gaussian <~>zy(O) would be given by the n 

general form: 

¢, (o) 6-" c, "4, • (32) .. zy 

The conditional expectation E[Zri+l/Z~] can be obtained 
f " 

through the use of equation (6) 

Zn-tt - xh - h Ji1 + pzh (6) 

ZtHt = ')(h hS.sm [zill t /'.3 Zn (33) 

Let the probability density function of X be given n· by p . (X ) 
x n 

and let E[X] = 0. Then for independerit'input samples: 

p( zh+t I zh) ::::: 1Qx ( zh+t + h SJh czh]-(3 zh) (34) 

E. [z ;7 -, - (z -1fl ( zh + h Sg n CzrJ-(3 zh) d zt~i, 
11ft Ly1 J -). h+l 1 t/ 

(35) 

f[Zn+I/Z 11]·=/1Zh.- h SJn[ZnJ (36) 
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As in equation (18) we let 
r)C 

2.." ck. Gk (z.,) 
~=I 

(37) 

Substituting (36) and (37) into (26) we have 

00 00 

(3 zn- h L_ ck ek (zh) a-2. ak10) er<c ~~-:) ( 38) 
R.=l 1'<=1 

··with the set of solutions 
(. ~ .. : :. ·' 

~f3 - h c, C) a..ll (I )• 
.. 

-·~ (39} 
ci.k~l) ~= l.,J "3_; 4J ·.· .• 

r:r 

This also gives a solution for the autocorrelation function 

at ~. (t) = o-2 a 11 CI) 
't'zz i z (/) = ~ c ~ (3 _. h c,) ( 4 0) 

From equation (21) one obtains-

. .'2-
A. ) · c

1
cs-(3- he, -

~ 'ijz (+t = 

-00. . 

h L. c~ 
f?..:: 2. 

. / .'' 

{41) 

(4 2) 

Since then under the Gaussian 

assumption 

{)10 

~ ~"2..== 
k=2 

(43) 

~ 2 (+I) :=. .?-- fn ( t) - .3 t~ ~ h .· ( 44) 

1'j 2 (H,) = c ·o.t? 
I /_; h ( 4 5) 

Also since rf ( 0'}\ _:_ c .,.;:-
1 ,.t) - I ""' .C....J I 

the normalized correlation fyz.c+') 

will be given by 

' . 

11 

!: _j ~- _: 

/ -, f' •• 
\ .J • 

"": \ 
:._. 

'.:.. . .' 
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fjz.(+l) ¢tf2 . ~;z2Jt) - (1-C~) h , 
(4 6) 

oc, o'J.. c, () 

!?. (+1) j3- _L {4 7) 
~2 

a-c, 

f~z (-+!) p~ /,2!i3(J0 (4 8) 

Substituting equations (32) 1 (40) 1 ·and (41) 

for n = 0 yields a solution for a 2 
•. Thus. 

in equation (11) 

ax~ == a--;_- 2(3 ( (5" ~ (3 ~<~It c) _,_ 2. h C¥ )(o-f3 - ~ b ~) .. 
~ . k 

-2. .h c J- c;) + (3 2
6" 2._ 2.(3 h o-c1. + A . (49) 

cr:-:-:l.. - a--:2..( 1- (3~ -t-
X 

Therefore a is given 

(.3 h c, 
() -

.. I -:- (3 7_ 

and for s = 1 
.. 

h2.. 
f "' 

o-·z. +-
X c:r -
2. h c, 

For S = h = a = 1 
X 

by 

+ 

zph·c,o- h2.. . (50) 

.) 

( cl h (3 ) 2. · +-
. l. . 

h + ~~ 
1_-p' ' I - (5j. 

(52) 

(53) 

The expression for a can be minimized with respect to 
\ 

h by solving the equation ~~ = 0 for h with the following 

result 

.2.. 
·h . (54) 

I - ;32+ C, f3:z. 

This expression shows that the feedback gain which will 

minimize the variance of.{Z.} is line~rly related to a and n x 

' . 

12 
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is a fun_ction of both c1 and B. 

minimize a with-the' result that 

6Y./c . .J 

For B:='.l;· h =··o-·-..-,.,il!:: 
X 

{55) 

It should be pointed out· that this result is ·_theoreticaily 

not dependent on the probability distrib~tion of the·. input 

but requires only that the input consists of independent 

13 

samples with zero mean. A plot of minimum a, :and· the corres-

ponding feedback gain, h, as a .function of the integration 

'factor, B, is given in Figure 2 for an input variance·of 1. 

For other values of the input variance, both minimum a and 

feedback gain, h, are linearly related to the input standard 

deviation, 6,X • Quite appropriately, the minimum of the 

minimum cr occurs when B = h = 0 which is the case of the 

clipper only. To find ¢ · (2) the conditional expectation zz 
of E[Z +2;z ] is needed. Using (~) .. n n 

; " 
Xh+t- h}n-+, + (1 Zh.+l (56) -

== (3.E[Zn+1 /Z~J ·- ~ E [sjn[ln+,-j /Zn] (57) 

E[Z~+ 1;zn] is given in equ~tion (~6). 

From equation (34) 

For P {x) being Gaussian 
X 

-. 
·. , ... 

(58) 

(60) 
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Let this last expression be represented by the expression 
cP 

E [ 5, h [ z hi-,] I z n ] . = z d R. e k. ( z h) 
#..:;:;" 

. ( 61) 

where 

(62) 

. ··:_, . ( 63) 

( 64) 

For a = s = h = 1 
X 

cO 1-Z c::.'1.z'--

(fze~ - ~ 
cJ( 

. 'I e cL '](. cJ z - -c I ( 65) 

" 0 

This was solved by integration by parts and the use of 

prob~bility tables to give d1 = .418. 

z 
Since e1 (Zn) =an 

d·, - ;_I£ r Zn E [ S":Jti[Zn+l] /z'J]] (66) 

(67) 

15 

The expression for E[Zn+~Zn] can then be expressed as 
00 

E [Zn+2./Zn] -= f 2
Zh- J,p S:Ji-1[Zh]- h z d~ eR(Zn) (68) 

. R~C 

- ~ ) S~nce t [ Z nn / z~J :.:: o L O....jQ./ (2) 8J/ :Z..h 

we.hav~ the set of solutions 

(69) 

0 a.k I (2J = - /3 h c M 
\ I • r '\ 

( 70) 
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2 
As before the autocorrelation ¢zz(2} is given by cr a 11 (2) 

n > 1 

¢z_z (2.) -= <:r (3 ( <J f3 - c, 1-,) - h fzy(t) 

fzz (2.) ::; (3 ¢ -z 2 ( 1 ) h. fzy (i) 
This last expression can be generalized to give for 

The crosscorrelation ¢zy(2) is given by 

oO 

- (J L. <:z~/z) c~ 
fr'-==1 

cfy Z (2) - p [ (J (3 s- h c;J - ~I c/>ZJ(/) 
00 •70 

_ A i1 L c~ - J., Z ct<. dR 
;- ~=2 f<-2. 

.7wz_{2) ::: o~-:J.c;- ;3 h - h ~ ~- h J_ Cp_ drz 
1 1?=2 

( 71). 

( 72) 

(7 3) 

(7 4) 

(7 5) 

( 7 6) 

To obtain ¢ '(2) it was necessary to determine ¢ (1). 
yz . · ,zy 

In doing so it is observed that¢ (1) =} ¢ (1); also whereas 
yz zy 

¢ (1) depended only on the mean of {X}, ¢ (1) is a strong· yz · · . · n zy 

function of Px(n). Other values of <Py
2

(n) can be determin.ed 

only on a per case basis and then using involved integrals, 

but they will not grant any further insight into the basic 

·feedback process. 

- The next theoretical item is ·to determine the input-

output crosscorrelation for the independent input case~ . . . 

Because of independent inputs ¢xy(n) ~ 0 for n < 1. Because 

of the unit delay in the formation of {Z }, ¢ (1) is the 
. . · n xy 

first non zero crosscorrelation coefficient and for a ~-I 



modulation system with a "flat" response ~ (1) will be the xy 

maximum value of ~ (n) . ~ ( 1) can be computed by firs.t xy xy 

considering the joint distribution of X 1 z 1 z +l n n n • 

Formally we have: 

p.Cf....,) 2hj Zt~~ 1) = .1{ (x.,) f(2n/x~) f(Z~t~+·l /~.")X.,) (77) 

Since the {Xn} are independent 

f (-z.h;x,) == rz_(zh) (78) 

and since Xn = Zn+l + hYn - .8 Zn 

p (Zn--t-1 I Zn) xh) = ~ ( zh+l- Xn + hJr.- (3 z~) (79) 

where o(x) is t~e ·Dirac Delta function. 

The value of ~ (1) is expressed as xy . . 

17 

f(f xh 55 n [ z~Ha ;ocxh,) z~ ) zh-t,) d x" dzh d z.-.~·,. (80) 

Integrating Zn+l first gives: 

Next integrating with respect to X yields .n 
· (132 -Ax 2.,_ ~ r::;-5 _In h 

~ll) ::: 0,.. vt ~(2h)e 2.15'e-. d 7~ 

cO I +- t?-:L.'\ L. ({3 h 1-z +it_) 

" 

A, (I)= .2. §_ ( -(c~· ~y~ - 2.~1EX~ h ox2. J z 
'"'~ 11 o- ) e . . h 

(82) 

( 83) 

This expression was evaluated for s = h = a = 
X 

1 to yield 

~~(I) ::=: .6tt77 (84) 

From the expression X = zn+l + hY - s z we have that 
n n n 

(85) 

Therefore: 

(86) 

, 



For the case of S 

( 6 7 ) , and ( 5 5 ) 

= h = a = 1 we have from equations (84), 
X 

~ (I) = - 0 J 7 7 
~ljlj ( 87) 

A ~ew general properties of the correlation functions 

·can be found by working directly with the joi~t distribution 
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functions as follows. Since for independent inputs P (X /Z ) x n n 

= Px(Zn+l + hYn - Zn/Zn) and ~(Zn) is Gaussian by assumption, 

the second order joint distrib~tion is g~ven by. 

f (~ Zo+,} . r(zh) fx ( Zn+l +hYh -(3Zh) (8,8) 

This process·can be extended to have 

f{Xrw .... / Zt,.,.m) Zn+rn _1 J .... Zh} =- fX ( Z htrr\tt (3 Z11+»t~ h'ft~~m j Zh +rn) ( 8 9) 

so that the rri+l joint distribution is ·given by 

1 (Zh l z.,J. .. 2n .rn) := -p(z,)][A/ z hri-t - f3 lh..i. + h]h.,) ( 9 0 I 

The ~ntegral for ¢zz(m) then looks like 

~zi.tn)~ fJt·JznZn-rrn f(z~Ji?x~Z~tt-l~ ;9Zn-tt+h)nri)dzh dzhi~ ... Jznitr1 (91) 

Integrating with respect to Z + we have n m 

w~ich yields the relation 

~zz(m)::: (3 ~zz(tn-1)- hc/z_':icrn-t) 
In the same manner it is found that' 

(9 3) 

( 9 4) 

These last two equations are valid on+y for m > 1 and 

they also are a solution to equatio'ri (11) 



,I 

SECT'ION III 

EXPERIMENTAL RESULTS 

The Delta-Sigma Modulation system shown in Figure 1 
. . 

was simulated ona digital computer. An approximately 

gaussian random sequence of samples was derive~ from a uni-

form number generator. This sequence was· used as an input 

to the modulator. All the correlation functions· in equation 

(11) were computed for n =-10 to 10. 

A histOgram of-the first 5000 uniform number gener~tor 

samples is shown in Figure 3. Two methods of generating 

normally distributed random variables from the uniform 

samples were tested. One method was to use.the sum of twelve 

unifo~mly distributed samples and the other was the direct 

method discussed by Dillard [13] where if U and V are ~ 

independent samples from a unifo·rm distribution then two 

independent samples T and Y from a normal distribution are 

given by 

T = 1-2 ln u cos (2'1Tv)' 

Y = l-2 ln u pin (2'1Tv) 

Figure 4 shows the resulting histograms of the first 5000 

samples generated by the two methods: Neither method is 

clearly superior but the sum of twelve samples from a uniform 

distribution was chosen for the simulation process because it 

seemed to have a smoother histogram for smaller sample sizes 
\ 
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as shown in the histograms for the first 100 sampl,es:in 

Figure 5. 

Clipper Correlation Statistics 

.. 
The crosscorrelation ·of the clipper inp~t and output 

for a sum of twelve uniformly distributed variables as an 

approximation for the normally distributed variable was also 

investigated. For 13000 independent samples th·e input var

iance (assuming zero mean) was .992. ·The.crosscorrelation 
-· 

coefficient for zero delay was .7955 which is w{thin 1% of 

the theoretical value given by equa~ion (32) of c
1

cr ~ .7914 . 

. other correlation coefficients for delays_ different: than zero 

were less than .02. 

Correlated input samples were generate~ by fi~tering the 

input sample& with the equation: 

(96) 

where the { xn"} are the independent ~ amples and ·{ zn} are the 

clipper inputs. The input variance for ,13000 ·s·amples was 

2.774 and the crosscorrelation coe~ficient for zero was 1.337. 

The theoretical value, c1 a = 1. 329, was aga_in within 1% of 

the experimental value. Table 1 lists the·normalized input 

autocorrelation, crosscorrelation, theoretical output auto-

correlati9n, and measured output autocorrelation functions. 

From equation (29) the normalized crosscorrelation and input 

autocorrelation are theoretically equal. The table shows 

that for sample sizes on the brder of 13000 the correlation 

functions can be expected to be accurate to within 3% when 

; 

' 

., 
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Table I 

CORRELATION· VALUES FOR CLIPPER 

Sample Input Cross- Output· Output 
Delay Auto Corre- Auto- Auto-

Corre- ·1ation Corre- Corre-
lation . lel:tion lation 

.. 2 -1 Measured 
7T sin p 

-10 .102 0.99 

9 .120 .114 

- 8 .156 .150 

- 7 .203 .19,8 

- 6 .255 .251 
.: 

5 .320 .318 ·; 

- 4 .403 .407 

- 3 .506 .510 

- 2 .638 .641 

- 1 .801 • 804 
,. 

0. 1 1 -I 1 

1 .801 .798 .590 .595 

2 • 638- .630 .441' .438 

3 .506 .497 .338 .334 

4 .403 .399 .263 .269 

5 .320 .310 .207 .202 

6 .255 .243 .164 .154 

7 .203 .193 ... 130 .120 

8 .156 .144 .100 .085 

9 .121 ~110 : • 077 .068 

10. .103 .096 .066 .·os7 



they have.a normalized value of .2 or more. Smaller values 

of correlation coefficients are less accurate. 

Distribution of z 

The next experimental result is the histogram of the 

's~ples at the input of the clipper in the ~-~ modulator. 

These are the samples indicated.in the theoretical section 

by {Z } • For the feedback gain, h, equal to the st·andar.d 
n 

deviation of the independent approximately normal input 

samples and for crx = .98, the histogram of. {Zn} shown in 

Figure 6 was obtained. The data points are the histogram 

samples for a total sample set of 490oo·and the cross marks 
'1. 

25 

indicate the standard deviations of the data ·set cr.ossed ,with 

the appropriate number of samples at the SB:me standard devia

tion if the set we:i:::e normally distributed. The agreement is 

quite 80od~at the lcr and 2a points but when compared with a 

normal distribution having the same standard deviatiop the 

sample histogram of { Zn} was noticeably more f·lat at the peak of 

the distribution. The normalized cumulative distribution of the 

sample set is plotted in Figure 7 for the same set of data.· 

On the probability graph of Figure 7 a Gaussian distribution 

would ~orm a straight line. The data set seems to give a 

very straight line with no discernable flattening out at the 

peak of the distribution. No statistical tests were made to 

determine confidence limits on the Gaussian assumption of this 

distribution. It was reasoned that the appropriate test would 

be in the accuracy of the crosscorrelation coefficient of {Z } 
n 

, 

'·. 
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and {Yn} to determine the coefficient c
1 

since it is th~ 

main consequence of the Gaussian assumption • 

. SinUla~ion for B = 1 

28 

The ~-E modulation was simulated with independent inputs 

and with the correlated inputs used to ~enerate Table I. For 

the independent inputs, 'the variance of the· input (cr~2 ) was 

.992. With this input and an integratio'n factor (6). of 1, 
·, 

4>zz(O) '. ~yz(O), and <Pxy(l) were determined with different 

feedback gains, h, for. a sample size of 13000. The linear 

gain coefficient c1 was computed as c1 = <P (0)/cr • Fig~e· 
~y z. 

8 shows this estimate of cl and the input-output cross~ 

correlation coefficient <P (1), as a function of feedback xy . 

gain. These results indicate that c1 is monotonically 

increasing function of the feedback gain with the value of 

~ = .7979 occurring very near unity feedback. This is also 

where the input-output crosscorrelation also achieve~ a max

imum. For {Z } being a Gaussian process, there is only one n 
·fi 

value of c
1

, namely I TI; therefore for feedback gains other 

than the one which gives c1 as r;, the {Zn} cannot~be 

derived from a gaussian process. 

As indicated in the theoretical section, for B = a = 1 
. X 

the minimum value for the variance of {Zn} occurs with a 

feedback gain of 1. This can be seen in Figure 9 which shows 

¢ (0) as a function of h. It is just at this minimum value 
zz 

of cl>zz(O) where <Pxy(2) obtains its maximum and c1 = ~ indi-

.cating a normal distribution. This result might be informally 

, 
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explained by viewing {Z } as the sum of the weighed errors n . 

between the ~-I modulation output and its ·input. When these 

errors are made a minimum such that the variance of {Zn} is 
. . 

a minimum, it is expected that the input-output cross-

correlation would be a maximum. Along with· this minimum 

error, we have the philosophical notion that when·the errors 

of a system are minimized by a proper adjustment of all the 

variables (there are only 2, h and S, in ~-~ modulation) the 

residue error is likely to be of a Gaussian nature. 

Table II shows the normalized correlation values 

31 

(¢uv(n)/¢uv(O)) for a 13000 sample simulation with h = S = 1. 

Table III shows a comparison of the simulation results and 

the theoretical values derived for B = h = a = 1.- The 
X 

experimental numbers agree well with the theoretical results. 

For those functions. which are theoretically zero, the . 

• 
standard deviation of the error due to finite sample size is 

.01. For example the function ¢xy(n+l) for ~ = 0 is-theoret

ically zero. For the values of this function in Table II the 

standard deviation of the error is .01/¢ (1) : .015. A plot xy , , 

of the normalized functions of ¢ (n) and ¢ ' (n) is shown in zz zy 

Figure 10. From the erratic behavior-of the functions at 

small values, the errors due to finite sample size would be 

estimated as • 01 to . 02 •. ·This is ·about' the size of the 

errors found in the simulation of the clipper results which 

was shown in Table I. 
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Table II 

NORMALIZED CORRELATION VALUES 

s = 1 h = 1 

13000 Samples 

<l>~z(n) <l>zy(n) ¢ · .(n+1) 
.Shift <~>yy(n) 

xy 

n <l>zz(O) <~>zyro) ~xy(1) 

-10 -.007 -.008 .004 .007 

9 -.002 -.025 -.013 -.026 

- 8 -. 008 -.010 -.002 --~ 024 

- 7 .009 -.001 -.004 .006 

6 .012 .009 • 011 .005 

- 5 .015 -.002 -. 00 8 . - •. 005 

4 .037 .004 .003 -.004 

- 3 .071 .019 .012 -.006 

- 2 . .152 .026 • 003 . .001 

- 1 .364 .006 -.019 .03 

0 1.0 1.0 1.0 1.o· 

1· .329 " .325 

2 .• 121 .121 

3 .054 .039 

4 .032 .025 

5 .008 .009 

6 .013 .002 

7 .008 ' .020 

8 -.007 .000 ,·; 
9 -.020 -.029 

-
10 .002 .ooo 



Function 

cl 
a 

~zz(l) 

4>zz( 2} 
4>zy(O) 

4>yz (1) . 

4>yz(2) 
4>zy(l) 
4>yy (1) 

. 4>xy (0) 

ct>xy<l.> 

Table III. 

SIMULATION AND THEORETICAL RESULTS 

Simulation Theoretical 
Result (cr =.996 Result CS=h= 
h=B=l) 

X cr =1) 
X 

.7950 .7979 

1.239 1.253 

.559 .571, 

.234 .• 236 

• 985 1.0 

.006 0 

.026 .018 

.329 .3346 

-.019 -.OlB. 

.021 0 

.641 .648 

33 

Theoretical 
Equation 
Used 

(30) 
.. 

(55) 

(40) 

(72) 

(32) 

(45) 

(76) and (87} 

( 67.) 

(B7) 

(independence) 

(84) 
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Simulation for S = .5 

The 6-~ modulator was also simulated with an integra-

tion factor B = .5 for the same independent inputs samples 

as in the simulation above. For this case Figure 11 shows 

the estimate of cl and the input-output crosscorrelation 

coefficients as a function of feedback gain. It can be seen 

that c1 is not a very str~ng function of feedback gain. In 

the interval of .1 to 1 the difference-between the maximum 

estimate of c1 and the minimum is .0044. The function of 

the input-output crosscorrelation coefficient does have a 

maximum very near the theoretical gain for minimum variance 

of {Z }. For S = 0.5, the feedback gain.for a minimum of 
n 

•zz(O} is given by equation ~54) as .418. At this value, 

• (1} does seem to be a maximum, and the estimate of c1 is 
. xy ' 

.798 which is the value expected for the gaussian process of 

J1- rounded to 3 significant figures. 
.. 

Figure 12 shows the variance of {Z } as a function of 
n 

feedback gain for B = .5. As in Figure 8, ¢ (0) also has a zz . 

35 

definite minimum near the point where the theoretical equation 

(54) indicates. The theoretical minimum occurs at h = .418. 

For this value of h, the simulation yielded· a standard devia-

tion~of {~n} of 1.044. This compares well with the theoret

ical value of 1.049. 

Table IV shows the normalized correlation values 

(¢ (n)/¢ (0)) for a 13000 sample simulation with S = .5 and uv uv 

h = .418. Table v·shows a comparison of.the simulation 
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Table IV 

.NORMALIZED CORRELATION VALUES 

. B = .5 h = .418 

13000 Samples 

<t>zz(n) <t>zy(n) <t> (n+l) 
Shift <f>yy (n) 

xy 
~zz~oj '<P ~0}· . cp ~1) 

n zy . xy 

-10 -.003 -.009 -.013 ,-.005 

- 9 -.025 -.019 -.008 -.015 

8 -.019' -. 01·2 -.002 -.007 

- 7 .002 .000 .012 .• 005 

- 6 -.006 -.007 .001 .·000 

- 5 -.004 -.008 .005 -.008 

- 4 .003 .005 .0.07 · .• 010 

- 3 -.002 -.014 -.007 -.019 

- 2 .037 ·• 007 .001 .001 

- 1 .190 .017 .005 .021 . 
0 1.0 1.0 1.0 1.0 

1 .184 • .185 

2 .033 .034 

3 -.004 -.cos 
4 .008 .005 

5 .012 .011 

6 .006 .001 

7 .022 .031 

B -. 016 -.011 

9 - 020 . ' -.026 

10 -.005 -.006 

'· 
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Table V 

SIMULATION AND THEORETICAL RESULTS 

.a = .5 h = .418 

Function Simulation Theoretical Theoretical 
Results Results Equation 

Used 

cl. .7981 .7979 (30) 

a 1.0433 .1.0488 (51) 

~zz(l) .207 .200 (40) 

¢zz( 2 ) • 0399 .0386 (9 3) 

rpzy ( 0) .8331 .8368 (32) 

<l>yz {1) • 014 .001 (45) 

4>yz(2) .0056 .0025 (94) 

<l>zy(l) .153 .147 (67) 

4>yy(l) .005 -.00455 (86) 

<l>xy(O) .016 o.o (independence) 

cpxy(l) .7586 .7614 (83) 



results and the theoretical values derived for S = .5 and 

h = .418. The accuracy of these results are about the same 

as in the case o£ B = h = 1 shown previously. A plot of the 

normalized functions of ~ {n) and ~ {n) is shown in Figure zz zy, . 
13.· 

It was demonstrated in both simulations that a minimum 

40 

variance of {Z } corresponded to a maximum input-output crossn 

corr~lation. Figure 14 shows a plot of the theoretical min~ 

imum ¢ (0) and the corresponding input-output correlation, zz 

·~xy(l), as a function of the integration factor. s. The 

results of the two simulations are indicated in the figure 

by an "X". Figure 14 shows that a maximum. input-:,:-output. cross

correlation for independent input samples is achieved by the 

clipper· alone with S = h = 0. It was also observed that the 

effects of the clipper non-linearity were not unique. When 

the clipper alone is used with B = h = 0, an input with a 

jointly normal distribution yields a unique output such that 

the output autocorrelation function or power density spectrum 

indicates a unique input autocorrelation function or power 

density spectrum in a one-to-one manner. In the ~-L modulator, 

the distribution of {Z } is such that the autocorrelation funcn 

tion of the output does not in itself indicate the auto-

correlation function of {Z }. This inverse transformation is n 

dependertt·. on the integration factor, S, and feedback gain h. 

Figure 15 shows the output power density spectrum for the two 

independent input s~~ple simulation cases discussed along with 

·the power density spectrums of {Z } for these cases as a n 

"· 

·;··; 
·i' 
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function of frequency normalized to the sample rate. From 

this figure it can be seen that although the output spectrums 

were similar, 

cases differ. 

the spectrums of {Z } for the two simulation 
- n 

Simulation for Correlated-Inputs 

The operation of the ~-r modulation system for corre

lated inputs was simulated to observe what properties of the 

independent input case might apply. In this simulation the 

correlated inputs were those used to generate Table I. For 

an integration factor S = 1, the linear gain coefficient, c
1

, 

was estimated as a function of feedback gain, h; using 13000 
I. 

samples. The results are plotted in Figure 16; These 

results show that c1 has a minimum near the value of feed

back gain equal to the standard deviation of th~ input 

sample~, 1.66. After this c1 increases monotonically with 

feedback gain and reaches the value for Gaussian samples, .. 
• 798, near h = 3.4. The experimental data indicates a slight 

discontinuity in the estimate of c1 in this region with c
1 

= 

.794 for h = 3.4 and c1 = .806 for h = T.4S. 
\ 

The input-output crosscorrelation, ~ (1), as a function 
xy ' 

of feedback gain for the same set of data is shown in Figure 

17. It can be seen that this crosscorrelation is a maximum 

near the value of feedback gain equal to the standard devia-

tion of t~e input samples. The variance of the samples {Z } 
n 

at the input of the clipper is a minimum near the value of 

h.= 3.4 where the estimate of c1 indicates t~e possibility of 

Gaussian samples. The var~ance_ of ·{zn}, ¢
22

(0), as a function 
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l. 

o£ feedback gain is shown in Figure 18. With the·indepen

dent input samples shown earlier, the conditions £or minimum 

variance o£ {Z } coincided with a maximum input~output cross
n 

co~relation, whereas for this low pass filtered sample set 

the maximum of$ (1) and the minimum of~·· (0) occur at xy zz · 

different values of feedback gain. However, the minimum of 

~ (0) is consistant with the hypothesis that.{Z} has a 
zz . , n 

marginal distribution which is a normal distribution. 

Table VI lists the normalized correlation values of 

~zz (n), cj>zy (n), cl>yy·(n), and <Pxy (n) for the situation where 

~ (1) is a maximum in Figure 17. This is the condition 
.xy 

where the feedback gain was equal to the standard deviation 

of the input samples. These results do not compare favorably 

with what could be achieved by using the clipper alone. 

using only polarity sampling the input-output crosscorrela

tion is 1.33 which is approximately 20% greater than the 1.11 
~ 

maximum cj> (1) for the case when S = 1. A comparison of the 
xy 

output correlation as a function of input correlation for the 

47 

clipper alone and the simulated output is shown in Figure 19. 

For the low pass filtered data set, t~e accuracy of the power 

·density spectrum at low frequencies is determined by the 

accuracy of the smaller values of the autocorrelation function 

which occur at the greater sample intervals, n. Figure 19 

shows that although the output·contains more lower frequency 

content that the output of the clipper alone, the clipper 

output autocorrelati6n is approxirn~tely linearly related to 

the input autocorrelation for small values. 

'· 
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Table VI 

NORMALIZED CORRELATION VALUES 

a = 1 h = 1.66 

<f>zz(n) <~>zy(n) 4> (n+1) 
Shift <l>yy(n) X:l 

n <~>zz~O) <~>zy(O) <~>xy ( 1) 

-10 .591 .476 .146 .121 

- 9 .629 .509 .158 .139 

- 8 .670 .549 .189 .174 

- 7 .174 .588 .207 .214 

- 6 .759 .626 .234 .257 

- 5 .805 .672 .281 .322 

- 4 • 852 .718 .324 .399 

- 3 .898 .767 • 381· .510 

- 2 .940 . 820 .466 .635 

1 .972 • 802 • 382 . .795 

0 1.0 1.0 1.0 1.0 

:r .880 .921 

2 .817 .833 

3 .744 .740 

4 .672 .649 

5 .609 .554 

6 .551 .489 

7 .501 \ .435 

8 .458 .375 

9 . 420' .327 

10. .389 .295 
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The region where the estimate of c
1 

was closest to the 

value obtained for a Gaussian process was also investigated.· 

This is where the variance of {Zn} was found to be a minimum. 

Tables VII and VIII show the normalized correlation values 

.of ~ (n) , ~ (n) , ~ (n) , and ~ (n) for S = 1 and for h = · '~'zz '~'zy '~'yy '~'xy 

3.4 and h = 3.45 respectfully. These are the values of feed-

back gain before and after the slight discontinuity in the 

estimate of c1 shown in Figure 16. It can be seen from these 

tables that for S = 1 and for h = 3.4 and 3.45, the input-

output crosscorrelation function is nearly symmetric about 

~xy(l) indicating the modulator is doing very little integra

tion or differentiation of the input signal. It can also be 

observed from the input--output crosscorrelation function, that 

for these conditions the ~-r modulator is behaving·much like 

a simple non-linear device with no memory such that, like the 

clipper alone, the input-output crosscorrelation function is 

linearly related to the input autocorrelation function and as 

a consequence the output modulation noise, or that.which is 

equivalent to quantization noise, will be orthogonal to the 

input signal. 

Assuming the output "noise" is orthogonal to 'the.input 

"signal;" some approximations of the output signal-to-signal 
s . . . . . . . 

plus ~oise ratios, /(S+N}, can eas~ly _be made. The tot~l 

signal in the output bandwidth from 0 to one half the sampl

ing rate is given by (¢xy(~)/crx) 2 • This is also the output 

signal-to-signal plus noise ratio because the total output 

power fs l. Figure· 20 shows ·the output power spectrum as a 
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Table VII 

NORMAL"IZED CORRELATION COEFFICIENTS 

B = 1 h = 3.40 

<Pzz(n) <P (n) ¢ (n+l) 
Shift zy <Pyy(n) X~ 

.n ~zz{O~ <Pzy nn <Pxy l I~ 

-10 .086 .064 •. 031 .110 

- 9 .094 .063 • 025 .122 

- 8 .117 ' • 090 .047 .156 

7 .135. .100 .043 .204 

- 6 .162 .129 • 0'67 .270 

- 5 .188 .130 .064 •. 313 

4 .252 .196 .117 .395 

- 3 .288 • 209· .100 .502 

- 2 .366 .367 .221 .629 

1 .342 -.262 -.257 .790 

0 1.0 1.0 1.0 1.0 
• 

.-.1 .235 .801 

"2 .284 .. .659 

3 • 200 .516 

4 .191 .434 

5 .132 .335 

6 .113 .259 

7 .086 .222 

8 .077 .160 

9 .058 .129 

10 .059 .122 

'· 
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Table VIII 

NORMALIZED CORRELATION COEFFICIENTS 

e.= 1 h = 3.45 

Shift 
¢zz(n) cl>zJ::(n) 

cf>yy(n) 
¢XJ::(n+l) 

n ct>zz {0} .• ct>zy nn 4>xy(l) 

-10 .047 .040 .619 ~106 

- 9 .063 .053 .032 .132 ., 
- 8. .081 . • 067 .039 .160 . 

7 .106 .086 .048 .199 

- 6 .134 .114 .063 .250 

- 5 .162 .128 .666 .314 

- 4 .201 .165 .095 .418 

3 .264 • 215 .126 .509 

- 2 .319 .352 .202 .649 

1 .290 -.296 -.2,59 .818 

0 1.0 1.0 1.0 1.0 

i .225 • 808 

2 .• 253 .656 .. 
3 • 217 .533 

4 .174 .419 

5 .127 .340 

6 .104 .267 

7 . 0 85 .220 

8 .067 .165 

9 .059 .133 

10 .041 .116 

, 
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' . 
function of frequency normalized to the sampling rate calcu-

lated for the output of the clipper alone with S = h = 0 and 

for the modula±or with B = l and h = 3.45. It is apparent 

that the !J.-r.. modulator output has ·a large amount of its 

. _ power in the higher frequencies. The input signal for this 

case has approximately 90% of its power in the bandwidth 

from 0 to l/8 the sampling rate. The output power in this 

.S<I>(O) + <I>(.OS) + <I>(.l) (96) 
9 

.S(<I>(O) + <I>(.S)) + l: <I>(.05i) 
i=l 

Table IX shows the results of the ·signal and signal plus 

noise calculations in the total output bandwidth and in the 

£irst quarter bandwidth. Results are shown for the clipper 

alone and for the three cases of ~-l: modulation discussed. 

The case where S = 1 and h = 1.66 was computed for comparison 

even though it is expected that the modulation.noise will be 

correlated with the input signal. The signal "loss" for the 

clipper alone was 2 db in the total banowidth compared to 

6.5 db for 6-l: with a minimum ~ (0) and 3.5· db £or ~-r.. with zz 

a.maxirnum input-output crosscorrelation. For the lower 

quarter bandwidth where approximately 90% of the input power 

exists the ~-r.. modulator wit~ a minimum variance of {Z } has 
n 

approximately .7 db less "loss" than the clipper alone 

The assumption for uncorrelated output noise can be 

strengthened by showing it leads to an appropriate value for 

'· 

'I"' 
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Table IX .. 

OUTPUT SIGNAL AND SIGNAL PLUS NOISE CALCULATIONS 

INPUT 

Clipper 11-r 11-r t::.-r 
Alone £3=1 13='1 13=1 
S==h=O h=3.4 h=3.45 h=l.66 

Input-Output 1.33 .802 .785 Lll 
Correlation 

Total Output .6366 .232 .222;3 .444 
Signal Power 

Total s -1.96 db -6.35 db -6.54 db -3.53" db 
S+N 

S+N in 0 to fs .67" .21 .20 .57 

8 
Bandwidth 

Signal. in 0 to .56 .204 .196 .391 
fs Band (. 88x 

8 Total Signal) 

s in 0 to f -.87 db -.13 db -.09 db -1.64 db 
S+N s 

8 
Bandwidth 

, 



the variance o£ {Z }. The .general case for uncorrelated n . . 
noise can be shown by representing a non-linear device with' 

no memory as a linear gain, K, followed by the addition of 

noise, d (t) . F.or an input x(t) and an output y (t): 

y (t) = K X (t) + d {t) 
.". 

d
2

(t) =K
2

x
2

(t) - 2K x(t)y{t) + y2 (t) 

Finding the minimum value o£ d 2 (t) as 

setting ad2 (t) = 0 yields the result 
aK 

= ¢xy(O) 
K q> (0) 

XX 

a function of 

Using this value £or linear gain in the model gives 

2 

K 

(97) 

(9 8) 

by 

57 

(100) 

From equation (97) 

(101) 

and substituting the above·value of K gives the uncorrelated 

noise result 

¢xd(O) = 0 (102 

Using the simular value for K in D.-r. modulation gives a 

correct value for the variance of {Z }. Using the relation, 
. . n 

zn+ 1 - X = - hY · - S z ( 1 o 3 ) n n · n: 

Squaring and averaging both sides of the equation gives 

. (104) 

, 
1'. 
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Since .. .·. 

00 

z = r Bi 
(Xn-i hY . ) (105) .n+.l i-o n-J. 

Then 

cpxz(l) = 
(106) 

·For the ~-r modulation case with minimum variance·we get as 

an approximation that 

cpxy (1) 

= cpxx(O) ~xx(n-1} . ~xy(n) 
(107) 

~yx(n) = K ~xx(n+l) (108) 

Using equation (108) and (106) in equation (104) gives 

co 

Bi cpxx {O) + 2 r (~XX {i) hK <Pxx (i)) = i=l r .. 
.) 

(l-B 2 ) ~zz(O) + 2Sh cpzy (0) - h2 cpyy (0) (109) 

co 

crx
2 

+ 2(1-hK) r Bi ~xx(i) = (l-S2)+ ;2 (110) r i=l 

+2Bhccr- h 2 · 

For the case with minimum ~~z{O), ~ m 1, and hK ~ 1 

... ·. 

2 2 . 
cr + h 

(1 = _x-=-=---
2hc (111) 

Equation (111) gives standard deviations of 2.7 and 2.6 

for the simulations where h = 3.4 and h = 3.45 which gave 

standard deviations of 2.8 and 2.7 respectfully. 

'· , 
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SECTION IV 

CONCLUSIONS 

The assumption that the integrated differences between the 
,-

·i:nput and output s~gnals, {Zn}' have a Gaussian distribution 

·leads t6 a correct solution of t::.-r. ~adulator performance only 

under a ·strictly limited set of circumstances. This set of 

circumstances occur when the variance of {Z } is a minimum. . n . 

However, the case where the variance of {Z } is a minimum mav n. ~ 

be the most important one from a signal processing point of 

view because, for independent sample inputs, th'e input-output 

crosscor:relation is a maximum, and, for the simple ":low pass" 

sample inputs, the input-output crosscorrelation function is 

.. approximately linearly proportional to the input autocorrelation 

£unction. 
' . 

When the t::.-E modulator input consists of.independent 

2 
inputs, the conditions f,or minimum variance of { Zn}, a min, can 

be determined analytically to give appr8priate values for the 

integration factor, S, and the feedback gain, h. The values 

o£ the t::.-E modulator parameters, S and h, w~ich gave crmfn did 

not depend on the probability distribution but only on the 

1ndependence of the input samples. For independent input 

samples, the nth order joint probability distribution of {Zn} 

C
an be defined and if the values of S and h for cr ~ are used, m1n 

~be assumption of a marginal Gaussiari distribution for {Zn} 

provides correct analytical results for the steady state 

'· 59 

-
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performance of /j,-:-r. modulation. The resutts from simulation 

with independent inputs demonstrated that <;.;hen the. variance of 

{Zn} is a minimum the input-output crosscorrelation is a max

imum. This experimental result together with the analytical 

results leads to the conclusion that bo~h the minimum of the 

minimum variance of {Zn} and the maximum of the maximum input

output crosscorrelation qccur when S = h = 0. In terms of the 

performance factors of minimum error, or m~ximum input-output 

cros.scorrelation, a simple clipper performs 'better than- a .fl:..:..r 

modulator for independent input samples. 

fl-r. modulator performance for correlated.inputs was 

examined using ari. input with a simple -"low pass" spectrum. 

The fi~st result noted was tha~ the values of h·for B = 1 which 

gave a minimum value for the varia~ce of { Zn} .·was_ different from 

the value which gave a maximum: input-output crosscor~elation. 

The ma~imum input-output correlation was less than could be 

obtained with a simple clipper alone. At the· value .of .. h where 
\ 

the variance of.{Z } was a minimum two,interesting results were 
n 

\ . 
found: the crosscorrelation of {Z } and the /j,-L modulator out-. n· . 

out was approximately what could be expected ~f the distribution 

of {zn} were Gaussian and the input-output crosscorrelation func

tion was approximately linearly proportlonal to the inpu~ auto-

correlation function. These observations were shown to be con

sistent with the operation of a non-linear devi~e with no memory 

50 that the output modulator noise, or that which is equivalent 

to quantization noise, will be orthogonal to the input signal. 

This_ property of a non-linear device with no memory made 

simple the calculation of signal-to-signal plus noise ratio for 

, 
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the ~-~ modulator. These calculations indicated that although 

the ~-E modulator output had a worse signal-to-noise ratio than 

a simple clipper in the total system bandwidth from 0 to one-

half the sample rate, the ~-E modulator output had a better 

signal-to-noise ratio than a simple clipper in the lower 

quarter system bandwidth from 0 :to one-eight tl)e sample rate. 

This is the spectrum region which_cont~ined approximately 90% 
. . . 

of the ·signal energy. This performance of the ~-E modulator 

where·the variance of {z·} is a minimum was found to be conn 
sistant with the general·notion used in practice ~hat 6-E 

modulation tends to displace quantization noise ·into the higher 

frequency spectrum. For the case simulated,·the signal-to-

signal plus noise ratio_ was .7 db better than a clipper alone 

in the lower quarter bandwidth at the cost of more than 4 db 

worse signal-to-signal plus noise ratio than'~ clipper alone 
... 

in the total system bandwidth. 

•. ', 

'· 
... , ·' 

, 

.. 
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