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The present thesis develops a framework for Health Care Management Systems using 

modern Model-Based Systems Engineering methodologies and applies it to Diabetes 

Mellitus. The desired architecture of such systems is described. Tests and 

interventions, including Health Care IT, used for Diabetes 2 diagnosis and treatment, 

are described and modeled. A Controlled Markov Chain model for the progression of 

Diabetes Mellitus with three states, three diagnostic tests, ten interventions, three 

patient types, is developed. Evaluation metrics for healthcare quality and associated 

costs are developed. Using these metrics and disease models, two methods for 

tradeoff analysis between healthcare quality and costs are developed and analyzed. 

One is an exhaustive Monte Carlo simulation and the other utilizes multi-criteria 

optimization with full state information. The latter obtains similar results as the 



former at a fraction of the time. Practical examples illustrate the powerful capabilities 

of the framework. Future research directions and extensions are described. 
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Chapter 1: Introduction and Problems Addressed 

 
Section 1.1: Motivation and Significance of the Problems 

Healthcare, in all its forms and systems, is currently a major challenge for the 

whole world and for industrialized countries alike [1-7]. Healthcare systems 

around the world are facing unprecedented challenges. The issues are truly 

global [2-5]. Healthcare costs are rapidly increasing (rose 2.6% in 2013, 

accelerating to an average of 5.3% per year over 2014-2017) as years go by and 

unfortunately coverage and offered services are decreasing. Health care, among 

both providers and payers in public and private settings, is a very costly industry 

sector. The Economist Intelligence Unit (EIU) estimates [2] that global health 

care spending as a percentage of Gross Domestic Product (GDP) will average 

10.5 percent in 2014 (unchanged from 2013), with regional percentages of 17.4 

percent in North America, 10.7 percent in Western Europe, 8.0 percent in Latin 

America, 6.6 percent in Asia/Australasia, and 6.4 percent in the Middle 

East/Africa. Among developed nations, health is the second-largest category of 

government spending, after social protection (social assistance, 

health/unemployment insurance).  

Although an important reason for these trends is the increasing population of 

senior people throughout the world, there are several other important reasons 
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tied to fundamental inefficiencies and unnecessary costs and efforts in all 

aspects of healthcare delivery systems [1-7]. Life expectancy is projected to 

increase from an estimated 72.6 years in 2012 to 73.7 years by 2017, bringing 

the number of people over age 65 to around 560 million worldwide, or more 

than 10 percent of the total global population. In Western Europe the proportion 

will hit 20%; in Japan, 27%. The aging population will create additional demand 

for health care services in 2014 and beyond. With aging populations, an increase 

in those inflicted with chronic ailments that require more health care spending, 

government initiatives to increase the access to care in both industrialized and 

emerging markets, and treatment advancements expected to drive sector 

expansion, pressure to reduce health care costs remains and is escalating. Health 

care cost increases can be attributed to numerous factors [2] including: 

healthcare industry consolidation, prolonged hospital stays, rise of expensive 

complex biologics, overuse of medical services. High healthcare costs are 

adversely impacting patients as well as providers and insurers. Unfortunately, 

higher costs do not necessarily correlate to better results or higher-quality care, 

even in developed countries [2]. Heavy government debts and constraints on tax 

revenue, combined with the pressures of aging populations, are forcing health 

payers to make difficult decisions on benefit levels.  

There are four major issues that governments, health care providers, payers, 

and consumers face in 2014: aging population and chronic diseases; cost and 

quality; access to care; and technology.   A key shared demographic trend 

creating increased health care demand is the spread of chronic diseases [2] -- 
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heart disease, stroke, cancer, chronic respiratory diseases, diabetes, and mental 

illness, among others -- which is attributable to the aging population, more 

sedentary lifestyles, diet changes, and rising obesity levels, as well as improved 

diagnostics. Chronic diseases are, by far, the leading cause of mortality in the 

world, representing 63 percent of all deaths. Cancer and heart disease are 

becoming major killers, even in emerging markets. Africa, the Middle East, Asia, 

and Latin America are experiencing epidemics in diabetes and cardiovascular 

illnesses. China, with 92 million diabetics, has overtaken India (80 million) as the 

world leader in diabetes cases, according to International Diabetes Federation 

[2]. The cost of treatment for diabetes and other chronic diseases, which may be 

out of reach for many consumers, especially in emerging markets, is expected to 

compel a more intense focus on disease education and prevention by 

governments and health care practitioners while life sciences companies 

continue to develop innovative new medicines to address many of these 

diseases. 

Improving health care access is a major goal of governments around the world, 

and a centerpiece of many reform efforts [2]. In the United States, for example, 

the Congressional Budget Office (CBO) has estimated that, by 2020, 

approximately 24 million people will purchase coverage through the new federal 

and state health insurance exchanges established, a substantial addition to the 

market. To expand citizens’ access to medicine in India, the government in 2012 

allocated $5.4 billion under a policy to provide free generic drugs/products for 

patients in government hospitals and rural clinics. While facilitating increased 
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health care access is an important and worthy endeavor, more people in the 

system means more demand for services that numerous health care systems are 

unable to accommodate due to workforce shortages, patient locations, and 

infrastructure limitations, in addition to the cost issues identified earlier [2]. 

Many countries across the globe are facing a challenge to meet their required 

number of health care workers, a shortage that directly affects the quality of 

care. Globally, the number of doctors per 1,000 population is expected to remain 

virtually the same between 2012 and 2020 [2-5]. 

More than one billion people worldwide lack access to a health care system [2-

5], both for caregivers and facilities. The United Kingdom, for example, had an 

estimated shortage of 40,000 nurses in 2012, and has a shortage of other health 

care professionals, including general practitioners (GPs) [2]. According to a 

European commission, there will be a shortage of 230,000 physicians across the 

continent in the near future [2]. The number of caregivers in 36 countries in 

Africa is inadequate to deliver even the most basic immunization and maternal 

health services. Rapid economic development across Asia has led to hugely 

increased access to health care, yet coverage across the region remains uneven. 

Uneven distribution of caregivers is also a problem. 

Bolstering the number of professional medical, nursing, and other health care 

professionals is not the only staffing challenge facing hospitals and health 

systems in 2014 and beyond: Organizations will need to source, recruit, and 

retain staff, such as advanced nurse practitioners and telemedicine technicians, 
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who are trained to meet the needs of new 21st-century health care models. 

Workforce shortages are a major contributor to health care access problems 

around the world; patient location can be another deterrent to care. In many 

countries, about 80 percent of the population lives in rural areas [2-5]. Many of 

these rural areas lack good hospitals when compared to urban areas. Finding 

innovative solutions to provide health care outside of the traditional hospital 

setting is going to be critical for industry stakeholders. A third constraint on 

patient access is lack of health care infrastructure in certain countries and 

outdated facilities in both developed and emerging markets. Due to the lack of a 

primary care infrastructure in many countries, patients go directly to hospitals, 

raising both costs and hospitalizations rates. 

Across the world, health care systems are recognizing the need for innovation; 

advances in health technologies and data management can help facilitate new 

diagnostic and treatment options; however, these same advances are likely to 

increase overall costs, prompting widespread efforts by public and private 

health care providers and insurers to contain expenditure by restructuring care 

delivery models and promoting more efficient use of resources. 

Health care technology changes will be rapid and, in some parts of the world, 

disruptive to established health care models [1-7]. Some exciting advancements 

are taking place at the intersection of information technology and medical 

technology. In addition, the use of big data and analytics to gain insights is an 

active industry trend. Providers can leverage vast amounts of patient data 
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gathered from a variety of sources to determine the clinical value of specific 

treatments and how to make them better [1-7]. Technology advancements are 

also connecting developed and emerging markets and participants along the 

health care value chain. Adoption of new digital health information technologies 

(HIT) such as electronic medical records (EMRs), telemedicine, mobile health 

(mHealth) applications, and electronic medical prescriptions is driving change in 

the way physicians, payers, patients and other sector stakeholders interact [1-7]. 

These technology-based changes are shifting the power balance within the 

health care system and driving different dialogues along the value chain. 

Health Information Technology (Health IT) [1-7] has great potential and 

promise to ameliorate these problems, and is being aggressively pursued in the 

US, Europe and many other countries [1-7]. Health IT is of central interest and 

importance for the problems addressed in this thesis. There are several 

fundamental reasons supporting this statement. First, electronic health records 

(EHR) owned by patients can provide invaluable functionality and service 

through tracking of patient time histories, multi-sensory medical test data and 

measurements over time, and can facilitate comprehensive and integrative 

health monitoring, prognostication and management. Second, it is essential for 

providing information to patients about their health conditions and treatment 

progress, and thus making patients active partners in their healthcare 

management for their entire lifetime. Third, it can support in an interoperable 

manner, a multitude of heterogeneous sensors (including hand-carried mobile 

wireless, implanted, wearable, etc. and information/data high speed connectivity 
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between patients, their doctors and medical centers/hospitals. Fourth, it 

provides several systems that can efficiently track health quality and treatment 

effectiveness and results and eliminate unnecessary procedures and costs. Fifth, 

it can facilitate the dialogue between health care providers and patients. Sixth, it 

can accumulate data and information from millions of patients, cases, 

treatments, medicines, medical tests, in a richly indexed manner, that can be 

analyzed to discover trends, successes and failures, medication side effects etc.. 

Seventh, it can dramatically improve the management and delivery of healthcare 

by all practitioners, providers, insurance companies, laboratories, medical 

practices and hospitals, while tracking costs and quality. Eighth, it can support 

efficient social networks supporting participatory healthcare and relevant 

knowledge generation, screening and maintenance. Ninth, it can eliminate 

unnecessary and costly hospital visits, tests, procedures, etc. Tenth, help develop 

and incorporate learning capabilities in many of these systems, so as to become 

richer and more useful through the years.  

Despite all these great promises and potential, the deployment of Health IT has 

been very slow and is neither easily acceptable nor becoming an indispensable 

part of everyone’s life, as it should. The problems encountered are very complex 

and diverse and they involve human behavioral and psychological phenomena, 

political challenges, regulatory and legal challenges, debates and contentions 

among the major shareholders who are healthcare providers, health insurance 

providers, patients, technologists [1-7]. Health IT systems are complex systems 

and even systems of systems [1] and need to be treated as such. Health care 
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systems in general are also complex systems and even systems of systems. 

Therefore it is imperative that are modeled, designed, constructed and operated 

as systems; that are taking a holistic and integrative systems view [1]. The 

challenge is even greater because humans of various capabilities, functionalities 

and roles are essential parts of health care systems, and indeed in large numbers 

and in a heterogeneous involvement. What has been lacking in these 

developments, as emphasized in the recent report to President Obama [1] is a 

modern systems engineering approach to the modeling, design, 

construction, operation and maintenance of such systems. 

This grand challenge provides the main motivation for the work and research 

reported in this thesis. We are addressing a specific class of health care 

management systems (HCMS), as a first but important step towards the 

systematic application of modern Model-Based System Engineering (MBSE) 

methodologies, frameworks and tools for the design, construction, operation and 

maintenance of such systems. We selected as focus the modeling and 

management of Diabetes Mellitus (or Diabetes 2) as a problem of high impact, 

because it affects tens of millions of people world-wide [8]: 

“Already, 366 million people have diabetes and another 280 million are at 

identifiably high risk of developing diabetes. If nothing is done, by 2030 

this number is expected to rise to 552 million with diabetes and an 

additional 398 million people at high risk. Three out of four people with 

diabetes now live in low-and middle-income countries. Over the next 20 

years, Africa, Middle East and South-East Asia regions will shoulder the 
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greatest increase in diabetes prevalence. Even in rich countries, 

disadvantaged groups such as indigenous people and ethnic minorities, 

recent migrants and slum dwellers suffer higher rates of diabetes and its 

complications. No country, rich or poor, is immune to the epidemic.” 

In the USA alone in 2012 29.1 million people, or 9.3% of the population, have 

diabetes, while the associated costs were estimated for 2012 at $245 billion [9, 

10, 12, 13]. Furthermore in the USA alone for the same time period 86 million 

adults (more than 1 out of 3) have pre-diabetes [11, 12, 13].  

 

Section 1.2: Overall Goals and Contributions of the Thesis 

The goal of our research was to describe a methodology and a framework 

that utilizes recent advances in MBSE and associated tools, to develop a 

conceptual architecture for such a system for Diabetes 2 with the following 

characteristics and capabilities, which are justified from well-established needs 

for such systems [1, 6, 14, 15]: 

(i) Is scalable to millions of patients, and tens of thousands of healthcare 

providers. 

(ii)  Is expandable, in the sense that it can continuously accommodate new 

data and knowledge, new tests, new, models, new treatments. 

(iii)   Is linkable to distributed medical databases. 

(iv)   It has capabilities to “learn”. 
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(v)   It can be easily used by healthcare providers, health insurance 

managers, and patients. 

(vi)   It can operate in a distributed collaborative manner and be linked 

to extensive communication and data networks and large 

heterogeneous sensors and databases. 

(vii) It can provide quantitative answers to “what-if” type of questions such 

as: what is the effect of using modern monitoring wearable technology, 

what is the most effective test, what is the most effective treatment, 

what are the tradeoffs between costs and tests and treatments. 

Our research was further focused on a key component of such a system, 

which is the Reasoning Engine to perform efficiently the required difficult 

tradeoffs in many key decisions. It was not our goal to develop such a system 

that can be immediately used in medical practice. Indeed this is not possible 

without the collaboration of many medical practitioners and medical 

components of a healthcare system, most importantly extensive medical record 

databases. Rather we wanted to demonstrate the potential and capabilities of 

such methodologies and the value they provide to all involved in the health acer 

delivery and management, even with synthetic data, tests, and treatments. 

Clearly we wanted to demonstrate the huge potential of systematically utilizing 

modern MBSE methods towards reaching the goals and needs described in [1], 

and encourage the use and development of such systems linked to real-life data 

over extensive periods of time. Only when this last step is incorporated into such 

systems, their full potential and value can be appreciated. 
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Fig. 1: Illustrating the MBSE-based Health Care Management System for diabetes 
mellitus and its functional connectivity. 

In Figure 1 we illustrate the overall architecture of the type of Health Care 

Management System (HCMS), based on modern Information Technology (IT), we 

have in mind and its connectivity to facilities, labs, hospitals, shareholders (patients, 

doctors, insurance managers, etc.). The dotted lines indicate a modern communication 

network connecting humans, facilities and medical delivery units. Such networks 

have been developed and are under development in many countries including the 

USA [14, 15]. For example in Massachusetts [16] such a “health information 

highway” has been developed and the majority of hospitals and medical practices are 

linked via it. In the next phase of its development patients will be linked to it [16].  
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The proposed system will be accessible, with different accessibility rights and 

controls, by individual patients, medical doctors, nurses, managers, etc., through 

either wireless or wireline networks. Indeed the expanding broadband communication 

infrastructures render the operation of systems like the proposed ones very feasible. 

 
The contributions of the present thesis are briefly described below. We 

developed (Chapters 1, 2 and 8) a framework for Health Care Management 

Systems (HCMS) of chronic diseases using modern Model-Based System 

Engineering (MBSE) methodologies and applied it to Diabetes Type 2 (Diabetes 

Mellitus). Throughout this thesis we focused on Diabetes Mellitus as the driving 

and focusing application. We described the desired architecture of such systems 

and the associated connectivity to heterogeneous users, medical facilities, 

sources of data (Chapters 1, 2 and 8). We also described several high-level 

characteristics that such systems must have, based on literature review and 

current and future needs for Healthcare Information Technology and its promise 

and utility in current and future Healthcare provision and management [1, 6, 14-

16].  We developed a disease progression model for Diabetes Mellitus of the 

Controlled Hidden Markov Chain type, that incorporates diagnostic tests and 

interventions (Chapters 3 and 4). The model developed incorporates known 

characteristics and features of the disease from clinical studies and databases, as 

well as several simulation and experimental models of the disease. We described 

the diagnostic tests and interventions, including the use of modern Health Care 

IT devices and systems, used in the diagnosis and treatment of Diabetes Type 2, 

and developed quantitative models for their operation and evaluation, 

 12 
 



appropriate for inclusion in our overall MBSE methodology (Chapters 3 and 4). 

We incorporated these models to develop a Controlled Markov Chain model for 

the progression of the Diabetes Type 2 disease, that has three states, 

incorporates measurements from three diagnostic tests, incorporates actions 

from ten interventions, and specifically models three types of patients (Chapters 

3 and 4). Recognizing the significant role that human behavior plays in 

healthcare management, we developed models for three types of patients, 

characterizing their risk profiles through weights representing the value or 

significance each patient type places on her/his health state (Chapter 5). We 

developed evaluation metrics for healthcare quality and the associated cost, 

using these models (Chapter 5). The health quality metric developed combines 

patient health state counting (occupation) statistics (i.e. number of time periods 

from a finite management horizon patient’s health is in a particular state) for 

finite time patient health histories and the risk profiles of patients (Chapter 5). 

We described several other metrics and used some of them in our analysis and 

experiments (Chapters 6, 7, 8, 9). We developed a Reasoning Engine, an 

important component of a HCMS, based on tradeoff analysis methods and 

algorithms, to aid in decision making and analytics (Chapters 5, 6, 7). The novel 

characteristic of the Reasoning Engine we developed is the linkage of tradeoff 

analysis methods and algorithms with dynamic disease progression models 

incorporating tests and interventions (Chapters 4, 5, 6, 7). This contribution is 

the main contribution of the present thesis. Using these metrics and the disease 

progression models, we developed and analyzed the performance of two 
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methods for performing tradeoff analysis between healthcare quality and 

healthcare cost. The first, is an exhaustive Monte Carlo simulation followed by 

Pareto point (and frontiers) computations (the EMCS method, Chapter 6), and 

the second one uses multi-criteria optimization, via deterministic and stochastic 

Dynamic Programming with full state information, to compute Pareto points 

(and frontiers) (the FOMCO method, Chapter 7). The second (FOMCO) obtains 

similar results as the first (EMCS) at a fraction of the time of the first (EMCS). We 

developed examples of fundamental MBSE constructs (SysML- based) for 

components of the Reasoning Engine (Chapter 8). We described the decision 

making and analytics capabilities of the Reasoning Engine, by combining its 

fundamental tradeoff capabilities with additional statistical computations and 

considerations, via examples with interesting queries, questions, problems of 

practical value to Health Care management (Chapter 9).  

 
Section 1.3: Organization of the Thesis 

The organization of the present thesis is as follows. In Chapter 1 we introduce 

the problems of interest and their significance. We describe our overall MBSE 

based approach for developing a framework for Health Care Management 

Systems for chronic diseases. In Chapter 2 we provide a description of modern 

Model Based Systems Engineering methods and constructs. In Chapter 3 we 

provide an introduction to our disease progression model for Diabetes Mellitus, 

that incorporates diagnostic tests and interventions, as well as descriptions and 

models of the tests and interventions that we include in our studies.  In Chapter 
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4 we provide more detailed descriptions of the Controlled Markov Chain disease 

model we use in the thesis and related analytical models and constructs. In 

Chapter 5 we develop the analytics and models for the Health Care Quality and 

Cost metrics. In Chapter 6 we develop the analytics of our first tradeoff analysis 

method, the EMCS, based on Monte Carlo simulations and subsequent Pareto 

point computations. In Chapter 7 we develop our second method for tradeoff 

analysis, the FOMCO, based on optimization via deterministic and stochastic 

dynamic programming. In Chapter 8 we provide basic MBSE constructs for 

components of the Reasoning Engine, such as the EMCS and FOMCO methods. In 

Chapter 9 we provide demonstrations of the decision making and analytics 

capabilities of the Reasoning Engine developed, via practical examples and 

problems of interest from a health care perspective. In Chapter 10 we provide 

conclusions and directions for future research, including the extension of the 

models and the methods to the more realistic case, where the disease state is 

estimated from diagnostic tests, that should include quantitative treatment of 

errors and selection/management of tests. Finally we include two Appendices, 

with graphs from our extensive simulation experiments. Appendix 1, provides 

Pareto frontiers for two metrics from 32 simulation runs on 10,000 patients. 

Appendix 2, provides Pareto frontiers for three metrics from 9 simulation runs 

on 100,000 patients.    

 15 
 



Chapter 2: Model-Based Systems Engineering – 
Introduction  of our Approach 

 

Section 2.1: Model-Based Systems Engineering (MBSE) 

The term “Model Based System Engineering”   could be described as a rigorous, 

quantitative process for representation of system structure and behavior 

components to support system requirements management, design, verification 

and validation activities, beginning with the conceptual design phase and 

continuing through-out development, operations, and later life cycle phases [17]. 

In comparison to the document centric approach, in the modern MBSE approach 

the component models and their interconnections are the main artifact of each 

procedure and are used for the communication between the dissimilar groups 

that participate in the system development. In the MBSE setting the information 

enclosed in the models should be dependable through all the stages. Furthermore, 

models prerequisites and assumptions (including regions of validity and 

approximations) need to be established cautiously in order to induce correct 

problem and design solutions. They must to be precise and sufficient but 

concurrently avoid enclosing redundant facts that enhance the complexity at no 

apparent value. 

In Figure 2 the essential phases of the MBSE process are indicated [18, 19, 20]. 

For each system the initial step of the process is the offered evidence. Subsequently, 

the initial system requirements and the anticipated measures of effectiveness 

(MoE) are developed (captured). The MoE are used subsequently at the trade-off 
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phase to guide the selection of components, selection of design parameters and 

other design space  
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Fig. 2: MBSE process information centric abstractions 

exploration functions. After the initial requirements phase, the models of behavior 

and structure are settled. This includes the creation of components and their 

connectivity for both the structure and behavior of the system. Subsequently 

mapping behavior into structure is performed, establishing which components of 

the structure are involved in each behavior component or set of components. At 

this stage system architecture has been created. Use cases are systematically used 

to guide these steps. Throughout the MBSE process derived requirements are 

produced and thus, if desired, alterations to the system requirement are 

implemented. Subsequently requirements (both initial and derived) are 
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allocated to the components of structure and behavior and represented 

mathematically as either constraints or metrics to be optimized. As already 

mentioned, the tradeoff analysis phase is used to select the best feasible solution 

(design, construction, operation) depending on the specified requirements and 

measures of effectiveness. After exploring the design space and choosing the best 

alternative the system shall be validated and verified. This stage is critical because 

it ensures that all the requirements are satisfied and that the system meets its 

objectives. 

 

Section 2.2: Using System Architecture Model as a System 
Integration Framework 

 
System architecture is the abstract model that describes the structure, behavior, 

their components and interconnections, the mapping of behavior onto structure 

and various views of a system. An architecture narrative is a formal explanation 

and illustration of a system, organized in a way that supports rationale about 

the structure and behavior of the system. System architecture can include 

system components, the outwardly perceptible properties of those components, 

the relationships (e.g. the behavior) between them. It can deliver a plan from 

which products can be obtained, and systems developed, that will work together 

to implement the whole system. There have been efforts to formalize languages 

to define system architecture; collectively these are called architecture 

description languages. 
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Figure 3 shows the essential components of the System Architecture integration 

framework including hardware models, software models, analysis models, 

verification, and requirements components. The main challenge and need is to 

develop scalable holistic methods, models and tools for enterprise level system 

engineering. Therefore integration of multiple domain modeling tools, trade off 

tools, validation/verification tools, databases and libraries annotated and 

component models from all disciplines is required. The benefits from the 

proposed methodology include broader exploration of the design space, 

modularity, flexibility and agility. The engineering tools that will be used allow 

conceptual design to lead to full product models with easy to implement 

modifications that are also traceable. Last but not least, the proposed 

methodology enables validation/verification integration with design space 

exploration tools, through the aid of SysML integrated models. These SysML-based 

integrated modeling hubs   
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Fig. 3: System architecture integration framework for a healthcare decision 
support system 

 
(system models) enable system and component model transformations 

(metamodels), and also linkage to efficient industrial strength tradeoff analysis 

tools across different domains. Such methods and tools have been developed, 

used and demonstrated recently (last five years), for many engineering and 

technology domains, including manufacturing. They have inspired our research 

to develop similar system models and processes for healthcare support and 

management systems.  
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Section 2.3: Tradeoff Analysis via Multi-objective Optimization 
and Decision Making 
 
The design and operation of large complex systems is always guided by complex 

tradeoffs between numerous nonlinear objects and the need to satisfy many 

constraints. Multiple objectives occur because a virtuous design balances the 

attributes of economy, performance, reliability and quality. The resolution of 

multi-objective optimization problems can be stimulating on a number of 

facades. One challenge is design objectives and constraints to be optimized 

subject to statistical variations (uncertainties). For engineering systems defined 

by large set of differential equations, function evaluation can be very lavish.  

Engineering systems are typically designed to satisfy the needs of multiple 

stakeholders needs. Each stake holder will have: 

• a set of functional requirements 

• levels of performance that need to be met and  

• finally a budget. 

Satisfying all of these (often conflicting) criteria typically results in tradeoffs. 

Figure 4 shows tradeoff curves in multidimensional design space. For a fixed 

overall system performance, an increase in one intervention therapy (in the case 

of diabetes care management) typically causes decrease in another factor 

(metric, objective).  
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Fig. 4: Tradeoff curves in multidimensional (multiple objectives) design space 

For example, in the case of diabetes care management: 

1. More functionality usually means less economy (more interventions 

increase health but also increase cost); 

2. Improved performance usually means less economy (interventions that 

cure timely tend to be more expensive); 

3. For systems having a fixed cost, improvements in one aspect of 

performance may only be possible with a decrease in other aspects of 

performance. 

Tradeoffs also appear in decisions on the use of resources details and timing of 

implementation, for example: 

1. Serial versus parallel implementations; 

2. Speed of system implementation versus cost; 

Smart systems have a model that describes the relationships among the 

components of the system. When changes in the implementation factors can be 
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managed in an orderly way performance of the system can be enhanced. Also a 

smart system should have the ability to predict and anticipate events.  

Optimization could be defined as a process that systematically takes the form of 

finding the values of design variables “X” that maximize an objective function. 

Optimization algorithms receive as their input information on “X” the system 

inputs and outputs (I/O), the problem goals, and generate a revised set of 

decision variables “X_new.” Optimization techniques include: 

• Simple trial and error search strategies 

• Mathematical programming techniques 

• Search programming techniques 

• Constraint based reasoning techniques 

Multi-objective optimization problems deal with “optimization” of two or more 

objectives. They search for an r-dimensional value vector that provides a good 

compromise for several objective functions 

1 2[ ( ), ( ),..., ( )] (1)rf x f x f xObjective = 
 

and an m-dimensional solution vector X that is feasible. Often the term “vector 

optimization” is used for such problems [21], since one can form a vector of 

objectives like in equation (1). 

Weighted formulation or scalarization [21] is the most straightforward way of 

handling such multi-objective problems, by converting them to a single objective 

function via a weighted sum: 

1
( ) (X) (2)
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i i
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where wi > 0 can be thought of as giving the relative importance of the individual 

objectives in optimizing  f (X). With this equation in hand one can compute a solution 

to the original problem using an algorithm developed for single objective 

optimization. For this approach to work well, the coefficients  wi must take into 

account the different scales of values of the objectives in f (X) and the various types 

of units associated with the objectives. Furthermore great care has to be exercised in 

properly normalizing the objectives to avoid erroneous tradeoffs due to vastly 

different dynamic ranges in the values of the various objectives. Another 

straightforward method, but more expensive computationally, is to select one 

objective as the one to optimize and treat the others as constraints [21]. By varying 

the constraints various tradeoff points can be computed (called Pareto points) [21].  

The main difficulty with multi-objective programming problems is computing an 

“optimal” solution, especially, when the objectives are truly different and conflicting. 

How for example should one balance project economic concerns with intangibles 

such as health performance and reward for following a specific intervention? This 

problem can be solved in part by redefining the principal goal of multi-objective 

programming. Instead of trying to compute a single optimal solution we implement a 

solution procedure that partitions the feasible design space into regions of high 

technical efficiency and regions of inferior performance. The preferred designs are 

the ones that are technically efficient. The inferior solutions are removed from further 

consideration.   
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Chapter 3: Introduction to Diabetes Mellitus Disease 
Models, Tests, Therapies 

 
 
Section 3.1: Overview of Diabetes Mellitus and Disease Models 

Diabetes mellitus is a metabolic syndrome characterized by chronic 

hyperglycemia due to insulin deficiency, insulin resistance or both [8, 9, 22-26]. 

Diabetes is a chronic illness that requires long-term continuing medical care and 

patient self-management education in order to reduce the risk of acute 

complications. Type 2 Diabetes is a chronic disease with long term complications 

such as blindness, renal failure and increased risk for stroke and myocardial 

infraction [22 - 28]. There are several models and algorithms [29] for predicting 

Diabetes risk and progression based on clinical data. Popular models that are 

widely used for prediction of diabetes include IRIC [27], QDScore [30], DESIR 

[31] and UKPDS [32] and can simulate the progression of risk given some vital 

signs.  The model we developed and utilize is influenced from several models 

such as Archimedes [33-34], Michigan Model of Diabetes [35], UKPDS [32] and 

DESIR [31] Diabetes risk score models. We are incorporating the advantages 

from every model and we integrate them into a new system model that is more 

complete and detailed. 

The Archimedes model [33, 34, 36] follows an object oriented approach, 

differential equations and features. The Michigan model [35] specializes in the 

health complications induced (by Diabetes) into other vital organs and systems 
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of humans. UKPDS [32, 37- 41] utilizes an outcomes methodology to evaluate 

risks of complications in other human physical systems. The main health loss, if 

one could quantify the health conditions of someone that is diabetic, is the loss 

from subsequent health complications like renal or retinal problems. The DESIR 

score incorporates metabolomics tests for predictive diagnosis and focuses on 

evaluating risks for developing diabetes or for progressing to worse diabetic 

cases [31, 42, 43, 44]. 

We posit that Diabetes II disease progression and management can be modeled 

by a finite state automaton or a Markov Chain [45- 52]. The Markov Chain is a 

dynamic stochastic model [45-52], that can be time dependent or time 

independent, that can represent uncertainties and can be combined with finite 

state machines; an essential component in SE theory. 

In this type of models, every state of the disease is characterized by certain test 

measurements, associated medical diagnosis, any interventions (therapies) 

applied, and models and knowledge about the disease progression. For each 

patient, there is a probability associated with reaching a particular disease state 

conditioned on the previous state of the patient and other characteristics of the 

patient (like age, weight, sex, eating habits, etc.).  These probabilities are 

computed based on historical and empirical disease databases of patient data, as 

well as on the basis of dynamical models governing disease progression. Each 

patient, at a given state (including healthy ones) can be given a probability of 

developing the disease (at some state) or basic (or additional) complications. 
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These probabilities are computed based on historical and empirical disease 

databases of patient data, as well as on the basis of dynamical models governing 

disease progression. Coupled Markov Chain models could be used given the 

mixture of cost, risk and health performance in every step of disease progression 

in time. They are also used to represent probabilities of complications to other 

human vital systems resulting from diabetes [8-12, 22-26, 27- 44]. Their 

parameters are estimated from databases [55-59] and from disease knowledge 

models [27-44, 63-76]. 

 

Section 3.2: Typical Tests for Diagnosing Diabetes Mellitus (Type 2 
Diabetes) 

 
For diagnosing of diabetes mellitus there are three main diagnostic tests [22-26]. 

First we describe these tests briefly below. 

A1C Test 
The A1C test is used to detect Type 2 diabetes and Pre-diabetes but is not 

recommended for diagnosis of type 1 diabetes or gestational diabetes. The A1C 

test is a blood test that reflects the average of a person’s blood glucose levels 

over the past 3 months and does not show daily fluctuations. The A1C test is 

more convenient for patients than the traditional glucose tests because it does 

not require fasting and can be performed at any time of the day. 
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Fasting Plasma Glucose (FPG)Test 
The FPG test is used to detect Diabetes and Pre-diabetes. The FPG test has been 

the most common test used for diagnosing diabetes because it is more 

convenient than the OGTT and less expensive. The FPG test measures blood 

glucose in a person who has fasted for at least 8 hours and is most reliable when 

given in the morning. 

Oral Glucose Tolerance Test (OGTT) 
The OGTT can be used to diagnose Diabetes, Pre-diabetes, and Gestational 

Diabetes. Research has shown that the OGTT is more sensitive than the FPG test, 

but it is less convenient to administer. When used to test for Diabetes or Pre-

diabetes, the OGTT measures blood glucose after a person fasts for at least 8 

hours and 2 hours after the person drinks a liquid containing 75 grams of 

glucose dissolved in water. 

 

The levels and the range of measurements in these three tests, that characterize 

each state of the disease progression model, are given from the following Table. 

 

State A1C (percent) Fating Plasma 
Glucose 
(mg/dl) 

Oral Glucose 
Tolerance Test 
(mg/dl) 

Diabetic > 6.5 > 126 > 200 

Pre-diabetic 5.7 to 6.4 100 to 125 140 to 199 

Healthy < 5.7 99 or below 139 or below 

Table 1: Defining diabetes 2 disease states from test outcomes  
(Definition mg = milligram, dl = deciliter) 
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For all three tests, with the Pre-diabetic range the higher the test score the 

greater the risk of diabetes. The source for Table 1 was adapted from [89] 

(“American Diabetes Association Standards of Medical Care in Diabetes-2012,” 

Diabetes Care 2012 (Supp 1): S12, Table 2). 

 

Section 3.3: Progression of Diabetes States as a Markov Chain 

The Markov chain model (see Figure 5) [45-52] represents the probability to 

move from one disease state to another given your current state and other 

inputs, or features. A Markov chain model incorporates statistics in different 

states and state transitions and compared to decision trees, these models have 

more compactness in representing historical data that are important, and their 

time evolution. Such a model is also dynamic. States can have values 

(parametric), or activities/functionalities (0, 1). The time component offers an 

advantage over decision trees. The Markov chain models could be coupled, and 

also have output probabilities linking diabetic states and interventions to 

complications in other human vital systems or improvements (via risks for 

example). 

 

The major advantage of introducing Markov chain models for the problem of 

interest in this thesis is that it affords the capability to measure the effects of 

every possible intervention sequence via various metrics: 

i. Cost (of the disease, and various tests and interventions);  

ii. Risk (of developing diabetes, or for progressing in worse states, and risks 
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of  developing complications in other human systems such as coronary, 

vision, neurological));  and  

iii. Utility (of various tests and interventions). 

 

There are sequences of random variables in which the future variable is 

determined by the present variable but is independent of the way in which the 

present state arose from its predecessors. Markov chain analysis looks at a 

sequence of events and analyses the tendency of one event to be followed by 

another. The model can handle costs and outcomes. In every state we can assign 

weights for the cost and outcome quantities to be estimated. The model can 

accommodate utilities of tests and interventions; single or sequential 

(interrelated).  

The model that we used to represent disease progression in Figure 5, is a simple 

model; the states of diabetes disease are: normal, pre-diabetic, diabetic. The 

probabilities a, b, c, d, are estimated (or can be estimated) from clinical data [8-

12, 22-26, 55-59, 63-65] and maintained simulation models of the disease [27-

44]. Such 
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Fig. 5: Example of progression of Diabetes state as a Markov Chain 

models can have additional hidden states to capture more complicated aspects 

and influences of the disease [45-52, 67]. Q and R designate probabilities or risks 

for damage in other vital systems (outcomes). We model single tests and 

interventions or sequences of the same costs of tests and interventions, as well 

as risks and utilities as functions of disease states and outcomes. 

 
From our perspective the most important properties and capabilities of Markov 

chain type models for disease progression, including hidden Markov (chain) 

models, controlled Markov chain and controlled hidden Markov models (see 

Sections XCH of this thesis) are the following. First, the parameters for these 

models can be learned from the various data sources indicated just above [8-12, 

22-26, 55-59, 63-65, 27-44], and this can be accomplished in an incremental and 

distributed collaborative manner once the architecture (with its connectivities) 

described in Figure 1 is implemented. Second, this type of models accommodates 

expansion, in the sense that it can continuously accommodate new data as well 
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as new interventions and tests. Third, hierarchical such models, and their 

associated parameter estimation and control algorithms are well established in 

various fields of Engineering and Information Technologies [45-52], and 

therefore such models are scalable to very large number of cases and users. 

These considerations are relevant for the desired characteristics and capabilities 

of health care support and management systems described in Section 1.2.           

 

Section 3.4: Disease Management Model  

The typical disease management model that we developed and used in this 

thesis is influenced from several models such as Archimedes, Michigan Model of 

Diabetes, UKPDS and DESIR Diabetes risk score models [27- 44]. We are 

incorporating the advantages from every model and we integrate them into a 

new system model that is more complete and detailed. An important and 

innovative aspect of our modeling approach is the linking of the models with 

trade-off analysis algorithms, in order to employ the model in trade-off 

analyses between risk, utility (quality of life), and costs.  Another important and 

innovative aspect of our disease progression models is that they are 

designed to easily accommodate (user specified) finite time horizons for 

disease management, monitoring and decision making, vs the more 

traditionally used and typical models that focus only on long term and life time 

effects [27-44].   

Coupled Markov Chain models could also be used given the mixture of cost, risk 
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and health performance in every step of disease progression in time. They could 

also be used to represent probabilities of complications to other human vital 

systems resulting from diabetes. Their parameters are estimated from databases 

[55-59] and from disease knowledge models [27- 46]. Such models can lead to 

enormous numbers of states for a large population of patients. And this fact 

makes computing complex, and a factor to be considered, when developing data 

and management analytics for such systems. We have developed methods to 

handle this type of complexity in our earlier work [53, 54]. For example for N 

patients we have N 3 states, corresponding to the normal/pre-diabetic/diabetic 

status of each patient.  

 

Figure 6 illustrates the idea of incorporating a Markov Decision Process (MDP) 

[45-52] in the management of Diabetes Mellitus. 
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Fig. 6: High level view of the state model for long term management of Type 2 
diabetes 
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A Markov Decision Process (MDP) [45, 47, 48, 60, 83] is a discrete time 

stochastic control process that provides a mathematical framework for modeling 

decision making in situations where outcomes are partly random and partly 

under the control of a decision maker. In MDPs the transition probabilities 

depend on the controls exercised. MDPs are useful for studying a wide range of 

optimization problems solved via dynamic programming and reinforcement 

learning [45, 47, 48, 60, 83]. MDPs were known at least as early as the 1950s (cf. 

Bellman 1957) [62]. A core body of research on MDPs resulted from Ronald A. 

Howard's book published in 1960, “Dynamic Programming and Markov 

Processes” [61]. They are used in a wide variety of disciplines, including 

robotics, automated control, economics, and manufacturing. Figure 7 illustrates 

the operation of an MDP model with its controls (actions, interventions) and 

state transitions. 
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Fig. 7 : Example of a simple MDP with three states and two actions [47] 

 
 

Section 3.5: Interventions and Therapies Based on Information and 
Communication Technologies 

 
One of the objectives of our research in this thesis was to develop a framework 

that will allow the evaluation of the impact of Information and Communication 

Technologies (ICT) on the diagnosis, treatment and management of Type 2 

Diabetes. These technologies include wearable sensors, telemedicine, easy 

communication between patients and doctors, etc.   We describe below some of 

these technologies. 

 
Subsection 3.5.1: EHR 

Electronic health records (EHRs) have the potential to improve quality and 

safety because they provide better access to information, more reliable 
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communication between providers, and clinical decision support. According to 

Propp [77], the implementation of EHRs creates a safe, efficient, and easily 

accessible system in a healthcare setting. Propp discusses the change from a 

paper-based infrastructure to an EHR in an Emergency Department [77]. He 

found that the nursing staff had easy access to the physician’s clinical notes and 

assessments [77]. In the Emergency Department setting, this is a major positive. 

With easier access to information, nurses will be able to move patients quickly 

and effectively. This will increase the amount of beds in the hospital and increase 

the number of patients that can be seen. 

 
Not only does information become more accessible, but also communication 

between physicians and the staff, patients, laboratories, and pharmacies 

becomes more efficient and effective. Propp [77] also suggests that physicians 

were able to provide easily accessible non-verbal task communications with the 

staff. This is beneficial in a healthcare setting, especially in an emergency 

department. Instead of waiting on a busy physician to come by with instructions, 

communication becomes faster and more efficient. This will also improve the 

quality of care, because physicians will have more time to focus on patients’ 

needs. In addition, King et al. [78] describe how communication between other 

factors increases with the implementation of an EHR. EHRs can be used to 

exchange important information with pharmacies, communicate with 

laboratories and incorporate Lab results into the EHR as structured data, and 

provide patients the ability to view, download, and transmit their health 

information [78]. Quality of care increases once other healthcare facilities are 
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able to enhance communication with physicians. 

 
Electronic health records can also support clinical team interventions when 

coming to decisions on a patient. A study done by Bates et al. (1998) [79] helps 

demonstrate how physicians’ computer order entries (POE) decrease adverse 

drug events when used in combination with a clinical team. Results showed that 

a POE system prevented more than half of the serious medication errors [79]. 

This POE system was able to reduce medication errors because it included a 

dose selection menu, simple drug allergy and drug-drug checking, and the 

requirement that clinicians indicate the route and frequency of drug doses. 

Furthermore, a computer system resolves the difficulty of translating illegible 

orders and greatly reduced the need for transcription [79]. EHRs help physicians 

and their teams to make the appropriate decisions on their patients, further 

preventing harm and increasing quality of care. 

 
Subsection 3.5.2: Telemedicine and diabetes 

Telemedicine is defined as the medical activity that involves an element of 

distance and use of telecommunication resources and strategy.  One of the most 

well-known applications of telemedicine is the support of reporting and/or 

screening and then interpreting blood glucose measurements. A common 

example of the use of these evaluations for these applications is the self-

management of other chronic diseases [71]. 
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The benefits of computerized management of diabetes are mentioned and 

pointed out, for their possible advantages of monitoring and communicating 

with patients from a distance, in [69-71]. At the same time, these interventions 

are cost effective means for delivering health care. For the advantages that we 

have mentioned we reviewed the studies of telemedicine in diabetes care from 

several quality reviews that have been conducted in the past. We performed a 

metadata review analysis and we tried to research what is considered quality in 

telemedicine and diabetes care, how it is captured and measured. We have 

incorporated these findings in the models and analytical methods and results 

reported in this thesis. 

 

 

 

 

Chapter 4:  Controlled Hidden Markov Model of Diabetes 
Mellitus Disease Evolution with Interventions 
and Tests 

 

Section 4.1: Mathematical Description of the Basic Model 

In the model we have developed we represent diabetes progression as a 

Controlled Hidden Markov Chain (CHMC). The model has three states for 

diabetes mellitus, but more complex models can be developed [45-52] based on 

more detailed dynamics and progression of the disease [8-13, 22-26], supported 
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by clinical data [55-59] and detailed biochemical models of the disease [27-44, 

63-76, 81]. Thus, as already emphasized in  Chapter 1 of this thesis, our Model-

Based Systems Engineering (MBSE) approach enables incremental improvement 

of the disease models, their parameters, the tests, the interventions, and the 

knowledge captured in our healthcare management and evaluation framework. 

These “learning” and “updating” capabilities are implied by the architecture 

depicted in Figure 1 (page 10) and by its implementation including modern 

broadband telecommunications and data linkages to the heterogeneous users 

and medical databases and facilities. We denote by nx the number of states in our 

disease model; for this thesis nx = 3. The states we use have the following 

interpretation: State 1 represents the Healthy (disease free) condition of a 

generic patient. State 2 represents the Pre-diabetic condition of a generic 

patient. State 3 represents the Diabetic condition of a generic patient. In 

practice these states are determined by a variety of medical tests and 

measurements and are described in the current medical diagnostic practice for 

this disease [22-26]. As the patient goes on with her/his life, various tests are 

performed periodically to determine the state of health of the patient regarding 

this particular disease, and various interventions (treatments) are 

recommended and followed, depending on both the test outcomes 

(measurements) and the state of health of the specific patient. In practice, we 

have to be very careful in discussing state of the disease, because rigorously 

speaking such an absolute description of the state of the disease does not 

exist in medicine. Rather, in medicine and healthcare, the concept of state 
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represents the collection of ranges in the outcomes of the various diagnostic 

tests performed. That is the main reason that the most practical type of model 

we can develop should be of the Hidden Markov Chain type. Our framework can 

incorporate such models as well. As these models and their analysis are quite 

complex, we develop and analyze simpler models first as stepping stones 

towards these more powerful and more realistic models, which (Hidden Markov 

Chain type models) we plan to develop and investigate in our future research 

(see our recent paper [87] for our initial work and results in this direction). 

Furthermore, another complexity that needs to be incorporated is the 

dependencies of the tests on the past history of the disease with a specific 

patient, and on the history of tests and interventions performed on the specific 

patient. This is typically the practice in medicine and healthcare, but 

unfortunately at this stage of development the Information Technology (IT) 

support for such considerations of past histories is not implemented, except for 

very few programs and even there with limited scope. Currently such 

considerations are performed by the human medical practitioners with minimal 

support of advanced IT support and tools. This situation though is rapidly 

improving in the USA and world-wide thanks to the massive investments in 

Health IT and associated systems and frameworks. The work in this thesis is a 

contribution in this promising direction.       

The purpose of the relatively simplified model, developed and employed in this 

thesis, of these complex interrelated processes and disease evolution is to allow 

systematic quantitative studies of the effects of medical tests, called simply tests 
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from now on, and various treatments, called from now on interventions, on the 

disease progression. We include as interventions the use of current IT 

technology such as wearable sensors, smart phones, Internet and cloud-based 

information services, linkage with hospital, private medical practice and social 

medical networks over the Internet. Additional technologies can be easily 

incorporated in our framework. Each test and intervention affect the transitions 

from one state of the model to the other, and also have costs associated with 

their use/application. An important objective of the model developed and the 

study undertaken in this thesis, is to also develop a systematic methodology for 

evaluating the quality of health care provided to a generic patient (meaning 

the sequence of tests and interventions applied), the associated costs, 

associated tradeoffs and many other important evaluations of individual 

tests and interventions, over a particular finite time period.   The purpose of 

our study is not to provide a specific medical model with all its complexities and 

ramifications, but rather develop, use and demonstrate the significant benefits of 

a MBSE framework for analyzing these problems, which is expandable and 

scalable to much larger and much more complex models thanks to the industrial 

strength tools we use in the quantitative analysis. Furthermore, as already 

emphasized in Chapter 1, our MBSE framework is by construction modular and 

composable allowing many tools and models to be easily integrated within its 

structure. This is in great contrast with the current state of the art in Healthcare 

IT systems, even with the most advanced ones. 
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Our analysis specifies a time horizon for the study (or use of the support system 

developed) denoted by T; in most of our simulation experiments and example 

cases we take T to be ten years. This time horizon is defined by the user of the 

framework: a medical practitioner, a medical doctor, a patient, a manager in a 

medical provider, a manager in a medical insurance provider, a technologist, a 

policy maker, a regulator, etc.. This horizon can be rolling, allowing extensions of 

the study and tracking of patients incrementally over longer periods. To simplify 

matters we develop a discrete time dynamical model, where  tests and  

interventions  occur periodically with period  

D .  Thus  there are ,TN ∆  time steps  in our time histories,  where , /TN N∆ = ∆  ,  

an  

integer. In most of our studies we have taken  D  to be one year. As usual in a 

CHMC  

model,  the  dynamic evolution is prescribed by transition probabilities, which in  

our  

model  depend  on  the tests applied  at  the  particular  time, denoted  by  m(t),   

the  

interventions applied at each particular time, denoted by u(t), and various 

exogenous or parametric factors such as the age of the patient, the type of work 

she/he does, the environment where the patient leaves, the age of the patient 

etc., denoted by w(t). The  

variables m, u, w can be scalar-valued, in the case of a single test, single 

intervention,  
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single exogenous factor, or vector-valued, in the case of several tests, several 

interventions, several exogenous factors. In this thesis the type of these variables 

(i.e. whether they are scalar or vector) will be more or less obvious from the 

context in each case of their use. 

As shown in the diagrammatic representation of our model in Figure 8 there are 

transition probabilities from each state to the next, as time evolves in steps of 

length D, which from now on we take as 1, for notational simplicity (it may mean 

1 year (typically), or one six month period, or a quarter of a year, one month, one 

day, one hour, etc.). As time evolves, and under the influence of each patient’s life 

evolution, the evolution of the disease and the tests-interventions applied at 

each time, the state moves with certain probabilities to a different state or stays 

the same. This is a typical model used to capture similar type of problems in 

Engineering and Operations Research, where time is discrete, measurements 

and controls are discrete valued, meaning one selects a measurement (test, 

observation, sensor) from a finite set of available measurements, and also selects 

a control (action, intervention, treatment) from a finite set of available controls. 

Our System Model is inspired by such models which implement the basic 

feedback cycle of Sense-Decide-Actuate (Act)  in Engineering and Operations 

Research, where in our case the corresponding cycle is translated to Test 

(Diagnosing) → Decide → Intervention (Treatment).   

In Fig. 8, for example, P12 is the probability of transition from State 1= Healthy to 

State 2 = Pre-diabetic. uk is the intervention applied at that time step, where 
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{1,2,..., }uk n∈ , which means that for a given state we could  have different 

interventions that we can follow each time; a practical requirement from 

medical and clinical practice [22-26]. lµ  is the test applied at that time step, 

where {1,2,..., }l nµ∈ , which means that for any given state we could have 

different (diagnostic) tests that we can apply to the patient; again a very useful 

feature of our model. The transition probabilities in the models developed and 

used in this thesis do not depend explicitly on time themselves, but they depend 

on time implicitly through the dependence of uk and ml on time. However, our 

overall framework, modeling and mathematical/analytical methods can be easily 

extended to accommodate explicit time dependence in these transition 

probabilities. 
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Pre diabetic 
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Fig. 8: Graphical representation of the CHMC model developed for Diabetes 2 
progression 

We also note that in the model depicted in Fig. 8 we do not include all possible 

state transitions. For example we do not include transitions form state 3 directly 

to state 1. Rather we allow the state to transition first from state 3 to state 2 and 

then to state 1. More complex models can be easily accommodated. The models 

we use are completely flexible on this aspect, and their complexity can be 

completely defined and supported by the various users. Often, such restrictions 

come from common sense and from medical and clinical experiences and 

observations. As already discussed, w denotes the various non-controllable 

factors that influence the dynamic state evolution of diabetes in a generic 

patient; examples of these are environment, age, gender, ethnicity or family 

history. We note that in the underlying Markov chain we do not allow transitions 

form State 1 (Healthy) to State 3 (Diabetic) directly, and reversely, without 

passing through State 2 (Pre-diabetic) first. This is based on practical medical 

evidence for the majority of patients. Clearly, if we want to include such direct 

transitions, the modification required for our model is trivial.   

 
Section 4.2:  Operation of the Model, Tests, Interventions, Feedback 

In this section we describe in some more detail, the model, the tests, the 

interventions and various operational scenarios with different degrees of 

feedback. The main diagnostic tests were described already in Section 3.2 of this 

thesis. 
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Subsection 4.2.1: Operational characteristics of the diagnostic tests 

As is typical, medical diagnostic tests, measure an important (or several 

important physical variables) of the patient, and in doing so errors can occur. 

Typically, medical tests employ a threshold (or several thresholds) based policy 

(i.e. rule). The policies of common tests are standardized for uniformity among 

patients and doctors, and in order to provide a stable basis for medical 

judgments. The diagnostic tests provide a decision, that is typically Boolean (i.e. 

binary valued) but it may also be ternary valued (i.e. take three possible values). 

Depending on the complexity of the test, and the description of the disease (i.e. 

how many states are used to characterize the disease), the decision can take 

more values as well. Typically a single threshold leads to a binary valued output, 

while for a ternary valued output two thresholds are needed. To describe briefly 

these operational characteristics and the various diagnostic errors that can 

occur let us denote by z the scalar-valued physical variable (like temperature, 

glucose, density of cholesterol cells in the blood, etc.) that the test is designed to 

measure; similar descriptions and definitions can be given in the case of 

simultaneously measuring several variables, in which case   z will be a vector-

valued variable. Let y be the measurement outcome of test m, designed to 

measure the variable z. The outcome y is a function of the variable z, y = F(z), 

which can be known or unknown, invertible or non-invertible. If it is known and 

invertible, then for all practical purposes one can take y = z.  
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For  a  binary decision,  let  z   be the threshold  for  decisions, in this case,  as we 
are  

using a single threshold. In such binary tests, the goal is to use the test as 

evidence for two opposite hypotheses, H1 meaning the disease is likely present 

in the patient examined, and H0 meaning the disease is likely absent in the 

patient examined. Then the single threshold decision policy is mathematically 

(and operationally) described as follows:     

1

0

If  , then   is true
  Single  threshold decision policy.

If  , then   is true
y H

y H
ζ

ζ
< 

≤ 
             (3) 

There are two types of errors associated with this type of decision policy. One 

error occurs when the test decides, following this policy, that H1 is true, while in 

fact H0 is true. For obvious reasons this type of error is called False Alarm Error. 

The other error occurs when the test decides, following this policy that H0 is 

true, while in fact H1 is true. For obvious reasons this type of error is called 

Missed Detection Error. Thus the performance of such a test is quantitatively 

described following standard statistical hypothesis testing theory [45, 48, 60, 67, 

81, 83, 88] by the two probabilities: The probability of making false alarm errors, 

denoted by Pfa, and by the probability of making missed detection errors, 

denoted by Pmd. Obviously 1- Pmd  is the probability of correct detection, typically 

denoted by Pd . In binary classification terminology, often used in medicine [45, 

48, 67, 81], Pd  is also called the True Positive Rate, while  Pfa  is also called the 

False Positive Rate. In this thesis we use  
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these terms interchangeably. All these probabilities depend on the threshold z,  

the  

statistical descriptions of z, y and the disease characteristics vs. patients, and 

more generically on the medical description of the disease, the relation of the 

disease to the variable z, and the relation between the variables z and y, and on 

several other hidden  

variables possibly. The graph of Pd  vs. Pfa ,  typically  as  the  threshold  z  varies,  

characterizes the quality of the test holistically, meaning as both a physical 

medical instrument as well as a decision rule (policy). The resulting curve is the 

well-known Receiver Operating Characteristic (ROC), a term widely used in 

electrical engineering [83, 88] to evaluate various communication systems and 

signal processing schemes. It is now widely used in medical tests, psychology, 

radiology, biometrics, machine learning, data mining, and many other science 

and technology areas. 

We next provide a similar brief description of the operation of a ternary decision 
test.  

Let  zl  be the lower (valued) threshold, and  zh be the higher (valued) threshold. 
Then,  

keeping everything as above including the fundamental interpretation of testing 

for two hypotheses H1 and H0 , Then the two thresholds decision policy is 

mathematically (and operationally described as follows):     

1

0

If  , then   is true
If  < , then test is ambiguous   Two  thresholds decision policy.
If  , then   is true

u

l u

l

y H
y

y H

ζ
ζ ζ

ζ

< 
≤ 
≤ 

      (4) 
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In this case, with this decision rule, there are more errors that can be made. To 

define them, let’s call the ambiguous decision as a decision for hypothesis H1-0. 

Namely, one type of error that can occur is when the test decision is that H1 is 

true, while in fact H1-0 is true. Another one is when the test decision is that H1 is 

true, while in fact H0 is true. Another one when the test decision is that H1-0, is 

true, while in fact H1 is true. Another one is when the test decision is that H1-0 is 

true, while in fact H0 is true. Finally the last two types of errors are when the test 

decision is that H0 is true while in fact H1 is true, and when the test decision is 

that H0 is true, when in fact H1-0 is true. Like in the binary decision case, these 

errors are quantitatively characterized by the conditional probabilities  

0 1 1 0 1

0 1 0 1 1 0

1 0 0 1 0

( { } |{ }), ( { } |{ }),
( { } |{ }), ( { } |{ }),
( { } |{ }), ( { } |{ }),

P D H true H true P D H true H true
P D H true H true P D H true H true
P D H true H true P D H true H true

−

− −

−

= = = = = =

= = = = = =

= = = = = =
        (5) 

where by D we have denoted the test decision following the two threshold policy 

described above. Similarly as with the binary case, the performance of the test 

(i.e. its  

quality)  can  be  quantitatively  characterized  by  plotting these six probabilities  

as  

functions of the lower and upper thresholds zl and zu . Clearly these 

representations, analytics and performance are more complex than in the simple 

binary case. Briefly one constructs the so-called Confusion Matrix, which in this 

case is a 3 x 3  matrixF,  
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with elements  ( { } |{ })i j i jP D H true H trueΦ = = = =  for  i and j , taking the values 

1,  0,  1-0.  Considering the diagonal dominance [80]  of the matrix F as a 

function of  

the thresholds   zl   and   zu  , provides  a quantitative performance  metric. Since 

the   

elements  i jΦ  of the  matrix  F are probabilities, they  are  nonnegative,  i.e. 

0ijΦ ≥ .  

Furthermore since the events { } { } { }0 1 0 1, ,H true H true H true−= = =  are 

complementary,   

1, for each .i j
i

jΦ =∑         (6) 

An n x n matrix A is called diagonally dominant [80] if 

| | | | .i i i j
j

A A≥∑                (7) 

For  matrices  with  nonnegative  elements, like  F, we  do  not need to use 

absolute  

values in the above definition. A simple measure of diagonal dominance of a 

diagonally dominant matrix  A  with nonnegative elements is [80]  

( ).dd ii ij
i j

A Aρ = −∑ ∑           (8) 

Several other metrics can be constructed [80]. Clearly the larger ( )ddρ Φ  is the 

better the performance of the two threshold strategy is for this three state 

problem. 
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Subsection 4.2.2: Accuracy, fallacy of each test, state estimation from test 

results 

We can easily apply the ideas and constructs of Subsection 4.2.1 to our model, since 

we have three states, 1, 2, and 3. Indeed the two thresholds are used to define the state 

of the disease, since in medicine and biology due to the enormous complexity of the 

underlying systems, true states are nearly impossible to define, and instead states 

are defined via bounds on the values of test measurements [22, 25, 26, 45, 55, 67, 

75, 76, 81]. Thus for the case of our three state model, using the three tests 

considered, the states are defined using such thresholds based on the Table 2 below 

(repeated here for convenience of the reader) from Section 3.2 of this thesis (page 24, 

Table 1 ).  

 
 

State A1C (percent) Fasting Plasma 
Glucose (mg/dl) 

Oral Glucose 
Tolerance Test (mg/dl) 

Diabetic > 6.5 > 126 > 200 

Pre-diabetic 5.7 to 6.4 100 to 125 140 to 199 

Healthy < 5.7 99 or below 139 or below 

Table 2:  Model states defined via the three (diagnostic) tests used in the model. 
Here mg = milligram, dl = deciliter. For all three tests, with the pre-diabetic range the 
higher the test score (value) the greater the risk of diabetes. [Source adapted from 
[89] American Diabetes Association Standards of Medical Care in Diabetes-2012. 
Diabetes Care 2012 (Supp 1): S12, table 2.] 
 

In modern stochastic systems and stochastic control terminology this is the partially 

observed problem [60, 83], and is quite more complex than the corresponding fully 
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observed problem [60, 83]. We have left this extension of our work in this thesis as a 

future research direction, while some initial results in this direction will appear in our 

recent paper [87]. For the partially observed case our model becomes a Controlled 

Hidden Markov Chain (CHMC) [60, 83].     

Let us denote by ( )
l

y tµ  the measurements resulting from the test lµ , 1, 2,...,l nµ=  

applied at time t. ( )
l

y tµ  is a scalar real-valued variable. We will denote by ˆ( )x t  the 

best estimate of the disease state at time t. In general ˆ( )x t  will be a function of the 

past test measurements and past interventions. The conditional probability mass 

functions (pmf) | ( , ) Pr{ ( ) | }t
x yp t i x t i z= =  play a very important role [60, 83] in 

modeling this closest to reality formulation, where tz  denotes the entire history of 

past tests and interventions, before the intervention ( )u t  is decided and applied; i.e.  

1{ (0), y(1),..., ( ), (0), (1),..., ( 1)} ( , )t t tz y y t u u u t y u −= − = . In the complete formulation 

of the partially observed case the tests and interventions at each time epoch t, are 

chosen to minimize some expected value of a metric. It is known [60, 83] that for 

general CHMC models and general metrics, these optimal tests and interventions at 

time t, given the past history z t, are explicit functions of the conditional pmf | ( ,.)x yp t . 

Furthermore the pmf | ( ,.)x yp t  itself satisfies a dynamic recursive equation [83], 

known as the nonlinear filtering equation, which captures the updating of the state 

estimates given new received measurements. The actual functions expressing the 

relationship between the optimal tests and interventions and the pmf | ( ,.)x yp t , are 

obtained as solutions of a Dynamic Programming equation [60, 83]. It is these two 

dynamic equations that make the partially observed case substantially more complex 
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computationally. We will only address the fully observed model in this thesis. 

Starting from the ideas and concepts just described we have obtained some initial 

results for the partially observed case in our forthcoming paper [87].   

We have collected below statistical information regarding the diagnostic tests we 

described in Section 3.2. The A1C test result can be up to 0.5 percent higher or lower 

than the actual percentage. This means an A1C measured as 7.0 percent could 

indicate a true A1C anywhere in the range from ~6.5 to 7.5 percent. Health care 

providers can visit www.ngsp.org  to find information about the accuracy of the 

A1C test used by their laboratory. In the study of Cox (2009) [81] the sensitivity and 

the specificity of every test are discussed. Table 3 illustrates the decision regions for 

estimating the disease state following a two threshold policy. 

x̂  = estimated state μ1 = A1C μ2 = FPG μ3 = OGTT 

Diabetic = 3 1

3A  
2

3A  
3

3A  
Pre Diabetic = 2 1

2A  
2

2A  
3

2A  
Healthy = 1 1

1A  
2

1A  
3

1A  
Table 3: Relating test measurement ranges to disease state estimation 

per medical standards. 
 

Table 4 [81] illustrates the sensitivity and specificity of each of the three tests as a 

function of the “true” state of the disease. 

Diabetes state A1C  (accuracy, 
fallacy)                

FPG (accuracy, 
fallacy) 

OGTT (accuracy, 
fallacy) 

Diabetic  78%, 15% 55%,5% 95%,20% 

Pre Diabetic 80%,15% 85%,10% 88%.25% 
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Healthy 84%, 16% 60%,5% 80%,25% 

Table 4: Accuracy and fallacy of the three common Diabetes II tests 

 

 

From the above tables, and similar data from several sources [22-26, 27-44, 55-59, 

63-76, 81], in each cell we can estimate the probability of a test to be accurate, the 

probability of errors as well as other characteristics like sensitivity and  specificity. 

These statistics are clearly into one-to-one correspondence with the statistics and 

probabilities of correct detection, and of the various types of errors discussed in 

Subsection 4.2.1 earlier. 

For example
1

3A , 
2

3A 3

3A  are subintervals where the measurement results of each test  

μ1= A1C,  μ2= FPG,  μ3= OGTT can take values, given that the disease state is 3. The   

measurements from each test  are  real  numbers.  Figure 9   illustrates   the  

subintervals where the measurement results from test m1= A1C take values, and the  

state estimate these subintervals imply. Their (disjoint) union forms the interval
1A . 

These measurements and subintervals are identical with the two threshold policies 

described earlier in Subsection 4.2.1.  

Values of yμ 
   

Estimated state 

x̂  
1 2 3 

 

 
 Fig. 9: Subintervals in the test measurement space related to disease state estimation 
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As already mentioned, in this most practical scenario, we need to use the Controlled 

Hidden Markov Chain version of our model, as the states are not directly observable 

and cannot be used in the feedback for intervention selection. Rather the disease state 

is estimated based on the results of one or more diagnostic tests and then the 

intervention (or interventions) is decided and applied. We will develop the 

mathematical methodology and analytics for doing this partially observed casein 

future work; see [87] for some initial results.  

Subsection 4.2.3: Interventions 
Interventions are selected and applied at each time instant with the purpose of 

improving the health of the patient. In our model we assume a discrete set of 

interventions including various medical procedures, medications, diet strategies, 

exercise strategies, technology aids. Thus 1 2( ) { , ,..., }
unu t u u u∈ . These 

interventions are selected on the basis of disease state estimates, projections on 

their effectiveness and benefit given the state and history of the patient as well 

as costs. The selection of interventions is referred to as strategies. A strategy 

involves a sequence of interventions applied at various times. The term strategy 

as used here is inspired by similar usage in engineering and especially in 

systems and control [60, 83].  Further, we consider in this study finite horizon 

problems. The finite time horizon could be the lifetime of the patient or the 

treatment horizon. In this study consider typically a treatment period of 10 

years.  
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In all examples, simulations and numerical experiments we have included in this 

thesis we have considered four types of interventions, and ten specific 

interventions form these types. The four types of interventions considered are: 

a) Technology u(1,2): we assume that one therapy uses communication 

wireless technology (telemedicine, EHR), while the other intervention is 

not using such technologies;  

b) Diet u(3,4,5): we have three types of diets one that has as a target of losing 

5% of weight, another with 10% and the last one with 15%. 

c) Exercise u(6,7,8): we assume that a person can burn with 30  minutes of 

daily exercise 100, 200, 300 calories respectively. 

d) Medication u(9,10) : we have two interventions one that includes a light 

medication metformin and another one including strong insulin.  

If the state is known, or, as is more appropriate for the most realistic models 

(realistic from the point of view of current medical practice), estimated on the 

basis of diagnostic tests results, medical practice standards and the reasoning 

and experience of medical practitioners result in a selection process for these 

interventions; one can think of these selections as ranking the interventions in 

some order of preference. Figure 10 below illustrates one such set of preferences 

based on the disease state. More general conditioning including more detailed 

information about the patient can be incorporated in the same manner. Our 

overall MBSE healthcare support system and its operational context, as 

illustrated in Figure 1, supports the incorporation of additional information, 

models and statistics.   
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x̂   1u   2u  3u  4u  5u  6u  7u  8u  9u  10u  
1 0 1 0 0 0 1 0 0 0 0 
2 1 0 0 1 0 0 1 0 1 0 
3 1 0 0 0 1 0 0 1 0 1 
 

Fig. 10:  Illustrating a scenario with preferred interventions given the disease 
state 

Although we have mostly considered a single intervention per time-step, our 

models and methods can easily incorporate combinations of “simultaneous” 

interventions by simply designating such combinations and their characteristics 

as additional possible interventions.  

Chapter 5:  Evaluation Metrics 

Our dynamical model has the capability to produce sample paths, time histories 

of the progression of diabetes for a generic patient, in response to life-style, 

exercise or no exercise, other interventions and medications, and various 

administered diagnostic tests, form the ones described above.  We are interested 

to develop metrics that will be used to evaluate these medical time histories and 

therefore indirectly the tests and interventions used in each case (in each time 

history). Thus to complete the Systems Engineering Model of Diabetes Mellitus, 

both at the disease as well as at the health care process levels, we next proceed 

to describe the metrics that we will use. Clearly one can add to the ones we 

describe below quite easily (see Chapter 6, pages 64 - 65, and Chapter 9 of this 

thesis). 
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One performance metric that we are interested in, is cost.  The cost model we 

use is pretty straightforward. There is  a cost  for  every  test  and  every 

intervention used,  

denoted by  Cu(uk) = cuk
  and  Cm(ml) = cml

 respectively. The cost model we use is  

additive, that is the total cost for anyone time history for each patient is the sum 

of the cost of the tests, denoted by ( , )total
iC i mm , and of the cost of the 

interventions, denoted by ( , )total
u iC i m , used in the particular time history mi. Our 

cost values include equipment, personnel and other costs. Clearly one could 

easily develop more detailed models by breaking down the components of each 

cost. Also, we can use costs data from doctors and hospitals directly in our 

model, or indirectly by using them to fit a functional model of each cost and its 

components (see Figure 1). Since our main goal is to develop and demonstrate a 

fundamental framework, we will not pursue these additional cost details in this 

thesis. 

Thus for our work and analysis we have 

,

1
( , ) ( ( ))

TN
total

i u
t

C i m C u tm

∆

=

= ∑     (9) 

,

1
( , ) ( ( ))

TN
total

i
t

C i m C tmm  m
∆

=

= ∑      (10) 

and  

  ( , ) ( , ) ( , )total total total
i i u iC i m C i m C i mm= +     (11) 
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Where, in these sums, the tests and interventions used at each time step of this 

particular time history are considered. 

For our numerical experiments the cost of the tests μ is given by the vector of 

test costs, which includes both equipment, facilities and labor costs: 

[ ]
1 2 3

89 97 126c c cµ µ µ  =  .          (12) 

 

Similarly the cost of interventions u is given by the vector of test costs, which 

includes both equipment, facilities and labor cost (dietician/nutritionist, 

physician, case manager and pharmacist)  

1 2 3 4 5 6 7 8 9 10u u u u u u u u u uc c c c c c c c c c    =                     (13) 

             =  (320, 300, 160, 320, 430, 150, 300, 400, 350, 620). 
 

Patients are of different types. Indeed behavioral characteristics of patients with 

respect to their healthcare are a very important albeit very difficult to model 

factor. In this thesis we will consider three types of patients with respect to the 

attention and systematic care that they apply to their health care and to 

following the recommendations resulting from tests and visits with doctors, as 

well as following orderly the prescribed interventions.  It is well a known, and 

unfortunately a well-documented fact, that many patients do not follow 

recommendations and interventions rigorously (and some not at all). Our 

interest is to develop a somewhat realistic performance metric for each health 

care time history generated by our model.  
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We call the resulting metric Health Care Quality, denoted by ( , )h c iJ i m . Here the 

first argument i is the index assigned to a specific patient, while the second 

argument mi is the index assigned to a specific time history (the mth) 

associated with patient i. Clearly the number of periods (in most of our work in 

this thesis this will mean the number of years) that a generic patient is in states 

1, or 2, or 3, in a given time history, indicates very well the health of the patient. 

Thus, in the case for example where ,TN ∆  is 10 (as in most examples and 

computations in this thesis) if a patient finds herself/himself in state 1 for 9 or 

10 years, her/his health (with respect to diabetes) would be excellent, while if 

she/he is in state 3, 9 or 10 years, then her/his health condition (with respect to 

diabetes) would be very poor. Thus the number of years that a patient is in each 

state in a time history can be used as a meaningful metric for the quality of the 

condition of the patient’s health.  

To capture the different behavioral types of patients we introduce weights 

representing the value (or significance) each patient places for being in each 

state of the model (recall Healthy, Pre-diabetic, Diabetic). We denote these 

weights by 1 2 3, ,i i iV V V  , respectively, where the superscript i (we also use the 

superindex  pi  to indicate patient i in various places and equations in this thesis) 

refers to the index of a specific patient, while the subscript refers to the states 1, 

2, 3. These weights take real nonnegative values between 0 and 1, and their 

values sum to 1, to better indicate the relative value (or significance) that a 
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patient places in her/his health state with respect to diabetes.  Thus we have the 

following:  

1 2 3

1 2 3

, , [0,1],
1, 2,...,

1,

i i i

pi i i

V V V
i N

V V V

∈ ∀ =
+ + = 

                 (14) 

where Np is the number of patients in the study. Using these weights we can 

define three types of patients. The “Risk Averse” (with respect to the risk of 

getting sick with diabetes) patient may have representative weights as shown in 

Figure 11 below. That is for this type 1
iV  is much larger than 2

iV  , and 3
iV  is 

almost zero. The “Risk Indifferent” patient may have representative weights as 

shown in Figure 12 below. That is for this type 1
iV  is larger than 2

iV  and 3
iV , but 

significantly smaller than the 1
iV  for a risk averse patient. 2

iV  and 3
iV  have values 

that are almost the same. The “Risk Taker” patient type may representative 

weights as shown in Figure 13 below. That is for this type 1
iV  and 2

iV are both 

larger than 3
iV , but taking almost the same value both. 3

iV  takes values smaller 

than 1
iV  and 2

iV  but larger than the 3
iV  for a risk averse patient, and close to the 

3
iV  for a risk indifferent patient.  

As indicated earlier, the number of periods that each patient, in each generated 

time history, finds herself/himself in each of the three states is an important 

health condition 
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1 2 30.8, 0.1, 0.1i i iV V V= = =  
Fig. 11: Risk averse patient type, where the Health Value weights have values 

 

Fig. 12: Risk indifferent patient type, where the Health Value weights have 
values 

1 2 30.6, 0.2, 0.2i i iV V V= = =  
 

 

Fig. 13: Risk taker patient type, where the Health Value weights have values 
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1 2 30.4, 0.4, 0.2i i iV V V= = =  
 
metric. As the state transitions depend explicitly on the tests and interventions 

applied at each time period, these numbers of periods in each state constitute a 

practical and useful health care value (or quality)  metric. Thus we will also 

compute and include in our quantitative model and evaluations the three 

counting statistics for each patient and each time history from our model:  

1 ,

2 ,

3 ,

( ) number of periods, from total, patient is at state1 (i.e. is Healthy)

( ) number of periods, from total, patient is at state 2 (i.e. is Pre-diabetic)

( ) number of periods, from total, patient is at sta

i
i T

i
i T

i
i T

O m N i

O m N i

O m N i

∆

∆

∆

=

=

= te 3 (i.e. is ∆iabetic)

     (15) 

Note that the fractions  

1 1 , 2 2 , 3 3 ,( ) ( ) / , ( ) ( ) / , ( ) ( ) / ,i i i i i i
i i T i i T i i TF m O m N F m O m N F m O m N∆ ∆ ∆= = =       (16) 

may be given the interpretations of “probabilities” for patient i being in health 

state 1, 2, or 3, respectively.  

Using the weights  1 2 3, ,i i iV V V  and these counting statistics 1 2 3, ,i i iO O O , we can 

define several metrics for health care quality value (or value) for each patient 

and each time history, generated by our model. We will discuss how to construct 

and study several such metrics, and also how our MBSE health care management 

and support system can be used to evaluate new tests, therapies, and find the 

relative value of them, in a different section of the thesis. Let us first consider the 

following Health Care Quality metric: 

 1 1 2 2 3 3( , ) ( ) ( ) ( )i i i i i i
hc i i i iJ i m V O m V O m V O m= ∗ + ∗ + ∗           (17) 
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Chapter 6:  First Method of Performance Evaluation and 
Tradeoff Analysis: Monte Carlo Simulation 

 

Section 6.1: Description of the EMCS Method 

Using the metrics defined in Chapter 5 and the operation and the model 

developed in Chapter 4, we can now proceed to develop our first method for 

evaluating healthcare associated with each patient and each time history, and 

also aggregates of the same over subsets of patients, subsets of time histories or 

joint subsets of both. This first method uses the model in an exhaustive 

straightforward generation of all possible sample paths (time histories) for any 

number of patients, which we call Evaluation by Monte Carlo simulation (EMCS) 

(in our case it would be appropriate to call it Evaluation by Monte Carlo Markov 

Chain (MCMC) simulation) given the type of model we have developed and used. 

We mean more accurately that the model we use in this First Method is actually 

a Controlled Markov Chain and not a Hidden Markov Chain as we assume 

availability of the true state of the disease. MCMC has a rich history and there is 

extensive literature on all aspects of this method and uses of it [45-52]. This First 

Method is very accurate, as it considers all sample paths (time histories of the 

health and disease for each patient) but it is rather expensive computationally 

and may not scale to millions of patients and hundreds of tests and interventions 

easily. Nevertheless it provides a valuable benchmark against which to test more 

computationally efficient and scalable methods.   
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The EMCS method is described succinctly by the following steps (in algorithmic 

fashion): 

Step 1:  Run the model for the number of patients, horizon, time step, set of tests, 

set of interventions, and transition probabilities provided. Each time 

history starts for each patient at a randomly selected initial state, from 

the possible three available states. We denote by x(0) the initial 

(randomly selected state). The integers 0, 1, 2, 3,…, 9, denote the time 

instants where decisions for tests and interventions are made. The tth 

time period is then the interval [t-1, t), for t = 1, 2, 3,…, 10. We do not 

make a decision for tests and or interventions at the final time 10, as 

there is no transition considered after that time. This is consistent with 

our operational model and experiments.      

Step 2: Store the results of Step 1, as triples of arrays (vectors), one of dimension       

            N T, D+1, two of dimension   N T, D; a triple of arrays for each time history of  

            each patient. The formats of these three arrays are as follows. The first 

contains the sequence of health states of this specific patient and the 

specific time history (we include both the initial state x (0) and the final 

state x (10) for each patient), the second the sequence of tests used at 

each time step and the third the sequence of interventions used at each 

time step. For example, as  is  

typical with all our simulation and experiments in this thesis, when N 

T,D=10,  
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nµ  = 3, un  = 10, we may have, with the obvious (by now) notation, the 

three arrays  

2 3 1 1 2 3 2 1 3 1

3 4 8 7 9 2 2 5 5 8

( , ) {1,1,2,3,3,2,2,3,2,2,2} , the state array (sequence)
( , ) { , , , , , , , , , } ,  the test array (sequence)
( , ) { , , , , , , , , , } ,  the intervention array (sequence)

i

i

i

s i m
i m

u i m u u u u u u u u u u
mmmmmmmmmmm         

=
=
=

(18) 

There are overall  , ,1 ( )T TN N
p x uN n n nµ

∆ ∆+× × ×  such triples, as there are the 

same number of time histories, if we just generate a single time history 

for each patient. If on the other hand we generate Ns random time 

histories for each patient the cardinality of both sets (i.e. of time histories 

and of triples of arrays) becomes , ,1 ( )T TN N
p s x uN N n n nµ

∆ ∆+× × × × . 

Step 3: Using these arrays compute the costs ( , ), ( , ), ( , )total total total
i u i iC i m C i m C i mm  , 

the counting statistics 1 2 3( ), ( ), ( )i i i
i i iO m O m O m  , and the healthcare value 

metric ( , )hc iJ i m  . The cardinalities of these sets of counting statistics, 

values of each cost, or pairs of metrics, are exactly the same as the 

cardinalities of the sets described in Step 2.  

Step 4: Plot for each patient and time history pair ( , )ii m  , the pair of values 

( ( , ), ( , ))total
i hc iC i m J i m  in the positive quadrant of the plane (where the 

vertical axis (y-axis) corresponds to the total cost totalC and the horizontal 

axis (x-axis) to the Health Care Quality metric hcJ ) and determine the 

Pareto points. Again the cardinality of the set of these 2D points is easily 

computable from the cardinalities of the sets described in Step 2.  
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Figure 14 below provides a graphical illustration of the method and the 

computations and complexity (size) involved. 

Model
CHMC

INPUT

P(m,u)
a 7 x nm x nu
3D array

V
Cm , Cu

OUTPUT

Database:
Time 

Histories

Set of triples of arrays: (s, m, u)
Cardinality: Np x Ns x nx

(N
T,D

+1) x (nm x nu) N T,D

Each triple size:  3 x NT,D + 1

Set of triples  O
Cardinality: Np x Ns x nx

(N
T,D

+1) x (nm x nu) N T,D

Metrics
Cost
Healthcare 

Quality
Tradeoff

 

Fig. 14: Graphical illustration of the EMCS method of evaluation 

 

Section 6.2: Input Parameters and Computational Details for EMCS  

In this subsection we provide some details on the input parameters we used in 

our experiments and simulations with the EMCS Method, using the Disease 

model described in Section 4.1 of this thesis. We also describe the computations 

performed in some detail. Our entire MBSE system was built with MATLAB. We 

follow the description summarized in Figure 14 of Section 5.1 above.   

The number of patients we have used is 10.000, the time period is 10 years, we 

have 3 tests that can be given to a patient (denoted by μ as already noted), we 

have 10 interventions that can be applied to a patient (denoted by u as already 

noted), and 3 disease states (denoted by x as already noted).  
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We set 30 matrices describing state transition probabilities, parametrized by the 

tests and interventions; that is the values of the elements ( , )i jP uµ  were 

carefully selected based on literature reviews and simulation modeling reports 

[27-44, 55-59, 63-75, 81] to reflect the dependence of the transition 

probabilities on the selection of the tests and interventions used at each time 

step. Thus each matrix is a 3 by 3 table that shows for every combination of test 

and treatment what will be the effect in every state transition probability. In this 

simpler model, where we allow only one hop transitions in the input state 

transition probability matrices, the 3 by 3 input tables are tri-diagonal (i.e. the 

31 and 13 elements are zero)) and have only 7 non-zero elements (7 

parameters). In our model the elements ( , )i jP uµ  do not depend explicitly on 

time. As already mentioned our models and methods can easily accommodate 

more complex models incorporating explicit dependence of the transition 

probabilities on time.     

The second important input is the values for the costs for each test available and 

every intervention available. We refer to Section 3.2 and Subsection 4.2.3 for the 

descriptions of the available tests and interventions respectively.  These values 

were determined as reasonable inputs based on literature review and reports 

from disease and treatment simulations [22-44, 55-59, 63-75, 81].   

We constructed the required input arrays as follows. 

C1 = [200, 100, 100, 200, 250, 100, 200, 300, 200, 500]. 
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Each entry in this array represents the cost of each intervention from u1 up to 

u10. The order of entry is the same as in the description of the interventions 

provided in Section 4.2.3 of this thesis. That is the first cost is for  u1 and the last 

for u10 .  

C2 = [120, 200, 60, 120,  180, 50, 100, 100 ,150 ,120] 

Each entry in this array represents the labor cost that is related to the use of 

each intervention.  

Finally we created the array Cu = C1 + C2, by component-wise addition of the 

elements of the two arrays. Each entry of the array Cu is the total cost of 

intervention cost and labor cost for implementing the intervention. These are 

the values (numbers that correspond to the costs ( )u kC u  or 
kuc  introduced at the 

beginning of Chapter 5.   

Similarly for the costs of the tests we used the array  

Cmu = [89, 97, 126] . 

Each entry in this array represents the cost of each test and this cost includes the 

labor cost from the health care provider, the labor costs, the equipment and 

facility costs, supplies  costs  etc..  The order  of  entry is  the  same as in the 

description of the tests   

provided in Section 3.2 of this thesis. That is the first cost is for  m1 and the last 

for m3.  

These are the values (numbers that correspond to the costs ( )lCµ µ  or 
l

cµ  

introduced at the beginning of Chapter 5.  
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We note that the values of these costs do not depend explicitly on time. This may 

arise in practical situations where the costs of health care delivery change due to 

labor cost changes, insurance policy changes, new treatments being discovered 

etc. Again, such time varying costs can be easily incorporated in our framework 

and analytical methods. Their impact on the EMCS method is just increasing 

computational complexity.  

The third important input is input of variables used for the computation of the 

Health Quality metric. We only need to enter the values for the weights 

indicating how much (relatively) each type of patient (from the three we have 

considered) values the state of health (and disease) she/he is in. These are the 

weights described in Chapter 5 of this thesis and depicted in Figures 11, 12 and 

13 in Chapetr 5, for the three types of patients we considered. W1 is the array of 

weights for a typical risk averse type patient; we assume that a risk averse 

patient will give value of 80% to remain in healthy state, 10% to pre-diabetic 

and 10% to diabetic. Thus  

W1= [0.8, 0.1, 0.1]. 

W2 is the array of weights for a typical risk indifferent patient; we assume that a 

risk indifferent patient will give value of 60% to remain in healthy state, 30% to 

pre-diabetic and 10% to diabetic. Thus 

W2 = [0.6, 0.3, 0.1]. 

W3 is the array of weights for a typical risk taker patient; we assume that a risk 

taker patient will give value of 50% to remain in healthy state, 30% to pre-

diabetic and 20% to diabetic. Thus 
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W3 = [0.5,0.3,0.2]; 

We note that the values of these weights do not depend explicitly on time. This 

may arise in practical situations where the value each patient gives to her/his 

health state may change, for example due to age (young people are more risk 

taker patients than older people), family state (married, pregnant, etc.), financial 

condition and security/insecurity, health insurance policies (e.g. recent policies 

rewarding health maintenance and well-being)  and several other exogenous 

factors. Further, in reality these weights will vary from patient to patient, at least 

among groups of patients, even within the same category (i.e. the weights for 

two risk averse patients will be different). Again, such time varying weights and 

variation of weights among patients, can be easily incorporated in our 

framework and analytical methods. Their impact on the EMCS method is just 

increasing computational complexity. We would also like to emphasize again 

that, in the context and interconnected framework depicted in Figure 1, these 

variables can be “learned” from clinical data and databases and/or models and 

simulations of the disease progression and management. 

One may want to call the three arrays W1, W2, W3, Risk Profiles, to emphasize 

that they can be interpreted from a risk perspective and theory, this fact actually 

inspired the naming of the patients categories as risk averse, risk indifferent and 

risk taker respectively.  

As described in Chapter 5 and Section 6.1 above the Health Care Quality metric is 

computed using these value weights (risk profiles) and the counting statistics 
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(or as they are also called in the statistics and probability field occupation 

statistics)  

1 1 , 2 2 , 3 3 ,( ) ( ) / , ( ) ( ) / , ( ) ( ) / ,i i i i i i
i i T i i T i i TF m O m N F m O m N F m O m N∆ ∆ ∆= = =  

from equation (16) above. In the computations these histogram or history 

counts are represented by the array Rs, whose elements count the number of 

times the state of a patient has taken the value healthy or 1, pre-diabetic or 2 or 

diabetic or 3, all divided by the number of years (or time intervals in general) 

included in the horizon of the study; we have used 10 years. Thus  

Rs = histc (X,[1,2,3]) / Ny; 

where Ny is the variable for the number of years. As per equation (17) of 

Chapter 5 above, the value of the Health Care Quality metric is computed as the 

inner product of the weight arrays (i.e. the Wi’s) and the counting statistics 

arrays (i.e. the Rs’). We have computed the values of this metric for each of the 

10,000 patients and used them for tradeoff analysis. Thus the Health Care 

Quality metric for a risk averse, risk indifferent and risk taker patient is 

computed by the inner products  

Perf1=W1*Rs ; 

Perf2=W2*Rs ; 

Perf3=W3*Rs . 

One can use our disease model and MBSE health care management and support 

system to compute many other metrics. For example one can compute the 

number of state transitions in a given time history of a specific patient from a 
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worse health state to a better health state, namely number of transitions from 

state 3 to state 1, from state 2 to state 1 and from state 3 to state 2. For a specific 

patient ip  and time-history
ipm , let us denote these counting transition statistics 

respectively as 

3 1

3 2

2 1

( ) Number of transitions from state 3 to state 1 in time-history 

( ) Number of transitions from state 3 to state 2 in time-history 

( ) Number of transitions from state 2

i

i i

i

i i

i

i

p
p p

p
p p

p
p

Q m m

Q m m

Q m

→

→

→

=

=

=  to state 1 in time-history .
ipm

         (19) 

 Depending on the metric one wants to create the sum of these good transitions 

denoted by 

 3 1 3 2 2 1( ) ( ) ( ) ( )i i i i

i i i i

p p p p
good p p p pQ m Q m Q m Q m→ → →= + +         (20) 

or the whole vector of number of transitions denoted by 

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

( )

[ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]

i

i

i i i i i i i i i

i i i i i i i i i

p
tr p

p p p p p p p p p
p p p p p p p p p

Q m

Q m Q m Q m Q m Q m Q m Q m Q m Q m→ → → → → → → → →

=
(21) 

may also be of interest. Let us create then a reward metric (like an incentive) for 

patients with time histories displaying good health transitions. To this end we 

can create a reward (utility) vector for state transitions as follows 

 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3[ , , , , , , , , ]R R R R R R R R R R→ → → → → → → → →=  .  (22) 

 Then a new metric, which we will call Reward  (for good behavior) can be easily 

created by taking the inner product of the reward vector of equation (22) with 

the vector of transitions, where we set to zero the components of the reward 

vector that do not correspond to health improvement. We have used in our 

simulations the example   
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 2 1 2 1 3 1 3 1 3 2 3 2( ) ( ) ( ) ( )i i i i

i i i i

p p p p
p p p pR m R Q m R Q m R Q m→ → → → → →= + +  .      (23) 

The intuition and motivation about this Reward metric is that a patient should 

perceive utility benefit (improvement of her health) when a therapy improve her 

health state (decreasing the index of the disease Markov state). To induce the 

correct and strong benefit we give extra weight to transitions from state 3 to 

ideally 1, and give zero weight to therapies that did not improve the state. A 

patient should use all this combination of therapies that increase his health 

utility (improvement of  health) or moving to the lowest numbered states. For 

this to be ensured the values of the reward vector components should satisfy a 

relation like  3 1 3 2 2 1R R R→ → →> >  .  

Similarly several reward and penalty (by penalizing negative health state 

transitions) metrics can be used depending on how aggressive the policy is 

intended to be. Such metrics could be used for example to reward risk averse 

patients with lower insurance premiums, patients with good transitions, and 

penalize patients with bad transitions, etc.   

 

Regarding the computations involved in the EMCS method, we provide some 

details below.  

At the start the software will set the computations for the population size we set.   

(I = 1:Np). 
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Later the software will produce data based on the Monte Carlo simulations of 

the controlled Markov chain model and will generate so many data strings as 

many patients are in the population. We actually did not run the entire possible 

set of samples due to its size. For every data string that we will generate from 

Monte Carlo  

data (i) = Monte Carlo(P,C,Ny) , 

we will have a cost variable C 

Cost (i) = data (i).C .  

For every data of a patient we will generate for every year we will have a state 

history for that patient 

X (:,i) = data(i).x .  

Pareout1 is the subroutine (algorithm) that computes the Pareto frontier for a 

discrete set of points in the plane, based on the Health Care Quality metric (array 

W1) for risk averse and Cost for every one of the 10.000 patients 

pareout1= paretoGroup ([(1./Perf1)',Cost']) .  

Pareout2 is the subroutine that computes the Pareto frontier, based on the 

Health Care Quality metric (array W2) for risk indifferent and Cost for every one 

of the 10.000 patients 

pareout2 = paretoGroup ([(1./Perf2)',Cost']) . 

Pareout3 is the subroutine that computes the Pareto frontier, based on the 

Health Quality metric (array W3) for risk taker and cost for every one of the 

10.000 patients  

pareout3 = paretoGroup ([(1./Perf3)',Cost']). 
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Section 6.3: Output from the MBSE Model and System 

We have created a very versatile system, which can be used for various types of 

studies, tradeoffs and answering “what-if” type of questions, as we will 

demonstrate in later Chapters of this thesis (see Chapter 9).  

A key output form our MBSE system, employing the ECMS method is the 

computation of Pareto points that describe succinctly the relative value of 

treatments and tests vs. the overall health care quality of a patients time history. 

The program produces graphs in the plane, showing all pairs of points 

corresponding to a patient’s time history and a sequence of tests and treatments. 

The horizontal axis (x-axis) represents the values of the Health Care Quality 

metric (based on health value weights or risk profiles) for typical risk averse, 

risk indifferent and risk taker patients. The vertical axis (the y-axis) represents 

the values of the total Cost (tests and treatments) for each patient and patient 

time-history. On each graph the Pareto points are indicated with red color.  

The function that makes the graph in our program is: 

plot (Perf1, Cost,'.', Perf1(pareout1), Cost(pareout1),'r.'); 

 

The Pareto points can be used to find efficient treatments, to evaluate insurance 

policies and co-payments, to compare the relative value of tests and treatments, 

and many other important questions. We provided a description of the 

capabilities of the model using the ECMS method in later Sections. We provide 
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below three examples of the produced graphs, one each for each type of patient. 

In Appendix 1, we include a whole set of graphs for 32 runs of our model for 

10,000 patients. 

 

Fig. 15: Typical 2-D graph produced by our MBSE system that gives the              
Pareto frontier for a typical risk averse patient (Pareto points in red) 

 77 
 



 

Fig. 16: Typical 2-D graph produced by our MBSE system that gives the                   
Pareto frontier for a typical risk indifferent patient (Pareto points in red) 

 

Fig. 17: Typical 2-D graph produced by our MBSE system that gives the                         
Pareto frontier for a typical risk taker patient (Pareto points in red) 

 78 
 



 

A quick comparison of these three graphs reveals some important, and expected, 

differences in the Pareto frontiers. For example the risk averse graph has much 

lower health quality values than the other two.  The risk averse has higher cost 

values. These graphs are representative. We run numerous runs and in 

particular we run a set of 32 runs to have a proper random sample, in order to 

demonstrate the capabilities of the MBSE system we have developed. These 

capabilities are discussed in more detail in later Chapters of this thesis (see 

Chapter 9 in particular).  

As discussed in Section 6.2 above the counting statistics (or occupation 

statistics) 1 2 3( ), ( ), ( )i i i
i i iO m O m O m  when un-normalized, or 

1 2 3( ), ( ), ( )i i i
i i iF m F m F m when normalized can be related to rewards and penalties 

and also can be used for answering several interesting questions (see Chapter 9 

of this thesis). Furthermore, as discussed also in Section 6.2 above, the good and 

bad transition counts can be used to create reward and penalty metrics. For this 

reason we also produced three dimensional graphs form our MBSE system. In 

these 3D graphs three metrics are depicted: Cost, Performance (i.e. Health Care 

Quality metric), and Reward. Reward is computed for each patient and each 

time-history of a patient using equation (23) with a vector of rewards for 

transitions R (equation (22)) with values as follows 

 [0,0,0,0.15,0,0,0.31,0.25,0]R =   

 79 
 



 Three representatives of these 3-D graphs are shown below, one each for a 

typical risk averse, risk indifferent and risk taker patient. In Appendix 2, we 

include a whole set of 3-D graphs for 9 runs of our model but with 100,000 

patients. 

 

 
Fig. 18: Typical 3-D graph produced by our MBSE system that gives the Pareto 

frontier for a typical risk averse patient (Pareto points in red) 
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Fig. 19: Typical 3-D graph produced by our MBSE system that gives the Pareto 

frontier for a typical risk indifferent patient (Pareto points in red) 

 
Fig. 20: Typical 3-D produced by our MBSE system that gives the Pareto         

frontier for a typical risk taker patient (Pareto points in red) 
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Finally, we close this Section with a discussion of the computational complexity 

and scalability of the EMCS method. This is important as we are interested in 

scalability to millions of patients and hundreds of interventions and tests. We 

have run many tests for 10,000 and 100,000 patients. We run all our tests on a 

laptop with the following characteristics:  

 

Intel core i5-4300ucpu
1.90-2.5    
8 Gb Ram
64bit operating system

Ghz







    (24) 

Running EMCS with two metrics (and 2-D graphs) for 10,000 patients and 32 

runs, took for the whole experiment 783sec. Running EMCS with three metrics 

(and 3-D graphs) for 100,000 patients took for the whole experiment 1,385 sec. 

So EMCS is definitely scalable and much better performance can be obtained 

with more powerful machines. Nevertheless as we are interested in superior 

efficiency, we will develop and analyze in the following sections of this thesis 

alternative methods that decrease the execution time by two or more 

orders of magnitude. 

We have equipped our system and software implementation with several on-line 

diagnostics, that show computational performance at run time. Figure 21 shows 

screen dumps from these diagnostic and monitoring tools. The first two are from 

running EMCS with two metrics for 10,000 patients, while the third is from 

running EMCS with three metrics and 100,000 patients. 
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Fig. 21: Typical monitoring and on-line diagnostics from running EMCS. First 
two are form runs with two metrics and 10,000 patients, while the third is with 

three metrics and 100,000 patients. 
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Chapter 7:  Second Method of Performance Evaluation 
and Tradeoff Analysis: Fully Observable Multi-
criteria Optimization 

 

Section 7.1: Description of the FOMCO Method 

In this subsection we formulate a multi-criteria optimization approach to 

directly compute the Pareto points and associated (to these Pareto points) 

selection of tests and interventions. Multi-criteria optimization is a key 

methodology to perform tradeoff analysis and design space exploration in 

Systems Engineering [17-21]. The method we describe in this section uses 

feedback between the disease states and the selection of the tests and 

interventions to be applied at each time instance. More precisely the method 

automatically computes the tests and interventions to be applied at time t as 

functions of x(t). Because it uses explicitly the state of the disease it is called 

Fully Observable, vs other methods, we described briefly in Subsection 4.2.2 

pages 44-45 of this thesis, where the state is not available, and only estimates of 

the state based on the scores and results of diagnostic tests are available; this 

latter case is called Partially Observable [60, 83]. We will show that this second 

method, which we call Fully Observable Multi-criteria Optimization 

(FOMCO) saves tremendously in computational time in achieving similar 

tradeoff analysis results as the exhaustive simulation based first method (the 

EMCS Method described in Chapter 6). These computational savings are 
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important as we scale and apply our methods and tools to very large real-life 

problems and data sets involving millions of patients and numerous clinics and 

healthcare providers. 

 
As described in the previous Chapters we have a dynamical stochastic system, 

describing the diabetes 2 disease progression, a CHMC model with nx states. We 

denote as before the state of the disease model at time t by x(t). In this second 

method we again select a single test and intervention at each time instant for the 

next time period, denoted by m(t) and u(t) respectively. Here however, in 

contrast with the simulation based performance analysis method (i.e. the EMCS 

method), we select the sequence of tests and interventions based on multi-

criteria optimization. The efficiency achieved is precisely due to the fact that 

with this method we do not consider at all sequences of tests and interventions 

that lead to health care time histories that are dominated by others, from a 

precise tradeoff analysis point of view. In all our models the tests and 

interventions are selected from a finite set of options with cardinalities nm  and nu 

respectively.  There are various ways that we can define  

the optimization problems underlying our optimization-based tradeoff analysis. 

One is to introduce the binary variables 

,{1, 2,..., }, 0,1, 2,...( ), 1, ,l Tt l n tX Nµ
µ ∆∈ −= and 

,{1, 2,..., }, 0,1, 2( ,...,) , 1u
k TunX tt k N ∆∈ = − . This formalism is in-line with the so 

called component selection class of problems in Systems Engineering [17, 18]. 
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That is:  

1, if at time instant  the test was performed 
( )

0,   otherwise                                                    

1, if at time instant  the intervention was performed 
( )

0,   otherwise 

l
l

ku
k

t
X t

t u
X t

m m
= 


=
                                                                 





    (25) 

Let us also introduce the binary variables ,{1, 2,..., }, 0,1, 2,. ,) , ..( ,x
x
j Tt tj n N ∆∈ =Ξ  

to track the state of the system (in our case the diabetes 2 disease) through time. 

That is: 

1, if at time instant  the state is  
( )

0,   otherwise                                 
jx

j

t x
t 

Ξ = 


    (26) 

Using these binary variables we can write the various metrics we have 

introduced as follows. For a patient i and time history mi  the cost of tests and 

interventions applied is 

, ,

,

1 1

0 0

1

0 1 1

( , ) ( , ) ( , ) ( ( )) ( ( ))

( ( )) ( ( )) .

T T

T u

N N
total total total

i i u i u
t t

nN n
u

l u k
t l k

C i m C i m C i m C t C u t

C X t C X t
m

mm

m
m

m
∆ ∆

∆

− −

= =

−

= = =

= + = + =

 
= + 

 

∑ ∑

∑ ∑ ∑
(27) 

In addition to ensure that only one test and one intervention are applied at each 

time instant we have to satisfy the constraints:  

,
1

,
1

0,1, 2,( ( )) 1, for all 1

( ( )) 1, for all

...,

0,1, 2,. , .. 1
u

n

l T
l
n

u
u k T

k

C X t N

C N

t

tX t

µ
µ

µ ∆
=

∆
=

−

= −

=

=

=

∑

∑
    (28) 
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Let the individual test and intervention costs be 1 2 1 2, ,..., , , ,...,
u

u u u
n nc c c c c c
µ

µ µ µ . For 

the examples we employ in this thesis these vectors of costs are respectively 

1 2 3 1 2 10, , , , ,...,u u uc c c c c cµ µ µ . Then we can rewrite the total cost for a patient i and 

time history mi as 

, 1

0 1 1
( , ) ( ) ( ) .

T unN n
total u u

i l l k k
t l k

C i m c X t c X t
m

mm
∆ −

= = =

 
= + 

 
∑ ∑ ∑   (29) 

We note that this total cost for each patient i and time history mi is deterministic. 

The reason, is that the costs for tests and interventions do not depend on the 

random state of the disease. Clearly one can develop more complex disease 

models where the tests and interventions depend on the disease states, as for 

example was described in earlier sections of this thesis. A second important 

observation is that due to the additive model used the value of the total cost is 

invariant to permutations between the tests and interventions used. In real-life 

and practical applications one may want to introduce causality constraints 

between the tests applied and the interventions employed. Such additional 

properties and constraints can be easily accommodated in the framework 

developed.  

 

Thus ( , )total
iC i m is a deterministic function of the discrete valued decision 

variables  

,{1, 2,..., }, 0,1, 2( ) , 1, ., ,..l Tt Nl n tµµ µ ∆= −∈ =  ,{1, 2,..., }, 0,1, 2,.., .,( ) 1uk Tu t u n tk N ∆∈ == − ,  

or equivalently of the binary valued decision variables  
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,{1, 2,..., }, 0,1, 2,...( ), 1, ,l Tt l n tX Nµ
µ ∆∈ −=  ,{1, 2,..., }, 0,1, 2( ,...,) , 1u

k TunX tt k N ∆∈ = − .  

To emphasize these dependencies, and for clarity in these dependencies, we write  

( , )total
iC i m  as ( , , )totalC i m u , where ,[ (0), (1),..., ( 1)]TNµ µ µ T

∆= −m  and  

,[ (0), (1),..., ( 1)]Tu u u N T
∆= −u . Equivalently we write  ( , )total

iC i m as ( , , )total uC i µX X ,  

emphasizing the binary valued vectors. We note that ( , , )total uC i µX X  is linear in the  

variables over which we optimize, the binary vectors  

,{1, 2,[ ..., }, 0,1,( ), . ].. 1,l Tl nt tX Nµ µ
µ

T
∆∈ == −X , ,{1, 2,..[ ( .,) , }, 0,1,..., 1]u u

k TunX t tk N T
∆∈ −==X . 

We next express the Health Care Quality metric for a patient i and time history 

mi, ( , )hc iJ i m , in terms of these same discrete valued and binary valued decision 

variables. Clearly the counting statistics for each patient i and time history mi are 

given by the expressions  

,

0
( ) ( ), for {1,2,..., }

TN
i x
m i m x

t
O m t m n

∆

=

= Ξ ∈∑ .    (30) 

Therefore 
, ,

1 1 0 1 0
( , ) ( ) ( ( )) ( )

T Tx x xN Nn n n
i i i x i x

hc i m m i m m m m
m m t m t

J i m V O m V t V t
∆ ∆

= = = = =

= = Ξ = Ξ∑ ∑ ∑ ∑∑ .   (31) 

Since the state sequence is a sequence of random variables, the value of this 

performance metric is a random variable. The value depends on the sequence of 

tests and interventions applied, as the transition probabilities, and therefore the 

actual transitions depend on the test and intervention applied at each time 

instant. Furthermore the value depends on the initial state of the disease for 

patient i, which we select randomly among the nx states, with a uniform 
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probability mass function; i.e. Pr{ (0) } 1/ , 1, 2,...,m x xx x n m n= = =  . One can use 

various statistics of the random values of  ( , )hc iJ i m  as the health care value 

metric, to be used in tradeoff analysis. In this thesis we used the average of the 

health care value metric for each patient i, over all possible time histories that 

can be generated by our CHMC model for the diabetes 2 disease, given the 

sequences of tests m  and interventions u .  The average (or expectation) is taken 

over all possible transitions implied by the model, given a model of the 

randomness of the initial state, and the sequences m  and u . Then the expected 

health care value metric is given by 

, ,

1 0 1 0
[ ( , ) | , ] ( , , ) [ ( ) | , ] Pr{ ( ) 1| , }

T Tx xN Nn n
i x i x

hc i hc m m m m
m t m t

E J i m J i V E Z t V Z t
∆ ∆

= = = =

= = = =∑∑ ∑∑m m m mu u u u ,  (32) 

since ( ) is  a binary valued (i.e. takes values 0 or 1) random variable.x
m tΞ  Obviously, 

Pr{ ( ) 1| , } Pr{ ( ) | , }x
m t x t mΞ = = =m mu u  , and we can express this performance 

metric as 

,

1 0
[ ( , )] ( , , ) Pr{ ( ) | , }

Tx Nn
i

hc i hc m
m t

E J i m J i V x t m
∆

= =

= = =∑∑m mu u .   (33) 

Equivalently we can write the average Health Care Quality metric as a function of 

the binary vectors µX , uX  , ( , , )u
hcJ i µX X , in a straightforward manner.  

We are interested in analyzing the tradeoff between different pairs of sequences 

( , )m u  from the perspective of the total Cost ( , , )totalC i m u and average Health Care 

Quality ( , , )hcJ i m u metrics. This tradeoff analysis is important as it is necessary 

in order to find the “best” tradeoffs between the two conflicting objectives of 
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maximizing ( , , )hcJ i m u  and minimizing ( , , )totalC i m u . These “best” tradeoff points 

are the Pareto points (also known as non-dominated solutions). Pareto 

efficiency, or Pareto optimality, is a state of allocation of resources in which it is 

impossible to make any one individual better off without making at least one 

individual worse off. The term is named after Vilfredo Pareto (1848–1923), an 

Italian economist who used the concept in his studies of economic efficiency and 

income distribution. The concept has applications in fields such as economics, 

engineering, and the life sciences [17-21]. Given an initial allocation of goods 

among a set of individuals, a change to a different allocation that makes at least 

one individual better off without making any other individual worse off is called 

a Pareto improvement. An allocation is defined as “Pareto efficient” or “Pareto 

optimal” when no further Pareto improvements can be made [17 - 21]. 

Pareto efficiency is a minimal notion of efficiency and does not necessarily result 

in a socially desirable distribution of resources: it makes no statement about 

equality, or the overall well-being of a society. The notion of Pareto efficiency 

can also be applied to the selection of alternatives in engineering and similar 

fields. It is a fundamental concept in tradeoff analysis as used in Systems 

Engineering. Each option is first assessed under multiple criteria and then a 

subset of options is identified with the property that no other option can 

categorically outperform any of its members. Given a set of choices and a way of 

valuing them, the Pareto frontier or Pareto set or Pareto front is the set of 

choices that are Pareto efficient [18, 19, 21]. By restricting attention to the set of 
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choices that are Pareto-efficient, a designer can make tradeoffs within this set, 

rather than considering the full range of every parameter. This key idea and 

construct essentially provides the savings in time between our First method 

(EMCS) and this Second method (FOMCO). These are the Pareto points we want 

to compute for the problem we are investigating in this thesis. 

To compute these Pareto points for tradeoff analysis using the FOMCO method 

there are two principal techniques. The first and fastest technique combines the 

two metrics in a convex combination, resulting in the following single criterion 

optimization problem (often such methods are called scalarization methods 

[21, 82]): 

(FOMCO-S)  Find the pair of discrete valued vectors ( ,TN ∆  dimensional), 

* *( , )m u  that   

                        solve the optimization problem:    

,
max [ ( , , ) (1 )( ( , , )]total

hcJ i C il l+ − −
m

m m
u

u u     (34) 

where (0,1)λ∈ . The optimization is over the allowed finite 

sets of choices for tests and interventions, with cardinalities 

, un nµ  respectively. The pair * *( , )m u is a Pareto point.  

In formulating this so called “scalarized” metric we used the fact that minimizing 

a function is equivalent to maximizing its negative. This method computes 

Pareto points of the convexification of the Pareto frontier [18, 21] (i.e. the 

smallest convex set that includes the Pareto frontier). We should solve this 
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problem for various values of λ . In our computations we used   λ = 0.1, 0.2, 0.3, 

…, 0.8, 0.9, as well as much finer quantization of λ  . Once the optimal vectors of 

tests and interventions have been found, one runs the CHMC disease model and 

obtains consistent (with respect to this selection of tests and interventions) state 

trajectories.  

When using these scalarization methods a common problem appears when the 

two metrics can take significantly different values, the so called dynamic range 

problem [18, 19]; as is the case for our intended application, since the total cost 

( , , )total
iC p m u can take values in several thousand while the Health Care Quality 

metric ( , , )hc iJ p m u takes values between 0 and 1. When the values of the one 

metric are so much larger than the values of the other, when they are combined 

in a convex combination like in equation (34), the values of the metric with the 

small values do not affect the tradeoff and thus the results can be quite 

erroneous. The correction to this well-known problem is to normalize the two 

metrics so that the both take values that can be compared. By far the best 

normalization method is to normalize these metrics by the difference between 

their maximum and minimum values over the possible decision variables. To 

this end we need to compute upper and lower bounds for the values of our two 

metrics ( , , )total
iC p m u and ( , , )hc iJ p m u . 

To compute an upper bound for the Health Care Quality metric ( , , )hc iJ p m u , 

observe that it is computed according to the formula (see equation (33)): 
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9 3 3

( , ) ( , )
0 1 1

( , , ) ( ) (10)i ip p
hc i m m m m

t m m
J p V t Vp p

= = =

= +∑∑ ∑m mm u uu     (35) 

But in our case, for each patient ip  , which can be of either risk averse, or risk 

indifferent or risk taker type, there are three weights 1 2 3{ , , }i i ip p pV V V  and they do 

not differ for patients of the same type. Let 

 max 1 2 3 min 1 2 3max{ , , }, min{ , , }, for 1, 2,3,r r r r r r r rV V V V V V V V r= = =    (36)  

where we denote the type risk averse by r = 1, the type risk indifferent by r = 2, 

and the type risk taker by r = 3. Since in our computations we do not mix the 

patient types, we will use different normalizations for the Health Care Quality 

metric for each patient class. We designate the corresponding bounds by a 

superindex r. Thus using (35) and (36) we have 

,* ,*

,* ,*

3 3

( , ) max max( , )
1 1

3 3

( , ) min min( , )
1 1

( ) ( ) , for 1,2,3

( ) ( ) , for 1,2,3.

i

i

p r r
m m m

m m

p r r
m m m

m m

V t V t V r

V t V t V r

λλ

λλ

p p

p p

= =

= =

≤ = =

≥ = =

∑ ∑

∑ ∑

m m

m m

u u

u u

    (37) 

Using (37) in (35) we have 

 

9

max min min
0

9 3 3

( , ) ( , )
0 1 1

9

max max max
0

11

( , , ) ( ) (10)

11 , for 1,2,3 .

i i

r r r

t

p p
hc i m m m m

t m m

r r r

t

V V V

J p V t V

V V V r

p p

=

= = =

=

+ = ≤

≤ = + ≤

≤ + = =

∑

∑∑ ∑

∑

m mm u uu       (38) 

This leads to the consideration of the normalized Health Care Quality metric 

,
max min( , , ) ( , , ) / (11 ( )) ( , , ) / , for 1,2,3.r n r r r

hc i hc i hc i nJ p J p V V J p J r= − = =m m mu u u    

(39) 
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Next we compute similar bounds for the total cost 

9 9

1 2 3 1 2 10 min min min
0 0

9

0
9 9

1 2 3 1 2 10 max max max
0 0

min{ , , } min{ , ,..., } 10 ( )

( , , ) ( ( ( )) ( ( )))

max{ , , } max{ , ,..., } 10 ( )

u u u u total

t t

total
i u

t

u u u u total

t t

c c c c c c c c C

C p C t C u t

c c c c c c c c C

mmmm  

m

mmmm  

m

= =

=

= =

+ = + = ≤

≤ = + ≤

≤ + = + =

∑ ∑

∑

∑ ∑

m u    (40) 

This leads to the consideration of the normalized total Cost metric 

,
max min max min( , , ) ( , , ) / (10 (( ) ( ))) ( , , ) / .total n total u u total

i i i nC p C p c c c c C p Cmm = − + − =m m mu u u  (41) 

Clearly maximizing ( , , )hc iJ p m u  is completely equivalent to maximizing 

, ( , , )r n
hc iJ p m u , while minimizing ( , , )total

iC p m u  is completely equivalent to 

minimizing , ( , , )total n
iC p m u . Thus we will use the properly normalized values of 

the two metrics in our implementation of FOMCO-S, which we designate as 

FOMCO-SN (N for normalized).  For clarity we state the FOMCO-SN problem 

below. 

(FOMCO-SN)  Find the pair of discrete valued vectors ( ,TN ∆  dimensional), 

* *( , )m u  that   

                        solve the optimization problem:    

, ,

,
max [ ( , , ) (1 )( ( , , )]r n total n

hcJ i C il l+ − −
m

m m
u

u u     (42) 
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where (0,1)λ∈ . The optimization is over the allowed finite 

sets of choices for tests and interventions, with cardinalities 

, un nµ  respectively. The pair * *( , )m u is a Pareto point.  

 

In the second technique for FOMCO tradeoff analysis, we compute the Pareto 

points by solving several optimization problems where one of the metrics is 

selected for optimization and all the others are used as constraints; the so-called 

e-method [18, 19, 20, 21]. Thus we solve the following set of optimization 

problems. 

(FOMCO-E)  Find the pair of discrete valued vectors ( ,TN ∆  dimensional), 

* *( , )m u  that solve the optimization problems:  

,
max ( , , )

subject to ( , , )

hc

total

J i

C i e≤
m

m

m
u

u

u
     (43) 

where e is varied over a set of appropriate values. This 

method computes exactly all the Pareto points, but it is more 

costly computationally than FOMCO-S. 

 
Both problems can be solved by Dynamic Programming (DP) based methods [60 

- 62, 83], applied to the appropriate metric.  

 

Section 7.2: Description of Deterministic and Stochastic DP Algorithms 
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In this section, for completeness and ease of reference, we briefly review 

Dynamic Programming Algorithms and establish the associated nomenclature 

and notation. Dynamic Programming (DP) was introduced by Richard Bellman in 

1954 [62] for recursively solving dynamic optimization, optimal control and 

multi-stage decision problems. It has been used extensively in many areas 

ranging from signal processing to bioinformatics. In this brief review we 

describe DP as close as possible to the problems we are investigating, and for the 

solution of which we will use the DP algorithm. The general problem that fits our 

interests is: 

(GDP)                        

{ ( )}

0

max ( (0), (1),..., ( ); (0), (1),..., ( 1))

subject to ) ( (0), (1),..., ( ); (0), (1),..., ( 1)) 0
) ( ) ( ) for each 0,1,..., 1
) (0) given

iv) ( ) 0 ,

v t
J x x x T v v v T

i G x x x T v v v T
ii v t t t T
iii x x

x T

−

− ≥
∈Ω = −
=
≥

    (44) 

where:         

( )x t   is a vector of state variables that describe the state of the 

system at any point in time. 

 ( )v t   is a vector of control variables which can be chosen in 

every period by the decision-maker. 

(.)J   is the objective function (i.e. the metric we are optimizing) 

which is, in general, a function of all the state and control 

variables for each time period.  
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(.)G   is a system of inter-temporal constraints connecting the 

state and control variables. 

( )tΩ   is the set of allowed values for the control variables at time 

t. 

 

Dynamic Programming works for problems that satisfy the following structural 

constraint: Both (.)J  and G(.)  are time separable. That is:   

( (0), (1),..., ( ); (0), (1),..., ( 1)) (0, (0), (0)) (1, (1), (1)) ...
( 1, ( 1), ( 1)) ( , ( ))

J x x x T v v v T U x v U x v
U T x T v T S T x T

− = + +
+ − − − +

    (45) 

where ( ( ))S x T  is a value function at the end of the decision process, where no 

further decisions are made. Furthermore, the G(.) functions satisfy the Markov 

structural constraint:  

(1) (0, (0), (0))
(2) (1, (1), (1))

( ) ( 1, ( 1), ( 1)),

x G x v
x G x v

x T G T x T v T

=
=

= − − −


  (46) 

where these are the state transition equations, or the equations describing the 

evolution of the system state in response to the chosen controls. These 

structural constraints are essential for Dynamic Programming and they are the 

reason for the efficient recursions involved in DP. 

Then the optimization or decision problem becomes: 

(DPS)  
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1

0( ); 0,1,..., 1 0( ) ( )

0

max ( , ) ( , ( ), ( )) ( , ( ))

subject to   ) ( 1) ( , ( ), ( )), 0,1,..., 1,
) (0) , given,

T

v t t T tv t t

J x U t x t v t S T x T

i x t G t x t v t t T
ii x x

−

= −
=∈Ω

= +

+ = = −
=

∑g

  (47) 

where wed denote by g the control policy (or control law) { (0), (1),..., ( 1)}v v v T − .  

 

Bellman’s method (Dynamic Programming) solves this problem by considering 

the larger class of sub-problems of this problem [60], corresponding to the 

same problem but starting at some time    t0 > 0. Namely, consider the problems 

below for each 0 0,1,..., 1t T= − . 

(DPSsub)  

0
0

0

0

0
1

0( ); ,1,..., 1
( ) ( )

0

0

For each 0,1,..., 1

max ( , , ) ( , ( ), ( )) ( , ( ))

subject to   ) ( 1) ( , ( ), ( )), ,..., 1,
) ( ) , given.

T

tv t t t T t tv t t

t

t T

J x t U t x t v t S T x T

i x t G t x t v t t t T
ii x t x

−

= −
=∈Ω

= −

= +

+ = = −
=

∑g
  (48) 

Let the solution (i.e. the optimal value of the objective or metric) of Problem 

(DPSsub) be defined as the value function 
0 0( , )tV x T t−  . Then Bellman’s 

Principle of Optimality [60-62, 83] asserts that any solution of Problem (DPS) 

on t = 0,...,T, which yields x(t0) = xt0
 must also solve Problem (DPSsub) on the 

range t = t0,…,T.  Dynamic Programming follows from this principle and it 

essentially solves the larger Problem (DPS) by solving the smaller Problem 

(DPSsub) sequentially (recursively). Further, since t0 is arbitrary, we can choose 

to solve the Problem (DPSsub) first  for t0 = T-1 first and then work backwards in 
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time. This gives the DP algorithm, the recursive step, for the period T-k, 

expressed below as the well-known Bellman Equation:  

( ) ( )

For 1,2,...,
( ( ),0) ( , ( ))
( ( ), ) max { ( , ( ), ( )) ( ( 1), 1)}

subject to: ) ( 1) ( , ( ), ( ))
) ( ) , given.

v T k T k

T k

k T
V x T S T x T
V x T k k U T k x T k v T k V x T k k

i x T k G T k x T k v T k
ii x T k x

− ∈Ω −

−

=
=

− = − − − + − + −

− + = − − −
− =

   (49) 

This fundamental iteration can be also written as (to clarify the single step 

optimization involved): 

( ) ( )

For 1,2,...,
( ( ),0) ( , ( ))
( ( ), ) max { ( , , ( )) ( ( , , ( )), 1)}T k T kv T k T k

k T
V x T S T x T
V x T k k U T k x v T k V G T k x v T k k− −− ∈Ω −

=
=

− = − − + − − −
 (50) 

Solution of this one step maximization problem, given the form of the value 

function from the previous step, will yield a control rule:  

( ) ( , ( )), 1, 2,..., ,v T k g T k x T k k T− = − − =   (51) 

that is a control law in state feedback form. After going through the successive 

rounds of single period maximization problems, eventually we reach the 

problem at time zero, which is the original problem: 

(0) (0)

0

( (0), ) max { (0, (0), (0)) ( (1), 1)}

subject to: ) (1) (0, (0), (0))
) (0) , given,

v
V x T U x v V x T

i x G x v
ii x x

∈Ω
= + −

=
=

   (52) 

and which will also yield the control rule: 

0(0) (0, ).v g x=     (53) 

That is 0 0( , ) ( , )V x T J x ∗= g , the optimal value of the metric; ∗g  denotes the 

optimal policy. Knowing x(0) and v(0) we can use the state transition equations 
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to compute x(1). Then knowing x(1) and v(1) we can compute x(2) and so on, 

until all the values of the state x(t) (the state time history), and controls  v(t) (the 

controls time history) are computed. The time history of the controls is called 

control policy and we will denote control policies generically by g. Thus, we 

have obtained the complete solution of the optimization problem of interest, in 

an efficient manner (as compared with the exhaustive evaluation of all options – 

like in our EMCS First Method) due to the recursive computation involved, and 

the state feedback selection of tests and interventions.  

 

The DP approach is very powerful, especially for the problems we have 

encountered in this thesis, and interested in. Namely dynamic optimization 

problems with discrete time, finite horizon, finite number of system states, and 

finite number of choices for controls or decisions. It allows all types of 

constraints on the state and controls, including control constraints that depend 

on the state, to be easily incorporated in the formulation and handled in the 

same manner. Furthermore, the formulation we described covers time varying 

problems, including time varying constraints, which are of interest for medicine 

and health care, as they can represent changing exogenous conditions of the 

patient, the treatment and the environment. 

In our Second Method of performance evaluation and tradeoff analysis, the 

FOMCO method, we assume that we observe the state of the disease (i.e. the 

state of the disease is known to the health care professional at the decision 

instants with no error), and that the tests and interventions applied at each 

 100 
 



decision time only depend on the state of the disease at that time. As the 

underlying model of the disease is stochastic, we need a small modification of 

the DP formalism just described. The state transitions are now stochastic and 

they are determined by a controlled Markov chain (CMC); the state is observed 

(known) at each decision time instant; the same type of model we developed for 

the diabetes II disease progression in Section 4 of this thesis. Let the transition 

probabilities of the underlying CMC be given by  

( , ) Pr{ ( 1) | ( ) , ( ) },i jP t v x t j x t i v t v= + = = =  (54) 

and this denotes the probability that the state will transition to state j at the next 

time t + 1, when it is at state i at the present time t and control with value v(t) = v 

is applied at time t. Markov policies are consistent with the results form DP; 

namely that DP when the state is observed provides optimal controls that are 

functions of the current state (feedback form). That is ( ) ( , ( ))v t g t x t= . With a 

Markov policy g the dynamics of the controlled system are indeed governed by a 

Markov chain with state transition probabilities   

( , ) Pr{ ( 1) | ( ) , ( ) ( , )} ( , ( , )),gi j i jP t x t j x t i v t g t i P t g t i= + = = = =   (55) 

That is precisely the CMC model class we used in Chapter 4. We denote 

generically by g such policies. So everything in our formulation is consistent. 

Then the stochastic version of the optimization problem (DPS) (equation (39)) 

is: 

(StochDPS) 
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1

0( ); 0,1,..., 1 0( ) ( )

0

max ( , ) { ( , ( ), ( )) ( , ( ))}

subject to   ) ( 1) ( , ( ), ( ), (t 1)), 0,1,..., 1,
) (0) , given,

T

v t t T tv t t

J x E U t x t v t S T x T

i x t G t x t v t t T
ii x x

e

−

= −
=∈Ω

= +

+ = + = −
=

∑g

    (56) 

where g denotes the Markov policy { ( ) ( , ( )); 0,1,..., 1}v t g t x t t T= = − , and E  

denotes expectation with respect to the joint multidimensional probability mass 

functions (pmf) of  { ( ); 0,1, 2,..., }x t t T=  and [ ( ); 0,1,..., 1}v t t T= − . In fact, given 

(.,.,.,.)G  the only stochastic inputs to the system dynamics are the given initial 

condition 0x  (a random variable) and the finite sequence of random variables 

{ ( ); 1, 2..., }t t Tε = . Here { ( ); 1, 2,..., }t t Tε =  is a sequence of independent (over 

time) random variables (e.g. like white noise). Since for Markov policies 

{ ( ) ( , ( )); 0,1,..., 1}v t g t x t t T= = − , given (.,.,.,.)G and the policy g (i.e. the functions 

{ ( ,.); 0,1,..., 1}g t t T= − ) the joint multidimensional probability mass functions of  

{ ( ); 0,1, 2,..., }x t t T=  and { ( ); 0,1,..., 1}v t t T= − are determined by the statistics of 

0x  and { ( ); 1, 2,..., }t t Tε = . A very general, but basic, result in finite state Markov 

chain theory provides the complete equivalence of the sample path dynamical 

model above (through (.,.,.,.)G ) with the more traditional one described 

through the state transition probabilities [45-51, 60 - 62, 83]. Therefore 

equivalently E  denotes expectation with respect to the exogenous randomness 

at time 0, ( )0 0{ },{ ( ); 1, 2,..., }I x t t Tε= = .  

The problem (StochDPS) is a natural stochastic extension of the deterministic 

problem (DPS). The operational sequence of events in this stochastic model is: 
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(1) The state ( )x t  is observed 

(2) The decision maker selects control ( )v t (more precisely the 

function g(t,.))  

(3) Nature produces ( 1)tε +  

(4) State transition occurs according to ( ,.,.,.)G t   

(5) Operational cycle repeats for next time period. 

The analog of the larger class of sub-problems, i.e. the analog of Problem 

(DPSsub) (equation (40)) is: 

(StochDPSsub) 

0
0

0

0

1

0( ); ,1,..., 1
( ) ( )

0

0

max ( , , ) { ( , ( ), ( )) ( , ( ))}

subject to   ) ( 1) ( , ( ), ( ), (t 1)), ,1,..., 1,
) ( ) , given.

T

tv t t t T t tv t t

t

J x t E U t x t v t S T x T

i x t G t x t v t t t T
ii x t x

e

−

= −
=∈Ω

= +

+ = + = −
=

∑g

   (57) 

Where E  denotes expectation with respect to the joint multidimensional 

probability mass functions (pmf) of  0{ ( ); ,..., }x t t t T=  and 0{ ( ); ,..., 1}v t t t T= − . Or 

equivalently E  denotes expectation with respect to the exogenous randomness at 

time at time t, ( )0 0{ },{ ( ); ,..., } .t tI x s s t Tε= =  Then, the Bellman Equation for the 

stochastic problem (StochDPS)  is [60, 83]: 

( ) ( )

For 1,2,...,
( ( ),0) ( , ( ))
( ( ), ) max { ( , ( ), ( )) ( ( 1), 1)}

subject to: ) ( 1) ( , ( ), ( ), ( 1))
) ( ) , given.

v T k T k

T k

k T
V x T S T x T
V x T k k E U T k x T k v T k V x T k k

i x T k G T k x T k v T k T k
ii x T k x

e
− ∈Ω −

−

=
=

− = − − − + − + −

− + = − − − − +
− =

  (58) 
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Here E denotes expectation with respect to ( 1)T kε − +  only, as this is the only 

exogenous randomness for the right hand-side part of the key iteration. This 

fundamental iteration can be also written as (to clarify the single step 

optimization involved): 

( ) ( )

Fo r 1,2,...,
( ( ),0) ( , ( ))
( ( ), ) max { ( , , ( )) ( ( , , ( ), ( 1)), 1)}T k T kv T k T k

k T
V x T S T x T
V x T k k E U T k x v T k V G T k x v T k T k kε− −− ∈Ω −

=
=

− = − − + − − − + −
(59) 

Because in the problems of interest in this thesis all variables can take only a 

finite number of values, the distinction between values of the controls from the 

control constraint set (i.e. ( ) ( )v t t∈Ω ) and functions of the state so that their 

values are in the control constraint set (i.e. ( ,.)g t  such that ( , ( )) ( )g t x t t∈Ω is not 

needed since the two notions of control are trivially identical. As in the 

deterministic case, solution of this one step maximization problem, given the 

form of the value function from the previous step, will yield a control rule:  

( ) ( , ( )), 1, 2,..., ,v T k g T k x T k k T− = − − =     (60) 

that is a control law in state feedback form. Exactly as in the deterministic case, 

after going through the successive rounds of these single period maximization 

problems, eventually we reach the problem at time zero, which is the original 

problem: 

(0) (0)

0

( (0), ) max { (0, (0), (0)) ( (1), 1)}

subject to: ) (1) (0, (0), (0))
) (0) , given,

v
V x T E U x v V x T

i x G x v
ii x x

∈Ω
= + −

=
=

   (61) 

and which will also yield the control rule: 
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0(0) (0, ).v g x=  (62) 

That is 0 0( , ) ( , )V x T J x ∗= g , the optimal value of the metric, in the stochastic 

optimization case as well; ∗g  denotes the optimal policy. Knowing x(0) and v(0), 

and receiving (1)ε  from nature, we can use the state transition equations to 

compute x(1). Then knowing x(1) and v(1), and receiving (2)ε  from nature, we 

can compute x(2) and so on, until all the values of the state x(t) (the state time 

history), and controls  v(t) (the controls time history) are computed. As noted 

already the time history of the controls is the same as the control policy; recall 

that we denote control policies generically by g. Thus, we have obtained the 

complete solution of the stochastic optimization problem of interest, in an 

efficient manner (as compared with the exhaustive evaluation of all options – 

like in our ECMS First Method) due to the recursive computation involved.  

 
 

Section 7.3: Using DP Algorithms in the FOMCO Method 

For our Second Method of performance evaluation and tradeoff analysis, FOMCO, 

we are thus exactly in the DP formulation we just described above. In other 

words if we define at each time period as “control” the pair of test and 

intervention applied, we have precisely the Problem (StochDPS) above (equation 

(56)). That is ( ) ( ( ), ( ))v t t u tµ= , for t = 0,1, 2, NT,D-1 . We now turn to the details of 

applying DP to compute the solution of our FOMCO, Second Method of 

performance evaluation and tradeoff analysis. It is easier to describe the 
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problem and the DP algorithm using the representation of the system dynamics 

via the state transition probabilities. To this end let us recall from the beginning 

of this section that ( , , )P t uµ  denotes the transition probability matrix of our 

CHMC, that is  ( , , ) Pr{ ( 1) | ( ) , ( ) ( , )}i jP t u x t j x t i v t uµ µ= + = = = . In our FOMCO 

Method actually the underlying Markov Chain is not hidden (i.e. it is a controlled 

Markov chain (CMC)), as we assume we know the state at each time t (see 

Chapter 4 as well).  Any  

pair of column vectors ,{1, 2,..., },[ ( ), 10,1,..., ]l Tl n tX t Nµ
µ T

∆= −∈ ,   

and ,{1, 2,..., }, 0,1,...[ , ,( ) 1]u
u
k Tn tX t k N T

∆ −∈ = , or equivalently  

,[ ( ), ( ), 0,1, 2,..., 1]Tt u t t Nµ T
∆= −  is a Markov policy for any of the two 

optimization problems formulated; i.e. the two ways we will perform tradeoff 

analysis using the FOMCO method (see equations (42) and (43)). As already 

noted the name is completely justified as the DP algorithm will produce the 

values for the optimal selections of tests and interventions for each time period 

as functions of the state (feedback form). Recall that we denote generically by g 

such policies. Another representation of g is through the 2NT,D vector ( , )m u . Let 

also the xn  dimensional row vector 

( , ) 1 2( ) (t) [Pr{ ( ) | , },Pr{( ( ) | , },..., Pr{ ( ) | , }]
xnt x t x x t x x t xππ = = = = =m m m mg u u u u   

(63) 

denote the row vector of probabilities for the states at each time epoch (that is 

the state probability mass function), when policy g (or ( ,m u )) is used. For a 
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policy g (or ( ,m u )) we let ( )P tg   (or ( , ) ( )P tm u ) denote the corresponding state 

transition probability matrix at time t; it is a x xn n×  matrix. From standard 

Markov Chain theory [45-49] we know that this probability vector under policy 

g (or ( ,m u )) evolves (i.e. dynamics of the state probability mass function) as   

0

( , ) ( , ) ( , ) ( , ) 0

( 1) ( ) ( ), (0) , or

( 1) ( ) ( ), (0)

t t P t
t t P t

ππππ  

ππππ  

+ = =

+ = =m m m m

g g g g

u u u u

   (64) 

where 0π  denotes the initial state probability mass function, which we take to be 

uniform in this thesis. The m-step transition probability matrix is given by  

( ) ( 1)... ( 1)P t P t P t m+ + −g g g  , (65) 

and its ijth element is the probability that the state will be j at time t + m given 

that it is i at time t. Therefore   

g g g

0 g g g

( ) ( ) ( ) ( 1)... ( 1) and

( ) (0) (1)... ( 1).
g g

g

t m t P t P t P t m
t P P P t

ππ

ππ

+ = + + −

= −
    (66) 

Then the objective (or metric) in the problem (StochDPS) (equation (56)) can be 

expressed using the state transition probabilities as:  

,

,

1

0
0

1

1 0

( , , ) { ( , ( ), ( ), ( )) ( , ( ))}

{ ( , , ( ), ( )) Pr{ ( ) | , } ( , ) Pr{ ( ) | , }}.

T

Tx

N

t
t Nm n

m t

J x E U t x t t u t S T x T

U t m t u t x t m S T m x T m

m

m

∆

∆

−

=

= −=

= =

= + =

= = + =

∑

∑ ∑

m

m m

u

u u
 

(67) 

Similarly for the sub-problems (equation (49)) the metric expression can be 

written as: 
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,

,

1

1

1

( , , , ) { ( , ( ), ( ), ( )) ( , ( ))}

{ ( , , ( ), ( )) Pr{ ( ) | , } ( , ) Pr{ ( ) | , }},

T

Tx

N

t s
t Nm n

m t s

J i s E U t x t t u t S T x T

U t m t u t x t m S T m x T m

m

m

∆

∆

−

=

= −=

= =

= + =

= = + =

∑

∑ ∑

m

m m

u

u u
 

(68) 

for 1,2,..., xi n= , where we have taken (0) ix x=  and 0t s= , in 
0 0( , , )tJ x t g ( eq. 

(49)). That is ( , , , )J i s m u is the expected value of the objective when using the 

Markov policy ( , )= mg u , and starting at time s from state i, and running till time 

,TN ∆ . It is often called “the cost to go”, a terminology coming from optimization 

problems where the objective is also called “the cost” [60]. Given a policy ( , )m u  

the value of the metric ( , , , )J i s m u   can be calculated by the backwards recursion: 

, ) ,
1

, ,

( , , , ) ( , , ( , )) ( ( )) ( , 1, , ), 1,..., 2,1,0, for all 

( , , , )) ( , ), for all .

xn

ij T
j

T T

J i s U s i g s i P s J j s s N i

J i N S N i i

∆
=

∆ ∆

= + + = −

=

∑ (mm m

m

uu u

u
 (69) 

Often we want to evaluate the performance of a stochastic system regardless of 

the initial state. That is we want to compute 
0 0{ ( , , )}xE J x m u  , where 

0xE  

indicates the expectation with respect to the statistics of the initial state 

condition 0x . If  ( , )J m u  denotes the corresponding expected value of the objective 

or metric, it can be easily computed as  

( , )
1

( ,0, , ) Pr{ (0) }
xn

m
J J m x m

=

= =∑m mu u .    (70) 

The above fundamental recursion can be represented in a vector-matrix notation 

(which is also useful for the MATLAB implementation of the algorithm) as 

follows: 
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,

, ,

0

( ) ( ) ( ) ( 1), 1,..., 2,1,0

( ) ( )

(0)

T

T T

J s f s P s J s s N
J N f N
J Jπ

∆

∆ ∆

= + + = −

=

=

g g g g

g g

g g

      (71) 

where ( , ) 1 2( ) [ ( , , , ), ( , , , ),..., ( , , , )]
x

T
nJ J s J x s J x s J x s= =m m m mg u u u u  , an xn - 

dimensional vector,  

( , ) 1 1 2 2( ) ( ) [ ( , , ( , )), ( , , ( , )),..., ( , , ( , ))]
x x

T
n nf s f s U s x g s x U s x g s x U s x g s x= =mg u , for 

,0,..., 1Ts N ∆= −  an xn - dimensional vector, 

, ( , ) , ,( )( ) ( )( ) ( , ), for all g T T Tf N i f N i S N i i∆ ∆ ∆= =m u , and ( , )= mg u  is the Markov 

policy applied.  

This vector-matrix notation is useful also (for the same reasons) in representing 

the fundamental Bellman recursion of DP.  Indeed the optimal value of the 

metric ( , )J J= mg u  is determined by the backwards recursion:  

( , ) , ( , ) ,

( , ) ( , ) ( , ) ( , )( , ) allowed

( , ) 0 ( , )

( ) ( )

( ) max { ( ) ( ) ( 1)}

(0)

T T

u

J N f N
J s f s P s J s

J J
m

π

∆ ∆=

= + +

=

m m

m m m m

m m

u u

u u u u

u u

       (72) 

where the maximum is taken separately for each component of this vector 

equation and over the allowed (by the constraints, m and u). 

We can now apply these general results to our problem. We first develop the DP-

based algorithm for the first technique of computing Pareto points using the 

FOMCO method, the FOMCO-SN method, that combines the two normalized 

metrics in a convex combination (eq. (42)). The state transition probability 
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matrix for our problem is time invariant; it does not depend explicitly on t.  It is a 

3 3×  stochastic matrix described in our model in Section 4.1. This is our 

( , )P P= mg u  . Further for our model 0 [1/ 3,1/ 3,1/ 3]π =  ; i.e. uniform. The analog of 

( , )J m u in equation (72) above, is  

 

, , ,

,

, ,

1 13

0 1 0 0
1 3

( , )
0 1

( , , ) ( , , ) (1 )( ( , , ))

( / ) Pr{ ( ) | , } (1 )( ( ( ( )) ( ( ))) / )

( ( / ) ( ) ( 1)( ( ( )) (

T T T

i

T

i

r n total n
cc i hc i i

N N N
p r

m n u n
t m t t

N
p r

m n m u
t m

J p J p C p

V J x t m C t C u t C

V J t C t C

l

m

m

l l

l l m

l p l m

∆ ∆ ∆

∆

− −

= = = =

−

= =

= + − −

= = + − − +

= + − +

∑∑ ∑ ∑

∑ ∑ m

m m m

m

u

u u u

u

,

( ),

,

( ),

3

( , ) ,
1

1

( )
0

1

( )
0

( ))) / ) ( / ) ( )

( { / } ( 1)( ( ( )) ( ( ))) / { / }

{ ( ( / ) ( 1)( ( ( )) ( ( ))) / ) ( / )}

i

T

i i

NT

T

i i

NT

p r
n m n T m

m
N

p pr r
x t n u n x n

t
N

p pr r
x t n u n x n

t

u t C V J N

E V J C t C u t C E V J

E V J C t C u t C V J

m

m

l p

l l m l

l l m l

∆

∆

∆

∆

∆
=

−

=

−

=

+

= + − + +

= + − + +

∑

∑

∑

m u    (73) 

where ip  denotes patient i  (to avoid notation confusion with state i). Note also, 

again, that the computation is different for the various patient types -- the r 

superindex. We note that the expectation in the above equation includes 

expectation with respect to the statistics of the initial state 0x . We note that our 

problem is simpler than the general stochastic optimization problem described 

earlier in relation to Dynamic Programming (see problem (StochDPS) above) : 

the state transition probability matrix does not depend explicitly on time; the 

objective function (metric) does not depend explicitly on time, neither does the 

final time metric; the constraints on tests and interventions are simple (there are 

three possible tests and ten possible interventions). By comparing equations (eq. 

(56)) and (eq. (73)) we can make the following identifications between our 
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specific problem and the general formulation of the DP algorithms for the 

stochastic optimization problem (StochDPS): 

 

max min

max min max min

( )

( )

1 2 3

(11 ( )), for 1,2,3

(10 (( ) ( )))

( , ( )) ( ( )) /

( , ( ), ( )) ( ( ), ( )) / ( 1)( ( ( )) ( ( )) /

( ) ( ( ), (t))
( ) { , , }
(

i

i

r r r
n

u u
n

p r
x T n

p r
x t n u n

J V V r
C c c c c

S T x T S x T V J

U t x t v t U x t v t V J C t C u t C
v t t u

t
u

mm

λ

λ
m

λ

λλm 

m
mmmm  

= − =

= − + −

= =

= = + − +

=
∈

1 2 10

( , )

0

) { , ,..., }

( ) , 1, 2,3

( ) , 1, 2,3,...,10
 as given in Section 4.1

[1/ 3,1/ 3,1/ 3]
10

λλ

u
u k k

u

t u u u
C c λ

C u c k
P

T

m
m

m

m

p

∈

= =

= =

=

=

=

      (74) 

With these identifications the fundamental backwards DP recursion leads to the 

following computational algorithm, which we call Algorithm 2a – tradeoff-via-

FOMCO-SN. 

Algorithm 2a -- tradeoff-via-FMCO-SN 
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( , )

( , )

With the definitions of equations (74)
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   (75) 

 

Here we have introduced the superscript λ  to emphasize the dependence of 

these functions on the parameter λ . As we step through the values of λ  the 

algorithm computes Pareto points. We can compute more Pareto points if we 

select a finer quantization for λ ; like for example 0.01,0.02,...,0.99λ = . 

 

We next develop a DP-based algorithm for the second method of computing the 

Pareto points, as described in equations (43) for FOMCO-E. The representations 
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of the two metrics ( , , )hc iJ p m u  and ( , , )total
iC p m u are the same as in the first 

method above. In this second method we will step through a sequence of 

constraints for ( , , )total
iC p ε≤m u , for the chosen values of ε , which will result in 

constraints on the sequences of tests { ( ), 0,1, 2,...,9}s sµ =  and interventions 

{ (0), (1), (2),..., (9)}u u u u  we can use. Let us denote the sets of allowed tests and 

interventions ( )sε
µΩ  and ( )u sεΩ  respectively, where we have allowed these sets 

to depend on time to cover all possibilities. The algorithm needs to describe how 

these sets are computed first using the given information: 

 

1 2 3

1 2 10

( ) { , , }
( ) { , ,..., }

( ) , 1, 2,3
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l l
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u t u u u
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µ

∈
∈

= =

= =

 (76) 

Then we will compute the sequences of tests and interventions maximizing the 

metric ( , , )hc iJ p m u  subject to these constraints. This maximization problem is 

also a problem of the type (StochDPS) since it is described as 

 
(10)

9 9 3 3

( ) ( , ) ( , )( ( ), ( )), 0,1,2,...,9 0 0 1 1( ) ( ), ( ) ( )

max ( , , ) { } ( ( ) ) (10)i i i i
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p p p p
hc i x t x m m m mt u t t t t m mt t u t t

J p E V V V t V
εε
m

m
m

p p
=

= = = =
∈Ω ∈Ω

= + = +∑ ∑ ∑ ∑m mm u uu .   (77) 

By comparing equations (56) and (77) we can make the following identifications 

between our specific problem and the general formulation of the DP algorithms 

for the stochastic optimization problem (StochDPS): 
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      (78) 

These identifications and the fundamental backwards DP recursion lead to the 

following computational algorithm, which we call Algorithm 2b – tradeoff-via-

FOMCO-E. 

As we step through the values of ε  the algorithm computes Pareto points. We 

can compute more Pareto points if we select a finer quantization for ε . 

As Algorithm 2a is much more efficient and less computationally costly than 

Algorithm 2b, we did not implement Algorithm 2b, neither we performed 

experiments with it.  
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Algorithm 2b – tradeoff-via-FOMCO-E 
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Section 7.4: Output and Results from Algorithm 2a--trade-off-via-
FOMCO-SN  

 

The implemented Second Method is Algorithm 2a—tradeoff-via-FOMCO-SN.  Our 

MBSE system outputs directly the Pareto-points and other related information. 

This algorithm is very fast. For the same problems that the First Method (EMCS) 

took 783 sec (two metrics, 10,000 patients, 32 runs) and 1,385 sec (3 metrics, 

100,000 patients, 9 runs), our Second Method (FOMCO-SN) took only 2.36 sec on 

the same laptop. 

We provide below three examples of the produced graphs, one each for each 

type of patient. The values of λ  we used were λ = 0.005, 0.01, 0.015, …, 0.995; 

that is 200 values. The Pareto points computed and Pareto frontiers computed 

are very similar to those computed with our First Method (EMCS) but at a 

fraction of the time! 

We note that the horizontal set of points at the top of each graph are erroneous 

Pareto points due to the underlying sampling of the values of λ , and the fact that 

our underlying decision problem is actually discrete, more like a stochastic 

integer programming problem. These phenomena appear in scalarization 

methods as scalarization methods are excellent for continuous problems but 

more challenging for discrete problems like ours. This problem is easily fixed by 

running a (discrete) Pareto points algorithm [17-21] at the end of the 

scalarization algorithm. Indeed we tried this and the horizontal lines are 

eliminated.  
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Fig. 22: Typical 2-D graph produced by our MBSE system, FOMCO-SN Method, 

that gives the Pareto frontier for a typical risk averse patient (black squares are 
the Pareto points). 
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Fig. 23: Typical 2-D graph produced by our MBSE system, FOMCO-SN Method 

that gives the Pareto frontier for a typical risk indifferent patient (black squares 
are the Pareto points). 

 
Fig. 24: Typical 2-D produced by our MBSE system, FOMCO-SN Method that 

gives the Pareto frontier for a typical risk taker patient (black squares are the 
Pareto points). 
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Chapter 8: Model Based Systems Engineering for Health 
Care Management Systems for Diabetes 
Mellitus 

 

In this chapter we provide some illustrative examples about applying MBSE, as 

described in Chapter 2, for the fundamental components, design and operation 

of a Health Care Management System (HCMS) of the type of interest in this 

thesis. We will use a HCMS for Diabetes Mellitus as the special case of interest 

and focus.   

Section 8.1: Scope of MBSE for HMSC for Diabetes Mellitus  

Modern and future Health Care Information Technology [1, 7, 14, 15, 16] will 

have high level of connectivity, increased amounts of different types of data and 

will support smart and informed responses to queries by heterogeneous users 

(with different expertise and knowledge in medicine and health care). The high 

level environment is called a Health Information Exchange [HIE] system that 

performs as a digital highway for the traffic of health information. Underneath 

the HIE stand several subsystems that communicate with each other. These 

systems are Electronic Health Records [EHR] that stands inside the medical and 

nurse practitioner data silos, the personal health records that has vital signs and 

test results for every patient and are stored in labs and patients personal 

databases, and finally Electronic Medical Records [EMR] as a main operational 

system that manages information of patients and at the same time produces 
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valuable reports for the decision maker. These Health IT systems and 

components are essential for current and future Health Care Management 

Systems (HCMS) as discussed in Chapter 1 of this thesis (see also Figure 1).  

We assume that, hopefully, the Meaningful Use Act II and III [1] come in force 

and that the health care actors agree accordingly to implement them. These 

policies and events create a tremendous opportunity to implement and enact a 

Model Based System Engineering approach for Decision Making in Chronic 

Diseases, and in our case will be Diabetes Type Two. The proposed system will 

operate “underneath” the above mentioned systems, who extract and store 

information. The system has a main objective to receive information from the 

potential health policy actors and perform tradeoff analysis and respond to 

high level “what if” questions and queries that will be demanded by health care 

professionals, medical facilities, medical insurers and even individual patients 

[16]. Such HMCS would receive information about diagnostic tests, performed 

interventions, period of therapy and probabilities from transitions from each 

health state (clinical studies, systematic reviews, institute guidelines) and 

interactively (with the users) perform tradeoff analysis and plot / visualize the 

tradeoff results, based on optimization models which choose for their analysis. 

The therapy period we assume is ten years, the number of potential 

interventions is ten and the number of the potential test is three more and 

detailed information will be provided letter in this thesis. For the transition 

probability matrix the policy maker has run a clinical study and has an 

epidemiological data that shows the potential transitions between health states. 
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Section 8.2: Use Case Diagram for HCMS for Diabetes Mellitus  

In Figure 25 we give a high level illustration of a use case diagram that illustrates 

how the actors and the Health Care Management System (HCMS) interact. As 

discussed in Chapter 2 of this thesis, Use Case Diagrams are a fundamental tool 

in MBSE [17-20], and are systematically used to generate use cases, link the 

system requirements to models of systems structure and behavior, and 

subsequently to design space exploration and tradeoffs, and finally to system 

validation-verification-testing (see Chapter 2 of this thesis).  

 

Fig. 25: Use Case Diagram for a HCMS for Diabetes Type two (Diabetes Mellitus) 
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Section 8.3: Use Cases Index and Descriptions for a HCMS for 
Diabetes Mellitus 

 
In this section we provide examples of use cases for the HCMS for Diabetes 

Mellitus and their descriptions as they form a fundamental component of MBSE 

[17-20]. This is included here for illustrative purposes and for completeness. 

 
Use case ID Use Case Name Primary Actor Scope Complexity 
1 Receive test Population in High 
2 Receive intervention population in high 
3 Provide test lab in med 
4 Provide intervention Doctors nurses in med 
5 Provide transition metric hospital in high 
 
Identification of each key component of your use case 

Use case 
element 

Description 

Use case 
number 

1 

Application MBSE for Diabetes Type two (Mellitus) 
Use case Name Patient receive test 

Use case 
Description 

The patient receives one of the three available tests for 
identification of the level of sugar in his blood as diagnostic for 
Diabetes Mellitus 

Primary Actor Population 
Precondition The patient was recommended to receive test from a physician 

Trigger Social and clinical risk factors act as a trigger for a member of the 
general population to receive a diagnostic test 

Basic Flow 1. The patient receives a notification based on her risk 
factors to receive a test from her doctor 

2. The doctor informs the risk factors and the prescription to 
a hospital system 

3. The hospital informs the labs that they will receive a 
patient for a specific test 

4. The patient visits the lab and receives the test 
5. The lab reads and prints results and send them to the 

doctor 
6. Doctor decides to prescribe an intervention 
7. Hospital has being informed for the specific patient 
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intervention and informs the transition state probabilities  
8. Patient is being consulted for following an intervention for 

period of time (therapy period) 

Alternate 
Flows 

1. The patient performs a general check-up routine in a local 
lab 

2. The patient informs his personal doctor about his lab 
results 

3. The doctor suggests an intervention for a time period 
4. Patient visits the local hospital with doctor’s suggestive 

therapy and receives the intervention 
5. Hospital, doctor and lab periodically update patient’s 

health information about his state and her probabilities of 
health state transition  

Use case 
element 

Description 

Use case 
number 

2 

Application MBSE for Diabetes Type two (Mellitus) 
Use case Name Patient receives an intervention 

Use case 
Description 

The patient receives one of the ten available interventions for 
reducing the level of sugar in his blood,  as a result of positive 
diagnosis of Diabetes Mellitus 

Primary Actor Population 
Precondition The patient was recommended to receive an intervention from a 

physician 
Trigger The positive diagnostic test results for Diabetes Mellitus have 

triggered the provision of a focused intervention 
Basic Flow 1. Patient receives proposed intervention 

2. Patient follows the behavioral intervention  
3. Patient purchases, or is being provided with, equipment 

that will survey his state and will inform his assigned 
nurse 

4. Nurse receives the daily messages and writes reports that 
will be sent to the doctor 

5. The doctor based on the yearly results, asks for a second 
diagnostic test and continues or changes the intervention 

6. Doctor informs hospital about his actions regarding tests 
and interventions by following standard guidelines 

7. Hospital calculates the results based on tradeoff analysis 
and suggests alternatives 

Alternate 
Flows 

1. Patient receives an intervention 
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2. Patient follows the behavioral intervention 
3. Patient visits the hospital on a regular basis  
4. In the hospital they measure patient’s vital signs 
5. At the end of the year period the information from the 

hospital is send to patient’s personal doctor 
6. Patient’s personal doctor prescribes a test 
7. Based on the results (health state) patient follows the 

same or different intervention   

 
Use case 
element 

Description 

Use case 
number 

3 

Application MBSE for Diabetes Type two (Mellitus) 
Use case Name Lab provides test 

Use case 
Description 

The lab after being informed about the  prescription by a doctor 
performs the suggested test 

Primary Actor Lab 
Precondition The lab is adequately prepared in facilities, equipment, tests, and 

personnel to receive population for Diabetes Mellitus tests 
Trigger Lab receives a prescription from doctor or hospital to perform a 

specific test 
Basic Flow 1. Lab receives a prescription from doctor to perform a test 

to patient 
2. Lab sets an appointment with patient and suggests to him 

fasting for a period before he will receive the test 
3. Patient receives the test 
4. Patient receives the results of the test 

Alternate Flows 1. Lab receives prescription from hospital department 
2. Patient receives pre-test consultation and arrangements 

for appointment 
3. Patient receives the test 
4. Lab informs hospital about the results of the test. 

 
Use case 
element 

Description 

Use case 
number 

4 

Application MBSE for Diabetes Type two (Mellitus) 
Use case Name Doctor Provides Intervention 

Use case 
Description 

Doctor suggests test and based on the interpretation of the test 
results suggests an intervention 
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Primary Actor Doctor 
Precondition Doctor is informed about Diabetes Mellitus health states, and has 

received information about the transition probabilities matrix 
Trigger The results from Diabetes Mellitus test are positive and the state 

of the patient results in a recommendation to receive one of the 
10 suggested interventions 

Basic Flow 1. Doctor receives test results from patient and the results 
map the patient’s health state in the 2nd or 3rd state 

2. Doctor consults the guidelines, the health state definition 
and the state transition matrix and suggests an 
intervention 

3. Doctor informs hospital for the period of the therapy 
4. Doctor assigns a nurse to patient for a period until the next 

screening test period for the patient 

Alternate 
Flows 

1. Hospital receives the results from lab 
2. Hospital assigns a doctor to interpreting the results, 

consult the patient  
3. Doctor makes a decision and informs the patient to follow 

a specific intervention 
4. Doctor informs hospital about his health strategy 

 
Use case 
element 

Description 

Use case 
number 

5 

Application MBSE for Diabetes Type two (Mellitus) 
Use case 

Name 
Hospital provides state transition probability matrix 

Use case 
Description 

An important component for the overall therapy is the definition of 
the state of the disease (that is provided by Medical Authority) and 
the state transition probabilities that are constructed 
collaboratively between the hospital and other authorities 

Primary Actor Hospital 

Precondition Hospital receives information from labs and doctors about success 
or failure from pairs of (intervention and test) and stores them in a 
data base 

Trigger Call from a doctor in order to suggest a therapy for transition 
matrix 

Basic Flow 1. Doctor requests state transition probability matrix 
2. Doctor is informed about how to set up a query 
3. The query selects and constructs a table with the needed 

health state transition probabilities 
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4. Doctor receives the state transition matrix and inputs it for 
the suggested therapy 

5. Hospital records doctor’s query and updates the knowledge 
base 

6. Hospital database performs a group order to construct 
arrays of triples, consisting of state, test and intervention 

7. Hospital keeps the counting statistics 
8. Hospital assigns cost, health performance and runs tradeoff 

analysis 

Alternate 
Flows 

1. The hospital receives information about a test and its 
results 

2. Hospital inquires if the test was connected with an 
intervention 

3. Hospital based on the therapy period, test and intervention 
constructs state transition probability matrix 

4. Hospital provides access to the state transition matrix to a 
doctor or nurse 

5. Hospital runs periodically tradeoff analyses and informs the 
other actors via guidelines for excellence (in treatment)  

 

Section 8.4: Structure (Block) Diagram of a HCMS for Diabetes II 

As discussed in Chapter 2, a fundamental construct in MBSE is the Structure (or 

Block) Diagram [17-20]; which is one of the four pillars of SysML [17-20] and 

provides a model of the System Structure (i.e. it answers the question “what the 

system consists of?”). In Figure 26  we provide the Structure Diagram for a HCMS 

for Diabetes Mellitus; the diagram also provides a hierarchical representation of 

the HCMS for Diabetes Mellitus. The HCMS begins with a Health Information 

exchange system, continues with several individual subsystems of Electronic 

Health Records and Electronic Medical Records and finishes with the Reasoning 

Engine (designated as MBSE system in the diagram) of the HMCS for Diabetes 

Mellitus; the component which is the main focus of most of the work described 
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in this thesis. The Reasoning Engine (MBSE system) subsystem of the HCMS for 

Diabetes Mellitus, is comprised of three main subsystems: the EMCS, the FOMCO 

and the POMCO. The detailed operation of the EMCS subsystem was provided in 

Chapter 6 of this thesis. The detailed operation of the FOMCO subsystem was 

provided in Chapter 7 of this thesis. The detailed operation of POMCO has been 

left as future research topic; a brief description was given in Subsection 4.2.2, 

pages 44-45, of this thesis, and more can be found in our forthcoming paper [87]. 

These subsystems receive the same inputs, which are typically communicated on 

the basis of counting statistics for various relevant variables. The inputs of cost, 

health state, risk behavior and probability matrix of patient health state 

transitions are defined by the actors and other databases. In Figure 27  we 

provide the Structure Diagram for a part (the information flow of the EMCS 

subsystem) of the Reasoning Engine of the HCMS for Diabetes Mellitus.  
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Fig. 26: Structure (Block definition) Diagram for the HCMS for Diabetes Mellitus 
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Fig. 27: Structure (Block definition) Diagram for part (the EMCS subsystem) of 
the Reasoning Engine (MBSE system) of the HCMS for Diabetes 

Mellitus 
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Section 8.5: Behavior Diagram of a HCMS for Diabetes Mellitus 

 
As discussed in Chapter 2, a fundamental construct in MBSE is the Behavior (or 

Block) Diagram [17-20]; which is one of the four pillars of SysML [17-20] and 

provides a model of the System Behavior (i.e. it answers the question “what the 

system does?”). There are several types of Behavior Diagrams [17-20], dpending 

on the scale (detail) of the model intended; Sequence Diagrams are used for 

higher detail while Activity Diagrams are used for more aggregate system 

behavior modeling.  We provide some examples of these fundamental MBSE 

constructs for components of the Reasoning Engine (MBSE system) of the HCMS 

for Diabetes Mellitus. In Figure 28 we provide an Activity Diagram (swim-lane 

type) that describes how the MBSE system works at a very high level (aggregate 

level) as an interaction of several actors of the system. In Figures 29 and 30, we 

provide Sequence Diagrams showing the information flow and functionality of 

two components of the Reasoning Engine (MBSE system) of the HCMS for 

Diabetes Mellitus: of the EMCS component in Figure 29 and of the FOMCO – SN 

component in Figure 30.  
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Fig. 28: Activity Diagram of the MBSE system (Reasoning Engine) of the HCMS 
for Diabetes Mellitus 
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Fig. 29: Sequence Diagram of the information flow of the EMCS subsystem of the 
Reasoning Engine of the HCMS for Diabetes Mellitus 
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Fig. 30: Sequence Diagram of the information flow of the FOMCO-SN subsystem 
of the Reasoning Engine of the HCMS for Diabetes Mellitus 

 

Section 8.6: Requirements Diagram for the EMCS Subsystem of a 
HCMS for Diabetes Mellitus 

 

 
As discussed in Chapter 2, a fundamental construct in MBSE is the Requirements 

Diagram [17-20]; which is one of the four pillars of SysML, and provides a formal 

way to capture the requirements for a system, and which can be linked to 

tradeoff and design space exploration tools [18-20].  

In Figures 31 and 32 (placed side by side) we provide a Requirements Diagram 

for the information flow of the EMCS subsystem of the Reasoning Engine, of the 

HCMS for Diabetes Mellitus, based on  Use Cases and Structure and Behavior 

Diagrams of EMCS developed (Figures 26 to 30). 
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Fig. 31: Requirements Diagram for the information flow of the EMCS subsystem 
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Fig. 32: Requirements Diagram for the information flow of the EMCS subsystem 

Section 8.7: Requirements Table for ECMS Subsystem 
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In the following table, Figure 33, we provide an example of a Requirements 

Table for the EMCS subsystem of the Reasoning Engine of the HCMS for Diabetes 

Mellitus. This diagram is also a fundamental construct of MBSE [17-20] and is 

useful for “book-keeping” requirements indexed by attributes such as id, name, 

description, constraints, constraint type and parameter. The Requirement id 

indexing actually provides a hierarchical clustering of requirements 

corresponding to system components.    

 
Requireme
nt id 

Requiremen
t name  

Description  Constraint 
name 

Constr
aint 
type 

Parameter 

1 EMCS 
model 

It should be 
a MCMC that 
will receive 
the input 
and the 
trade-off 
based on the 
following 
policy 

   

1.1 Set the 
number of 
states 

The states 
should be 
Healthy, Pre 
diabetic, 
Diabetic 

states X=1,2,
3 

Integer 

1.2 Define the 
therapy 
period 

The therapy 
period 
should be 
10 years 

therapy 
period 

S=1,..1
0 

Real 

1.3 Set the 
number of 
possible 
transitions  

The possible 
transitions 
should be 
seven 
between the 
three states 

Possible 
transitions 

Transit
ions=1.
1…3.3 

Pr=0..1 

1.4 Define 
diagnostic 

The tests 
should be 

Type of 
diagnostic 

A1c, 
fpg, 

String 

 138 
 



type a1c, fpg, ogtt test ogtt 
1.4.1 Define cost 

of the 
diagnostic 
test 

The cost 
should be in 
dollars per 
year 

Cost of 
diagnostic 
test 

Cost=$ Real 

1.4.2 Set the 
number of 
diagnostic 
tests 

The number 
of tests 
should be 
three 

Number of 
diagnostic 
tests 

Nr 
Mu=3 

Real 

1.4.3 Define 
performanc
e of the 
diagnostic 
tests 

Time in the 
therapy 
period this 
test was 
responsible 
for better 
health state 

Performanc
e of 
diagnostic 
test 

Count 
Perfor
mance
=3 

Real 

1.5 Define the 
type of 
intervention 

Technology 
(u1, u2), 
diet 
(u3..u4), 
exercise 
(u6,..u8), 
medication 
(u9, u10) 

Type of 
intervention
s 

Un=U1
..U10 

String 

1.5.1 Define 
performanc
e of 
intervention 

Times in the 
therapy 
period this 
intervention 
was 
responsible 
for better 
state 

Performanc
e of 
intervention  

Count 
Perfor
mance
= 0..10 

Real 

1.5.2 Define the 
cost of 
intervention 

The cost 
should be in 
dollars per 
year 

Cost of 
intervention 

Cost=$ Real 

1.5.3 Set the 
number of 
intervention
s 

The number 
of tests 
should be 
10 

Number of 
intervention
s 

Numbe
r of 
U=10 

Real 

1.6 Set the 
triples of 
counting 
health 
performanc

It should 
multiply the 
number of 
probabilitie
s with the 

Triples of 
counting 
performanc
e 
measureme

Cardin
ality= 
Np* 
Ns*Nx
*(Nmu

Real 
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e 
measureme
nt 

number of 
the years of 
therapy, 
with the set 
state, the 
product of 
pair 
(interventio
n, test) 

nt *Nu) 

1.7 Set the risk 
patient 
weight 
value 

Set the risk 
weight for 
every state 
for the type 
of patient: 
risk averse, 
risk 
indifferent 
and risk 
taker 

risk V=V1, 
V2, V3 

Pr=0..1 Real 

 
Fig. 33: Requirements Table for the information flow of the EMCS subsystem 

 

Section 8.8: Requirements Traceability Matrix 

 
Requirements Traceability Matrix is another fundamental MBSE construct [17-

20], that links requirements and sub-requirements to blocks in the Structure and 

Behavior Diagrams. Typically the Requirements Traceability Matrix is depicted 

as a table that links the requirement and/or sub-requirements to the Use Case(s) 

that generated it, to the Requirement (or Sub-requirement id, and to the Block id 

in the Structure and Behavior Diagrams [18]. The linkage of use cases, 

requirements and block definition diagram is the equivalent of the join table in 

databases and specifically the inner join. Thus we can avoid duplication and we 

can better extract, transform and load our changes in the database. The 
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Requirements Traceability Matrix is very useful in design space exploration, as it 

helps trace satisfaction or non-satisfaction of requirements to specific 

components and eliminate searches in the design space in non-promising 

directions. In Figure 34, we show an example of a Requirements Traceability 

Matrix for the ECMS subsystem based on the Use Cases, Requirements Table, 

Structure and Behavior Diagrams of the EMCS developed and shown in Figures 

26 to 30.   

Use 
case  

Requirement Block Definition Component 

1 1.4 1.1.1.1.2 
 1.4.1 1.1.1.1.1.1 
 1.4.2 1.1.1.1.1.2 
 1.4.3 1.1.1.1.1.1.1 
2 1.5 1.1.1.1.1 
 1.5.1 1.1.1.1.1.1 
 1.5.2 1.1.1.1.1.2 
 1.5.3 1.1.1.1.1.1.1 
3 1.4 1.1.1.1.2 
 1.4.1 1.1.1.1.1.1 
 1.4.2 1.1.1.1.1.2 
 1.4.3 1.1.1.1.1.1.1 
 1.1 1.1.1.1.5 
 1.3 1.1.1.1.6  
4 1.5 1.1.1.1.1 
 1.5.1 1.1.1.1.1.1 
 1.5.2 1.1.1.1.1.2 
 1.5.3 1.1.1.1.1.1.1 
 1.1 1.1.1.1.5 
 1.3 1.1.1.1.6  
 1.2 1.1.1.4 
 1.8 1.1.1.3 
4 1.1 1.1.1.1.5 
 1.3 1.1.1.1.6  
 1.2 1.1.1.4 
 1.8 1.1.1.3 
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 1.7 1.1.1.1.1.1 
 1.6 1.1.1.1.2 

 
Fig. 34: Requirements Traceability Matrix for the information flow of the EMCS 

subsystem 

 

Chapter 9: Decision Making and Analytics Capabilities of 
the Reasoning Engine of a HCMS for Diabetes 
Mellitus 

 
 
 
In this Chapter demonstrate some of the decision making and analytics 

capabilities that the Reasoning Engine system we constructed, as part of a HCMS 

for Diabetes Mellitus, enables. We would like to emphasize that these 

capabilities and analytics derive from the MBSE methodology applied. 

Namely, from the linkage of efficient and powerful tradeoff analysis methods 

and algorithms for design space exploration, with effective system dynamic 

models of disease progression that incorporate tests (i.e. measurements, 

observations), interventions (i.e. actions), and many system and system-

environment parameters [18, 19]. As emphasized throughout this thesis, our 

primary contribution is the utilization of modern MBSE methods to develop a 

framework for the design and operation of HCMS for various chronic 

diseases [1, 7]. We selected and used Diabetes Type 2 (Mellitus) [8-13] as a 

representative example of a chronic disease and as the driving application to 

motivate and focus our ideas and constructions. By framework, we mean for 

example the inclusion in such modern and future HCMS of the following key 
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components: (i) Dynamic models of the behavior of key components of the 

system; (ii) Linkage of these integrated models with tradeoff analysis tools and 

design space exploration tools; (iii) Linkage to databases of data, enabling the 

construction of updated models and action strategies as well as learning; (iv) 

Incorporation of sensors (diagnostic tests and other type of sensors) and 

sensory data into the models and searches; (v) Incorporation of actions 

(controls, interventions) into the models and searches. Thus, we advocate that 

several instantiations (implementations) of such HCMS are possible, even for 

Diabetes Mellitus, and we do not advocate the particular one we developed and 

analyzed in this thesis as the only one. We also advocate that the framework we 

developed, following MBSE methods and tools, is very promising.   

To demonstrate the decision making and analytics capabilities of our system, we 

pose some interesting and realistic questions from the perspective of health care 

management and support. These are meant to be examples of problems, 

questions or queries, the heterogeneous users of the proposed system may want 

solved or answered.  Clearly, many more questions of this type can be posed, and 

we believe in an implemented system, both the questions and the 

answers/analysis/interpretations will be archived and made available to the 

heterogeneous users on a role-based access basis. We generated synthetic data 

from our models, to answer these questions, provide some rudimentary analysis 

and justification of each answer, and some interpretation; knowing and 

understanding very well that these are interpretations based on totally synthetic 

simulation data, and cannot be perceived as medical statements. Nevertheless 
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for illustrative purposes they are included in each answer. We generated 

synthetic data using our disease progression models that incorporate tests, 

interventions costs etc., various parameters, using the disease models in a Monte 

Carlo simulation mode. We generated the following data sets: 

(a) 100,000 patients, 9 runs, with 3 metrics (Performance, Cost, Reward); 

(b) 10,000 patients, 32 runs with 2 metrics (Performance, Cost). 

In each data set we include the three types of patients (Risk Averse, Risk 

Indifferent, Risk Taker) uniformly distributed across types (i.e. the probability 

for a patient to be of a particular type was 1/3, 1/3, 1/3). 

Utilizing our Reasoning Engine and basically the two main tradeoff analysis 

methods/tools developed (EMCS and FOMCO-SN) we provide in this chapter 

some examples of analytics and answers to these problems, questions, queries. 

We organized the work and associated investigations around eight problems/ 

questions. Many more can be considered and used to exercise the system. Since 

the data we used are synthetic with somewhat arbitrary parameters (although 

we chose the parameters carefully form various sources as explained in Chapter 

4) these studies are not meant to produce medical evidence, but rather to 

demonstrate the type of problems that can be solved using our methods, the 

type of analytics that can be computed, and the associated decision making and 

interpretations. As we apply both of our methods to the same problem, the 

results also indicate the differences between the two methods, and the 

associated advantages and weaknesses of each; these findings point to 

interesting future research directions and improvements (see Chapter 10). In 
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the investigations and experiments described below, as well as in the associated 

graphs,  we designate by V1 a Risk Averse patient, by V2 a Risk Indifferent 

patient and by V3 a Risk Taker patient.   

 
Section 9.1: Effects of Patient Type on Health Care Quality vs Cost:  

Based on Comparison of Pareto Frontiers 

We want to investigate the effects of patient type on the main results obtained 

from our Reasoning Engine (tradeoff analysis based), namely the Pareto points 

(or Pareto frontiers). Intuitively we expect that patient type will have an effect, 

and the question is whether our Reasoning Engine can compute results that 

support our intuition. Once we aggregate all these Pareto points by patient type, 

we can observe the existence of a relation between Healthcare Quality and 

Healthcare Cost. For aggregation we can either cluster these Pareto points into 

sets, or we can fit a curve to these Pareto points, and then check to see whether 

this curve has the same shape for different risk behaviors of patients, or more 

generally compare the curves of different patient types. Such differences suggest 

the existence of an effect of behavioral risk on the performance of health care.  

We performed such investigations using both the EMCS and the FOMCO-SN 

methods. In our experiments and analytics on this problem, we aggregated the 

totality of Pareto points only on the basis of patient type; that is regardless of 

patient health state, type of test or intervention used. The only difference was 
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the behavioral risk of patients (i.e. patient type), which is what we wanted the 

analytics to focus on. 

In Figure 35, we show the results of such an experiment (10,000 patients, 32 

runs) and clustering of Pareto points from tradeoffs between two metrics: Cost 

and Performance. The diagram was derived from the analysis of Pareto data 

computed by the ECMS method from three categories of patients (V1, V2, and V3), 

as indicated in the figure.  There is a positive trend between the cost and the 

health performance as expected. It appears that all three patient types have a 

common area where their costs and performance are in the same range; in 

Figure 35 this area is confined by the range of values between 0.2 to 0.4 of the 

Health Value Performance scale, and between 2400 to 2800 of the Total Cost 

scale. This might be interpreted as  a  common “health  

 

 

Fig. 35: Pareto points sets (Performance vs Cost) from EMCS, clustered by patient 

type 
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maintenance” type pattern. We also observe that all three Pareto frontiers (or 

Pareto tubes) show an exponential-like increase of cost for increased 

performance, meaning that all patient types tend to spend disproportionally 

more to receive little additional healthcare value. Such trends have been also 

observed in various studies of the increasing healthcare costs world-wide [1-7]. 

But we also observe that the curves (or more accurately the “tubes” of data) are 

steeper in the Risk Taker (V3) and Risk Indifferent (V2) patients and less steep 

for the Risk Averse patient (V1). It seems from the plot that the V1 patient 

performs “better” than V2, and V3. In other words the Pareto “tube” of a V1 

patient lies below the Pareto “tube” of a V2 and of a V3 patient. That is for the 

same cost, a V1 patient can achieve much higher performance than a V2 and a V3 

patient, while for the same performance the cost of V1 is typically lowest and 

that for V3 highest. With a similar interpretation a V3 patient performs “worse”. 

In a more technical description of the analytics represented in Figure 33, the 

Pareto frontier (Pareto tube) of a Risk Averse patient (V1) dominates the other 

two, and the Pareto frontier (Pareto tube) of a Risk Indifferent patient (V2) 

dominates that of the Risk Taker patient (V2). These interpretations are 

consistent with expectations based on intuition.  The value of a HCMS system, 

with a Reasoning Engine of the type we propose, is that if supported with real 

data it could quantify these qualitative expectations, and thus lead to measurably 

better decisions and policies.  
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Fig. 36: Pareto points sets (Performance vs Cost) FOMCO-SN, clustered by patient 

type 

In  Figure 36, we  show  results  of  a similar analysis using the FOMCO-SN 

method  

instead  (using 200  sampled  values of  the  scalarization  parameter l, see page  

101)  

and similar clustering of Pareto points from tradeoff between two metrics:  Cost 

and Performance. The results shown in Figure 34 are from the data set of 

100,000 patients (i.e. set (a) page 131). There are similar trends in the graphs 

and clusters shown in Figures 33 and 34, but there are also important 

differences. The “best” achievable values for performance are higher for V1, in 

the middle for V2 and lowest for V3 patients, as expected. There is a positive 

trend between the cost and the health performance as expected, but its range 

and variability are much smaller than those found in the analysis reported in 

Figure 35. Similarly as in Figure 35, we observe that the curves (or more 

accurately the “tubes” of data) are steeper in the Risk Taker (V3) and Risk 

Indifferent (V2) patients and less steep for the Risk Averse patient (V1). It seems 
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from the plots that the V1 patient performs better than V2, and V3. In other words 

the Pareto “tube” of a V1 patient lies below the Pareto “tube” of a V2 and of a V3 

patient. With a similar interpretation a V3 patient performs “worse”. However, 

the tubes of the different type patients are a lot closer in Figure 36 (as compared 

with Figure 35). These differences (between Figures 35 and 36) are attributed to 

two causes. First, to the detailed optimization involved in FOMCO-SN; optimizing 

the selection of treatments at each tie step, optimizing the tests, and 

continuously striving for the tradeoffs throughout time histories. This eliminates 

many “bad” Pareto points in the overall set. Second, the averaging involved in 

FOMCO-SN (while there is no averaging involved in EMCS) eliminates 

substantially variability. Further research and computational experiments are 

needed to develop the robustness and accuracy of these promising analytics that 

are enabled by this type of a Reasoning Engine.    

  

Section 9.2: Effects of Patient Type on Health Care Quality vs Cost:  
Subsets of Pareto Points from Distribution 

Percentiles  

In this Section we investigate further the effects of patient risk type on 

healthcare cost and performance, from a more statistical perspective. We use the 

simulations and tradeoff results from our Reasoning Engine, but now we 

perform some more detailed statistical analysis on the distributions of the values 

of the metrics we employ. We again cluster the data and Pareto points, by patient 

type only (patient risk behavior only). But then we look in more detail at these 
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Pareto points sets, by defining subsets from percentiles of the distribution of 

values of the metrics we use: Cost, Health Performance, Reward. The motivation 

comes from the need to see if this type of detailed analysis helps us quantify 

better the differences in health performance and costs in different patient type 

classes, than methods that compute averages over the entire sets of data and 

Pareto points. This analysis can also help understand better, and quantify, which 

metric is a more important driver of human risk behavior. This type of questions 

and analysis is common in more sophisticated data analytics, where one wants 

to look more carefully in the distributions of values of parameters of interest, 

rather than just their averages. 

First we perform the analysis with the EMCS method. We have data from 32 runs 

on 10,000 patients (i.e. data set (b), see page 131). The details of our 

computations are as follows. First, we cluster the Pareto points from the whole 

data set of time histories according to patient type. Let us denote these three sets 

of 2D points as 
1 2 3
, ,V V VP P P . Following the same coordinate axes convention as in 

Figures 33 and 34, each point in these sets is represented by a two dimensional 

vector (HP, C), where HP corresponds to the value of Health Performance and C 

to the value of Cost. Then we sort each set of these 2D sets in ascending order 

with respect to Cost and separately in descending order with respect to Health 

Performance (i.e. with respect to each one of the coordinates of these sets of 2D 

points). Let 20% 20%,
i i

Top Bottom
V VC C  denote the top 20th percentile and bottom 20th 

percentile w.r.t. to Costs, in each of the sets 
1 2 3
, ,V V VP P P . Similarly let 
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20% 20%,
i i

Top Bottom
V VHP HP  denote the top 20th percentile and bottom 20th percentile 

w.r.t. to Health Performance, in each of the sets 
1 2 3
, ,V V VP P P . Then we compute the 

top 20th (lower) Cost percentile subset 20%
i

LC
VP  (i.e. points in each of 

1 2 3
, ,V V VP P P , 

with Costs 20%
i

Top
VC≤ ), and the bottom 20th percentile (higher) Cost subset 20%

i

HC
VP  

(i.e. points in each of 
1 2 3
, ,V V VP P P , with Costs 20%

i

Bottom
VC≥ ), from each set of Pareto 

points (one for each patient type). Similarly we compute the top 20th (higher) 

Health Performance percentile subset 20%
i

HHP
VP  (i.e. points in each of 

1 2 3
, ,V V VP P P , 

with Health Performance 20%
i

Top
VHP≥ ), and the bottom 20th percentile (lower) 

Health Performance subset 20%
i

LHP
VP  (i.e. points in each of 

1 2 3
, ,V V VP P P , with Health 

Performance 20%
i

Bottom
VHP≤ ), from each set of Pareto points (one for each patient 

type). Next we compute the average of the Health Performance metric (or index) 

(i.e. average with respect to the Health Performance coordinate of these sets of 

2D points) of the set 20%
i

HHP
VP and the average of the Cost metric (i.e. average with 

respect to the Cost coordinate of these sets of 2D points) of the set 20%
i

HHP
VP for 

each of these subsets 
1 2 3
, ,V V VP P P of Pareto points. In Table 5 we show the results 

of these computations.  

There are several observations that can be made. First, these computations 

reveal more clearly (as compared to Figure 35 and 36) the differences in Health 

Care Quality (Performance) achievable; i.e. the values of 20th percentiles w.r.t. to 

Health Performance are very different for the different types of patients. Second, 
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there is substantially larger difference on the averages of Health Performance 

from the differences of Costs, between the 20%
i

HHP
VP values and the 

iVP values. 

These and several other observations that can be made support the hypothesis 

that percentile statistics of subsets of Pareto points reveal better the effects of 

patient type on Health Performance vs. Cost analysis than averages. One can 

perform similar analyses with different percentile statistics to reveal better 

trends and key parametric values of the relationship between patient behavior 

vs Health Performance vs Cost. Clearly more research and experiments / 

computations are needed in this direction, especially with real data.      

 
Risk Averse 

 

Risk 
Indifferent 

 
Risk Taker 

 
 

Health  
Performance Cost 

Health  
Performance Cost 

Health 
Performance  Cost 

Top 20%  
percentiles 
Health 
Perf., Cost 0.736081 2577.8 0.51180556 2918.4 0.311482 2986 
Average of 
Health 
Perf., Cost,  
over 

20%
i

HHP
VP  0.81251 2506.111 0.53248 2506.634 0.38201 2676.925 

Average of  
Health 
Perf., Cost 
over 

iVP  0.579465 2769.3 0.44885666 2761.736 0.086334 2769.686 
 

Table 5: Comparison of Health Performance vs Costs for subsets of Pareto 
points clustered by patient type and percentile statistics of Health Performance 

and/or Cost 

 
statistics of subsets of Pareto points reveal better the effects of patient type on 

Health Performance vs. Cost analysis than averages. One can perform similar 
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analyses with different percentile statistics to reveal better trends and key 

parametric values of the relationship between patient behavior vs Health 

Performance vs Cost. Clearly more research and experiments / computations are 

needed in this direction, especially with real data. 

We also performed similar studies using the EMCS method again but with three 

metrics: Cost, Health Performance and Reward (see Section 6.2, page 64). We 

present the results of one such study in Table 6, where we varied the percentile 

statistics.  We used a data set from 9 runs on 100,000 patients (i.e. data set (a), 

page 131), with the same model parameters as in the study of Table 5.  We run 

EMCS and compute the Pareto points; each Pareto point is now a 3D point. First, 

we cluster the Pareto points from the whole data set of time histories according 

to patient type. Let us denote these three sets of 3D points as 
1 2 3
, ,V V VP P P again. 

Following the same coordinate axes convention as in Figures 18, 19, 20, each 

point in these sets is represented by a three dimensional vector (HP, C, R), where 

HP corresponds to the value of Health Performance, C to the value of Cost and R 

to the value of Reward. Then we sort each set of these 3D sets in ascending order 

with respect to Cost. Let 10% 20% 90%, ,
i i i

Top Top Top
V V VC C C  denote the top 10th percentile, 

20th percentile, and 90th percentile respectively w.r.t. to Costs, in each of the sets 

1 2 3
, ,V V VP P P . Then we compute the top ath (lower) Cost percentile subset %

i

LC
VP α  

(i.e. points in each of 
1 2 3
, ,V V VP P P , with Costs %

i

Top
VC α≤ ), where a = 10, 20, 90, from 

each set of Pareto points (one for each patient type) 
1 2 3
, ,V V VP P P . Next we compute 
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the average of the Health Performance metric (or index) (i.e. average with 

respect to the Health Performance coordinate of these sets of 3D points), the 

average of the Cost metric (i.e. average with respect to the Cost coordinate of 

these sets of 3D points), and the average Reward metric (i.e. average with 

respect to the Reward coordinate of these sets of 3D points), for each of the 

subsets 10% 20% 90%, , ,
i i i i

LC LC LC
V V V VP P P P  20%

i

HHP
VP , for i =1, 2, 3, of Pareto points. In Table 

6 we show the results of these computations. The first column shows the type of 

patient. The second column shows the percentile thresholds considered as we 

mentioned above. The third column shows the average Cost, the fourth column 

shows the average Reward, and the last column sows the average Health 

Performance, computed over the subsets of Pareto points defined by these 

percentiles as discussed above. 

Type of 
patient Averages Cost Reward H.C P 
V1 No Thresholds 2802.042 0.674 0.489 
V1 20% 2381.882 1.076 0.722 
V1 10% 2294.143 1.134 0.766 
V1 90% 2714.318 0.735 0.765 
V2 No Threshold 2840.575 0.648 0.490 
V2 20% 2416.192 1.028 0.696 
V2 10% 2344.154 1.079 0.737 
V2 90% 2756.184 0.704 0.523 
V3 No threshold 2817.58 0.663 0.485 
V3 20% 2405.583 1.043 0.697 
V3 10% 2335.583 1.072 0.737 
V3 90% 2734.252 0.724 0.512 
 

Table 6: Comparison of Health Performance vs Costs vs Reward for subsets of 
Pareto points clustered by patient type and percentile statistics of Cost. 
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Again there are several observations that can be made from these results 

regarding the effects of patient type. For example V1 type patients get better 

Health Performance than V2 or V3 type patients, while the corresponding Costs 

do not differ that much. Similarly for Reward values vs Cost values. As 

mentioned elsewhere, the point of these examples and computations is not to 

derive conclusive medically relevant results, but rather to demonstrate the rich 

set of analytics capabilities that can be built using the Reasoning Engine we have 

constructed.    

 

Section 9.3: Comparison of Tests and Interventions Based on Health 
Improvement Impact 

 

A common set of questions that the health care community tries to answer is the 

relationship between diagnostic tests and interventions, given the time history 

of patient and/or the time history of the treatment being followed, etc.. Let us 

show how the Reasoning Engine can be used to compare tests and interventions. 

Some typical questions and reasoning follow. Which test for each type of patient 

has the best impact on the patient time history? How one can use the data to try 

to evaluate this type of a question? For example one can select from the data the 

time histories where there was a reversal of the disease progression; that is the 

patient became diabetic at some time, in the horizon we use, and then became 

healthy at the end of the horizon. One can rank this subset of time histories 

according to the time steps it took to reverse the disease; the smaller number it 

took to improve the health care represented in this time series. Can one identify 
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the tests that were used in the best three subsets of such time histories? We can 

of course repeat this entire set of analysis for interventions. We can then also 

compare the results of such studies for each patient type, and study whether 

such a comparison reveals anything interesting. 

Typical medical informatics practice collects data on many similar patients 

and/or patient time histories, which include results following the application of 

a test and/or an intervention in terms of disease state transitions, time durations 

the patient’s health stays at a particular state, health care costs, and other data 

and measurements of health care results. One example of such healthcare 

studies includes studies that are based on a comparison of a mainstream therapy 

(test and intervention sequences) with a novel and pioneering one. As discussed 

already in several parts of this thesis another strong factor in the success or not 

of a therapy is the behavior of the patient; the more cooperative the patient is 

with the doctor, the higher the probability that the intervention would be 

successful.  

In this Section we describe some representative analytics that can be performed 

using the Reasoning Engine we constructed. We describe studies that we 

performed using the EMCS method, where we analyzed patient time histories 

with every combination of tests and interventions and we compare the test and 

interventions employed based on their efficiency and risk patient type. The 

Monte Carlo generated results of time histories with tests and interventions 

sequences, show time histories (trajectories) through different health states. We 
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examined the state trajectories looking for transitions from unhealthy to healthy 

states. These improving health transitions are considered successes of the 

particular test and intervention used. These transitions, that lead from 

unhealthy to healthy, are captured for each test and/or intervention and are 

compared to the total number that this particular test and/or intervention was 

used. The ratio between the number of successful uses of a test/intervention and 

their total number of uses is the efficiency ratio for this test and intervention and 

for this particular patient time history.  

We performed many studies of this type on synthetic simulation data. In Table 7 

we show the results of a representative such analytics that address some of the 

questions described in the beginning of this section. In Table 7: 

• The first column shows the method applied to compute the Pareto points 

and thus determine the interventions to use in each time period; 

• The second column shows the specific intervention by giving its number 

(based on the index of their database);  

• The second column shows the time periods (from the ten in each time 

history, summed over all time histories used) at which the specific 

intervention was used (from the Pareto points computed); 

• The third column shows the time periods (from all time histories) when 

the use of the intervention led to an improvement in the patient health 

state;  
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• The fourth column shows the efficiency of each intervention (the ratio of 

the number of improvement times vs the total number the intervention 

was used).  

Model and 
Method used 

Patient 
type Interventions 

Number of times 
implemented 

specific 
intervention 

Number of 
improvement 

times 
Efficiency 

EMCS  (2 
variables) V1 6 711 129 18% 

EMCS  (2 
variables) V2 8 26 6 23% 

EMCS  (2 
variables) V3 8 28 6 21% 

EMCS  (3 
variables) V1 7 53 19 36% 

EMCS  (3 
variables) V2 8 36 16 44% 

EMCS  (3 
variables) V3 8 38 17 45% 

FOMCO V1 6 n/a n/a 53% 
FOMCO V2 6 n/a n/a 75% 
FOMCO V3 6 n/a n/a 75% 

 

Table 7: Best performed intervention for V1, V2, and V3 risk type of patients. 

From inspection of the results in Table 7, one can conclude that intervention 6 

was  

more efficient for patient type V1 (Risk Averse), while intervention 8 was most 

efficient for patients type V2 (Risk Indifferent) and V3 (Risk Taker). 

 
 
Section 9.4: Comparison of Tests and Interventions Based on 

Specific Health Improvement State Transitions 
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This Section is very similar in concept with the Section 9.3, but with finer detail. 

Namely we investigated the relationship between tests and interventions that 

leads to health improvement, but we also clustered (grouped) these 

improvement transitions based on which of the three health states this 

improvement happened. In a similar fashion as in Section 9.3, in this Section we 

analyze every combination of tests and interventions used in all time histories in 

our data, grouped them by specific health state improvement and then we 

compare them by their efficiency and risk patient type. The Monte Carlo 

simulations generated results of tests and interventions that lead to different 

state trajectories (time histories of patient health states). We used the EMCS 

method to compute Pareto points, and thus the tests and interventions to be 

applied at each time instant. The health state transitions from diabetic to pre-

diabetic, from pre-diabetic to healthy and from diabetic to healthy were 

captured, the tests and interventions involved were identified, and then we 

compared the number of applications resulting to health improvement 

transitions to the total number that this test and intervention were used. The 

ratio between the number of successful tests/intervention applications and the 

number of all applications is as before the efficiency of the test and intervention. 

We performed many such studies in the synthetic data we generated. In Tables 8 

and 9 we show the results of representative such analytics; Table 8 shows 

results on evaluation of interventions, while Table 9 shows results on evaluation 

of diagnostic tests. In Tables 8 and 9:  

• The first column shows the patient type; 
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• The second column shows the type of state transition (from sick to 

healthier);  

• The third column shows the intervention causing the health 

improvement; 

• The fourth column shows the total number of times this specific 

intervention was used over all patient time histories, for each patient 

type;  

•  The fifth column is the total number of times the specific intervention 

caused the specific improvement state transition;  

• The sixth column shows the efficiency of the intervention (which is the 

fraction of the numbers in the fifth and fourth columns). 

Type of 
patient  

Improvement 
between 
states 

Type of 
intervention 

Times 
intervention 
was used in 
the therapy 

Times of 
improvement 

Efficiency 

Risk 
averse 

2 to 1 8 28 1 4% 

Risk 
averse 

3 to 2 6 680 34 5% 

Risk 
averse 

3 to 1 7 131 4 3% 

Risk 
indifferent  

2 to 1 8 26 1 4% 

Risk 
indifferent 

3 to 2 6 672 30 4% 

Risk 
indifferent  

3 to 2 7 128 5 4% 

Risk 
indifferent  

3 to 1 6 672 16 2% 

Risk 
indifferent 

3 to 1 7 128 3 2% 

Risk taker  3 to 2 6 680 34 5% 
Risk taker 2 to 1 8 28 1 4% 
Risk taker 3 to 1 6 680 34 5% 

 

Table 8: Evaluation of intervention for specific improved health state 
transitions, for each patient type. 
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Type of patient Improvement 

between states a 
to b 

Type of test Times of 
intervention used 
in the therapy 

Times of 
improvement 

Efficiency 

Risk averse 2 to 1 2 769 80 10% 
Risk averse 3 to 2 1 741 35 5% 
Risk averse 3 to 1 3 497 19 4% 
Risk indifferent 2 to 1 1 690 89 13% 
Risk indifferent 3 to 2 3 503 21 4% 
Risk indifferent 3 to 1 1 690 12 2% 
Risk indifferent 3 to 1 3 503 9 2% 
Risk taker 2 to 1 1 689 87 13% 
Risk taker 3 to 2 2 681 27 4% 
Risk taker 3 to 2 3 493 22 4% 
Risk taker 3 to 1 1 689 14 2% 
Risk taker 3 to 1 2 681 13 2% 
Risk taker 3 to 1 3 493 10 2% 

 
Table 9: Evaluation of diagnostic test for specific improved health state 

transitions, for each patient type. 

We can also collect all the results for “best” health improvement state transitions 

caused by specific interventions, for each patient type, and for each possible 

health improvement state transitions. Table 10 shows the results that can be 

used the relationship between specific interventions, patient type and specific 

next state health improvement. The nomenclature for each column is similar as 

before and is provide in the headings of the columns of Table 10. 

Type of 
patient 

Health state 
improvement 

Intervention 

Number of 
times 
applied 

Number of 
Improvement 
Times Efficiency 

V1 3 to 2 1 54 16 30% 
V1 2 to 1 3 193 27 14% 
V1 3 to 1 3 193 27 14% 
V2 3 to 2  1 81 21 26% 
V2 2 to 1 3 251 55 22% 
V2 2 to 1  8 36 8 22% 
V2 3 to 1  3 251 55 22% 
V2 3 to 1 8 36 8 22% 
V3 3 to 2 1 72 20 28% 
V3 2 to 1 3 237 40 17% 
V3 3 to 1 3 237 40 17% 

Table 10: Best performing interventions and their efficiencies, for health state 
improvement from every state and patient type 
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Section 9.5: Effects of Patient Type on Health Quality vs Cost: Based 
on Pareto Frontiers with New Health Quality Metric 
 

This section is related with Section 9.1. Here we take as Health Quality metric 

the number of time periods (i.e the number of years out of ten years) a patient is 

in the Healthy state (i.e. Diabetes disease state 1). This Health Quality metric is 

simply the counting statistic 1 ( )i
iO m  (see (15), Chapter 5 , page 60). This type of 

study shows a different analytics capability of our Reasoning Engine. Namely the 

ability to use different metrics for tradeoff analysis and additional analytics as 

the ones we have discussed and demonstrated in this Chapter. This is an 

important capability in order to be able to analyze the robustness of decision 

making and analytics in HCMS, with respect to the analytic model used for a 

metric (or metrics). Previously (Section 9.1) we analyzed, how the Pareto 

frontier was affected by the patient type (health risk behavior) for the Health 

Quality metric defined in Chapter 5. Here, we investigate a similar question 

regarding Health Quality and Cost tradeoff, when we consider the new Health 

Quality metric. We are interested to investigate whether the Pareto front 

changes and by how much. Such study may also reveal behavioral trends 

regarding the value patients place on their health vs their type. 

We used the EMCS method to compute Pareto points, selected the Pareto points, 

that are related with Health state one and we grouped them by the behavioral 

risk of patient (by patient type). Then we plot the new Pareto frontier together 

with the Pareto frontier that we have in Section 9.1 and check for differences.  
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In Figures 37 and 38 we show representative results of such computations for 

Risk Averse and Risk Taker patient types.   

 

 

Fig. 37: Total cost to Health Value between all states and keeping the Healthy 
state only for Risk Averse patients (V1). 

In the graph of Figure 37, we have comparable representation of the normal 

health performance vs cost curve including all the health states. The second 

curve, which follows a linear behavior between cost and health value, is the 

health performance value when only the state healthy state was selected.   

 

Fig. 38: Total cost to Health Value between all states and keeping the Healthy 
state only for Risk Taker patients (V2). 
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Chapter 10:  Conclusions and Directions for Future 

Research  

 
The present thesis investigated the value of System Engineering, and especially 

of Model Based System Engineering (MBSE), as a basis for a framework for the 

development of Health Care Management Systems (HCMS) for chronic diseases. 

We used Diabetes Mellitus as a driving specific case. We developed such a 

framework and demonstrated the value of a MBSE approach. We focused on the 

development and evaluation of the Reasoning Engine component of a HCMS. We 

showed that tradeoff analysis methods linked with integrated models of disease 

progress that incorporate diagnostic tests and interventions provide a powerful 

foundation for such a Reasoning Engine, as it allows the investigation of a rich 

variety of “what-if” type questions.  

Following modern MBSE, we developed Use Case, Structure, Behavior, 

Requirements Diagrams and Requirements Traceability Matrix for components 

of the Reasoning Engine. We developed a Controlled Markov Chain model for the 

progression of Diabetes Mellitus, with three states, three diagnostic tests and ten 

interventions. We developed several metrics in our new framework and focused 

on two: Health Care Quality metric and Cost metric. We considered three types 

of patient behavior: Risk Averse, Risk Indifferent and Risk Taker. We also 

showed how to generate several other metrics including a Reward metric. We 

developed two basic methods for tradeoff analysis and developed, implemented 
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and tested the associated algorithms, that were incorporated in the Reasoning 

engine of the HCMS. The first, Evaluation by Monte Carlo Simulation (EMCS) 

generates all possible patient time histories with all possible test and 

intervention sequences, and then computes Pareto points by direct comparison. 

The second, Fully Observable Multi-criteria Optimization (FOMCO) is based 

on the use of Dynamic Programming (DP) for multi-criteria optimization. Two 

cases of FOMCO were developed. The first, FOMCO-SN, is based on scalarization 

and normalization, and combines the metrics for trade off analysis in one via 

convex combination. The second FOMCO-E, selects one metric to optimize and 

treats the remaining ones as constraints. FOMCO-SN is more efficient 

numerically than FOMCO-E and it was selected for further development, 

implementation and experimentation. Based on our optimization results for 

Pareto points for the EMCS method and Stochastic Dynamic Programing for 

FOMCO-SN, we conducted a rich analysis, based on several trade-off “what if” 

scenarios, as “imitations” of real world decision making and analytics in the 

healthcare management environment. We compared the results of both methods 

and we discovered some computational advantages of one method over the 

other. We demonstrated the decision making and analytics capabilities of the 

Reasoning engine we developed by investigating several practical and important 

problems for healthcare management and support.    

The limitation that we faced during this thesis research was the lack of similar 

studies in System Engineering, Health Operations and Health Technology 

Assessment. The basic methods that we used are used in Operational Research 

 165 
 



and Control Theory, and there have been a few health care applications, but not 

in Diabetes Mellitus management. Other limitations that we observe during this 

research were the luck of datasets for health performance, or cost of tests and 

interventions. Clinical studies tend to focus mostly in comparison analysis of 

non-therapy and therapy, but they don not use a common cost function or a 

common health value metric. Most of the clinical studies are based on close 

datasets and the validation of their results and conclusions is limited. Therefore 

we generated simulated data sets for our studies and analytics, by assuming 

values for costs and other model parameters consistent with the literature on 

Diabetes Mellitus. Last but not least, there is a clear need for collaboration 

between physicians, and engineers for resolving this problem in a realistic 

manner.  

Future work will be the continuation of the model development and better 

linkage to clinical and medical databases and incorporation of machine learning 

methods. Another direction we will pursue is the formulation, development, 

simulation, analysis and evaluation of the Partially Observed Multi-criteria 

Optimization (POMCO) method. The Partial Observed Multi-criteria 

Optimization could be used as decision making tool for a physician or health care 

provider for Diabetes Mellitus, based on their selection of solutions we can map, 

and attract their decision making rationalizing and come up with decision trees 

for analysis. The decision trees could also be compared with machine learning 

techniques like the one of Random Forest, trying to cluster the actions of a 

physician. Furthermore, as part of future research should be close cooperation 
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with physicians, hospital or Accountable Care Organizations for implementation 

of the various resulting techniques, algorithms and visualization of trade-offs 

explorations of what-if scenarios. Finally, the present framework needs to be 

deployed as software, with abilities to extract information, transform the results 

based on the queries and optimization methods and load the results in 

meaningful visualizations for more accurate and advanced decision making.   

A key output form our Reasoning Engine of a HCMS, are the Pareto points (or 

Pareto frontiers) that describe succinctly the relative value of treatments and 

tests vs the overall health care quality of a patient’s time history. Running ECMC 

with two metrics (and 2-D graphs) for 10,000 patients and 32 runs, took for the 

whole experiment 783sec. Running ECMS with three metrics (and 3-D graphs) 

for 100,000 patients took for the whole experiment 1,385 sec. FOMCO outputs 

directly the Pareto-points and other related information and is very fast. For the 

same problems that the First Method (EMCS) took 783 sec (two metrics, 10,000 

patients, 32 runs) and 1,385 sec (3 metrics, 100,000 patients, 9 runs), our  

Second Method (FOMCO-SN) took only 2.36 sec on the same laptop. Preliminary 

experiments with initial POMCO implementations took only twice the time of 

FOMCO. The Pareto points and frontiers computed are very similar to those 

computed with EMCS but at two or more orders faster time as shown in the 

tables just below!  
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Method Name Function Name Computing Time 
ECMS (Cost, 
Performance) 

Main 1,384.996 sec 

 Monte Carlo (random variables 
generator) 

867.597 sec  

FOMCO- SN Main 2.009 sec 
 Monte Carlo(random variables 

generator) 
1.336 sec  

 
Table 11: Computational Time comparison between EMCS and FOMCO-SN 

methods 
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Appendix 1: 2D Graphs from 32 Runs on 10,000 Patients  
 
In Appendix 1, we include a whole set of 2D graphs for 32 simulation runs of our 

model for 10,000 patients. These 2D graphs produced by our MBSE system, 

provide the Pareto frontier (red points) (Health Performance vs Cost) for each 

patient history. All three types of patients were included. 

 
Figure 1 sample 1-3 patient V1 

 
Figure 2 sample 3-6 patient V1 
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Figure 3 sample 6-9 patient V1 

 
Figure 4 sample 9-12 patient V1 

 
Figure 5 sample 12-15 patient V1 

 

 
Figure 6 sample 15-18 patient V1 

 
Figure 7 sample 18-21 patient V1 
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Figure 8 sample 21-24 patient V1 

 
Figure 9 sample 24-27 patient V1 

 
Figure 10 sample 27-30 patient V1 

 

 
Figure 11 sample 31-32 patient V1 
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Figure 12 sample 1-3 patient V2 

 
Figure 13 sample 3-6 patient V2 
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Figure 14 sample 3-6 patient V2 

 
Figure 15 sample 6-9 patient V2 

 
Figure 16 sample 12-15 patient V2 
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Figure 17  sample 15-18 patient V2 

 
Figure 18 sample 18-21 patient V2 
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Figure 19 sample 21-24 patient V2 

 
Figure 20 sample 24-27 patient V2 

 
Figure 21 sample 37-30 patient V2 
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Figure 22 sample 31-32 patient V2 

 
 
 

 
Figure 23 sample 1-3 patient V3 
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Figure 24 sample 3-6 patient V3 

 
Figure 25 sample 6-9 patient V3 
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Figure 26 sample 9-12 patient V3 

 
Figure 27 sample 12-15 patient V3 
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Figure 28 sample 15-18 patient V3 

 
Figure 29 sample 18-21 patient V3 
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Figure 30  sample 21-24 patient V3 

 
Figure 31 sample 24-27 patient V3 
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Figure 32  sample 27-30 patient V3 

 
Figure 33 sample 31-32 patient V3 
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Appendix 2: 3D Graphs from 9 Runs on 100,000 Patients  
 
In Appendix 2, we include a whole set of 3D graphs for 9 simulation runs of our 

model for 100,000 patients. These 3D graphs produced by our MBSE system, 

provide the Pareto frontier (red points) (Health Performance vs Cost vs Reward) 

for each patient history. All three types of patients were included. 

 

 
Figure 34 V1 patient runs for 1-3 for 100k patients 

 
Figure 35  V2 patient runs for 1-3 for 100k patients 
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Figure 36 v3 patient runs 1-3 for 100k patients 

.  
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