
ABSTRACT

Title of Thesis: PERFORMANCE EVALUATION OF
NULLSPACE STOPPING CONDITION
INCORPORATING NETWORK CODING
IN DELAY TOLERANT NETWORKS

Wei Bai, Master of Science, 2015

Thesis directed by: Professor Richard La
Department of Electrical and Computer Engineering

For delay tolerant networks (DTNs), since there is no guarantee of end-to-end
path from a source to a destination, routing protocols should make use of oppor-
tunistic contacts to deliver files. Although protocols employing network coding have
been shown to achieve promising results in DTNs, they still suffer from redundant
transmissions. An efficient stopping condition utilizing nullspace has been proposed
recently. But more comprehensive studies are needed. In this thesis, a systematic
research on effectiveness and efficiency of nullspace stopping condition is explored.
We propose a novel algorithm to calculate nullspace. Using comprehensive simula-
tions, we show that the benefits of nullspace stopping condition to network coding
depend on scenarios. Moreover, performances may vary even in the same scenari-
o with respect to the number and size of disseminated files. Finally explanations
about these phenomena are given out.

PERFORMANCE EVALUATION OF NULLSPACE STOPPING
CONDITION INCORPORATING NETWORK CODING IN

DELAY TOLERANT NETWORKS

by

Wei Bai

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2015

Advisory Committee:
Professor Richard La, Chair/Advisor
Professor Gang Qu
Dr. Greg Stein

c⃝ Copyright by
Wei Bai
2015

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible.

First and foremost, I would like to thank my supervisor, Prof. Richard La

for his great scientific guidance. Richard’s vast experience in research, combined

with his kindness, smile and sincerity, taught me how to produce high-quality work

with a positive attitude, always being precise, objective and very self-critical. More

importantly, he provided very constructive feedback in sharping my research philos-

ophy: finding a problem, formulating the problem and solving the problem. I would

also thank him for revising the thesis with great responsibility, even taking care of

grammar details, through which my writing skills improved significantly.

Next, I would like to thank Dr. Greg Stein, formerly in Laboratory for T-

elecommunication Sciences, and currently in Trusted System Research. As the re-

search scientist for the cutting edge technologies, he broadened my horizon to great

extent. Especially, he introduced a lot to me how the research would be applied

in real world. Simultaneously, he provided me with many innovative ideas where I

benefited from. I would also appreciate him for participating our afternoon meetings

in the university.

Then I would like to thank Dr. Ginnah Lee for her previous excellent work,

where my research project is based. She had established an excellent simulation

framework for my research, and provided many interesting results for use. She also

taught me a lot about programming skills.

I would also like to thank Prof. Qu Gang, as my committee member and

ii

providing valuable feedback for my research and thesis. Additionally, I could not

forget great support from Staffs in ECE department, especially Mr. Bill Churma

and Mrs. Heather Stewart to arrange the defense.

Last but not least, I dedicated this thesis to my parents, for their unconditional

love during all these years, especially for their great support for my decision pursuing

higher levels of education in the US. I am grateful for everything they sacrificed for

my upbringing and education.

iii

Table of Contents

List of Figures vi

1 Introduction 1

2 DTN Routing Protocols 4
2.1 Overview . 4
2.2 Epidemic Routing . 6
2.3 Coding Schemes . 8

2.3.1 Source Coding . 9
2.3.2 Network Coding . 10
2.3.3 Epidemic routing with coding schemes 12

2.4 Immunity Mechanism . 12

3 Nullspace Stopping Condition for Network Coding in DTN 15
3.1 Nullspace Stopping Condition . 15
3.2 Algorithm to Create Nullspace Bundle List 17
3.3 Determining Innovation Using Nullspace Bundles 19
3.4 Error Analysis of Nullspace Stopping Condition 20
3.5 Update Implementation . 21

4 The ONE Simulator 24
4.1 Overview for DTN Simulators . 24
4.2 Structure of the ONE Simulator . 26
4.3 Configuration of the ONE simulator 29
4.4 Limitations of the ONE simulator . 31

5 Simulation Results 32
5.1 Scenario #1: Urban Network . 33

5.1.1 Multiple File Case . 33
5.1.2 One Large File . 35
5.1.3 Analysis . 36

5.2 Scenario #2: Island Hopping . 37
5.2.1 Multiple Files . 38

iv

5.2.2 One Large File . 42
5.2.3 Analysis . 43

6 Conclusion 45

A Parameters for Simulation 46

Bibliography 49

v

List of Figures

2.1 Message exchange of epidemic routing 7
2.2 Structure of Control Message . 14

3.1 Structure of Nullspace Bundle List 17
3.2 Structure of Control Message with Nullspace Stopping Condition . . . 22

4.1 Structure of the ONE simulator . 27
4.2 Screenshot of the ONE simulator running on Istanbul map 29

5.1 Istanbul Urban Map . 33
5.2 Number of Delivered Files (left) and Delivery Latency (right) in Is-

tanbul Map with 100 Files . 34
5.3 Rank of Encoding Matrix of the Single File in Istanbul 35
5.4 Island Hopping Scenario . 37
5.5 Number of Delivered Files (left) and Delivery Latency (right) in Is-

land Hopping with 40 Files . 39
5.6 Number of Delivered Files (left) and Delivery Latency (right) in Is-

land Hopping with 100 Files . 40
5.7 Rank of Encoding Matrix of the Single File in Island Hopping 42
5.8 Performances of NC and NC-NSC in Island Hopping with One File . 43

vi

Chapter 1: Introduction

The increasing interest in delay tolerant networks (DTNs) [1] has heightened

the need for efficient protocols to transmit data from sources to destinations in

challenging environments, such as mobile ad hot networks (MANETs), interplane-

tary internet, military ad hoc networks and wildlife tracking sensor networks. This

kind of networks are disruptive due to sparsity of mobile nodes, constrained energy

resources, the limits of wireless radio range, etc. Therefore, traditional network so-

lutions, such as Internet protocols, fail to support DTNs since there is no guarantee

of contemporaneous end-to-end connectivity between a source and a destination.

Instead, a different network framework [2] [3] is established to provide solu-

tions for DTNs, and a variety of routing protocols have been proposed based on

this framework. Among various techniques, coding schemes have shown promising

prospects because of its adaptability to change in network topology and low over-

head cost. Coding schemes include source coding, where only source nodes generate

encodings, and network coding that allows intermediate nodes to recombine received

encodings. A closed-form expression showing the relation between the performance

of DTNs and the coding that is used is provided in [19]. The authors in [18] present

a coded forwarding protocol, which jointly considers forwarding schemes and the use

1

of fountain code. The performance of random linear coding for unicast scenarios in

DTNs are evaluated in [24]. An analytical model is developed in [25] for network

coding in DTNs to demonstrate benefits in resource-constrained situations. Coding

schemes are shown to be feasible in [26], where SimpleNC, a network coding router

for the DTN2 Reference Implementation, was built. The authors of [27] extended

SimpleNC in a way that the encountered nodes exchange encodings while taking

into account the ranks of their encoding matrics.

Although coding schemes provide a powerful tool for distributing information,

unnecessary coding process and transmissions can lead to a waste of resources.

A stopping condition utilizing nullsapce is developed in [32] to reduce redundant

transmissions and control data flow, where the proposed protocol is based on [26]

and [27]. Aware of the mathematical structure of the underlying code, this stopping

condition is based on the nullspace of the space spanned by encoding vectors [33].

Two nodes that meet will exchange nullspace bundles first, and then determine

whether to send encoded information to each other or not based on the received

nullspace bundle. However, the experimental results provided in [32] are limited.

Also, the network model is fairly simple, including only three nodes - a source,

a destination and an intermediate node. In an island hopping scenario, very few

number of bundles with small sizes are generated during an experiment, and also the

group rank may not be a good metric since we are usually concerned with whether

or not the bundle is received by the destination node, not collectively by a group of

nodes.

Therefore, considering the limitations of previous research, in this thesis, we

2

evaluate nullspace stopping condition more systematically. The contributions in this

thesis are as follows.

• A more realistic DTN simulator, the ONE simulator [47], is used to evaluate

performances of nullspace stopping condition in two representative scenarios:

urban scenario and island hopping scenario. In each scenario, multiple rela-

tively small files or one large file is generated to simulate different situations.

• In creating nullspace bundle list, a simplified algorithm to calculate nullspace

matrix based on the reduced row echelon form of the encoding matrix is pro-

posed to reduce computational complexity.

Our simulations show that the effectiveness and efficiency of nullspace stopping

condition vary depending on scenarios. Even in the same scenario, the performances

diverge if different numbers and sizes of files are generated by the source. The

reminder of this thesis is structured as follows. Various DTN routing protocols are

introduced in chapter 2. In chapter 3, the nullspace stopping condition is described,

and the algorithms to create and update nullspace bundle list are detailed. The

ONE simulator as the simulation platform for our research is introduced in chapter

4. Simulation results and discussions are shown in chapter 5, and chapter 6 concludes

the thesis.

3

Chapter 2: DTN Routing Protocols

In this section, various routing protocols in DTNs are introduced. First, differ-

ent categories of routing protocols are reviewed in general. Then, epidemic routing

and coding schemes are described in detail. Finally, an immunity mechanism is

described.

2.1 Overview

Since there is no guarantee of end-to-end connection from a source to a destina-

tion, DTN protocols should make use of opportunistic contacts between encountered

nodes to deliver files or messages. DTN routing protocols can be categorized into

two classes: forwarding-based protocols and replication-based protocols. The first

keeps only one copy of the message, and forwards it to the destination at each con-

tact. The second produces several replicas of each unique message in the network

in hopes of increasing the message delivery ratio.

As examples of forwarding-based protocols, traditional routing protocols, such

as AODV [4] and IP [5], are not applicable in DTNs since there is no guarantee of

end-to-end connection between a source and a destination. Several forwarding-based

protocols in DTNs have been investigated [6] [7] [8]. The routing issues in DTN are

4

first formulated in [6], where network connectivity patterns are known. A similar

reference [8] also proposes a model for nodes to make a series of independent, local

forwarding decisions through DTNs. However, their models are based on both cur-

rent connectivity and predictions of future connectivity information, which may be

available only to a certain class of DTNs (e.g., a scheduled bus network). The pro-

posed scheme in [7] mimics routing table construction in DTNs similar to caching in

program execution. But, it makes a strong assumption that node movements are re-

current to guarantee bounded worst-case performance, which limits its effectiveness

to more general movement models.

Replication-based protocols can be further categorized into two sub-classes:

flooding-based and quota-based. Compared to forwarding-based protocols, since

several copies of the message are flowing in the network, there is a trade-off for

replication-based protocols between improvement of delivery probability and re-

sources consumption (e.g., buffer size, bandwidth). The difference between flooding

and quota based routing protocols lies in the number of message replicas. Flooding-

based protocols send a new copy of a message following every node contact, while for

quota-based protocols, the total number of replicas in the network for each unique

message is limited to L, where L can be either a fixed number or a discrete variable.

Therefore, a replication-based routing protocol is quota-based if and only if L is in-

dependent of the number of nodes in the network; otherwise it is flooding-based [9].

5

2.2 Epidemic Routing

In this section, epidemic routing [10] is introduced as a representative of

flooding-based protocols. For epidemic routing, ideally every node will have a repli-

ca of each unique message created by sources. In this protocol, each node maintains

a buffer which consists of messages it has received. To reduce unnecessary resource

consumption, only one replica of each unique message is kept at each node. A bit

vector, called summary vector, is used to indicate messages stored at every node.

Also, a Bloom filter [11] can be employed to reduce the number of bytes required

to represent the summary vector. A Bloom filter is a space-efficient probabilistic

data structure. An empty Bloom filter is an all-zero bit array of m bits. Then k

different hash functions are defined, each of which hashes some set element to one of

the m array positions with a uniform distribution. An element is added by feeding

it to each of the k hash functions to get k array positions, and setting the bits of

all these positions to 1. To query for an element, similar to the process of adding

element, it is fed to each of the k hash functions to get k array positions. If any

of the bits at these positions is 0, the element is definitely not in the set (thus no

false negatives 1). If all positions are 1, then either the element is in the set, or the

bits are happened to be set to 1 during insertion of other elements, resulting in false

positives. The more elements are added into the set, the larger the probability of

false positives.

1There are two types of errors: false positives and false negatives (or type I and type II errors).
False positives are errors that detect an event that is not present; while false negatives are errors
that fail to detect an event that is present.

6

A B

Step 1

Step 2

Step 1: Node A sends its summary vector to node B;

Step 2: Node B determines what A lacks (), and transmits to node A.

* represents summary vector of node A

Figure 2.1: Message exchange of epidemic routing

To reduce redundant transmissions, when two nodes meet at each contact,

there are three steps to follow in order to exchange messages [10]. First, the two

nodes that meet exchange their summary vectors to determine what messages they

are missing and should receive from the other node. Second, each node send an

acknowledgment to its counterpart to request missing messages. Finally, each node

transmits the requested messages to the other node. Based on our observations, step

two can be skipped, since from the summary vector received from the other node, a

node itself can determine what messages its counterpart lacks, and then transmits

these messages. Figure 2.1 depicts an example of message exchange in the epidemic

routing protocol.

Epidemic routing is one of the commonly used protocols in DTN research due

to its simplicity of implementation and little required knowledge about underlying

network topology. We adopt it as one basic protocol for our research.

7

2.3 Coding Schemes

Coding-based protocols have shown great potential in DTNs. The basic idea of

coding scheme is that when a file is to be sent from a source, it will be first chopped

into smaller chunks. If these chunks are sent out through a flooding protocol, the

collection of all distinct chunks at the destination suffers from coupon collector’s

problem [12], i.e., the first few chunks will reach destination fairly quickly, while it

will take long time to collect the last few required ones. Suppose a file is chopped

into n chunks, the expected number of chunks destination needs to receive all n

distinct chunks is O(n log(n)), if all the chunks are received equally likely and with

replacement. Thus, to overcome this problem, coding schemes allow sources and

intermediate nodes to perform coding operations, combining different chunks before

disseminating. The destination only needs to receive n linearly independent encoded

chunks (or encodings) to recover the original file. Based on which nodes produce

new encodings, coding schemes can be categorized into two sub-classes: (1) source

coding, or erasure coding, where only sources generate new encodings; and (2)

network coding or recoding, where intermediate nodes generate new combinations

of received encodings, which further increases combination of information in the

network.

Some terminologies related to coding schemes are listed below.

File: a message which is created at source nodes. It will be chopped if it is

too big compared to contact time and transmission rates. Each file will be assigned

a universally unique identifier (UUID).

8

Chunk: a fragment fi of one file. As a part of the file, it is associated with

the same UUID as original file. Denote n be the total number of chunks of one file

that is chopped.

Coefficient vector: a vector α =< α1, . . . , αn > controls what chunks to be

used to create new encodings at the source. Elements of α is usually chosen from

GF(2)n. The encodings are denoted by c =
∑n

1 αifi.

Network-coding vector: suppose one intermediate node has received t en-

codings for one UUID. Then network-coding vector β =< β1, . . . , βt > chooses

encodings on this intermediate node to perform coding to create a new encoding

d =
∑t

1 βici. Note that only encodings with the same UUID are used in network

coding, i.e., two encodings with different UUID cannot be recombined.

2.3.1 Source Coding

The concept of source coding is to deliberately add redundancy before for-

warding in order to improve performances. Previously, files are chopped into small-

er chunks, which are then transmitted independently over network. With source

coding, the source node disseminates encodings rather than original chunks, usually

more than n. Therefore, some of them are redundant. The receiver can recover the

original file with high probability if it can receive slightly more than n encodings.

Two categories of source codes have been proposed: erasure codes and fountain

codes [16]. Compared to the fixed redundancy in erasure codes, fountain codes are

rateless, and the original file can be recovered provided that the encoding vectors

9

of received encodings form a full rank matrix. Several coding algorithms have been

investigated, such as linear random codes, tornado codes [13], LT codes [14], raptor

codes [15], etc. There is a trade-off between coding/decoding efficiency and the

number of encodings to be collected by the receiver. Some surveys and theoretical

analysis about encoding/decoding complexity can be found in [16] and [17].

Source coding is first employed in DTN in [18], where a coded forwarding

protocol is proposed to integrate fountain codes and optimal probabilistic forward-

ing together. It is shown that the proposed protocol performs better than epidemic

and optimal probabilistic forwarding (OPF) protocols using trace data from UMass-

DieselNet. A closed-form expression for the performance in terms of delivery ratio

and energy consumption of DTNs as a function of the coding used is provided in [19],

and the existence of phase transitions in coding schemes is also found. A fountain-

coding based transport protocol DTTP is proposed in [20], and simulations using the

ONE simulator validates performance improvement by introducing fountain codes.

The effects of different source codes in DTNs are out of scope of this research.

We adopt the random linear codes for this study.

2.3.2 Network Coding

One shortcoming of epidemic routing is the high bandwidth consumption dur-

ing exchange of summary vectors, especially when the total number of encodings

is large. Network coding [21], by combining encodings at intermediate nodes, has

shown great potential due to its resistance to change of network topology and vari-

10

ous network attacks [22] [23]. Also, protocols with network coding does not require

exchange of summary vectors. In this thesis, we deliberately distinguish network

coding from source coding (in which only source nodes perform encoding), which

has been discussed in section 2.3.1.

Network coding has been researched extensively in DTN protocols. [24] e-

valuates the benefits of random linear coding for unicast scenarios in DTNs when

bandwidth and buffer space are constrained. The efficiency of network coding is also

validated in [25], where information-theoretical analysis is provided. [26] proposes a

network coding router for the DTN2 Reference Implementation, SimpleNC, to show

that network coding is practically achievable, and the performance of network coding

is evaluated in island hopping scenarios. [27] extends the protocol proposed in [26]

by considering rank information of encountered nodes, and implemented a Context-

Aware Network-Coded (CANC) context agent to control message exchanges.

Recall that in network coding, intermediate nodes choose a random set of

stored encodings and combine them to create a new encoding. The new encoding is

d =
∑t

1 βici, where ci (i = 1, . . . , t) are stored encodings, and β =< β1, . . . , βt > is

network-coding vector. Each βi is chosen from finite field GF(2). Denote Wt to be

the hamming weight of β, i.e., the number of 1s in β. In the research, the weight

of β is limited to reduce coding complexity.

For routing protocols employing network coding, apart from the destination

node, there are two strategies available for intermediate nodes to receive encodings.

One is that intermediate nodes perform rank check every time they receive a new

encoding. This encoding will be accepted only if it increases the rank of encoding

11

matrix of corresponding UUID; otherwise it will be discarded which implies that

it is redundant. The other strategy does not need rank check; instead, every node

chooses to receive more than n encodings for each UUID. The number of extra

encodings a node is willing to accept is denoted by ϵ. In the thesis, both of the

strategies will be adopted.

2.3.3 Epidemic routing with coding schemes

Epidemic routing provides a way to prevent unnecessary transmissions between

nodes by exchanging their summary vectors first. It can be equipped with source

coding. However, exchange of summary vectors is not very helpful when employing

network coding. This is because even when two nodes have the equivalent encodings,

in the case of network coding, the summary vectors will still say that they are

innovative to each other. Network coding is considered to be different from epidemic

routing in the following two aspects. On one hand, network coding exempts from

exchanging summary vectors, which reduces resource consumption; on the other

hand, there is no effective and efficient stopping condition for network coding so far

to prevent redundant transmissions.

2.4 Immunity Mechanism

Immunity mechanism is considered to further reduce storage requirement and

energy consumption. As claimed in epidemic routing in section 2.2, nodes will

continue to exchange messages even though these messages are successfully delivered

12

to the destination, until all the nodes receive a copy of each message or timeout is

triggered. Immunity mechanism is another method to prevent unnecessary copying

of the message if it has been delivered.

The idea of immunity mechanism is first introduced in network analysis in [30],

where a Markov chain model is proposed to evaluate the impact of immunity in sen-

sor networks. In a similar research using Markov chain model [29], (p-q)-epidemic

routing in sparsely populated ad hoc networks is investigated, taking into account

immunity scheme (the authors used VACCINE in the paper), where it is revealed

that the performance is optimal with small value p when q = 1 and the VAC-

CINE scheme is employed. [31] explored several performance metrics in epidemic

routing, illustrating the differences among various forwarding and recovery schemes

considered using ordinary differential equation (ODE) models, yielding closed-form

expressions. [28] proposed an immunity based epidemic routing in DTN, and eval-

uated performances with network simulator ns2. Nodes process transmissions and

drop encodings (without network coding) based on m-list and i-list, where m-list is

a list resembling a summary vector in epidemic routing, and i-list indicates what

encodings are successfully delivered. The two nodes that meet will update their

i-lists first by combining the two i-lists into one, and delete all unwanted bundles

according to this common i-list. It is discovered that by better utilizing buffer, the

fraction of delivered messages at lower delays can be increased.

In this thesis, we adopt an immunity mechanism similar to [28]. The destina-

tion node will create a list of UUIDs of delivered files instead of encodings, called

“delivered file list”, and pass this list to every node it meets. The two nodes upon

13

Rank

Information

Immunity List

Summary Vector

Control Message

Rank

Information

Immunity List

Control Message

A: control message for protocols equipped with epidemic routing

B: control message for protocols equipped with network coding

A B

Figure 2.2: Structure of Control Message

a contact merge their delivered file lists first. Then, all the encodings produced

from files in the buffer which are on the immunity list will be deleted. Furthermore,

they refuse to accept any copy of encodings associated with these UUIDs from other

nodes. Therefore, the node storage is better utilized by discarding the “immunized”

files in the buffer, and energy is saved by stopping needless transfer of delivered files.

To sum up, the encountered two nodes will exchange control messages first

before transmitting encodings. The structures of control message adopting different

types of protocols are presented in Figure 2.2.

14

Chapter 3: Nullspace Stopping Condition for Network Coding in DT-

N

In this section, an efficient stopping condition which is based on nullspace

structure is described.

3.1 Nullspace Stopping Condition

Although network coding has shown potential to improve the performance in

DTNs, it still suffers from lacking an efficient stopping condition to prevent exchange

of redundant messages. In general, one node is said to be innovative to its neighbor

if it can increase the rank of the encoding matrix of that neighbor node. However,

in some simple circumstances, the subspaces spanned by encoding matrices of two

encountered nodes are identical, Thus neither node is innovative to the other. In

this case, transmission of encodings between them is a waste of resources. Therefore,

an efficient stopping condition utilizing nullspaces is proposed in [32]. This idea has

been used as an analytical tool for network coding gossip protocols in [33], and [32]

proposes a mechanism taking consideration of it.

Some notations are described as follows. Denote YA,x to be the subspace of

GF(2)n spanned by the rows of the encoding matrix EA,x of node A for UUID

15

x. The nullspace of the encoding matrix is denoted by Y⊥
A,x, which consists of all

vectors that are orthogonal to EA,x. We denote by NA,x the matrix consisting of

basis of the nullspace Y⊥
A,x. It is known that the dimension of YA,x plus that of

Y⊥
A,x is equal to n.

For notational simplicity, we only consider one single file with UUID x. Once

two nodes A and B meet, A will transmit encodings to its counterpart if and only if it

is innovative with respect to node B. In terms of nullspaces, it requiresY⊥
B,x ̸⊆ Y⊥

A,x,

or equivalently, YA,x ̸⊆ YB,x.

Though each node can exchange a full basis of nullspace for every file to

determine the condition, the overhead may be quite high. For each file with n

chunks, this may require up to n2 bits. Therefore, a random linear projection of

Y⊥
A,x and Y⊥

B,x is exchanged instead. Admittedly, there is information loss using

this linear projection instead of a full basis, which causes false positives. However,

error analysis in section 3.4 shows that this error probability can be made relatively

small.

Nullspace bundle list (NSBL) is the payload exchanged between two nodes to

determine innovation. The structure of NSBL from node B to node A is presented

in Figure 3.1. It contains a list of nullspace bundles (NSB) for every file with UUID

xi. Each NSB consists of UUID xi, the rank of the encoding matrix EB,xi
, a fixed

number of linear projection vectors in Y⊥
B,xi

, and the number of vectors and vector

size.

16

NSBX1

NSBX2

NSBX3

 …
…

NSBXN

Nullspace

Bundle

List

UUID

Rank

Vector Count

Vector Size

Nullspace Projection

Vectors

Figure 3.1: Structure of Nullspace Bundle List

3.2 Algorithm to Create Nullspace Bundle List

As shown in Figure 3.1, nullspace bundle list is comprised of several nullspace

bundles, and creating a nullspace bundle requires calculation of nullspace basis.

Define E andN to be encoding matrix and the matrix consisting a basis of nullspace,

respectively. We first provide a recursive algorithm (algorithm 1) to calculate E

after receiving a new encoding vector v, where E is in reduced row echelon form

(i.e., the leading coefficient is 1 and is the only nonzero entry in its column), but not

necessarily in the standard form (i.e., the matrix is not necessarily in upper triangle

form).

If E is in standard reduced row echelon form, there are various algorithms to

calculate N (e.g. [34]). However, to revert E into standard form requires multiple

row swaps, which brings about higher computational complexity. Therefore, we

17

Algorithm 1 Algorithm for updating encoding matrix

if rank != n then
E[rank]← v
for i = 1 to rank do

if E(rank, L[i]) == 1 then
E[rank]← E[rank]xorE[i]

end if
i← 1 and flag ← false
while flag is false do

if i == n+1 then
flag ← true

else if E(rank, i) == 1 then
flag ← true and L[i]← i
for j = 1 to (rank) do

if E(j, L[rank]) == 1 then
E[j]← E[j]xorE[rank]

end if
end for
rank ← rank + 1

end if
i← i+ 1

end while
end for

end if

18

propose a novel but simple way to obtain N directly from reduced row echelon form

of E, which is shown in algorithm 2.

Algorithm 2 Algorithm for obtaining N from E

if rank == n then
N ← n× n identitymatrix

else
for i = 1 to (n− rank) do

for j = 1 to (rank) do
if E(j, S[i]) == 1 then

N(i, L[j])← 1
elseN(i, L[j])← 0
end if

end for
N(i, S[i])← 1
for l = 1 to (n− rank) do

if l! = i then
N(i, S[l])← 0

end if
end for

end for
end if

3.3 Determining Innovation Using Nullspace Bundles

Once node A receives a nullspace bundle list from node B, a function will

be called to determine whether or not node A is innovative for each UUID it is

carring. For notational simplicity, we only consider one UUID, x. Also denote by

v1, v2, . . . vt t random nullspace projection vectors in NSBB,x. Recall that node A

concludes that it is innovative to node B if and only if Y⊥
B,x ̸⊆ Y⊥

A,x. The algorithm

for node A to determine if it is innovative to B is presented in algorithm 3.

19

Algorithm 3 Algorithm for node A determine innovation to node B

if rank(EA,x) > NSBB,x.rank then
return true

else
for all vi ∈ NSBB,x do

if EA,x · vi ̸= 0 then
return true

end if
end for
return false

end if

3.4 Error Analysis of Nullspace Stopping Condition

Suppose node A receives a nullspace bundle, NSBB,x from node B, and will

determine whether or not it is innovative to B. As mentioned in section 3.1, random

linear projection vectors of Y⊥
B,x are chosen instead of the full basis, which will bring

about erroneous decisions. We will analyze this error probability in this section.

Recall that there are two types of errors: false positives and false negatives (or

type I and type II errors). Specifically in our analysis, false positive is the probability

that node A concludes it is not innovative to B while in fact it is, and false negative

is the probability that node A concludes it is innovative to B while in fact it is not.

Note that there is no false negatives. If node A is not innovative to B, i.e.,

YA,x ⊆ YB,x, or equivalently Y⊥
B,x ⊆ Y⊥

A,x, then for every v ∈ Y⊥
B,x, we all have

EA,x · vi = 0. Algorithm 3 will correctly halt transmission from A to B.

Therefore, only false positives will occur, i.e., in fact Y⊥
B,x ̸⊆ Y⊥

A,x, but for all

linear projection vectors vi,∀i = 1, · · · , t independently chosen fromY⊥
B,x, EA,x ·vi =

0, ∀i = 1, · · · , t. This will happen if vi ∈ Y⊥
A,x∩Y⊥

B,x, ∀i = 1, · · · , t. Suppose na,b is

20

the dimension of Y⊥
A,x ∩Y⊥

B,x, and na and nb are the dimensions of Y⊥
A,x and Y⊥

B,x,

respectively. Then, the false positive probability is

Pe = P
(
v1, . . . , vt ∈ Y⊥

A,x ∩Y⊥
B,x|v1, . . . , vt ∈ Y⊥

B,x

)
=

t∏
1

P
(
vi ∈ Y⊥

A,x ∩Y⊥
B,x|vi ∈ Y⊥

B,x

)
=

(
dim

(
Y⊥

A,x ∩Y⊥
B,x

)
dim

(
Y⊥

B,x

))t

=

(
na,b

nb

)t

(3.1)

The worst case occurs when the nullspaces of nodes A and B are almost

identical, i.e, they have the property of nb − na,b = 1. In this case, however, Pe =(
1
2

)t
, which decays exponentially with the number of projection vectors. The error

probability is relatively low even if t = 3 is adopted.

3.5 Update Implementation

In network coding with nullspace stopping condition, the structure of control

message is presented in Figure 3.2, where a control message includes NSBL. When

nodes decide to send control messages, they should ensure that every file has an

up-to-date encoding matrix as well as a nullspace basis. Using algorithms 1 and

2, however, nullspace basis matrix N for each UUID has to be calculated every

time a new encoding arrives. This is unnecessary, though, since nullspace basis

matrix N needs to be updated only when the rank of encoding matrix E is changed;

otherwise, N remains the same. Therefore, algorithm 1 is revised to introduce an

21

NSBL

Rank Information

Immunity List

Summary Vector

Control Message

AFigure 3.2: Structure of Control Message with Nullspace Stopping Condition

indicator isInno to indicate rank update. This is shown in algorithm 4 below.

After creating nullspace bundles, the indicator isInno is set to be false again,

waiting for next update.

22

Algorithm 4 Algorithm for updating encoding matrix with update implementation

if rank != n then
E[rank]← v
for i = 1 to rank do

if E(rank, L[i]) == 1 then
E[rank]← E[rank]xorE[i]

end if
i← 1 and flag ← false
while flag is false do

if i == n+1 then
flag ← true

else if E(rank, i) == 1 then
flag ← true and L[i]← i
for j = 1 to (rank) do

if E(j, L[rank]) == 1 then
E[j]← E[j]xorE[rank]

end if
end for
rank ← rank + 1
isInno ← true

end if
i← i+ 1

end while
end for

end if

23

Chapter 4: The ONE Simulator

In this chapter, the Opportunistic Networking Environment (ONE) simulator

is introduced, which is used as the tool for DTN performance evaluation.

4.1 Overview for DTN Simulators

For research on DTN, simulation plays an important role in analyzing routing

protocol behaviors. Performances vary significantly according to how the nodes

move, how many nodes are in the simulation world, how nodes communicate and

transmit messages, etc. Therefore, the closer the settings under which protocols are

evaluated to real-world scenarios, the more reliable simulation results may be.

Various network simulators have been proposed so far. For example, ns-3 [35]

and OMNet++ [36] provide open simulation platforms for packet-based commu-

nications, specifically for MANETs. So do some other tools such as JANE [37].

However, their generic support for DTN is relatively limited. Although ns-3 also

holds some openly available DTN simulators (dtnsim [38] and dtnsim2 [39]), only

DTN routing protocols are available, while other important features such as data

input and event generation are omitted.

Another essential aspect for DTN simulation is mobility modeling, which de-

24

fines nodes’ movement, their population density, their contact times, etc. The

mobility data can be generated by collecting real-world traces, e.g., CRAWDAD

project [40]. However, there still exist some limitations for DTN simulation. First,

the population analyzed in these traces is naturally fixed and limited. Once the

trace is gathered, the number of participants cannot be adjusted, while DTN is

often scalable, and actual population can be much larger than provided. Further-

more, the time granularity is often limited in order to save battery power on mobile

devices. [41], for example, uses sensing intervals of 5 mins. Although it can to some

extent reflect energy constrains, many contact opportunities may be missed, and

only coarse levels of contact times can be recorded. Also, some traces are highly

specialized, i.e., collected by a group of people in a certain situation (e.g., people

attending a conference). The behavior of one group may not be applicable for other

situations, thus making the simulation scenarios quite limited. So, real-world traces

do not offer a wide range of mobility scenarios.

Therefore, the only option for deriving flexible and scalable mobility data is

by establishing model-based mobility. The mobility models have been researched

extensively, from the simplest models such as the Random Waypoint (RWP) and

Markov-Gaussian Mobility Model [42], to group mobility models such as Reference

Point Group Mobility Model (RPGM), to urban network mobility model considering

real street maps [43]. In these models, the number of nodes as well as their behaviors

can be changed according to different simulations. For example, [44] proposed a

mobility model in which node velocity, wait time, etc. could be adjusted to match

vehicles, pedestrians and other node types, and also moving features such as smooth

25

turns, speed variation could be added, which makes simulation closer to real world

scenario.

It would be inconvenient for users to get intuitive sense about node mobility

and message transfer without visualization. A Graphical User Interface (GUI) is an

efficient tool for this purpose. iNSpect [45] can be used for ns-2 simulations. For

DTN routing simulators, however, there are no similar tools available.

Due to integrated support for DTN routing, capabilities for mobility model-

ing and realization of visualization, the ONE simulator is a popular tool for DTN

simulations. Some of the features of the ONE simulator are listed below:

• It is specifically designed for evaluating DTN routing algorithms and applica-

tion protocols.

• Scenarios based on different synthetic movement models and real-world traces

are supported.

• Messages can be generated through event generator, and post-processing is

also supported.

• A GUI is provided to users for instant sanity checks, deeper inspection, or

simply observing node movements in real time.

Details about the ONE simulator will be presented in the following sections.

4.2 Structure of the ONE Simulator

The structure of the ONE simulator is shown in Figure 4.1. The core of

26

Simulation

engine

Connectivity

data
Routing data

Visualization and results

Visualization,

reports, etc.

Post processors

(e.g. graphviz)

Graphs,

charts, etc.

Event

generators

External

events file

Message

event

generator

Etc.

Movement

models

Map-based

movement

External

trace

Random

waypoint

Etc.

routing

External DTN

routing sim

Internal

routing logic

Figure 4.1: Structure of the ONE simulator

the ONE simulator is an agent-based discrete event simulation engine. A number of

modules implementing the main simulation functions are updated at each simulation

step. These main functions include modeling of node movement and connection,

message processing, routing, etc.

Movement models govern the way nodes move in the simulation. Five basic

installed models are provided in the ONE simulator: random waypoint, map based

movement, shortest path map based movement, map route movement and external

movement. The movement speed and pause time are drawn from a uniform distri-

bution, where the minimum and maximum values can be configured, except for the

external model where the speed and pause time are interpreted from the given data.

Routing modules define how the messages are handled in the simulation. There

27

are two sorts of routing modules: active and passive. Passive router is made especial-

ly for interacting with other (DTN) routing simulators or running simulations that

do not require any routing functionality. Active routing modules are implemented

using well-known routing algorithms, and six modules are provided in the ONE sim-

ulator: First Contact, Epidemic, Spray and Wait, Direct delivery, PRoPHET and

MaxProp.

In event generating module, two classes, ExternalEventQueue and MessageEvent-

Generator, can be used as a source of message events. In the first class, users can

create scripts by hand, or convert other output (e.g., dtnsim2) for its use. The sec-

ond class creates uniformly distributed message creation patterns with configurable

message creation interval, message size, and source/destination host ranges.

The ONE simulator uses report module to generate simulation results. The

reports can be logs of events (e.g., node connectivity, message transmissions) that

can be further processed after simulations, or the aggregate statistics calculated by

the simulator. GUI provides simulation states showing node locations, connectivity,

message transmission etc. Figure 4.2 presents the GUI displaying the simulation

running with the Istanbul map.

A detailed description of the ONE simulator is available in [47] and [48]. The

source code of the ONE simulator can be downloaded from [46].

28

Figure 4.2: Screenshot of the ONE simulator running on Istanbul map

4.3 Configuration of the ONE simulator

In this section, some key configuration parameters are discussed to explain

how they affect simulation performances. The detailed instructions on how to use

the ONE simulator can be found in the ReadMe file included in the source code

package [46]. All simulation parameters are given using configuration files. These

files are normal text files that contain key-value pairs with the form

Namespace.key = value

Any number of different types of nodes can be created in the simulation.

Each node group shares common configuration parameters, such as movement speed,

transmission range, etc., so that it is possible to have pedestrians, cars, and buses

29

in one simulation.

Transmission speed determines how fast a message can be transferred to

a neighbor during one contact. Therefore, the number of transferred and delivered

encodings and thus files will be affected, and so will delivery latency.

Transmission range determines connectivity range of nodes. The larger the

transmission range is, the more contacts nodes can have, and the longer contac-

t times are. Thus, message delivery ratio will increase and delivery latency will

decrease.

The number of nodes reflects population density in the simulation. By

influencing node connectivity, almost all performance metrics will be affected. On

one hand, a larger number of nodes can create more contacts between nodes; on the

other hand, more copies of messages will also be created, which may cause network

congestion.

Movement speed determines how fast nodes move in the simulation. Higher

movement speeds change network topology more rapidly, and nodes can meet more

frequently. However, the contact times between nodes also decrease accordingly.

The performances are affected by both features.

msgTTL is the TTL of messages created by the host. It directly affects

delivery ratio. If the value is too small, it is possible that messages will be dropped

before final delivery. If the value is too big, buffer may fill up quickly with arriving

encodings, which makes the network congested.

30

4.4 Limitations of the ONE simulator

Although the ONE simulator is a useful tool for DTN research, it still has

some limitations.

First, the ONE simulator is based on discrete-event agent. Node movements

and message transfers are all processed within a single time step. Although this

time step can be reduced arbitrarily small, small time steps tend to slow down

simulations, even possibly below one simulated second per second. Also sometimes

computing resources can pose bottlenecks, especially in scenarios involving large

population of nodes and complex routing algorithms.

Second, the ONE simulator lacks support for lower layers, such as physical

layer and MAC layer. When two nodes are in the range of each other, they transmit

messages with a constant speed which is configured by users. This is not realis-

tic since transmission speed is affected by the distance between devices as well as

interference, and also by mobility of nodes.

Finally, the radio devices in the simulation are always turned on. However,

for energy saving, some users may switch their devices to idle or suspending mode,

and some will only probe other devices periodically. Therefore, the contact times

between nodes in simulation may be too opportunistic.

Despite these drawbacks, the ONE simulator is still one of the best simulators

so far for DTN research.

31

Chapter 5: Simulation Results

In this section, simulation results are presented to evaluate the performances

of nullspace stopping condition mechanism. Four routing protocols are considered

for the study: (1) source coding with Bloom filter without rank check (Src-BF-

Epsilon); (2) source coding with Bloom filter and rank check (Src-BF-RC); (3)

network coding (NC); (4) network coding with nullspace stopping condition (NC-

NSC). All are equipped with immunity mechanism described in section 2.4. The

ONE version 1.4.1 [46] is used throughout all simulations. For each configuration,

we generate ten simulation runs with different random seeds (detailed configuration

can be found in ReadMe file in the source code [46]), and we evaluate the average

numbers for each performance metric.

We consider two different event scenarios. In the first scenario, the source

nodes generate multiple relatively small files throughout the simulation time. In

the second scenario, one source node generates one large file at the beginning of the

simulation. Also, all the simulation parameters for different scenarios are listed in

Chapter A.

32

Figure 5.1: Istanbul Urban Map

5.1 Scenario #1: Urban Network

In this section, simulations are run on a urban map of Istanbul, which is shown

in Figure 5.1. There are three stationary nodes and 29 mobile nodes moving on the

map.

5.1.1 Multiple File Case

In the first case of simulation, 100 files of 25 Megabytes are generated through-

out 1 million simulation seconds. Each file is chopped into 500 chunks of 50,000

Bytes. Figure 5.2 presents the number of delivered files and their average deliv-

ery latency with different routing protocols. It is shown that the performance of

protocols with source coding outperforms that of protocols with network coding in

terms of both the number of delivered files and delivery latency. Also the perfor-

mance is comparable for two protocols with source coding, and so is that of two

network coding-based protocols. Specifically as shown in Table 5.1, there is no clear

33

NC NC−NSC Src−BF−Epsilon Src−BF−RC
0

10

20

30

40

50

60

70

80

90

100

N
u
m

b
e
r

o
f

d
e
liv

e
re

d
 f

ile
s
 (

o
u
t

o
f

1
0
0
)

NC NC−NSC Src−BF−Epsilon Src−BF−RC
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25
x 10

5

D
e
liv

e
ry

 l
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Figure 5.2: Number of Delivered Files (left) and Delivery Latency (right) in Istanbul
Map with 100 Files

evidence that nullspace stopping condition helps to improve performance with net-

work coding. Although the number of encodings created by network coding, the

total number of transmissions and the number of redundant transmissions decrease

slightly by 11.3%, 11.0% and 20.0%, respectively when equipped with nullspace

stopping condition, the number of innovative encodings delivered to destinations

reduces by 3.0% and delivery latency increases by about 10,000 s in NC-NSC.

Performance metrics NC NC-NSC

Number of network coded encodings 1683572 1492967

Number of total transmission 1705282 1517714

Number of redundant transmission 1123963 899151

Number of innovative encodings to destination 1 17406 16893

Delivery latency (seconds) 396845 409081

Table 5.1: Performances of NC and NC-NSC in Istanbul with 100 Files

1An innovative encoding is that its encoding vector is linearly independent of all other encoding
vectors received at destination.

34

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Simulation Time (hr)

R
a
n
k
 o

f
E

n
c
o
d
in

g
 M

a
tr

ix

NC

NC-NSC

Src+BF+Rank

Src+BF+Epsilon

Full Rank

Figure 5.3: Rank of Encoding Matrix of the Single File in Istanbul

5.1.2 One Large File

In the second case of simulation, a single source node generates one large file

of 1.9 Gigabytes in the beginning of simulation, which is chopped into 19,000 chunks

of 0.1 Megabytes. With different routing protocols, this file is always delivered. The

rank of encoding matrix at the destination node as a function of time is presented in

Figure 5.3. It is shown that the rank increases faster using source coding compared

to that with network coding, where the average delivery latency decreases by more

than 10 hours. Furthermore, the performance of two protocols using source coding

is comparable, and so is that of two network coding protocols.

Considering two protocols using network coding NC and NC-NSC, NC-NSC

performs a little worse than NC. Table 5.2 compares several performance metrics of

35

Performance metrics NC NC-NSC

Number of network coded encodings 715301 720789

Number of total transmission 720125 725251

Number of redundant transmission 118683 123851

Delivery latency (seconds) 189253 192569

Table 5.2: Performances of NC and NC-NSC in Istanbul with One File

both NC and NC-NSC. It is shown that the number of network coded encodings, to-

tal transmissions, redundant transmissions and delivery latency all increase slightly

with nullspace stopping condition.

5.1.3 Analysis

In both cases, although NC-NSC is expected to reduce redundant transmis-

sions and delivery latency compared to NC, it is not shown that nullspace stopping

condition helps to improve performances in the urban map. One possible reason is

that the urban network is relatively highly connected. There exist multiple paths

from the source to the destination over time. Nodes are very likely to receive in-

novative encodings in each contact, where nullspace stopping condition may not be

effective. On the other hand, the occasional false positives, additional calculation

to create NSBL, and extra overhead in control messages decrease the performance

of NC-NSC.

36

Island 1

Ferry 1
Island 2

Ferry 2

Island 3

Ferry 3

Island 4

Figure 5.4: Island Hopping Scenario

5.2 Scenario #2: Island Hopping

In this section, the routing performances on a scenario called island hopping

are presented. In this scenario, as depicted in Figure 5.4, nodes are separated into

isolated islands, and the communication among islands is provided by ferry nodes

moving occasionally between islands.

In the simulation, 40 nodes are placed in four islands, each with 10 nodes.

These island nodes are configured with movement speed and pause time uniformly

distributed from 10 m/s to 16 m/s, and 0 s to 120 s, respectively. Three ferry

nodes move back and forth between islands, and stay at “harbor” at islands for 10

minutes, providing opportunities to communicate with island nodes. For notational

simplicity, in Figure 5.4, the ferry nodes i− 1 and i are called upper ferry and lower

ferry with respect to island i, respectively (island 1 does not have upper ferry and

37

island 4 does not have lower ferry). Similarly islands i and i + 1 are called upper

and lower island with respect to ferry i. There is one stationary node on island 1

acting as source node, and there is another stationary node on island 4 which is a

destination node, respectively. The difference between [32] and our setup is that we

are interested in delivering the files to the destination node, not just to all nodes on

the final island.

In island hopping, when a ferry node moves from island 1 to 2, the encodings

on this ferry will be distributed to nodes on island 2. However, no matter how nodes

on island 2 exchange and recombine these encodings, the space ultimately spanned

by coefficient vectors in island 2 will be a subspace of that in island 1. The similar

effect will also happen in the following islands. This phenomenon is analogous to

“biological founder effect” that the colony breaking off from a larger population will

have less genetic diversity.

5.2.1 Multiple Files

In the first case, source nodes create multiple small files throughout one million

simulation seconds. We first investigate the situation where 40 files are generated

with 30 Megabytes each, and each file is chopped into 600 chunks of 50,000 Bytes.

Figure 5.5 presents the number of delivered files and average delivery latency

of different routing protocols. It is shown that Src-BF-Epsilon outperforms other

protocols on both aspects, where approximately 32 out of 40 files are delivered,

while the average delivery latency is less than 180,000 s. Also, although NC-NSC

38

NC NC−NSC Src−BF−Epsilon
0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f

d
e
liv

e
re

d
 f

ile
s
 (

o
u
t

o
f

4
0
)

NC NC−NSC Src−BF−Epsilon
0

1

2

3

4

5

6
x 10

5

D
e
liv

e
ry

 l
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Figure 5.5: Number of Delivered Files (left) and Delivery Latency (right) in Island
Hopping with 40 Files

does not stand out, there is still significant improvement over NC in terms of above

delivery metrics.

Specifically comparing performances of NC and NC-NSC in Table 5.3, it is

clear how much nullspace stopping condition improves performance. The numbers of

network coded encodings and total transmissions both reduce by around 13.3%, and

that of redundant transmissions decreases by 20.5%. In terms of delivery metrics,

nullspace stopping condition helps to increase the number of innovative encodings

delivered to destinations by 66.1%, meanwhile the delivery latency decreases about

by half.

Performance metrics NC NC-NSC

Number of network coded encodings 3541837 3063495

Number of total transmission 3574159 3100163

Number of redundant transmission 2557045 2032346

Number of innovative encodings to destination 11836 19663

Delivery latency (seconds) 573617 276202

Table 5.3: Performances of NC and NC-NSC in Island Hopping with 40 Files

39

NC NC−NSC Src−BF−Epsilon
0

10

20

30

40

50

60

70

80

N
u
m

b
e
r

o
f

d
e
liv

e
re

d
 f

ile
s
 (

o
u
t

o
f

1
0
0
)

NC NC−NSC Src−BF−Epsilon
0

1

2

3

4

5

6

7
x 10

5

D
e
liv

e
ry

 l
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Figure 5.6: Number of Delivered Files (left) and Delivery Latency (right) in Island
Hopping with 100 Files

In a more congested case, 100 files of 25 Megabytes are generated throughout

the simulation time (also one million seconds), each of which is chopped into 500

chunks of 50,000 Bytes. Some performance metrics of different routing protocols and

the comparison between NC and NC-NSC are presented in Figure 5.6 and Table 5.4,

respectively.

Performance metrics NC NC-NSC

Number of network coded encodings 7177010 6474538

Number of total transmission 7288055 6588742

Number of redundant transmission 5228605 4369085

Number of innovative encodings to destination 23667 39071

Delivery latency (seconds) 613063 353549

Table 5.4: Performances of NC and NC-NSC in Island Hopping with 100 Files

Similar results as in the case of 40 files are found, where Src-BF-Epsilon out-

performs the other two protocols, and nullspace stopping condition improves the

performance of network coding. Nullspace stopping condition prevents unnecessary

40

network coding and transmissions, and facilitates the delivery of more innovative

encodings (thus files).

Notice that in the above two cases, the size of each chunk is the same. We pro-

pose a parameter called relative performance gain g to measure how much nullspace

stopping condition improves performances. Relative performance gain is defined as

g =
|value of NC− value of NC-NSC|
total chunks× transmission speed

(5.1)

where the value (of NC and NC-NSC) means a certain performance metric number,

and the total chunks represents the number of chunks of each file multiplied by the

number of files.

Table 5.5 presents the relative performance gain in both 40-file and 100-file

cases. It indicates that with an increasing number of total chunks, the relative

performance gain decreases, i.e., diminishes the benefits brought on by nullspace

stopping condition.

Performance metrics × 200K 40 Files 100 Files

Number of network coded encodings 19.93 7.02

Number of total transmission 19.75 7.00

Number of redundant transmission 21.86 8.60

Number of innovative encodings to destination 0.33 0.15

Delivery latency (seconds) 12.39 2.60

Table 5.5: Relative Performance Gain of NC and NC-NSC in Island Hopping with
100 Files

41

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

NC

NC−NSC

Src−BF−Epsilon

Full Rank

Figure 5.7: Rank of Encoding Matrix of the Single File in Island Hopping

5.2.2 One Large File

In the second case, source generating only one file is considered. One Gigabyte

file is chopped into 10,000 chunks with 0.1 Megabytes.

The simulation results reveal that, this file is always delivered with different

protocols. The rank of encoding matrix at the destination node as a function of

time is presented in Figure 5.7. The delivery latencies for NC, NC-NSC and Src-

BF-Epsilon are 2,090,946 s, 2,159,155 s and 476,854 s, respectively. Therefore, Src-

BF-Epsilon performs best in this situation, and the performances of NC and NC-

NSC are almost indistinguishable. Furthermore, it is shown in Figure 5.8 that the

performances of NC and NC-NSC are comparable with respect to other evaluation

metrics. In terms of the number of network coded encodings, the number of total

and redundant transmissions, NC-NSC only reduces them by around 6%, yet the

42

0 1 2 3 4 5 6

x 10
6

Deliver latetncy (seconds)

Redundant transmission

Total transmission

Network coded fragments

2159155

3846098

4687430

4708121

2090946

4081332

5021568

5045660

NC−NSC

NC

Figure 5.8: Performances of NC and NC-NSC in Island Hopping with One File

delivery latency increases about 3%. In other words, there is no major improvement

when equipped with nullspace stopping condition.

5.2.3 Analysis

It is illustrated by simulations that nullspace stopping condition is effective

in island hopping scenario with multiple small files. The number of network coded

encodings and redundant transmissions in NC-NSC decreases significantly compared

to that of NC. Different from urban network, island hopping has “bottlenecks” in the

network, i.e., the ferry nodes. On each island, the encodings brought by the upper

ferry may have spread out in the island before this ferry fetches new encodings with

the same UUID. This is because file transmission follows scheduling rules (in our

simulation, round robin). Therefore, if some encodings with certain UUID in a ferry

node are transmitted to lower island, it needs to wait for next turn to transmit

encodings of the same UUID, and also it may take relatively long time for this ferry

43

to receive innovative encodings of the same UUID from its upper island. Before new

encodings come, although the exchange of encodings on the island can not create

innovative encodings no matter how they are combined, NC still allows transmission

of encodings among this island nodes even when they are not innovative to others. It

is likely to happen on the island during contact that the space spanned by one node’s

(A) encoding matrix is a subspace of the other node’s (B), or identical. Therefore,

transmission of encodings from node A to node B is often unnecessary. Nullspace

stopping condition exactly prevents such wasteful network coding procedures and

exchange of encodings.

It is also discovered that the advantages of NC-NSC over NC decrease as the

number of files rises from 40 to 100. One possible reason is that, although the

probability of false positive is the same in both cases, if more files, therefore more

encodings, are involved in transmission, more false positives may happen, which

spoils to some extent the benefits brought by nullspace stopping condition.

In the one large file case, nullspace stopping condition does not appear helpful

to improve performances. There may be two reasons for this observation. On one

hand, since there is only one file needs to be transmitted, the ferry might have

brought innovative encodings to its lower island before the existing encodings on

that island have been fully exchanged. Therefore, almost every node is innovative

to others, and nullspace stopping condition does not take effect. On the other

hand, since nullspace stopping condition occasionally gives false positives, a slight

degradation of performance may have occurred, as indicated of delivery latency in

Figure 5.8.

44

Chapter 6: Conclusion

In this thesis, nullspace stopping condition incorporating network coding in

DTNs is introduced, where an improved algorithm calculating nullspace matrix has

been proposed, and its performances in different scenarios with various simulation

events are extensively evaluated. Simulations show that in the urban map, nullspace

stopping condition neither prevents redundant transmission nor facilitates file de-

livery efficiently in both cases of generating multiple small files and one large file.

In the island hopping scenario, nullspace stopping condition takes effect in multiple

small file case significantly, whereas it is not helpful in the one large file case; it

is also found that when the file number increases in multiple file case, the benefits

brought by nullspace stopping condition decrease. Finally, it is shown that Src-BF-

Epsilon outperforms other routing protocols in both urban map and island hopping

scenarios.

45

Chapter A: Parameters for Simulation

In this chapter, all the simulation parameters for different scenarios are listed

in tables.

Parameter Value Parameter Value

Transmission Speed 120kBps Transmission Range 150m

Bloom Filter Size 500000bits Number of Hash Functions 7

Source Coding Weight 21 Network Coding Weight 15

Buffer Size 2GB Epsilon(ϵ) 30

Projection Vectors 10 Update Interval 0.01s

Movement Speed (10m/s, 16m/s) Node Wait Time (0s,120s)

Table A.1: Simulation Parameters for Istanbul Map with 100 Files

Parameter Value Parameter Value

Transmission Speed 200kBps Transmission Range 150m

Bloom Filter Size 190000bits Number of Hash Functions 7

Source Coding Weight 25 Network Coding Weight 15

Buffer Size 2GB Epsilon(ϵ) 30

Projection Vectors 3 Update Interval 0.01s

Movement Speed (10m/s, 16m/s) Node Wait Time (0s,120s)

Table A.2: Simulation Parameters for Istanbul Map with 1 Large File

46

Parameter Value Parameter Value

Transmission Speed 200kBps Transmission Range 200m

Bloom Filter Size 240000bits Number of Hash Functions 7

Source Coding Weight 21 Network Coding Weight 15

Buffer Size 2GB Epsilon(ϵ) 30

Projection Vectors 10 Update Interval 0.01s

Island Nodes Parameters

Movement Speed (10m/s, 16m/s) Node Wait Time (0s,120s)

Ferry Nodes Parameters

Movement Speed (10m/s, 16m/s) Node Wait Time (508s,602s)

Table A.3: Simulation Parameters for Island Hopping with 40 Files

Parameter Value Parameter Value

Transmission Speed 400kBps Transmission Range 200m

Bloom Filter Size 500000bits Number of Hash Functions 7

Source Coding Weight 21 Network Coding Weight 15

Buffer Size 2GB Epsilon(ϵ) 30

Projection Vectors 3 Update Interval 0.01s

Island Nodes Parameters

Movement Speed (10m/s, 16m/s) Node Wait Time (0s,120s)

Ferry Nodes Parameters

Movement Speed (10m/s, 16m/s) Node Wait Time (508s,602s)

Table A.4: Simulation Parameters for Island Hopping with 100 Files

47

Parameter Value Parameter Value

Transmission Speed 400kBps Transmission Range 200m

Bloom Filter Size 600000bits Number of Hash Functions 7

Source Coding Weight 25 Network Coding Weight 15

Buffer Size 2GB Epsilon(ϵ) 30

Projection Vectors 15 Update Interval 0.01s

Island Nodes Parameters

Movement Speed (10m/s, 16m/s) Node Wait Time (0s,120s)

Ferry Nodes Parameters

Movement Speed (10m/s, 16m/s) Node Wait Time (508s,602s)

Table A.5: Simulation Parameters for Island Hopping with 1 Large File

48

Bibliography

[1] K. Fall, “A delay-tolerant network architecture for challenged internets”, ACM
SIGCOMM, August 2003, Karlsruhe, Germany

[2] V. Cerf et al., “delay-tolerant network architecture,” IETF RFC 4838, infor-
mational, April 2007.

[3] K. Scott and S. Burleigh. Bundle Protocol Specification. RFC 5050 (Experi-
mental), Nov. 2007

[4] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing”,
In Proc. of IEEE workshop on mobile computing systems and applications,
New Orleans, LA, USA, Feb. 1999

[5] IEEE Computer Society. Internet protocol, rfc 791, Sept. 1981

[6] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant networks”, ACM
SIGCOMM, Portland, Oregon, USA, Aug. 2004

[7] D. Henriksson, T. F. Abdelzaher, and R. K. Ganti, “A Caching-based approach
to routing in delay-tolerant networks”, IEEEWCSP, Nanjing, China, Nov. 2009

[8] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Single-copy routing in
intermittently connected mobile networks”, IEEE SECON, Oct. 2004

[9] S. C. Nelson, M. Bakht and R. Kravets, “Encounter-based routing in DTNs”,
In Proc. of IEEE Infocom, 2009

[10] A. Vahdat, and D. Becker, “Epidemic routing for partially-connected ad hoc
networks”, Duke University Tech. Report, 2000

49

[11] B. Bloom, “Space/time trade-offs in hash coding with allowable errors”, Com-
munications of ACM, 13(7):422-426, Jul. 1990

[12] B. Dawkins, “Siobhan’s problem: the coupon collector revisited”, The Ameri-
can Statistician 45 (1): 7682, JSTOR 2685247, 1991

[13] M. Luby. M. Mitzenmacher, A. Shokmllahi, and D. Spielman, “Efficient erasure
correcting codes”, IEEE Trans. on Info. Theory, 47(2):669-584, Feb. 2001.

[14] M. Luby. “LT codes”, In Proc. of the 43rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 271-282. 2002.

[15] A. Shokrollahi, S. Lassen, and M. Luby, “Multi-stage code generator and de-
coder for communication system”, U.S. Patent. Application 20030058958.

[16] D. J. C. MacKay, “Fountain codes”, IEE Proc. of communications, volum 152,
issue 6, Dec. 2005

[17] M. Mitzeumacher, “Digital fountains: a survey and look forward”, IEEE infor-
mation theory workshop, 2004, Oct. 2004

[18] Y. Dai, P. Yang, G. Chen and J. Wu, “CFP: integration of fountain codes and
optimal probabilistic forwarding in DTNs”, IEEE GLOBECOM, 2010

[19] E. Altman, F. D. Pellegrini, “Forward correction and fountain codes in delay-
tolerant networks”, IEEE/ACM trans. on networking, vol. 19, No. 1, Feb. 2011

[20] F. L. P. Albini, A. Munaretto, and M. Fonseca, “Delay tolerant transport
protocol - DTTP”, IEEE Global information infrastructure symposium (GIIS),
2011

[21] R. Ahlswede, N. Cai, S. R. Li and R. W. Yeung, “Network information flow”,
IEEE Trans. on info. theory, vol.46, no. 4, jul. 2000

[22] N. Cai and R. Yeung. “Secure network coding”, In Proceedings of the 2002
IEEE International Symposium on Information Theory, 2002.

[23] C. Gkantsidis and P. R. Rodriguez, “Cooperative security for network coding
file distribution”, IEEE Infocom, 2006.

[24] X. Zhang, G. Neglia, J. Kurose and D. Towsley, “On the benefits of random
linear coding for unicast applications in disruption tolerant networks”, IEEE

50

Symposium on modeling and optimization in mobile, Ad hoc and wireless net-
works, 2006

[25] Y. Lin, B. Li, and B. Liang, “Efficient network coded data transmissions in
disruptive tolerant networks”, IEEE Proc. of INFOCOM, 2008

[26] B. Walker, C. Ardi, A. Petz, J. Ryu and C. Julien, “Experiments on the spatial
distribution of network code diversity in segmented DTNs”, ACM CHANTS,
Las Vegas, Sept. 2011

[27] A. Petz, A. Hennessy, B. Walker, C. Fok, and C. Julien, “An architecture
for context-aware adaptation of routing in delay-tolerant networks”, ACM Ex-
tremeCom, Mar. 2012, Zurich, Switzserland

[28] P. Mundur, M. Seligman, and G. lee, “Epidemic routing with immunity in delay
tolerant networks”, IEEE MILCOM, San Diego, California, USA, Nov. 2008

[29] T. Matsudda, and T. Takine, “(p-q)-epidemic routing for sparsely populated
mobile ad hoc networks”, IEEE JSAC, Issue 5, Vol. 26, 2008

[30] Z. Hass, and T. Small, “A new networking model for biological applications of
ad hoc sensor networks”, IEEE Trans. on Networking, vol. 14, No. 1, Feb. 2006

[31] X. Zhang, G. Neglia,, J. Kurose, and D. Towsley, “Performance modeling of
epidemic routing”, Computer Networks, Elsevier, vol. 51, no. 10, pp. 2867 -
2891, Jul. 2007

[32] A. Hennessy, A. Gladd, and B. Walker, “Nullspace-based stopping conditions
for network-coded transmissions in DTNs”, ACM CHANTS, Istanbul, Turkey,
Aug. 2012

[33] B. Haeupler, “Analyzing network coding gossip made easy”, In Proc. of the
43rd Symp. on Theory of Computing (STOC), 2011

[34] http://en.wikipedia.org/wiki/Kernel linear algebra

[35] The Network Simulator NS-3. http://www.nsnam.org/.

[36] A. Varga. The OMNET++ discrete event simulation system. In Proceedings
of the European Simulation Multiconference, pages 319-324, Prague, Czech
Republic, June 2001. SCS - European Publishing House.

51

[37] D. Gorgen, H. F., and Hiedele, C.JANE, “The java Ad hoc network develop-
ment environment”, in Proc. of the 40th annual simulation symposium (ANSS),
2007

[38] S. Jain, K. Fall, R. Patra, “Routing in a delay tolerant network”, in Proc. of
ACMSIGCOMM 2004

[39] DTNSim2 simulator. http://watwire.uwaterloo.ca/DTN/sim/

[40] The CRAWDAD project. http://crawdad.cs.dartmouth.edu/

[41] N. Eagle and A. S. Pentland, “Reality mining: sensing complex social systems”,
Personal Ubiquitous Computing, 10(4):255-268, 2006.

[42] Jean-Yves Le Boudec and Milan Vojnovic, “Perfect simulation and stationarity
of a class of mobility models”, In Proc. of IEEE Infocom, 2005

[43] D. R. Choffnes, F. E. Bustamante, “An integrated mobility and traffic model for
vehicular wireless networks”, In Proc. of the 2nd ACM International workshop
on vehicular Ad-hoc networks, 2005

[44] C. Bettstetter, “Smooth is better than sharp: A random mobility model for
simulation of wireless networks”, In Proc. of ACM MSWiM, Jul. 2001

[45] S. Kurkowski, T. Camp, N. Mushell, and M. Colagrosso. “A visualization and
analysis tool for ns-2 wireless simulations: inspect”, In MASCOTS ’05: Proc. of
the 13th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pp. 503-506, Washington, DC,
USA, 2005. IEEE Computer Society.

[46] http://www.netlab.tkk.fi/tutkimus/dtn/theone/

[47] Ari Keränen and Jörg Ott and Teemu Kärkkäinen, “The ONE Simulator for
DTN Protocol Evaluation”, SIMUTools ’09: Proceedings of the 2nd Interna-
tional Conference on Simulation Tools and Techniques, Rome, Italy, 2009

[48] Ari Keränen, phd thesis, 2008

52

