
ABSTRACT

Title of thesis: COMPUTATIONAL FRAMEWORK FOR

PARAMETRIC MODELING AND

ARCHITECTURE-ENERGY ASSESSMENT

OF BUILDING FLOORPLANS

Eddie Tseng, Master of Science, 2015

Thesis directed by: Associate Professor Mark Austin
Department of Civil and Environmental Engineering
and ISR

Modern building systems can be exceedingly complex. In this research we develop

a computational framework for the parametric modeling and architecture-energy

assessment of building floorplans. Parametric representations of floorplans are for-

mulated as multi-layer hierarchies, with adjacent layers coupled by dependency re-

lationships. Software is developed for two approaches to floorplan specification: (1)

scripting, and (2) interactive graphical techniques. Computational procedures are

developed for assessment of building code regulations, electricity cost assessment,

and simplified HVAC component selection and architecture-energy sensitivity anal-

ysis. A case study analysis of a two-apartment building system is presented.

Last Modified: April 27, 2015

COMPUTATIONAL FRAMEWORK FOR PARAMETRIC
MODELING AND ARCHITECTURE-ENERGY ASSESSMENT

OF BUILDING FLOORPLANS

by

Eddie Tseng

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2015

Advisory Committee:
Associate Professor Mark Austin, Chair/Advisor,
Assistant Professor Huan Xu,
Professor Andre Tits.

c© Copyright by
Eddie Tseng

2015

Acknowledgments

This master thesis would not have been possible to finish without the support

from all the great people around me. As such, I dedicate my thesis to them.

I owe my deepest gratitude to my advisor, Dr. Mark Austin, who has guided

me through my study and research with patience, enthusiasm and expertise. His

guidance and effort helped me throughout the whole research and writing process.

I simply could not wish for a better advisor for my master research.

I would like to thank the other members of my committee, Dr. Andre Tits

and Dr. Huan Xu, for their insightful comments and assistance.

My sincere thanks also goes to my girlfriend and friends. They were always

there to encourage me with their wishes and stood by me throughout my study at

University of Maryland.

Finally, I would like to thank my parents for loving and supporting me through-

out my entire life.

ii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Related Work . 2
1.3 State-of-the-Art Architectural Design of Buildings 7
1.4 Building Information Modeling (BIM) 12
1.5 Model-Based Systems Engineering for Building Systems Design . . . 18
1.6 Objectives and Scope of this Thesis 20

2 Parametric Modeling of Building Floorplans 24
2.1 Preliminary Concepts . 24
2.2 Parametric Modeling of Floorplans 25

2.2.1 Organization of Floorplans into Hierarchy of Models 25
2.2.2 Modeling Many-to-Many Association Relationships 27

2.3 Area Computation with the Java Topology Suite 29
2.3.1 Example 1. A Simple Area Computation 30
2.3.2 Example 2. Set Operations + Area Computation 32

2.4 Software Design Patterns . 36
2.5 Composite Hierarchies of Features . 44

3 Approach 1: Scripting Floorplan Specifications 48
3.1 Step-by-Step Assembly Procedure . 48
3.2 Example 1. Scripting Specification for a Simple Room. 49

3.2.1 Step-by-Step Assembly of the Floorplan Layout 49
3.2.2 System Redesign . 55

3.3 Example 2. Scripting Specification for a Simple House 59
3.3.1 Step-by-Step Assembly of the House Floorplan 59
3.3.2 Systems Analysis . 65
3.3.3 Floorplan Design Area Validation 71
3.3.4 System Redesign . 73

3.4 Assessment of Approach 1 . 79

4 Approach 2: Interactive Graphical Specification of Floorplans 81
4.1 Problem Statement . 81
4.2 Graphical User Interface Design and Implementation 82
4.3 Example 1. Graphical Specification for a Simple Room 84
4.4 Example 2. Graphical Specification for a Simple House 95
4.5 Assessment of Approach 2 . 100

iii

5 Building Floorplan Case Studies 101
5.1 Objectives and Scope . 101
5.2 Building Code Requirements . 103
5.3 Formulation of Energy Problem . 105

5.3.1 Electricity Cost Study . 108
5.3.2 Air-Source Heat Pump Component Library 110

5.4 Building/HVAC System Assessment and Tradeoff 112
5.4.1 Original Floorplan System . 112
5.4.2 Redesigned Floorplan System 118

5.5 Sensitivity Analysis for Two Design Floorplan Models 124

6 Conclusions and Future Work 129
6.1 Summary and Conclusions . 129
6.2 Future Work . 130

Bibliography 134

iv

List of Figures

1.1 Growth in global population versus time. 3
1.2 Opportunity for impacting building performance, and cost and dis-

ruption, at various stages in the building lifecycle. Source: Energy
Efficiency in Buildings Summary – Business Realities and Opportu-
nities, World Business Council for Sustainable Development. 6

1.3 Degree of effort and potential savings at various stages of the building
lifecycle. Source: Energy Efficiency in Buildings Summary – Business
Realities and Opportunities, World Business Council for Sustainable
Development. 6

1.4 Interaction of architectural, structural, control, and networked em-
bedded system design activities (Source: Mark Austin [5]). 8

1.5 Framework for multi-level development for building architectures (spa-
tial arrangements) augmented with network services (Adapted from
Downs and Sequin [23, 54]) . 9

1.6 Progressive decomposition of architectural floorplans for a small apart-
ment building. Adjacency assessment means spatial adjacency assess-
ment – two spaces can be adjacent and separated by a wall. Pathway
assessment is defined by the layout of the walls. 11

1.7 Parametric representation for a generated compound membrane [10]. 14
1.8 Tree hierarchy organization and three-dimensional visualization of

HVAC systems layout [11]. 14
1.9 Class diagram for the decomposition, layout, and connectivity of

spaces in a building. 16
1.10 Mapping models of system behavior onto system structure alternatives. 20
1.11 Multi-level approach to model-based systems engineering. 20
1.12 Activity diagram for traces of energy and material flows within a

building (Adapted from Geyer [34])). 21
1.13 Implementation of the MVC software design pattern using mixtures

of abstract and implementation-specific classes. 23

2.1 Propagation of dependency relationship representation for a simple
building model. 26

2.2 Many-to-many relationship representation for three different type of
building object model. 28

2.3 Simple area comutation with JTS. 31
2.4 Set operations and area computations with JTS. 33
2.5 Styles of model-view-controller implementation. 38
2.6 Composite class diagram. 39
2.7 Relationship of classes and interfaces in the observer design pattern. . 41
2.8 Problem setup: three nodes and two intervals. 41
2.9 Relationship among classes for the node and interval dependency model. 41
2.10 Schematic for visitor class diagram. 43

v

2.11 Composite hierarchy class diagram for the modeling of floorplans. . . 45

3.1 Floorplan and dimensions for a simple room. 50
3.2 Graph of dependency relationships in the room. Only the parent

dependencies are shown. 55
3.3 The original design of the simple room example. 58
3.4 The redesign of the simple room example. 58
3.5 Original design of the simple house. 60
3.6 Room adjacency relationships in the simple house. 61
3.7 The redesign of the simple room example. 78

4.1 Floorplan editor collage. 83
4.2 Graphical representation of the centerline model inside the software. . 84
4.3 Graphical display radio buttons inside the editor view of the software. 85
4.4 Snap to Grid setup inside the editor view of the software. 85
4.5 Grid size setup inside the editor view of the software. 85
4.6 Floor plan components combo box inside the editor view of the software. 86
4.7 Space component added into the floor plan model. 86
4.8 Column component added into the floor plan model. 87
4.9 Corner components added into the floor plan model. 88
4.10 Wall components added into the floor plan model. 89
4.11 Space tab inside the table view of the software. 90
4.12 Room tab inside the table view of the software. 90
4.13 Floorplan tab inside the table view of the software. 92
4.14 Centerline tab inside the table view of the software. 93
4.15 Summary tab inside the table view of the software. 94
4.16 Simple house spaces floor plan layout. 96
4.17 Simple house model with corners. 97
4.18 Simple house model with walls. 98
4.19 Simple house model spaces summary inside table view space tab. . . . 99

5.1 The HVAC system cover zone inside the two-apartments floorplan
model. Zones 1 and 2 are shown in green. The red rectangle shows
the case where apartments 1 and 2 are bundled into a single HVAC
zone. 102

5.2 Plan view of the original floorplan design and the redesigned floor-
plan. The smaller floorplan is the original design. 102

5.3 First year energy consumption costs vs electricity price with a 3 tons
SEER 13 and a 3 tons SEER 16 heat pump. Plots are presented for
five US cities (Dallas, TX; Miami, FL; Los Angeles, CA; Washington
DC; Seattle WA). 109

5.4 The original floorplan model requirement verification result. 113
5.5 The required air-source capacities chart in tons for original design of

the two apartment floorplan design by city. 114

vi

5.6 The energy consumption for the selection of air-source heat pumps
chart for the original two apartment floorplan design by city. Results
are bundled into three groups: Zone 1 (Z1), Zone 2 (Z2) and the
whole floorplan (i.e., Whole = union of zones 1 and 2). 115

5.7 The life cycle cost analysis for different heat pump chart of the original
two apartment floorplan model by city. Results are bundled into three
groups: Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e., Whole
= union of zones 1 and 2). 117

5.8 The redesigned floorplan model requirement verification result. 120
5.9 The required air-source capacities chart in tons for redesigned model

of the two apartment floorplan design by city. 121
5.10 The energy consumption for the selection of air-source heat pumps

chart for the redesigned two apartment floorplan model by city. Re-
sults are bundled into three groups: Zone 1 (Z1), Zone 2 (Z2) and
the whole floorplan (i.e., Whole = union of zones 1 and 2). 122

5.11 The life cycle cost analysis for different heat pump chart of the re-
designed two apartment floorplan model by city. Results are bundled
into three groups: Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan
(i.e., Whole = union of zones 1 and 2). 123

5.12 Energy consumption for various air-source heat pumps used in the
original and redesigned two-apartment floorplan models. Results are
bundled into three groups: Zone 1 (Z1), Zone 2 (Z2) and the whole
floorplan (i.e., Whole = union of zones 1 and 2). The original designs
for zones 1 and 2 are represented by tags O-Z1 and O-Z2, respectively.
O-Whole represents the case where the entire floorplan is a single
zone. R-Z1, R-Z2 are the redesign case studies. 125

5.13 Life cycle cost analysis for various heat pump in the original and
redesigned two-apartment floorplan models. Results are bundled into
three groups: Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e.,
Whole = union of zones 1 and 2). The original designs for zones 1
and 2 are represented by tags O-Z1 and O-Z2, respectively. O-Whole
represents the case where the entire floorplan is a single zone. R-Z1,
R-Z2 are the redesign case studies. 126

6.1 Abbreviated three-dimensional visualization of a house with JavaFX.
The complete Wavefront model (obj file format) contains 781,000
vertices and faces; approximately 1/5th of the model is displayed
[42, 65]. 131

6.2 Framework for integrated development of building floorplans (and
simplified three-dimensional representations of buildings), simulation
and control. 131

vii

Chapter 1

Introduction

1.1 Problem Statement

Modern buildings are advanced, self-contained and tightly controlled envi-

ronments designed to provide a variety of services (e.g., vertical/horizontal trans-

portation, sanitation, artificial lighting, fire protection, environmental conditioning,

air quality, communication and security) to their occupants. The design of modern

buildings is complicated by intertwined network structures in the arrangement of

two- and three-dimensional spaces throughout the building, for the fixed circulatory

systems (e.g., power and hvac), for the dynamic circulatory systems (e.g., air flows

through rooms), and for wired and wireless communications [35, 58]. In established

approaches to building systems development, the project stakeholder implicitly as-

sume that it will be possible to control the complexity of developments through

separation and decomposition of design concerns, leading to loosely coupled system

architectures and well-defined hierarchies of behaviors. In practice, the need for new

forms of functionality drives components from different network types to connect in

a variety of ways. Since a change at almost any level may have system-wide conse-

quences, formal procedures are needed for the assurance of robust operations, and in

design and trade-study analysis, to understand trade-offs among competing criteria.

1

At the same time, each discipline will design to satisfy their concerns first but in the

end, implementation of discipline-specific concerns must respect inter-disciplinary

constraints. In the case of buildings this task is complicated by: (1) the need for

single objects to help satisfy the functional concerns of multiple disciplines, and (2)

physical network flows (e.g. flows of air and heat) that are influenced by decisions

made in multiple disciplines. This leads to interesting multi-disciplinary tradeoff

problems.

This project addresses these concerns through the development of model-

based systems engineering (MBSE) procedures and computer-aided tools so that

the computer can play a pro-active role in the architectural design, assessment,

and trade-study/sensitivity analysis for energy-efficient building systems. The im-

mediate research and development focuses on methods for a top-down parametric

specification of building floorplans, where high-level adjustments to a design will

be automatically propagated to lower-level representations. A second research ob-

jective is a preliminary framework for architecture-energy assessment of building

floorplans. The expected benefits of these contributions are reduced likelihood of

design errors, improved efficiency of design space exploration, and improved energy

efficiency.

1.2 Related Work

Long-term Drivers. Given that in developed countries individuals spend as much

as 80% of their life indoors (working, sleeping, shopping, and so forth), it is difficult

2

Figure 1.1: Growth in global population versus time.

to overstate the importance of buildings to the vitality and overall well-being of

humanity [15, 44, 51]. There are several trends in place that indicate that moving

forward, these factors will only grow in importance. First, as illustrated in Figure

1.1, the World’s population is rapidly increasing – during the next thirty to forty

years the World’s population is expected to increase from approximately 7 billion

today to somewhere in the range 9 to 10 billion. An increase of 2 to 3 billion people

will almost certainly result in additional demands on limited resources; it might

even contribute to global warming. And second, there is a general trend toward

population urbanization. By 2050, 90% of Americans are expected to live in urban

areas. Together, these trends point to a strong need for levels of energy efficiency

and economy in building systems that exceed today’s state-of-the-art practices. To

3

put the overall problem in perspective, in developed economies (e.g., US and West-

ern Europe) 40-60% of all energy consumption occurs in buildings. Half of this

amount is used to provide a comfortable thermal and luminous environment to the

occupants [13, 14, 16, 43, 61]. With demands for energy expected to increase into

the foreseeable future, socio-economic pressures will drive the need for infrastructure

that is increasingly sustainable and smart about its consumption of energy resources

[38, 64]. As a case in point, a recent European Union directive [31] specifically re-

quires that all buildings constructed in 2020 or later be “nearly net-zero buildings.”

An immediate consequence of this mandate is a strong need for new models and

tools to support performance-based approaches to building design. To achieve de-

sign configurations that are economical and have low resource consumption, longer

term, models will need to capture interoperating domains such as transportation

and energy grids, and support global optimization of energy production and con-

sumption in the building environment [34, 38].

Focus on Frontend Development. Naive approaches to building optimization

and trade-off often lead to design solutions that are functional, but at the expense

of high energy consumption and maintenance [18]. Still, on a local scale even small

improvements in energy modeling and efficiency of operations can lead to substantial

economic benefits over the lifetime of a building. Recent studies [40] indicate that

energy efficient buildings can be increased by more than 50% over current standards

(ASHRAE 90.1), with proof points occurring for all sizes and climates. This occurs

when control options include both active (e.g., heat pumps) and passive mechanisms

4

(e.g., natural ventilation) linked to building dynamics (i.e., coupling of airflow and

thermal properties) and prevailing climate conditions. Unfortunately, with today’s

technology (e.g., ability to sense and gather data throughout a structure), calibrating

a building to achieve optimal performance can take years [40, 62].

Figures 1.2 and 1.3 indicate that the building architecture level provides the

greatest leverage for impacting building performance and generating associated im-

provements to energy efficiency. Indeed, with good judgment and “relatively little

expense” at the frontend of the building lifecycle, the savings can be substantial.

Research in product design indicates that about 75–80% of the product life-cycle

cost is determined by decisions made during the conceptual stages of design. More-

over, a poor concept can rarely be compensated during the latter stages of design

[17, 63]. One important complicating factor stems from buildings being highly mul-

tidisciplinary. We can only expect such a process to work well if we have a good

understanding of how decisions within a disciplinary domain impact performance, as

well as interactions across such domains. While architects and structural engineers

have well-developed procedures for handling interactions between the geometry of

a building and structural engineering mechanisms (e.g., choice of an appropriate

structural system), procedures for handling the interaction between architectural

geometry and energy efficiency are far less mature. Consequently, architects and

designers will have difficulty in making decisions regarding the adequacy of a design

and in choosing rationally among different design alternatives.

5

Figure 1.2: Opportunity for impacting building performance, and cost and disrup-
tion, at various stages in the building lifecycle. Source: Energy Efficiency in Build-
ings Summary – Business Realities and Opportunities, World Business Council for
Sustainable Development.

Figure 1.3: Degree of effort and potential savings at various stages of the building
lifecycle. Source: Energy Efficiency in Buildings Summary – Business Realities and
Opportunities, World Business Council for Sustainable Development.

6

1.3 State-of-the-Art Architectural Design of Buildings

Fundamentally, building architecture is about creating relationships that are

geometric in nature [3, 24, 49, 57, 60, 66]. The architectural design process begins

when a person or an institution has a problem that can be solved only by building.

That person (the client) states his or her needs in a building program. During the

earliest stages of design, architectural concerns are directed toward development of

functional requirements and identification of relevant design rules, and economic and

legal restrictions. The progressive transformation from required functionality (e.g.,

activities, uses, services) to form (spatial qualities, dimensions, use of materials,

aesthetics) of a building’s internal physical structure is a creative process that spans

multiple disciplines. When new technologies come along (as happened during the

industrial revolution) architects are given the freedom to design larger spans and

more spacious buildings.

Established building design practice deals with the multidisciplinary na-

ture of buildings with strategies of decision making that are sequential in their

disciplinary application. Processes for the conceptual design of building architec-

tures abstract from consideration the requirements that are not associated with the

high-level functionality and aesthetics of the building. Consideration of the other

participating disciplines (e.g., structural, mechanical and electrical engineering) is

postponed until key decisions on the building architecture have been made. This

leads to a graph of development activities shown in Figure 1.4. Traditional ap-

proaches to architectural design also tend to integrate measurable criteria only in

7

Performance metrics

Control System
Control View

Spatial
constraints

Feasibility of
implementation

Security requirements
Thermal requirements

Electrical requirements
Information requirements

Networked Embedded Systems View implementation
Feasibility of

Scheduling of thermal comfort,
security, electrical and information
services.

HVAC components
Security components
Computer components
Electrical components

demand.
Occupancy

Building envelope / structural design

of spaces....
Design, layout and connectivity

External Factors System Architecture

Architecture / Structural View

of networked embedded systems.
Selection, positioning and connectivity

Builiding Networks Design

Spatio−temporal
constraints

External environment

Occupant functionality

Figure 1.4: Interaction of architectural, structural, control, and networked embed-
ded system design activities (Source: Mark Austin [5]).

the later stages of the design process, leaving the assessment of design options in

the early stages of the design process to experience and estimation of the designer

[59].

Floorplan Definition and Modeling. A floorplan is a two-dimensional repre-

sentation of a single floor of a building layout as as viewed from above. The plan

shows placement of walls, doors and windows, fixtures for plumbing and electrical

services, detail symbols and dimensions.

Figure 1.5 presents a framework for the multi-level development for building

specifications, where architectural design can be viewed as a sequence of decisions

and transformations designed to enclose usable (interior) space and support client

8

decision making capability.

HVAC

Detailed 3D Geometry

Simple Geometry

Symbolic Layout

Organizational Clustering Constraints
Domain Ontology

−− proximity relations..
−− functional requirements

System Requirements

−− syntax for objects
−− syntax for relationships ..

Plugins for Network Services

Sp
at

ia
l Q

ue
ry

Design

Hierarchy of spatial modeling and

Figure 1.5: Framework for multi-level development for building architectures (spatial
arrangements) augmented with network services (Adapted from Downs and Sequin
[23, 54])

functions. According to the framework, floor plans are organized into levels of

progressive detail. The organizational layer is concerned with clustering of spaces.

The symbolic layout level focuses on room contours, symbolic representations of

connected wall segments, and assignment of properties to regions. Simple geometry

corresponds to thick walls, fleshed-out columns, cut-out doors and windows.

System behavior is enabled by the ability of the building occupants to func-

tion – the latter emanates from two sources: (1) functionality enabled by spaces and

access to spaces, and (2) networked services (e.g, electrical, environmental micro-

climates, security, etc.) integrated into the architectural domain. While many of

these issues can be resolved with approximate/imprecise models of the final compo-

nents to be used [19], it is important to note that few opportunities exist to test the

final product prior to its full implementation. Therefore, formal mechanisms that

9

will enable early validation of designer intent and design rule checking can vastly

improve the quality and reliability of the building system prior to deployment.

Floorplan Design for a Small Apartment Building. Figure 1.6 shows, for

example, how floor-level design for a small apartment building can be organized

into layers of development, each corresponding to a region decomposition:

Level 0. Starting with a list of specific spaces (apartments, stairwell access) with

planned area, a top-level design is defined by wall lines for the building exterior.

Level 1. Next, the building exterior is partitioned into regions for the individual

apartments, plus space for the corridors and stairwells. Initially walls are

defined by their centerlines and drawn as a single line.

Level 2. Regions for individual apartments are divided into rooms – kitchen,

living room, bathroom, bedrooms. Spaces are connected with openings in

walls. Doorways and windows are added to walls. Attributes are applied to

walls (e.g., thickness). Walls are drawn as double parallel lines.

At each level of development a primary goal is to organize the spaces so that they

satisfy orientation, topological and access constraints. For example, at level 1 each

apartment needs to be provided access to the stairwell. Within the individual apart-

ments bedrooms should face open air. High-level topological constraints that facili-

tate occupant functionality include factors like, (1) The kitchen should be close to

the living room, (2) You should be able to go from the bedroom to the bathroom

without having to pass through the kitchen, and (3) The bedrooms should not be

10

Layout of Building

Apartments Apt 4Apt 3

Apt 2Apt 1 Stairs

Room layout

KitchenCloset Bath

Bedroom 1 Bedroom 2
Living room

Adjacency

Adjacency

No Apts, Access

Floorplan Design

Cluster Design

Room layout

Passageway

Living room

Bedroom 1

Closet

Bedroom 1

Closet

Bedroom 2

Passageway

Bath

Living room

Kitchen

Bedroom 2

Passageway

Bath Kitchen Exit

Pathway AssessmentAdjacency Assessment

Room, window,
doorway layout...

Layered Development Requirements

Level 0

Level 1

Level 2

Goals, Budget

Exterior

Layout of apt exterior

and constraints
Apt−level functions

and constraints....
Cluster−level functions

Verification
−− budget
−− access
−− adjacency
−− functionality

−− no apts....
Verification

−− access
−− adjacency

Functionality
−− no apts....
−− access
−− adjacency

−− no bedrooms
−− access

−− adjacency

Size Assessment

size (kitchen) > 10 m^2 ?
size (bedroom 1) > 30 m^2 ?
..... etc

−− orientation

Apt size, location

−− orientation

Figure 1.6: Progressive decomposition of architectural floorplans for a small apart-
ment building. Adjacency assessment means spatial adjacency assessment – two
spaces can be adjacent and separated by a wall. Pathway assessment is defined by
the layout of the walls.

11

immediately adjacent to the entrance.

Beyond level 2 the tops of doorways and windows are defined by “header

lines.” The bottoms of windows are defined by “sill lines.” Plumbing and electrical

fixtures are added and connected to services with appropriate wiring/piping details.

Dimensions and text are added to the floor plans. If the required functionality

at lower levels of development cannot be satisfied (perhaps because the constraint

values are too stringent), then the verification process will fail and the high-level

developments will need to be adjusted to accommodate the demands of the lower

level requirements (e.g., perhaps the overall size of an apartment would need to be

increased).

1.4 Building Information Modeling (BIM)

During the past three decades the architectural design profession has ben-

efited from the development of software to support building information modeling

(BIM) and computer-aided architectural design (CAAD). In a departure from past

practices, which have focused on the production of detailed design documents (draw-

ings of the building plan, elevation and sections) to describe what a building should

look like when complete, the general idea of BIM is that architects and engineers

will create models of buildings, and drawings and support documents will be views

of the models. If an element (e.g., a door or window) is repositioned in the model,

then all of the views containing that element be automatically updated.

Commercial tools such as AutoCAD [48], 3D Home Architect and Tur-

12

boCAD Professional [12, 50] focus on the editing and presentation of Architec-

tural/Mechanical CAD models/plans as blueprint-like drawings, 2-D designer view-

points, and 3-D photorealistc renderings. Medium-end versions include support

for pre-defined domain-specific features (e.g., architectural symbols), dynamic di-

mensioning, basic solid and surface modeling (i.e., boolean operations and slicing),

collision detection, and cost estimation. High-end versions are linked to external

packages for performance-based assessment through the use of simulation (e.g., en-

ergy simulation; solar studies; egress analysis). They also support team development

of projects [47].

Capabilities of Present-Day BIM. Building information models are compelling

because they enable processes, facilitate communication across disciplines, reduce

the likelihood of errors, and provide a pathway to the automatic enforcement of

standards. BIM coverage includes representation of building components, data at-

tributes, parametric rules, and support for consistent management and propagation

of all non-redundant data to all views of the model [9, 25]. Simple drawing errors

(e.g., drawing something upside down) can be eliminated. By incorporating infor-

mation on the project cost and schedule into the models, BIMs can be of great

benefit to project managers.

Parametric design systems model a design as a collection of mathematically

constrained entities. Designers work with such systems on two levels: (1) definition

of the entities and the relationships among them, and (2) search within a design

space [3]. Parametric constraints can be used within a model, for example, to

13

Figure 1.7: Parametric representation for a generated compound membrane [10].

Figure 1.8: Tree hierarchy organization and three-dimensional visualization of
HVAC systems layout [11].

14

enforce compatibilities among connected objects [53]. An emerging application of

parametric modeling is to support the generation of free-form architectures. Figure

1.7 shows, for example, the results of a parametrically generated compound (shell)

membrane. Propagation-based systems are the simplest type of constraint-based

system [4]. At the building architecture level, propagation-based constraint systems

comprise an acyclic directed graph and two algorithms: one for ordering the graph

(i.e., a topological sort of dependency relationships in the graph), and a second for

propagating values through the graph. Figure 1.8 shows how a three-dimensional

visualization for a building and its contents can be organized into a tree hierarchy.

The latter is a very convenient and efficient mechanisms for defining and searching

the space of design options.

As of 2014, the BIM market leaders are: (1) Autodesk with Revit Archi-

tecture [47], and (2) Bentley Systems with a suite of complementary software (e.g.,

Bentley Architecture, Bentley Structural, Bentley Mechanical Building Systems).

Both companies offer suites of discipline-specific BIM authoring software that is

built on a common BIM platform and, thus, internally interoperable. A key feature

of current mainstream BIM authoring software is the ability to define paramet-

ric constraints to enforce relationships on the geometry of objects. On one hand,

providing support for parametric relationships increases the complexity of creating

designs because both the entities and their mathematical relationship need to be

represented. On the other hand, once such relationships are in place, paramet-

ric relationships facilitate exploration of the design space and possibly discovery of

15

disjoint

Building

Architecture ElectricalStructure

consists−of

Space

border

Services

consists−of

support

concerns....
contributions and
Domain−specific

Room

Region

Outside

Architectural concerns

Nodes

Walls Floors

Boundary

Dividers Portals
contain

Window

Door

Opening

connect

* *

Figure 1.9: Class diagram for the decomposition, layout, and connectivity of spaces
in a building.

new forms. If the participating disciplines can understand the nature of the graph

dependency relationships connecting entities (possible across disciplines), then the

graph provides a platform for communication among disciplines, and exploration

and assessment of design options [39].

Weaknesses of Present-Day BIM. Despite these successes, present-day BIM is

directed mainly at the design phase and is compartmentalized into discipline-specific

software packages. In theory, communication among software packages is enabled

by BIM interoperability standards, but in practice, competitive pressures prevent

all vendors from adopting a single uniform standard. Present-day building design

16

processes are weak in their support of models capable of linking fragments of behav-

ior to system components, and at expressing dependencies and interdependencies

among disciplines – so-called multi-aspect design – from a variety of viewpoints

[18]. Comprehensive descriptions of the building system structure are complicated

by mixtures of hierarchy, network, and association relationships, as illustrated in

Figure 1.9. Propagation-constraint relationships occur due to hierarchies of ab-

stractions (see Figures 1.4, 1.5 and 1.6) and the complementary roles served by

solid-filled and void spaces. Furthermore, a single object (or subsystem) may be

required to satisfy the functional concerns of multiple disciplines [52].

Most software implementations (and their underlying data representations)

skirt these issues by assuming that one viewpoint takes priority. Support for the re-

maining viewpoint(s) may be much weaker (see, for example, references [23, 32, 45,

54]). With its focus on generation and visualization of surface models, even Google

SketchUp favors the presentation of architectural forms (drawings and documents)

over support for formal approaches to geometric representation and reasoning. In-

deed, current practice for mechanical, plumbing and electrical systems coordination

is for design consultants to design each system independently. The coordination

process is slow and expensive, in part because only minor advances are made at

each step, and because it is human intensive [8, 46].

17

1.5 Model-Based Systems Engineering for Building Systems Design

Model-based systems engineering (MBSE) development is an approach to

systems-level development in which the focus and primary artifacts of development

are models (as opposed to documents). Methodologies for the model-based design,

management, and evolution of whole building systems need to cover system func-

tionality (what will the system do?), evaluation of system performance (how well

will it perform?), system validation and verification (how can we make sure the

system will actually work?), and economics (how much will it cost?) [52].

In contrast to present-day BIM, which has a heavy focus on visualization

and support for project management activities, MBSE aims to capture the mul-

tidisciplinary aspects of system structure and behavior in building systems design

and operation. As such, MBSE procedures hold the promise of being ideally suited

to the demands of future building design where superior levels of performance and

comfort will cause energy and control systems to become much more integrated and

complex than today [67].

Experience [30] tell us that good solutions are likely to employ a combina-

tion of semi-formal models (e.g., SysML), formal models, abstraction mechanisms,

top-down decomposition and bottom-up composition, and deal with design concerns

through strategies of: (1) separation of concerns, (2) breadth before depth, and (3)

function-architecture co-design. When the elements of a design are easily separated,

as shown in Figure 1.10, step-by-step procedures can be followed for the develop-

18

ment of models for system behavior, structure, design, and evaluation and ranking

of alternatives. We believe that as the complexity of a system increases (or becomes

intertwined), high levels of productivity in system development can be achieved

through the use of high-level visual abstractions coupled with lower-level (mathe-

matical) abstractions suitable for formal systems analysis [6, 7, 29]. This multi-level

framework is illustrated in Figure 1.11. Semi-formal abstractions provide efficiency

in a “big picture” representation of the system under development. They highlight

the major components, their organization (layout, decomposition), and connectivity

to nearby components. The lower-level abstractions are suitable for formal systems

analysis – for example, verification of component interface compatibilities and/or

assessment of system performance through the use of simulation methods.

While these practices are in common use in the development of engineering

products, for the architectural design of buildings, completion of these tasks is com-

plicated by: (1) the multitude of organizational and propagation-constraint relation-

ships that need to be supported, and (2) the necessity of performance-based design

and real-time management of buildings, serving many stakeholders over extended

periods of time. As a result, the number of design options that are generated may be

very small, meaning that architects may consider on a very narrow range of candi-

date designs. This situation is less than ideal. The move toward performance-based

design and management of buildings means that models of system behavior will

need to be explicitly considered. Figure 1.12 shows, for example, energy exchange

and material flow relationships in a simple one-room building. The activity diagram

19

Map Model of
System Structure 1

System Design
Alternative 1

Model of
System Structure 2 Alternative 2

System Design

Evaluation and
Ranking of
Design Alternatives

−− Scenario 2
−− Scenario 1

System Behavior
Model of

Map

Figure 1.10: Mapping models of system behavior onto system structure alternatives.

Formal

Transformation

System Design System Analysis

Analysis
Semi−formal

Analysis Detailed Simulation
Design Space Exploration

UML / SysML
Goals / Scenarios

Figure 1.11: Multi-level approach to model-based systems engineering.

has five horizontal process boxes for radiation, thermal, electric, air, and materials

and emissions. The vertical swim lanes represent an allocation (or mapping) of the

processes to four subsystems, the environment, envelope, building technology and

indoor space. Figuring out how to scale this capability up to buildings of a realistic

size is a significant long-term challenge.

1.6 Objectives and Scope of this Thesis

The long-term objectives of this research are development of model-based

systems engineering (MBSE) procedures and computer-aided tools for the paramet-

20

Figure 1.12: Activity diagram for traces of energy and material flows within a building (Adapted from Geyer [34])).

21

ric modeling, system-level assessment, and trade-study analysis of buildings. The

immediate goal of this research project is to take a first step toward providing this ca-

pability and, specifically, to understand how top-down parametric representations of

building floorplans can be created, and then systematically adjusted to cover design

spaces. To deal with large number of components and multiplicity of dependency

relationships in representations of buildings, we are interested in understanding how

software design patterns (specifically, composite hierarchies, model-view-controller,

observer, mediator and visitor design patterns) can facilitate the organization, mod-

ularity, and visualization of building architecture representations. With a prototype

of software having this capability in place, the second objective of this thesis is

to develop a preliminary framework for architecture-energy assessment of building

floorplans.

Chapter 2 focuses on models and software design patterns for the top-down

parametric modeling of floorplans. Chapter 3 presents a scripting approach to floor-

plan specification. We will see that while the method works, the step-by-step pro-

cedure for creating the floorplan models and all of the dependency relationships is

tedious. And it certainly isn’t scalable – a relatively small two apartment floorplan

requires approximately 2,000 lines of Java. In an effort the overcome this short-

coming, Chapter 4 presents a graphical approach to floorplan specification. Figure

1.13 shows the essential details of the system architecture and composite hierarchy

framework for modeling and visualizing building floorplans. We employ the MVC

software design pattern to links the models, views and controllers together. To sim-

22

Grid System Model

Abstract Model Abstract Controller Abstract View

Engineering ControllerFloorplan Model Engineering View

extends

extends

extends extends

Table View Print View

extends

Figure 1.13: Implementation of the MVC software design pattern using mixtures of
abstract and implementation-specific classes.

plify the details of implementation, the discipline-specific models, views and con-

trollers are concrete extensions of abstract implementations. The primary purpose

of the abstract-level specifications is to take care of the details of model-controller

and view-controller communication. Chapter 5 presents case studies for a full sys-

tem analysis of the “two apartment units” floorplan model introduced in Chapters 3

and 4. Simplified system analyses are provided for building code requirements ver-

ification and architecture-energy system assessment and tradeoff analysis. Chapter

6 presents the conclusions and makes suggestions for future research.

23

Chapter 2

Parametric Modeling of Building Floorplans

This chapter presents the formulation of parametric models for building

floorplans. Parametric models are provided for individual elements, relationships

among elements, and dependency relationships between layers of abstraction. To-

gether, they work to allow for the evaluation of both the “spatial elements of a floor

plan” as well as the walls defining the floorplan topology and geometry. The second

purpose of this chapter is to introduce software design patterns that can be used in

the implementation of software for parametric modeling of building floorplas. Fi-

nally, this chapter demonstrates how the Java Topology Suite can be employed for

area computations of building floorplans.

2.1 Preliminary Concepts

From an architectural standpoint, parametric modeling is the process of

putting together a geometric representation of a design using components and at-

tributes that have been parameterized. While procedures for parametric modeling

for mechanical CAD are quite mature, parametric models for building architecture

presently are challenged by the scale and complexity of geometric and dependency

relationships. For the conceptual design of buildings, these relationship can be nat-

urally organized into a hierarchy of dependencies. Some of the parameters will act

24

as independent variables (i.e., as system inputs) others will take values evaluated

through the chain of dependency relationships. Parametric design creates the pos-

sibility of generating large sets of design alternatives that are both practical and

appealing.

As already explained in Chapter 1, engineers are first concerned with the

building as a whole, next with the pieces that make up that whole, the connections

among them, and lastly the details of each individual object. When changes are

made to the building at a certain level, all of the elements at the lower levels should

adapt to the changes made, thereby maintaining the spatial integrity [53]. If it will

work, a key benefit in this approach to building specification is that engineers can

explore design spaces by playing with building layouts at a high level of abstrac-

tion. Therefore, using parametric modeling for components makes a real impact to

productivity of the engineering project.

2.2 Parametric Modeling of Floorplans

2.2.1 Organization of Floorplans into Hierarchy of Models

Multi-layer hierarchy has been widely implemented in engineering systems

design. For the parametric modeling of building floorplans, the performance of

traditional floorplan design can be enhanced with models that are organized into

hierarchies. This research employs the three-layer hierarchy shown in Figure 2.1:

25

C4

C1 C2 C3

C5

C6

Level 0

Level 1

Room

Wall
Level 2

Corner Point(Junction Point)

Area

Figure 2.1: Propagation of dependency relationship representation for a simple
building model.

26

• Level 0. Centerline Layer. In a two-dimensional floor plan, sets of centerlines

representing the position of structural frames and bays are created in the

horizontal and vertical directions.

• Level 1. Junction Points Layer. The junction point layer is defined by items

positioned at the intersection of orthogonal centerlines. The junction points

inherit the centerline coordinates and are defined by rectangle blocks having

a predefined width.

• Level 2. Wall Layer. The wall layer represents the interior and exterior walls

of a building system.

The propagation of dependency relationships between adjacent layers will serve as

supplement for reductionism. Components in the high-level layers (e.g., layer 0) can

effortlessly propogate data (e.g., locations, width, and height) to items in the lower-

level layers. In Figure 2.1, the large dots represent junction points and columns that

have been positioned at the intersection of centerlines. Once the walls are in place,

the area of rooms can be computed.

2.2.2 Modeling Many-to-Many Association Relationships

The modeling of building floorplans is complicated by a multitude of many-

to-many association relationships between entities. In software, many-to-many re-

lationship between classes A and B exists when ...

27

... multiple objects of type A are associated with multiple

objects of type B, and visa versa.

Many-to-many relationships exist between entities that participate in assembly re-

lationships.

Parents
Children

Children Parents

Figure 2.2: Many-to-many relationship representation for three different type of
building object model.

Figure 2.2 shows, for example, the relationship between the three building object

model. Notice that both vertical and horizontal centerline became the parent and

generated the junction point on their intersection. Then, the junction point became

the parent of it’s upper wall element and right wall element. In this case, the location

of the junction point was defined by those two centerlines, and the width and height

of the walls were determined by two ends of the wall element, which is the junction

points.

28

2.3 Area Computation with the Java Topology Suite

Area computations are an important part of building system analysis because

construction costs and energy system costs are roughly correlated to areas. In

this research, area computations for each building object or building system are

accomplished with the Java Topology Suite (JTS) library [41]. The JTS Topology

Suite is an API of 2D spatial predicates and functions that provides a complete,

consistent, and robust implementation of fundamental 2D spatial algorithms. As

such, the library provides a methodology to compute the area and to determine the

relationship of geometries. For the purposes of this study, the Java Topology Suite

is used to compute the area of rooms, which may have a complicated interior wall

design or non-rectangular shape.

Basic Geometry Operations. Listed below are the basic geometry methods from

the JTS that are used in this study to compute the usable area of building floorplans.

They are:

• union(): With an input of a Geometry object, this method will return a com-

bined Geometry object. By using this method, the software can calculate

the combined geometry of the unusable area in floorplan model, such as the

combination of walls and columns.

• difference(): This method returns the difference between two polygon ob-

jects/areas. In this study, the method is used to compute the difference of

the whole floorplan area and the unusable area geometry.

29

• getArea(): After getting the usable Geometry object from the difference method,

this method will return a quantitative value for the usable area.

• getCoordinates(): This method returns a list of sequential vertices which can

be used to calculate the width of the geometry.

The next section will demonstrate some example room area calculations by imple-

menting the Java Topology Suite library (JTS).

2.3.1 Example 1. A Simple Area Computation

The following snippets of source code show the step-by-step procedure for

defining the polygon in Figure 2.3 and computing it’s area with JTS.

Step 1. Create polygon vertices with a coordinate array.

code segment

Coordinate pt1 = new Coordinate(0, 0, 0);
Coordinate pt2 = new Coordinate(0, 50, 0);
Coordinate pt3 = new Coordinate(50, 50, 0);
Coordinate pt4 = new Coordinate(50, 0, 0);

List<Coordinate> points = new ArrayList<Coordinate>();

points.add(pt1); points.add(pt2);
points.add(pt3); points.add(pt4);
points.add(pt1);

Coordinate coordinates[] = points.toArray(new Coordinate[points.size()]);

In the first four lines of the script, objects of type Coordinate are created and

instantiated with the (x,y) coordinate values for the test polygon. Next, an array

list of coordinates is created. The coordinate points (i.e., pt1, pt2, pt3 and pt4)

30

Test polygon

10 20 30 40 50

10

20

30

40

50

Figure 2.3: Simple area comutation with JTS.

are added to the array list. Finally, the array list is converted into an array data

structure.

Step 2. Create the GeometryFactory object.

code segment

GeometryFactory fact = new GeometryFactory();

The GeometryFactory provides users with numerous methods to generate Geometry

objects.

Step 3. Use the LinearRing method and the array of coordinate values to create

an outer boundary for the polygon geometry.

code segment

Polygon polygon = new Polygon(
fact.createLinearRing(coordinates), null, fact

31

);

While orientation of the polygon exterior may be clockwise or anticlockwise, the

line segments must not intersection (i.e., in other words, the polygon needs to be a

simple polygon).

Step 4. Utilize the getArea() method that provided by JTS library and print out

the area size which is calculated by the method.

code segment

System.out.println(polygon);
double area = polygon.getArea();
System.out.println("Area = " + area);

Since each side of the rectangle is 50, one can calculate the area by hand with the

result of 2500. By comparing the JTS result below with the hand calculated result,

one can say that JTS library has the capability to do area calculation.

result scripts

POLYGON ((0 0, 0 50, 50 50, 50 0, 0 0))
Area = 2500.0

2.3.2 Example 2. Set Operations + Area Computation

The following description and source code shows the step-by-step procedure

for defining the collection of polygons shown in Figure 2.4, and then computing set

operations for area computation. Other than the different location for all vertiics

of the polygon, the source code creation for each polygon in Example 2 is almost

32

I

10 20 30 40

10

20

30

40

A

B C

D

E

F

G

H

Figure 2.4: Set operations and area computations with JTS.

identical as the source code shown in Example 1, Steps 1 through 4. Therefore, the

fragements of source code shown below will focus on outputs of the set operation

computations.

Step 1. Create 9 polygons as shown in Figure 2.4 by using the same procedure as

in Section 2.4.1. The polygon coordinates and area computations are as follows:

result scripts

Polygon A : POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))
Polygon B : POLYGON ((0 30, 0 40, 10 40, 10 30, 0 30))
Polygon C : POLYGON ((30 30, 30 40, 40 40, 40 30, 30 30))
Polygon D : POLYGON ((30 0, 30 10, 40 10, 40 0, 30 0))
Polygon E : POLYGON ((0 10, 0 30, 10 30, 10 10, 0 10))
Polygon F : POLYGON ((10 30, 10 40, 30 40, 30 30, 10 30))
Polygon G : POLYGON ((30 10, 30 30, 40 30, 40 10, 30 10))
Polygon H : POLYGON ((10 0, 10 10, 30 10, 30 0, 10 0))
Polygon I : POLYGON ((10 10, 10 30, 30 30, 30 10, 10 10))

Area A = 100.0, Area B = 100.0, Area C = 100.0
Area D = 100.0, Area E = 200.0, Area F = 200.0
Area G = 200.0, Area H = 200.0, Area I = 400.0

33

Step 2. Add up the geometry of polygon A and E. This step allows the user to

have a better idea of how simple union operation works by using JTS library.

code segment

Geometry aUnionE = polygonA.union(polygonE);
System.out.println(aUnionE);
double areaAUnionE = aUnionE.getArea();
System.out.println("Area A union E = " + areaAUnionE);

As one can observe in the output,

result scripts

POLYGON ((0 0, 0 10, 0 30, 10 30, 10 10, 10 0, 0 0))
Area A union E = 300.0

A union E geometry and the area set operation result provides a strong evidence

that JTS is capable of computing union set operations.

Step 3. Compute the union all outer polygons and calculate the area. The result

is as follows:

result scripts

POLYGON ((0 0, 0 10, 0 30, 0 40, 10 40, 30 40, 40 40,
40 30, 40 10, 40 0, 30 0, 10 0, 0 0),
(30 10, 30 30, 10 30, 10 10, 30 10))
The union of all outer polygons = 1200.0

Since the union of the outer polygons is a polygon with an internal ring, the

34

printed result displays two lists of verticies. One is for the outer polygon, and the

other is for the inner polygon.

Step 4. Compute the union of all polygons and calculate the total area. The results

are as follows:

result scripts

POLYGON ((0 0, 0 10, 0 30, 0 40, 10 40, 30 40, 40 40,
40 30, 40 10, 40 0, 30 0, 10 0, 0 0))
Whole area = 1600.0

Step 5. Compute the difference between the whole geometry and the union of outer

polygons.

code segment

Geometry diffrence = all.difference(outerUnion);
System.out.println(diffrence);
double centerArea = diffrence.getArea();
System.out.println("Center area = " + centerArea);

The output:

result scripts

POLYGON ((30 10, 10 10, 10 30, 30 30, 30 10))
Center area = 400.0
Area I = 400.0

is the area of polygon I, thereby demonstrating that JTS can be used for the com-

putation of simple geometry operations. Later on, we will use exactly the same

procedure to compute the usable area of more complicated building floorplans.

35

2.4 Software Design Patterns

Software design patterns are defined as general repeatable solutions to com-

mon software design problems; designers customize these templates to suit the design

requirements.

Behavior Structure System

Command Adapter Model-View-Controller

Interpreter Bridge Session

Mediator Composite Router

Observer Decorator Transaction

Visitor

Table 2.1: Taxonomy of commonly used software design patterns. Those highlighted
in bold are relevant to building floorplan modeling.

Table 2.1 contains a summary of the software design patterns – a novel mix of

model-view-controller, mediator, composite hierarchy, observer and visitor design

patterns – employed in this project.

Model-View-Controller Design Pattern. The model-view-controller (MVC) is

an architectural design pattern which can be divided into three logical parts (the

model, view, and controller), and as pointed out by Fowler [33], was one of the

first attempts at addressing large-scale user-interface development in a systematic

way. Fundamentally, the MVC provides a separation between domain objects and

presentation objects. The domain objects is the model that contains all the business

logic but no visualization, and the presentation objects contains the logic which

represents the GUI elements. Controllers receive updates from models and forward

36

the appropriate data to the presentation views.

The model, view, and controller specifications work together to ensure the

data and information that is stored in the models and displayed in various views is

consistent and fully synchronized. Figure 2.5 elaborates two approaches for MVC

implementation. In the most common implementation of the MVC design pattern

(see, for example, the Java patterns in Stelting and Maasson [56]), views register for

their intent to be notified when changes to a model occur. Controllers register their

interest in being notified of changes to a view. When a change occurs in the view,

the view (graphical user interface) will query the model state and call the controller

if the model needs to be modified. The controller then makes the modification.

Finally the model notifies the view that an update is required, based on a on change

in the model.

In the second approach to implementation, the controller is positioned at the

center of the pattern and the models and views communicate through the controller

channels. For example, after a view has notified the controller of a user action, the

controller will update the property in the model based upon that action. From the

other direction, the controller registers for the changes in the model and updates the

view based on the notification triggered from the model. This approach is combined

with the mediator where the controller plays the mediator role for model and view

communications.

Composite Design Pattern. The composite hierarchy design pattern provides

a flexible and extensible solution to the specification of hierarchical tree structures

37

update

Network

Implementation of MVC with the Controller acting as a Mediator

Update the model
based on
events received.

The view determines
which events are passed
to the controller.

View requests data from model

Model passes data to the view

Simplified Implementation of MVC

User Actions

User Actions

update
Componentproperty

change

property
update

Select events from
user actions

property property
change

of
controllers

Model View

Controller

Controller

Model View

Figure 2.5: Styles of model-view-controller implementation.

38

Component components [];

Component

void operation();

Node Composite

void operation();
void addComponent (Component c);
void removeComponent (Component c);
void operation();

0 .. *<<interface>>

Figure 2.6: Composite class diagram.

(i.e., part-whole hierarchies) of arbitrary complexity. As illustrated in Figure 2.6,

implementations of this pattern employ component, node, and composite classes:

1. Component. The component class is a common interface which defines meth-

ods that must be implemented by the objects and propagated down to all

parts of the tree structure.

2. Composite. The Composite class serves as a container to store the com-

ponents. It supports a dynamic set of Component references, and so it has

methods to add and remove components to/from the container, as well as re-

trieve Component objects from its collection. All operational methods which

are defined in the Component interface must also be implemented.

3. Node. The node (or leaf) classes represent terminal behavior of single objects

(i.e., parts of the composite that will not have other components). They also

implement the Component interface and provide an implementation for each

39

of the component’s operational methods.

It is important to note that composite objects can be assembled recursively into a

multi-layer tree structure. The structure grows until the lowest-level node (leaf) is

reached.

Observer Design Pattern. The observer design pattern defines a one-to-many re-

lationship between objects. The pattern defines the dependency between a “subject

object” and an “observer object.” An observer component registers itself to a sub-

ject of interest and will be notified when an event occurs. The registration process

can be very flexible: observers can register with a multitude of subject (observable)

components and be removed when an interest in the subject no longer exists.

Figure 2.7 shows the relationship among classes and interfaces in a typical

implementation of the observer design pattern. Observable subjects are extensions

to a high-level Observable class. The latter uses a collection of references to Observer

interfaces. All that concrete observers need to do is implement the observer interface.

Since concrete observers can register with multiple subjects, software architectures

can be easily assembled into networks of loosely coupled entities.

To see how this observer design pattern works in practice, Figure 2.8 shows

a problem setup where two intervals on a line segment are defined by the position

of three nodes. As drawn, intervals 1 and 2 are each five units of length. Now

suppose that node 2 is moved one interval to the right. Intervals 1 and 2 will now

have lengths six and four respectively. We can model the node-interval dependency

40

extends

<< interface >>
Observer

Observable uses

Concrete ObserverObservable Subject

implements

Figure 2.7: Relationship of classes and interfaces in the observer design pattern.

Interval 2

Problem Setup

Node 1 Node 2 Node 3

Interval 1

Figure 2.8: Problem setup: three nodes and two intervals.

2

<< interface >>
EventListener

<< interface >>

extends

EventObject

extends

uses

NodeListener
NodeEvent Node

Interval

implements

usesuses

Figure 2.9: Relationship among classes for the node and interval dependency model.

41

relationships with the network of class relationships shown in Figure 2.9. Each

interval is defined by the position of two nodes. Rather than embed references to

the nodes inside the interval (certainly this would work), the nodes are observable

subjects and the intervals are the observers. For this specific application, interval 1

will observe the positions of nodes 1 and 2. Interval 2 will observe the positions of

nodes 2 and 3. The act of repositioning a node will generate a node event, which in

turn, will trigger notifications to the registered observers.

Visitor Design Pattern. The visitor software design pattern allows for the sep-

aration of an algorithm (system functionality) from an object structure on which

it operates. Use of this pattern makes sense when you have distinct and unrelated

operations (e.g., print, display, modify) to perform across an ensemble or structure

of objects.

Figure 2.10 shows the arrangement of classes in a typical implementation

of the visitor design pattern. Visitors A and B each implement a visitor interface.

The objects to be visited (i.e., Elements A and B) implement an accept() method

having an argument of type interface visitor. It is important to note that visitors

need not know the details of the organizational structure beforehand – they just

visit collections of objects, perform their function, and then leave. A key benefit in

using the visitor design pattern is that new operations (e.g., print, display, export)

may be added to existing object structures without the need to actually modify

those structures.

42

+Accept (Visitor)

VisitorA VisitorB

+Visit (ElementA)

+Visit (ElementB)

+Visit (ElementA)

+Visit (ElementB)

<<Interface>>
Visitor

+Visit (ElementA)

+Visit (ElementB)

<<Interface>>
Element

+Accept (Visitor)

ElementA ElementB

+Accept (Visitor)

Figure 2.10: Schematic for visitor class diagram.

43

2.5 Composite Hierarchies of Features

An important aspect of building floorplans (and buildings in general) is that

they contain a large number of different types of components (e.g., floors, rooms,

walls, columns, doors, windows, etc). While it is certainly possible to model each of

these component types explicitly, the long-term management of these components

would be very tedious. To circumvent this problem, an alternative and more elegant

approach is adopted. Instead of modeling the building floorplan as collections of

specific types of components (e.g., walls, doors, windows), the general idea is that all

components will be modeled as features. Features will be organized into composite

hierarchies.

Figure 2.11 is a class diagram for the modeling of building floorplan as

composite hierarchies of features. A feature is a generic interface to a component,

e.g.,

public interface Feature extends Cloneable {
public void setName(String sName);
public String getName();
public void setX(double dX);
public double getX();
public void setY(double dY);
public double getY();
public void setColor(Color c);
public Color getColor();
public void setSelection(boolean b);
public boolean getSelection();
public void accept(FeatureElementVisitor visitor);
public void search(AffineTransform at, int dx, int dy);

}

The feature interface extends clonable, which means that it supports the copying of

features. It provides methods for naming and positioning of features, selection of

44

*

Abstract Feature
<< abstract >>

−− clone ()

−− clone ()
−− accept ()
−− search ()

<< interface >>
Feature

−− search ()
−− accept ()
−− clone ()

implements

*

CompositeHierarchy

Point Edge Circle Polygon

Composite Hierarchy

Basic Shapes

Models

Room Workspace Chair Desk

extends

extends

extends

<< abstract >>
Compound Feature

Figure 2.11: Composite hierarchy class diagram for the modeling of floorplans.

45

objects in the composite hiearchy, the acceptance of visitors (e.g., to print or display

objects in the hierarchy) and search the hierarchy for an object having coordinates

(x,y).

The class AbstractFeature implements the interface Feature and, as such,

it is required to provide implementations for all of the methods declared in the

interface specification. Parameters are provided for the features (x,y) coordinates,

color, height, width, and rectangular bounding box. The search() method pro-

vides for systematic traversal of the composite hierarchy. The accept() method

provides for traversal of the composite hierarchy by methods that implement the

FeatureElementVisitor interface. The clone() method makes a deep copy of the

abstract feature contents. Basic shapes, such as point, edge, circle and polygon are

extensions of AbstractFeature.

The class AbstractCompoundFeature supports the representation of compo-

nents that are an assembly of simple feature primitives (e.g., lines and filled circles).

The extension relationship between the class AbstractCompoundFeature and class

AbstractFeature is indicated by the triangle notation ("). Similarly, the graphi-

cal notation (! and ∗) indicates that a compound feature will contain zero or more

features. Our current implementation stores these items as a hashmap, i.e.,

public HashMap<String,Feature> items = new HashMap<String,Feature>();

Simplified models of real-world components (e.g., chairs, desks, a very simple car)

can be represented as abstract compound features.

46

The class CompositeHierarchy provides support for the specification of

composite hierarchies of features. Each layer of the composite hierarchy is an array

list of features, i.e.,

private ArrayList<Feature> children = new ArrayList<Feature>();

The class parameters keep track of the current level number, as well as the global and

local offsets in the x- and y- directions, and rotation. Traversal of the composite

hierarchy corresponds to a recursive search. During a traversal of the composite

hierarchy model, updates in the cooordinate offsets are managed by a family of

affine transformation matrices. Methods are provided to add and remove a feature,

and find a feature having a specific name. The methods accept() and clone() are

redefined so that array list of features can be visited and copied, respectively.

47

Chapter 3

Approach 1: Scripting Floorplan Specifications

This chapter presents a script-based approach to the step-by-step assembly

of floorplan models. This approach is the first of two approaches to the development

of floorplan specifications presented in this thesis.

3.1 Step-by-Step Assembly Procedure

The step-by-step assembly procedures for floorplan examples are as follows:

1. Establish the base composite hierarchy workspace for the room model.

2. Specify fixed entities, such as column in the model.

3. Define positions of the centerlines along the x- and y- axes.

4. Generate junction points on the intersection of correlated centerline for the

model.

5. Build up wall components by the demarcated relationship of junction points.

6. Create composite hierarchy workspaces for walls that contain doors and win-

dows.

7. Add door and window components to the corresponding composite hierarchy

workspaces.

48

8. Analyze the sequence of design refinement by using JGraphT.

9. Determines building components and other subsystems to form a room system.

10. Calculate the usable area by using Java Topology Suite.

The underlying dependency relationships are modeled with JGraphT, a graph pack-

age. Area calculations are handled by the Java Topology Suite.

3.2 Example 1. Scripting Specification for a Simple Room.

We begin with a step-by-step assembly of a model for a simple room, as

illustrated in Figure 3.1. Despite its small size, it uses all of the component types

and is assembled into a small composite hierarchy. We also demonstrate how the

model reacts to the re-positioning of a single centerline.

3.2.1 Step-by-Step Assembly of the Floorplan Layout

Part 1. Definition of the composition hierarchy workspace, centerlines, columns,

junction points, walls, doors and windows.

Step 1. Create a base composite hierarchy workspace. The output is as follows:

result scripts

Create Composite Hierarchy workspace:
Location: (0.0, 0.0)
Rotation: 0.0

49

Figure 3.1: Floorplan and dimensions for a simple room.

Step 2. Add entities to the model that are fixed in place (i.e., they cannot be

re-positioned). For our purposes, columns are fixed in place.

result scripts

Create a unmovable Column:
Location: (185.0, 105.0)
Width: 20.0 Height: 20.0

Step 3. Now that the fully-fixed components are in place, the next step is to define

the layout of designable component pieces. For our example, establishing centerlines

might be a great start to depict a room system.

result scripts

Create vertical Centerline : x = 0.0
Create horizontal Centerline: y = 0.0
Create vertical Centerline : x = 200.0

50

Create horizontal Centerline: y = 120.0
Create vertical Centerline : x = 180.0
Create horizontal Centerline: y = 100.0

Notice that the centerline positions are consistent with the overall room dimensions

shown in Figure 3.1.

Step 4. A grid of centerline positions provides a very high-level blueprint for

the definition of junction points and positioning of rooms. Junction points were

generated as follows:

result scripts

Create a Junction Point
Location: (-5.0, -5.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c1, Centerline c2

Create a Junction Point
Location: (-5.0, 115.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c1, Centerline c4

Create a Junction Point
Location: (195.0, -5.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c3, Centerline c2

Create a Junction Point
Location: (175.0, 115.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c5, Centerline c4

Create a Junction Point
Location: (195.0, 95.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c3, Centerline c6

Step 5. As already explained in the component library section, wall components

are generated between junction points. If the wall contains either a window or a

door, then composite hierarchy workspace for the corresponding wall element will

51

be created to form a subsystem inside the system. The following script illustrates

this process:

result scripts

Create a wall
Location: (-5.0, 5.0)
Width: 10.0 Height: 110.0
Dependency: jpt1, jpt2

Create a wall
Location: (5.0, -5.0)
Width: 190.0 Height: 10.0
Dependency: jpt1, jpt3

Create a wall
Location: (5.0, 115.0)
Width: 170.0 Height: 10.0
Dependency: jpt2, jpt4

Create a wall
Location: (195.0, 5.0)
Width: 10.0 Height: 90.0
Dependency: jpt3, jpt5

Step 6 and 7. Composite hierarchy models are serve as a container inside the

systems. As the definition in this research, doors, windows or other components

have to set up inside the composite hierarchy of that wall if it is on the wall or

inside the wall. In this case, there are two components, door and window, in this

example, and those components are contained inside the corresponding composite

hierarchy; moreover, the coordinates of the components are set from the base com-

posite hierarchy to the wall composite hierarchy. The scripts for this example are

shown below.

result scripts

Create Composite Hierarchy workspace:
Location: (5.0, -5.0)
Rotation: 0.0

==

52

Create a Door:
Location: (60.0, 0.0)
Width: 40.0 Height: 10.0

==
Create Composite Hierarchy workspace:

Location: (5.0, 5.0)
Rotation: 1.5707963267948966

==
Create a Window:

Location: (20.0, 0.0)
Width: 50.0 Height: 10.0

Part 2. Design refinement and dependency analysis.

Step 8. Dependency analysis provides design engineers with an understanding

of the cause-and-effect relationships between changes to the high-level parameters

settings (e.g., the position of a center line), and its affect on lower level entities,

such as the position of junction points and the dimensions of a wall component.

The script belows shows the sequence of design refinement for our simple one room

model.

result scripts

Sequence of Design Refinement:
=====================
Base Composite Hierarchy
Column
Centerlines: c1, c2, c3, c4, c5, c6
Junction Points: jpt1, jpt3, jpt2, jpt4, jpt5
Wall Elements: wall2, wall1, wall3, wall4

Composite Hierarchy wall2
Leftside window

Composite Hierarchy wall1
Front door

Step 9 and 10. With the room model in place, we can use the Java Topology

Suite to calculate the room model area. Notice that each object inside the room

53

model has its own area, and that all objects are circle the usable space of the

room. As indicated in the script indicates below, the union of the whole surrounding

components area and the abstract room area difference with the whole area will be

the usable spaces inside the room. The abstract room area was defined by the

surrounded room objects, and it will generate a room polygon by connecting all the

centers of junction points that surrounded the room.

result scripts

Room components = POLYGON ((-5 -5, -5 5, -5 115,
-5 125, 5 125, 175 125,

185 125, 205 125, 205 105,
205 95, 205 5, 205 -5,
195 -5, 5 -5, -5 -5),

(195 95, 195 105, 185 105,
185 115, 175 115, 5 115,
5 5, 195 5, 195 95))

Columns, Junction Points & Walls Area = 65.00 square foot
===

Whole Geometry = POLYGON ((-5 -5, -5 5, -5 115,
-5 125, 5 125, 175 125,

185 125, 205 125, 205 105,
205 95, 205 5, 205 -5,
195 -5, 5 -5, -5 -5))

Total Covered Area = 273.00 square foot
===

Usable Area Geometry = POLYGON ((195 95, 195 5, 5 5,
5 115, 175 115, 185 115,

185 105, 195 105, 195 95))

Usable Area = 208.00 square foot
===

In these calculations, usable area is defined as the area surrounding components,

such as column, walls, and junction points. Figure 3.2 shows the corresponding

dependency for each component. The arrow is pointing to the area or component

54

Figure 3.2: Graph of dependency relationships in the room. Only the parent depen-
dencies are shown.

from the parents. Therefore, all the dependency of components will convergence to

the usable area in the center.

3.2.2 System Redesign

The system is redesigned by adjusting the positions of centerlines c3 and c4

to shrink the room area. When centerline c3 is moved to left, both junction point

3 and junction point 5 that are related to centerline c3 will move as well. Further,

junction point 2 and junction point 4 will alter their location due to the shift of

centerline c3. The wall objects that depend on these relative junction points will be

adjusted. The script below shows the chain of events that is triggered by the system

55

redesign:

result scripts

Create vertical Centerline : x = 0.0
Create horizontal Centerline: y = 0.0
Create vertical Centerline : x = 190.0
Create horizontal Centerline: y = 110.0
Create vertical Centerline : x = 180.0
Create horizontal Centerline: y = 100.0
==
Create a Junction Point

Location: (-5.0, -5.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c1, Centerline c2

Create a Junction Point
Location: (-5.0, 105.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c1, Centerline c4

Create a Junction Point
Location: (185.0, -5.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c3, Centerline c2

Create a Junction Point
Location: (175.0, 105.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c5, Centerline c4

Create a Junction Point
Location: (185.0, 95.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c3, Centerline c6

==
Create a wall

Location: (-5.0, 5.0)
Width: 10.0 Height: 100.0
Dependency: jpt1, jpt2

Create a wall
Location: (5.0, -5.0)
Width: 180.0 Height: 10.0
Dependency: jpt1, jpt3

Create a wall
Location: (5.0, 105.0)
Width: 170.0 Height: 10.0
Dependency: jpt2, jpt4

Create a wall
Location: (185.0, 5.0)
Width: 10.0 Height: 90.0
Dependency: jpt3, jpt5

After the new surrounding objects model have been built up, the new center area of

56

the room can be calculated by the Java Topology Suite. Notice that the number of

objects and the dependency relationships among the objects remained unchanged

by the redesign. As such, the sequence of design refinement for this model remains

the same as for the initial model. The essential details of the area calculations (and

program output) are as follows:

result scripts

Room components = POLYGON ((-5 -5, -5 5, -5 105,
-5 115, 5 115, 175 115,

185 115, 185 125, 205 125,
205 105, 195 105, 195 95,
195 5, 195 -5, 185 -5,
5 -5, -5 -5), (185 95,

185 105, 175 105, 5 105,
5 5, 185 5, 185 95))

Columns, Junction Points & Walls Area = 63.00 square foot
===

Whole Geometry = POLYGON ((-5 -5, -5 5, -5 105, -5 115,
5 115, 175 115, 185 115, 185 125,

205 125, 205 105, 195 105, 195 95,
195 5, 195 -5, 185 -5, 5 -5,
-5 -5))

Total Covered Area = 243.00 square foot
===

Usable Area Geometry = POLYGON ((185 95, 185 5, 5 5, 5 105,
175 105, 185 105, 185 95))

Usable Area = 180.00 square foot
===

Figures 3.3 and 3.4 are a side-by-side comparison of the original and redesigned

room models.

57

Figure 3.3: The original design of the simple room example.

Figure 3.4: The redesign of the simple room example.

58

3.3 Example 2. Scripting Specification for a Simple House

The simple room model developed in the previous section is a subsystem

system that could be placed in any house or building. We now demonstrate the

floorplan modeling capabilities by repeating the step-by-step assembly procedure

for a floorplan containing two apartment units. Figure 3.5 shows details of the

architectural floorplan. Figure 3.6 shows a graph of room adjacency relationships.

3.3.1 Step-by-Step Assembly of the House Floorplan

Step 1. We begin by defining a composite hierarchy structure for the base workspace

of the whole building system.

result scripts

Create Composite Hierarchy workspace:
Location: (0.0, 0.0)
Rotation: 0.0

Step 2. Because the simple house example is not a room subsystem inside a build-

ing, design regulations indicated that there will be no fixed entities inside the build-

ing system model.

Step 3. Twenty seven centerlines are strategically positioned along the x- and y-

axes to create the floorplan design layout. The intersection of these centerlines can

act as the parents of junction points, which, in turn, may connect to wall elements.

result scripts

59

Figure 3.5: Original design of the simple house.

60

Apartment 2

Living Room

Bath Room
Bed Room

Closet
Closet

Door

Kitchen
Bath Room

Bed Room2

Closet
Closet

Closet Closet

Closet

Bed Room1

Hallway

Door

Living Room

Apartment 1

Figure 3.6: Room adjacency relationships in the simple house.

61

Create vertical Centerline : x = 0.0
Create vertical Centerline : x = 90.0
Create vertical Centerline : x = 135.0
Create vertical Centerline : x = 150.0
Create vertical Centerline : x = 200.0
Create vertical Centerline : x = 230.0
Create vertical Centerline : x = 240.0
Create vertical Centerline : x = 290.0
Create vertical Centerline : x = 340.0
Create vertical Centerline : x = 370.0
Create vertical Centerline : x = 430.0
Create vertical Centerline : x = 480.0
Create vertical Centerline : x = 590.0
Create vertical Centerline : x = 620.0
Create vertical Centerline : x = 670.0
Create vertical Centerline : x = 740.0
Create horizontal Centerline: y = 0.0
Create horizontal Centerline: y = 130.0
Create horizontal Centerline: y = 150.0
Create horizontal Centerline: y = 180.0
Create horizontal Centerline: y = 200.0
Create horizontal Centerline: y = 230.0
Create horizontal Centerline: y = 230.0
Create horizontal Centerline: y = 270.0
Create horizontal Centerline: y = 300.0
Create horizontal Centerline: y = 360.0
Create horizontal Centerline: y = 450.0

Step 4. Next, we identify centerline intersection points that define profiles for the

exterior and interior walls. From a modeling standpoint, this step is complicated

by many-to-many relationships between the building elements. junction points are

the parents of the wall element between. For this particular example, the walls

that divided the entire floor plan into two apartment units were relied on the junc-

tion points which has the same vertical parent centerline (x = 435), but different

horizontal parent centerlines.

The script below is a summary of the 43 junction points:

result scripts

62

Create a Junction Point
Location: (-5.0, -5.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c1, Centerline c17

Create a Junction Point
Location: (195.0, -5.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c5, Centerline c17

... details of output removed ...

Create a Junction Point
Location: (475.0, 445.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c12, Centerline c26

Create a Junction Point
Location: (735.0, 445.0)
Width: 10.0 Height: 10.0
Dependency: Centerline c16, Centerline c26

Step 5. Closets are placed inside rooms and bathrooms. Since rooms are no longer

simple rectangles, this complicates the layout of wall elements. The simple house

has 55 wall elements whose locations are dependent on the adjoining junction points.

The abbreviated details are as follows:

result scripts

Create a wall
Location: (5.0, -5.0)
Width: 190.0 Height: 10.0
Dependency: jpt1, jpt2

Create a wall
Location: (205.0, -5.0)
Width: 30.0 Height: 10.0
Dependency: jpt2, jpt3

... details of wall elements removed ...

Create a wall
Location: (665.0, 235.0)
Width: 10.0 Height: 50.0
Dependency: jpt29, jpt34

Create a wall
Location: (735.0, 5.0)

63

Width: 10.0 Height: 280.0
Dependency: jpt5, jpt35

Create a wall
Location: (735.0, 295.0)
Width: 10.0 Height: 150.0
Dependency: jpt35, jpt43

Step 6 and 7. Door, window and portal elements are added to the floorplan.

Notice, in particular, the use of portal elements: one between living room and

kitchen, and a second placed between the living room and hallway.

result scripts

Create Composite Hierarchy workspace:
Location: (5.0, -5.0)
Rotation: 0.0

==
Create Composite Hierarchy workspace:

Location: (245.0, -5.0)
Rotation: 0.0

... details of output removed ...

Create Composite Hierarchy workspace:
Location: (665.0, 195.0)
Rotation: -1.5707963267948966

==
Create Composite Hierarchy workspace:

Location: (675.0, 235.0)
Rotation: 1.5707963267948966

==
Create a Door:

Location: (120.0, 0.0)
Width: 50.0 Height: 10.0

Create a Door:
Location: (15.0, 0.0)
Width: 50.0 Height: 10.0

... details of output removed ...

Create a Door:
Location: (45.0, 0.0)
Width: 30.0 Height: 10.0

Create a Door:
Location: (0.0, 0.0)
Width: 30.0 Height: 10.0

Create a Window:

64

Location: (15.0, 0.0)
Width: 50.0 Height: 10.0

Create a Window:
Location: (90.0, 0.0)
Width: 50.0 Height: 10.0

... details of output removed ...

Create a Window:
Location: (45.0, 0.0)
Width: 50.0 Height: 10.0

Create a Window:
Location: (145.0, 0.0)
Width: 50.0 Height: 10.0

Create a portal
Location: (95.0, 225.0)
Width: 50.0 Height: 10.0
Dependency: jpt20, jpt21

Create a portal
Location: (195.0, 185.0)
Width: 10.0 Height: 40.0
Dependency: jpt10, jpt22

3.3.2 Systems Analysis

Step 8. The following (abbreviated) script of code shows the sequence of design

refinement employed in systems analysis. The latter is supported by JGraphT and

the Java Topology Suite.

result scripts

Sequence of Design Refinement:
=====================
Base Composite Hierarchy
Centerline c1
Centerline c2

... details of output removed ...

Centerline c25
Centerline c26
jpt1
jpt2

65

... details of output removed ...

jpt42
jpt43
wall1
wall2

... details of output removed ...

wall31
wall57
wall1 CH
wall3 CH

... details of output removed ...

wall50 CH
wall31 CH
Front door A
Front window A
Bedroom1 window
Front door B
Front window B
Closet door 5
Closet door 1
Bedroom door 1
Closet door 8
Bathroom door 1
Bedroom door 2
Closet door 2
Closet door 6
Closet door 3
Closet door 4
Bathroom door 2
Bedroom door 3
Closet door 7
Leftside window

Step 9 and 10. The building floor plan consists of two apartment unit subsystems.

The first apartment has a living room, kitchen, hallway, bathroom, bedroom 1, and

bedroom 2, with adjacency relationships as shown in the previous figure. Each of the

room subsystems can be defined by identifying the components inside each room.

Then, the Java Topology Suite can calculate the area of each room. Similarly, the

66

second apartment can also divided into living room, bathroom, and bedroom.

The following script of code summarizes these room subsystems:

result scripts

Apartment 1 Living Room = POLYGON ((-5 -5, -5 5, -5 225, -5 235, 5 235, 85 235,
95 235, 145 235, 155 235, 195 235, 205 235, 205 225, 205 185, 205 175, 205 135,
205 125, 205 5, 205 -5, 195 -5, 5 -5, -5 -5), (195 5, 195 125, 195 135, 195 175,
195 185, 195 225, 155 225, 145 225, 95 225, 85 225, 5 225, 5 5, 195 5))

Columns, Junction Points & Walls Area = 86.00 square foot

Whole Geometry = POLYGON ((-5 -5, -5 5, -5 225, -5 235, 5 235, 85 235, 95 235,
145 235, 155 235, 195 235, 205 235, 205 225, 205 185, 205 175, 205 135, 205 125,
205 5, 205 -5, 195 -5, 5 -5, -5 -5))

Apartment 1 Living Room Covered Area = 504.00 square foot

Usable Area Geometry = POLYGON ((195 5, 5 5, 5 225, 85 225, 95 225, 145 225,
155 225, 195 225, 195 185, 195 175, 195 135, 195 125, 195 5))

Apartment 1 Living Room Usable Area = 418.00 square foot

==
Apartment 1 Kitchen = POLYGON ((-5 225, -5 235, -5 445, -5 455, 5 455, 195 455,
205 455, 205 445, 205 365, 205 355, 205 275, 205 265, 205 235, 205 225, 195 225,
155 225, 145 225, 95 225, 85 225, 5 225, -5 225), (85 235, 95 235, 145 235,
155 235, 195 235, 195 265, 195 275, 195 355, 140 355, 130 355, 130 365, 140 365,
195 365, 195 445, 5 445, 5 235, 85 235))

Columns, Junction Points & Walls Area = 90.50 square foot

Whole Geometry = POLYGON ((-5 225, -5 235, -5 445, -5 455, 5 455, 195 455, 205 455,
205 445, 205 365, 205 355, 205 275, 205 265, 205 235, 205 225, 195 225, 155 225,
145 225, 95 225, 85 225, 5 225, -5 225))

Apartment 1 Kitchen Covered Area = 483.00 square foot

Usable Area Geometry = POLYGON ((85 235, 5 235, 5 445, 195 445, 195 365, 140 365,
130 365, 130 355, 140 355, 195 355, 195 275, 195 265, 195 235, 155 235, 145 235,
95 235, 85 235))

Apartment 1 Kitchen Usable Area = 392.50 square foot

==
Apartment 1 Hallway = POLYGON ((195 125, 195 135, 195 175, 195 185, 195 225,
195 235, 205 235, 225 235, 235 235, 285 235, 295 235, 335 235, 345 235, 365 235,
375 235, 375 225, 375 185, 375 175, 365 175, 345 175, 335 175, 245 175, 245 135,
245 125, 235 125, 205 125, 195 125), (235 135, 235 175, 205 175, 205 135,
235 135), (235 185, 245 185, 335 185, 335 225, 295 225, 285 225, 235 225, 225 225,
205 225, 205 185, 235 185), (365 185, 365 225, 345 225, 345 185, 365 185))

Columns, Junction Points & Walls Area = 61.00 square foot

Whole Geometry = POLYGON ((195 125, 195 135, 195 175, 195 185, 195 225, 195 235,
205 235, 225 235, 235 235, 285 235, 295 235, 335 235, 345 235, 365 235, 375 235,
375 225, 375 185, 375 175, 365 175, 345 175, 335 175, 245 175, 245 135, 245 125,
235 125, 205 125, 195 125))

67

Apartment 1 Hallway Covered Area = 133.00 square foot

Usable Area Geometry = MULTIPOLYGON (((235 135, 205 135, 205 175, 235 175,
235 135)), ((235 185, 205 185, 205 225, 225 225, 235 225, 285 225, 295 225,
335 225, 335 185, 245 185, 235 185)), ((365 185, 345 185, 345 225, 365 225,
365 185)))

Apartment 1 Hallway Usable Area = 72.00 square foot

==
Apartment 1 Bath = POLYGON ((195 225, 195 235, 195 265, 195 275, 195 355, 195 365,
195 445, 195 455, 205 455, 285 455, 295 455, 295 445, 295 235, 295 225, 285 225,
235 225, 225 225, 205 225, 195 225), (235 235, 285 235, 285 445, 205 445, 205 365,
205 355, 205 275, 225 275, 235 275, 235 265, 235 235), (225 265, 205 265, 205 235,
225 235, 225 265))

Columns, Junction Points & Walls Area = 68.00 square foot

Whole Geometry = POLYGON ((195 225, 195 235, 195 265, 195 275, 195 355, 195 365,
195 445, 195 455, 205 455, 285 455, 295 455, 295 445, 295 235, 295 225, 285 225,
235 225, 225 225, 205 225, 195 225))

Apartment 1 Bath Covered Area = 230.00 square foot

Usable Area Geometry = MULTIPOLYGON (((235 235, 235 265, 235 275, 225 275, 205 275,
205 355, 205 365, 205 445, 285 445, 285 235, 235 235)), ((225 265, 225 235,
205 235, 205 265, 225 265)))

Apartment 1 Bath Usable Area = 162.00 square foot

==
Apartment 1 Bedroom 1 = POLYGON ((285 225, 285 235, 285 445, 285 455, 295 455,
425 455, 435 455, 435 445, 435 295, 435 285, 435 235, 435 225, 435 205, 435 195,
435 185, 435 175, 425 175, 375 175, 365 175, 365 185, 365 225, 345 225, 335 225,
295 225, 285 225), (335 235, 345 235, 365 235, 375 235, 425 235, 425 285, 425 295,
425 445, 295 445, 295 235, 335 235), (375 225, 375 185, 425 185, 425 195, 425 205,
425 225, 375 225))

Columns, Junction Points & Walls Area = 87.00 square foot

Whole Geometry = POLYGON ((285 225, 285 235, 285 445, 285 455, 295 455, 425 455,
435 455, 435 445, 435 295, 435 285, 435 235, 435 225, 435 205, 435 195, 435 185,
435 175, 425 175, 375 175, 365 175, 365 185, 365 225, 345 225, 335 225, 295 225,
285 225))

Apartment 1 Bedroom 1 Covered Area = 380.00 square foot

Usable Area Geometry = MULTIPOLYGON (((335 235, 295 235, 295 445, 425 445, 425 295,
425 285, 425 235, 375 235, 365 235, 345 235, 335 235)), ((375 225, 425 225,
425 205, 425 195, 425 185, 375 185, 375 225)))

Apartment 1 Bedroom 1 Usable Area = 293.00 square foot

==
Apartment 1 Bedroom 2 = POLYGON ((195 -5, 195 5, 195 125, 195 135, 205 135,
235 135, 235 175, 235 185, 245 185, 335 185, 345 185, 365 185, 375 185, 425 185,
435 185, 435 175, 435 5, 435 -5, 425 -5, 245 -5, 235 -5, 205 -5, 195 -5), (245 5,
425 5, 425 175, 375 175, 365 175, 345 175, 335 175, 245 175, 245 135, 245 125,
245 5), (235 125, 205 125, 205 5, 235 5, 235 125))

Columns, Junction Points & Walls Area = 94.00 square foot

68

Whole Geometry = POLYGON ((195 -5, 195 5, 195 125, 195 135, 205 135, 235 135,
235 175, 235 185, 245 185, 335 185, 345 185, 365 185, 375 185, 425 185, 435 185,
435 175, 435 5, 435 -5, 425 -5, 245 -5, 235 -5, 205 -5, 195 -5))

Apartment 1 Bedroom 2 Covered Area = 436.00 square foot

Usable Area Geometry = MULTIPOLYGON (((245 5, 245 125, 245 135, 245 175, 335 175,
345 175, 365 175, 375 175, 425 175, 425 5, 245 5)), ((235 125, 235 5, 205 5,
205 125, 235 125)))

Apartment 1 Bedroom 2 Usable Area = 342.00 square foot

==
Apartment 2 Living Room = POLYGON ((425 -5, 425 5, 425 175, 425 185, 425 195,
425 205, 435 205, 585 205, 595 205, 615 205, 625 205, 665 205, 665 225, 665 235,
665 295, 665 305, 675 305, 735 305, 745 305, 745 295, 745 5, 745 -5, 735 -5,
435 -5, 425 -5), (735 5, 735 295, 675 295, 675 235, 675 225, 675 205, 675 195,
675 155, 675 145, 665 145, 625 145, 615 145, 615 155, 615 195, 595 195, 585 195,
435 195, 435 185, 435 175, 435 5, 735 5), (665 155, 665 195, 625 195, 625 155,
665 155))

Columns, Junction Points & Walls Area = 136.00 square foot

Whole Geometry = POLYGON ((425 -5, 425 5, 425 175, 425 185, 425 195, 425 205,
435 205, 585 205, 595 205, 615 205, 625 205, 665 205, 665 225, 665 235, 665 295,
665 305, 675 305, 735 305, 745 305, 745 295, 745 5, 745 -5, 735 -5, 435 -5,
425 -5))

Apartment 2 Living Room Covered Area = 752.00 square foot

Usable Area Geometry = MULTIPOLYGON (((735 5, 435 5, 435 175, 435 185, 435 195,
585 195, 595 195, 615 195, 615 155, 615 145, 625 145, 665 145, 675 145, 675 155,
675 195, 675 205, 675 225, 675 235, 675 295, 735 295, 735 5)), ((665 155,
625 155, 625 195, 665 195, 665 155)))

Apartment 2 Living Room Usable Area = 616.00 square foot

==
Apartment 2 Bath Room = POLYGON ((425 195, 425 205, 425 225, 425 235, 425 295,
425 305, 435 305, 475 305, 485 305, 665 305, 675 305, 675 295, 675 235, 675 225,
675 205, 675 195, 665 195, 625 195, 615 195, 595 195, 585 195, 435 195, 425 195),
(595 205, 615 205, 625 205, 665 205, 665 225, 595 225, 595 205), (595 235,
665 235, 665 295, 485 295, 475 295, 435 295, 435 235, 435 225, 435 205, 585 205,
585 225, 585 235, 595 235))

Columns, Junction Points & Walls Area = 78.00 square foot

Whole Geometry = POLYGON ((425 195, 425 205, 425 225, 425 235, 425 295, 425 305,
435 305, 475 305, 485 305, 665 305, 675 305, 675 295, 675 235, 675 225, 675 205,
675 195, 665 195, 625 195, 615 195, 595 195, 585 195, 435 195, 425 195))

Apartment 2 Bath Room Covered Area = 275.00 square foot

Usable Area Geometry = MULTIPOLYGON (((595 205, 595 225, 665 225, 665 205, 625 205,
615 205, 595 205)), ((595 235, 585 235, 585 225, 585 205, 435 205, 435 225,
435 235, 435 295, 475 295, 485 295, 665 295, 665 235, 595 235)))

Apartment 2 Bath Room Usable Area = 197.00 square foot

==
Apartment 2 Bedroom = POLYGON ((425 295, 425 305, 425 445, 425 455, 435 455,
475 455, 485 455, 735 455, 745 455, 745 445, 745 305, 745 295, 735 295, 675 295,

69

665 295, 485 295, 475 295, 435 295, 425 295), (485 305, 665 305, 675 305, 735 305,
735 445, 485 445, 485 305), (475 445, 435 445, 435 305, 475 305, 475 445))

Columns, Junction Points & Walls Area = 106.00 square foot

Whole Geometry = POLYGON ((425 295, 425 305, 425 445, 425 455, 435 455, 475 455,
485 455, 735 455, 745 455, 745 445, 745 305, 745 295, 735 295, 675 295, 665 295,
485 295, 475 295, 435 295, 425 295))

Apartment 2 Bedroom Covered Area = 512.00 square foot

Usable Area Geometry = MULTIPOLYGON (((485 305, 485 445, 735 445, 735 305, 675 305,
665 305, 485 305)), ((475 445, 475 305, 435 305, 435 445, 475 445)))

Apartment 2 Bedroom Usable Area = 406.00 square foot

After the usable area for each room has been calculated, the whole building area can

be calculated as a whole, which can further be the reference of the total room area.

The union of all building objects area calculation can be present by Java Topology

Suite as well. Moreover, the portal which is between the kitchen and the living room

and the one between the hallway and the living room should also be added when

doing the whole area calculation.

The script below demonstrates the reference building system area.

result scripts

All objects = POLYGON ((-5 -5, -5 5, -5 225, -5 235, -5 445, -5 455, 5 455,
195 455, 205 455, 285 455, 295 455, 425 455, 435 455, 475 455, 485 455, 735 455,
745 455, 745 445, 745 305, 745 295, 745 5, 745 -5, 735 -5, 435 -5, 425 -5, 245 -5,
235 -5, 205 -5, 195 -5, 5 -5, -5 -5), (735 445, 485 445, 485 305, 665 305,
675 305, 735 305, 735 445), (735 295, 675 295, 675 235, 675 225, 675 205, 675 195,
675 155, 675 145, 665 145, 625 145, 615 145, 615 155, 615 195, 595 195, 585 195,
435 195, 435 185, 435 175, 435 5, 735 5, 735 295), (665 295, 485 295, 475 295,
435 295, 435 235, 435 225, 435 205, 585 205, 585 225, 585 235, 595 235, 665 235,
665 295), (665 225, 595 225, 595 205, 615 205, 625 205, 665 205, 665 225),
(665 195, 625 195, 625 155, 665 155, 665 195), (475 445, 435 445, 435 305,
475 305, 475 445), (425 445, 295 445, 295 235, 335 235, 345 235, 365 235, 375 235,
425 235, 425 295, 425 305, 425 445), (425 225, 375 225, 375 185, 425 185, 425 195,
425 205, 425 225), (425 175, 375 175, 365 175, 345 175, 335 175, 245 175, 245 135,
245 125, 245 5, 425 5, 425 175), (365 225, 345 225, 345 185, 365 185, 365 225),
(335 225, 295 225, 285 225, 235 225, 225 225, 205 225, 195 225, 155 225, 145 225,
145 235, 155 235, 195 235, 195 265, 195 275, 195 355, 140 355, 130 355, 130 365,
140 365, 195 365, 195 445, 5 445, 5 235, 85 235, 95 235, 95 225, 85 225, 5 225,

70

5 5, 195 5, 195 125, 195 135, 195 175, 195 185, 205 185, 235 185, 245 185,
335 185, 335 225), (285 445, 205 445, 205 365, 205 355, 205 275, 225 275, 235 275,
235 265, 235 235, 285 235, 285 445), (235 175, 205 175, 205 135, 235 135,
235 175), (235 125, 205 125, 205 5, 235 5, 235 125), (225 265, 205 265, 205 235,
225 235, 225 265))

Columns, Junction Points & Walls Area = 542.50 square foot

Whole Apartment = POLYGON ((-5 -5, -5 5, -5 225, -5 235, -5 445, -5 455, 5 455,
195 455, 205 455, 285 455, 295 455, 425 455, 435 455, 475 455, 485 455, 735 455,
745 455, 745 445, 745 305, 745 295, 745 5, 745 -5, 735 -5, 435 -5, 425 -5, 245 -5,
235 -5, 205 -5, 195 -5, 5 -5, -5 -5))

Whole Apartment Covered Area = 3450.00 square foot

Usable Area Geometry = MULTIPOLYGON (((735 445, 735 305, 675 305, 665 305, 485 305,
485 445, 735 445)), ((735 295, 735 5, 435 5, 435 175, 435 185, 435 195, 585 195,
595 195, 615 195, 615 155, 615 145, 625 145, 665 145, 675 145, 675 155, 675 195,
675 205, 675 225, 675 235, 675 295, 735 295)), ((665 295, 665 235, 595 235,
585 235, 585 225, 585 205, 435 205, 435 225, 435 235, 435 295, 475 295, 485 295,
665 295)), ((665 225, 665 205, 625 205, 615 205, 595 205, 595 225, 665 225)),
((665 195, 665 155, 625 155, 625 195, 665 195)), ((475 445, 475 305, 435 305,
435 445, 475 445)), ((425 445, 425 305, 425 295, 425 235, 375 235, 365 235,
345 235, 335 235, 295 235, 295 445, 425 445)), ((425 225, 425 205, 425 195,
425 185, 375 185, 375 225, 425 225)), ((425 175, 425 5, 245 5, 245 125, 245 135,
245 175, 335 175, 345 175, 365 175, 375 175, 425 175)), ((365 225, 365 185,
345 185, 345 225, 365 225)), ((335 225, 335 185, 245 185, 235 185, 205 185,
195 185, 195 175, 195 135, 195 125, 195 5, 5 5, 5 225, 85 225, 95 225, 95 235,
85 235, 5 235, 5 445, 195 445, 195 365, 140 365, 130 365, 130 355, 140 355,
195 355, 195 275, 195 265, 195 235, 155 235, 145 235, 145 225, 155 225, 195 225,
205 225, 225 225, 235 225, 285 225, 295 225, 335 225)), ((285 445, 285 235,
235 235, 235 265, 235 275, 225 275, 205 275, 205 355, 205 365, 205 445, 285 445)),
((235 175, 235 135, 205 135, 205 175, 235 175)), ((235 125, 235 5, 205 5, 205 125,
235 125)), ((225 265, 225 235, 205 235, 205 265, 225 265)))

Whole Apartment Usable Area = 2907.50 square foot

3.3.3 Floorplan Design Area Validation

Geometric considerations require that the sum of the room areas within the

apartments balance the whole area calculation. In other words, we require the area

for Apartment 1, plus the area for Apartment 2 to balance the usable area for the

whole apartment building. We employ a tabular approach to validate that the areas

balance, as summarized in Table 3.2.

71

Area of Apartment 1
--

Living Room : 418.00 square foot.
Kitchen: 392.50
Hallway: 72.00
Bathroom: 162.00
Bedroom 1: 293.00
Bedroom 2: 342.00
Portal 1: 5.00
Portal 2: 4.00

Subtotal: 1688.50 square foot.

Area of Apartment 2
--

Living Room : 616.00 square foot.
Bathroom: 197.00
Bedroom: 406.00

Subtotal: 1219.00 square foot.

Area of Whole Apartment
--

Area of Apartment 1: 1688.50 square foot.
Area of Apartment 2: 1219.00

Subtotal: 2907.50 Square foot

Table 3.1: Summary of usable room areas.

72

3.3.4 System Redesign

Usability of a system is very important from the designer’s stand point.

Therefore, keeping the functionality and increase the usability under the established

regulations became an issue that needs to find an adequate solution. In this section,

the exterior wall of the apartment model will be extend to show the capability of

increasing the usability of floor plan model design.

In order to extend the usable area of those two apartment unit, we could

simply adjust the centerlines to expend exterior walls and some interior ones. Ex-

pand centerline 16 right and 26 up will make the whole apartment exterior boundary

bigger. By the propagation of dependency, the junction points whose parent is cen-

terline 16 and 26 will shift as well. After the exterior wall modification, we can

adjust the interior walls to make the floor plan model more ideal. The result script

below shows the new components model of redesign apartment.

result scripts

Create vertical Centerline : x = 460.0
Create vertical Centerline : x = 510.0
Create vertical Centerline : x = 820.0
Create horizontal Centerline: y = 250.0
Create horizontal Centerline: y = 290.0
Create horizontal Centerline: y = 500.0
==
Create Composite Hierarchy workspace:

Location: (465.0, -5.0)
Rotation: 0.0

==
Create Composite Hierarchy workspace:

Location: (235.0, 245.0)
Rotation: 0.0

==
Create Composite Hierarchy workspace:

Location: (295.0, 245.0)
Rotation: 0.0

73

==
Create Composite Hierarchy workspace:

Location: (375.0, 245.0)
Rotation: 0.0

==
Create Composite Hierarchy workspace:

Location: (5.0, 495.0)
Rotation: 0.0

==
Create Composite Hierarchy workspace:

Location: (295.0, 495.0)
Rotation: 0.0

==
Create Composite Hierarchy workspace:

Location: (485.0, 495.0)
Rotation: 0.0

==
Create Composite Hierarchy workspace:

Location: (225.0, 285.0)
Rotation: -1.5707963267948966

==
Create Composite Hierarchy workspace:

Location: (505.0, 495.0)
Rotation: -1.5707963267948966

==
Apartment 1 Living Room = POLYGON ((-5 -5, -5 5, -5 245, -5 255, 5 255, 85 255,
95 255, 145 255, 155 255, 195 255, 205 255, 205 245, 205 185, 205 175, 205 135,
205 125, 205 5, 205 -5, 195 -5, 5 -5, -5 -5), (195 5, 195 125, 195 135, 195 175,
195 185, 195 245, 155 245, 145 245, 95 245, 85 245, 5 245, 5 5, 195 5))

Columns, Junction Points & Walls Area = 90.00 Square foot

Whole Geometry = POLYGON ((-5 -5, -5 5, -5 245, -5 255, 5 255, 85 255, 95 255,
145 255, 155 255, 195 255, 205 255, 205 245, 205 185, 205 175, 205 135, 205 125,
205 5, 205 -5, 195 -5, 5 -5, -5 -5))

Apartment 1 Living Room Covered Area = 546.00 Square foot

Usable Area Geometry = POLYGON ((195 5, 5 5, 5 245, 85 245, 95 245, 145 245,
155 245, 195 245, 195 185, 195 175, 195 135, 195 125, 195 5))

Apartment 1 Living Room Usable Area = 456.00 Square foot
==
Apartment 1 Kitchen = POLYGON ((-5 245, -5 255, -5 495, -5 505, 5 505, 195 505,
205 505, 205 495, 205 365, 205 355, 205 295, 205 285, 205 255, 205 245, 195 245,
155 245, 145 245, 95 245, 85 245, 5 245, -5 245), (85 255, 95 255, 145 255,
155 255, 195 255, 195 285, 195 295, 195 355, 140 355, 130 355, 130 365, 140 365,
195 365, 195 495, 5 495, 5 255, 85 255))

Columns, Junction Points & Walls Area = 96.50 Square foot

Whole Geometry = POLYGON ((-5 245, -5 255, -5 495, -5 505, 5 505, 195 505, 205 505,
205 495, 205 365, 205 355, 205 295, 205 285, 205 255, 205 245, 195 245, 155 245,
145 245, 95 245, 85 245, 5 245, -5 245))

Apartment 1 Kitchen Covered Area = 546.00 Square foot

Usable Area Geometry = POLYGON ((85 255, 5 255, 5 495, 195 495, 195 365, 140 365,
130 365, 130 355, 140 355, 195 355, 195 295, 195 285, 195 255, 155 255, 145 255,

74

95 255, 85 255))
Apartment 1 Kitchen Usable Area = 449.50 Square foot
==
Apartment 1 Hallway = POLYGON ((195 125, 195 135, 195 175, 195 185, 195 245,
195 255, 205 255, 225 255, 235 255, 285 255, 295 255, 335 255, 345 255, 365 255,
375 255, 375 245, 375 185, 375 175, 365 175, 345 175, 335 175, 245 175, 245 135,
245 125, 235 125, 205 125, 195 125), (235 135, 235 175, 205 175, 205 135,
235 135), (235 185, 245 185, 335 185, 335 245, 295 245, 285 245, 235 245, 225 245,
205 245, 205 185, 235 185), (365 185, 365 245, 345 245, 345 185, 365 185))

Columns, Junction Points & Walls Area = 67.00 Square foot

Whole Geometry = POLYGON ((195 125, 195 135, 195 175, 195 185, 195 245, 195 255,
205 255, 225 255, 235 255, 285 255, 295 255, 335 255, 345 255, 365 255, 375 255,
375 245, 375 185, 375 175, 365 175, 345 175, 335 175, 245 175, 245 135, 245 125,
235 125, 205 125, 195 125))

Apartment 1 Hallway Covered Area = 169.00 Square foot

Usable Area Geometry = MULTIPOLYGON (((235 135, 205 135, 205 175, 235 175,
235 135)), ((235 185, 205 185, 205 245, 225 245, 235 245, 285 245, 295 245,
335 245, 335 185, 245 185, 235 185)), ((365 185, 345 185, 345 245, 365 245,
365 185)))

Apartment 1 Hallway Usable Area = 102.00 Square foot
==
Apartment 1 Bath = POLYGON ((195 245, 195 255, 195 285, 195 295, 195 355, 195 365,
195 495, 195 505, 205 505, 285 505, 295 505, 295 495, 295 255, 295 245, 285 245,
235 245, 225 245, 205 245, 195 245), (235 255, 285 255, 285 495, 205 495, 205 365,
205 355, 205 295, 225 295, 235 295, 235 285, 235 255), (225 285, 205 285, 205 255,
225 255, 225 285))

Columns, Junction Points & Walls Area = 74.00 Square foot

Whole Geometry = POLYGON ((195 245, 195 255, 195 285, 195 295, 195 355, 195 365,
195 495, 195 505, 205 505, 285 505, 295 505, 295 495, 295 255, 295 245, 285 245,
235 245, 225 245, 205 245, 195 245))

Apartment 1 Bath Covered Area = 260.00 Square foot

Usable Area Geometry = MULTIPOLYGON (((235 255, 235 285, 235 295, 225 295, 205 295,
205 355, 205 365, 205 495, 285 495, 285 255, 235 255)), ((225 285, 225 255,
205 255, 205 285, 225 285)))

Apartment 1 Bath Usable Area = 186.00 Square foot
==
Apartment 1 Bedroom 1 = POLYGON ((285 245, 285 255, 285 495, 285 505, 295 505,
455 505, 465 505, 465 495, 465 295, 465 285, 465 255, 465 245, 465 205, 465 195,
465 185, 465 175, 455 175, 375 175, 365 175, 365 185, 365 245, 345 245, 335 245,
295 245, 285 245), (335 255, 345 255, 365 255, 375 255, 455 255, 455 285, 455 295,
455 495, 295 495, 295 255, 335 255), (375 245, 375 185, 455 185, 455 195, 455 205,
455 245, 375 245))

Columns, Junction Points & Walls Area = 106.00 Square foot

Whole Geometry = POLYGON ((285 245, 285 255, 285 495, 285 505, 295 505, 455 505,
465 505, 465 495, 465 295, 465 285, 465 255, 465 245, 465 205, 465 195, 465 185,
465 175, 455 175, 375 175, 365 175, 365 185, 365 245, 345 245, 335 245, 295 245,
285 245))

Apartment 1 Bedroom 1 Covered Area = 538.00 Square foot

75

Usable Area Geometry = MULTIPOLYGON (((335 255, 295 255, 295 495, 455 495, 455 295,
455 285, 455 255, 375 255, 365 255, 345 255, 335 255)), ((375 245, 455 245,
455 205, 455 195, 455 185, 375 185, 375 245)))

Apartment 1 Bedroom 1 Usable Area = 432.00 Square foot
==
Apartment 2 Living Room = POLYGON ((455 -5, 455 5, 455 175, 455 185, 455 195,
455 205, 465 205, 585 205, 595 205, 615 205, 625 205, 665 205, 665 225, 665 235,
665 285, 665 295, 675 295, 815 295, 825 295, 825 285, 825 5, 825 -5, 815 -5,
465 -5, 455 -5), (815 5, 815 285, 675 285, 675 235, 675 225, 675 205, 675 195,
675 155, 675 145, 665 145, 625 145, 615 145, 615 155, 615 195, 595 195, 585 195,
465 195, 465 185, 465 175, 465 5, 815 5), (665 155, 665 195, 625 195, 625 155,
665 155))

Columns, Junction Points & Walls Area = 144.00 Square foot

Whole Geometry = POLYGON ((455 -5, 455 5, 455 175, 455 185, 455 195, 455 205,
465 205, 585 205, 595 205, 615 205, 625 205, 665 205, 665 225, 665 235, 665 285,
665 295, 675 295, 815 295, 825 295, 825 285, 825 5, 825 -5, 815 -5, 465 -5,
455 -5))

Apartment 2 Living Room Covered Area = 921.00 Square foot

Usable Area Geometry = MULTIPOLYGON (((815 5, 465 5, 465 175, 465 185, 465 195,
585 195, 595 195, 615 195, 615 155, 615 145, 625 145, 665 145, 675 145, 675 155,
675 195, 675 205, 675 225, 675 235, 675 285, 815 285, 815 5)), ((665 155, 625 155,
625 195, 665 195, 665 155)))

Apartment 2 Living Room Usable Area = 777.00 Square foot
==
Apartment 2 Bedroom = POLYGON ((455 285, 455 295, 455 495, 455 505, 465 505,
505 505, 515 505, 815 505, 825 505, 825 495, 825 295, 825 285, 815 285, 675 285,
665 285, 515 285, 505 285, 465 285, 455 285), (515 295, 665 295, 675 295, 815 295,
815 495, 515 495, 515 295), (505 495, 465 495, 465 295, 505 295, 505 495))

Columns, Junction Points & Walls Area = 134.00 Square foot

Whole Geometry = POLYGON ((455 285, 455 295, 455 495, 455 505, 465 505, 505 505,
515 505, 815 505, 825 505, 825 495, 825 295, 825 285, 815 285, 675 285, 665 285,
515 285, 505 285, 465 285, 455 285))

Apartment 2 Bedroom Covered Area = 814.00 Square foot

Usable Area Geometry = MULTIPOLYGON (((515 295, 515 495, 815 495, 815 295, 675 295,
665 295, 515 295)), ((505 495, 505 295, 465 295, 465 495, 505 495)))

Apartment 2 Bedroom Usable Area = 680.00 Square foot
==
All objects = POLYGON ((-5 -5, -5 5, -5 245, -5 255, -5 495, -5 505, 5 505,
195 505, 205 505, 285 505, 295 505, 455 505, 465 505, 505 505, 515 505, 815 505,
825 505, 825 495, 825 295, 825 285, 825 5, 825 -5, 815 -5, 465 -5, 455 -5, 245 -5,
235 -5, 205 -5, 195 -5, 5 -5, -5 -5), (815 495, 515 495, 515 295, 665 295,
675 295, 815 295, 815 495), (815 285, 675 285, 675 235, 675 225, 675 205, 675 195,
675 155, 675 145, 665 145, 625 145, 615 145, 615 155, 615 195, 595 195, 585 195,
465 195, 465 185, 465 175, 465 5, 815 5, 815 285), (665 285, 515 285, 505 285,
465 285, 465 255, 465 245, 465 205, 585 205, 585 225, 585 235, 595 235, 665 235,
665 285), (665 225, 595 225, 595 205, 615 205, 625 205, 665 205, 665 225),
(665 195, 625 195, 625 155, 665 155, 665 195), (505 495, 465 495, 465 295,
505 295, 505 495), (455 495, 295 495, 295 255, 335 255, 345 255, 365 255, 375 255,
455 255, 455 285, 455 295, 455 495), (455 245, 375 245, 375 185, 455 185, 455 195,
455 205, 455 245), (455 175, 375 175, 365 175, 345 175, 335 175, 245 175, 245 135,

76

245 125, 245 5, 455 5, 455 175), (365 245, 345 245, 345 185, 365 185, 365 245),
(335 245, 295 245, 285 245, 235 245, 225 245, 205 245, 195 245, 155 245, 145 245,
145 255, 155 255, 195 255, 195 285, 195 295, 195 355, 140 355, 130 355, 130 365,
140 365, 195 365, 195 495, 5 495, 5 255, 85 255, 95 255, 95 245, 85 245, 5 245,
5 5, 195 5, 195 125, 195 135, 195 175, 195 185, 205 185, 235 185, 245 185,
335 185, 335 245), (285 495, 205 495, 205 365, 205 355, 205 295, 225 295, 235 295,
235 285, 235 255, 285 255, 285 495), (235 175, 205 175, 205 135, 235 135,
235 175), (235 125, 205 125, 205 5, 235 5, 235 125), (225 285, 205 285, 205 255,
225 255, 225 285))

Columns, Junction Points & Walls Area = 596.50 Square foot

Whole Apartment = POLYGON ((-5 -5, -5 5, -5 245, -5 255, -5 495, -5 505, 5 505,
195 505, 205 505, 285 505, 295 505, 455 505, 465 505, 505 505, 515 505, 815 505,
825 505, 825 495, 825 295, 825 285, 825 5, 825 -5, 815 -5, 465 -5, 455 -5, 245 -5,
235 -5, 205 -5, 195 -5, 5 -5, -5 -5))

Whole Apartment Covered Area = 4233.00 Square foot

Usable Area Geometry = MULTIPOLYGON (((815 495, 815 295, 675 295, 665 295, 515 295,
515 495, 815 495)), ((815 285, 815 5, 465 5, 465 175, 465 185, 465 195, 585 195,
595 195, 615 195, 615 155, 615 145, 625 145, 665 145, 675 145, 675 155, 675 195,
675 205, 675 225, 675 235, 675 285, 815 285)), ((665 285, 665 235, 595 235,
585 235, 585 225, 585 205, 465 205, 465 245, 465 255, 465 285, 505 285, 515 285,
665 285)), ((665 225, 665 205, 625 205, 615 205, 595 205, 595 225, 665 225)),
((665 195, 665 155, 625 155, 625 195, 665 195)), ((505 495, 505 295, 465 295,
465 495, 505 495)), ((455 495, 455 295, 455 285, 455 255, 375 255, 365 255,
345 255, 335 255, 295 255, 295 495, 455 495)), ((455 245, 455 205, 455 195,
455 185, 375 185, 375 245, 455 245)), ((455 175, 455 5, 245 5, 245 125, 245 135,
245 175, 335 175, 345 175, 365 175, 375 175, 455 175)), ((365 245, 365 185,
345 185, 345 245, 365 245)), ((335 245, 335 185, 245 185, 235 185, 205 185,
195 185, 195 175, 195 135, 195 125, 195 5, 5 5, 5 245, 85 245, 95 245, 95 255,
85 255, 5 255, 5 495, 195 495, 195 365, 140 365, 130 365, 130 355, 140 355,
195 355, 195 295, 195 285, 195 255, 155 255, 145 255, 145 245, 155 245, 195 245,
205 245, 225 245, 235 245, 285 245, 295 245, 335 245)), ((285 495, 285 255,
235 255, 235 285, 235 295, 225 295, 205 295, 205 355, 205 365, 205 495, 285 495)),
((235 175, 235 135, 205 135, 205 175, 235 175)), ((235 125, 235 5, 205 5, 205 125,
235 125)), ((225 285, 225 255, 205 255, 205 285, 225 285)))

Whole Apartment Usable Area = 3636.50 Square foot

Again, an easy way of validating the area computations for the system redesign is

with a tabular layout. See Table 3.2.

77

Figure 3.7: The redesign of the simple room example.

78

--
Area of Apartment 1
--

Living Room : 456.00 square foot.
Kitchen: 449.50
Hallway: 102.00
Bathroom: 186.00
Bedroom 1: 432.00
Bedroom 2: 393.00
Portal 1: 5.00
Portal 2: 6.00

Subtotal: 2029.50 square foot.

--
Area of Apartment 2
--

Living Room : 777.00 square foot.
Bathroom: 150.00
Bedroom: 680.00

Subtotal: 1607.00 square foot.

--
Area of Whole Apartment
--

Area of Apartment 1: 2029.50 square foot.
Area of Apartment 2: 1607.00

Subtotal: 3636.50 square foot.

Table 3.2: Summary of usable room areas for the system redesign.

3.4 Assessment of Approach 1

In computer science circles, the appeal of scripting languages is that they pro-

vide high-level solutions to problems that involve systems integration and/or require

incremental development. So as a first cut to addressing the step-by-specification of

building floorplan layouts, scripting seems like a good idea. Unfortunately, this ap-

proach runs into trouble because of the shear complexity of the problem: buildings

79

containing thousands of elements are common; modeling abstractions are organized

into hierarchies; strong dependency relationships exist between various types of ele-

ments. And, yet, the whole apartment problem specification requires approximately

10,000 lines of Java. We need to find a better approach.

80

Chapter 4

Approach 2: Interactive Graphical Specification of

Floorplans

4.1 Problem Statement

While the last chapter demonstrated that parametric modeling concepts can

be used in building floorplan systems, unfortunately, the approach is very low level,

tedious, and not readily scalable. To put the problem in perspective, approximately

10,000 lines of Java code were needed to specify the geometry and parametric de-

pendency relationships for the small house example.

In an attempt to overcome this problem, in this chapter we develop an

interactive graphical-based modeling technique for the specification of floorplans.

In contrast to the first approach, which used a bottom-up approach to floor plan

specification, the second approach allows designers to work through a top-down

specification of floor plans. The procedure begins with a graphical specification of

spaces; columns are added to the corner points of spaces; walls are added to the edges

joining columns; doors and walls are inserted into walls. Groups of spaces can be

assigned to rooms. Algorithms are developed to compute the area of rooms. Because

floorplan systems are defined by a multitude of component types and spatial entities,

we need to be disciplined in the software development. We address this problem

81

through a novel use software design patterns.

4.2 Graphical User Interface Design and Implementation

Figure 4.1 shows the essential details of the system architecture and com-

posite hierarchy framework for modeling and visualizing building floorplans. We

employ the MVC software design pattern to links the models, views and controllers

together. To simplify the details of implementation, the discipline-specific models,

views and controllers are concrete extensions of abstract implementations. The pri-

mary purpose of the abstract-level specifications is to take care of the details of

model-controller and view-controller communication.

Domain specific models are extensions of abstract model. Domain specific

views are extensions of abstract view. And the engineering controller is an extension

of the abstract controller. A key benefit in using the visitor design pattern is that

format-specific views can be designed independently of the application at hand.

Also notice that a model is provided for the coordinate system grid against which

floorplan coordinates are defined. Our goal is to provide mechanisms where an

engineering will interact with a view, primarily the engineering view, and the results

of edit operations will be sent to the engineering controller. All of the registered

models will receive the details of an edit operation, update the model (or models)

accordingly, and propagate the new details to the views.

Composite Hierarchy Floorplan Model. Figure 2.11 is a class diagram for the

82

*

Abstract Feature
<< abstract >>

Abstract Compound Feature
<< abstract >>

−− clone ()

−− clone ()
−− accept ()
−− search ()

<< interface >>
Feature

−− search ()
−− accept ()
−− clone ()

implements

CompositeHierarchy

Point Edge Circle Polygon

Composite Hierarchy

Models

extends

extends

extends

Space Door WallColumn

Building Floorplan ModelFloorplan View Table View

CONTROLLER

GRID MODEL

Tree View

Figure 4.1: Floorplan editor collage.

83

Figure 4.2: Graphical representation of the centerline model inside the software.

composite hierarchy software pattern representation of building floorplans.

Centerline Model. Figure 4.2 is a screen-dump of the graphical representation of

the centerline model employed by the floorplan model.

4.3 Example 1. Graphical Specification for a Simple Room

In Section 3.3 we presented a procedure for scripting a simple room floor

plan. In this section, a step-by-step instruction will be presented to show how the

84

graphical specification software helps users create a mutable floor plan model.

Precondition setup in editor view:

1. Click the ”Grid” and ”Floorplan System” radio button at the bottom of the

editor view to activate the display of the grid and floor plan as shown below.

Figure 4.3: Graphical display radio buttons inside the editor view of the software.

2. Select ”Options”, ”Snap to Grid” to force the point to the nearest grid.

Figure 4.4: Snap to Grid setup inside the editor view of the software.

3. Select ”Graphics”, ”Grid Size”, ”20” to set the grid size to 20 pixels.

Figure 4.5: Grid size setup inside the editor view of the software.

Step 1. Select ”Add Space Block” in the Combo box at upper-right of the editor

85

view and click ”Draw Rectangle” button. Then, click and drag on the grid to create

a rectangle space of the floor plan.

Figure 4.6: Floor plan components combo box inside the editor view of the software.

Figure 4.7: Space component added into the floor plan model.

Step 2. Select ”Add Support Column” in the Combo box at the upper-right of the

editor view. Then, click and drag to include the upper-right corner of the Space

that created in Step 1. The results are shown in Figure 4.8.

86

Figure 4.8: Column component added into the floor plan model.

Step 3. Change the grid size to 10 pixels to have a thinner wall and select ”Add

Wall Corner” in the Combo box. Then, click and drag to include other corners of

the Space.

Step 4. Select ”Add Exterior Wall” in the Combo box. Then, click and drag to

include all components to create all walls around the area. See Figure 4.10.

Step 5. Go to table view and click on the Space tab at the top of the window and

select the space in the table. Then, enter the name of the room and role of the room

and click the ”Define Room” button to define the room.

Step 6. Click on the Room tab to verify the room that defined in Step 5 is created.

See Figure 4.12.

Step 7. Click on the floorplan tab and insert the data shown in Table 4.1. Then,

87

Figure 4.9: Corner components added into the floor plan model.

88

Figure 4.10: Wall components added into the floor plan model.

89

Figure 4.11: Space tab inside the table view of the software.

Figure 4.12: Room tab inside the table view of the software.

90

click ”Set values” button.

Fields Data

Sq pixels/Sq foot 0.01

Building Type Resident 2

Construction Type Type II A

Price per Sq pixels

Number of occupants 1

Table 4.1: Floor plan model general settings for simple room example.

Step 8. Click on the Center Line tab and select c-1 center line and modify the Shift

value to the desired value to redesign the floor plan system. See Figure 4.14.

Step 9. Click on the Summary tab to check the output data for the simple room

example floor plan model. See Figure 4.15.

Step 10. To redesign the floorplan system, repeat Step 8 with different desired

values for center line location. The data can be gathered and plotted as below.

91

Figure 4.13: Floorplan tab inside the table view of the software.

92

Figure 4.14: Centerline tab inside the table view of the software.

93

Figure 4.15: Summary tab inside the table view of the software.

94

4.4 Example 2. Graphical Specification for a Simple House

The purpose of this example is to highlight the advantages of the graphical

approach to floorplan specification. As with the last section example for simple room

floor plan, we can extend the model to be a more complex floor plan with multiple

rooms. The step-by-step procedure below demonstrates how a more complex floor

plan model get created.

Step 1. Sets up the editing environment inside the editor view with the configura-

tion below. This step allows the use to have a more friendly editing environment.

Fields Data

Grid layer Active

Grid size 10

Snap to grid Active

Table 4.2: Environment configuration for a simple house example.

Step 2. Creates space models for the simple house example. The floor plan of

simple house example is a combination of rectangular spaces as shown in Figure

4.16.

Step 3. Creates the corner points for the simple house model. The results are

shown on Figure 4.17.

Step 4. Create walls to complete the layout of the simple room model. Since there

are a lot of open spaces in this simple house example, not all edges of the space

needs to create a wall in between the two corner points. The results are shown in

95

Figure 4.16: Simple house spaces floor plan layout.

96

Figure 4.17: Simple house model with corners.

97

Figure 4.18: Simple house model with walls.

98

Figure 4.18.

Step 5. Defines the room inside the table view space tab by selecting the space

that created in step 1 and enter the attributes of the room. Table 4.19 contains a

summary of the spaces inside this floor plan model.

Figure 4.19: Simple house model spaces summary inside table view space tab.

Step 6. Checks the summary of the whole floor plan model.

99

4.5 Assessment of Approach 2

With the two examples above, we can have a better understanding of how the

graphical specification software is capable of. Compared with the script modeling

base approach, the graphical specification approach not only boosting up the effi-

ciency of creating a floor plan model, but also giving the user a better understanding

of what are the components that’s inside the floor plan model.

100

Chapter 5

Building Floorplan Case Studies

This chapter presents a full system analysis of the “two apartment units”

floorplan model introduced in Chapters 3 and 4. Simplified system analyses are

provided for building code requirements verification, heat pump energy consumption

trade off, and life-cycle present value cost trade off of the building floorplan system.

We also investigate the sensitivity of “HVAC component selection” to the nature of

HVAC energy zones and perturbations in floorplan area.

5.1 Objectives and Scope

The design objective of our case study is to find a building design that is: (1)

sized to fulfill the needs of the user/occupants, and (2) supported by a HVAC system

that takes into account initial and lifecycle operational costs. We also investigate

the sensitivity of “HVAC component selection” to the nature of HVAC energy zones

and floorplan area. Without the computational framework from Chapter 4 in place,

these studies would not be possible.

The scope of investigation is summarized in Figures 5.1 and 5.2. Figure 5.1

defines the two separate zones (i.e., Zone 1 and Zone 2) that will be used in the

HVAC system selection study. The two green rectangles define zones that will each

101

Figure 5.1: The HVAC system cover zone inside the two-apartments floorplan model.
Zones 1 and 2 are shown in green. The red rectangle shows the case where apart-
ments 1 and 2 are bundled into a single HVAC zone.

Figure 5.2: Plan view of the original floorplan design and the redesigned floorplan.
The smaller floorplan is the original design.

102

have their own individual heat pump unit; the red rectangle defines the case study

where a single heat pump unit covers the whole floorplan – in other words, two

apartments share the resources of a single heat pump.

Figure 5.2 shows the difference between the original and redesigned floorplan

models. The former will be studied in Section 5.4.1. The latter will be discussed in

Section 5.4.2.

5.2 Building Code Requirements

The International Building Code (IBC) [1] prescribes basic requirements for

securing public safety, health, and general welfare of residents for both new and

existing buildings. Systems model analysis in this research project corresponds to

satisfaction of a few basic area constraints for different types of rooms, occupancy

groups (e.g., business, education, residential), and types of construction (e.g., ma-

sonry, wood). The IBC requirements that have been implemented in this study are

as follows:

• Section 1208.1 Minimum Room Width. This section prescribes minimum

allowable width of a room used as a habitable space or kitchen. Specifically,

either side of a habitable space shall be not less than seven feet wide; kitchens

shall have a clear passageway of at least three feet wide between counter fronts

to walls. Since there is no clear specification in IBC for the required width of

a counter front, we require it to be at least two and a half feet.

103

• Section 1208.3 Room Area. This section prescribes minimum room areas

for different floorplan. Specifically, dwellings must have at least one habitable

room which shall be not less than one hundred and twenty square feet. All

other habitable rooms shall have a net floor area greater than seventy square

feet.

• Section 1208.4 Efficiency Dwelling Unit. This section prescribes four re-

quirements for a dwelling unit to be efficient. The first requirement regulates

the size of the living room. If the occupancy of the unit exceeds two, then the

living room should have an extra hundred squared feet of space per additional

occupant. Other requirements explain what an efficient dwelling unit shall

provide, and is beyond the scope of this case study.

This research also employed regulations prescribed in the International Prop-

erty Maintenance Code (IPMC) [2]. IPMC’s primary purpose is to regulate the

minimum maintenance requirements for existing buildings. Listed below are detail

explanations of all the requirements that are implemented in this study to prevent

occupancy overcrowding within the building environment:

• Section 404.4.1 Room Area. In IBC, the minimum size of a room area does

not depend on the anticipated room occupancy. Section 404.1.1 of IPMC

overcomes this weakness by extending the regulation of Section 1208.3 in IBC

to avoid overcrowding in living environments. They specifically require the

minimum area of the bedroom shall be increased by fifty square feet for each

extra occupant.

104

• Section 404.5 Overcrowding - Living room. The living room area regulation

(IBC Section 1208.4) is for efficiency dwelling unit. Although IPMC Section

404.5 is less restrictive than IBC Section 1208.4, it could be used as a minimum

size requirement for living rooms, and also, serve to prevent overcrowding in

living environments. IPMC Section 404.5 specifically requires that the living

room size be no less than a hundred and twenty square feet for one through

five occupants, and a hundred and fifty square feet for six or more occupants.

With the selected IBC and IPMC requirements input into the interactive graphical-

based modeling software will directly output the results of building code require-

ments satisfaction to the user as one of the way to analyze the building floorplan

system model.

5.3 Formulation of Energy Problem

According to a residential energy consumption survey by U.S Energy In-

formation Administration, newer U.S. homes are 30% larger but consume about as

much energy as older homes due to better equipment and building isolation [26].

However, there is also a 56% increase in energy for air conditioning. This observa-

tion highlights the importance of choosing the right heating and cooling system for

the building system.

Nowadays, the air-source heat pump system is a great choice for providing

efficient heating and cooling for residential building and can be mainly used in nearly

105

all parts of the United States [28]. The U.S. Environmental Protection Agency also

administers the ENERGY STAR for home program to encourage people using a

more efficient cooling equipment. With the sizing guidelines [37] from ENERGY

STAR program, resident in different areas of the United States can easily find the

applicable size of the heat pump that can be used for their home. In this case, more

energy utility cost can be saved throughout the heat pump life cycle.

Cooling and Heating Usage in the US. Based on the residential air-source heat

pump energy and cost saving calculator provided by the Federal Energy Management

Program or ENERGY STAR, we can get cooling and heating usage for different areas

in United States and the energy consumption and air-source heat pump life-cycle

energy cost. The relevant formula are as follows:

LCC = Costi + E ∗ Coste ∗
(1 + d)t − 1

d(1 + d)t
(5.1)

E = C ∗ (
SummerUsagecity

SEER
+

WinterUsagecity
HSPF

) ∗ 0.001(W/kW) (5.2)

C = S ∗ 12000Btu/Tons (5.3)

In equations 5.1 through 5.3, LCC is the life-cycle cost in USD of an air-source

heat pump, Costi is the initial cost in USD of purchasing an air-source heat pump,

E is the annual energy power consumption (kWh), Coste is the electricity cost

(kWh/USD), d is the annual discount rate, t is the lifetime of an air-source heat

pump (year), C is the air-source heat pump capacity (Btu), S is the air-source heat

106

City Sizing
Group

Cooling
Usage

Heating
Usage

Electricity Cost
(USD/kWh)

Seattle, WA 9 282 2956 $0.0877

Los Angeles, CA 11 1630 1070 $0.1622

Washington, DC 25 1320 2061 $0.1284

Miami, FL 41 3931 265 $0.1198

Dallas, TX 65 1926 1343 $0.1179

Table 5.1: City selection and basic information. The cooling usage and the heating
usage are in hr, and the electricity cost is USD per kWh.

pump size (Tons), SummerUsagecity is the summer usage in hr of a city, SEER

is the seasonal energy efficiency ratio (Btu/hr)/(Watts/hr), WinterUsagecity is the

winter usage in hr of a city, and HSPF is the heating seasonal performance factor

(Btu/hr)/(Watts/hr).

Cooling/Heating Usage Data for Various US Cities. Table 5.1 represents

the selection of cities in United States with their sizing group from ENERGY STAR

sizing guidelines and related cooling and heating usage. The selection of cities is

based on the sizing group to make the selection more diverse, and the electric-

ity cost data are based on Electric Power Monthly by U.S. Energy Information

Administration[27]. The ENERGY STAR sizing guidelines consist of a set of nine

maps covering the continental U.S; maps are divided into counties. Contiguous coun-

ties that have the same sizing recommendations are combined into sizing groups.

107

5.3.1 Electricity Cost Study

With the energy cost formula in place (see equations 5.1 through 5.3 and

Table 5.1), one can tell the electricity cost is one of the main factors of energy

consumption cost. Unfortunately, decision making is complicated by variations in

electricity price throughout the United States. In an ideal world the cost of electric-

ity would be zero and the decision problem for heat pump selection would boil down

to choosing the heat pump that has the minimum initial cost. However, we are not

living in an ideal world, and cause-and-effect relationships are no longer straight-

forward. Figure 5.3 graphs energy consumption cost and electricity cost across a

family of US cities and specifically shows how electricity cost matters in the selected

cities with the comparison of a less efficient (SEER 13) 3 tons heat pump and a high

efficient (SEER 16) one. We also present in Table 5.2 the threshold electricity price

difference for each city when initial price difference of the SEER 16 model can be

compensated in the first year.

In Electric Power Monthly by U.S. Energy Information Administration, the

cheapest electricity cost around the country is in Washington region with a cost of

$0.0877 per kWh, and the most expensive electricity cost in continental U.S. is New

York region with the cost of $0.1946 per kWh. However, Hawaii and Alaska have

a more expensive electricity cost at $0.1947 per kWh and $0.3506 per kWh outside

continental U.S. region.

While one might be tempted to purchase the least expensive heat pump

108

Figure 5.3: First year energy consumption costs vs electricity price with a 3 tons
SEER 13 and a 3 tons SEER 16 heat pump. Plots are presented for five US cities
(Dallas, TX; Miami, FL; Los Angeles, CA; Washington DC; Seattle WA).

109

City SEER 13
Consumption

SEER 16
Consumption

Electricity Cost
Threshold

Seattle, WA 14424.00 11836.18 $0.1932

Los Angeles, CA 9452.31 7722.24 $0.2890

Washington, DC 13167.69 10780.11 $0.2094

Miami, FL 12108.92 9848.96 $0.2212

Dallas, TX 11532.00 9422.76 $0.2371

Table 5.2: Annually energy consumption in kWh for both 3 tons SEER 13 and
SEER 16 heat-pumps and the related electricity cost per kWh threshold.

(and less energy efficient), from a lifecycle perspective this is a bad strategy – in

fact, as the price of electricity increases, it make makes more sense to pay a little

bit more up-front and purchase the high-energy efficient unit.

5.3.2 Air-Source Heat Pump Component Library

The heat pump library (see Table 5.3) contains a set of heat pumps that are

used inside simplified life cycle energy consumption and cost trade off analyses. The

selection of heat pumps for the library is based on the most common heat pump

sizes, ranging from 1.5 tons to 5 tons with SEER ratings from 13 to 16. Notice that

all of the heat pump sizes that have non-integer values either have a SEER rating

of 13 or 14. There are no non-integer heat pump sizes having a SEER rating of 16.

Similarly, the library contains no commercial heat pump sizes having 4.5 tons since

none could be found. As such, if the usable area of the floorplan model requires a

4.5 tons heat pump, a 5 tons heat pump will be automatically assigned.

110

Heat pump size SEER HSPF Price (US $)

1.5 Tons 13 7.8 $900

1.5 Tons 14 8.5 $1,100

2 Tons 13 7.8 $900

2 Tons 14 8.5 $1,000

2 Tons 16 9.5 $1,500

2.5 Tons 13 7.8 $900

2.5 Tons 14 8.5 $1,100

3 Tons 13 7.8 $1,100

3 Tons 14 8.5 $1,200

3 Tons 16 9.5 $1,600

3.5 Tons 13 7.8 $1,100

3.5 Tons 14 8.5 $1,300

4 Tons 13 7.8 $1,200

4 Tons 14 8.5 $1,400

4 Tons 16 9.5 $1,900

5 Tons 13 7.8 $1,600

5 Tons 14 8.5 $1,700

5 Tons 16 9.5 $2,200

Table 5.3: Air-source heat pump library. Here SEER is the seasonal energy efficiency
ratio (Btu/hr)/(Watts/hr) and HSPF is the heating seasonal performance factor
(Btu/hr)/(Watts/hr).

111

5.4 Building/HVAC System Assessment and Tradeoff

In this tradeoff analysis, we study the original and the modified two-apartment

floorplan designs based on ENERGY STAR air-source heat pump sizing guidelines

for different city. The graphical-based modeling software framework provides 5 loca-

tion trade off studies for the floorplan model. Therefore, one physical modification

of the floorplan model will provide a case with 5 sub-cases as the location of the

model, and we can compare two different floorplan model, which is two cases in the

software, and multiple locations comparison in the trade off function.

5.4.1 Original Floorplan System

First, we verified all the IPC and IPMC requirements described in Section

5.2. The results are shown in the bottom left panel of Figure 5.4. The original

floorplan design model satisfies all 8 requirements from IPC and IPMC.

We assign the smaller apartment 2 as Zone 1 (Z1) and apartment 1 as Zone

2 (Z2) in the air-source heat pump sizing chart in Figure 5.5, energy consumption

chart in Figure 5.6, and life-cycle cost chart in Figure 5.7.

We note that the whole floorplan model in Seattle only needs a 2.5 tons

air-source heat pump to cover. For other cities, they all need more than a 0.5 tons

jump from the bigger zone required capacity. However, it is still worth of consider

choosing one heat pump system for the whole floorplan system.

Now, let us focus on the Los Angeles data points subset in Figure 5.6 because

112

Figure 5.4: The original floorplan model requirement verification result.

113

Figure 5.5: The required air-source capacities chart in tons for original design of the
two apartment floorplan design by city.

114

Figure 5.6: The energy consumption for the selection of air-source heat pumps chart
for the original two apartment floorplan design by city. Results are bundled into
three groups: Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e., Whole = union
of zones 1 and 2).

115

Los Angeles consumes less energy annually. The first point to note is that the

difference in energy consumption for the high efficient heat pump unit and low

efficient heat pump unit will increase when the size of the floorplan system increases.

Moreover, if we design the floorplan HVAC system separately with zone 1 and zone

2, the combined energy consumption of the two high efficient heat pump units will

be at least 10% more than the design that consider the zone as a whole (i.e., the

occupants of the apartments share the resources of a single heat pump). Even

if we chose the least efficient heat pump from the library in Table 5.3 for whole

floorplan coverage, the annual energy consumption of the two high efficient heat

pump units are still 0.6% higher. After doing the same analyses for the other cities,

it is evident that Los Angeles is unusual in the sense that two zones HVAC design

are only slightly less efficient (i.e., an increase of 0.6%) than a setup where a single

HVAC unit is used across multiple apartments. As such, Los Angeles provides users

with unusual flexibility in their selection between choosing either a one- or two-zone

HVAC system design. Table 5.4 shows the comparison between the two zone case

and one zone case, and the ”Increase %” column represents the increased percentage

between the two most efficient heat pump design combined energy consumption and

the least efficient single heat pump design energy consumption.

As we mentioned in Section 5.3.1, the electricity cost is one of the other

main factor for life cycle cost analysis. We simply calculated the relative life cycle

cost of the selected air-source heat pumps at a average of 18.4 years lifetime [36]

with the floorplan model. The results are shown as Table 5.7.

116

Figure 5.7: The life cycle cost analysis for different heat pump chart of the original
two apartment floorplan model by city. Results are bundled into three groups: Zone
1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e., Whole = union of zones 1 and 2).

117

City

Two Zones
Combined
Consumption
(kWh)

One Zone Consumption
Increased
%

Most
Efficient
Unit(kWh)

Least
Efficient
Unit(kWh)

Seattle, WA 6622.3 + 7890.8 11037.2 12020.0 20.7%

Los Angeles, CA 4361.6 + 5148.2 7722.2 9452.3 0.6%

Washington, DC 7186.7 +
10102.7

14143.8 15362.3 12.5%

Miami, FL 9358.9 + 9849.0 13131.9 16145.2 19%

Dallas, TX 8867.1 +
12414.0

15704.6 19220.0 10.7%

Table 5.4: Energy consumption comparison between two zone with most efficient
HVAC design and one zone HVAC design.

We can calculate the life cycle cost by using equation 5.1 which is based on

present value formula for annual recurring uniform amount [55] with a discount rate

of 4%. As we can see the electricity cost make a huge difference between the more

efficient air-source heat pump and the less efficient one, and it’s also worth of notice

that Seattle has a cheaper life cycle cost due to the cheaper electricity cost although

the annual energy consumption is higher than Los Angeles.

5.4.2 Redesigned Floorplan System

The redesigned floorplan area is 22.7% larger than the original floorplan

area. The usable area increases by 25.2%. This transformation is illustrated in

Figure 5.2, and described in detail in Chapters 3 and 4. Table 5.5 provides a

side-by-side comparison of building system analysis results for the redesigned and

original floorplan models. Notice that the redesigned floorplan model (see Figure

118

Original
Floorplan

Redesign
Floorplan

Increased
%

Total Area (sq ft) 3450 4233 22.7%

Usable Area (sq ft) 2890 3617 25.2%

Table 5.5: The comparison between original and redesign floorplan model area data.

5.8) satisfies all of the IBC and IPMC requirements.

With the increase of usable area for both apartment 1 and apartment 2, the

needs of heating and cooling capacity clearly increased. The air-source heat pump

sizing chart in Figure 5.9, energy consumption chart in Figure 5.10, and life-cycle

cost chart in Figure 5.11 for redesign floorplan model will be shown below.

Moreover, since Seattle and Los Angeles required the same amount of heating

and cooling capacity, the Los Angeles line is exactly covered by the Seattle line in

Figure 5.9. Also observe that the 5 tons commercial air-source heat pump can’t

cover the whole usable area of the whole floorplan model anymore. Therefore, the

one and only way to satisfy heating and cooling needs is to utilize multiple air-source

heat pump units for each apartment. In other words, there is no way that a single

heat pump can cover the whole floorplan model.

119

Figure 5.8: The redesigned floorplan model requirement verification result.

120

Figure 5.9: The required air-source capacities chart in tons for redesigned model of
the two apartment floorplan design by city.

121

Figure 5.10: The energy consumption for the selection of air-source heat pumps chart
for the redesigned two apartment floorplan model by city. Results are bundled into
three groups: Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e., Whole = union
of zones 1 and 2).

122

Figure 5.11: The life cycle cost analysis for different heat pump chart of the re-
designed two apartment floorplan model by city. Results are bundled into three
groups: Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e., Whole = union of
zones 1 and 2).

123

5.5 Sensitivity Analysis for Two Design Floorplan Models

Now that the multi-energy consumption (see Figure 5.12) and multi-life

cycle cost charts (see Figure 5.13) are in place, we can investigate the sensitivity of

HVAC system decisions to adjustments in the floorplan area design. In this specific

example, the redesigned floorplan area has energy consumption and life cycle costs

that are significant increases over the original design, and are beyond the capabilities

of a 5 ton heat pump. As a consequence we are forced to use a two-zone setup for

the redesigned floorplan model.

Figure 5.12 shows energy consumption for various air-source heat pumps

used in the original and redesigned two apartment floorplan models. Figure 5.13

shows life cycle cost analysis for various heat pump in the original and redesigned

two-apartment floorplan models. Generally speaking, energy consumption require-

ments increase with floorplan area. Table 5.6 provides a city perspective on the

best designs (i.e., most efficient heat pumps) for various HVAC zone assumptions

coupled with the original and redesigned floorplan models.

The main conclusions of the sensitivity analysis are as follows: while the

floorplan model redesign increases the usable area by 25.2%, the consequences are

most dramatic – an increase of 62.74% in energy consumption; an increase of 63.88%

in life cycle cost – when the original HVAC system design was setup to cover the

whole floorplan as a single zone. When a two zone setup is employed for the HVAC

design in Washington, Miami and Dallas, average life cycle costs only increase by

124

Figure 5.12: Energy consumption for various air-source heat pumps used in the
original and redesigned two-apartment floorplan models. Results are bundled into
three groups: Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e., Whole = union
of zones 1 and 2). The original designs for zones 1 and 2 are represented by tags O-
Z1 and O-Z2, respectively. O-Whole represents the case where the entire floorplan
is a single zone. R-Z1, R-Z2 are the redesign case studies.

125

Figure 5.13: Life cycle cost analysis for various heat pump in the original and
redesigned two-apartment floorplan models. Results are bundled into three groups:
Zone 1 (Z1), Zone 2 (Z2) and the whole floorplan (i.e., Whole = union of zones 1 and
2). The original designs for zones 1 and 2 are represented by tags O-Z1 and O-Z2,
respectively. O-Whole represents the case where the entire floorplan is a single zone.
R-Z1, R-Z2 are the redesign case studies.

126

Original Redesign Increased %

Seattle, WA

Whole EC (kWh) 11037.2 18928.0 71.5%

Combined EC (kWh) 14513.1 18928.0 30.4%

Whole LCC (dollar) 13539.7 23933.1 76.8%

Combined LCC (dollar) 18957.2 23933.1 26.2%

Los Angeles, CA

Whole EC (kWh) 7722.2 12417.5 60.8%

Combined EC (kWh) 9509.8 12417.5 30.6%

Whole LCC (dollar) 17697.0 28484.2 61.0%

Combined LCC (dollar) 22423.0 28484.2 27.0%

Washington, DC

Whole EC (kWh) 14143.8 20882.8 47.6%

Combined EC (kWh) 17289.4 20882.8 30.6%

Whole LCC (dollar) 24638.9 37159.1 50.8%

Combined LCC (dollar) 31129.6 37159.1 19.4%

Miami, FL

Whole EC (kWh) 13131.9 22951.4 74.8%

Combined EC (kWh) 19207.9 22951.4 19.5%

Whole LCC (dollar) 22117.9 38235.8 72.9%

Combined LCC (dollar) 32272.3 38235.8 18.5%

Dallas, TX

Whole EC (kWh) 15704.6 24977.7 59.0%

Combined EC (kWh) 21281.1 24977.7 17.4%

Whole LCC (dollar) 25995.3 41045.6 57.9%

Combined LCC (dollar) 34445.9 41045.6 19.2%

Table 5.6: The comparison between original and redesign floorplan model energy
consumption and life cycle cost data. Legend: EC represents energy consumption;
LCC stands for life cycle cost.

127

19.03%. In some cities (e.g., Los Angeles) energy costs are sensitive to modifications

to floorplan areas.

128

Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

The long-term objectives of this research are development of model-based

systems engineering (MBSE) procedures and computer-aided tools for the para-

metric modeling, system-level assessment, and trade-study analysis of buildings.

With a focus on top-down parametric representations of two-dimensional building

floorplans, coupled with support for HVAC component selection, assessment and

sensitivity analysis, the work presented in the thesis is an initial step to that end.

The program of research began with a scripting approach to building floorplan spec-

ification and floor area computations. While we were able to show that the approach

works, unfortunately, it is also very tedious. Thousands of lines of Java source code

were needed just to specify all of the details in a two-apartment floorplan system

model. The second phase of the research addressed these scaleability challenges

through the design and implementation of an interactive, graphically-based floor-

plan editor. The editor makes extensive use of software design patterns (especially

composite hierarchies, model-view-controller, and visitor design patterns), and is far

more efficient than the scripting approach. Use of the model-view-controller (MVC)

software design pattern was particularly successful. MVC is a great way to display

129

engineering views of floorplans alongside tree and table views, with the latter focus-

ing on organizational perspectives and data, respectively. Computational support

was developed for the evaluation of analytic functions associated with building code

regulations, an electricity cost study, and simplified HVAC component selection and

architecture-energy sensitivity analysis.

A two-apartment building model case study has been presented. The case

study shows that it is possible to simultaneously consider parametric representations

of floorplans alongside HVAC system selection. Furthermore, in decision making for

the selection of HVAC system components, the price of electricity and the assignment

of HVAC components to spatial regions (zones) actually matters. Solutions to this

problem are not necessarily straight forward because state-of-the-art practice for

HVAC zones is based on “rules of thumb” and is not yet a quantitative science.

Still, over the twenty-to-fifty year (or more) working lifetime of a regular building,

decisions made at the very frontend of development can have a large impact on

lifecycle costs.

6.2 Future Work

The scope of work in this study has been restricted to the hierarchical

specification of two-dimensional floorplans. Future work should extend these tech-

niques to simplified representations and visualization (see Figure 6.1) for three-

dimensional building geometries. Three-dimensional building architectures will be

created through a top-down refinement of centerlines (for column lines, frame po-

130

Figure 6.1: Abbreviated three-dimensional visualization of a house with JavaFX.
The complete Wavefront model (obj file format) contains 781,000 vertices and faces;
approximately 1/5th of the model is displayed [42, 65].

Building Floorplan / Architecture

Actuators
−− switch
−− damper
−− valve

Idle

Read

Indoor Sensors
−− thermal
−− humidity
−− luminance

−− flow
−− occupancy

Open

Close

Building Simulation

O
ut

pu
t In

pu
t

−− Computational flow analysis (heat and moisture).
−− Computational flow analysis (pressure and velocity).

Ontology + Rules + Instances

Push data
Components
−− pipe
−− fan
−− pump
−− h/c coil

Push data

Control Algorithms
Close heating coil
valveidle

[Temp>set]
Open heating coil valve 90%

& Occup<4]
[Temp <set

Synthesis

Behavior Modeling and Control

−− Time history simulation.

Automated synthesis of building simulations.

−− Performance assessment.

Figure 6.2: Framework for integrated development of building floorplans (and sim-
plified three-dimensional representations of buildings), simulation and control.

131

sitions and floor elevations) into three-dimensional air volumes, followed by the

attachment of features (e.g., walls, doors, windows) to the boundaries connect-

ing adjacent air volumes. The coordinate properties of individual air volumes will

depend on the positioning of centerlines. In state-of-the-art BIM packages (e.g.,

Google SketchUp), three-dimensional solid objects are modeled by just representing

the edges of the solid (wire frame representation) of by modeling the surfaces of

the solid. While these abstractions provide good support for visualization, they fail

to provide information about the regions inside and outside the solid (for instance,

whether a point is inside or outside the solid). Solid modeling techniques, on the

other hand, are based on the idea that for any physical object, its boundaries or

skin divide three dimensional Euclidean space in two regions. Algorithms can be de-

vised where engineering properties (e.g., surface area; air volume) can be evaluated

through a systematic traversal of the air volume nodes and edges.

This study has employed simplified HVAC system modeling assumptions

and procedures. Looking to the future, even preliminary building models will need

to consider combinations of discrete and continuous HVAC system behavior. Fig-

ure 6.2 shows, for example, a framework for integrated development of building

floorplans (and simplified three-dimensional representations of buildings), simula-

tion and control. Preliminary steps in the discrete modeling of dynamic behaviors

with statecharts have already been taken by Delgoshaei [20, 21, 22]. A sensible way

of incorporating continuous behaviors would be to return to the scripting – perhaps

building geometries and properties can be specified through the use of an editor, but

132

step-by-step solution procedures can be scripted. Finally, our procedures for para-

metrically adjusting the building geometry have been completely manual. Future

work should consider the use of formal approaches to optimization-based design and

tradeoff analysis to automate (or partially automate) this process.

133

Bibliography

[1] 2012 International Building Code, chapter General Building Heights and Areas.
International Code Council, Inc, 4051 West Flossmoor Road, Country Club
Hills, IL 60478, 2011.

[2] 2012 International Property Maintenance Code, chapter Light Ventilation and
Occupancy Limitations. International Code Council, Inc, 4051 West Flossmoor
Road, Country Club Hills, IL 60478, 2012.

[3] Aish R. and Woodbury R. Multi-level Interaction in Parametric Design. In
Smart Graphics, pages 151–162. Springer Berlin Heidelberg, 2005.

[4] Apt K.R. Principles of Constraint Programming. Cambridge University Press,
2006.

[5] Austin M.A. and Wojcik C. Ontology-Enabled Traceability Mechanisms. In
Proceedings of Twentieth Annual International Symposium of The International
Council on Systems Engineering (INCOSE), Chicago, USA, July 12-15 2010.

[6] Austin M.A., Baras J.S., and Kositsyna N.I. Combined Research and Curricu-
lum Development in Information-Centric Systems Engineering. In Proceedings
of the Twelth Annual International Symposium of The International Council
on Systems Engineering (INCOSE), Las Vegas, USA, July 2003.

[7] Austin M.A., Mayank V., and Shmunis N. PaladinRM: Graph-Based Visualiza-
tion of Requirements Organized for Team-Based Design. Systems Engineering:
The Journal of the International Council on Systems Engineering, 9(2):129–
145, May 2006.

[8] Barton P.K. Building Services Integration. E and FN Spon, London, 1983.

[9] Bentley K., 2003. Does the Building Industry Really Need to Start Over? – A
Response from Bentley to AutoDesk’s BIM/Revit Proposal for the Future.

[10] Bentley Generative Components, 2014. Parameteric representation for a
generated compound membrane. Adapted from http://www.bentley.com/en-
GB/Products/GenerativeComponents/. Accessed October 2, 2014).

[11] Bombard Electric, 2014. See http://www.bombardelectric.com).

[12] Broderbund. 3D Home Architect Design Suite. Deluxe 6, 2004. See
http://www.broderbund.com.

[13] Building Technology Center for the Built Environment, Uni-
versity of California, Berkeley, CA 94720., 2009. See
http://www.cbe.berkeley.edu/mixedmode/aboutmm.html and links therein
(Accessed, Feb. 18, 2009).

134

[14] Building Technology at MIT., 2009. See http://bt.mit.edu/ and links therein
(Accessed, Feb. 18, 2009).

[15] Burdett R. and Sudjic D. The Endless City. Phaidon Press, 2008.

[16] Chen S.Y. and Chiu M.L. Designing Smart Skins for Adaptive Environments.
Computer-Aided Design and Applications, 4(6):751–760, 2007.

[17] Chong Y.T., Chen C.H., and Leong K.F. A Heuristic-Based Approach to Con-
ceptual Design. Research in Engineering Design, 20(2):97–116, 2009.

[18] Daniels K. Advanced Building Systems: A Technical Guide for Architects and
Engineers. Birkhauser, 2003.

[19] de Vries B., Jessurun A.J. and van Wijk J.J. Interactive 3D Modeling in the
Inception Phase of Architectural Design. The Eurographics Association, 2001.

[20] Delgoshaei P. and Austin M.A. Software Design Patterns for Ontology-Enabled
Traceability. In Proceedings of Ninth Annual Conference on Systems Engineer-
ing Research, Redondo Beach, CA, April 14-16 2011.

[21] Delgoshaei P. and Austin M.A. Software Patterns for Traceability of Require-
ments to Finite-State Machine Behavior: Application to Rail Transit Systems
Design and Management. In Proceedings of Fourtenth Annual International
Symposium of The International Council on Systems Engineering, Rome, Italy,
2012.

[22] Delgoshaei P., and Austin M.A. Software Patterns for Traceability of Require-
ments to Finite-State Machine Behavior: Application to Rail Transit Systems
Design and Management. In 22nd Annual International Symposium of The
International Council on Systems Engineering (INCOSE 2012), Rome, Italy,
2012.

[23] Downs L. Interchange Format for Symbolic Building Design. Dissertation sub-
mitted in partial satisfaction for the MS degree in Computer Science, University
of California, Berkeley, CA, 1999.

[24] Dverk D.P. Architecture Programming: Information Management for Design.
John-Wiley and Sons, 1993.

[25] Eastman C.M., Techolz P., Sacks R., and Liston K. BIM Handbook: A Guide
to Building Information Modeling. John-Wiley and Sons, Hoboken, NJ, 2008.

[26] EIA: Newer US Homes are 30% Larger but Consume about as much energy
as Older Homes, U.S. Energy Information Administration, February 12, 2013
(Accessed March 25, 2015).

[27] Electric Power Monthly (EPM) with Data for November 2014, U.S. Energy
Information Administration, January 2015. .

135

[28] An air-source heat pump can provide efficient heating and cooling for your
home and can be used in nearly all parts of the United States, U.S. De-
partment of Energy, February 24, 2015 (Accessed March 25, 2015). See
http://energy.gov/energysaver/articles/air-source-heat-pumps.

[29] ENSE 622: Systems Engineering Requirements, Design, and Trade-Off Analy-
sis, 2014. Master of Science in Systems Engineering (MSSE) Program, Institute
for Systems Research, University of Maryland, College Park, MD 20742. Web
site: http://www.isr.umd.edu/∼austin/ense622.html.

[30] Estefan J.A. Survey of Model-Based Systems Engineering (MBSE) Methodolo-
gies, Version 8, INCOSE MBSE Initiative, 2008.

[31] 2014. European Union, EU Directive of the European Parliament and of the
Council of 19 May, 2010, on the Energy Perfomance of Buildings, Official Jour-
nal of the European Union. Accessed September, 2014.

[32] Flemming U., and Chien S-F. Schematic Layout Design in SEED Environemnt.
Journal of Computing in Civil Engineering, ASCE, 1(4):162–169, 1995.

[33] Fowler M., and Scott K. UML Distilled Second Edition. Addison-Wesley,
Reading, Massachusetts, 2000.

[34] Geyer P. Systems Modeling for Sustainable Building Design. Advances in
Engineering Informatics, 26:656–668, 2012.

[35] Grabska E., Lachwa A., and Slusarczyk G. New Visual Languages Support-
ing Design of Multi-Storey Buildings. Advances in Engineering Informatics,
26:681–690, 2012.

[36] Gregory R., Peter C., Alex L., James M., and Robert V.B. Consumer Life-Cycle
Cost Impacts of Energy-Efficiency Standards for Residential-Type Central Air
Conditioners and Heat Pumps. 2001.

[37] Manufactured Home Cooling Equipment Sizing Guidelines (for ENERGY
STAR qualified manufactured homes and homes built to the HUD standards),
Manufactured Housing Research Alliance, 2005.

[38] Hensen J.L.M. and Lambero R. Building Performance Simulation for Design
and Optimization, chapter Introduction to Building Performance Simulation,
pages 1–14. Spon Press (an imprint of Taylor & Francis), London and New
York, 2010.

[39] Hudson R. Frameworks for Practical Parametric Design in Architecture. In
Advances in Architectural Geometry, Vienna University of Technology, 2008.

[40] Jacobson C.A. CPS and the Energy/Environmental Systems Industry: High
Performance Buildings (Energy), Systems, Cyber-Physical Systems. A CPS
Short Course for NIST Executives, National Institute of Standards and Tech-
nology, Gaithersburg, Maryland, January 19-20 2012.

136

[41] Java Topology Suite (JTS). See http://www.vividsolutions.com/jts/ (Accessed
October 2, 2014).

[42] JavaFX, 2015. See http://www.oracle.com/technetwork/java/javafx/overview/index.html.
Accessed: Jan. 8, 2015.

[43] Johnston S. Greener Buildings – The Environmental Impact of Property.
MacMillan Press, 1993.

[44] Kelly N.J. Towards a Design Environment for Building-Integrated Energy Sys-
tems: The Integration of Electrical Power Flow Modeling with Building Simu-
lation. PhD thesis, University of Strathclyde, Glasgow, U.K., 1998.

[45] Khemlani L., Timerman A., Benne B., Kalay Y. Intelligent Representation for
Computer-Aided Building Design. Automation in Construction, 8(1), Novem-
ber 1998.

[46] Korman T.M, and Tatum C.B. Prototype Tool for Mechanical, Electrical, and
Plumbing Coordination. Journal of Computing in Civil Engineering, ASCE,
20(1), 2006.

[47] Krygiel E., Demchak G., and Dzambasova T. Mastering Revit Architecture
2009. Sybex, an Imprint of Wiley Publishing Inc, 2009.

[48] Madeen D.A., Palma R.M. Architectural AutoCAD: Drafting, Design and
Presentation. 2001.

[49] Markus T.A., Whyman P., Morgan J., Whitton D., Maver T., Canter D. and
Fleming J. Building Performance. John-Wiley and Sons, 1972.

[50] OpenDesign. TurboCAD Deluxe. Version 10, 2004. The deluxe edition handles
2d- and 3d drawings, definition of simple solids, and boolean operations. A
professional edition is supported by the ACIS solid modeling package.

[51] Peng X. Modelling of Indoor Thermal Conditions for Comfort Control in
Buildings. PhD thesis, Delft University of Technology, The Netherlands, 1996.

[52] Rosenman M.A., Gero J.S. Modeling Multiple Views of Design Objects in
a Collaborative CAD Environment. Computer-Aided Design, 28(3):193–205,
1996.

[53] Sacks R., Eastman C.M. and Lee G. Process Improvements in Precast Con-
crete Construction Using Top-down Parametric 3-D Computer Modeling. PCI
Journal, 48(3):46–55, 2003.

[54] Sequin C. and Downs L. Symbolic CAD Tools for Architecture. Technical
report, University of California, Berkeley, CA, 1997.

[55] Sieglinde K. Fuller and Stephen R. Petersen. Life-Cycle Costing Manual for
the Federal Energy Management Program. 1996.

137

[56] Stelting S. and Maassen O. Applied Java Patterns. SUN Microsystems Press,
Prentice-Hall, 2002.

[57] Terzidis K. Algorithmic Architecture. Elsevier, 2006.

[58] Tsai J.J. and Gero J.S.,. A Qualitative Energy-Based Unified Representation
for Buildings. Automation in Construction, 19:20–42, 2010.

[59] Turrin M., von Buelow P., and Stouffs R. Design Explorations of Performance
Driven Geometry in Architectural Design using Parametric Modeling and Ge-
netic Algorithms. Advances in Engineering Informatics, 25:656–675, 2011.

[60] Uddin M.S. Digital Architecture. McGraw-Hill, 1999.

[61] Underwood C.P. and Francis W.H.Y. Modeling Methods for Energy in Build-
ings. Blackwell Publishing, Oxford, England, 2004.

[62] Wagner A., Klebe M., and Parker C. Monitoring Results of a Naturally Ven-
tilated and Passively Cooled Office Building in Frankfurt, Germany. Interna-
tional Journal of Ventilation, 6(1), 2007.

[63] Wang J. Improved Engineering Design Concept Selection using Fuzzy Sets. In-
ternational Journal of Computer Integrated Manufacturing, 15(1):18–27, 2002.

[64] Watson A. Digital Buildings – Challenges and Opportunities. Advances in
Engineering Informatics, 25:573–581, 2011.

[65] Wavefront File Format, 2015. See http://en.wikipedia.org/wiki/Wavefront .obj file.
Accessed: Jan. 8, 2015.

[66] Whole Building Design Guide, A Program of the National Institute of Building
Sciences, See http://www.wbdg.org (Accessed September 12, 2014).

[67] Wetter M. Building Performance Simulation for Design and Optimization,
chapter A View on Future Building System Modeling and Simulation, pages
xxx–yyy. Spon Press (an imprint of Taylor & Francis), London and New York,
2011.

138

