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 Schizophrenia is a debilitating mental illness that affects 1% of the general 

population. One characteristic symptom is auditory hallucinations, which is experienced 

by almost all patients sometime in their lifetime. To investigate differences in auditory 

response in general, 50 schizophrenic patients and 50 age and sex-matched healthy 

controls were presented with auditory click trains at 40 Hz. Responses are recorded using 

electroencephalography (EEG). Magnitude and phase of responses at 40 Hz are computed 

using Gabor filters.  

 Supporting previous literature, a significant difference in inter-trial phase 

coherence (ITC) and overall power is found between patients and controls, in particular 

near stimulus onset. Additionally, this study also investigated inter-subject phase 

coherence (ISC). This study finds that ISC is in fact higher for patients, in particular near 

stimulus onset. One possible explanation is that while healthy controls develop a 

preferred phase for perception, schizophrenic patients exhibit phase that is primarily 

stimulus-driven. 
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1. Introduction 

Schizophrenia is a chronic, debilitating mental disorder that affects 1% of the 

general population. The range of symptoms can include hallucinations, disorganized 

speech, and catatonic behavior. The severity of these symptoms can greatly affect the 

livelihood of schizophrenic patients, however the wide range and variety of symptoms 

make it difficult to diagnose. The standard diagnosis uses the American Psychiatric 

Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM).  The DSM 

lists the following six symptoms, of which two must be present most of the time during 

one month, with some level of disturbance over six months: delusions, hallucinations, 

disorganized speech, extremely disorganized behavior, catatonic behavior, and negative 

symptoms (First et al. 2007). The scale is inherently subjective, and ideally there would 

be a diagnostic measure that is both quantitative and objective.  

Auditory hallucinations are exhibited in approximately 60% to 90% of 

schizophrenic patients (Cummings and Mega 2003). The prevalence of auditory 

hallucinations in schizophrenia has motivated research of processing abnormalities in 

schizophrenia for decades. Although the frequency and severity of auditory 

hallucinations varies widely among patients, one interpretation is that the symptom is a 

result of reduced local connectivity in the auditory cortex. Local connectivity, or the 

activity of smaller populations of neurons, may be reflected in gamma band (30 – 50 Hz) 

activity (Hong et al. 2004). An auditory hallucination could also be the result of an 

incoherent percept, which has also been associated with gamma band activity in auditory 

detection tasks (Jokeit and Makeig 1994). These associations suggest that the gamma 

band is informative in illustrating differences in auditory processing of schizophrenics. 
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A standard method of investigating auditory processing is to measure the auditory 

steady-state response (aSSR). Amplitude-modulated (AM) tones and click-trains elicit an 

aSSR at the stimulating frequency in recordings with electroencephalography (EEG). 

EEG is an advantageous modality for recording electrophysiological responses, being 

quiet, non-invasive, having moderate spatial resolution, and having high temporal 

resolution. The amplitude of the aSSR is largest in the gamma band in humans, and 

within the gamma band is highest at 40 Hz (Azzena et al. 1995, Galambos et al. 1981). 

The preference for 40 Hz has been suggested to be the reflection of maximal phase 

locking of individual trial responses (Artieda et al. 2004). These qualities of gamma band 

aSSR in healthy humans, and 40 Hz in particular, further motivate gamma band aSSR 

research to illustrate differences in auditory processing of schizophrenics. Schizophrenic 

patients exhibit an aSSR with reduced power (Kwon et al. 1999, Schnitzler et al. 2005, 

Light et al. 2006, Krishnan et al. 2009), delayed phase (Kwon et al. 1999), and reduced 

inter-trial coherence (ITC) (Schnitzler et al. 2005, Light et al. 2006, Krishnan et al. 2009) 

to a 40 Hz click train. The deficit in 40 Hz aSSR extends to first-degree relatives of 

patients, although the aSSR is not as reduced (Hong et al. 2004). While schizophrenia 

occurs in 1% of the general population, risk is increased as much as 18-fold as a relative 

of a schizophrenic (Kendler et al. 1985). 

Overall, despite the debilitating nature of schizophrenia, diagnosis is challenging 

and inherently subjective. Gamma band auditory responses are a promising candidate to 

determine objective differences, with well-documented differences in aSSR. Expanding 

on these differences may explain the origins of auditory hallucinations in schizophrenia, 

for instance as a bottom-up problem, e.g. erroneous processing of auditory stimuli, or a 
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top-down problem, e.g. from attentional deficits that alter perception. This thesis 

investigates the differences in gamma band auditory responses in schizophrenic patients 

using EEG, aiming to eventually objectively diagnose schizophrenia and reveal 

underlying neurobiology that would facilitate treatment development. 

2. Experimental Methods 

2.1 Data Collection 

50 schizophrenic patients were age and sex-matched with 50 healthy controls. 

Participants were between 16 and 58 years of age. Schizophrenia was diagnoses using the 

Structured Clinical Interview for DSM-IV (First et al. 2007). All subjects were presented 

with a stimulus of 15 clicks in a sound-attenuated chamber. The clicks were presented at 

40 Hz, and the same stimulus was presented for 75 trials. The inter-stimulus interval 

pseudorandomly varied among 320, 370, and 420 ms. More information on the stimulus 

can be found in the Appendix. 

Electroencephalography (EEG) is recorded continuously (<5 kOhms) from a 64 

electrode Quick-Cap (Neuromedical Supplies, TX) with a Neuroscan SynAmp2. Data are 

sampled at 1 kHz and hardware band-passed between 0.1 and 200 Hz. 

2.2 Data Pre-processing 

The raw, full-duration waveforms are first epoched into the 75 individual trials, 

comprised of a 100 ms pre-stimulus interval, 350 ms of stimulus presentation, and a 300 

ms post-stimulus interval. Each trial is ordered by overall power and maximum absolute 

amplitude. Trials with high (above two standard deviations) power or maximum absolute 

amplitude were considered a result of an artifact and were rejected. Data is further band-

passed between 5 and 55 Hz. EEG analysis of auditory data typically low-passes between 
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5 and 10 Hz, reducing unrelated noise such as a heartbeat, and high-passes between 50 

and 60 Hz, reducing unrelated noise such as 60 Hz power line frequency noise (Light et 

al. 2006, Krishnan et al. 2009). Data is re-referenced over average of channels, excluding 

channels with power above or below two standard deviations of the average.  

Data is then detrended linearly over time and processed by time-shifted Principal 

Component Analysis (tsPCA) (de Cheveigné and Simon 2007), which filters out 

environmental noise based on reference sensors. The reference sensors assumed to be 

dominated by stimulus-unrelated activity were the ocular, occipital, and mandibular notch 

electrodes. Data is then taken from the single Cz electrode. EEG analysis of auditory data 

commonly uses a single midline electrode, typically either Fz (Light et al. 2006) or Cz 

(Tallon-Baudry et al. 1996, Krishnan et al. 2009). Kwon et al. (1999) found Fz to have 

the maximal 40 Hz response while Tallon-Baudry et al. (1996) found Cz (or C4) to have 

the maximal 40 Hz response.  

2.3 Data Analysis 

2.3.1 Gabor Filter 

Temporal (1-D) Gabor filters have been utilized to illustrate response amplitude 

over time at modulation frequencies, in both EEG (Sinkkonen et al. 1995) and MEG 

(Ross et al. 2002). Gabor filters ! !  are Gaussian kernels ! !  modulated by a complex 

exponential !(!) (Movellan 2002). 

! ! = !!!"! !" !(!) 

! ! =   !!!!! 

! ! =   !!(!!!!!) 



 5 

Here ! can tune to a particular phase, ! controls the bandwidth, and the maximum 

amplitude corresponds to !!. In this analysis, ! is 0, !! is 40 Hz, and ! is 10 Hz. Output 

can be analyzed in terms of its real !(!) and imaginary !(!) components. Energy !(!) at a 

target frequency !! is calculated as the sum of the squares of the real and imaginary 

components, and phase !(!) is calculated as the four-quadrant inverse tangent of the ratio 

of the imaginary to real component. Note that while the individual outputs are sensitive to 

phase, but the energy output is phase insensitive. 

! ! = !" !" !"#(2!!!! + !) 

! ! = !" !" !"!(2!!!! + !) 

! ! =   !(!)! +    !(!)! 

! ! =
tan!!

!(!)
!(!)

,                          ! ! > 0

tan!!
!(!)
!(!)+   !,        ! ! < 0

 

2.3.2 Phase Coherence 

Phase coherence is generally the average magnitude of a set of phasors 

constrained to the unit circle. With this constraint, the maximum value is 1, and the 

minimum value is 0. The maximum occurs if all phasors have the same phase, regardless 

of the particular phase value. Most commonly, phase coherence is calculated over the set 

of trials for a subject. Phase coherence over trials as well as subjects is investigated here. 

For notation, we denote ISC as the inter-subject phase coherence and ITC as the inter-

trial phase coherence. ITC is sometimes denoted as phase-locking factor or PLF (Tallon-

Baudry et al. 1996). 
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!  ,      ! = 1,2…!   Total number of trials, index  

!,      ! = 1,2…!   Total number of subjects, index 

! ! ∈   ℂ!  ×  !    All response data as unit phasors 

!!" ! ∈   ℂ    Response data for !th subject, !th trial 

!"!!(!) =    |
!
!

!!"(!)! |  Inter-Trial Phase Coherence 

!"!!(!) =    |
!
!

!!"(!)! |  Inter-Subject Phase Coherence 

 
3. Experimental Results 

3.1 Trial Data For Representative Subject 

 Trial data for a representative subject is shown in Figure 1. The responses for 

individual trials are shown in cyan (only 20 shown for visualization) and the average is 

shown in dark blue. The average is scaled for visualization. The stimulus is presented 

between 0 and 350 ms, depicted in the figure with the gray bar. Visually, it is clear that 

the average response exhibits a dominant frequency (40 Hz), with a short latency with 

respect to stimulus presentation. The energy at 40 Hz is quantified using a Gabor filter 

and displayed in the figure that follows. Additionally, the trial data shows that while the 

average data exhibits a dominant frequency, there is phase variation across trials. The 

coherence of the phase over trials, namely the ITC, is calculated at each point in time and 

is displayed later. Outside of stimulus presentation, responses exhibit large variations 

across trials and 40 Hz components are not salient. 
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Figure 1: Trial Data for Representative Subject: Individual trials are displayed (cyan) with their 

scaled average (dark blue). The average response shows a salient 40 Hz component during 

stimulus presentation, quantified in the next figure. Trial data visualizes the large trial variations, 

particularly in phase, which is quantified in Figure 3. 

3.2 Energy at 40 Hz 

The energy output of the Gabor filter at 40 Hz for the trial average is shown in 

Figure 2, for both the averages over healthy controls and schizophrenic patients. Recall 

that the Gabor filter has a kernel of 100 ms, smoothing the response, so features at shorter 

time scales have been smoothed. The response is largely salient only during stimulus 

presentation, ramping up after stimulus onset and fading after the last click. Additionally, 

the response is higher for healthy controls for the majority of stimulus presentation, 

consistent with literature (Kwon et al. 1999, Schnitzler et al. 2005, Light et al. 2006, 

Krishnan et al. 2009). The difference is statistically significant between 118 and 173 ms 

(Permutation test, p<0.05). Note that although the stronger response between the two 

controls oscillates after 450 ms, this is after the stimulus presentation. 
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Figure 2: Gabor Filter Energy Output at 40 Hz For Both Group Averages. Energy at 40 Hz is 

consistently higher during stimulus presentation for the averaged healthy controls. The difference 

was statistically significant between 118 and 173 ms. Both groups exhibit monotonic increases 

until a peak is reached. 

 

3.3 ITC at 40 Hz 

Inter-trial phase coherence (ITC) at 40 Hz for both groups is shown in Figure 3. 

ITC for each subject is calculated, and then each group is averaged. As expected, ITC is 

higher for both groups during stimulus presentation (0 – 350 ms). The difference is 

statistically significant (Permutation test, p<0.05) between 6 and 49 ms. Higher ITC in 

controls is consistent with literature (Schnitzler et al. 2005, Light et al. 2006, Krishnan et 

al. 2009).  
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Figure 3: Inter-Trial Phase Coherence at 40 Hz for Both Group Averages. ITC is significantly 

(Permutation test, p<0.05) higher for the averaged healthy controls near stimulus onset. Similar to 

energy (Fig. 1), both groups exhibit a near-monotonic increases until a peak is reached. 

 

3.4 ISC at 40 Hz 

Inter-Subject Phase Coherence (ISC) at 40 Hz for both groups is shown in Figure 

4. ISC within a group is calculated for each trial, and then all trials are averaged within a 

group. As expected, ISC is notably higher in both groups during stimulus presentation. 

However, the ISC is higher overall for patients, with a statistically significant difference 

(Permutation test, p<0.05) between 57 and 107 ms, and a strongly significant difference 

(p<0.01) between 66 and 93 ms. This is in stark contrast to energy (Fig. 2) and ITC (Fig. 

3), which illustrate higher metrics for controls. We believe this is the first reported result 

of ISC. The intervals of significance are approximately between the second and fourth 

clicks. Within this interval, patients exhibit a 40 Hz phase that is significantly more 

aligned with each other. 
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Figure 4: Inter-Subject Phase Coherence at 40 Hz for Both Group Averages: ISC is significantly 

(Permutation test, p<0.05) lower for the averaged healthy controls shortly after stimulus onset. 

This is in contrast to energy (Fig. 1) and ITC (Fig. 2), which both showed higher metrics for 

controls. Both groups exhibit near- monotonic increases until a peak is reached.  

 

3.5 Summary of Experimental Results 

 The displayed metrics of energy (Fig. 2), ITC (Fig. 3) and ISC (Fig. 4) exhibited 

similar overall trends over time, with an overall increase during stimulus presentation and 

a gradual increase for approximately the first 200 ms. Energy and ITC at 40 Hz are lower 

in schizophrenic patients, however ISC is higher. We believe this is the first time that 

higher ISC in schizophrenic patients has been reported. A phenomenological model is 

proposed in the next section, with results in the subsequent section. Afterwards, we 

discuss possible explanations of the observed phenomena. 
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4. Simulation Methods 

 In the second part of this thesis, a phenomenological model is proposed to explain 

the experimental observations. The overall observations were that schizophrenic patients 

exhibit 1) lower power, 2) lower ITC, and 3) higher ISC at 40 Hz. We began with a 

generalized observed signal ! ! , the sum of the desired auditory signal ! !  at the same 

!! frequency of the stimulus, and unrelated noise ! ! . Constants !!
!"# and !!!"#$% scale 

the underlying signal, and the noise, respectively, included in the model to vary signal-to-

noise ratio (SNR). The phase ! is the sum of two components, a part !! that varies with 

the !th trial, and a part ! that varies with the !th subject. 

General Model 

! ! = !!
!"# sin(2!!!! + !)    Signal at !! 

! ! = ! ! + !!!"#$%!(!)      Observed signal with noise 

! =   !! +   !!      Phase of !! signal for !th subject, !th trial 

 

Modeling Group Differences 

!!   ~  !"(0, !!)           

!! =   
  !!"#$  ,                                                  ! ∈ !"#$%"&
  !!"# <   !!"#$  ,                    ! ∈ !"#$%&#

    

!!
!"#

!!!"#$%
=   

  !!"#$  ,                                        ! ∈ !"#$%"&
  !!"# <   !!"#$  ,          ! ∈ !"#$%&#

         

!!  ~  !"(0,!!) 

!! =   
  !!"#$  ,                                                  ! ∈ !"#$%"&
!!"# >   !!"#$  ,                    ! ∈ !"#$%&#

  

 

Subject phase is more concentrated in 
patients 
	
  

Trial phase concentration depends 
on subject 
	
  

Signal to noise ratio is higher in 
controls	
  

Trial phase is less concentrated in 
patients 
	
  

Subject phase concentration 
depends on subject 
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 All random variables are modeled with a von Mises distribution, which is a close 

approximation to the wrapped normal distribution (Fisher 1993). The distribution 

!"(!, !) is determined by two parameters. The first parameter ! is the mean, which is 

set to 0 in all cases here. The second parameter ! is the concentration, analogous to 1 !! 

in a normal distribution. More information on the von Mises distribution can be found in 

the Appendix.  

To model group differences in ITC, trial phase !! is distributed with a higher 

variance for patients and constant within each respective group. In simulation, !! is set to 

1 for controls and 0.5 for patients. To model group differences in SNR, observed signals 

from controls have a higher !!
!"#/!!!"#$%  ratio, and ratios are constant within each 

respective group. In simulation, !!
!"#/!!!"#$% is scaled by 1.5 for controls, or ~1.76 dB. To 

model group differences in ISC, subject phase !! is distributed with a lower variance for 

patients and constant within each respective group. In simulation, !! is set to 1.5 for 

patients. For controls, !! is set to 0, which replicates a uniform distribution. Noise is a 

mixture of scaled white noise and sinusoidal components that have random variation in 

AM and FM. Noise is generated identically for all subjects, and is generated for every 

trial and subject. Specific information on noise generation can be found in the Appendix. 

As in the experiment, 50 subjects were modeled for each group, each with 75 trials. 
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5. Simulation Results 

 The same analysis performed on the experimental data was performed on the 

simulated data. The results are summarized in Figure 5, where Figure 5a corresponds to 

Figure 2, Figure 5b corresponds to Figure 3, and Figure 5c corresponds to Figure 4.  

 

 

 

 

Figure 5: Repeating Analysis for Simulation. The same analysis is performed on the simulation 

results. The energy output from the Gabor filter at 40 Hz (a) is higher for controls. The ITC (b) is 

higher for controls. The ISC (c) is higher for patients. The overall relationship between the two 

groups regarding these analysis results was the same in the model and observation. 

 

(a) Energy at 40 Hz	
  

(b) ITC at 40 Hz	
  

(c) ISC at 40 Hz	
  

µV
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Note that the model was designed to explain the overall relationship between the 

groups regarding this analysis, not model the precise temporal dynamics, e.g. the regions 

of significant difference. Overall, the energy and ITC are higher in simulated controls, 

while the ISC is higher in simulated patients. Energy and coherences are computed at 40 

Hz, the same frequency of the modeled underlying signal. The overall relationship 

between the two groups in simulation is consistent with the experimental observations.  

6. Discussion 

 The most surprising result of the data analysis is the higher overall ISC of 

schizophrenic patients. Analysis showed higher overall power at 40 Hz during all of 

stimulus presentation, shown in Figure 2. Additionally, ITC is higher overall in controls, 

as shown in Figure 3. These two results are consistent with literature (Kwon et al. 1999, 

Schnitzler et al. 2005, Light et al. 2006, Krishnan et al. 2009) but would not suggest that 

ISC would be higher for patients. Generally speaking, for one group to have a higher ISC 

but lower ITC, this means that while phase differs between trials, the group is more likely 

to have the same phase. Conversely, for one group to have a lower ISC but higher ITC, 

this means that while phase differs between subjects, the group is more likely to have 

consistent phase between trials. 

 Examining the converse, this scenario is plausible concerning the second group 

(healthy controls). In particular, auditory EEG experiments testing near-threshold gaps in 

solely frequency-modulated (FM) stimuli (Henry and Obleser 2012), as well as stimuli 

both AM and FM (Henry et al. 2014) found individual performance was strongly 

correlated with FM stimulus phase, but that the specific phase was not consistent across 

subjects. Figure 6 shows individual subjects’ results of gap-detection performance as a 
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function of FM stimulus phase. Despite the strong modulation, there qualitatively appears 

to be large subject variability in the optimal phase. A similar effect has also been 

observed in the visual system. In flash-lag visual experiments, while performance is 

highly correlated with phase, the phase is the “preferred” phase, which again varies from 

subject to subject (Chakravarthi & VanRullen 2012). 

 
Figure 6: Subject variability in optimal phase (Henry and Obleser 2012). Individual subject 

performance (hit rate) is plotted as a function of FM stimulus phase. Performance follows a 

sinusoidal function at the FM rate, but with different phases across subjects. For instance the 

individual results in the top left exhibit an approximate phase of 0, while the individual results 

displayed to the right exhibit an approximate phase of π/2. Across listeners there was no 

significant correlation between FM stimulus phase and performance. 

 
Therefore, one possible suggestion for lower ISC in controls is the difference in 

preferred phase. A healthy control could develop a particular preferred phase over time, 

which enhances their perception performance. Henry and Obleser (2012) found no 

significant correlation between FM stimulus phase and performance across listeners, who 

were non-schizophrenic subjects with normal hearing. This suggests that it is the 

development of the tuning to the phase, not the phase itself, which is important. If this 
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development was hindered in schizophrenia, then the phases would be similar to each 

other; primarily driven, for example, by the stimulus. Yet an externally-driven phase does 

not appear to be optimal, giving rise to lower energy and ITC. Hence, the apparent lack 

of an internal phase optimization could be an underlying deficit in gamma band auditory 

processing in schizophrenia. 

7. Conclusions 

 This thesis aimed to introduce novel analysis that would add to the established 

differences in gamma band auditory responses of schizophrenic patients. Reduced energy 

and ITC in auditory responses of patients was found, consistent with previous literature. 

Additionally, ISC was analyzed and found to be higher overall in patients. We believe 

this is the first time that higher ISC in schizophrenic patients has been reported. A 

possible explanation has been proposed, where patients exhibit phase that is more 

stimulus-driven, while controls develop a preferred phase that performs better overall, but 

is not consistent across subjects. We presented a phenomenological, computational model 

that exhibits the same overall results of higher energy and ITC but lower ISC for controls. 

 Future work should focus on further investigating ISC differences in 

schizophrenia, including a novel experiment to test the proposed hypothesis. As it is not a 

commonly used metric, an extensive study of responses to different frequencies within 

the gamma band would be informative, with side-by-side comparisons to ITC. 

Furthermore, an active experiment should be devised, where performance could be 

compared to phase, and any preferred phase would become evident in an auditory task. 

When comparing results, it will be important to consider that selective attention enhances 

ITC in 40 Hz aSSR (Skosnik et al. 2007). Additionally, special considerations will have 
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to be made to make a task that elicits a full distribution of performance, but is not too 

frustrating for patients. Future work can also expand on the phenomenological model. 

Biophysical, computational models of the auditory cortex have been proposed (Vierling-

Classen et al. 2008) to characterize schizophrenia, which provided results consistent with 

responses to 40 Hz click-trains recorded with MEG. The analysis did not include phase 

coherence, however. A future study could enhance the proposed model by incorporating 

elements of the biophysical model, or incorporate phase coherence analysis to the 

established biophysical model. The results from these experiments and hybrid model 

would hopefully validate the results reported in this thesis, and firmly suggest a more 

specific neurobiological basis for the auditory processing deficits in schizophrenia. 
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Appendix 

A.1 Stimulus Information 

 

(a)      (b) 

Figure A1: The .wav file is shown in (a), displaying the waveform of a single trial of 15 clicks at 

40 Hz. Each click is present for 1 ms. The frequency content is shown in (b), displaying the 

absolute value of a sinc function, with lobes at multiples of 1kHz and local peaks at multiples of 

40 Hz (too small to see at this scale). 

 

A.2 von Mises Distribution 

The probability density function of a von Mises (VM) distribution (Fisher 1993) 

is the following: 

! ! !, ! =   !
!cos  (!−!)

2!!0(!)
 , 

where !!(!) is the modified Bessel function of order 0. The VM distribution is a close 

approximation to the wrapped normal distribution, where !  is the mean and !  is 

analogous to 1 !!. The support is −!,!  with ! = 0. For ! = 0, VM is a uniform 

distribution, and as ! → ∞, !"(!, !) → !(!, 1 !).  
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A.3 Modeled Noise Parameters 

Noise is modeled as the sum of white noise !! !  and a complex sinusoid !! !  

with random AM and FM.  

! ! =   !! ! + !!(!) 

!! !   ~  !(0,1) 

!! ! = sin 2!!! +   ! sin  (2!!! sin 2!!!! !) 

The parameters !, !!, !!, and !! are all random variables, which are generated for every 

trial and subject. 

!  ~  ![−!,!) 

!! !   ~  !(19, 2) 

!! !   ~  !(9, 2) 

!! !   ~  !(13, 2) 
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